1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * VM - anonymous pages. 43 * 44 * This layer sits immediately above the vm_swap layer. It manages 45 * physical pages that have no permanent identity in the file system 46 * name space, using the services of the vm_swap layer to allocate 47 * backing storage for these pages. Since these pages have no external 48 * identity, they are discarded when the last reference is removed. 49 * 50 * An important function of this layer is to manage low-level sharing 51 * of pages that are logically distinct but that happen to be 52 * physically identical (e.g., the corresponding pages of the processes 53 * resulting from a fork before one process or the other changes their 54 * contents). This pseudo-sharing is present only as an optimization 55 * and is not to be confused with true sharing in which multiple 56 * address spaces deliberately contain references to the same object; 57 * such sharing is managed at a higher level. 58 * 59 * The key data structure here is the anon struct, which contains a 60 * reference count for its associated physical page and a hint about 61 * the identity of that page. Anon structs typically live in arrays, 62 * with an instance's position in its array determining where the 63 * corresponding backing storage is allocated; however, the swap_xlate() 64 * routine abstracts away this representation information so that the 65 * rest of the anon layer need not know it. (See the swap layer for 66 * more details on anon struct layout.) 67 * 68 * In the future versions of the system, the association between an 69 * anon struct and its position on backing store will change so that 70 * we don't require backing store all anonymous pages in the system. 71 * This is important for consideration for large memory systems. 72 * We can also use this technique to delay binding physical locations 73 * to anonymous pages until pageout/swapout time where we can make 74 * smarter allocation decisions to improve anonymous klustering. 75 * 76 * Many of the routines defined here take a (struct anon **) argument, 77 * which allows the code at this level to manage anon pages directly, 78 * so that callers can regard anon structs as opaque objects and not be 79 * concerned with assigning or inspecting their contents. 80 * 81 * Clients of this layer refer to anon pages indirectly. That is, they 82 * maintain arrays of pointers to anon structs rather than maintaining 83 * anon structs themselves. The (struct anon **) arguments mentioned 84 * above are pointers to entries in these arrays. It is these arrays 85 * that capture the mapping between offsets within a given segment and 86 * the corresponding anonymous backing storage address. 87 */ 88 89 #ifdef DEBUG 90 #define ANON_DEBUG 91 #endif 92 93 #include <sys/types.h> 94 #include <sys/t_lock.h> 95 #include <sys/param.h> 96 #include <sys/systm.h> 97 #include <sys/mman.h> 98 #include <sys/cred.h> 99 #include <sys/thread.h> 100 #include <sys/vnode.h> 101 #include <sys/cpuvar.h> 102 #include <sys/swap.h> 103 #include <sys/cmn_err.h> 104 #include <sys/vtrace.h> 105 #include <sys/kmem.h> 106 #include <sys/sysmacros.h> 107 #include <sys/bitmap.h> 108 #include <sys/vmsystm.h> 109 #include <sys/debug.h> 110 #include <sys/fs/swapnode.h> 111 #include <sys/tnf_probe.h> 112 #include <sys/lgrp.h> 113 #include <sys/policy.h> 114 #include <sys/condvar_impl.h> 115 #include <sys/mutex_impl.h> 116 117 #include <vm/as.h> 118 #include <vm/hat.h> 119 #include <vm/anon.h> 120 #include <vm/page.h> 121 #include <vm/vpage.h> 122 #include <vm/seg.h> 123 #include <vm/rm.h> 124 125 #include <fs/fs_subr.h> 126 127 struct vnode *anon_vp; 128 129 int anon_debug; 130 131 kmutex_t anoninfo_lock; 132 struct k_anoninfo k_anoninfo; 133 ani_free_t ani_free_pool[ANI_MAX_POOL]; 134 pad_mutex_t anon_array_lock[ANON_LOCKSIZE]; 135 kcondvar_t anon_array_cv[ANON_LOCKSIZE]; 136 137 /* 138 * Global hash table for (vp, off) -> anon slot 139 */ 140 extern int swap_maxcontig; 141 size_t anon_hash_size; 142 struct anon **anon_hash; 143 144 static struct kmem_cache *anon_cache; 145 static struct kmem_cache *anonmap_cache; 146 147 #ifdef VM_STATS 148 static struct anonvmstats_str { 149 ulong_t getpages[30]; 150 ulong_t privatepages[10]; 151 ulong_t demotepages[9]; 152 ulong_t decrefpages[9]; 153 ulong_t dupfillholes[4]; 154 ulong_t freepages[1]; 155 } anonvmstats; 156 #endif /* VM_STATS */ 157 158 159 /*ARGSUSED*/ 160 static int 161 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags) 162 { 163 struct anon_map *amp = buf; 164 165 rw_init(&->a_rwlock, NULL, RW_DEFAULT, NULL); 166 return (0); 167 } 168 169 /*ARGSUSED1*/ 170 static void 171 anonmap_cache_destructor(void *buf, void *cdrarg) 172 { 173 struct anon_map *amp = buf; 174 175 rw_destroy(&->a_rwlock); 176 } 177 178 kmutex_t anonhash_lock[AH_LOCK_SIZE]; 179 kmutex_t anonpages_hash_lock[AH_LOCK_SIZE]; 180 181 void 182 anon_init(void) 183 { 184 int i; 185 186 anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN); 187 188 for (i = 0; i < AH_LOCK_SIZE; i++) { 189 mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL); 190 mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL); 191 } 192 193 for (i = 0; i < ANON_LOCKSIZE; i++) { 194 mutex_init(&anon_array_lock[i].pad_mutex, NULL, 195 MUTEX_DEFAULT, NULL); 196 cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL); 197 } 198 199 anon_hash = (struct anon **) 200 kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP); 201 anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon), 202 AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 203 anonmap_cache = kmem_cache_create("anonmap_cache", 204 sizeof (struct anon_map), 0, 205 anonmap_cache_constructor, anonmap_cache_destructor, NULL, 206 NULL, NULL, 0); 207 swap_maxcontig = (1024 * 1024) >> PAGESHIFT; /* 1MB of pages */ 208 209 anon_vp = vn_alloc(KM_SLEEP); 210 vn_setops(anon_vp, swap_vnodeops); 211 anon_vp->v_type = VREG; 212 anon_vp->v_flag |= (VISSWAP|VISSWAPFS); 213 } 214 215 /* 216 * Global anon slot hash table manipulation. 217 */ 218 219 static void 220 anon_addhash(struct anon *ap) 221 { 222 int index; 223 224 ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)])); 225 index = ANON_HASH(ap->an_vp, ap->an_off); 226 ap->an_hash = anon_hash[index]; 227 anon_hash[index] = ap; 228 } 229 230 static void 231 anon_rmhash(struct anon *ap) 232 { 233 struct anon **app; 234 235 ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)])); 236 237 for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)]; 238 *app; app = &((*app)->an_hash)) { 239 if (*app == ap) { 240 *app = ap->an_hash; 241 break; 242 } 243 } 244 } 245 246 /* 247 * The anon array interfaces. Functions allocating, 248 * freeing array of pointers, and returning/setting 249 * entries in the array of pointers for a given offset. 250 * 251 * Create the list of pointers 252 */ 253 struct anon_hdr * 254 anon_create(pgcnt_t npages, int flags) 255 { 256 struct anon_hdr *ahp; 257 ulong_t nchunks; 258 int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 259 260 if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) { 261 return (NULL); 262 } 263 264 mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL); 265 /* 266 * Single level case. 267 */ 268 ahp->size = npages; 269 if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) { 270 271 if (flags & ANON_ALLOC_FORCE) 272 ahp->flags |= ANON_ALLOC_FORCE; 273 274 ahp->array_chunk = kmem_zalloc( 275 ahp->size * sizeof (struct anon *), kmemflags); 276 277 if (ahp->array_chunk == NULL) { 278 kmem_free(ahp, sizeof (struct anon_hdr)); 279 return (NULL); 280 } 281 } else { 282 /* 283 * 2 Level case. 284 * anon hdr size needs to be rounded off to be a multiple 285 * of ANON_CHUNK_SIZE. This is important as various anon 286 * related functions depend on this. 287 * NOTE - 288 * anon_grow() makes anon hdr size a multiple of 289 * ANON_CHUNK_SIZE. 290 * amp size is <= anon hdr size. 291 * anon_index + seg_pgs <= anon hdr size. 292 */ 293 ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE); 294 nchunks = ahp->size >> ANON_CHUNK_SHIFT; 295 296 ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *), 297 kmemflags); 298 299 if (ahp->array_chunk == NULL) { 300 kmem_free(ahp, sizeof (struct anon_hdr)); 301 return (NULL); 302 } 303 } 304 return (ahp); 305 } 306 307 /* 308 * Free the array of pointers 309 */ 310 void 311 anon_release(struct anon_hdr *ahp, pgcnt_t npages) 312 { 313 ulong_t i; 314 void **ppp; 315 ulong_t nchunks; 316 317 ASSERT(npages <= ahp->size); 318 319 /* 320 * Single level case. 321 */ 322 if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) { 323 kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *)); 324 } else { 325 /* 326 * 2 level case. 327 */ 328 nchunks = ahp->size >> ANON_CHUNK_SHIFT; 329 for (i = 0; i < nchunks; i++) { 330 ppp = &ahp->array_chunk[i]; 331 if (*ppp != NULL) 332 kmem_free(*ppp, PAGESIZE); 333 } 334 kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *)); 335 } 336 mutex_destroy(&ahp->serial_lock); 337 kmem_free(ahp, sizeof (struct anon_hdr)); 338 } 339 340 /* 341 * Return the pointer from the list for a 342 * specified anon index. 343 */ 344 struct anon * 345 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx) 346 { 347 struct anon **app; 348 349 ASSERT(an_idx < ahp->size); 350 351 /* 352 * Single level case. 353 */ 354 if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) { 355 return ((struct anon *) 356 ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK)); 357 } else { 358 359 /* 360 * 2 level case. 361 */ 362 app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 363 if (app) { 364 return ((struct anon *) 365 ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] & 366 ANON_PTRMASK)); 367 } else { 368 return (NULL); 369 } 370 } 371 } 372 373 /* 374 * Return the anon pointer for the first valid entry in the anon list, 375 * starting from the given index. 376 */ 377 struct anon * 378 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index) 379 { 380 struct anon *ap; 381 struct anon **app; 382 ulong_t chunkoff; 383 ulong_t i; 384 ulong_t j; 385 pgcnt_t size; 386 387 i = *index; 388 size = ahp->size; 389 390 ASSERT(i < size); 391 392 if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) { 393 /* 394 * 1 level case 395 */ 396 while (i < size) { 397 ap = (struct anon *) 398 ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK); 399 if (ap) { 400 *index = i; 401 return (ap); 402 } 403 i++; 404 } 405 } else { 406 /* 407 * 2 level case 408 */ 409 chunkoff = i & ANON_CHUNK_OFF; 410 while (i < size) { 411 app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT]; 412 if (app) 413 for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) { 414 ap = (struct anon *) 415 ((uintptr_t)app[j] & 416 ANON_PTRMASK); 417 if (ap) { 418 *index = i + (j - chunkoff); 419 return (ap); 420 } 421 } 422 chunkoff = 0; 423 i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF; 424 } 425 } 426 *index = size; 427 return (NULL); 428 } 429 430 /* 431 * Set list entry with a given pointer for a specified offset 432 */ 433 int 434 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags) 435 { 436 void **ppp; 437 struct anon **app; 438 int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 439 uintptr_t *ap_addr; 440 441 ASSERT(an_idx < ahp->size); 442 443 /* 444 * Single level case. 445 */ 446 if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) { 447 ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx]; 448 } else { 449 450 /* 451 * 2 level case. 452 */ 453 ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 454 455 ASSERT(ppp != NULL); 456 if (*ppp == NULL) { 457 mutex_enter(&ahp->serial_lock); 458 ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 459 if (*ppp == NULL) { 460 *ppp = kmem_zalloc(PAGESIZE, kmemflags); 461 if (*ppp == NULL) { 462 mutex_exit(&ahp->serial_lock); 463 return (ENOMEM); 464 } 465 } 466 mutex_exit(&ahp->serial_lock); 467 } 468 app = *ppp; 469 ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF]; 470 } 471 *ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap; 472 return (0); 473 } 474 475 /* 476 * Copy anon array into a given new anon array 477 */ 478 int 479 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx, 480 struct anon_hdr *dahp, ulong_t d_idx, 481 pgcnt_t npages, int flags) 482 { 483 void **sapp, **dapp; 484 void *ap; 485 int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 486 487 ASSERT((s_idx < sahp->size) && (d_idx < dahp->size)); 488 ASSERT((npages <= sahp->size) && (npages <= dahp->size)); 489 490 /* 491 * Both arrays are 1 level. 492 */ 493 if (((sahp->size <= ANON_CHUNK_SIZE) && 494 (dahp->size <= ANON_CHUNK_SIZE)) || 495 ((sahp->flags & ANON_ALLOC_FORCE) && 496 (dahp->flags & ANON_ALLOC_FORCE))) { 497 498 bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx], 499 npages * sizeof (struct anon *)); 500 return (0); 501 } 502 503 /* 504 * Both arrays are 2 levels. 505 */ 506 if (sahp->size > ANON_CHUNK_SIZE && 507 dahp->size > ANON_CHUNK_SIZE && 508 ((sahp->flags & ANON_ALLOC_FORCE) == 0) && 509 ((dahp->flags & ANON_ALLOC_FORCE) == 0)) { 510 511 ulong_t sapidx, dapidx; 512 ulong_t *sap, *dap; 513 ulong_t chknp; 514 515 while (npages != 0) { 516 517 sapidx = s_idx & ANON_CHUNK_OFF; 518 dapidx = d_idx & ANON_CHUNK_OFF; 519 chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx); 520 if (chknp > npages) 521 chknp = npages; 522 523 sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT]; 524 if ((sap = *sapp) != NULL) { 525 dapp = &dahp->array_chunk[d_idx 526 >> ANON_CHUNK_SHIFT]; 527 if ((dap = *dapp) == NULL) { 528 *dapp = kmem_zalloc(PAGESIZE, 529 kmemflags); 530 if ((dap = *dapp) == NULL) 531 return (ENOMEM); 532 } 533 bcopy((sap + sapidx), (dap + dapidx), 534 chknp << ANON_PTRSHIFT); 535 } 536 s_idx += chknp; 537 d_idx += chknp; 538 npages -= chknp; 539 } 540 return (0); 541 } 542 543 /* 544 * At least one of the arrays is 2 level. 545 */ 546 while (npages--) { 547 if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) { 548 ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx))); 549 if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM) 550 return (ENOMEM); 551 } 552 s_idx++; 553 d_idx++; 554 } 555 return (0); 556 } 557 558 559 /* 560 * ANON_INITBUF is a convenience macro for anon_grow() below. It 561 * takes a buffer dst, which is at least as large as buffer src. It 562 * does a bcopy from src into dst, and then bzeros the extra bytes 563 * of dst. If tail is set, the data in src is tail aligned within 564 * dst instead of head aligned. 565 */ 566 567 #define ANON_INITBUF(src, srclen, dst, dstsize, tail) \ 568 if (tail) { \ 569 bzero((dst), (dstsize) - (srclen)); \ 570 bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \ 571 } else { \ 572 bcopy((src), (dst), (srclen)); \ 573 bzero((char *)(dst) + (srclen), (dstsize) - (srclen)); \ 574 } 575 576 #define ANON_1_LEVEL_INC (ANON_CHUNK_SIZE / 8) 577 #define ANON_2_LEVEL_INC (ANON_1_LEVEL_INC * ANON_CHUNK_SIZE) 578 579 /* 580 * anon_grow() is used to efficiently extend an existing anon array. 581 * startidx_p points to the index into the anon array of the first page 582 * that is in use. oldseg_pgs is the number of pages in use, starting at 583 * *startidx_p. newpages is the number of additional pages desired. 584 * 585 * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed. 586 * 587 * The growth is done by creating a new top level of the anon array, 588 * and (if the array is 2-level) reusing the existing second level arrays. 589 * 590 * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN. 591 * 592 * Returns the new number of pages in the anon array. 593 */ 594 pgcnt_t 595 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs, 596 pgcnt_t newseg_pgs, int flags) 597 { 598 ulong_t startidx = startidx_p ? *startidx_p : 0; 599 pgcnt_t oldamp_pgs = ahp->size, newamp_pgs; 600 pgcnt_t oelems, nelems, totpages; 601 void **level1; 602 int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 603 int growdown = (flags & ANON_GROWDOWN); 604 size_t newarrsz, oldarrsz; 605 void *level2; 606 607 ASSERT(!(startidx_p == NULL && growdown)); 608 ASSERT(startidx + oldseg_pgs <= ahp->size); 609 610 /* 611 * Determine the total number of pages needed in the new 612 * anon array. If growing down, totpages is all pages from 613 * startidx through the end of the array, plus <newseg_pgs> 614 * pages. If growing up, keep all pages from page 0 through 615 * the last page currently in use, plus <newseg_pgs> pages. 616 */ 617 if (growdown) 618 totpages = oldamp_pgs - startidx + newseg_pgs; 619 else 620 totpages = startidx + oldseg_pgs + newseg_pgs; 621 622 /* If the array is already large enough, just return. */ 623 624 if (oldamp_pgs >= totpages) { 625 if (growdown) 626 *startidx_p = oldamp_pgs - totpages; 627 return (oldamp_pgs); 628 } 629 630 /* 631 * oldamp_pgs/newamp_pgs are the total numbers of pages represented 632 * by the corresponding arrays. 633 * oelems/nelems are the number of pointers in the top level arrays 634 * which may be either level 1 or level 2. 635 * Will the new anon array be one level or two levels? 636 */ 637 if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) { 638 newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC); 639 oelems = oldamp_pgs; 640 nelems = newamp_pgs; 641 } else { 642 newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC); 643 oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 644 nelems = newamp_pgs >> ANON_CHUNK_SHIFT; 645 } 646 647 newarrsz = nelems * sizeof (void *); 648 level1 = kmem_alloc(newarrsz, kmemflags); 649 if (level1 == NULL) 650 return (0); 651 652 /* Are we converting from a one level to a two level anon array? */ 653 654 if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE && 655 !(ahp->flags & ANON_ALLOC_FORCE)) { 656 657 /* 658 * Yes, we're converting to a two level. Reuse old level 1 659 * as new level 2 if it is exactly PAGESIZE. Otherwise 660 * alloc a new level 2 and copy the old level 1 data into it. 661 */ 662 if (oldamp_pgs == ANON_CHUNK_SIZE) { 663 level2 = (void *)ahp->array_chunk; 664 } else { 665 level2 = kmem_alloc(PAGESIZE, kmemflags); 666 if (level2 == NULL) { 667 kmem_free(level1, newarrsz); 668 return (0); 669 } 670 oldarrsz = oldamp_pgs * sizeof (void *); 671 672 ANON_INITBUF(ahp->array_chunk, oldarrsz, 673 level2, PAGESIZE, growdown); 674 kmem_free(ahp->array_chunk, oldarrsz); 675 } 676 bzero(level1, newarrsz); 677 if (growdown) 678 level1[nelems - 1] = level2; 679 else 680 level1[0] = level2; 681 } else { 682 oldarrsz = oelems * sizeof (void *); 683 684 ANON_INITBUF(ahp->array_chunk, oldarrsz, 685 level1, newarrsz, growdown); 686 kmem_free(ahp->array_chunk, oldarrsz); 687 } 688 689 ahp->array_chunk = level1; 690 ahp->size = newamp_pgs; 691 if (growdown) 692 *startidx_p = newamp_pgs - totpages; 693 694 return (newamp_pgs); 695 } 696 697 698 /* 699 * Called from clock handler to sync ani_free value. 700 */ 701 702 void 703 set_anoninfo(void) 704 { 705 int ix; 706 pgcnt_t total = 0; 707 708 for (ix = 0; ix < ANI_MAX_POOL; ix++) { 709 total += ani_free_pool[ix].ani_count; 710 } 711 k_anoninfo.ani_free = total; 712 } 713 714 /* 715 * Reserve anon space. 716 * 717 * It's no longer simply a matter of incrementing ani_resv to 718 * reserve swap space, we need to check memory-based as well 719 * as disk-backed (physical) swap. The following algorithm 720 * is used: 721 * Check the space on physical swap 722 * i.e. amount needed < ani_max - ani_phys_resv 723 * If we are swapping on swapfs check 724 * amount needed < (availrmem - swapfs_minfree) 725 * Since the algorithm to check for the quantity of swap space is 726 * almost the same as that for reserving it, we'll just use anon_resvmem 727 * with a flag to decrement availrmem. 728 * 729 * Return non-zero on success. 730 */ 731 int 732 anon_resvmem(size_t size, uint_t takemem) 733 { 734 pgcnt_t npages = btopr(size); 735 pgcnt_t mswap_pages = 0; 736 pgcnt_t pswap_pages = 0; 737 738 mutex_enter(&anoninfo_lock); 739 740 /* 741 * pswap_pages is the number of pages we can take from 742 * physical (i.e. disk-backed) swap. 743 */ 744 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 745 pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv; 746 747 ANON_PRINT(A_RESV, 748 ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n", 749 npages, takemem, pswap_pages, (void *)caller())); 750 751 if (npages <= pswap_pages) { 752 /* 753 * we have enough space on a physical swap 754 */ 755 if (takemem) 756 k_anoninfo.ani_phys_resv += npages; 757 mutex_exit(&anoninfo_lock); 758 return (1); 759 } else if (pswap_pages != 0) { 760 /* 761 * we have some space on a physical swap 762 */ 763 if (takemem) { 764 /* 765 * use up remainder of phys swap 766 */ 767 k_anoninfo.ani_phys_resv += pswap_pages; 768 ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max); 769 } 770 } 771 /* 772 * since (npages > pswap_pages) we need mem swap 773 * mswap_pages is the number of pages needed from availrmem 774 */ 775 ASSERT(npages > pswap_pages); 776 mswap_pages = npages - pswap_pages; 777 778 ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n", 779 mswap_pages)); 780 781 /* 782 * priv processes can reserve memory as swap as long as availrmem 783 * remains greater than swapfs_minfree; in the case of non-priv 784 * processes, memory can be reserved as swap only if availrmem 785 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus, 786 * swapfs_reserve amount of memswap is not available to non-priv 787 * processes. This protects daemons such as automounter dying 788 * as a result of application processes eating away almost entire 789 * membased swap. This safeguard becomes useless if apps are run 790 * with root access. 791 * 792 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem. 793 * 794 */ 795 mutex_exit(&anoninfo_lock); 796 (void) page_reclaim_mem(mswap_pages, 797 swapfs_minfree + swapfs_reserve, 0); 798 mutex_enter(&anoninfo_lock); 799 800 mutex_enter(&freemem_lock); 801 if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) || 802 (availrmem > (swapfs_minfree + mswap_pages) && 803 secpolicy_resource(CRED()) == 0)) { 804 805 if (takemem) { 806 /* 807 * Take the memory from the rest of the system. 808 */ 809 availrmem -= mswap_pages; 810 mutex_exit(&freemem_lock); 811 k_anoninfo.ani_mem_resv += mswap_pages; 812 ANI_ADD(mswap_pages); 813 ANON_PRINT((A_RESV | A_MRESV), 814 ("anon_resvmem: took %ld pages of availrmem\n", 815 mswap_pages)); 816 } else { 817 mutex_exit(&freemem_lock); 818 } 819 820 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 821 mutex_exit(&anoninfo_lock); 822 return (1); 823 824 } else { 825 /* 826 * Fail if not enough memory 827 */ 828 829 if (takemem) { 830 k_anoninfo.ani_phys_resv -= pswap_pages; 831 } 832 833 mutex_exit(&freemem_lock); 834 mutex_exit(&anoninfo_lock); 835 ANON_PRINT(A_RESV, 836 ("anon_resvmem: not enough space from swapfs\n")); 837 return (0); 838 } 839 } 840 841 842 /* 843 * Give back an anon reservation. 844 */ 845 void 846 anon_unresv(size_t size) 847 { 848 pgcnt_t npages = btopr(size); 849 spgcnt_t mem_free_pages = 0; 850 pgcnt_t phys_free_slots; 851 #ifdef ANON_DEBUG 852 pgcnt_t mem_resv; 853 #endif 854 855 mutex_enter(&anoninfo_lock); 856 857 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 858 /* 859 * If some of this reservation belonged to swapfs 860 * give it back to availrmem. 861 * ani_mem_resv is the amount of availrmem swapfs has reserved. 862 * but some of that memory could be locked by segspt so we can only 863 * return non locked ani_mem_resv back to availrmem 864 */ 865 if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) { 866 ANON_PRINT((A_RESV | A_MRESV), 867 ("anon_unresv: growing availrmem by %ld pages\n", 868 MIN(k_anoninfo.ani_mem_resv, npages))); 869 870 mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv - 871 k_anoninfo.ani_locked_swap), npages); 872 mutex_enter(&freemem_lock); 873 availrmem += mem_free_pages; 874 mutex_exit(&freemem_lock); 875 k_anoninfo.ani_mem_resv -= mem_free_pages; 876 877 ANI_ADD(-mem_free_pages); 878 } 879 /* 880 * The remainder of the pages is returned to phys swap 881 */ 882 ASSERT(npages >= mem_free_pages); 883 phys_free_slots = npages - mem_free_pages; 884 885 if (phys_free_slots) { 886 k_anoninfo.ani_phys_resv -= phys_free_slots; 887 } 888 889 #ifdef ANON_DEBUG 890 mem_resv = k_anoninfo.ani_mem_resv; 891 #endif 892 893 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 894 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 895 896 mutex_exit(&anoninfo_lock); 897 898 ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n", 899 npages, mem_resv, (void *)caller())); 900 } 901 902 /* 903 * Allocate an anon slot and return it with the lock held. 904 */ 905 struct anon * 906 anon_alloc(struct vnode *vp, anoff_t off) 907 { 908 struct anon *ap; 909 kmutex_t *ahm; 910 911 ap = kmem_cache_alloc(anon_cache, KM_SLEEP); 912 if (vp == NULL) { 913 swap_alloc(ap); 914 } else { 915 ap->an_vp = vp; 916 ap->an_off = off; 917 } 918 ap->an_refcnt = 1; 919 ap->an_pvp = NULL; 920 ap->an_poff = 0; 921 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 922 mutex_enter(ahm); 923 anon_addhash(ap); 924 mutex_exit(ahm); 925 ANI_ADD(-1); 926 ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n", 927 (void *)ap, (ap ? (void *)ap->an_vp : NULL))); 928 return (ap); 929 } 930 931 /* 932 * Decrement the reference count of an anon page. 933 * If reference count goes to zero, free it and 934 * its associated page (if any). 935 */ 936 void 937 anon_decref(struct anon *ap) 938 { 939 page_t *pp; 940 struct vnode *vp; 941 anoff_t off; 942 kmutex_t *ahm; 943 944 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 945 mutex_enter(ahm); 946 ASSERT(ap->an_refcnt != 0); 947 if (ap->an_refcnt == 0) 948 panic("anon_decref: slot count 0"); 949 if (--ap->an_refcnt == 0) { 950 swap_xlate(ap, &vp, &off); 951 mutex_exit(ahm); 952 953 /* 954 * If there is a page for this anon slot we will need to 955 * call VN_DISPOSE to get rid of the vp association and 956 * put the page back on the free list as really free. 957 * Acquire the "exclusive" lock to ensure that any 958 * pending i/o always completes before the swap slot 959 * is freed. 960 */ 961 pp = page_lookup(vp, (u_offset_t)off, SE_EXCL); 962 963 /* 964 * If there was a page, we've synchronized on it (getting 965 * the exclusive lock is as good as gettting the iolock) 966 * so now we can free the physical backing store. Also, this 967 * is where we would free the name of the anonymous page 968 * (swap_free(ap)), a no-op in the current implementation. 969 */ 970 mutex_enter(ahm); 971 ASSERT(ap->an_refcnt == 0); 972 anon_rmhash(ap); 973 if (ap->an_pvp) 974 swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); 975 mutex_exit(ahm); 976 977 if (pp != NULL) { 978 /*LINTED: constant in conditional context */ 979 VN_DISPOSE(pp, B_INVAL, 0, kcred); 980 } 981 ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n", 982 (void *)ap, (void *)ap->an_vp)); 983 kmem_cache_free(anon_cache, ap); 984 985 ANI_ADD(1); 986 } else { 987 mutex_exit(ahm); 988 } 989 } 990 991 static int 992 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots) 993 { 994 struct anon *ap; 995 996 while (nslots-- > 0) { 997 if ((ap = anon_get_ptr(ahp, anon_index)) != NULL && 998 ap->an_refcnt > 1) 999 return (1); 1000 anon_index++; 1001 } 1002 1003 return (0); 1004 } 1005 1006 static void 1007 anon_decref_pages( 1008 struct anon_hdr *ahp, 1009 ulong_t an_idx, 1010 uint_t szc) 1011 { 1012 struct anon *ap = anon_get_ptr(ahp, an_idx); 1013 kmutex_t *ahmpages = NULL; 1014 page_t *pp; 1015 pgcnt_t pgcnt = page_get_pagecnt(szc); 1016 pgcnt_t i; 1017 struct vnode *vp; 1018 anoff_t off; 1019 kmutex_t *ahm; 1020 #ifdef DEBUG 1021 int refcnt = 1; 1022 #endif 1023 1024 ASSERT(szc != 0); 1025 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1026 ASSERT(IS_P2ALIGNED(an_idx, pgcnt)); 1027 1028 VM_STAT_ADD(anonvmstats.decrefpages[0]); 1029 1030 if (ap != NULL) { 1031 ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1032 mutex_enter(ahmpages); 1033 ASSERT((refcnt = ap->an_refcnt) != 0); 1034 VM_STAT_ADD(anonvmstats.decrefpages[1]); 1035 if (ap->an_refcnt == 1) { 1036 VM_STAT_ADD(anonvmstats.decrefpages[2]); 1037 ASSERT(!anon_share(ahp, an_idx, pgcnt)); 1038 mutex_exit(ahmpages); 1039 ahmpages = NULL; 1040 } 1041 } 1042 1043 i = 0; 1044 while (i < pgcnt) { 1045 if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) { 1046 ASSERT(refcnt == 1 && ahmpages == NULL); 1047 i++; 1048 continue; 1049 } 1050 ASSERT(ap->an_refcnt == refcnt); 1051 ASSERT(ahmpages != NULL || ap->an_refcnt == 1); 1052 ASSERT(ahmpages == NULL || ap->an_refcnt > 1); 1053 1054 if (ahmpages == NULL) { 1055 swap_xlate(ap, &vp, &off); 1056 pp = page_lookup(vp, (u_offset_t)off, SE_EXCL); 1057 if (pp == NULL || pp->p_szc == 0) { 1058 VM_STAT_ADD(anonvmstats.decrefpages[3]); 1059 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, 1060 ap->an_off)]; 1061 (void) anon_set_ptr(ahp, an_idx + i, NULL, 1062 ANON_SLEEP); 1063 mutex_enter(ahm); 1064 ap->an_refcnt--; 1065 ASSERT(ap->an_refcnt == 0); 1066 anon_rmhash(ap); 1067 if (ap->an_pvp) 1068 swap_phys_free(ap->an_pvp, ap->an_poff, 1069 PAGESIZE); 1070 mutex_exit(ahm); 1071 if (pp != NULL) { 1072 VM_STAT_ADD(anonvmstats.decrefpages[4]); 1073 /*LINTED*/ 1074 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1075 } 1076 kmem_cache_free(anon_cache, ap); 1077 ANI_ADD(1); 1078 i++; 1079 } else { 1080 pgcnt_t j; 1081 pgcnt_t curpgcnt = 1082 page_get_pagecnt(pp->p_szc); 1083 size_t ppasize = curpgcnt * sizeof (page_t *); 1084 page_t **ppa = kmem_alloc(ppasize, KM_SLEEP); 1085 int dispose = 0; 1086 1087 VM_STAT_ADD(anonvmstats.decrefpages[5]); 1088 1089 ASSERT(pp->p_szc <= szc); 1090 ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt)); 1091 ASSERT(IS_P2ALIGNED(i, curpgcnt)); 1092 ASSERT(i + curpgcnt <= pgcnt); 1093 ASSERT(!(page_pptonum(pp) & (curpgcnt - 1))); 1094 ppa[0] = pp; 1095 for (j = i + 1; j < i + curpgcnt; j++) { 1096 ap = anon_get_ptr(ahp, an_idx + j); 1097 ASSERT(ap != NULL && 1098 ap->an_refcnt == 1); 1099 swap_xlate(ap, &vp, &off); 1100 pp = page_lookup(vp, (u_offset_t)off, 1101 SE_EXCL); 1102 if (pp == NULL) 1103 panic("anon_decref_pages: " 1104 "no page"); 1105 1106 (void) hat_pageunload(pp, 1107 HAT_FORCE_PGUNLOAD); 1108 ASSERT(pp->p_szc == ppa[0]->p_szc); 1109 ASSERT(page_pptonum(pp) - 1 == 1110 page_pptonum(ppa[j - i - 1])); 1111 ppa[j - i] = pp; 1112 if (ap->an_pvp != NULL && 1113 !vn_matchopval(ap->an_pvp, 1114 VOPNAME_DISPOSE, 1115 (fs_generic_func_p)fs_dispose)) 1116 dispose = 1; 1117 } 1118 if (!dispose) { 1119 VM_STAT_ADD(anonvmstats.decrefpages[6]); 1120 page_destroy_pages(ppa[0]); 1121 } else { 1122 VM_STAT_ADD(anonvmstats.decrefpages[7]); 1123 for (j = 0; j < curpgcnt; j++) { 1124 ASSERT(PAGE_EXCL(ppa[j])); 1125 ppa[j]->p_szc = 0; 1126 } 1127 for (j = 0; j < curpgcnt; j++) { 1128 ASSERT(!hat_page_is_mapped( 1129 ppa[j])); 1130 /*LINTED*/ 1131 VN_DISPOSE(ppa[j], B_INVAL, 0, 1132 kcred); 1133 } 1134 } 1135 kmem_free(ppa, ppasize); 1136 for (j = i; j < i + curpgcnt; j++) { 1137 ap = anon_get_ptr(ahp, an_idx + j); 1138 ASSERT(ap != NULL && 1139 ap->an_refcnt == 1); 1140 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, 1141 ap->an_off)]; 1142 (void) anon_set_ptr(ahp, an_idx + j, 1143 NULL, ANON_SLEEP); 1144 mutex_enter(ahm); 1145 ap->an_refcnt--; 1146 ASSERT(ap->an_refcnt == 0); 1147 anon_rmhash(ap); 1148 if (ap->an_pvp) 1149 swap_phys_free(ap->an_pvp, 1150 ap->an_poff, PAGESIZE); 1151 mutex_exit(ahm); 1152 kmem_cache_free(anon_cache, ap); 1153 ANI_ADD(1); 1154 } 1155 i += curpgcnt; 1156 } 1157 } else { 1158 VM_STAT_ADD(anonvmstats.decrefpages[8]); 1159 (void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP); 1160 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1161 mutex_enter(ahm); 1162 ap->an_refcnt--; 1163 mutex_exit(ahm); 1164 i++; 1165 } 1166 } 1167 1168 if (ahmpages != NULL) { 1169 mutex_exit(ahmpages); 1170 } 1171 } 1172 1173 /* 1174 * Duplicate references to size bytes worth of anon pages. 1175 * Used when duplicating a segment that contains private anon pages. 1176 * This code assumes that procedure calling this one has already used 1177 * hat_chgprot() to disable write access to the range of addresses that 1178 * that *old actually refers to. 1179 */ 1180 void 1181 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new, 1182 ulong_t new_idx, size_t size) 1183 { 1184 spgcnt_t npages; 1185 kmutex_t *ahm; 1186 struct anon *ap; 1187 ulong_t off; 1188 ulong_t index; 1189 1190 npages = btopr(size); 1191 while (npages > 0) { 1192 index = old_idx; 1193 if ((ap = anon_get_next_ptr(old, &index)) == NULL) 1194 break; 1195 1196 ASSERT(!ANON_ISBUSY(anon_get_slot(old, index))); 1197 off = index - old_idx; 1198 npages -= off; 1199 if (npages <= 0) 1200 break; 1201 1202 (void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP); 1203 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1204 1205 mutex_enter(ahm); 1206 ap->an_refcnt++; 1207 mutex_exit(ahm); 1208 1209 off++; 1210 new_idx += off; 1211 old_idx += off; 1212 npages--; 1213 } 1214 } 1215 1216 /* 1217 * Just like anon_dup but also guarantees there are no holes (unallocated anon 1218 * slots) within any large page region. That means if a large page region is 1219 * empty in the old array it will skip it. If there are 1 or more valid slots 1220 * in the large page region of the old array it will make sure to fill in any 1221 * unallocated ones and also copy them to the new array. If noalloc is 1 large 1222 * page region should either have no valid anon slots or all slots should be 1223 * valid. 1224 */ 1225 void 1226 anon_dup_fill_holes( 1227 struct anon_hdr *old, 1228 ulong_t old_idx, 1229 struct anon_hdr *new, 1230 ulong_t new_idx, 1231 size_t size, 1232 uint_t szc, 1233 int noalloc) 1234 { 1235 struct anon *ap; 1236 spgcnt_t npages; 1237 kmutex_t *ahm, *ahmpages = NULL; 1238 pgcnt_t pgcnt, i; 1239 ulong_t index, off; 1240 #ifdef DEBUG 1241 int refcnt; 1242 #endif 1243 1244 ASSERT(szc != 0); 1245 pgcnt = page_get_pagecnt(szc); 1246 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1247 npages = btopr(size); 1248 ASSERT(IS_P2ALIGNED(npages, pgcnt)); 1249 ASSERT(IS_P2ALIGNED(old_idx, pgcnt)); 1250 1251 VM_STAT_ADD(anonvmstats.dupfillholes[0]); 1252 1253 while (npages > 0) { 1254 index = old_idx; 1255 1256 /* 1257 * Find the next valid slot. 1258 */ 1259 if (anon_get_next_ptr(old, &index) == NULL) 1260 break; 1261 1262 ASSERT(!ANON_ISBUSY(anon_get_slot(old, index))); 1263 /* 1264 * Now backup index to the beginning of the 1265 * current large page region of the old array. 1266 */ 1267 index = P2ALIGN(index, pgcnt); 1268 off = index - old_idx; 1269 ASSERT(IS_P2ALIGNED(off, pgcnt)); 1270 npages -= off; 1271 if (npages <= 0) 1272 break; 1273 1274 /* 1275 * Fill and copy a large page regions worth 1276 * of anon slots. 1277 */ 1278 for (i = 0; i < pgcnt; i++) { 1279 if ((ap = anon_get_ptr(old, index + i)) == NULL) { 1280 if (noalloc) { 1281 panic("anon_dup_fill_holes: " 1282 "empty anon slot\n"); 1283 } 1284 VM_STAT_ADD(anonvmstats.dupfillholes[1]); 1285 ap = anon_alloc(NULL, 0); 1286 (void) anon_set_ptr(old, index + i, ap, 1287 ANON_SLEEP); 1288 } else if (i == 0) { 1289 /* 1290 * make the increment of all refcnts of all 1291 * anon slots of a large page appear atomic by 1292 * getting an anonpages_hash_lock for the 1293 * first anon slot of a large page. 1294 */ 1295 int hash = AH_LOCK(ap->an_vp, ap->an_off); 1296 1297 VM_STAT_ADD(anonvmstats.dupfillholes[2]); 1298 1299 ahmpages = &anonpages_hash_lock[hash]; 1300 mutex_enter(ahmpages); 1301 /*LINTED*/ 1302 ASSERT(refcnt = ap->an_refcnt); 1303 1304 VM_STAT_COND_ADD(ap->an_refcnt > 1, 1305 anonvmstats.dupfillholes[3]); 1306 } 1307 (void) anon_set_ptr(new, new_idx + off + i, ap, 1308 ANON_SLEEP); 1309 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1310 mutex_enter(ahm); 1311 ASSERT(ahmpages != NULL || ap->an_refcnt == 1); 1312 ASSERT(i == 0 || ahmpages == NULL || 1313 refcnt == ap->an_refcnt); 1314 ap->an_refcnt++; 1315 mutex_exit(ahm); 1316 } 1317 if (ahmpages != NULL) { 1318 mutex_exit(ahmpages); 1319 ahmpages = NULL; 1320 } 1321 off += pgcnt; 1322 new_idx += off; 1323 old_idx += off; 1324 npages -= pgcnt; 1325 } 1326 } 1327 1328 /* 1329 * Used when a segment with a vnode changes szc. similarly to 1330 * anon_dup_fill_holes() makes sure each large page region either has no anon 1331 * slots or all of them. but new slots are created by COWing the file 1332 * pages. on entrance no anon slots should be shared. 1333 */ 1334 int 1335 anon_fill_cow_holes( 1336 struct seg *seg, 1337 caddr_t addr, 1338 struct anon_hdr *ahp, 1339 ulong_t an_idx, 1340 struct vnode *vp, 1341 u_offset_t vp_off, 1342 size_t size, 1343 uint_t szc, 1344 uint_t prot, 1345 struct vpage vpage[], 1346 struct cred *cred) 1347 { 1348 struct anon *ap; 1349 spgcnt_t npages; 1350 pgcnt_t pgcnt, i; 1351 ulong_t index, off; 1352 int err = 0; 1353 int pageflags = 0; 1354 1355 ASSERT(szc != 0); 1356 pgcnt = page_get_pagecnt(szc); 1357 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1358 npages = btopr(size); 1359 ASSERT(IS_P2ALIGNED(npages, pgcnt)); 1360 ASSERT(IS_P2ALIGNED(an_idx, pgcnt)); 1361 1362 while (npages > 0) { 1363 index = an_idx; 1364 1365 /* 1366 * Find the next valid slot. 1367 */ 1368 if (anon_get_next_ptr(ahp, &index) == NULL) { 1369 break; 1370 } 1371 1372 ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index))); 1373 /* 1374 * Now backup index to the beginning of the 1375 * current large page region of the anon array. 1376 */ 1377 index = P2ALIGN(index, pgcnt); 1378 off = index - an_idx; 1379 ASSERT(IS_P2ALIGNED(off, pgcnt)); 1380 npages -= off; 1381 if (npages <= 0) 1382 break; 1383 an_idx += off; 1384 vp_off += ptob(off); 1385 addr += ptob(off); 1386 if (vpage != NULL) { 1387 vpage += off; 1388 } 1389 1390 for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) { 1391 if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) { 1392 page_t *pl[1 + 1]; 1393 page_t *pp; 1394 1395 err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL, 1396 pl, PAGESIZE, seg, addr, S_READ, cred); 1397 if (err) { 1398 break; 1399 } 1400 if (vpage != NULL) { 1401 prot = VPP_PROT(vpage); 1402 pageflags = VPP_ISPPLOCK(vpage) ? 1403 LOCK_PAGE : 0; 1404 } 1405 pp = anon_private(&ap, seg, addr, prot, pl[0], 1406 pageflags, cred); 1407 if (pp == NULL) { 1408 err = ENOMEM; 1409 break; 1410 } 1411 (void) anon_set_ptr(ahp, an_idx, ap, 1412 ANON_SLEEP); 1413 page_unlock(pp); 1414 } 1415 ASSERT(ap->an_refcnt == 1); 1416 addr += PAGESIZE; 1417 if (vpage != NULL) { 1418 vpage++; 1419 } 1420 } 1421 npages -= pgcnt; 1422 } 1423 1424 return (err); 1425 } 1426 1427 /* 1428 * Free a group of "size" anon pages, size in bytes, 1429 * and clear out the pointers to the anon entries. 1430 */ 1431 void 1432 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size) 1433 { 1434 spgcnt_t npages; 1435 struct anon *ap; 1436 ulong_t old; 1437 1438 npages = btopr(size); 1439 1440 while (npages > 0) { 1441 old = index; 1442 if ((ap = anon_get_next_ptr(ahp, &index)) == NULL) 1443 break; 1444 1445 ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index))); 1446 npages -= index - old; 1447 if (npages <= 0) 1448 break; 1449 1450 (void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP); 1451 anon_decref(ap); 1452 /* 1453 * Bump index and decrement page count 1454 */ 1455 index++; 1456 npages--; 1457 } 1458 } 1459 1460 void 1461 anon_free_pages( 1462 struct anon_hdr *ahp, 1463 ulong_t an_idx, 1464 size_t size, 1465 uint_t szc) 1466 { 1467 spgcnt_t npages; 1468 pgcnt_t pgcnt; 1469 ulong_t index, off; 1470 1471 ASSERT(szc != 0); 1472 pgcnt = page_get_pagecnt(szc); 1473 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1474 npages = btopr(size); 1475 ASSERT(IS_P2ALIGNED(npages, pgcnt)); 1476 ASSERT(IS_P2ALIGNED(an_idx, pgcnt)); 1477 1478 VM_STAT_ADD(anonvmstats.freepages[0]); 1479 1480 while (npages > 0) { 1481 index = an_idx; 1482 1483 /* 1484 * Find the next valid slot. 1485 */ 1486 if (anon_get_next_ptr(ahp, &index) == NULL) 1487 break; 1488 1489 ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index))); 1490 /* 1491 * Now backup index to the beginning of the 1492 * current large page region of the old array. 1493 */ 1494 index = P2ALIGN(index, pgcnt); 1495 off = index - an_idx; 1496 ASSERT(IS_P2ALIGNED(off, pgcnt)); 1497 npages -= off; 1498 if (npages <= 0) 1499 break; 1500 1501 anon_decref_pages(ahp, index, szc); 1502 1503 off += pgcnt; 1504 an_idx += off; 1505 npages -= pgcnt; 1506 } 1507 } 1508 1509 /* 1510 * Make anonymous pages discardable 1511 */ 1512 void 1513 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags) 1514 { 1515 spgcnt_t npages = btopr(size); 1516 struct anon *ap; 1517 struct vnode *vp; 1518 anoff_t off; 1519 page_t *pp, *root_pp; 1520 kmutex_t *ahm; 1521 pgcnt_t pgcnt; 1522 ulong_t old_idx, idx, i; 1523 struct anon_hdr *ahp = amp->ahp; 1524 anon_sync_obj_t cookie; 1525 1526 ASSERT(RW_READ_HELD(&->a_rwlock)); 1527 pgcnt = 1; 1528 for (; npages > 0; index = (pgcnt == 1) ? index + 1: 1529 P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) { 1530 1531 /* 1532 * get anon pointer and index for the first valid entry 1533 * in the anon list, starting from "index" 1534 */ 1535 old_idx = index; 1536 if ((ap = anon_get_next_ptr(ahp, &index)) == NULL) 1537 break; 1538 1539 /* 1540 * decrement npages by number of NULL anon slots we skipped 1541 */ 1542 npages -= index - old_idx; 1543 if (npages <= 0) 1544 break; 1545 1546 anon_array_enter(amp, index, &cookie); 1547 ap = anon_get_ptr(ahp, index); 1548 ASSERT(ap != NULL); 1549 1550 /* 1551 * Get anonymous page and try to lock it SE_EXCL; 1552 * For non blocking case if we couldn't grab the lock 1553 * we skip to next page. 1554 * For blocking case (ANON_PGLOOKUP_BLK) block 1555 * until we grab SE_EXCL lock. 1556 */ 1557 swap_xlate(ap, &vp, &off); 1558 if (flags & ANON_PGLOOKUP_BLK) 1559 pp = page_lookup_create(vp, (u_offset_t)off, 1560 SE_EXCL, NULL, NULL, SE_EXCL_WANTED); 1561 else 1562 pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL); 1563 if (pp == NULL) { 1564 segadvstat.MADV_FREE_miss.value.ul++; 1565 pgcnt = 1; 1566 anon_array_exit(&cookie); 1567 continue; 1568 } 1569 pgcnt = page_get_pagecnt(pp->p_szc); 1570 1571 /* 1572 * we cannot free a page which is permanently locked. 1573 * The page_struct_lock need not be acquired to examine 1574 * these fields since the page has an "exclusive" lock. 1575 */ 1576 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 1577 page_unlock(pp); 1578 segadvstat.MADV_FREE_miss.value.ul++; 1579 anon_array_exit(&cookie); 1580 continue; 1581 } 1582 1583 ahm = &anonhash_lock[AH_LOCK(vp, off)]; 1584 mutex_enter(ahm); 1585 ASSERT(ap->an_refcnt != 0); 1586 /* 1587 * skip this one if copy-on-write is not yet broken. 1588 */ 1589 if (ap->an_refcnt > 1) { 1590 mutex_exit(ahm); 1591 page_unlock(pp); 1592 segadvstat.MADV_FREE_miss.value.ul++; 1593 anon_array_exit(&cookie); 1594 continue; 1595 } 1596 1597 if (pp->p_szc == 0) { 1598 pgcnt = 1; 1599 1600 /* 1601 * free swap slot; 1602 */ 1603 if (ap->an_pvp) { 1604 swap_phys_free(ap->an_pvp, ap->an_poff, 1605 PAGESIZE); 1606 ap->an_pvp = NULL; 1607 ap->an_poff = 0; 1608 } 1609 mutex_exit(ahm); 1610 segadvstat.MADV_FREE_hit.value.ul++; 1611 1612 /* 1613 * while we are at it, unload all the translations 1614 * and attempt to free the page. 1615 */ 1616 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1617 /*LINTED: constant in conditional context */ 1618 VN_DISPOSE(pp, B_FREE, 0, kcred); 1619 anon_array_exit(&cookie); 1620 continue; 1621 } 1622 1623 pgcnt = page_get_pagecnt(pp->p_szc); 1624 if (!IS_P2ALIGNED(index, pgcnt)) { 1625 if (!page_try_demote_pages(pp)) { 1626 mutex_exit(ahm); 1627 page_unlock(pp); 1628 segadvstat.MADV_FREE_miss.value.ul++; 1629 anon_array_exit(&cookie); 1630 continue; 1631 } else { 1632 pgcnt = 1; 1633 if (ap->an_pvp) { 1634 swap_phys_free(ap->an_pvp, 1635 ap->an_poff, PAGESIZE); 1636 ap->an_pvp = NULL; 1637 ap->an_poff = 0; 1638 } 1639 mutex_exit(ahm); 1640 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1641 /*LINTED*/ 1642 VN_DISPOSE(pp, B_FREE, 0, kcred); 1643 segadvstat.MADV_FREE_hit.value.ul++; 1644 anon_array_exit(&cookie); 1645 continue; 1646 } 1647 } 1648 mutex_exit(ahm); 1649 root_pp = pp; 1650 1651 /* 1652 * try to lock remaining pages 1653 */ 1654 for (idx = 1; idx < pgcnt; idx++) { 1655 pp++; 1656 if (!page_trylock(pp, SE_EXCL)) 1657 break; 1658 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 1659 page_unlock(pp); 1660 break; 1661 } 1662 } 1663 1664 if (idx == pgcnt) { 1665 for (i = 0; i < pgcnt; i++) { 1666 ap = anon_get_ptr(ahp, index + i); 1667 if (ap == NULL) 1668 break; 1669 swap_xlate(ap, &vp, &off); 1670 ahm = &anonhash_lock[AH_LOCK(vp, off)]; 1671 mutex_enter(ahm); 1672 ASSERT(ap->an_refcnt != 0); 1673 1674 /* 1675 * skip this one if copy-on-write 1676 * is not yet broken. 1677 */ 1678 if (ap->an_refcnt > 1) { 1679 mutex_exit(ahm); 1680 goto skiplp; 1681 } 1682 if (ap->an_pvp) { 1683 swap_phys_free(ap->an_pvp, 1684 ap->an_poff, PAGESIZE); 1685 ap->an_pvp = NULL; 1686 ap->an_poff = 0; 1687 } 1688 mutex_exit(ahm); 1689 } 1690 page_destroy_pages(root_pp); 1691 segadvstat.MADV_FREE_hit.value.ul += pgcnt; 1692 anon_array_exit(&cookie); 1693 continue; 1694 } 1695 skiplp: 1696 segadvstat.MADV_FREE_miss.value.ul += pgcnt; 1697 for (i = 0, pp = root_pp; i < idx; pp++, i++) 1698 page_unlock(pp); 1699 anon_array_exit(&cookie); 1700 } 1701 } 1702 1703 /* 1704 * Return the kept page(s) and protections back to the segment driver. 1705 */ 1706 int 1707 anon_getpage( 1708 struct anon **app, 1709 uint_t *protp, 1710 page_t *pl[], 1711 size_t plsz, 1712 struct seg *seg, 1713 caddr_t addr, 1714 enum seg_rw rw, 1715 struct cred *cred) 1716 { 1717 page_t *pp; 1718 struct anon *ap = *app; 1719 struct vnode *vp; 1720 anoff_t off; 1721 int err; 1722 kmutex_t *ahm; 1723 1724 swap_xlate(ap, &vp, &off); 1725 1726 /* 1727 * Lookup the page. If page is being paged in, 1728 * wait for it to finish as we must return a list of 1729 * pages since this routine acts like the VOP_GETPAGE 1730 * routine does. 1731 */ 1732 if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) { 1733 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1734 mutex_enter(ahm); 1735 if (ap->an_refcnt == 1) 1736 *protp = PROT_ALL; 1737 else 1738 *protp = PROT_ALL & ~PROT_WRITE; 1739 mutex_exit(ahm); 1740 pl[0] = pp; 1741 pl[1] = NULL; 1742 return (0); 1743 } 1744 1745 /* 1746 * Simply treat it as a vnode fault on the anon vp. 1747 */ 1748 1749 TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE, 1750 "anon_getpage:seg %x addr %x vp %x", 1751 seg, addr, vp); 1752 1753 err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz, 1754 seg, addr, rw, cred); 1755 1756 if (err == 0 && pl != NULL) { 1757 ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 1758 mutex_enter(ahm); 1759 if (ap->an_refcnt != 1) 1760 *protp &= ~PROT_WRITE; /* make read-only */ 1761 mutex_exit(ahm); 1762 } 1763 return (err); 1764 } 1765 1766 /* 1767 * Creates or returns kept pages to the segment driver. returns -1 if a large 1768 * page cannot be allocated. returns -2 if some other process has allocated a 1769 * larger page. 1770 * 1771 * For cowfault it will alocate any size pages to fill the requested area to 1772 * avoid partially overwritting anon slots (i.e. sharing only some of the anon 1773 * slots within a large page with other processes). This policy greatly 1774 * simplifies large page freeing (which is only freed when all anon slot 1775 * refcnts are 0). 1776 */ 1777 int 1778 anon_map_getpages( 1779 struct anon_map *amp, 1780 ulong_t start_idx, 1781 uint_t szc, 1782 struct seg *seg, 1783 caddr_t addr, 1784 uint_t prot, 1785 uint_t *protp, 1786 page_t *ppa[], 1787 uint_t *ppa_szc, 1788 struct vpage vpage[], 1789 enum seg_rw rw, 1790 int brkcow, 1791 int anypgsz, 1792 struct cred *cred) 1793 { 1794 pgcnt_t pgcnt; 1795 struct anon *ap; 1796 struct vnode *vp; 1797 anoff_t off; 1798 page_t *pp, *pl[2], *conpp = NULL; 1799 caddr_t vaddr; 1800 ulong_t pg_idx, an_idx, i; 1801 spgcnt_t nreloc = 0; 1802 int prealloc = 1; 1803 int err, slotcreate; 1804 uint_t vpprot; 1805 1806 #if !defined(__i386) && !defined(__amd64) 1807 ASSERT(seg->s_szc != 0); 1808 #endif 1809 ASSERT(szc <= seg->s_szc); 1810 ASSERT(ppa_szc != NULL); 1811 ASSERT(rw != S_CREATE); 1812 1813 *protp = PROT_ALL; 1814 1815 VM_STAT_ADD(anonvmstats.getpages[0]); 1816 1817 if (szc == 0) { 1818 VM_STAT_ADD(anonvmstats.getpages[1]); 1819 if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) { 1820 err = anon_getpage(&ap, protp, pl, PAGESIZE, seg, 1821 addr, rw, cred); 1822 if (err) 1823 return (err); 1824 ppa[0] = pl[0]; 1825 if (brkcow == 0 || (*protp & PROT_WRITE)) { 1826 VM_STAT_ADD(anonvmstats.getpages[2]); 1827 if (ppa[0]->p_szc != 0) { 1828 VM_STAT_ADD(anonvmstats.getpages[3]); 1829 *ppa_szc = ppa[0]->p_szc; 1830 page_unlock(ppa[0]); 1831 return (-2); 1832 } 1833 return (0); 1834 } 1835 panic("anon_map_getpages: cowfault for szc 0"); 1836 } else { 1837 VM_STAT_ADD(anonvmstats.getpages[4]); 1838 ppa[0] = anon_zero(seg, addr, &ap, cred); 1839 if (ppa[0] == NULL) 1840 return (ENOMEM); 1841 (void) anon_set_ptr(amp->ahp, start_idx, ap, 1842 ANON_SLEEP); 1843 return (0); 1844 } 1845 } 1846 1847 pgcnt = page_get_pagecnt(szc); 1848 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 1849 ASSERT(IS_P2ALIGNED(start_idx, pgcnt)); 1850 1851 /* 1852 * First we check for the case that the requtested large 1853 * page or larger page already exists in the system. 1854 * Actually we only check if the first constituent page 1855 * exists and only preallocate if it's not found. 1856 */ 1857 ap = anon_get_ptr(amp->ahp, start_idx); 1858 if (ap) { 1859 uint_t pszc; 1860 swap_xlate(ap, &vp, &off); 1861 if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) { 1862 if (pszc > szc) { 1863 *ppa_szc = pszc; 1864 return (-2); 1865 } 1866 if (pszc == szc) { 1867 prealloc = 0; 1868 } 1869 } 1870 } 1871 1872 VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]); 1873 VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]); 1874 1875 top: 1876 /* 1877 * If a smaller page or no page at all was found, 1878 * grab a large page off the freelist. 1879 */ 1880 if (prealloc) { 1881 ASSERT(conpp == NULL); 1882 if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa, 1883 szc, 0) != 0) { 1884 VM_STAT_ADD(anonvmstats.getpages[7]); 1885 if (brkcow == 0 || 1886 !anon_share(amp->ahp, start_idx, pgcnt)) { 1887 /* 1888 * If the refcnt's of all anon slots are <= 1 1889 * they can't increase since we are holding 1890 * the address space's lock. So segvn can 1891 * safely decrease szc without risking to 1892 * generate a cow fault for the region smaller 1893 * than the segment's largest page size. 1894 */ 1895 VM_STAT_ADD(anonvmstats.getpages[8]); 1896 return (-1); 1897 } 1898 docow: 1899 /* 1900 * This is a cow fault. Copy away the entire 1 large 1901 * page region of this segment. 1902 */ 1903 if (szc != seg->s_szc) 1904 panic("anon_map_getpages: cowfault for szc %d", 1905 szc); 1906 vaddr = addr; 1907 for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt; 1908 pg_idx++, an_idx++, vaddr += PAGESIZE) { 1909 if ((ap = anon_get_ptr(amp->ahp, an_idx)) != 1910 NULL) { 1911 err = anon_getpage(&ap, &vpprot, pl, 1912 PAGESIZE, seg, vaddr, rw, cred); 1913 if (err) { 1914 for (i = 0; i < pg_idx; i++) { 1915 if ((pp = ppa[i]) != 1916 NULL) 1917 page_unlock(pp); 1918 } 1919 return (err); 1920 } 1921 ppa[pg_idx] = pl[0]; 1922 } else { 1923 /* 1924 * Since this is a cowfault we know 1925 * that this address space has a 1926 * parent or children which means 1927 * anon_dup_fill_holes() has initialized 1928 * all anon slots within a large page 1929 * region that had at least one anon 1930 * slot at the time of fork(). 1931 */ 1932 panic("anon_map_getpages: " 1933 "cowfault but anon slot is empty"); 1934 } 1935 } 1936 VM_STAT_ADD(anonvmstats.getpages[9]); 1937 *protp = PROT_ALL; 1938 return (anon_map_privatepages(amp, start_idx, szc, seg, 1939 addr, prot, ppa, vpage, anypgsz, cred)); 1940 } 1941 } 1942 1943 VM_STAT_ADD(anonvmstats.getpages[10]); 1944 1945 an_idx = start_idx; 1946 pg_idx = 0; 1947 vaddr = addr; 1948 while (pg_idx < pgcnt) { 1949 slotcreate = 0; 1950 if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) { 1951 VM_STAT_ADD(anonvmstats.getpages[11]); 1952 /* 1953 * For us to have decided not to preallocate 1954 * would have meant that a large page 1955 * was found. Which also means that all of the 1956 * anon slots for that page would have been 1957 * already created for us. 1958 */ 1959 if (prealloc == 0) 1960 panic("anon_map_getpages: prealloc = 0"); 1961 1962 slotcreate = 1; 1963 ap = anon_alloc(NULL, 0); 1964 } 1965 swap_xlate(ap, &vp, &off); 1966 1967 /* 1968 * Now setup our preallocated page to pass down 1969 * to swap_getpage(). 1970 */ 1971 if (prealloc) { 1972 ASSERT(ppa[pg_idx]->p_szc == szc); 1973 conpp = ppa[pg_idx]; 1974 } 1975 ASSERT(prealloc || conpp == NULL); 1976 1977 /* 1978 * If we just created this anon slot then call 1979 * with S_CREATE to prevent doing IO on the page. 1980 * Similar to the anon_zero case. 1981 */ 1982 err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, 1983 NULL, pl, PAGESIZE, conpp, &nreloc, seg, vaddr, 1984 slotcreate == 1 ? S_CREATE : rw, cred); 1985 1986 if (err) { 1987 VM_STAT_ADD(anonvmstats.getpages[12]); 1988 ASSERT(slotcreate == 0); 1989 goto io_err; 1990 } 1991 1992 pp = pl[0]; 1993 1994 if (pp->p_szc != szc) { 1995 VM_STAT_ADD(anonvmstats.getpages[13]); 1996 ASSERT(slotcreate == 0); 1997 ASSERT(prealloc == 0); 1998 ASSERT(pg_idx == 0); 1999 if (pp->p_szc > szc) { 2000 page_unlock(pp); 2001 VM_STAT_ADD(anonvmstats.getpages[14]); 2002 return (-2); 2003 } 2004 page_unlock(pp); 2005 prealloc = 1; 2006 goto top; 2007 } 2008 2009 /* 2010 * If we decided to preallocate but VOP_GETPAGE 2011 * found a page in the system that satisfies our 2012 * request then free up our preallocated large page 2013 * and continue looping accross the existing large 2014 * page via VOP_GETPAGE. 2015 */ 2016 if (prealloc && pp != ppa[pg_idx]) { 2017 VM_STAT_ADD(anonvmstats.getpages[15]); 2018 ASSERT(slotcreate == 0); 2019 ASSERT(pg_idx == 0); 2020 conpp = NULL; 2021 prealloc = 0; 2022 page_free_pages(ppa[0]); 2023 } 2024 2025 if (prealloc && nreloc > 1) { 2026 /* 2027 * we have relocated out of a smaller large page. 2028 * skip npgs - 1 iterations and continue which will 2029 * increment by one the loop indices. 2030 */ 2031 spgcnt_t npgs = nreloc; 2032 2033 VM_STAT_ADD(anonvmstats.getpages[16]); 2034 2035 ASSERT(pp == ppa[pg_idx]); 2036 ASSERT(slotcreate == 0); 2037 ASSERT(pg_idx + npgs <= pgcnt); 2038 if ((*protp & PROT_WRITE) && 2039 anon_share(amp->ahp, an_idx, npgs)) { 2040 *protp &= ~PROT_WRITE; 2041 } 2042 pg_idx += npgs; 2043 an_idx += npgs; 2044 vaddr += PAGESIZE * npgs; 2045 continue; 2046 } 2047 2048 VM_STAT_ADD(anonvmstats.getpages[17]); 2049 2050 /* 2051 * Anon_zero case. 2052 */ 2053 if (slotcreate) { 2054 ASSERT(prealloc); 2055 pagezero(pp, 0, PAGESIZE); 2056 CPU_STATS_ADD_K(vm, zfod, 1); 2057 hat_setrefmod(pp); 2058 } 2059 2060 ASSERT(prealloc == 0 || ppa[pg_idx] == pp); 2061 ASSERT(prealloc != 0 || PAGE_SHARED(pp)); 2062 ASSERT(prealloc == 0 || PAGE_EXCL(pp)); 2063 2064 if (pg_idx > 0 && 2065 ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) || 2066 (pp->p_szc != ppa[pg_idx - 1]->p_szc))) 2067 panic("anon_map_getpages: unexpected page"); 2068 2069 if (prealloc == 0) { 2070 ppa[pg_idx] = pp; 2071 } 2072 2073 if (ap->an_refcnt > 1) { 2074 VM_STAT_ADD(anonvmstats.getpages[18]); 2075 *protp &= ~PROT_WRITE; 2076 } 2077 2078 /* 2079 * If this is a new anon slot then initialize 2080 * the anon array entry. 2081 */ 2082 if (slotcreate) { 2083 (void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP); 2084 } 2085 pg_idx++; 2086 an_idx++; 2087 vaddr += PAGESIZE; 2088 } 2089 2090 /* 2091 * Since preallocated pages come off the freelist 2092 * they are locked SE_EXCL. Simply downgrade and return. 2093 */ 2094 if (prealloc) { 2095 VM_STAT_ADD(anonvmstats.getpages[19]); 2096 conpp = NULL; 2097 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { 2098 page_downgrade(ppa[pg_idx]); 2099 } 2100 } 2101 ASSERT(conpp == NULL); 2102 2103 if (brkcow == 0 || (*protp & PROT_WRITE)) { 2104 VM_STAT_ADD(anonvmstats.getpages[20]); 2105 return (0); 2106 } 2107 2108 if (szc < seg->s_szc) 2109 panic("anon_map_getpages: cowfault for szc %d", szc); 2110 2111 VM_STAT_ADD(anonvmstats.getpages[21]); 2112 2113 *protp = PROT_ALL; 2114 return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, 2115 ppa, vpage, anypgsz, cred)); 2116 io_err: 2117 /* 2118 * We got an IO error somewhere in our large page. 2119 * If we were using a preallocated page then just demote 2120 * all the constituent pages that we've succeeded with sofar 2121 * to PAGESIZE pages and leave them in the system 2122 * unlocked. 2123 */ 2124 2125 ASSERT(err != -2 || pg_idx == 0); 2126 2127 VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]); 2128 VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]); 2129 VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]); 2130 2131 if (prealloc) { 2132 conpp = NULL; 2133 if (pg_idx > 0) { 2134 VM_STAT_ADD(anonvmstats.getpages[25]); 2135 for (i = 0; i < pgcnt; i++) { 2136 pp = ppa[i]; 2137 ASSERT(PAGE_EXCL(pp)); 2138 ASSERT(pp->p_szc == szc); 2139 pp->p_szc = 0; 2140 } 2141 for (i = 0; i < pg_idx; i++) { 2142 ASSERT(!hat_page_is_mapped(ppa[i])); 2143 page_unlock(ppa[i]); 2144 } 2145 /* 2146 * Now free up the remaining unused constituent 2147 * pages. 2148 */ 2149 while (pg_idx < pgcnt) { 2150 ASSERT(!hat_page_is_mapped(ppa[pg_idx])); 2151 page_free(ppa[pg_idx], 0); 2152 pg_idx++; 2153 } 2154 } else { 2155 VM_STAT_ADD(anonvmstats.getpages[26]); 2156 page_free_pages(ppa[0]); 2157 } 2158 } else { 2159 VM_STAT_ADD(anonvmstats.getpages[27]); 2160 ASSERT(err > 0); 2161 for (i = 0; i < pg_idx; i++) 2162 page_unlock(ppa[i]); 2163 } 2164 ASSERT(conpp == NULL); 2165 if (err != -1) 2166 return (err); 2167 /* 2168 * we are here because we failed to relocate. 2169 */ 2170 ASSERT(prealloc); 2171 if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) { 2172 VM_STAT_ADD(anonvmstats.getpages[28]); 2173 return (-1); 2174 } 2175 VM_STAT_ADD(anonvmstats.getpages[29]); 2176 goto docow; 2177 } 2178 2179 2180 /* 2181 * Turn a reference to an object or shared anon page 2182 * into a private page with a copy of the data from the 2183 * original page which is always locked by the caller. 2184 * This routine unloads the translation and unlocks the 2185 * original page, if it isn't being stolen, before returning 2186 * to the caller. 2187 * 2188 * NOTE: The original anon slot is not freed by this routine 2189 * It must be freed by the caller while holding the 2190 * "anon_map" lock to prevent races which can occur if 2191 * a process has multiple lwps in its address space. 2192 */ 2193 page_t * 2194 anon_private( 2195 struct anon **app, 2196 struct seg *seg, 2197 caddr_t addr, 2198 uint_t prot, 2199 page_t *opp, 2200 int oppflags, 2201 struct cred *cred) 2202 { 2203 struct anon *old = *app; 2204 struct anon *new; 2205 page_t *pp = NULL; 2206 struct vnode *vp; 2207 anoff_t off; 2208 page_t *anon_pl[1 + 1]; 2209 int err; 2210 2211 if (oppflags & STEAL_PAGE) 2212 ASSERT(PAGE_EXCL(opp)); 2213 else 2214 ASSERT(PAGE_LOCKED(opp)); 2215 2216 CPU_STATS_ADD_K(vm, cow_fault, 1); 2217 2218 /* Kernel probe */ 2219 TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */, 2220 tnf_opaque, address, addr); 2221 2222 *app = new = anon_alloc(NULL, 0); 2223 swap_xlate(new, &vp, &off); 2224 2225 if (oppflags & STEAL_PAGE) { 2226 page_rename(opp, vp, (u_offset_t)off); 2227 pp = opp; 2228 TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE, 2229 "anon_private:seg %p addr %x pp %p vp %p off %lx", 2230 seg, addr, pp, vp, off); 2231 hat_setmod(pp); 2232 2233 /* bug 4026339 */ 2234 page_downgrade(pp); 2235 return (pp); 2236 } 2237 2238 /* 2239 * Call the VOP_GETPAGE routine to create the page, thereby 2240 * enabling the vnode driver to allocate any filesystem 2241 * space (e.g., disk block allocation for UFS). This also 2242 * prevents more than one page from being added to the 2243 * vnode at the same time. 2244 */ 2245 err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL, 2246 anon_pl, PAGESIZE, seg, addr, S_CREATE, cred); 2247 if (err) 2248 goto out; 2249 2250 pp = anon_pl[0]; 2251 2252 /* 2253 * If the original page was locked, we need to move the lock 2254 * to the new page by transfering 'cowcnt/lckcnt' of the original 2255 * page to 'cowcnt/lckcnt' of the new page. 2256 * 2257 * See Statement at the beginning of segvn_lockop() and 2258 * comments in page_pp_useclaim() regarding the way 2259 * cowcnts/lckcnts are handled. 2260 * 2261 * Also availrmem must be decremented up front for read only mapping 2262 * before calling page_pp_useclaim. page_pp_useclaim will bump it back 2263 * if availrmem did not need to be decremented after all. 2264 */ 2265 if (oppflags & LOCK_PAGE) { 2266 if ((prot & PROT_WRITE) == 0) { 2267 mutex_enter(&freemem_lock); 2268 if (availrmem > pages_pp_maximum) { 2269 availrmem--; 2270 pages_useclaim++; 2271 } else { 2272 mutex_exit(&freemem_lock); 2273 goto out; 2274 } 2275 mutex_exit(&freemem_lock); 2276 } 2277 page_pp_useclaim(opp, pp, prot & PROT_WRITE); 2278 } 2279 2280 /* 2281 * Now copy the contents from the original page, 2282 * which is locked and loaded in the MMU by 2283 * the caller to prevent yet another page fault. 2284 */ 2285 ppcopy(opp, pp); /* XXX - should set mod bit in here */ 2286 2287 hat_setrefmod(pp); /* mark as modified */ 2288 2289 /* 2290 * Unload the old translation. 2291 */ 2292 hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD); 2293 2294 /* 2295 * Free unmapped, unmodified original page. 2296 * or release the lock on the original page, 2297 * otherwise the process will sleep forever in 2298 * anon_decref() waiting for the "exclusive" lock 2299 * on the page. 2300 */ 2301 (void) page_release(opp, 1); 2302 2303 /* 2304 * we are done with page creation so downgrade the new 2305 * page's selock to shared, this helps when multiple 2306 * as_fault(...SOFTLOCK...) are done to the same 2307 * page(aio) 2308 */ 2309 page_downgrade(pp); 2310 2311 /* 2312 * NOTE: The original anon slot must be freed by the 2313 * caller while holding the "anon_map" lock, if we 2314 * copied away from an anonymous page. 2315 */ 2316 return (pp); 2317 2318 out: 2319 *app = old; 2320 if (pp) 2321 page_unlock(pp); 2322 anon_decref(new); 2323 page_unlock(opp); 2324 return ((page_t *)NULL); 2325 } 2326 2327 int 2328 anon_map_privatepages( 2329 struct anon_map *amp, 2330 ulong_t start_idx, 2331 uint_t szc, 2332 struct seg *seg, 2333 caddr_t addr, 2334 uint_t prot, 2335 page_t *ppa[], 2336 struct vpage vpage[], 2337 int anypgsz, 2338 struct cred *cred) 2339 { 2340 pgcnt_t pgcnt; 2341 struct vnode *vp; 2342 anoff_t off; 2343 page_t *pl[2], *conpp = NULL; 2344 int err; 2345 int prealloc = 1; 2346 struct anon *ap, *oldap; 2347 caddr_t vaddr; 2348 page_t *pplist, *pp; 2349 ulong_t pg_idx, an_idx; 2350 spgcnt_t nreloc = 0; 2351 int pagelock = 0; 2352 kmutex_t *ahmpages = NULL; 2353 #ifdef DEBUG 2354 int refcnt; 2355 #endif 2356 2357 ASSERT(szc != 0); 2358 ASSERT(szc == seg->s_szc); 2359 2360 VM_STAT_ADD(anonvmstats.privatepages[0]); 2361 2362 pgcnt = page_get_pagecnt(szc); 2363 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 2364 ASSERT(IS_P2ALIGNED(start_idx, pgcnt)); 2365 2366 ASSERT(amp != NULL); 2367 ap = anon_get_ptr(amp->ahp, start_idx); 2368 ASSERT(ap == NULL || ap->an_refcnt >= 1); 2369 2370 VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]); 2371 2372 /* 2373 * Now try and allocate the large page. If we fail then just 2374 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let 2375 * the caller make this decision but to avoid added complexity 2376 * it's simplier to handle that case here. 2377 */ 2378 if (anypgsz == -1) { 2379 VM_STAT_ADD(anonvmstats.privatepages[2]); 2380 prealloc = 0; 2381 } else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc, 2382 anypgsz) != 0) { 2383 VM_STAT_ADD(anonvmstats.privatepages[3]); 2384 prealloc = 0; 2385 } 2386 2387 /* 2388 * make the decrement of all refcnts of all 2389 * anon slots of a large page appear atomic by 2390 * getting an anonpages_hash_lock for the 2391 * first anon slot of a large page. 2392 */ 2393 if (ap != NULL) { 2394 ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, 2395 ap->an_off)]; 2396 mutex_enter(ahmpages); 2397 if (ap->an_refcnt == 1) { 2398 VM_STAT_ADD(anonvmstats.privatepages[4]); 2399 ASSERT(!anon_share(amp->ahp, start_idx, pgcnt)); 2400 mutex_exit(ahmpages); 2401 2402 if (prealloc) { 2403 page_free_replacement_page(pplist); 2404 page_create_putback(pgcnt); 2405 } 2406 ASSERT(ppa[0]->p_szc <= szc); 2407 if (ppa[0]->p_szc == szc) { 2408 VM_STAT_ADD(anonvmstats.privatepages[5]); 2409 return (0); 2410 } 2411 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { 2412 ASSERT(ppa[pg_idx] != NULL); 2413 page_unlock(ppa[pg_idx]); 2414 } 2415 return (-1); 2416 } 2417 } 2418 2419 /* 2420 * If we are passed in the vpage array and this is 2421 * not PROT_WRITE then we need to decrement availrmem 2422 * up front before we try anything. If we need to and 2423 * can't decrement availrmem then its better to fail now 2424 * than in the middle of processing the new large page. 2425 * page_pp_usclaim() on behalf of each constituent page 2426 * below will adjust availrmem back for the cases not needed. 2427 */ 2428 if (vpage != NULL && (prot & PROT_WRITE) == 0) { 2429 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { 2430 if (VPP_ISPPLOCK(&vpage[pg_idx])) { 2431 pagelock = 1; 2432 break; 2433 } 2434 } 2435 if (pagelock) { 2436 VM_STAT_ADD(anonvmstats.privatepages[6]); 2437 mutex_enter(&freemem_lock); 2438 if (availrmem >= pages_pp_maximum + pgcnt) { 2439 availrmem -= pgcnt; 2440 pages_useclaim += pgcnt; 2441 } else { 2442 VM_STAT_ADD(anonvmstats.privatepages[7]); 2443 mutex_exit(&freemem_lock); 2444 if (ahmpages != NULL) { 2445 mutex_exit(ahmpages); 2446 } 2447 if (prealloc) { 2448 page_free_replacement_page(pplist); 2449 page_create_putback(pgcnt); 2450 } 2451 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) 2452 if (ppa[pg_idx] != NULL) 2453 page_unlock(ppa[pg_idx]); 2454 return (ENOMEM); 2455 } 2456 mutex_exit(&freemem_lock); 2457 } 2458 } 2459 2460 CPU_STATS_ADD_K(vm, cow_fault, pgcnt); 2461 2462 VM_STAT_ADD(anonvmstats.privatepages[8]); 2463 2464 an_idx = start_idx; 2465 pg_idx = 0; 2466 vaddr = addr; 2467 for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) { 2468 ASSERT(ppa[pg_idx] != NULL); 2469 oldap = anon_get_ptr(amp->ahp, an_idx); 2470 ASSERT(ahmpages != NULL || oldap == NULL); 2471 ASSERT(ahmpages == NULL || oldap != NULL); 2472 ASSERT(ahmpages == NULL || oldap->an_refcnt > 1); 2473 ASSERT(ahmpages == NULL || pg_idx != 0 || 2474 (refcnt = oldap->an_refcnt)); 2475 ASSERT(ahmpages == NULL || pg_idx == 0 || 2476 refcnt == oldap->an_refcnt); 2477 2478 ap = anon_alloc(NULL, 0); 2479 2480 swap_xlate(ap, &vp, &off); 2481 2482 /* 2483 * Now setup our preallocated page to pass down to 2484 * swap_getpage(). 2485 */ 2486 if (prealloc) { 2487 pp = pplist; 2488 page_sub(&pplist, pp); 2489 conpp = pp; 2490 } 2491 2492 err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl, 2493 PAGESIZE, conpp, &nreloc, seg, vaddr, S_CREATE, cred); 2494 2495 /* 2496 * Impossible to fail this is S_CREATE. 2497 */ 2498 if (err) 2499 panic("anon_map_privatepages: VOP_GETPAGE failed"); 2500 2501 ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0); 2502 ASSERT(prealloc == 0 || nreloc == 1); 2503 2504 pp = pl[0]; 2505 2506 /* 2507 * If the original page was locked, we need to move 2508 * the lock to the new page by transfering 2509 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt' 2510 * of the new page. pg_idx can be used to index 2511 * into the vpage array since the caller will guarentee 2512 * that vpage struct passed in corresponds to addr 2513 * and forward. 2514 */ 2515 if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) { 2516 page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE); 2517 } else if (pagelock) { 2518 mutex_enter(&freemem_lock); 2519 availrmem++; 2520 pages_useclaim--; 2521 mutex_exit(&freemem_lock); 2522 } 2523 2524 /* 2525 * Now copy the contents from the original page. 2526 */ 2527 ppcopy(ppa[pg_idx], pp); 2528 2529 hat_setrefmod(pp); /* mark as modified */ 2530 2531 /* 2532 * Release the lock on the original page, 2533 * derement the old slot, and down grade the lock 2534 * on the new copy. 2535 */ 2536 page_unlock(ppa[pg_idx]); 2537 2538 if (!prealloc) 2539 page_downgrade(pp); 2540 2541 ppa[pg_idx] = pp; 2542 2543 /* 2544 * Now reflect the copy in the new anon array. 2545 */ 2546 ASSERT(ahmpages == NULL || oldap->an_refcnt > 1); 2547 if (oldap != NULL) 2548 anon_decref(oldap); 2549 (void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP); 2550 } 2551 if (ahmpages != NULL) { 2552 mutex_exit(ahmpages); 2553 } 2554 ASSERT(prealloc == 0 || pplist == NULL); 2555 if (prealloc) { 2556 VM_STAT_ADD(anonvmstats.privatepages[9]); 2557 for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { 2558 page_downgrade(ppa[pg_idx]); 2559 } 2560 } 2561 2562 /* 2563 * Unload the old large page translation. 2564 */ 2565 hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD); 2566 return (0); 2567 } 2568 2569 /* 2570 * Allocate a private zero-filled anon page. 2571 */ 2572 page_t * 2573 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred) 2574 { 2575 struct anon *ap; 2576 page_t *pp; 2577 struct vnode *vp; 2578 anoff_t off; 2579 page_t *anon_pl[1 + 1]; 2580 int err; 2581 2582 /* Kernel probe */ 2583 TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */, 2584 tnf_opaque, address, addr); 2585 2586 *app = ap = anon_alloc(NULL, 0); 2587 swap_xlate(ap, &vp, &off); 2588 2589 /* 2590 * Call the VOP_GETPAGE routine to create the page, thereby 2591 * enabling the vnode driver to allocate any filesystem 2592 * dependent structures (e.g., disk block allocation for UFS). 2593 * This also prevents more than on page from being added to 2594 * the vnode at the same time since it is locked. 2595 */ 2596 err = VOP_GETPAGE(vp, off, PAGESIZE, NULL, 2597 anon_pl, PAGESIZE, seg, addr, S_CREATE, cred); 2598 if (err) { 2599 *app = NULL; 2600 anon_decref(ap); 2601 return (NULL); 2602 } 2603 pp = anon_pl[0]; 2604 2605 pagezero(pp, 0, PAGESIZE); /* XXX - should set mod bit */ 2606 page_downgrade(pp); 2607 CPU_STATS_ADD_K(vm, zfod, 1); 2608 hat_setrefmod(pp); /* mark as modified so pageout writes back */ 2609 return (pp); 2610 } 2611 2612 2613 /* 2614 * Allocate array of private zero-filled anon pages for empty slots 2615 * and kept pages for non empty slots within given range. 2616 * 2617 * NOTE: This rontine will try and use large pages 2618 * if available and supported by underlying platform. 2619 */ 2620 int 2621 anon_map_createpages( 2622 struct anon_map *amp, 2623 ulong_t start_index, 2624 size_t len, 2625 page_t *ppa[], 2626 struct seg *seg, 2627 caddr_t addr, 2628 enum seg_rw rw, 2629 struct cred *cred) 2630 { 2631 2632 struct anon *ap; 2633 struct vnode *ap_vp; 2634 page_t *pp, *pplist, *anon_pl[1 + 1], *conpp = NULL; 2635 int err = 0; 2636 ulong_t p_index, index; 2637 pgcnt_t npgs, pg_cnt; 2638 spgcnt_t nreloc = 0; 2639 uint_t l_szc, szc, prot; 2640 anoff_t ap_off; 2641 size_t pgsz; 2642 lgrp_t *lgrp; 2643 2644 /* 2645 * XXX For now only handle S_CREATE. 2646 */ 2647 ASSERT(rw == S_CREATE); 2648 2649 index = start_index; 2650 p_index = 0; 2651 npgs = btopr(len); 2652 2653 /* 2654 * If this platform supports multiple page sizes 2655 * then try and allocate directly from the free 2656 * list for pages larger than PAGESIZE. 2657 * 2658 * NOTE:When we have page_create_ru we can stop 2659 * directly allocating from the freelist. 2660 */ 2661 l_szc = seg->s_szc; 2662 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2663 while (npgs) { 2664 2665 /* 2666 * if anon slot already exists 2667 * (means page has been created) 2668 * so 1) look up the page 2669 * 2) if the page is still in memory, get it. 2670 * 3) if not, create a page and 2671 * page in from physical swap device. 2672 * These are done in anon_getpage(). 2673 */ 2674 ap = anon_get_ptr(amp->ahp, index); 2675 if (ap) { 2676 err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE, 2677 seg, addr, S_READ, cred); 2678 if (err) { 2679 ANON_LOCK_EXIT(&->a_rwlock); 2680 panic("anon_map_createpages: anon_getpage"); 2681 } 2682 pp = anon_pl[0]; 2683 ppa[p_index++] = pp; 2684 2685 addr += PAGESIZE; 2686 index++; 2687 npgs--; 2688 continue; 2689 } 2690 /* 2691 * Now try and allocate the largest page possible 2692 * for the current address and range. 2693 * Keep dropping down in page size until: 2694 * 2695 * 1) Properly aligned 2696 * 2) Does not overlap existing anon pages 2697 * 3) Fits in remaining range. 2698 * 4) able to allocate one. 2699 * 2700 * NOTE: XXX When page_create_ru is completed this code 2701 * will change. 2702 */ 2703 szc = l_szc; 2704 pplist = NULL; 2705 pg_cnt = 0; 2706 while (szc) { 2707 pgsz = page_get_pagesize(szc); 2708 pg_cnt = pgsz >> PAGESHIFT; 2709 if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs && 2710 anon_pages(amp->ahp, index, pg_cnt) == 0) { 2711 /* 2712 * XXX 2713 * Since we are faking page_create() 2714 * we also need to do the freemem and 2715 * pcf accounting. 2716 */ 2717 (void) page_create_wait(pg_cnt, PG_WAIT); 2718 2719 /* 2720 * Get lgroup to allocate next page of shared 2721 * memory from and use it to specify where to 2722 * allocate the physical memory 2723 */ 2724 lgrp = lgrp_mem_choose(seg, addr, pgsz); 2725 2726 pplist = page_get_freelist( 2727 anon_vp, (u_offset_t)0, seg, 2728 addr, pgsz, 0, lgrp); 2729 2730 if (pplist == NULL) { 2731 page_create_putback(pg_cnt); 2732 } 2733 2734 /* 2735 * If a request for a page of size 2736 * larger than PAGESIZE failed 2737 * then don't try that size anymore. 2738 */ 2739 if (pplist == NULL) { 2740 l_szc = szc - 1; 2741 } else { 2742 break; 2743 } 2744 } 2745 szc--; 2746 } 2747 2748 /* 2749 * If just using PAGESIZE pages then don't 2750 * directly allocate from the free list. 2751 */ 2752 if (pplist == NULL) { 2753 ASSERT(szc == 0); 2754 pp = anon_zero(seg, addr, &ap, cred); 2755 if (pp == NULL) { 2756 ANON_LOCK_EXIT(&->a_rwlock); 2757 panic("anon_map_createpages: anon_zero"); 2758 } 2759 ppa[p_index++] = pp; 2760 2761 ASSERT(anon_get_ptr(amp->ahp, index) == NULL); 2762 (void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP); 2763 2764 addr += PAGESIZE; 2765 index++; 2766 npgs--; 2767 continue; 2768 } 2769 2770 /* 2771 * pplist is a list of pg_cnt PAGESIZE pages. 2772 * These pages are locked SE_EXCL since they 2773 * came directly off the free list. 2774 */ 2775 ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt)); 2776 ASSERT(IS_P2ALIGNED(index, pg_cnt)); 2777 ASSERT(conpp == NULL); 2778 while (pg_cnt--) { 2779 2780 ap = anon_alloc(NULL, 0); 2781 swap_xlate(ap, &ap_vp, &ap_off); 2782 2783 ASSERT(pplist != NULL); 2784 pp = pplist; 2785 page_sub(&pplist, pp); 2786 PP_CLRFREE(pp); 2787 PP_CLRAGED(pp); 2788 conpp = pp; 2789 2790 err = swap_getconpage(ap_vp, ap_off, PAGESIZE, 2791 (uint_t *)NULL, anon_pl, PAGESIZE, conpp, &nreloc, 2792 seg, addr, S_CREATE, cred); 2793 2794 if (err) { 2795 ANON_LOCK_EXIT(&->a_rwlock); 2796 panic("anon_map_createpages: S_CREATE"); 2797 } 2798 2799 ASSERT(anon_pl[0] == pp); 2800 ASSERT(nreloc == 1); 2801 pagezero(pp, 0, PAGESIZE); 2802 CPU_STATS_ADD_K(vm, zfod, 1); 2803 hat_setrefmod(pp); 2804 2805 ASSERT(anon_get_ptr(amp->ahp, index) == NULL); 2806 (void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP); 2807 2808 ppa[p_index++] = pp; 2809 2810 addr += PAGESIZE; 2811 index++; 2812 npgs--; 2813 } 2814 conpp = NULL; 2815 pg_cnt = pgsz >> PAGESHIFT; 2816 p_index = p_index - pg_cnt; 2817 while (pg_cnt--) { 2818 page_downgrade(ppa[p_index++]); 2819 } 2820 } 2821 ANON_LOCK_EXIT(&->a_rwlock); 2822 return (0); 2823 } 2824 2825 int 2826 anon_map_demotepages( 2827 struct anon_map *amp, 2828 ulong_t start_idx, 2829 struct seg *seg, 2830 caddr_t addr, 2831 uint_t prot, 2832 struct vpage vpage[], 2833 struct cred *cred) 2834 { 2835 struct anon *ap; 2836 uint_t szc = seg->s_szc; 2837 pgcnt_t pgcnt = page_get_pagecnt(szc); 2838 size_t ppasize = pgcnt * sizeof (page_t *); 2839 page_t **ppa = kmem_alloc(ppasize, KM_SLEEP); 2840 page_t *pp; 2841 page_t *pl[2]; 2842 pgcnt_t i, pg_idx; 2843 ulong_t an_idx; 2844 caddr_t vaddr; 2845 kmutex_t *ahmpages = NULL; 2846 int err; 2847 int retry = 0; 2848 uint_t vpprot; 2849 2850 ASSERT(RW_WRITE_HELD(&->a_rwlock)); 2851 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 2852 ASSERT(IS_P2ALIGNED(start_idx, pgcnt)); 2853 ASSERT(ppa != NULL); 2854 2855 VM_STAT_ADD(anonvmstats.demotepages[0]); 2856 2857 ap = anon_get_ptr(amp->ahp, start_idx); 2858 if (ap != NULL) { 2859 VM_STAT_ADD(anonvmstats.demotepages[1]); 2860 ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; 2861 mutex_enter(ahmpages); 2862 } 2863 top: 2864 if (ap == NULL || ap->an_refcnt <= 1) { 2865 int root = 0; 2866 pgcnt_t npgs, curnpgs = 0; 2867 2868 VM_STAT_ADD(anonvmstats.demotepages[2]); 2869 2870 ASSERT(retry == 0 || ap != NULL); 2871 2872 if (ahmpages != NULL) 2873 mutex_exit(ahmpages); 2874 an_idx = start_idx; 2875 for (i = 0; i < pgcnt; i++, an_idx++) { 2876 ap = anon_get_ptr(amp->ahp, an_idx); 2877 if (ap != NULL) { 2878 ASSERT(ap->an_refcnt == 1); 2879 pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off, 2880 SE_EXCL); 2881 if (pp != NULL) { 2882 (void) hat_pageunload(pp, 2883 HAT_FORCE_PGUNLOAD); 2884 } 2885 } else { 2886 ppa[i] = NULL; 2887 } 2888 } 2889 for (i = 0; i < pgcnt; i++) { 2890 if ((pp = ppa[i]) != NULL && pp->p_szc != 0) { 2891 ASSERT(pp->p_szc <= szc); 2892 if (!root) { 2893 VM_STAT_ADD(anonvmstats.demotepages[3]); 2894 if (curnpgs != 0) 2895 panic("anon_map_demotepages: " 2896 "bad large page"); 2897 2898 root = 1; 2899 curnpgs = npgs = 2900 page_get_pagecnt(pp->p_szc); 2901 2902 ASSERT(npgs <= pgcnt); 2903 ASSERT(IS_P2ALIGNED(npgs, npgs)); 2904 ASSERT(!(page_pptonum(pp) & 2905 (npgs - 1))); 2906 } else { 2907 ASSERT(i > 0); 2908 ASSERT(page_pptonum(pp) - 1 == 2909 page_pptonum(ppa[i - 1])); 2910 if ((page_pptonum(pp) & (npgs - 1)) == 2911 npgs - 1) 2912 root = 0; 2913 } 2914 ASSERT(PAGE_EXCL(pp)); 2915 pp->p_szc = 0; 2916 curnpgs--; 2917 } 2918 } 2919 if (root != 0 || curnpgs != 0) 2920 panic("anon_map_demotepages: bad large page"); 2921 2922 for (i = 0; i < pgcnt; i++) { 2923 if ((pp = ppa[i]) != NULL) { 2924 ASSERT(!hat_page_is_mapped(pp)); 2925 ASSERT(pp->p_szc == 0); 2926 page_unlock(pp); 2927 } 2928 } 2929 kmem_free(ppa, ppasize); 2930 return (0); 2931 } 2932 ASSERT(ahmpages != NULL); 2933 mutex_exit(ahmpages); 2934 ahmpages = NULL; 2935 2936 VM_STAT_ADD(anonvmstats.demotepages[4]); 2937 2938 ASSERT(retry == 0); /* we can be here only once */ 2939 2940 vaddr = addr; 2941 for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt; 2942 pg_idx++, an_idx++, vaddr += PAGESIZE) { 2943 ap = anon_get_ptr(amp->ahp, an_idx); 2944 if (ap == NULL) 2945 panic("anon_map_demotepages: no anon slot"); 2946 err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr, 2947 S_READ, cred); 2948 if (err) { 2949 for (i = 0; i < pg_idx; i++) { 2950 if ((pp = ppa[i]) != NULL) 2951 page_unlock(pp); 2952 } 2953 kmem_free(ppa, ppasize); 2954 return (err); 2955 } 2956 ppa[pg_idx] = pl[0]; 2957 } 2958 2959 err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa, 2960 vpage, -1, cred); 2961 if (err > 0) { 2962 VM_STAT_ADD(anonvmstats.demotepages[5]); 2963 kmem_free(ppa, ppasize); 2964 return (err); 2965 } 2966 ASSERT(err == 0 || err == -1); 2967 if (err == -1) { 2968 VM_STAT_ADD(anonvmstats.demotepages[6]); 2969 retry = 1; 2970 goto top; 2971 } 2972 for (i = 0; i < pgcnt; i++) { 2973 ASSERT(ppa[i] != NULL); 2974 if (ppa[i]->p_szc != 0) 2975 retry = 1; 2976 page_unlock(ppa[i]); 2977 } 2978 if (retry) { 2979 VM_STAT_ADD(anonvmstats.demotepages[7]); 2980 goto top; 2981 } 2982 2983 VM_STAT_ADD(anonvmstats.demotepages[8]); 2984 2985 kmem_free(ppa, ppasize); 2986 2987 return (0); 2988 } 2989 2990 /* 2991 * Allocate and initialize an anon_map structure for seg 2992 * associating the given swap reservation with the new anon_map. 2993 */ 2994 struct anon_map * 2995 anonmap_alloc(size_t size, size_t swresv) 2996 { 2997 struct anon_map *amp; 2998 2999 amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP); 3000 3001 amp->refcnt = 1; 3002 amp->size = size; 3003 3004 amp->ahp = anon_create(btopr(size), ANON_SLEEP); 3005 amp->swresv = swresv; 3006 amp->locality = 0; 3007 amp->a_szc = 0; 3008 return (amp); 3009 } 3010 3011 void 3012 anonmap_free(struct anon_map *amp) 3013 { 3014 ASSERT(amp->ahp); 3015 ASSERT(amp->refcnt == 0); 3016 3017 lgrp_shm_policy_fini(amp, NULL); 3018 anon_release(amp->ahp, btopr(amp->size)); 3019 kmem_cache_free(anonmap_cache, amp); 3020 } 3021 3022 /* 3023 * Returns true if the app array has some empty slots. 3024 * The offp and lenp paramters are in/out paramters. On entry 3025 * these values represent the starting offset and length of the 3026 * mapping. When true is returned, these values may be modified 3027 * to be the largest range which includes empty slots. 3028 */ 3029 int 3030 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp, 3031 size_t *lenp) 3032 { 3033 ulong_t i, el; 3034 ssize_t low, high; 3035 struct anon *ap; 3036 3037 low = -1; 3038 for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) { 3039 ap = anon_get_ptr(ahp, anon_idx); 3040 if (ap == NULL) { 3041 if (low == -1) 3042 low = i; 3043 high = i; 3044 } 3045 } 3046 if (low != -1) { 3047 /* 3048 * Found at least one non-anon page. 3049 * Set up the off and len return values. 3050 */ 3051 if (low != 0) 3052 *offp += low; 3053 *lenp = high - low + PAGESIZE; 3054 return (1); 3055 } 3056 return (0); 3057 } 3058 3059 /* 3060 * Return a count of the number of existing anon pages in the anon array 3061 * app in the range (off, off+len). The array and slots must be guaranteed 3062 * stable by the caller. 3063 */ 3064 pgcnt_t 3065 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots) 3066 { 3067 pgcnt_t cnt = 0; 3068 3069 while (nslots-- > 0) { 3070 if ((anon_get_ptr(ahp, anon_index)) != NULL) 3071 cnt++; 3072 anon_index++; 3073 } 3074 return (cnt); 3075 } 3076 3077 /* 3078 * Move reserved phys swap into memory swap (unreserve phys swap 3079 * and reserve mem swap by the same amount). 3080 * Used by segspt when it needs to lock resrved swap npages in memory 3081 */ 3082 int 3083 anon_swap_adjust(pgcnt_t npages) 3084 { 3085 pgcnt_t unlocked_mem_swap; 3086 3087 mutex_enter(&anoninfo_lock); 3088 3089 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 3090 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 3091 3092 unlocked_mem_swap = k_anoninfo.ani_mem_resv 3093 - k_anoninfo.ani_locked_swap; 3094 if (npages > unlocked_mem_swap) { 3095 spgcnt_t adjusted_swap = npages - unlocked_mem_swap; 3096 3097 /* 3098 * if there is not enough unlocked mem swap we take missing 3099 * amount from phys swap and give it to mem swap 3100 */ 3101 if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) { 3102 mutex_exit(&anoninfo_lock); 3103 return (ENOMEM); 3104 } 3105 3106 k_anoninfo.ani_mem_resv += adjusted_swap; 3107 ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap); 3108 k_anoninfo.ani_phys_resv -= adjusted_swap; 3109 3110 ANI_ADD(adjusted_swap); 3111 } 3112 k_anoninfo.ani_locked_swap += npages; 3113 3114 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); 3115 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 3116 3117 mutex_exit(&anoninfo_lock); 3118 3119 return (0); 3120 } 3121 3122 /* 3123 * 'unlocked' reserved mem swap so when it is unreserved it 3124 * can be moved back phys (disk) swap 3125 */ 3126 void 3127 anon_swap_restore(pgcnt_t npages) 3128 { 3129 mutex_enter(&anoninfo_lock); 3130 3131 ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv); 3132 3133 ASSERT(k_anoninfo.ani_locked_swap >= npages); 3134 k_anoninfo.ani_locked_swap -= npages; 3135 3136 ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv); 3137 3138 mutex_exit(&anoninfo_lock); 3139 } 3140 3141 /* 3142 * Return the pointer from the list for a 3143 * specified anon index. 3144 */ 3145 ulong_t * 3146 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx) 3147 { 3148 struct anon **app; 3149 void **ppp; 3150 3151 ASSERT(an_idx < ahp->size); 3152 3153 /* 3154 * Single level case. 3155 */ 3156 if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) { 3157 return ((ulong_t *)&ahp->array_chunk[an_idx]); 3158 } else { 3159 3160 /* 3161 * 2 level case. 3162 */ 3163 ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 3164 if (*ppp == NULL) { 3165 mutex_enter(&ahp->serial_lock); 3166 ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; 3167 if (*ppp == NULL) 3168 *ppp = kmem_zalloc(PAGESIZE, KM_SLEEP); 3169 mutex_exit(&ahp->serial_lock); 3170 } 3171 app = *ppp; 3172 return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]); 3173 } 3174 } 3175 3176 void 3177 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj) 3178 { 3179 ulong_t *ap_slot; 3180 kmutex_t *mtx; 3181 kcondvar_t *cv; 3182 int hash; 3183 3184 /* 3185 * Use szc to determine anon slot(s) to appear atomic. 3186 * If szc = 0, then lock the anon slot and mark it busy. 3187 * If szc > 0, then lock the range of slots by getting the 3188 * anon_array_lock for the first anon slot, and mark only the 3189 * first anon slot busy to represent whole range being busy. 3190 */ 3191 3192 ASSERT(RW_READ_HELD(&->a_rwlock)); 3193 an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc)); 3194 hash = ANON_ARRAY_HASH(amp, an_idx); 3195 sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex; 3196 sobj->sync_cv = cv = &anon_array_cv[hash]; 3197 mutex_enter(mtx); 3198 ap_slot = anon_get_slot(amp->ahp, an_idx); 3199 while (ANON_ISBUSY(ap_slot)) 3200 cv_wait(cv, mtx); 3201 ANON_SETBUSY(ap_slot); 3202 sobj->sync_data = ap_slot; 3203 mutex_exit(mtx); 3204 } 3205 3206 int 3207 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx, 3208 anon_sync_obj_t *sobj) 3209 { 3210 ulong_t *ap_slot; 3211 kmutex_t *mtx; 3212 int hash; 3213 3214 /* 3215 * Try to lock a range of anon slots. 3216 * Use szc to determine anon slot(s) to appear atomic. 3217 * If szc = 0, then lock the anon slot and mark it busy. 3218 * If szc > 0, then lock the range of slots by getting the 3219 * anon_array_lock for the first anon slot, and mark only the 3220 * first anon slot busy to represent whole range being busy. 3221 * Fail if the mutex or the anon_array are busy. 3222 */ 3223 3224 ASSERT(RW_READ_HELD(&->a_rwlock)); 3225 an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc)); 3226 hash = ANON_ARRAY_HASH(amp, an_idx); 3227 sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex; 3228 sobj->sync_cv = &anon_array_cv[hash]; 3229 if (!mutex_tryenter(mtx)) { 3230 return (EWOULDBLOCK); 3231 } 3232 ap_slot = anon_get_slot(amp->ahp, an_idx); 3233 if (ANON_ISBUSY(ap_slot)) { 3234 mutex_exit(mtx); 3235 return (EWOULDBLOCK); 3236 } 3237 ANON_SETBUSY(ap_slot); 3238 sobj->sync_data = ap_slot; 3239 mutex_exit(mtx); 3240 return (0); 3241 } 3242 3243 void 3244 anon_array_exit(anon_sync_obj_t *sobj) 3245 { 3246 mutex_enter(sobj->sync_mutex); 3247 ASSERT(ANON_ISBUSY(sobj->sync_data)); 3248 ANON_CLRBUSY(sobj->sync_data); 3249 if (CV_HAS_WAITERS(sobj->sync_cv)) 3250 cv_broadcast(sobj->sync_cv); 3251 mutex_exit(sobj->sync_mutex); 3252 } 3253