1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * VM - shared or copy-on-write from a vnode/anonymous memory. 43 */ 44 45 #include <sys/types.h> 46 #include <sys/param.h> 47 #include <sys/t_lock.h> 48 #include <sys/errno.h> 49 #include <sys/systm.h> 50 #include <sys/mman.h> 51 #include <sys/debug.h> 52 #include <sys/cred.h> 53 #include <sys/vmsystm.h> 54 #include <sys/tuneable.h> 55 #include <sys/bitmap.h> 56 #include <sys/swap.h> 57 #include <sys/kmem.h> 58 #include <sys/sysmacros.h> 59 #include <sys/vtrace.h> 60 #include <sys/cmn_err.h> 61 #include <sys/callb.h> 62 #include <sys/vm.h> 63 #include <sys/dumphdr.h> 64 #include <sys/lgrp.h> 65 66 #include <vm/hat.h> 67 #include <vm/as.h> 68 #include <vm/seg.h> 69 #include <vm/seg_vn.h> 70 #include <vm/pvn.h> 71 #include <vm/anon.h> 72 #include <vm/page.h> 73 #include <vm/vpage.h> 74 #include <sys/proc.h> 75 #include <sys/task.h> 76 #include <sys/project.h> 77 #include <sys/zone.h> 78 #include <sys/shm_impl.h> 79 /* 80 * Private seg op routines. 81 */ 82 static int segvn_dup(struct seg *seg, struct seg *newseg); 83 static int segvn_unmap(struct seg *seg, caddr_t addr, size_t len); 84 static void segvn_free(struct seg *seg); 85 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg, 86 caddr_t addr, size_t len, enum fault_type type, 87 enum seg_rw rw); 88 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr); 89 static int segvn_setprot(struct seg *seg, caddr_t addr, 90 size_t len, uint_t prot); 91 static int segvn_checkprot(struct seg *seg, caddr_t addr, 92 size_t len, uint_t prot); 93 static int segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta); 94 static size_t segvn_swapout(struct seg *seg); 95 static int segvn_sync(struct seg *seg, caddr_t addr, size_t len, 96 int attr, uint_t flags); 97 static size_t segvn_incore(struct seg *seg, caddr_t addr, size_t len, 98 char *vec); 99 static int segvn_lockop(struct seg *seg, caddr_t addr, size_t len, 100 int attr, int op, ulong_t *lockmap, size_t pos); 101 static int segvn_getprot(struct seg *seg, caddr_t addr, size_t len, 102 uint_t *protv); 103 static u_offset_t segvn_getoffset(struct seg *seg, caddr_t addr); 104 static int segvn_gettype(struct seg *seg, caddr_t addr); 105 static int segvn_getvp(struct seg *seg, caddr_t addr, 106 struct vnode **vpp); 107 static int segvn_advise(struct seg *seg, caddr_t addr, size_t len, 108 uint_t behav); 109 static void segvn_dump(struct seg *seg); 110 static int segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, 111 struct page ***ppp, enum lock_type type, enum seg_rw rw); 112 static int segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, 113 uint_t szc); 114 static int segvn_getmemid(struct seg *seg, caddr_t addr, 115 memid_t *memidp); 116 static lgrp_mem_policy_info_t *segvn_getpolicy(struct seg *, caddr_t); 117 static int segvn_capable(struct seg *seg, segcapability_t capable); 118 119 struct seg_ops segvn_ops = { 120 segvn_dup, 121 segvn_unmap, 122 segvn_free, 123 segvn_fault, 124 segvn_faulta, 125 segvn_setprot, 126 segvn_checkprot, 127 segvn_kluster, 128 segvn_swapout, 129 segvn_sync, 130 segvn_incore, 131 segvn_lockop, 132 segvn_getprot, 133 segvn_getoffset, 134 segvn_gettype, 135 segvn_getvp, 136 segvn_advise, 137 segvn_dump, 138 segvn_pagelock, 139 segvn_setpagesize, 140 segvn_getmemid, 141 segvn_getpolicy, 142 segvn_capable, 143 }; 144 145 /* 146 * Common zfod structures, provided as a shorthand for others to use. 147 */ 148 static segvn_crargs_t zfod_segvn_crargs = 149 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 150 static segvn_crargs_t kzfod_segvn_crargs = 151 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER, 152 PROT_ALL & ~PROT_USER); 153 static segvn_crargs_t stack_noexec_crargs = 154 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL); 155 156 caddr_t zfod_argsp = (caddr_t)&zfod_segvn_crargs; /* user zfod argsp */ 157 caddr_t kzfod_argsp = (caddr_t)&kzfod_segvn_crargs; /* kernel zfod argsp */ 158 caddr_t stack_exec_argsp = (caddr_t)&zfod_segvn_crargs; /* executable stack */ 159 caddr_t stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */ 160 161 #define vpgtob(n) ((n) * sizeof (struct vpage)) /* For brevity */ 162 163 size_t segvn_comb_thrshld = UINT_MAX; /* patchable -- see 1196681 */ 164 165 size_t segvn_pglock_comb_thrshld = (1UL << 16); /* 64K */ 166 size_t segvn_pglock_comb_balign = (1UL << 16); /* 64K */ 167 uint_t segvn_pglock_comb_bshift; 168 size_t segvn_pglock_comb_palign; 169 170 static int segvn_concat(struct seg *, struct seg *, int); 171 static int segvn_extend_prev(struct seg *, struct seg *, 172 struct segvn_crargs *, size_t); 173 static int segvn_extend_next(struct seg *, struct seg *, 174 struct segvn_crargs *, size_t); 175 static void segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw); 176 static void segvn_pagelist_rele(page_t **); 177 static void segvn_setvnode_mpss(vnode_t *); 178 static void segvn_relocate_pages(page_t **, page_t *); 179 static int segvn_full_szcpages(page_t **, uint_t, int *, uint_t *); 180 static int segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t, 181 uint_t, page_t **, page_t **, uint_t *, int *); 182 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t, 183 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int); 184 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t, 185 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int); 186 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t, 187 u_offset_t, struct vpage *, page_t **, uint_t, 188 enum fault_type, enum seg_rw, int); 189 static void segvn_vpage(struct seg *); 190 static size_t segvn_count_swap_by_vpages(struct seg *); 191 192 static void segvn_purge(struct seg *seg); 193 static int segvn_reclaim(void *, caddr_t, size_t, struct page **, 194 enum seg_rw, int); 195 static int shamp_reclaim(void *, caddr_t, size_t, struct page **, 196 enum seg_rw, int); 197 198 static int sameprot(struct seg *, caddr_t, size_t); 199 200 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t); 201 static int segvn_clrszc(struct seg *); 202 static struct seg *segvn_split_seg(struct seg *, caddr_t); 203 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t, 204 ulong_t, uint_t); 205 206 static void segvn_hat_rgn_unload_callback(caddr_t, caddr_t, caddr_t, 207 size_t, void *, u_offset_t); 208 209 static struct kmem_cache *segvn_cache; 210 static struct kmem_cache **segvn_szc_cache; 211 212 #ifdef VM_STATS 213 static struct segvnvmstats_str { 214 ulong_t fill_vp_pages[31]; 215 ulong_t fltvnpages[49]; 216 ulong_t fullszcpages[10]; 217 ulong_t relocatepages[3]; 218 ulong_t fltanpages[17]; 219 ulong_t pagelock[2]; 220 ulong_t demoterange[3]; 221 } segvnvmstats; 222 #endif /* VM_STATS */ 223 224 #define SDR_RANGE 1 /* demote entire range */ 225 #define SDR_END 2 /* demote non aligned ends only */ 226 227 #define CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) { \ 228 if ((len) != 0) { \ 229 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz); \ 230 ASSERT(lpgaddr >= (seg)->s_base); \ 231 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) + \ 232 (len)), pgsz); \ 233 ASSERT(lpgeaddr > lpgaddr); \ 234 ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size); \ 235 } else { \ 236 lpgeaddr = lpgaddr = (addr); \ 237 } \ 238 } 239 240 /*ARGSUSED*/ 241 static int 242 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags) 243 { 244 struct segvn_data *svd = buf; 245 246 rw_init(&svd->lock, NULL, RW_DEFAULT, NULL); 247 mutex_init(&svd->segfree_syncmtx, NULL, MUTEX_DEFAULT, NULL); 248 svd->svn_trnext = svd->svn_trprev = NULL; 249 return (0); 250 } 251 252 /*ARGSUSED1*/ 253 static void 254 segvn_cache_destructor(void *buf, void *cdrarg) 255 { 256 struct segvn_data *svd = buf; 257 258 rw_destroy(&svd->lock); 259 mutex_destroy(&svd->segfree_syncmtx); 260 } 261 262 /*ARGSUSED*/ 263 static int 264 svntr_cache_constructor(void *buf, void *cdrarg, int kmflags) 265 { 266 bzero(buf, sizeof (svntr_t)); 267 return (0); 268 } 269 270 /* 271 * Patching this variable to non-zero allows the system to run with 272 * stacks marked as "not executable". It's a bit of a kludge, but is 273 * provided as a tweakable for platforms that export those ABIs 274 * (e.g. sparc V8) that have executable stacks enabled by default. 275 * There are also some restrictions for platforms that don't actually 276 * implement 'noexec' protections. 277 * 278 * Once enabled, the system is (therefore) unable to provide a fully 279 * ABI-compliant execution environment, though practically speaking, 280 * most everything works. The exceptions are generally some interpreters 281 * and debuggers that create executable code on the stack and jump 282 * into it (without explicitly mprotecting the address range to include 283 * PROT_EXEC). 284 * 285 * One important class of applications that are disabled are those 286 * that have been transformed into malicious agents using one of the 287 * numerous "buffer overflow" attacks. See 4007890. 288 */ 289 int noexec_user_stack = 0; 290 int noexec_user_stack_log = 1; 291 292 int segvn_lpg_disable = 0; 293 uint_t segvn_maxpgszc = 0; 294 295 ulong_t segvn_vmpss_clrszc_cnt; 296 ulong_t segvn_vmpss_clrszc_err; 297 ulong_t segvn_fltvnpages_clrszc_cnt; 298 ulong_t segvn_fltvnpages_clrszc_err; 299 ulong_t segvn_setpgsz_align_err; 300 ulong_t segvn_setpgsz_anon_align_err; 301 ulong_t segvn_setpgsz_getattr_err; 302 ulong_t segvn_setpgsz_eof_err; 303 ulong_t segvn_faultvnmpss_align_err1; 304 ulong_t segvn_faultvnmpss_align_err2; 305 ulong_t segvn_faultvnmpss_align_err3; 306 ulong_t segvn_faultvnmpss_align_err4; 307 ulong_t segvn_faultvnmpss_align_err5; 308 ulong_t segvn_vmpss_pageio_deadlk_err; 309 310 int segvn_use_regions = 1; 311 312 /* 313 * Segvn supports text replication optimization for NUMA platforms. Text 314 * replica's are represented by anon maps (amp). There's one amp per text file 315 * region per lgroup. A process chooses the amp for each of its text mappings 316 * based on the lgroup assignment of its main thread (t_tid = 1). All 317 * processes that want a replica on a particular lgroup for the same text file 318 * mapping share the same amp. amp's are looked up in svntr_hashtab hash table 319 * with vp,off,size,szc used as a key. Text replication segments are read only 320 * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by 321 * forcing COW faults from vnode to amp and mapping amp pages instead of vnode 322 * pages. Replication amp is assigned to a segment when it gets its first 323 * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread 324 * rechecks periodically if the process still maps an amp local to the main 325 * thread. If not async thread forces process to remap to an amp in the new 326 * home lgroup of the main thread. Current text replication implementation 327 * only provides the benefit to workloads that do most of their work in the 328 * main thread of a process or all the threads of a process run in the same 329 * lgroup. To extend text replication benefit to different types of 330 * multithreaded workloads further work would be needed in the hat layer to 331 * allow the same virtual address in the same hat to simultaneously map 332 * different physical addresses (i.e. page table replication would be needed 333 * for x86). 334 * 335 * amp pages are used instead of vnode pages as long as segment has a very 336 * simple life cycle. It's created via segvn_create(), handles S_EXEC 337 * (S_READ) pagefaults and is fully unmapped. If anything more complicated 338 * happens such as protection is changed, real COW fault happens, pagesize is 339 * changed, MC_LOCK is requested or segment is partially unmapped we turn off 340 * text replication by converting the segment back to vnode only segment 341 * (unmap segment's address range and set svd->amp to NULL). 342 * 343 * The original file can be changed after amp is inserted into 344 * svntr_hashtab. Processes that are launched after the file is already 345 * changed can't use the replica's created prior to the file change. To 346 * implement this functionality hash entries are timestamped. Replica's can 347 * only be used if current file modification time is the same as the timestamp 348 * saved when hash entry was created. However just timestamps alone are not 349 * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We 350 * deal with file changes via MAP_SHARED mappings differently. When writable 351 * MAP_SHARED mappings are created to vnodes marked as executable we mark all 352 * existing replica's for this vnode as not usable for future text 353 * mappings. And we don't create new replica's for files that currently have 354 * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is 355 * true). 356 */ 357 358 #define SEGVN_TEXTREPL_MAXBYTES_FACTOR (20) 359 size_t segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR; 360 361 static ulong_t svntr_hashtab_sz = 512; 362 static svntr_bucket_t *svntr_hashtab = NULL; 363 static struct kmem_cache *svntr_cache; 364 static svntr_stats_t *segvn_textrepl_stats; 365 static ksema_t segvn_trasync_sem; 366 367 int segvn_disable_textrepl = 1; 368 size_t textrepl_size_thresh = (size_t)-1; 369 size_t segvn_textrepl_bytes = 0; 370 size_t segvn_textrepl_max_bytes = 0; 371 clock_t segvn_update_textrepl_interval = 0; 372 int segvn_update_tr_time = 10; 373 int segvn_disable_textrepl_update = 0; 374 375 static void segvn_textrepl(struct seg *); 376 static void segvn_textunrepl(struct seg *, int); 377 static void segvn_inval_trcache(vnode_t *); 378 static void segvn_trasync_thread(void); 379 static void segvn_trupdate_wakeup(void *); 380 static void segvn_trupdate(void); 381 static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *, 382 ulong_t); 383 384 /* 385 * Initialize segvn data structures 386 */ 387 void 388 segvn_init(void) 389 { 390 uint_t maxszc; 391 uint_t szc; 392 size_t pgsz; 393 394 segvn_cache = kmem_cache_create("segvn_cache", 395 sizeof (struct segvn_data), 0, 396 segvn_cache_constructor, segvn_cache_destructor, NULL, 397 NULL, NULL, 0); 398 399 if (segvn_lpg_disable == 0) { 400 szc = maxszc = page_num_pagesizes() - 1; 401 if (szc == 0) { 402 segvn_lpg_disable = 1; 403 } 404 if (page_get_pagesize(0) != PAGESIZE) { 405 panic("segvn_init: bad szc 0"); 406 /*NOTREACHED*/ 407 } 408 while (szc != 0) { 409 pgsz = page_get_pagesize(szc); 410 if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) { 411 panic("segvn_init: bad szc %d", szc); 412 /*NOTREACHED*/ 413 } 414 szc--; 415 } 416 if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc) 417 segvn_maxpgszc = maxszc; 418 } 419 420 if (segvn_maxpgszc) { 421 segvn_szc_cache = (struct kmem_cache **)kmem_alloc( 422 (segvn_maxpgszc + 1) * sizeof (struct kmem_cache *), 423 KM_SLEEP); 424 } 425 426 for (szc = 1; szc <= segvn_maxpgszc; szc++) { 427 char str[32]; 428 429 (void) sprintf(str, "segvn_szc_cache%d", szc); 430 segvn_szc_cache[szc] = kmem_cache_create(str, 431 page_get_pagecnt(szc) * sizeof (page_t *), 0, 432 NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 433 } 434 435 436 if (segvn_use_regions && !hat_supported(HAT_SHARED_REGIONS, NULL)) 437 segvn_use_regions = 0; 438 439 /* 440 * For now shared regions and text replication segvn support 441 * are mutually exclusive. This is acceptable because 442 * currently significant benefit from text replication was 443 * only observed on AMD64 NUMA platforms (due to relatively 444 * small L2$ size) and currently we don't support shared 445 * regions on x86. 446 */ 447 if (segvn_use_regions && !segvn_disable_textrepl) { 448 segvn_disable_textrepl = 1; 449 } 450 451 #if defined(_LP64) 452 if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 && 453 !segvn_disable_textrepl) { 454 ulong_t i; 455 size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t); 456 457 svntr_cache = kmem_cache_create("svntr_cache", 458 sizeof (svntr_t), 0, svntr_cache_constructor, NULL, 459 NULL, NULL, NULL, 0); 460 svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP); 461 for (i = 0; i < svntr_hashtab_sz; i++) { 462 mutex_init(&svntr_hashtab[i].tr_lock, NULL, 463 MUTEX_DEFAULT, NULL); 464 } 465 segvn_textrepl_max_bytes = ptob(physmem) / 466 segvn_textrepl_max_bytes_factor; 467 segvn_textrepl_stats = kmem_zalloc(NCPU * 468 sizeof (svntr_stats_t), KM_SLEEP); 469 sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL); 470 (void) thread_create(NULL, 0, segvn_trasync_thread, 471 NULL, 0, &p0, TS_RUN, minclsyspri); 472 } 473 #endif 474 475 if (!ISP2(segvn_pglock_comb_balign) || 476 segvn_pglock_comb_balign < PAGESIZE) { 477 segvn_pglock_comb_balign = 1UL << 16; /* 64K */ 478 } 479 segvn_pglock_comb_bshift = highbit(segvn_pglock_comb_balign) - 1; 480 segvn_pglock_comb_palign = btop(segvn_pglock_comb_balign); 481 } 482 483 #define SEGVN_PAGEIO ((void *)0x1) 484 #define SEGVN_NOPAGEIO ((void *)0x2) 485 486 static void 487 segvn_setvnode_mpss(vnode_t *vp) 488 { 489 int err; 490 491 ASSERT(vp->v_mpssdata == NULL || 492 vp->v_mpssdata == SEGVN_PAGEIO || 493 vp->v_mpssdata == SEGVN_NOPAGEIO); 494 495 if (vp->v_mpssdata == NULL) { 496 if (vn_vmpss_usepageio(vp)) { 497 err = VOP_PAGEIO(vp, (page_t *)NULL, 498 (u_offset_t)0, 0, 0, CRED(), NULL); 499 } else { 500 err = ENOSYS; 501 } 502 /* 503 * set v_mpssdata just once per vnode life 504 * so that it never changes. 505 */ 506 mutex_enter(&vp->v_lock); 507 if (vp->v_mpssdata == NULL) { 508 if (err == EINVAL) { 509 vp->v_mpssdata = SEGVN_PAGEIO; 510 } else { 511 vp->v_mpssdata = SEGVN_NOPAGEIO; 512 } 513 } 514 mutex_exit(&vp->v_lock); 515 } 516 } 517 518 int 519 segvn_create(struct seg *seg, void *argsp) 520 { 521 struct segvn_crargs *a = (struct segvn_crargs *)argsp; 522 struct segvn_data *svd; 523 size_t swresv = 0; 524 struct cred *cred; 525 struct anon_map *amp; 526 int error = 0; 527 size_t pgsz; 528 lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT; 529 int use_rgn = 0; 530 int trok = 0; 531 532 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 533 534 if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) { 535 panic("segvn_create type"); 536 /*NOTREACHED*/ 537 } 538 539 /* 540 * Check arguments. If a shared anon structure is given then 541 * it is illegal to also specify a vp. 542 */ 543 if (a->amp != NULL && a->vp != NULL) { 544 panic("segvn_create anon_map"); 545 /*NOTREACHED*/ 546 } 547 548 if (a->type == MAP_PRIVATE && (a->flags & MAP_TEXT) && 549 a->vp != NULL && a->prot == (PROT_USER | PROT_READ | PROT_EXEC) && 550 segvn_use_regions) { 551 use_rgn = 1; 552 } 553 554 /* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */ 555 if (a->type == MAP_SHARED) 556 a->flags &= ~MAP_NORESERVE; 557 558 if (a->szc != 0) { 559 if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) || 560 (a->amp != NULL && a->type == MAP_PRIVATE) || 561 (a->flags & MAP_NORESERVE) || seg->s_as == &kas) { 562 a->szc = 0; 563 } else { 564 if (a->szc > segvn_maxpgszc) 565 a->szc = segvn_maxpgszc; 566 pgsz = page_get_pagesize(a->szc); 567 if (!IS_P2ALIGNED(seg->s_base, pgsz) || 568 !IS_P2ALIGNED(seg->s_size, pgsz)) { 569 a->szc = 0; 570 } else if (a->vp != NULL) { 571 extern struct vnode kvp; 572 if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) { 573 /* 574 * paranoid check. 575 * hat_page_demote() is not supported 576 * on swapfs pages. 577 */ 578 a->szc = 0; 579 } else if (map_addr_vacalign_check(seg->s_base, 580 a->offset & PAGEMASK)) { 581 a->szc = 0; 582 } 583 } else if (a->amp != NULL) { 584 pgcnt_t anum = btopr(a->offset); 585 pgcnt_t pgcnt = page_get_pagecnt(a->szc); 586 if (!IS_P2ALIGNED(anum, pgcnt)) { 587 a->szc = 0; 588 } 589 } 590 } 591 } 592 593 /* 594 * If segment may need private pages, reserve them now. 595 */ 596 if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) || 597 (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) { 598 if (anon_resv_zone(seg->s_size, 599 seg->s_as->a_proc->p_zone) == 0) 600 return (EAGAIN); 601 swresv = seg->s_size; 602 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 603 seg, swresv, 1); 604 } 605 606 /* 607 * Reserve any mapping structures that may be required. 608 * 609 * Don't do it for segments that may use regions. It's currently a 610 * noop in the hat implementations anyway. 611 */ 612 if (!use_rgn) { 613 hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP); 614 } 615 616 if (a->cred) { 617 cred = a->cred; 618 crhold(cred); 619 } else { 620 crhold(cred = CRED()); 621 } 622 623 /* Inform the vnode of the new mapping */ 624 if (a->vp != NULL) { 625 error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK, 626 seg->s_as, seg->s_base, seg->s_size, a->prot, 627 a->maxprot, a->type, cred, NULL); 628 if (error) { 629 if (swresv != 0) { 630 anon_unresv_zone(swresv, 631 seg->s_as->a_proc->p_zone); 632 TRACE_3(TR_FAC_VM, TR_ANON_PROC, 633 "anon proc:%p %lu %u", seg, swresv, 0); 634 } 635 crfree(cred); 636 if (!use_rgn) { 637 hat_unload(seg->s_as->a_hat, seg->s_base, 638 seg->s_size, HAT_UNLOAD_UNMAP); 639 } 640 return (error); 641 } 642 /* 643 * svntr_hashtab will be NULL if we support shared regions. 644 */ 645 trok = ((a->flags & MAP_TEXT) && 646 (seg->s_size > textrepl_size_thresh || 647 (a->flags & _MAP_TEXTREPL)) && 648 lgrp_optimizations() && svntr_hashtab != NULL && 649 a->type == MAP_PRIVATE && swresv == 0 && 650 !(a->flags & MAP_NORESERVE) && 651 seg->s_as != &kas && a->vp->v_type == VREG); 652 653 ASSERT(!trok || !use_rgn); 654 } 655 656 /* 657 * If more than one segment in the address space, and they're adjacent 658 * virtually, try to concatenate them. Don't concatenate if an 659 * explicit anon_map structure was supplied (e.g., SystemV shared 660 * memory) or if we'll use text replication for this segment. 661 */ 662 if (a->amp == NULL && !use_rgn && !trok) { 663 struct seg *pseg, *nseg; 664 struct segvn_data *psvd, *nsvd; 665 lgrp_mem_policy_t ppolicy, npolicy; 666 uint_t lgrp_mem_policy_flags = 0; 667 extern lgrp_mem_policy_t lgrp_mem_default_policy; 668 669 /* 670 * Memory policy flags (lgrp_mem_policy_flags) is valid when 671 * extending stack/heap segments. 672 */ 673 if ((a->vp == NULL) && (a->type == MAP_PRIVATE) && 674 !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) { 675 lgrp_mem_policy_flags = a->lgrp_mem_policy_flags; 676 } else { 677 /* 678 * Get policy when not extending it from another segment 679 */ 680 mpolicy = lgrp_mem_policy_default(seg->s_size, a->type); 681 } 682 683 /* 684 * First, try to concatenate the previous and new segments 685 */ 686 pseg = AS_SEGPREV(seg->s_as, seg); 687 if (pseg != NULL && 688 pseg->s_base + pseg->s_size == seg->s_base && 689 pseg->s_ops == &segvn_ops) { 690 /* 691 * Get memory allocation policy from previous segment. 692 * When extension is specified (e.g. for heap) apply 693 * this policy to the new segment regardless of the 694 * outcome of segment concatenation. Extension occurs 695 * for non-default policy otherwise default policy is 696 * used and is based on extended segment size. 697 */ 698 psvd = (struct segvn_data *)pseg->s_data; 699 ppolicy = psvd->policy_info.mem_policy; 700 if (lgrp_mem_policy_flags == 701 LGRP_MP_FLAG_EXTEND_UP) { 702 if (ppolicy != lgrp_mem_default_policy) { 703 mpolicy = ppolicy; 704 } else { 705 mpolicy = lgrp_mem_policy_default( 706 pseg->s_size + seg->s_size, 707 a->type); 708 } 709 } 710 711 if (mpolicy == ppolicy && 712 (pseg->s_size + seg->s_size <= 713 segvn_comb_thrshld || psvd->amp == NULL) && 714 segvn_extend_prev(pseg, seg, a, swresv) == 0) { 715 /* 716 * success! now try to concatenate 717 * with following seg 718 */ 719 crfree(cred); 720 nseg = AS_SEGNEXT(pseg->s_as, pseg); 721 if (nseg != NULL && 722 nseg != pseg && 723 nseg->s_ops == &segvn_ops && 724 pseg->s_base + pseg->s_size == 725 nseg->s_base) 726 (void) segvn_concat(pseg, nseg, 0); 727 ASSERT(pseg->s_szc == 0 || 728 (a->szc == pseg->s_szc && 729 IS_P2ALIGNED(pseg->s_base, pgsz) && 730 IS_P2ALIGNED(pseg->s_size, pgsz))); 731 return (0); 732 } 733 } 734 735 /* 736 * Failed, so try to concatenate with following seg 737 */ 738 nseg = AS_SEGNEXT(seg->s_as, seg); 739 if (nseg != NULL && 740 seg->s_base + seg->s_size == nseg->s_base && 741 nseg->s_ops == &segvn_ops) { 742 /* 743 * Get memory allocation policy from next segment. 744 * When extension is specified (e.g. for stack) apply 745 * this policy to the new segment regardless of the 746 * outcome of segment concatenation. Extension occurs 747 * for non-default policy otherwise default policy is 748 * used and is based on extended segment size. 749 */ 750 nsvd = (struct segvn_data *)nseg->s_data; 751 npolicy = nsvd->policy_info.mem_policy; 752 if (lgrp_mem_policy_flags == 753 LGRP_MP_FLAG_EXTEND_DOWN) { 754 if (npolicy != lgrp_mem_default_policy) { 755 mpolicy = npolicy; 756 } else { 757 mpolicy = lgrp_mem_policy_default( 758 nseg->s_size + seg->s_size, 759 a->type); 760 } 761 } 762 763 if (mpolicy == npolicy && 764 segvn_extend_next(seg, nseg, a, swresv) == 0) { 765 crfree(cred); 766 ASSERT(nseg->s_szc == 0 || 767 (a->szc == nseg->s_szc && 768 IS_P2ALIGNED(nseg->s_base, pgsz) && 769 IS_P2ALIGNED(nseg->s_size, pgsz))); 770 return (0); 771 } 772 } 773 } 774 775 if (a->vp != NULL) { 776 VN_HOLD(a->vp); 777 if (a->type == MAP_SHARED) 778 lgrp_shm_policy_init(NULL, a->vp); 779 } 780 svd = kmem_cache_alloc(segvn_cache, KM_SLEEP); 781 782 seg->s_ops = &segvn_ops; 783 seg->s_data = (void *)svd; 784 seg->s_szc = a->szc; 785 786 svd->seg = seg; 787 svd->vp = a->vp; 788 /* 789 * Anonymous mappings have no backing file so the offset is meaningless. 790 */ 791 svd->offset = a->vp ? (a->offset & PAGEMASK) : 0; 792 svd->prot = a->prot; 793 svd->maxprot = a->maxprot; 794 svd->pageprot = 0; 795 svd->type = a->type; 796 svd->vpage = NULL; 797 svd->cred = cred; 798 svd->advice = MADV_NORMAL; 799 svd->pageadvice = 0; 800 svd->flags = (ushort_t)a->flags; 801 svd->softlockcnt = 0; 802 svd->softlockcnt_sbase = 0; 803 svd->softlockcnt_send = 0; 804 svd->rcookie = HAT_INVALID_REGION_COOKIE; 805 svd->pageswap = 0; 806 807 if (a->szc != 0 && a->vp != NULL) { 808 segvn_setvnode_mpss(a->vp); 809 } 810 if (svd->type == MAP_SHARED && svd->vp != NULL && 811 (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) { 812 ASSERT(vn_is_mapped(svd->vp, V_WRITE)); 813 segvn_inval_trcache(svd->vp); 814 } 815 816 amp = a->amp; 817 if ((svd->amp = amp) == NULL) { 818 svd->anon_index = 0; 819 if (svd->type == MAP_SHARED) { 820 svd->swresv = 0; 821 /* 822 * Shared mappings to a vp need no other setup. 823 * If we have a shared mapping to an anon_map object 824 * which hasn't been allocated yet, allocate the 825 * struct now so that it will be properly shared 826 * by remembering the swap reservation there. 827 */ 828 if (a->vp == NULL) { 829 svd->amp = anonmap_alloc(seg->s_size, swresv, 830 ANON_SLEEP); 831 svd->amp->a_szc = seg->s_szc; 832 } 833 } else { 834 /* 835 * Private mapping (with or without a vp). 836 * Allocate anon_map when needed. 837 */ 838 svd->swresv = swresv; 839 } 840 } else { 841 pgcnt_t anon_num; 842 843 /* 844 * Mapping to an existing anon_map structure without a vp. 845 * For now we will insure that the segment size isn't larger 846 * than the size - offset gives us. Later on we may wish to 847 * have the anon array dynamically allocated itself so that 848 * we don't always have to allocate all the anon pointer slots. 849 * This of course involves adding extra code to check that we 850 * aren't trying to use an anon pointer slot beyond the end 851 * of the currently allocated anon array. 852 */ 853 if ((amp->size - a->offset) < seg->s_size) { 854 panic("segvn_create anon_map size"); 855 /*NOTREACHED*/ 856 } 857 858 anon_num = btopr(a->offset); 859 860 if (a->type == MAP_SHARED) { 861 /* 862 * SHARED mapping to a given anon_map. 863 */ 864 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 865 amp->refcnt++; 866 if (a->szc > amp->a_szc) { 867 amp->a_szc = a->szc; 868 } 869 ANON_LOCK_EXIT(&->a_rwlock); 870 svd->anon_index = anon_num; 871 svd->swresv = 0; 872 } else { 873 /* 874 * PRIVATE mapping to a given anon_map. 875 * Make sure that all the needed anon 876 * structures are created (so that we will 877 * share the underlying pages if nothing 878 * is written by this mapping) and then 879 * duplicate the anon array as is done 880 * when a privately mapped segment is dup'ed. 881 */ 882 struct anon *ap; 883 caddr_t addr; 884 caddr_t eaddr; 885 ulong_t anon_idx; 886 int hat_flag = HAT_LOAD; 887 888 if (svd->flags & MAP_TEXT) { 889 hat_flag |= HAT_LOAD_TEXT; 890 } 891 892 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP); 893 svd->amp->a_szc = seg->s_szc; 894 svd->anon_index = 0; 895 svd->swresv = swresv; 896 897 /* 898 * Prevent 2 threads from allocating anon 899 * slots simultaneously. 900 */ 901 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 902 eaddr = seg->s_base + seg->s_size; 903 904 for (anon_idx = anon_num, addr = seg->s_base; 905 addr < eaddr; addr += PAGESIZE, anon_idx++) { 906 page_t *pp; 907 908 if ((ap = anon_get_ptr(amp->ahp, 909 anon_idx)) != NULL) 910 continue; 911 912 /* 913 * Allocate the anon struct now. 914 * Might as well load up translation 915 * to the page while we're at it... 916 */ 917 pp = anon_zero(seg, addr, &ap, cred); 918 if (ap == NULL || pp == NULL) { 919 panic("segvn_create anon_zero"); 920 /*NOTREACHED*/ 921 } 922 923 /* 924 * Re-acquire the anon_map lock and 925 * initialize the anon array entry. 926 */ 927 ASSERT(anon_get_ptr(amp->ahp, 928 anon_idx) == NULL); 929 (void) anon_set_ptr(amp->ahp, anon_idx, ap, 930 ANON_SLEEP); 931 932 ASSERT(seg->s_szc == 0); 933 ASSERT(!IS_VMODSORT(pp->p_vnode)); 934 935 ASSERT(use_rgn == 0); 936 hat_memload(seg->s_as->a_hat, addr, pp, 937 svd->prot & ~PROT_WRITE, hat_flag); 938 939 page_unlock(pp); 940 } 941 ASSERT(seg->s_szc == 0); 942 anon_dup(amp->ahp, anon_num, svd->amp->ahp, 943 0, seg->s_size); 944 ANON_LOCK_EXIT(&->a_rwlock); 945 } 946 } 947 948 /* 949 * Set default memory allocation policy for segment 950 * 951 * Always set policy for private memory at least for initialization 952 * even if this is a shared memory segment 953 */ 954 (void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size); 955 956 if (svd->type == MAP_SHARED) 957 (void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index, 958 svd->vp, svd->offset, seg->s_size); 959 960 if (use_rgn) { 961 ASSERT(!trok); 962 ASSERT(svd->amp == NULL); 963 svd->rcookie = hat_join_region(seg->s_as->a_hat, seg->s_base, 964 seg->s_size, (void *)svd->vp, svd->offset, svd->prot, 965 (uchar_t)seg->s_szc, segvn_hat_rgn_unload_callback, 966 HAT_REGION_TEXT); 967 } 968 969 ASSERT(!trok || !(svd->prot & PROT_WRITE)); 970 svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF; 971 972 return (0); 973 } 974 975 /* 976 * Concatenate two existing segments, if possible. 977 * Return 0 on success, -1 if two segments are not compatible 978 * or -2 on memory allocation failure. 979 * If amp_cat == 1 then try and concat segments with anon maps 980 */ 981 static int 982 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat) 983 { 984 struct segvn_data *svd1 = seg1->s_data; 985 struct segvn_data *svd2 = seg2->s_data; 986 struct anon_map *amp1 = svd1->amp; 987 struct anon_map *amp2 = svd2->amp; 988 struct vpage *vpage1 = svd1->vpage; 989 struct vpage *vpage2 = svd2->vpage, *nvpage = NULL; 990 size_t size, nvpsize; 991 pgcnt_t npages1, npages2; 992 993 ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as); 994 ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock)); 995 ASSERT(seg1->s_ops == seg2->s_ops); 996 997 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie) || 998 HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) { 999 return (-1); 1000 } 1001 1002 /* both segments exist, try to merge them */ 1003 #define incompat(x) (svd1->x != svd2->x) 1004 if (incompat(vp) || incompat(maxprot) || 1005 (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) || 1006 (!svd1->pageprot && !svd2->pageprot && incompat(prot)) || 1007 incompat(type) || incompat(cred) || incompat(flags) || 1008 seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) || 1009 (svd2->softlockcnt > 0) || svd1->softlockcnt_send > 0) 1010 return (-1); 1011 #undef incompat 1012 1013 /* 1014 * vp == NULL implies zfod, offset doesn't matter 1015 */ 1016 if (svd1->vp != NULL && 1017 svd1->offset + seg1->s_size != svd2->offset) { 1018 return (-1); 1019 } 1020 1021 /* 1022 * Don't concatenate if either segment uses text replication. 1023 */ 1024 if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) { 1025 return (-1); 1026 } 1027 1028 /* 1029 * Fail early if we're not supposed to concatenate 1030 * segments with non NULL amp. 1031 */ 1032 if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) { 1033 return (-1); 1034 } 1035 1036 if (svd1->vp == NULL && svd1->type == MAP_SHARED) { 1037 if (amp1 != amp2) { 1038 return (-1); 1039 } 1040 if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) != 1041 svd2->anon_index) { 1042 return (-1); 1043 } 1044 ASSERT(amp1 == NULL || amp1->refcnt >= 2); 1045 } 1046 1047 /* 1048 * If either seg has vpages, create a new merged vpage array. 1049 */ 1050 if (vpage1 != NULL || vpage2 != NULL) { 1051 struct vpage *vp, *evp; 1052 1053 npages1 = seg_pages(seg1); 1054 npages2 = seg_pages(seg2); 1055 nvpsize = vpgtob(npages1 + npages2); 1056 1057 if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) { 1058 return (-2); 1059 } 1060 1061 if (vpage1 != NULL) { 1062 bcopy(vpage1, nvpage, vpgtob(npages1)); 1063 } else { 1064 evp = nvpage + npages1; 1065 for (vp = nvpage; vp < evp; vp++) { 1066 VPP_SETPROT(vp, svd1->prot); 1067 VPP_SETADVICE(vp, svd1->advice); 1068 } 1069 } 1070 1071 if (vpage2 != NULL) { 1072 bcopy(vpage2, nvpage + npages1, vpgtob(npages2)); 1073 } else { 1074 evp = nvpage + npages1 + npages2; 1075 for (vp = nvpage + npages1; vp < evp; vp++) { 1076 VPP_SETPROT(vp, svd2->prot); 1077 VPP_SETADVICE(vp, svd2->advice); 1078 } 1079 } 1080 1081 if (svd2->pageswap && (!svd1->pageswap && svd1->swresv)) { 1082 ASSERT(svd1->swresv == seg1->s_size); 1083 ASSERT(!(svd1->flags & MAP_NORESERVE)); 1084 ASSERT(!(svd2->flags & MAP_NORESERVE)); 1085 evp = nvpage + npages1; 1086 for (vp = nvpage; vp < evp; vp++) { 1087 VPP_SETSWAPRES(vp); 1088 } 1089 } 1090 1091 if (svd1->pageswap && (!svd2->pageswap && svd2->swresv)) { 1092 ASSERT(svd2->swresv == seg2->s_size); 1093 ASSERT(!(svd1->flags & MAP_NORESERVE)); 1094 ASSERT(!(svd2->flags & MAP_NORESERVE)); 1095 vp = nvpage + npages1; 1096 evp = vp + npages2; 1097 for (; vp < evp; vp++) { 1098 VPP_SETSWAPRES(vp); 1099 } 1100 } 1101 } 1102 ASSERT((vpage1 != NULL || vpage2 != NULL) || 1103 (svd1->pageswap == 0 && svd2->pageswap == 0)); 1104 1105 /* 1106 * If either segment has private pages, create a new merged anon 1107 * array. If mergeing shared anon segments just decrement anon map's 1108 * refcnt. 1109 */ 1110 if (amp1 != NULL && svd1->type == MAP_SHARED) { 1111 ASSERT(amp1 == amp2 && svd1->vp == NULL); 1112 ANON_LOCK_ENTER(&1->a_rwlock, RW_WRITER); 1113 ASSERT(amp1->refcnt >= 2); 1114 amp1->refcnt--; 1115 ANON_LOCK_EXIT(&1->a_rwlock); 1116 svd2->amp = NULL; 1117 } else if (amp1 != NULL || amp2 != NULL) { 1118 struct anon_hdr *nahp; 1119 struct anon_map *namp = NULL; 1120 size_t asize; 1121 1122 ASSERT(svd1->type == MAP_PRIVATE); 1123 1124 asize = seg1->s_size + seg2->s_size; 1125 if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) { 1126 if (nvpage != NULL) { 1127 kmem_free(nvpage, nvpsize); 1128 } 1129 return (-2); 1130 } 1131 if (amp1 != NULL) { 1132 /* 1133 * XXX anon rwlock is not really needed because 1134 * this is a private segment and we are writers. 1135 */ 1136 ANON_LOCK_ENTER(&1->a_rwlock, RW_WRITER); 1137 ASSERT(amp1->refcnt == 1); 1138 if (anon_copy_ptr(amp1->ahp, svd1->anon_index, 1139 nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) { 1140 anon_release(nahp, btop(asize)); 1141 ANON_LOCK_EXIT(&1->a_rwlock); 1142 if (nvpage != NULL) { 1143 kmem_free(nvpage, nvpsize); 1144 } 1145 return (-2); 1146 } 1147 } 1148 if (amp2 != NULL) { 1149 ANON_LOCK_ENTER(&2->a_rwlock, RW_WRITER); 1150 ASSERT(amp2->refcnt == 1); 1151 if (anon_copy_ptr(amp2->ahp, svd2->anon_index, 1152 nahp, btop(seg1->s_size), btop(seg2->s_size), 1153 ANON_NOSLEEP)) { 1154 anon_release(nahp, btop(asize)); 1155 ANON_LOCK_EXIT(&2->a_rwlock); 1156 if (amp1 != NULL) { 1157 ANON_LOCK_EXIT(&1->a_rwlock); 1158 } 1159 if (nvpage != NULL) { 1160 kmem_free(nvpage, nvpsize); 1161 } 1162 return (-2); 1163 } 1164 } 1165 if (amp1 != NULL) { 1166 namp = amp1; 1167 anon_release(amp1->ahp, btop(amp1->size)); 1168 } 1169 if (amp2 != NULL) { 1170 if (namp == NULL) { 1171 ASSERT(amp1 == NULL); 1172 namp = amp2; 1173 anon_release(amp2->ahp, btop(amp2->size)); 1174 } else { 1175 amp2->refcnt--; 1176 ANON_LOCK_EXIT(&2->a_rwlock); 1177 anonmap_free(amp2); 1178 } 1179 svd2->amp = NULL; /* needed for seg_free */ 1180 } 1181 namp->ahp = nahp; 1182 namp->size = asize; 1183 svd1->amp = namp; 1184 svd1->anon_index = 0; 1185 ANON_LOCK_EXIT(&namp->a_rwlock); 1186 } 1187 /* 1188 * Now free the old vpage structures. 1189 */ 1190 if (nvpage != NULL) { 1191 if (vpage1 != NULL) { 1192 kmem_free(vpage1, vpgtob(npages1)); 1193 } 1194 if (vpage2 != NULL) { 1195 svd2->vpage = NULL; 1196 kmem_free(vpage2, vpgtob(npages2)); 1197 } 1198 if (svd2->pageprot) { 1199 svd1->pageprot = 1; 1200 } 1201 if (svd2->pageadvice) { 1202 svd1->pageadvice = 1; 1203 } 1204 if (svd2->pageswap) { 1205 svd1->pageswap = 1; 1206 } 1207 svd1->vpage = nvpage; 1208 } 1209 1210 /* all looks ok, merge segments */ 1211 svd1->swresv += svd2->swresv; 1212 svd2->swresv = 0; /* so seg_free doesn't release swap space */ 1213 size = seg2->s_size; 1214 seg_free(seg2); 1215 seg1->s_size += size; 1216 return (0); 1217 } 1218 1219 /* 1220 * Extend the previous segment (seg1) to include the 1221 * new segment (seg2 + a), if possible. 1222 * Return 0 on success. 1223 */ 1224 static int 1225 segvn_extend_prev(seg1, seg2, a, swresv) 1226 struct seg *seg1, *seg2; 1227 struct segvn_crargs *a; 1228 size_t swresv; 1229 { 1230 struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data; 1231 size_t size; 1232 struct anon_map *amp1; 1233 struct vpage *new_vpage; 1234 1235 /* 1236 * We don't need any segment level locks for "segvn" data 1237 * since the address space is "write" locked. 1238 */ 1239 ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock)); 1240 1241 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie)) { 1242 return (-1); 1243 } 1244 1245 /* second segment is new, try to extend first */ 1246 /* XXX - should also check cred */ 1247 if (svd1->vp != a->vp || svd1->maxprot != a->maxprot || 1248 (!svd1->pageprot && (svd1->prot != a->prot)) || 1249 svd1->type != a->type || svd1->flags != a->flags || 1250 seg1->s_szc != a->szc || svd1->softlockcnt_send > 0) 1251 return (-1); 1252 1253 /* vp == NULL implies zfod, offset doesn't matter */ 1254 if (svd1->vp != NULL && 1255 svd1->offset + seg1->s_size != (a->offset & PAGEMASK)) 1256 return (-1); 1257 1258 if (svd1->tr_state != SEGVN_TR_OFF) { 1259 return (-1); 1260 } 1261 1262 amp1 = svd1->amp; 1263 if (amp1) { 1264 pgcnt_t newpgs; 1265 1266 /* 1267 * Segment has private pages, can data structures 1268 * be expanded? 1269 * 1270 * Acquire the anon_map lock to prevent it from changing, 1271 * if it is shared. This ensures that the anon_map 1272 * will not change while a thread which has a read/write 1273 * lock on an address space references it. 1274 * XXX - Don't need the anon_map lock at all if "refcnt" 1275 * is 1. 1276 * 1277 * Can't grow a MAP_SHARED segment with an anonmap because 1278 * there may be existing anon slots where we want to extend 1279 * the segment and we wouldn't know what to do with them 1280 * (e.g., for tmpfs right thing is to just leave them there, 1281 * for /dev/zero they should be cleared out). 1282 */ 1283 if (svd1->type == MAP_SHARED) 1284 return (-1); 1285 1286 ANON_LOCK_ENTER(&1->a_rwlock, RW_WRITER); 1287 if (amp1->refcnt > 1) { 1288 ANON_LOCK_EXIT(&1->a_rwlock); 1289 return (-1); 1290 } 1291 newpgs = anon_grow(amp1->ahp, &svd1->anon_index, 1292 btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP); 1293 1294 if (newpgs == 0) { 1295 ANON_LOCK_EXIT(&1->a_rwlock); 1296 return (-1); 1297 } 1298 amp1->size = ptob(newpgs); 1299 ANON_LOCK_EXIT(&1->a_rwlock); 1300 } 1301 if (svd1->vpage != NULL) { 1302 struct vpage *vp, *evp; 1303 new_vpage = 1304 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)), 1305 KM_NOSLEEP); 1306 if (new_vpage == NULL) 1307 return (-1); 1308 bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1))); 1309 kmem_free(svd1->vpage, vpgtob(seg_pages(seg1))); 1310 svd1->vpage = new_vpage; 1311 1312 vp = new_vpage + seg_pages(seg1); 1313 evp = vp + seg_pages(seg2); 1314 for (; vp < evp; vp++) 1315 VPP_SETPROT(vp, a->prot); 1316 if (svd1->pageswap && swresv) { 1317 ASSERT(!(svd1->flags & MAP_NORESERVE)); 1318 ASSERT(swresv == seg2->s_size); 1319 vp = new_vpage + seg_pages(seg1); 1320 for (; vp < evp; vp++) { 1321 VPP_SETSWAPRES(vp); 1322 } 1323 } 1324 } 1325 ASSERT(svd1->vpage != NULL || svd1->pageswap == 0); 1326 size = seg2->s_size; 1327 seg_free(seg2); 1328 seg1->s_size += size; 1329 svd1->swresv += swresv; 1330 if (svd1->pageprot && (a->prot & PROT_WRITE) && 1331 svd1->type == MAP_SHARED && svd1->vp != NULL && 1332 (svd1->vp->v_flag & VVMEXEC)) { 1333 ASSERT(vn_is_mapped(svd1->vp, V_WRITE)); 1334 segvn_inval_trcache(svd1->vp); 1335 } 1336 return (0); 1337 } 1338 1339 /* 1340 * Extend the next segment (seg2) to include the 1341 * new segment (seg1 + a), if possible. 1342 * Return 0 on success. 1343 */ 1344 static int 1345 segvn_extend_next( 1346 struct seg *seg1, 1347 struct seg *seg2, 1348 struct segvn_crargs *a, 1349 size_t swresv) 1350 { 1351 struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data; 1352 size_t size; 1353 struct anon_map *amp2; 1354 struct vpage *new_vpage; 1355 1356 /* 1357 * We don't need any segment level locks for "segvn" data 1358 * since the address space is "write" locked. 1359 */ 1360 ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock)); 1361 1362 if (HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) { 1363 return (-1); 1364 } 1365 1366 /* first segment is new, try to extend second */ 1367 /* XXX - should also check cred */ 1368 if (svd2->vp != a->vp || svd2->maxprot != a->maxprot || 1369 (!svd2->pageprot && (svd2->prot != a->prot)) || 1370 svd2->type != a->type || svd2->flags != a->flags || 1371 seg2->s_szc != a->szc || svd2->softlockcnt_sbase > 0) 1372 return (-1); 1373 /* vp == NULL implies zfod, offset doesn't matter */ 1374 if (svd2->vp != NULL && 1375 (a->offset & PAGEMASK) + seg1->s_size != svd2->offset) 1376 return (-1); 1377 1378 if (svd2->tr_state != SEGVN_TR_OFF) { 1379 return (-1); 1380 } 1381 1382 amp2 = svd2->amp; 1383 if (amp2) { 1384 pgcnt_t newpgs; 1385 1386 /* 1387 * Segment has private pages, can data structures 1388 * be expanded? 1389 * 1390 * Acquire the anon_map lock to prevent it from changing, 1391 * if it is shared. This ensures that the anon_map 1392 * will not change while a thread which has a read/write 1393 * lock on an address space references it. 1394 * 1395 * XXX - Don't need the anon_map lock at all if "refcnt" 1396 * is 1. 1397 */ 1398 if (svd2->type == MAP_SHARED) 1399 return (-1); 1400 1401 ANON_LOCK_ENTER(&2->a_rwlock, RW_WRITER); 1402 if (amp2->refcnt > 1) { 1403 ANON_LOCK_EXIT(&2->a_rwlock); 1404 return (-1); 1405 } 1406 newpgs = anon_grow(amp2->ahp, &svd2->anon_index, 1407 btop(seg2->s_size), btop(seg1->s_size), 1408 ANON_NOSLEEP | ANON_GROWDOWN); 1409 1410 if (newpgs == 0) { 1411 ANON_LOCK_EXIT(&2->a_rwlock); 1412 return (-1); 1413 } 1414 amp2->size = ptob(newpgs); 1415 ANON_LOCK_EXIT(&2->a_rwlock); 1416 } 1417 if (svd2->vpage != NULL) { 1418 struct vpage *vp, *evp; 1419 new_vpage = 1420 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)), 1421 KM_NOSLEEP); 1422 if (new_vpage == NULL) { 1423 /* Not merging segments so adjust anon_index back */ 1424 if (amp2) 1425 svd2->anon_index += seg_pages(seg1); 1426 return (-1); 1427 } 1428 bcopy(svd2->vpage, new_vpage + seg_pages(seg1), 1429 vpgtob(seg_pages(seg2))); 1430 kmem_free(svd2->vpage, vpgtob(seg_pages(seg2))); 1431 svd2->vpage = new_vpage; 1432 1433 vp = new_vpage; 1434 evp = vp + seg_pages(seg1); 1435 for (; vp < evp; vp++) 1436 VPP_SETPROT(vp, a->prot); 1437 if (svd2->pageswap && swresv) { 1438 ASSERT(!(svd2->flags & MAP_NORESERVE)); 1439 ASSERT(swresv == seg1->s_size); 1440 vp = new_vpage; 1441 for (; vp < evp; vp++) { 1442 VPP_SETSWAPRES(vp); 1443 } 1444 } 1445 } 1446 ASSERT(svd2->vpage != NULL || svd2->pageswap == 0); 1447 size = seg1->s_size; 1448 seg_free(seg1); 1449 seg2->s_size += size; 1450 seg2->s_base -= size; 1451 svd2->offset -= size; 1452 svd2->swresv += swresv; 1453 if (svd2->pageprot && (a->prot & PROT_WRITE) && 1454 svd2->type == MAP_SHARED && svd2->vp != NULL && 1455 (svd2->vp->v_flag & VVMEXEC)) { 1456 ASSERT(vn_is_mapped(svd2->vp, V_WRITE)); 1457 segvn_inval_trcache(svd2->vp); 1458 } 1459 return (0); 1460 } 1461 1462 static int 1463 segvn_dup(struct seg *seg, struct seg *newseg) 1464 { 1465 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 1466 struct segvn_data *newsvd; 1467 pgcnt_t npages = seg_pages(seg); 1468 int error = 0; 1469 uint_t prot; 1470 size_t len; 1471 struct anon_map *amp; 1472 1473 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 1474 ASSERT(newseg->s_as->a_proc->p_parent == curproc); 1475 1476 /* 1477 * If segment has anon reserved, reserve more for the new seg. 1478 * For a MAP_NORESERVE segment swresv will be a count of all the 1479 * allocated anon slots; thus we reserve for the child as many slots 1480 * as the parent has allocated. This semantic prevents the child or 1481 * parent from dieing during a copy-on-write fault caused by trying 1482 * to write a shared pre-existing anon page. 1483 */ 1484 if ((len = svd->swresv) != 0) { 1485 if (anon_resv(svd->swresv) == 0) 1486 return (ENOMEM); 1487 1488 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 1489 seg, len, 0); 1490 } 1491 1492 newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP); 1493 1494 newseg->s_ops = &segvn_ops; 1495 newseg->s_data = (void *)newsvd; 1496 newseg->s_szc = seg->s_szc; 1497 1498 newsvd->seg = newseg; 1499 if ((newsvd->vp = svd->vp) != NULL) { 1500 VN_HOLD(svd->vp); 1501 if (svd->type == MAP_SHARED) 1502 lgrp_shm_policy_init(NULL, svd->vp); 1503 } 1504 newsvd->offset = svd->offset; 1505 newsvd->prot = svd->prot; 1506 newsvd->maxprot = svd->maxprot; 1507 newsvd->pageprot = svd->pageprot; 1508 newsvd->type = svd->type; 1509 newsvd->cred = svd->cred; 1510 crhold(newsvd->cred); 1511 newsvd->advice = svd->advice; 1512 newsvd->pageadvice = svd->pageadvice; 1513 newsvd->swresv = svd->swresv; 1514 newsvd->pageswap = svd->pageswap; 1515 newsvd->flags = svd->flags; 1516 newsvd->softlockcnt = 0; 1517 newsvd->softlockcnt_sbase = 0; 1518 newsvd->softlockcnt_send = 0; 1519 newsvd->policy_info = svd->policy_info; 1520 newsvd->rcookie = HAT_INVALID_REGION_COOKIE; 1521 1522 if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) { 1523 /* 1524 * Not attaching to a shared anon object. 1525 */ 1526 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie) || 1527 svd->tr_state == SEGVN_TR_OFF); 1528 if (svd->tr_state == SEGVN_TR_ON) { 1529 ASSERT(newsvd->vp != NULL && amp != NULL); 1530 newsvd->tr_state = SEGVN_TR_INIT; 1531 } else { 1532 newsvd->tr_state = svd->tr_state; 1533 } 1534 newsvd->amp = NULL; 1535 newsvd->anon_index = 0; 1536 } else { 1537 /* regions for now are only used on pure vnode segments */ 1538 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 1539 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1540 newsvd->tr_state = SEGVN_TR_OFF; 1541 if (svd->type == MAP_SHARED) { 1542 newsvd->amp = amp; 1543 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 1544 amp->refcnt++; 1545 ANON_LOCK_EXIT(&->a_rwlock); 1546 newsvd->anon_index = svd->anon_index; 1547 } else { 1548 int reclaim = 1; 1549 1550 /* 1551 * Allocate and initialize new anon_map structure. 1552 */ 1553 newsvd->amp = anonmap_alloc(newseg->s_size, 0, 1554 ANON_SLEEP); 1555 newsvd->amp->a_szc = newseg->s_szc; 1556 newsvd->anon_index = 0; 1557 1558 /* 1559 * We don't have to acquire the anon_map lock 1560 * for the new segment (since it belongs to an 1561 * address space that is still not associated 1562 * with any process), or the segment in the old 1563 * address space (since all threads in it 1564 * are stopped while duplicating the address space). 1565 */ 1566 1567 /* 1568 * The goal of the following code is to make sure that 1569 * softlocked pages do not end up as copy on write 1570 * pages. This would cause problems where one 1571 * thread writes to a page that is COW and a different 1572 * thread in the same process has softlocked it. The 1573 * softlock lock would move away from this process 1574 * because the write would cause this process to get 1575 * a copy (without the softlock). 1576 * 1577 * The strategy here is to just break the 1578 * sharing on pages that could possibly be 1579 * softlocked. 1580 */ 1581 retry: 1582 if (svd->softlockcnt) { 1583 struct anon *ap, *newap; 1584 size_t i; 1585 uint_t vpprot; 1586 page_t *anon_pl[1+1], *pp; 1587 caddr_t addr; 1588 ulong_t old_idx = svd->anon_index; 1589 ulong_t new_idx = 0; 1590 1591 /* 1592 * The softlock count might be non zero 1593 * because some pages are still stuck in the 1594 * cache for lazy reclaim. Flush the cache 1595 * now. This should drop the count to zero. 1596 * [or there is really I/O going on to these 1597 * pages]. Note, we have the writers lock so 1598 * nothing gets inserted during the flush. 1599 */ 1600 if (reclaim == 1) { 1601 segvn_purge(seg); 1602 reclaim = 0; 1603 goto retry; 1604 } 1605 i = btopr(seg->s_size); 1606 addr = seg->s_base; 1607 /* 1608 * XXX break cow sharing using PAGESIZE 1609 * pages. They will be relocated into larger 1610 * pages at fault time. 1611 */ 1612 while (i-- > 0) { 1613 if (ap = anon_get_ptr(amp->ahp, 1614 old_idx)) { 1615 error = anon_getpage(&ap, 1616 &vpprot, anon_pl, PAGESIZE, 1617 seg, addr, S_READ, 1618 svd->cred); 1619 if (error) { 1620 newsvd->vpage = NULL; 1621 goto out; 1622 } 1623 /* 1624 * prot need not be computed 1625 * below 'cause anon_private is 1626 * going to ignore it anyway 1627 * as child doesn't inherit 1628 * pagelock from parent. 1629 */ 1630 prot = svd->pageprot ? 1631 VPP_PROT( 1632 &svd->vpage[ 1633 seg_page(seg, addr)]) 1634 : svd->prot; 1635 pp = anon_private(&newap, 1636 newseg, addr, prot, 1637 anon_pl[0], 0, 1638 newsvd->cred); 1639 if (pp == NULL) { 1640 /* no mem abort */ 1641 newsvd->vpage = NULL; 1642 error = ENOMEM; 1643 goto out; 1644 } 1645 (void) anon_set_ptr( 1646 newsvd->amp->ahp, new_idx, 1647 newap, ANON_SLEEP); 1648 page_unlock(pp); 1649 } 1650 addr += PAGESIZE; 1651 old_idx++; 1652 new_idx++; 1653 } 1654 } else { /* common case */ 1655 if (seg->s_szc != 0) { 1656 /* 1657 * If at least one of anon slots of a 1658 * large page exists then make sure 1659 * all anon slots of a large page 1660 * exist to avoid partial cow sharing 1661 * of a large page in the future. 1662 */ 1663 anon_dup_fill_holes(amp->ahp, 1664 svd->anon_index, newsvd->amp->ahp, 1665 0, seg->s_size, seg->s_szc, 1666 svd->vp != NULL); 1667 } else { 1668 anon_dup(amp->ahp, svd->anon_index, 1669 newsvd->amp->ahp, 0, seg->s_size); 1670 } 1671 1672 hat_clrattr(seg->s_as->a_hat, seg->s_base, 1673 seg->s_size, PROT_WRITE); 1674 } 1675 } 1676 } 1677 /* 1678 * If necessary, create a vpage structure for the new segment. 1679 * Do not copy any page lock indications. 1680 */ 1681 if (svd->vpage != NULL) { 1682 uint_t i; 1683 struct vpage *ovp = svd->vpage; 1684 struct vpage *nvp; 1685 1686 nvp = newsvd->vpage = 1687 kmem_alloc(vpgtob(npages), KM_SLEEP); 1688 for (i = 0; i < npages; i++) { 1689 *nvp = *ovp++; 1690 VPP_CLRPPLOCK(nvp++); 1691 } 1692 } else 1693 newsvd->vpage = NULL; 1694 1695 /* Inform the vnode of the new mapping */ 1696 if (newsvd->vp != NULL) { 1697 error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset, 1698 newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot, 1699 newsvd->maxprot, newsvd->type, newsvd->cred, NULL); 1700 } 1701 out: 1702 if (error == 0 && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 1703 ASSERT(newsvd->amp == NULL); 1704 ASSERT(newsvd->tr_state == SEGVN_TR_OFF); 1705 newsvd->rcookie = svd->rcookie; 1706 hat_dup_region(newseg->s_as->a_hat, newsvd->rcookie); 1707 } 1708 return (error); 1709 } 1710 1711 1712 /* 1713 * callback function to invoke free_vp_pages() for only those pages actually 1714 * processed by the HAT when a shared region is destroyed. 1715 */ 1716 extern int free_pages; 1717 1718 static void 1719 segvn_hat_rgn_unload_callback(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr, 1720 size_t r_size, void *r_obj, u_offset_t r_objoff) 1721 { 1722 u_offset_t off; 1723 size_t len; 1724 vnode_t *vp = (vnode_t *)r_obj; 1725 1726 ASSERT(eaddr > saddr); 1727 ASSERT(saddr >= r_saddr); 1728 ASSERT(saddr < r_saddr + r_size); 1729 ASSERT(eaddr > r_saddr); 1730 ASSERT(eaddr <= r_saddr + r_size); 1731 ASSERT(vp != NULL); 1732 1733 if (!free_pages) { 1734 return; 1735 } 1736 1737 len = eaddr - saddr; 1738 off = (saddr - r_saddr) + r_objoff; 1739 free_vp_pages(vp, off, len); 1740 } 1741 1742 /* 1743 * callback function used by segvn_unmap to invoke free_vp_pages() for only 1744 * those pages actually processed by the HAT 1745 */ 1746 static void 1747 segvn_hat_unload_callback(hat_callback_t *cb) 1748 { 1749 struct seg *seg = cb->hcb_data; 1750 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 1751 size_t len; 1752 u_offset_t off; 1753 1754 ASSERT(svd->vp != NULL); 1755 ASSERT(cb->hcb_end_addr > cb->hcb_start_addr); 1756 ASSERT(cb->hcb_start_addr >= seg->s_base); 1757 1758 len = cb->hcb_end_addr - cb->hcb_start_addr; 1759 off = cb->hcb_start_addr - seg->s_base; 1760 free_vp_pages(svd->vp, svd->offset + off, len); 1761 } 1762 1763 /* 1764 * This function determines the number of bytes of swap reserved by 1765 * a segment for which per-page accounting is present. It is used to 1766 * calculate the correct value of a segvn_data's swresv. 1767 */ 1768 static size_t 1769 segvn_count_swap_by_vpages(struct seg *seg) 1770 { 1771 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 1772 struct vpage *vp, *evp; 1773 size_t nswappages = 0; 1774 1775 ASSERT(svd->pageswap); 1776 ASSERT(svd->vpage != NULL); 1777 1778 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)]; 1779 1780 for (vp = svd->vpage; vp < evp; vp++) { 1781 if (VPP_ISSWAPRES(vp)) 1782 nswappages++; 1783 } 1784 1785 return (nswappages << PAGESHIFT); 1786 } 1787 1788 static int 1789 segvn_unmap(struct seg *seg, caddr_t addr, size_t len) 1790 { 1791 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 1792 struct segvn_data *nsvd; 1793 struct seg *nseg; 1794 struct anon_map *amp; 1795 pgcnt_t opages; /* old segment size in pages */ 1796 pgcnt_t npages; /* new segment size in pages */ 1797 pgcnt_t dpages; /* pages being deleted (unmapped) */ 1798 hat_callback_t callback; /* used for free_vp_pages() */ 1799 hat_callback_t *cbp = NULL; 1800 caddr_t nbase; 1801 size_t nsize; 1802 size_t oswresv; 1803 int reclaim = 1; 1804 1805 /* 1806 * We don't need any segment level locks for "segvn" data 1807 * since the address space is "write" locked. 1808 */ 1809 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 1810 1811 /* 1812 * Fail the unmap if pages are SOFTLOCKed through this mapping. 1813 * softlockcnt is protected from change by the as write lock. 1814 */ 1815 retry: 1816 if (svd->softlockcnt > 0) { 1817 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1818 1819 /* 1820 * If this is shared segment non 0 softlockcnt 1821 * means locked pages are still in use. 1822 */ 1823 if (svd->type == MAP_SHARED) { 1824 return (EAGAIN); 1825 } 1826 1827 /* 1828 * since we do have the writers lock nobody can fill 1829 * the cache during the purge. The flush either succeeds 1830 * or we still have pending I/Os. 1831 */ 1832 if (reclaim == 1) { 1833 segvn_purge(seg); 1834 reclaim = 0; 1835 goto retry; 1836 } 1837 return (EAGAIN); 1838 } 1839 1840 /* 1841 * Check for bad sizes 1842 */ 1843 if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size || 1844 (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) { 1845 panic("segvn_unmap"); 1846 /*NOTREACHED*/ 1847 } 1848 1849 if (seg->s_szc != 0) { 1850 size_t pgsz = page_get_pagesize(seg->s_szc); 1851 int err; 1852 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) { 1853 ASSERT(seg->s_base != addr || seg->s_size != len); 1854 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 1855 ASSERT(svd->amp == NULL); 1856 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1857 hat_leave_region(seg->s_as->a_hat, 1858 svd->rcookie, HAT_REGION_TEXT); 1859 svd->rcookie = HAT_INVALID_REGION_COOKIE; 1860 /* 1861 * could pass a flag to segvn_demote_range() 1862 * below to tell it not to do any unloads but 1863 * this case is rare enough to not bother for 1864 * now. 1865 */ 1866 } else if (svd->tr_state == SEGVN_TR_INIT) { 1867 svd->tr_state = SEGVN_TR_OFF; 1868 } else if (svd->tr_state == SEGVN_TR_ON) { 1869 ASSERT(svd->amp != NULL); 1870 segvn_textunrepl(seg, 1); 1871 ASSERT(svd->amp == NULL); 1872 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1873 } 1874 VM_STAT_ADD(segvnvmstats.demoterange[0]); 1875 err = segvn_demote_range(seg, addr, len, SDR_END, 0); 1876 if (err == 0) { 1877 return (IE_RETRY); 1878 } 1879 return (err); 1880 } 1881 } 1882 1883 /* Inform the vnode of the unmapping. */ 1884 if (svd->vp) { 1885 int error; 1886 1887 error = VOP_DELMAP(svd->vp, 1888 (offset_t)svd->offset + (uintptr_t)(addr - seg->s_base), 1889 seg->s_as, addr, len, svd->prot, svd->maxprot, 1890 svd->type, svd->cred, NULL); 1891 1892 if (error == EAGAIN) 1893 return (error); 1894 } 1895 1896 /* 1897 * Remove any page locks set through this mapping. 1898 * If text replication is not off no page locks could have been 1899 * established via this mapping. 1900 */ 1901 if (svd->tr_state == SEGVN_TR_OFF) { 1902 (void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0); 1903 } 1904 1905 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 1906 ASSERT(svd->amp == NULL); 1907 ASSERT(svd->tr_state == SEGVN_TR_OFF); 1908 ASSERT(svd->type == MAP_PRIVATE); 1909 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 1910 HAT_REGION_TEXT); 1911 svd->rcookie = HAT_INVALID_REGION_COOKIE; 1912 } else if (svd->tr_state == SEGVN_TR_ON) { 1913 ASSERT(svd->amp != NULL); 1914 ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE)); 1915 segvn_textunrepl(seg, 1); 1916 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 1917 } else { 1918 if (svd->tr_state != SEGVN_TR_OFF) { 1919 ASSERT(svd->tr_state == SEGVN_TR_INIT); 1920 svd->tr_state = SEGVN_TR_OFF; 1921 } 1922 /* 1923 * Unload any hardware translations in the range to be taken 1924 * out. Use a callback to invoke free_vp_pages() effectively. 1925 */ 1926 if (svd->vp != NULL && free_pages != 0) { 1927 callback.hcb_data = seg; 1928 callback.hcb_function = segvn_hat_unload_callback; 1929 cbp = &callback; 1930 } 1931 hat_unload_callback(seg->s_as->a_hat, addr, len, 1932 HAT_UNLOAD_UNMAP, cbp); 1933 1934 if (svd->type == MAP_SHARED && svd->vp != NULL && 1935 (svd->vp->v_flag & VVMEXEC) && 1936 ((svd->prot & PROT_WRITE) || svd->pageprot)) { 1937 segvn_inval_trcache(svd->vp); 1938 } 1939 } 1940 1941 /* 1942 * Check for entire segment 1943 */ 1944 if (addr == seg->s_base && len == seg->s_size) { 1945 seg_free(seg); 1946 return (0); 1947 } 1948 1949 opages = seg_pages(seg); 1950 dpages = btop(len); 1951 npages = opages - dpages; 1952 amp = svd->amp; 1953 ASSERT(amp == NULL || amp->a_szc >= seg->s_szc); 1954 1955 /* 1956 * Check for beginning of segment 1957 */ 1958 if (addr == seg->s_base) { 1959 if (svd->vpage != NULL) { 1960 size_t nbytes; 1961 struct vpage *ovpage; 1962 1963 ovpage = svd->vpage; /* keep pointer to vpage */ 1964 1965 nbytes = vpgtob(npages); 1966 svd->vpage = kmem_alloc(nbytes, KM_SLEEP); 1967 bcopy(&ovpage[dpages], svd->vpage, nbytes); 1968 1969 /* free up old vpage */ 1970 kmem_free(ovpage, vpgtob(opages)); 1971 } 1972 if (amp != NULL) { 1973 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 1974 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) { 1975 /* 1976 * Shared anon map is no longer in use. Before 1977 * freeing its pages purge all entries from 1978 * pcache that belong to this amp. 1979 */ 1980 if (svd->type == MAP_SHARED) { 1981 ASSERT(amp->refcnt == 1); 1982 ASSERT(svd->softlockcnt == 0); 1983 anonmap_purge(amp); 1984 } 1985 /* 1986 * Free up now unused parts of anon_map array. 1987 */ 1988 if (amp->a_szc == seg->s_szc) { 1989 if (seg->s_szc != 0) { 1990 anon_free_pages(amp->ahp, 1991 svd->anon_index, len, 1992 seg->s_szc); 1993 } else { 1994 anon_free(amp->ahp, 1995 svd->anon_index, 1996 len); 1997 } 1998 } else { 1999 ASSERT(svd->type == MAP_SHARED); 2000 ASSERT(amp->a_szc > seg->s_szc); 2001 anon_shmap_free_pages(amp, 2002 svd->anon_index, len); 2003 } 2004 2005 /* 2006 * Unreserve swap space for the 2007 * unmapped chunk of this segment in 2008 * case it's MAP_SHARED 2009 */ 2010 if (svd->type == MAP_SHARED) { 2011 anon_unresv_zone(len, 2012 seg->s_as->a_proc->p_zone); 2013 amp->swresv -= len; 2014 } 2015 } 2016 ANON_LOCK_EXIT(&->a_rwlock); 2017 svd->anon_index += dpages; 2018 } 2019 if (svd->vp != NULL) 2020 svd->offset += len; 2021 2022 seg->s_base += len; 2023 seg->s_size -= len; 2024 2025 if (svd->swresv) { 2026 if (svd->flags & MAP_NORESERVE) { 2027 ASSERT(amp); 2028 oswresv = svd->swresv; 2029 2030 svd->swresv = ptob(anon_pages(amp->ahp, 2031 svd->anon_index, npages)); 2032 anon_unresv_zone(oswresv - svd->swresv, 2033 seg->s_as->a_proc->p_zone); 2034 } else { 2035 size_t unlen; 2036 2037 if (svd->pageswap) { 2038 oswresv = svd->swresv; 2039 svd->swresv = 2040 segvn_count_swap_by_vpages(seg); 2041 ASSERT(oswresv >= svd->swresv); 2042 unlen = oswresv - svd->swresv; 2043 } else { 2044 svd->swresv -= len; 2045 ASSERT(svd->swresv == seg->s_size); 2046 unlen = len; 2047 } 2048 anon_unresv_zone(unlen, 2049 seg->s_as->a_proc->p_zone); 2050 } 2051 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 2052 seg, len, 0); 2053 } 2054 2055 return (0); 2056 } 2057 2058 /* 2059 * Check for end of segment 2060 */ 2061 if (addr + len == seg->s_base + seg->s_size) { 2062 if (svd->vpage != NULL) { 2063 size_t nbytes; 2064 struct vpage *ovpage; 2065 2066 ovpage = svd->vpage; /* keep pointer to vpage */ 2067 2068 nbytes = vpgtob(npages); 2069 svd->vpage = kmem_alloc(nbytes, KM_SLEEP); 2070 bcopy(ovpage, svd->vpage, nbytes); 2071 2072 /* free up old vpage */ 2073 kmem_free(ovpage, vpgtob(opages)); 2074 2075 } 2076 if (amp != NULL) { 2077 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2078 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) { 2079 /* 2080 * Free up now unused parts of anon_map array. 2081 */ 2082 ulong_t an_idx = svd->anon_index + npages; 2083 2084 /* 2085 * Shared anon map is no longer in use. Before 2086 * freeing its pages purge all entries from 2087 * pcache that belong to this amp. 2088 */ 2089 if (svd->type == MAP_SHARED) { 2090 ASSERT(amp->refcnt == 1); 2091 ASSERT(svd->softlockcnt == 0); 2092 anonmap_purge(amp); 2093 } 2094 2095 if (amp->a_szc == seg->s_szc) { 2096 if (seg->s_szc != 0) { 2097 anon_free_pages(amp->ahp, 2098 an_idx, len, 2099 seg->s_szc); 2100 } else { 2101 anon_free(amp->ahp, an_idx, 2102 len); 2103 } 2104 } else { 2105 ASSERT(svd->type == MAP_SHARED); 2106 ASSERT(amp->a_szc > seg->s_szc); 2107 anon_shmap_free_pages(amp, 2108 an_idx, len); 2109 } 2110 2111 /* 2112 * Unreserve swap space for the 2113 * unmapped chunk of this segment in 2114 * case it's MAP_SHARED 2115 */ 2116 if (svd->type == MAP_SHARED) { 2117 anon_unresv_zone(len, 2118 seg->s_as->a_proc->p_zone); 2119 amp->swresv -= len; 2120 } 2121 } 2122 ANON_LOCK_EXIT(&->a_rwlock); 2123 } 2124 2125 seg->s_size -= len; 2126 2127 if (svd->swresv) { 2128 if (svd->flags & MAP_NORESERVE) { 2129 ASSERT(amp); 2130 oswresv = svd->swresv; 2131 svd->swresv = ptob(anon_pages(amp->ahp, 2132 svd->anon_index, npages)); 2133 anon_unresv_zone(oswresv - svd->swresv, 2134 seg->s_as->a_proc->p_zone); 2135 } else { 2136 size_t unlen; 2137 2138 if (svd->pageswap) { 2139 oswresv = svd->swresv; 2140 svd->swresv = 2141 segvn_count_swap_by_vpages(seg); 2142 ASSERT(oswresv >= svd->swresv); 2143 unlen = oswresv - svd->swresv; 2144 } else { 2145 svd->swresv -= len; 2146 ASSERT(svd->swresv == seg->s_size); 2147 unlen = len; 2148 } 2149 anon_unresv_zone(unlen, 2150 seg->s_as->a_proc->p_zone); 2151 } 2152 TRACE_3(TR_FAC_VM, TR_ANON_PROC, 2153 "anon proc:%p %lu %u", seg, len, 0); 2154 } 2155 2156 return (0); 2157 } 2158 2159 /* 2160 * The section to go is in the middle of the segment, 2161 * have to make it into two segments. nseg is made for 2162 * the high end while seg is cut down at the low end. 2163 */ 2164 nbase = addr + len; /* new seg base */ 2165 nsize = (seg->s_base + seg->s_size) - nbase; /* new seg size */ 2166 seg->s_size = addr - seg->s_base; /* shrink old seg */ 2167 nseg = seg_alloc(seg->s_as, nbase, nsize); 2168 if (nseg == NULL) { 2169 panic("segvn_unmap seg_alloc"); 2170 /*NOTREACHED*/ 2171 } 2172 nseg->s_ops = seg->s_ops; 2173 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP); 2174 nseg->s_data = (void *)nsvd; 2175 nseg->s_szc = seg->s_szc; 2176 *nsvd = *svd; 2177 nsvd->seg = nseg; 2178 nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base); 2179 nsvd->swresv = 0; 2180 nsvd->softlockcnt = 0; 2181 nsvd->softlockcnt_sbase = 0; 2182 nsvd->softlockcnt_send = 0; 2183 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE); 2184 2185 if (svd->vp != NULL) { 2186 VN_HOLD(nsvd->vp); 2187 if (nsvd->type == MAP_SHARED) 2188 lgrp_shm_policy_init(NULL, nsvd->vp); 2189 } 2190 crhold(svd->cred); 2191 2192 if (svd->vpage == NULL) { 2193 nsvd->vpage = NULL; 2194 } else { 2195 /* need to split vpage into two arrays */ 2196 size_t nbytes; 2197 struct vpage *ovpage; 2198 2199 ovpage = svd->vpage; /* keep pointer to vpage */ 2200 2201 npages = seg_pages(seg); /* seg has shrunk */ 2202 nbytes = vpgtob(npages); 2203 svd->vpage = kmem_alloc(nbytes, KM_SLEEP); 2204 2205 bcopy(ovpage, svd->vpage, nbytes); 2206 2207 npages = seg_pages(nseg); 2208 nbytes = vpgtob(npages); 2209 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP); 2210 2211 bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes); 2212 2213 /* free up old vpage */ 2214 kmem_free(ovpage, vpgtob(opages)); 2215 } 2216 2217 if (amp == NULL) { 2218 nsvd->amp = NULL; 2219 nsvd->anon_index = 0; 2220 } else { 2221 /* 2222 * Need to create a new anon map for the new segment. 2223 * We'll also allocate a new smaller array for the old 2224 * smaller segment to save space. 2225 */ 2226 opages = btop((uintptr_t)(addr - seg->s_base)); 2227 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2228 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) { 2229 /* 2230 * Free up now unused parts of anon_map array. 2231 */ 2232 ulong_t an_idx = svd->anon_index + opages; 2233 2234 /* 2235 * Shared anon map is no longer in use. Before 2236 * freeing its pages purge all entries from 2237 * pcache that belong to this amp. 2238 */ 2239 if (svd->type == MAP_SHARED) { 2240 ASSERT(amp->refcnt == 1); 2241 ASSERT(svd->softlockcnt == 0); 2242 anonmap_purge(amp); 2243 } 2244 2245 if (amp->a_szc == seg->s_szc) { 2246 if (seg->s_szc != 0) { 2247 anon_free_pages(amp->ahp, an_idx, len, 2248 seg->s_szc); 2249 } else { 2250 anon_free(amp->ahp, an_idx, 2251 len); 2252 } 2253 } else { 2254 ASSERT(svd->type == MAP_SHARED); 2255 ASSERT(amp->a_szc > seg->s_szc); 2256 anon_shmap_free_pages(amp, an_idx, len); 2257 } 2258 2259 /* 2260 * Unreserve swap space for the 2261 * unmapped chunk of this segment in 2262 * case it's MAP_SHARED 2263 */ 2264 if (svd->type == MAP_SHARED) { 2265 anon_unresv_zone(len, 2266 seg->s_as->a_proc->p_zone); 2267 amp->swresv -= len; 2268 } 2269 } 2270 nsvd->anon_index = svd->anon_index + 2271 btop((uintptr_t)(nseg->s_base - seg->s_base)); 2272 if (svd->type == MAP_SHARED) { 2273 amp->refcnt++; 2274 nsvd->amp = amp; 2275 } else { 2276 struct anon_map *namp; 2277 struct anon_hdr *nahp; 2278 2279 ASSERT(svd->type == MAP_PRIVATE); 2280 nahp = anon_create(btop(seg->s_size), ANON_SLEEP); 2281 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP); 2282 namp->a_szc = seg->s_szc; 2283 (void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp, 2284 0, btop(seg->s_size), ANON_SLEEP); 2285 (void) anon_copy_ptr(amp->ahp, nsvd->anon_index, 2286 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP); 2287 anon_release(amp->ahp, btop(amp->size)); 2288 svd->anon_index = 0; 2289 nsvd->anon_index = 0; 2290 amp->ahp = nahp; 2291 amp->size = seg->s_size; 2292 nsvd->amp = namp; 2293 } 2294 ANON_LOCK_EXIT(&->a_rwlock); 2295 } 2296 if (svd->swresv) { 2297 if (svd->flags & MAP_NORESERVE) { 2298 ASSERT(amp); 2299 oswresv = svd->swresv; 2300 svd->swresv = ptob(anon_pages(amp->ahp, 2301 svd->anon_index, btop(seg->s_size))); 2302 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp, 2303 nsvd->anon_index, btop(nseg->s_size))); 2304 ASSERT(oswresv >= (svd->swresv + nsvd->swresv)); 2305 anon_unresv_zone(oswresv - (svd->swresv + nsvd->swresv), 2306 seg->s_as->a_proc->p_zone); 2307 } else { 2308 size_t unlen; 2309 2310 if (svd->pageswap) { 2311 oswresv = svd->swresv; 2312 svd->swresv = segvn_count_swap_by_vpages(seg); 2313 nsvd->swresv = segvn_count_swap_by_vpages(nseg); 2314 ASSERT(oswresv >= (svd->swresv + nsvd->swresv)); 2315 unlen = oswresv - (svd->swresv + nsvd->swresv); 2316 } else { 2317 if (seg->s_size + nseg->s_size + len != 2318 svd->swresv) { 2319 panic("segvn_unmap: cannot split " 2320 "swap reservation"); 2321 /*NOTREACHED*/ 2322 } 2323 svd->swresv = seg->s_size; 2324 nsvd->swresv = nseg->s_size; 2325 unlen = len; 2326 } 2327 anon_unresv_zone(unlen, 2328 seg->s_as->a_proc->p_zone); 2329 } 2330 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 2331 seg, len, 0); 2332 } 2333 2334 return (0); /* I'm glad that's all over with! */ 2335 } 2336 2337 static void 2338 segvn_free(struct seg *seg) 2339 { 2340 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 2341 pgcnt_t npages = seg_pages(seg); 2342 struct anon_map *amp; 2343 size_t len; 2344 2345 /* 2346 * We don't need any segment level locks for "segvn" data 2347 * since the address space is "write" locked. 2348 */ 2349 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 2350 ASSERT(svd->tr_state == SEGVN_TR_OFF); 2351 2352 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 2353 2354 /* 2355 * Be sure to unlock pages. XXX Why do things get free'ed instead 2356 * of unmapped? XXX 2357 */ 2358 (void) segvn_lockop(seg, seg->s_base, seg->s_size, 2359 0, MC_UNLOCK, NULL, 0); 2360 2361 /* 2362 * Deallocate the vpage and anon pointers if necessary and possible. 2363 */ 2364 if (svd->vpage != NULL) { 2365 kmem_free(svd->vpage, vpgtob(npages)); 2366 svd->vpage = NULL; 2367 } 2368 if ((amp = svd->amp) != NULL) { 2369 /* 2370 * If there are no more references to this anon_map 2371 * structure, then deallocate the structure after freeing 2372 * up all the anon slot pointers that we can. 2373 */ 2374 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 2375 ASSERT(amp->a_szc >= seg->s_szc); 2376 if (--amp->refcnt == 0) { 2377 if (svd->type == MAP_PRIVATE) { 2378 /* 2379 * Private - we only need to anon_free 2380 * the part that this segment refers to. 2381 */ 2382 if (seg->s_szc != 0) { 2383 anon_free_pages(amp->ahp, 2384 svd->anon_index, seg->s_size, 2385 seg->s_szc); 2386 } else { 2387 anon_free(amp->ahp, svd->anon_index, 2388 seg->s_size); 2389 } 2390 } else { 2391 2392 /* 2393 * Shared anon map is no longer in use. Before 2394 * freeing its pages purge all entries from 2395 * pcache that belong to this amp. 2396 */ 2397 ASSERT(svd->softlockcnt == 0); 2398 anonmap_purge(amp); 2399 2400 /* 2401 * Shared - anon_free the entire 2402 * anon_map's worth of stuff and 2403 * release any swap reservation. 2404 */ 2405 if (amp->a_szc != 0) { 2406 anon_shmap_free_pages(amp, 0, 2407 amp->size); 2408 } else { 2409 anon_free(amp->ahp, 0, amp->size); 2410 } 2411 if ((len = amp->swresv) != 0) { 2412 anon_unresv_zone(len, 2413 seg->s_as->a_proc->p_zone); 2414 TRACE_3(TR_FAC_VM, TR_ANON_PROC, 2415 "anon proc:%p %lu %u", seg, len, 0); 2416 } 2417 } 2418 svd->amp = NULL; 2419 ANON_LOCK_EXIT(&->a_rwlock); 2420 anonmap_free(amp); 2421 } else if (svd->type == MAP_PRIVATE) { 2422 /* 2423 * We had a private mapping which still has 2424 * a held anon_map so just free up all the 2425 * anon slot pointers that we were using. 2426 */ 2427 if (seg->s_szc != 0) { 2428 anon_free_pages(amp->ahp, svd->anon_index, 2429 seg->s_size, seg->s_szc); 2430 } else { 2431 anon_free(amp->ahp, svd->anon_index, 2432 seg->s_size); 2433 } 2434 ANON_LOCK_EXIT(&->a_rwlock); 2435 } else { 2436 ANON_LOCK_EXIT(&->a_rwlock); 2437 } 2438 } 2439 2440 /* 2441 * Release swap reservation. 2442 */ 2443 if ((len = svd->swresv) != 0) { 2444 anon_unresv_zone(svd->swresv, 2445 seg->s_as->a_proc->p_zone); 2446 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u", 2447 seg, len, 0); 2448 svd->swresv = 0; 2449 } 2450 /* 2451 * Release claim on vnode, credentials, and finally free the 2452 * private data. 2453 */ 2454 if (svd->vp != NULL) { 2455 if (svd->type == MAP_SHARED) 2456 lgrp_shm_policy_fini(NULL, svd->vp); 2457 VN_RELE(svd->vp); 2458 svd->vp = NULL; 2459 } 2460 crfree(svd->cred); 2461 svd->pageprot = 0; 2462 svd->pageadvice = 0; 2463 svd->pageswap = 0; 2464 svd->cred = NULL; 2465 2466 /* 2467 * Take segfree_syncmtx lock to let segvn_reclaim() finish if it's 2468 * still working with this segment without holding as lock (in case 2469 * it's called by pcache async thread). 2470 */ 2471 ASSERT(svd->softlockcnt == 0); 2472 mutex_enter(&svd->segfree_syncmtx); 2473 mutex_exit(&svd->segfree_syncmtx); 2474 2475 seg->s_data = NULL; 2476 kmem_cache_free(segvn_cache, svd); 2477 } 2478 2479 /* 2480 * Do a F_SOFTUNLOCK call over the range requested. The range must have 2481 * already been F_SOFTLOCK'ed. 2482 * Caller must always match addr and len of a softunlock with a previous 2483 * softlock with exactly the same addr and len. 2484 */ 2485 static void 2486 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw) 2487 { 2488 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 2489 page_t *pp; 2490 caddr_t adr; 2491 struct vnode *vp; 2492 u_offset_t offset; 2493 ulong_t anon_index; 2494 struct anon_map *amp; 2495 struct anon *ap = NULL; 2496 2497 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 2498 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 2499 2500 if ((amp = svd->amp) != NULL) 2501 anon_index = svd->anon_index + seg_page(seg, addr); 2502 2503 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 2504 ASSERT(svd->tr_state == SEGVN_TR_OFF); 2505 hat_unlock_region(seg->s_as->a_hat, addr, len, svd->rcookie); 2506 } else { 2507 hat_unlock(seg->s_as->a_hat, addr, len); 2508 } 2509 for (adr = addr; adr < addr + len; adr += PAGESIZE) { 2510 if (amp != NULL) { 2511 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 2512 if ((ap = anon_get_ptr(amp->ahp, anon_index++)) 2513 != NULL) { 2514 swap_xlate(ap, &vp, &offset); 2515 } else { 2516 vp = svd->vp; 2517 offset = svd->offset + 2518 (uintptr_t)(adr - seg->s_base); 2519 } 2520 ANON_LOCK_EXIT(&->a_rwlock); 2521 } else { 2522 vp = svd->vp; 2523 offset = svd->offset + 2524 (uintptr_t)(adr - seg->s_base); 2525 } 2526 2527 /* 2528 * Use page_find() instead of page_lookup() to 2529 * find the page since we know that it is locked. 2530 */ 2531 pp = page_find(vp, offset); 2532 if (pp == NULL) { 2533 panic( 2534 "segvn_softunlock: addr %p, ap %p, vp %p, off %llx", 2535 (void *)adr, (void *)ap, (void *)vp, offset); 2536 /*NOTREACHED*/ 2537 } 2538 2539 if (rw == S_WRITE) { 2540 hat_setrefmod(pp); 2541 if (seg->s_as->a_vbits) 2542 hat_setstat(seg->s_as, adr, PAGESIZE, 2543 P_REF | P_MOD); 2544 } else if (rw != S_OTHER) { 2545 hat_setref(pp); 2546 if (seg->s_as->a_vbits) 2547 hat_setstat(seg->s_as, adr, PAGESIZE, P_REF); 2548 } 2549 TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT, 2550 "segvn_fault:pp %p vp %p offset %llx", pp, vp, offset); 2551 page_unlock(pp); 2552 } 2553 ASSERT(svd->softlockcnt >= btop(len)); 2554 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -btop(len))) { 2555 /* 2556 * All SOFTLOCKS are gone. Wakeup any waiting 2557 * unmappers so they can try again to unmap. 2558 * Check for waiters first without the mutex 2559 * held so we don't always grab the mutex on 2560 * softunlocks. 2561 */ 2562 if (AS_ISUNMAPWAIT(seg->s_as)) { 2563 mutex_enter(&seg->s_as->a_contents); 2564 if (AS_ISUNMAPWAIT(seg->s_as)) { 2565 AS_CLRUNMAPWAIT(seg->s_as); 2566 cv_broadcast(&seg->s_as->a_cv); 2567 } 2568 mutex_exit(&seg->s_as->a_contents); 2569 } 2570 } 2571 } 2572 2573 #define PAGE_HANDLED ((page_t *)-1) 2574 2575 /* 2576 * Release all the pages in the NULL terminated ppp list 2577 * which haven't already been converted to PAGE_HANDLED. 2578 */ 2579 static void 2580 segvn_pagelist_rele(page_t **ppp) 2581 { 2582 for (; *ppp != NULL; ppp++) { 2583 if (*ppp != PAGE_HANDLED) 2584 page_unlock(*ppp); 2585 } 2586 } 2587 2588 static int stealcow = 1; 2589 2590 /* 2591 * Workaround for viking chip bug. See bug id 1220902. 2592 * To fix this down in pagefault() would require importing so 2593 * much as and segvn code as to be unmaintainable. 2594 */ 2595 int enable_mbit_wa = 0; 2596 2597 /* 2598 * Handles all the dirty work of getting the right 2599 * anonymous pages and loading up the translations. 2600 * This routine is called only from segvn_fault() 2601 * when looping over the range of addresses requested. 2602 * 2603 * The basic algorithm here is: 2604 * If this is an anon_zero case 2605 * Call anon_zero to allocate page 2606 * Load up translation 2607 * Return 2608 * endif 2609 * If this is an anon page 2610 * Use anon_getpage to get the page 2611 * else 2612 * Find page in pl[] list passed in 2613 * endif 2614 * If not a cow 2615 * Load up the translation to the page 2616 * return 2617 * endif 2618 * Call anon_private to handle cow 2619 * Load up (writable) translation to new page 2620 */ 2621 static faultcode_t 2622 segvn_faultpage( 2623 struct hat *hat, /* the hat to use for mapping */ 2624 struct seg *seg, /* seg_vn of interest */ 2625 caddr_t addr, /* address in as */ 2626 u_offset_t off, /* offset in vp */ 2627 struct vpage *vpage, /* pointer to vpage for vp, off */ 2628 page_t *pl[], /* object source page pointer */ 2629 uint_t vpprot, /* access allowed to object pages */ 2630 enum fault_type type, /* type of fault */ 2631 enum seg_rw rw, /* type of access at fault */ 2632 int brkcow) /* we may need to break cow */ 2633 { 2634 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 2635 page_t *pp, **ppp; 2636 uint_t pageflags = 0; 2637 page_t *anon_pl[1 + 1]; 2638 page_t *opp = NULL; /* original page */ 2639 uint_t prot; 2640 int err; 2641 int cow; 2642 int claim; 2643 int steal = 0; 2644 ulong_t anon_index; 2645 struct anon *ap, *oldap; 2646 struct anon_map *amp; 2647 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD; 2648 int anon_lock = 0; 2649 anon_sync_obj_t cookie; 2650 2651 if (svd->flags & MAP_TEXT) { 2652 hat_flag |= HAT_LOAD_TEXT; 2653 } 2654 2655 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock)); 2656 ASSERT(seg->s_szc == 0); 2657 ASSERT(svd->tr_state != SEGVN_TR_INIT); 2658 2659 /* 2660 * Initialize protection value for this page. 2661 * If we have per page protection values check it now. 2662 */ 2663 if (svd->pageprot) { 2664 uint_t protchk; 2665 2666 switch (rw) { 2667 case S_READ: 2668 protchk = PROT_READ; 2669 break; 2670 case S_WRITE: 2671 protchk = PROT_WRITE; 2672 break; 2673 case S_EXEC: 2674 protchk = PROT_EXEC; 2675 break; 2676 case S_OTHER: 2677 default: 2678 protchk = PROT_READ | PROT_WRITE | PROT_EXEC; 2679 break; 2680 } 2681 2682 prot = VPP_PROT(vpage); 2683 if ((prot & protchk) == 0) 2684 return (FC_PROT); /* illegal access type */ 2685 } else { 2686 prot = svd->prot; 2687 } 2688 2689 if (type == F_SOFTLOCK) { 2690 atomic_add_long((ulong_t *)&svd->softlockcnt, 1); 2691 } 2692 2693 /* 2694 * Always acquire the anon array lock to prevent 2 threads from 2695 * allocating separate anon slots for the same "addr". 2696 */ 2697 2698 if ((amp = svd->amp) != NULL) { 2699 ASSERT(RW_READ_HELD(&->a_rwlock)); 2700 anon_index = svd->anon_index + seg_page(seg, addr); 2701 anon_array_enter(amp, anon_index, &cookie); 2702 anon_lock = 1; 2703 } 2704 2705 if (svd->vp == NULL && amp != NULL) { 2706 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) { 2707 /* 2708 * Allocate a (normally) writable anonymous page of 2709 * zeroes. If no advance reservations, reserve now. 2710 */ 2711 if (svd->flags & MAP_NORESERVE) { 2712 if (anon_resv_zone(ptob(1), 2713 seg->s_as->a_proc->p_zone)) { 2714 atomic_add_long(&svd->swresv, ptob(1)); 2715 } else { 2716 err = ENOMEM; 2717 goto out; 2718 } 2719 } 2720 if ((pp = anon_zero(seg, addr, &ap, 2721 svd->cred)) == NULL) { 2722 err = ENOMEM; 2723 goto out; /* out of swap space */ 2724 } 2725 /* 2726 * Re-acquire the anon_map lock and 2727 * initialize the anon array entry. 2728 */ 2729 (void) anon_set_ptr(amp->ahp, anon_index, ap, 2730 ANON_SLEEP); 2731 2732 ASSERT(pp->p_szc == 0); 2733 2734 /* 2735 * Handle pages that have been marked for migration 2736 */ 2737 if (lgrp_optimizations()) 2738 page_migrate(seg, addr, &pp, 1); 2739 2740 if (enable_mbit_wa) { 2741 if (rw == S_WRITE) 2742 hat_setmod(pp); 2743 else if (!hat_ismod(pp)) 2744 prot &= ~PROT_WRITE; 2745 } 2746 /* 2747 * If AS_PAGLCK is set in a_flags (via memcntl(2) 2748 * with MC_LOCKAS, MCL_FUTURE) and this is a 2749 * MAP_NORESERVE segment, we may need to 2750 * permanently lock the page as it is being faulted 2751 * for the first time. The following text applies 2752 * only to MAP_NORESERVE segments: 2753 * 2754 * As per memcntl(2), if this segment was created 2755 * after MCL_FUTURE was applied (a "future" 2756 * segment), its pages must be locked. If this 2757 * segment existed at MCL_FUTURE application (a 2758 * "past" segment), the interface is unclear. 2759 * 2760 * We decide to lock only if vpage is present: 2761 * 2762 * - "future" segments will have a vpage array (see 2763 * as_map), and so will be locked as required 2764 * 2765 * - "past" segments may not have a vpage array, 2766 * depending on whether events (such as 2767 * mprotect) have occurred. Locking if vpage 2768 * exists will preserve legacy behavior. Not 2769 * locking if vpage is absent, will not break 2770 * the interface or legacy behavior. Note that 2771 * allocating vpage here if it's absent requires 2772 * upgrading the segvn reader lock, the cost of 2773 * which does not seem worthwhile. 2774 * 2775 * Usually testing and setting VPP_ISPPLOCK and 2776 * VPP_SETPPLOCK requires holding the segvn lock as 2777 * writer, but in this case all readers are 2778 * serializing on the anon array lock. 2779 */ 2780 if (AS_ISPGLCK(seg->s_as) && vpage != NULL && 2781 (svd->flags & MAP_NORESERVE) && 2782 !VPP_ISPPLOCK(vpage)) { 2783 proc_t *p = seg->s_as->a_proc; 2784 ASSERT(svd->type == MAP_PRIVATE); 2785 mutex_enter(&p->p_lock); 2786 if (rctl_incr_locked_mem(p, NULL, PAGESIZE, 2787 1) == 0) { 2788 claim = VPP_PROT(vpage) & PROT_WRITE; 2789 if (page_pp_lock(pp, claim, 0)) { 2790 VPP_SETPPLOCK(vpage); 2791 } else { 2792 rctl_decr_locked_mem(p, NULL, 2793 PAGESIZE, 1); 2794 } 2795 } 2796 mutex_exit(&p->p_lock); 2797 } 2798 2799 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 2800 hat_memload(hat, addr, pp, prot, hat_flag); 2801 2802 if (!(hat_flag & HAT_LOAD_LOCK)) 2803 page_unlock(pp); 2804 2805 anon_array_exit(&cookie); 2806 return (0); 2807 } 2808 } 2809 2810 /* 2811 * Obtain the page structure via anon_getpage() if it is 2812 * a private copy of an object (the result of a previous 2813 * copy-on-write). 2814 */ 2815 if (amp != NULL) { 2816 if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) { 2817 err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE, 2818 seg, addr, rw, svd->cred); 2819 if (err) 2820 goto out; 2821 2822 if (svd->type == MAP_SHARED) { 2823 /* 2824 * If this is a shared mapping to an 2825 * anon_map, then ignore the write 2826 * permissions returned by anon_getpage(). 2827 * They apply to the private mappings 2828 * of this anon_map. 2829 */ 2830 vpprot |= PROT_WRITE; 2831 } 2832 opp = anon_pl[0]; 2833 } 2834 } 2835 2836 /* 2837 * Search the pl[] list passed in if it is from the 2838 * original object (i.e., not a private copy). 2839 */ 2840 if (opp == NULL) { 2841 /* 2842 * Find original page. We must be bringing it in 2843 * from the list in pl[]. 2844 */ 2845 for (ppp = pl; (opp = *ppp) != NULL; ppp++) { 2846 if (opp == PAGE_HANDLED) 2847 continue; 2848 ASSERT(opp->p_vnode == svd->vp); /* XXX */ 2849 if (opp->p_offset == off) 2850 break; 2851 } 2852 if (opp == NULL) { 2853 panic("segvn_faultpage not found"); 2854 /*NOTREACHED*/ 2855 } 2856 *ppp = PAGE_HANDLED; 2857 2858 } 2859 2860 ASSERT(PAGE_LOCKED(opp)); 2861 2862 TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT, 2863 "segvn_fault:pp %p vp %p offset %llx", opp, NULL, 0); 2864 2865 /* 2866 * The fault is treated as a copy-on-write fault if a 2867 * write occurs on a private segment and the object 2868 * page (i.e., mapping) is write protected. We assume 2869 * that fatal protection checks have already been made. 2870 */ 2871 2872 if (brkcow) { 2873 ASSERT(svd->tr_state == SEGVN_TR_OFF); 2874 cow = !(vpprot & PROT_WRITE); 2875 } else if (svd->tr_state == SEGVN_TR_ON) { 2876 /* 2877 * If we are doing text replication COW on first touch. 2878 */ 2879 ASSERT(amp != NULL); 2880 ASSERT(svd->vp != NULL); 2881 ASSERT(rw != S_WRITE); 2882 cow = (ap == NULL); 2883 } else { 2884 cow = 0; 2885 } 2886 2887 /* 2888 * If not a copy-on-write case load the translation 2889 * and return. 2890 */ 2891 if (cow == 0) { 2892 2893 /* 2894 * Handle pages that have been marked for migration 2895 */ 2896 if (lgrp_optimizations()) 2897 page_migrate(seg, addr, &opp, 1); 2898 2899 if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) { 2900 if (rw == S_WRITE) 2901 hat_setmod(opp); 2902 else if (rw != S_OTHER && !hat_ismod(opp)) 2903 prot &= ~PROT_WRITE; 2904 } 2905 2906 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE || 2907 (!svd->pageprot && svd->prot == (prot & vpprot))); 2908 ASSERT(amp == NULL || 2909 svd->rcookie == HAT_INVALID_REGION_COOKIE); 2910 hat_memload_region(hat, addr, opp, prot & vpprot, hat_flag, 2911 svd->rcookie); 2912 2913 if (!(hat_flag & HAT_LOAD_LOCK)) 2914 page_unlock(opp); 2915 2916 if (anon_lock) { 2917 anon_array_exit(&cookie); 2918 } 2919 return (0); 2920 } 2921 2922 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 2923 2924 hat_setref(opp); 2925 2926 ASSERT(amp != NULL && anon_lock); 2927 2928 /* 2929 * Steal the page only if it isn't a private page 2930 * since stealing a private page is not worth the effort. 2931 */ 2932 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) 2933 steal = 1; 2934 2935 /* 2936 * Steal the original page if the following conditions are true: 2937 * 2938 * We are low on memory, the page is not private, page is not large, 2939 * not shared, not modified, not `locked' or if we have it `locked' 2940 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies 2941 * that the page is not shared) and if it doesn't have any 2942 * translations. page_struct_lock isn't needed to look at p_cowcnt 2943 * and p_lckcnt because we first get exclusive lock on page. 2944 */ 2945 (void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD); 2946 2947 if (stealcow && freemem < minfree && steal && opp->p_szc == 0 && 2948 page_tryupgrade(opp) && !hat_ismod(opp) && 2949 ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) || 2950 (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 && 2951 vpage != NULL && VPP_ISPPLOCK(vpage)))) { 2952 /* 2953 * Check if this page has other translations 2954 * after unloading our translation. 2955 */ 2956 if (hat_page_is_mapped(opp)) { 2957 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 2958 hat_unload(seg->s_as->a_hat, addr, PAGESIZE, 2959 HAT_UNLOAD); 2960 } 2961 2962 /* 2963 * hat_unload() might sync back someone else's recent 2964 * modification, so check again. 2965 */ 2966 if (!hat_ismod(opp) && !hat_page_is_mapped(opp)) 2967 pageflags |= STEAL_PAGE; 2968 } 2969 2970 /* 2971 * If we have a vpage pointer, see if it indicates that we have 2972 * ``locked'' the page we map -- if so, tell anon_private to 2973 * transfer the locking resource to the new page. 2974 * 2975 * See Statement at the beginning of segvn_lockop regarding 2976 * the way lockcnts/cowcnts are handled during COW. 2977 * 2978 */ 2979 if (vpage != NULL && VPP_ISPPLOCK(vpage)) 2980 pageflags |= LOCK_PAGE; 2981 2982 /* 2983 * Allocate a private page and perform the copy. 2984 * For MAP_NORESERVE reserve swap space now, unless this 2985 * is a cow fault on an existing anon page in which case 2986 * MAP_NORESERVE will have made advance reservations. 2987 */ 2988 if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) { 2989 if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) { 2990 atomic_add_long(&svd->swresv, ptob(1)); 2991 } else { 2992 page_unlock(opp); 2993 err = ENOMEM; 2994 goto out; 2995 } 2996 } 2997 oldap = ap; 2998 pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred); 2999 if (pp == NULL) { 3000 err = ENOMEM; /* out of swap space */ 3001 goto out; 3002 } 3003 3004 /* 3005 * If we copied away from an anonymous page, then 3006 * we are one step closer to freeing up an anon slot. 3007 * 3008 * NOTE: The original anon slot must be released while 3009 * holding the "anon_map" lock. This is necessary to prevent 3010 * other threads from obtaining a pointer to the anon slot 3011 * which may be freed if its "refcnt" is 1. 3012 */ 3013 if (oldap != NULL) 3014 anon_decref(oldap); 3015 3016 (void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP); 3017 3018 /* 3019 * Handle pages that have been marked for migration 3020 */ 3021 if (lgrp_optimizations()) 3022 page_migrate(seg, addr, &pp, 1); 3023 3024 ASSERT(pp->p_szc == 0); 3025 3026 ASSERT(!IS_VMODSORT(pp->p_vnode)); 3027 if (enable_mbit_wa) { 3028 if (rw == S_WRITE) 3029 hat_setmod(pp); 3030 else if (!hat_ismod(pp)) 3031 prot &= ~PROT_WRITE; 3032 } 3033 3034 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 3035 hat_memload(hat, addr, pp, prot, hat_flag); 3036 3037 if (!(hat_flag & HAT_LOAD_LOCK)) 3038 page_unlock(pp); 3039 3040 ASSERT(anon_lock); 3041 anon_array_exit(&cookie); 3042 return (0); 3043 out: 3044 if (anon_lock) 3045 anon_array_exit(&cookie); 3046 3047 if (type == F_SOFTLOCK) { 3048 atomic_add_long((ulong_t *)&svd->softlockcnt, -1); 3049 } 3050 return (FC_MAKE_ERR(err)); 3051 } 3052 3053 /* 3054 * relocate a bunch of smaller targ pages into one large repl page. all targ 3055 * pages must be complete pages smaller than replacement pages. 3056 * it's assumed that no page's szc can change since they are all PAGESIZE or 3057 * complete large pages locked SHARED. 3058 */ 3059 static void 3060 segvn_relocate_pages(page_t **targ, page_t *replacement) 3061 { 3062 page_t *pp; 3063 pgcnt_t repl_npgs, curnpgs; 3064 pgcnt_t i; 3065 uint_t repl_szc = replacement->p_szc; 3066 page_t *first_repl = replacement; 3067 page_t *repl; 3068 spgcnt_t npgs; 3069 3070 VM_STAT_ADD(segvnvmstats.relocatepages[0]); 3071 3072 ASSERT(repl_szc != 0); 3073 npgs = repl_npgs = page_get_pagecnt(repl_szc); 3074 3075 i = 0; 3076 while (repl_npgs) { 3077 spgcnt_t nreloc; 3078 int err; 3079 ASSERT(replacement != NULL); 3080 pp = targ[i]; 3081 ASSERT(pp->p_szc < repl_szc); 3082 ASSERT(PAGE_EXCL(pp)); 3083 ASSERT(!PP_ISFREE(pp)); 3084 curnpgs = page_get_pagecnt(pp->p_szc); 3085 if (curnpgs == 1) { 3086 VM_STAT_ADD(segvnvmstats.relocatepages[1]); 3087 repl = replacement; 3088 page_sub(&replacement, repl); 3089 ASSERT(PAGE_EXCL(repl)); 3090 ASSERT(!PP_ISFREE(repl)); 3091 ASSERT(repl->p_szc == repl_szc); 3092 } else { 3093 page_t *repl_savepp; 3094 int j; 3095 VM_STAT_ADD(segvnvmstats.relocatepages[2]); 3096 repl_savepp = replacement; 3097 for (j = 0; j < curnpgs; j++) { 3098 repl = replacement; 3099 page_sub(&replacement, repl); 3100 ASSERT(PAGE_EXCL(repl)); 3101 ASSERT(!PP_ISFREE(repl)); 3102 ASSERT(repl->p_szc == repl_szc); 3103 ASSERT(page_pptonum(targ[i + j]) == 3104 page_pptonum(targ[i]) + j); 3105 } 3106 repl = repl_savepp; 3107 ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs)); 3108 } 3109 err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL); 3110 if (err || nreloc != curnpgs) { 3111 panic("segvn_relocate_pages: " 3112 "page_relocate failed err=%d curnpgs=%ld " 3113 "nreloc=%ld", err, curnpgs, nreloc); 3114 } 3115 ASSERT(curnpgs <= repl_npgs); 3116 repl_npgs -= curnpgs; 3117 i += curnpgs; 3118 } 3119 ASSERT(replacement == NULL); 3120 3121 repl = first_repl; 3122 repl_npgs = npgs; 3123 for (i = 0; i < repl_npgs; i++) { 3124 ASSERT(PAGE_EXCL(repl)); 3125 ASSERT(!PP_ISFREE(repl)); 3126 targ[i] = repl; 3127 page_downgrade(targ[i]); 3128 repl++; 3129 } 3130 } 3131 3132 /* 3133 * Check if all pages in ppa array are complete smaller than szc pages and 3134 * their roots will still be aligned relative to their current size if the 3135 * entire ppa array is relocated into one szc page. If these conditions are 3136 * not met return 0. 3137 * 3138 * If all pages are properly aligned attempt to upgrade their locks 3139 * to exclusive mode. If it fails set *upgrdfail to 1 and return 0. 3140 * upgrdfail was set to 0 by caller. 3141 * 3142 * Return 1 if all pages are aligned and locked exclusively. 3143 * 3144 * If all pages in ppa array happen to be physically contiguous to make one 3145 * szc page and all exclusive locks are successfully obtained promote the page 3146 * size to szc and set *pszc to szc. Return 1 with pages locked shared. 3147 */ 3148 static int 3149 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc) 3150 { 3151 page_t *pp; 3152 pfn_t pfn; 3153 pgcnt_t totnpgs = page_get_pagecnt(szc); 3154 pfn_t first_pfn; 3155 int contig = 1; 3156 pgcnt_t i; 3157 pgcnt_t j; 3158 uint_t curszc; 3159 pgcnt_t curnpgs; 3160 int root = 0; 3161 3162 ASSERT(szc > 0); 3163 3164 VM_STAT_ADD(segvnvmstats.fullszcpages[0]); 3165 3166 for (i = 0; i < totnpgs; i++) { 3167 pp = ppa[i]; 3168 ASSERT(PAGE_SHARED(pp)); 3169 ASSERT(!PP_ISFREE(pp)); 3170 pfn = page_pptonum(pp); 3171 if (i == 0) { 3172 if (!IS_P2ALIGNED(pfn, totnpgs)) { 3173 contig = 0; 3174 } else { 3175 first_pfn = pfn; 3176 } 3177 } else if (contig && pfn != first_pfn + i) { 3178 contig = 0; 3179 } 3180 if (pp->p_szc == 0) { 3181 if (root) { 3182 VM_STAT_ADD(segvnvmstats.fullszcpages[1]); 3183 return (0); 3184 } 3185 } else if (!root) { 3186 if ((curszc = pp->p_szc) >= szc) { 3187 VM_STAT_ADD(segvnvmstats.fullszcpages[2]); 3188 return (0); 3189 } 3190 if (curszc == 0) { 3191 /* 3192 * p_szc changed means we don't have all pages 3193 * locked. return failure. 3194 */ 3195 VM_STAT_ADD(segvnvmstats.fullszcpages[3]); 3196 return (0); 3197 } 3198 curnpgs = page_get_pagecnt(curszc); 3199 if (!IS_P2ALIGNED(pfn, curnpgs) || 3200 !IS_P2ALIGNED(i, curnpgs)) { 3201 VM_STAT_ADD(segvnvmstats.fullszcpages[4]); 3202 return (0); 3203 } 3204 root = 1; 3205 } else { 3206 ASSERT(i > 0); 3207 VM_STAT_ADD(segvnvmstats.fullszcpages[5]); 3208 if (pp->p_szc != curszc) { 3209 VM_STAT_ADD(segvnvmstats.fullszcpages[6]); 3210 return (0); 3211 } 3212 if (pfn - 1 != page_pptonum(ppa[i - 1])) { 3213 panic("segvn_full_szcpages: " 3214 "large page not physically contiguous"); 3215 } 3216 if (P2PHASE(pfn, curnpgs) == curnpgs - 1) { 3217 root = 0; 3218 } 3219 } 3220 } 3221 3222 for (i = 0; i < totnpgs; i++) { 3223 ASSERT(ppa[i]->p_szc < szc); 3224 if (!page_tryupgrade(ppa[i])) { 3225 for (j = 0; j < i; j++) { 3226 page_downgrade(ppa[j]); 3227 } 3228 *pszc = ppa[i]->p_szc; 3229 *upgrdfail = 1; 3230 VM_STAT_ADD(segvnvmstats.fullszcpages[7]); 3231 return (0); 3232 } 3233 } 3234 3235 /* 3236 * When a page is put a free cachelist its szc is set to 0. if file 3237 * system reclaimed pages from cachelist targ pages will be physically 3238 * contiguous with 0 p_szc. in this case just upgrade szc of targ 3239 * pages without any relocations. 3240 * To avoid any hat issues with previous small mappings 3241 * hat_pageunload() the target pages first. 3242 */ 3243 if (contig) { 3244 VM_STAT_ADD(segvnvmstats.fullszcpages[8]); 3245 for (i = 0; i < totnpgs; i++) { 3246 (void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD); 3247 } 3248 for (i = 0; i < totnpgs; i++) { 3249 ppa[i]->p_szc = szc; 3250 } 3251 for (i = 0; i < totnpgs; i++) { 3252 ASSERT(PAGE_EXCL(ppa[i])); 3253 page_downgrade(ppa[i]); 3254 } 3255 if (pszc != NULL) { 3256 *pszc = szc; 3257 } 3258 } 3259 VM_STAT_ADD(segvnvmstats.fullszcpages[9]); 3260 return (1); 3261 } 3262 3263 /* 3264 * Create physically contiguous pages for [vp, off] - [vp, off + 3265 * page_size(szc)) range and for private segment return them in ppa array. 3266 * Pages are created either via IO or relocations. 3267 * 3268 * Return 1 on success and 0 on failure. 3269 * 3270 * If physically contiguous pages already exist for this range return 1 without 3271 * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa 3272 * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE(). 3273 */ 3274 3275 static int 3276 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off, 3277 uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc, 3278 int *downsize) 3279 3280 { 3281 page_t *pplist = *ppplist; 3282 size_t pgsz = page_get_pagesize(szc); 3283 pgcnt_t pages = btop(pgsz); 3284 ulong_t start_off = off; 3285 u_offset_t eoff = off + pgsz; 3286 spgcnt_t nreloc; 3287 u_offset_t io_off = off; 3288 size_t io_len; 3289 page_t *io_pplist = NULL; 3290 page_t *done_pplist = NULL; 3291 pgcnt_t pgidx = 0; 3292 page_t *pp; 3293 page_t *newpp; 3294 page_t *targpp; 3295 int io_err = 0; 3296 int i; 3297 pfn_t pfn; 3298 ulong_t ppages; 3299 page_t *targ_pplist = NULL; 3300 page_t *repl_pplist = NULL; 3301 page_t *tmp_pplist; 3302 int nios = 0; 3303 uint_t pszc; 3304 struct vattr va; 3305 3306 VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]); 3307 3308 ASSERT(szc != 0); 3309 ASSERT(pplist->p_szc == szc); 3310 3311 /* 3312 * downsize will be set to 1 only if we fail to lock pages. this will 3313 * allow subsequent faults to try to relocate the page again. If we 3314 * fail due to misalignment don't downsize and let the caller map the 3315 * whole region with small mappings to avoid more faults into the area 3316 * where we can't get large pages anyway. 3317 */ 3318 *downsize = 0; 3319 3320 while (off < eoff) { 3321 newpp = pplist; 3322 ASSERT(newpp != NULL); 3323 ASSERT(PAGE_EXCL(newpp)); 3324 ASSERT(!PP_ISFREE(newpp)); 3325 /* 3326 * we pass NULL for nrelocp to page_lookup_create() 3327 * so that it doesn't relocate. We relocate here 3328 * later only after we make sure we can lock all 3329 * pages in the range we handle and they are all 3330 * aligned. 3331 */ 3332 pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0); 3333 ASSERT(pp != NULL); 3334 ASSERT(!PP_ISFREE(pp)); 3335 ASSERT(pp->p_vnode == vp); 3336 ASSERT(pp->p_offset == off); 3337 if (pp == newpp) { 3338 VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]); 3339 page_sub(&pplist, pp); 3340 ASSERT(PAGE_EXCL(pp)); 3341 ASSERT(page_iolock_assert(pp)); 3342 page_list_concat(&io_pplist, &pp); 3343 off += PAGESIZE; 3344 continue; 3345 } 3346 VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]); 3347 pfn = page_pptonum(pp); 3348 pszc = pp->p_szc; 3349 if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL && 3350 IS_P2ALIGNED(pfn, pages)) { 3351 ASSERT(repl_pplist == NULL); 3352 ASSERT(done_pplist == NULL); 3353 ASSERT(pplist == *ppplist); 3354 page_unlock(pp); 3355 page_free_replacement_page(pplist); 3356 page_create_putback(pages); 3357 *ppplist = NULL; 3358 VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]); 3359 return (1); 3360 } 3361 if (pszc >= szc) { 3362 page_unlock(pp); 3363 segvn_faultvnmpss_align_err1++; 3364 goto out; 3365 } 3366 ppages = page_get_pagecnt(pszc); 3367 if (!IS_P2ALIGNED(pfn, ppages)) { 3368 ASSERT(pszc > 0); 3369 /* 3370 * sizing down to pszc won't help. 3371 */ 3372 page_unlock(pp); 3373 segvn_faultvnmpss_align_err2++; 3374 goto out; 3375 } 3376 pfn = page_pptonum(newpp); 3377 if (!IS_P2ALIGNED(pfn, ppages)) { 3378 ASSERT(pszc > 0); 3379 /* 3380 * sizing down to pszc won't help. 3381 */ 3382 page_unlock(pp); 3383 segvn_faultvnmpss_align_err3++; 3384 goto out; 3385 } 3386 if (!PAGE_EXCL(pp)) { 3387 VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]); 3388 page_unlock(pp); 3389 *downsize = 1; 3390 *ret_pszc = pp->p_szc; 3391 goto out; 3392 } 3393 targpp = pp; 3394 if (io_pplist != NULL) { 3395 VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]); 3396 io_len = off - io_off; 3397 /* 3398 * Some file systems like NFS don't check EOF 3399 * conditions in VOP_PAGEIO(). Check it here 3400 * now that pages are locked SE_EXCL. Any file 3401 * truncation will wait until the pages are 3402 * unlocked so no need to worry that file will 3403 * be truncated after we check its size here. 3404 * XXX fix NFS to remove this check. 3405 */ 3406 va.va_mask = AT_SIZE; 3407 if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL)) { 3408 VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]); 3409 page_unlock(targpp); 3410 goto out; 3411 } 3412 if (btopr(va.va_size) < btopr(io_off + io_len)) { 3413 VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]); 3414 *downsize = 1; 3415 *ret_pszc = 0; 3416 page_unlock(targpp); 3417 goto out; 3418 } 3419 io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len, 3420 B_READ, svd->cred, NULL); 3421 if (io_err) { 3422 VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]); 3423 page_unlock(targpp); 3424 if (io_err == EDEADLK) { 3425 segvn_vmpss_pageio_deadlk_err++; 3426 } 3427 goto out; 3428 } 3429 nios++; 3430 VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]); 3431 while (io_pplist != NULL) { 3432 pp = io_pplist; 3433 page_sub(&io_pplist, pp); 3434 ASSERT(page_iolock_assert(pp)); 3435 page_io_unlock(pp); 3436 pgidx = (pp->p_offset - start_off) >> 3437 PAGESHIFT; 3438 ASSERT(pgidx < pages); 3439 ppa[pgidx] = pp; 3440 page_list_concat(&done_pplist, &pp); 3441 } 3442 } 3443 pp = targpp; 3444 ASSERT(PAGE_EXCL(pp)); 3445 ASSERT(pp->p_szc <= pszc); 3446 if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) { 3447 VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]); 3448 page_unlock(pp); 3449 *downsize = 1; 3450 *ret_pszc = pp->p_szc; 3451 goto out; 3452 } 3453 VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]); 3454 /* 3455 * page szc chould have changed before the entire group was 3456 * locked. reread page szc. 3457 */ 3458 pszc = pp->p_szc; 3459 ppages = page_get_pagecnt(pszc); 3460 3461 /* link just the roots */ 3462 page_list_concat(&targ_pplist, &pp); 3463 page_sub(&pplist, newpp); 3464 page_list_concat(&repl_pplist, &newpp); 3465 off += PAGESIZE; 3466 while (--ppages != 0) { 3467 newpp = pplist; 3468 page_sub(&pplist, newpp); 3469 off += PAGESIZE; 3470 } 3471 io_off = off; 3472 } 3473 if (io_pplist != NULL) { 3474 VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]); 3475 io_len = eoff - io_off; 3476 va.va_mask = AT_SIZE; 3477 if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL) != 0) { 3478 VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]); 3479 goto out; 3480 } 3481 if (btopr(va.va_size) < btopr(io_off + io_len)) { 3482 VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]); 3483 *downsize = 1; 3484 *ret_pszc = 0; 3485 goto out; 3486 } 3487 io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len, 3488 B_READ, svd->cred, NULL); 3489 if (io_err) { 3490 VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]); 3491 if (io_err == EDEADLK) { 3492 segvn_vmpss_pageio_deadlk_err++; 3493 } 3494 goto out; 3495 } 3496 nios++; 3497 while (io_pplist != NULL) { 3498 pp = io_pplist; 3499 page_sub(&io_pplist, pp); 3500 ASSERT(page_iolock_assert(pp)); 3501 page_io_unlock(pp); 3502 pgidx = (pp->p_offset - start_off) >> PAGESHIFT; 3503 ASSERT(pgidx < pages); 3504 ppa[pgidx] = pp; 3505 } 3506 } 3507 /* 3508 * we're now bound to succeed or panic. 3509 * remove pages from done_pplist. it's not needed anymore. 3510 */ 3511 while (done_pplist != NULL) { 3512 pp = done_pplist; 3513 page_sub(&done_pplist, pp); 3514 } 3515 VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]); 3516 ASSERT(pplist == NULL); 3517 *ppplist = NULL; 3518 while (targ_pplist != NULL) { 3519 int ret; 3520 VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]); 3521 ASSERT(repl_pplist); 3522 pp = targ_pplist; 3523 page_sub(&targ_pplist, pp); 3524 pgidx = (pp->p_offset - start_off) >> PAGESHIFT; 3525 newpp = repl_pplist; 3526 page_sub(&repl_pplist, newpp); 3527 #ifdef DEBUG 3528 pfn = page_pptonum(pp); 3529 pszc = pp->p_szc; 3530 ppages = page_get_pagecnt(pszc); 3531 ASSERT(IS_P2ALIGNED(pfn, ppages)); 3532 pfn = page_pptonum(newpp); 3533 ASSERT(IS_P2ALIGNED(pfn, ppages)); 3534 ASSERT(P2PHASE(pfn, pages) == pgidx); 3535 #endif 3536 nreloc = 0; 3537 ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL); 3538 if (ret != 0 || nreloc == 0) { 3539 panic("segvn_fill_vp_pages: " 3540 "page_relocate failed"); 3541 } 3542 pp = newpp; 3543 while (nreloc-- != 0) { 3544 ASSERT(PAGE_EXCL(pp)); 3545 ASSERT(pp->p_vnode == vp); 3546 ASSERT(pgidx == 3547 ((pp->p_offset - start_off) >> PAGESHIFT)); 3548 ppa[pgidx++] = pp; 3549 pp++; 3550 } 3551 } 3552 3553 if (svd->type == MAP_PRIVATE) { 3554 VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]); 3555 for (i = 0; i < pages; i++) { 3556 ASSERT(ppa[i] != NULL); 3557 ASSERT(PAGE_EXCL(ppa[i])); 3558 ASSERT(ppa[i]->p_vnode == vp); 3559 ASSERT(ppa[i]->p_offset == 3560 start_off + (i << PAGESHIFT)); 3561 page_downgrade(ppa[i]); 3562 } 3563 ppa[pages] = NULL; 3564 } else { 3565 VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]); 3566 /* 3567 * the caller will still call VOP_GETPAGE() for shared segments 3568 * to check FS write permissions. For private segments we map 3569 * file read only anyway. so no VOP_GETPAGE is needed. 3570 */ 3571 for (i = 0; i < pages; i++) { 3572 ASSERT(ppa[i] != NULL); 3573 ASSERT(PAGE_EXCL(ppa[i])); 3574 ASSERT(ppa[i]->p_vnode == vp); 3575 ASSERT(ppa[i]->p_offset == 3576 start_off + (i << PAGESHIFT)); 3577 page_unlock(ppa[i]); 3578 } 3579 ppa[0] = NULL; 3580 } 3581 3582 return (1); 3583 out: 3584 /* 3585 * Do the cleanup. Unlock target pages we didn't relocate. They are 3586 * linked on targ_pplist by root pages. reassemble unused replacement 3587 * and io pages back to pplist. 3588 */ 3589 if (io_pplist != NULL) { 3590 VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]); 3591 pp = io_pplist; 3592 do { 3593 ASSERT(pp->p_vnode == vp); 3594 ASSERT(pp->p_offset == io_off); 3595 ASSERT(page_iolock_assert(pp)); 3596 page_io_unlock(pp); 3597 page_hashout(pp, NULL); 3598 io_off += PAGESIZE; 3599 } while ((pp = pp->p_next) != io_pplist); 3600 page_list_concat(&io_pplist, &pplist); 3601 pplist = io_pplist; 3602 } 3603 tmp_pplist = NULL; 3604 while (targ_pplist != NULL) { 3605 VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]); 3606 pp = targ_pplist; 3607 ASSERT(PAGE_EXCL(pp)); 3608 page_sub(&targ_pplist, pp); 3609 3610 pszc = pp->p_szc; 3611 ppages = page_get_pagecnt(pszc); 3612 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages)); 3613 3614 if (pszc != 0) { 3615 group_page_unlock(pp); 3616 } 3617 page_unlock(pp); 3618 3619 pp = repl_pplist; 3620 ASSERT(pp != NULL); 3621 ASSERT(PAGE_EXCL(pp)); 3622 ASSERT(pp->p_szc == szc); 3623 page_sub(&repl_pplist, pp); 3624 3625 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages)); 3626 3627 /* relink replacement page */ 3628 page_list_concat(&tmp_pplist, &pp); 3629 while (--ppages != 0) { 3630 VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]); 3631 pp++; 3632 ASSERT(PAGE_EXCL(pp)); 3633 ASSERT(pp->p_szc == szc); 3634 page_list_concat(&tmp_pplist, &pp); 3635 } 3636 } 3637 if (tmp_pplist != NULL) { 3638 VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]); 3639 page_list_concat(&tmp_pplist, &pplist); 3640 pplist = tmp_pplist; 3641 } 3642 /* 3643 * at this point all pages are either on done_pplist or 3644 * pplist. They can't be all on done_pplist otherwise 3645 * we'd've been done. 3646 */ 3647 ASSERT(pplist != NULL); 3648 if (nios != 0) { 3649 VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]); 3650 pp = pplist; 3651 do { 3652 VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]); 3653 ASSERT(pp->p_szc == szc); 3654 ASSERT(PAGE_EXCL(pp)); 3655 ASSERT(pp->p_vnode != vp); 3656 pp->p_szc = 0; 3657 } while ((pp = pp->p_next) != pplist); 3658 3659 pp = done_pplist; 3660 do { 3661 VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]); 3662 ASSERT(pp->p_szc == szc); 3663 ASSERT(PAGE_EXCL(pp)); 3664 ASSERT(pp->p_vnode == vp); 3665 pp->p_szc = 0; 3666 } while ((pp = pp->p_next) != done_pplist); 3667 3668 while (pplist != NULL) { 3669 VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]); 3670 pp = pplist; 3671 page_sub(&pplist, pp); 3672 page_free(pp, 0); 3673 } 3674 3675 while (done_pplist != NULL) { 3676 VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]); 3677 pp = done_pplist; 3678 page_sub(&done_pplist, pp); 3679 page_unlock(pp); 3680 } 3681 *ppplist = NULL; 3682 return (0); 3683 } 3684 ASSERT(pplist == *ppplist); 3685 if (io_err) { 3686 VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]); 3687 /* 3688 * don't downsize on io error. 3689 * see if vop_getpage succeeds. 3690 * pplist may still be used in this case 3691 * for relocations. 3692 */ 3693 return (0); 3694 } 3695 VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]); 3696 page_free_replacement_page(pplist); 3697 page_create_putback(pages); 3698 *ppplist = NULL; 3699 return (0); 3700 } 3701 3702 int segvn_anypgsz = 0; 3703 3704 #define SEGVN_RESTORE_SOFTLOCK_VP(type, pages) \ 3705 if ((type) == F_SOFTLOCK) { \ 3706 atomic_add_long((ulong_t *)&(svd)->softlockcnt, \ 3707 -(pages)); \ 3708 } 3709 3710 #define SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot) \ 3711 if (IS_VMODSORT((ppa)[0]->p_vnode)) { \ 3712 if ((rw) == S_WRITE) { \ 3713 for (i = 0; i < (pages); i++) { \ 3714 ASSERT((ppa)[i]->p_vnode == \ 3715 (ppa)[0]->p_vnode); \ 3716 hat_setmod((ppa)[i]); \ 3717 } \ 3718 } else if ((rw) != S_OTHER && \ 3719 ((prot) & (vpprot) & PROT_WRITE)) { \ 3720 for (i = 0; i < (pages); i++) { \ 3721 ASSERT((ppa)[i]->p_vnode == \ 3722 (ppa)[0]->p_vnode); \ 3723 if (!hat_ismod((ppa)[i])) { \ 3724 prot &= ~PROT_WRITE; \ 3725 break; \ 3726 } \ 3727 } \ 3728 } \ 3729 } 3730 3731 #ifdef VM_STATS 3732 3733 #define SEGVN_VMSTAT_FLTVNPAGES(idx) \ 3734 VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]); 3735 3736 #else /* VM_STATS */ 3737 3738 #define SEGVN_VMSTAT_FLTVNPAGES(idx) 3739 3740 #endif 3741 3742 static faultcode_t 3743 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr, 3744 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr, 3745 caddr_t eaddr, int brkcow) 3746 { 3747 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 3748 struct anon_map *amp = svd->amp; 3749 uchar_t segtype = svd->type; 3750 uint_t szc = seg->s_szc; 3751 size_t pgsz = page_get_pagesize(szc); 3752 size_t maxpgsz = pgsz; 3753 pgcnt_t pages = btop(pgsz); 3754 pgcnt_t maxpages = pages; 3755 size_t ppasize = (pages + 1) * sizeof (page_t *); 3756 caddr_t a = lpgaddr; 3757 caddr_t maxlpgeaddr = lpgeaddr; 3758 u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base); 3759 ulong_t aindx = svd->anon_index + seg_page(seg, a); 3760 struct vpage *vpage = (svd->vpage != NULL) ? 3761 &svd->vpage[seg_page(seg, a)] : NULL; 3762 vnode_t *vp = svd->vp; 3763 page_t **ppa; 3764 uint_t pszc; 3765 size_t ppgsz; 3766 pgcnt_t ppages; 3767 faultcode_t err = 0; 3768 int ierr; 3769 int vop_size_err = 0; 3770 uint_t protchk, prot, vpprot; 3771 ulong_t i; 3772 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD; 3773 anon_sync_obj_t an_cookie; 3774 enum seg_rw arw; 3775 int alloc_failed = 0; 3776 int adjszc_chk; 3777 struct vattr va; 3778 int xhat = 0; 3779 page_t *pplist; 3780 pfn_t pfn; 3781 int physcontig; 3782 int upgrdfail; 3783 int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */ 3784 int tron = (svd->tr_state == SEGVN_TR_ON); 3785 3786 ASSERT(szc != 0); 3787 ASSERT(vp != NULL); 3788 ASSERT(brkcow == 0 || amp != NULL); 3789 ASSERT(tron == 0 || amp != NULL); 3790 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */ 3791 ASSERT(!(svd->flags & MAP_NORESERVE)); 3792 ASSERT(type != F_SOFTUNLOCK); 3793 ASSERT(IS_P2ALIGNED(a, maxpgsz)); 3794 ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages)); 3795 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 3796 ASSERT(seg->s_szc < NBBY * sizeof (int)); 3797 ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz); 3798 ASSERT(svd->tr_state != SEGVN_TR_INIT); 3799 3800 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]); 3801 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]); 3802 3803 if (svd->flags & MAP_TEXT) { 3804 hat_flag |= HAT_LOAD_TEXT; 3805 } 3806 3807 if (svd->pageprot) { 3808 switch (rw) { 3809 case S_READ: 3810 protchk = PROT_READ; 3811 break; 3812 case S_WRITE: 3813 protchk = PROT_WRITE; 3814 break; 3815 case S_EXEC: 3816 protchk = PROT_EXEC; 3817 break; 3818 case S_OTHER: 3819 default: 3820 protchk = PROT_READ | PROT_WRITE | PROT_EXEC; 3821 break; 3822 } 3823 } else { 3824 prot = svd->prot; 3825 /* caller has already done segment level protection check. */ 3826 } 3827 3828 if (seg->s_as->a_hat != hat) { 3829 xhat = 1; 3830 } 3831 3832 if (rw == S_WRITE && segtype == MAP_PRIVATE) { 3833 SEGVN_VMSTAT_FLTVNPAGES(2); 3834 arw = S_READ; 3835 } else { 3836 arw = rw; 3837 } 3838 3839 ppa = kmem_alloc(ppasize, KM_SLEEP); 3840 3841 VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]); 3842 3843 for (;;) { 3844 adjszc_chk = 0; 3845 for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) { 3846 if (adjszc_chk) { 3847 while (szc < seg->s_szc) { 3848 uintptr_t e; 3849 uint_t tszc; 3850 tszc = segvn_anypgsz_vnode ? szc + 1 : 3851 seg->s_szc; 3852 ppgsz = page_get_pagesize(tszc); 3853 if (!IS_P2ALIGNED(a, ppgsz) || 3854 ((alloc_failed >> tszc) & 0x1)) { 3855 break; 3856 } 3857 SEGVN_VMSTAT_FLTVNPAGES(4); 3858 szc = tszc; 3859 pgsz = ppgsz; 3860 pages = btop(pgsz); 3861 e = P2ROUNDUP((uintptr_t)eaddr, pgsz); 3862 lpgeaddr = (caddr_t)e; 3863 } 3864 } 3865 3866 again: 3867 if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) { 3868 ASSERT(IS_P2ALIGNED(aindx, maxpages)); 3869 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 3870 anon_array_enter(amp, aindx, &an_cookie); 3871 if (anon_get_ptr(amp->ahp, aindx) != NULL) { 3872 SEGVN_VMSTAT_FLTVNPAGES(5); 3873 ASSERT(anon_pages(amp->ahp, aindx, 3874 maxpages) == maxpages); 3875 anon_array_exit(&an_cookie); 3876 ANON_LOCK_EXIT(&->a_rwlock); 3877 err = segvn_fault_anonpages(hat, seg, 3878 a, a + maxpgsz, type, rw, 3879 MAX(a, addr), 3880 MIN(a + maxpgsz, eaddr), brkcow); 3881 if (err != 0) { 3882 SEGVN_VMSTAT_FLTVNPAGES(6); 3883 goto out; 3884 } 3885 if (szc < seg->s_szc) { 3886 szc = seg->s_szc; 3887 pgsz = maxpgsz; 3888 pages = maxpages; 3889 lpgeaddr = maxlpgeaddr; 3890 } 3891 goto next; 3892 } else { 3893 ASSERT(anon_pages(amp->ahp, aindx, 3894 maxpages) == 0); 3895 SEGVN_VMSTAT_FLTVNPAGES(7); 3896 anon_array_exit(&an_cookie); 3897 ANON_LOCK_EXIT(&->a_rwlock); 3898 } 3899 } 3900 ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz)); 3901 ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz)); 3902 3903 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) { 3904 ASSERT(vpage != NULL); 3905 prot = VPP_PROT(vpage); 3906 ASSERT(sameprot(seg, a, maxpgsz)); 3907 if ((prot & protchk) == 0) { 3908 SEGVN_VMSTAT_FLTVNPAGES(8); 3909 err = FC_PROT; 3910 goto out; 3911 } 3912 } 3913 if (type == F_SOFTLOCK) { 3914 atomic_add_long((ulong_t *)&svd->softlockcnt, 3915 pages); 3916 } 3917 3918 pplist = NULL; 3919 physcontig = 0; 3920 ppa[0] = NULL; 3921 if (!brkcow && !tron && szc && 3922 !page_exists_physcontig(vp, off, szc, 3923 segtype == MAP_PRIVATE ? ppa : NULL)) { 3924 SEGVN_VMSTAT_FLTVNPAGES(9); 3925 if (page_alloc_pages(vp, seg, a, &pplist, NULL, 3926 szc, 0, 0) && type != F_SOFTLOCK) { 3927 SEGVN_VMSTAT_FLTVNPAGES(10); 3928 pszc = 0; 3929 ierr = -1; 3930 alloc_failed |= (1 << szc); 3931 break; 3932 } 3933 if (pplist != NULL && 3934 vp->v_mpssdata == SEGVN_PAGEIO) { 3935 int downsize; 3936 SEGVN_VMSTAT_FLTVNPAGES(11); 3937 physcontig = segvn_fill_vp_pages(svd, 3938 vp, off, szc, ppa, &pplist, 3939 &pszc, &downsize); 3940 ASSERT(!physcontig || pplist == NULL); 3941 if (!physcontig && downsize && 3942 type != F_SOFTLOCK) { 3943 ASSERT(pplist == NULL); 3944 SEGVN_VMSTAT_FLTVNPAGES(12); 3945 ierr = -1; 3946 break; 3947 } 3948 ASSERT(!physcontig || 3949 segtype == MAP_PRIVATE || 3950 ppa[0] == NULL); 3951 if (physcontig && ppa[0] == NULL) { 3952 physcontig = 0; 3953 } 3954 } 3955 } else if (!brkcow && !tron && szc && ppa[0] != NULL) { 3956 SEGVN_VMSTAT_FLTVNPAGES(13); 3957 ASSERT(segtype == MAP_PRIVATE); 3958 physcontig = 1; 3959 } 3960 3961 if (!physcontig) { 3962 SEGVN_VMSTAT_FLTVNPAGES(14); 3963 ppa[0] = NULL; 3964 ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz, 3965 &vpprot, ppa, pgsz, seg, a, arw, 3966 svd->cred, NULL); 3967 #ifdef DEBUG 3968 if (ierr == 0) { 3969 for (i = 0; i < pages; i++) { 3970 ASSERT(PAGE_LOCKED(ppa[i])); 3971 ASSERT(!PP_ISFREE(ppa[i])); 3972 ASSERT(ppa[i]->p_vnode == vp); 3973 ASSERT(ppa[i]->p_offset == 3974 off + (i << PAGESHIFT)); 3975 } 3976 } 3977 #endif /* DEBUG */ 3978 if (segtype == MAP_PRIVATE) { 3979 SEGVN_VMSTAT_FLTVNPAGES(15); 3980 vpprot &= ~PROT_WRITE; 3981 } 3982 } else { 3983 ASSERT(segtype == MAP_PRIVATE); 3984 SEGVN_VMSTAT_FLTVNPAGES(16); 3985 vpprot = PROT_ALL & ~PROT_WRITE; 3986 ierr = 0; 3987 } 3988 3989 if (ierr != 0) { 3990 SEGVN_VMSTAT_FLTVNPAGES(17); 3991 if (pplist != NULL) { 3992 SEGVN_VMSTAT_FLTVNPAGES(18); 3993 page_free_replacement_page(pplist); 3994 page_create_putback(pages); 3995 } 3996 SEGVN_RESTORE_SOFTLOCK_VP(type, pages); 3997 if (a + pgsz <= eaddr) { 3998 SEGVN_VMSTAT_FLTVNPAGES(19); 3999 err = FC_MAKE_ERR(ierr); 4000 goto out; 4001 } 4002 va.va_mask = AT_SIZE; 4003 if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL)) { 4004 SEGVN_VMSTAT_FLTVNPAGES(20); 4005 err = FC_MAKE_ERR(EIO); 4006 goto out; 4007 } 4008 if (btopr(va.va_size) >= btopr(off + pgsz)) { 4009 SEGVN_VMSTAT_FLTVNPAGES(21); 4010 err = FC_MAKE_ERR(ierr); 4011 goto out; 4012 } 4013 if (btopr(va.va_size) < 4014 btopr(off + (eaddr - a))) { 4015 SEGVN_VMSTAT_FLTVNPAGES(22); 4016 err = FC_MAKE_ERR(ierr); 4017 goto out; 4018 } 4019 if (brkcow || tron || type == F_SOFTLOCK) { 4020 /* can't reduce map area */ 4021 SEGVN_VMSTAT_FLTVNPAGES(23); 4022 vop_size_err = 1; 4023 goto out; 4024 } 4025 SEGVN_VMSTAT_FLTVNPAGES(24); 4026 ASSERT(szc != 0); 4027 pszc = 0; 4028 ierr = -1; 4029 break; 4030 } 4031 4032 if (amp != NULL) { 4033 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 4034 anon_array_enter(amp, aindx, &an_cookie); 4035 } 4036 if (amp != NULL && 4037 anon_get_ptr(amp->ahp, aindx) != NULL) { 4038 ulong_t taindx = P2ALIGN(aindx, maxpages); 4039 4040 SEGVN_VMSTAT_FLTVNPAGES(25); 4041 ASSERT(anon_pages(amp->ahp, taindx, 4042 maxpages) == maxpages); 4043 for (i = 0; i < pages; i++) { 4044 page_unlock(ppa[i]); 4045 } 4046 anon_array_exit(&an_cookie); 4047 ANON_LOCK_EXIT(&->a_rwlock); 4048 if (pplist != NULL) { 4049 page_free_replacement_page(pplist); 4050 page_create_putback(pages); 4051 } 4052 SEGVN_RESTORE_SOFTLOCK_VP(type, pages); 4053 if (szc < seg->s_szc) { 4054 SEGVN_VMSTAT_FLTVNPAGES(26); 4055 /* 4056 * For private segments SOFTLOCK 4057 * either always breaks cow (any rw 4058 * type except S_READ_NOCOW) or 4059 * address space is locked as writer 4060 * (S_READ_NOCOW case) and anon slots 4061 * can't show up on second check. 4062 * Therefore if we are here for 4063 * SOFTLOCK case it must be a cow 4064 * break but cow break never reduces 4065 * szc. text replication (tron) in 4066 * this case works as cow break. 4067 * Thus the assert below. 4068 */ 4069 ASSERT(!brkcow && !tron && 4070 type != F_SOFTLOCK); 4071 pszc = seg->s_szc; 4072 ierr = -2; 4073 break; 4074 } 4075 ASSERT(IS_P2ALIGNED(a, maxpgsz)); 4076 goto again; 4077 } 4078 #ifdef DEBUG 4079 if (amp != NULL) { 4080 ulong_t taindx = P2ALIGN(aindx, maxpages); 4081 ASSERT(!anon_pages(amp->ahp, taindx, maxpages)); 4082 } 4083 #endif /* DEBUG */ 4084 4085 if (brkcow || tron) { 4086 ASSERT(amp != NULL); 4087 ASSERT(pplist == NULL); 4088 ASSERT(szc == seg->s_szc); 4089 ASSERT(IS_P2ALIGNED(a, maxpgsz)); 4090 ASSERT(IS_P2ALIGNED(aindx, maxpages)); 4091 SEGVN_VMSTAT_FLTVNPAGES(27); 4092 ierr = anon_map_privatepages(amp, aindx, szc, 4093 seg, a, prot, ppa, vpage, segvn_anypgsz, 4094 tron ? PG_LOCAL : 0, svd->cred); 4095 if (ierr != 0) { 4096 SEGVN_VMSTAT_FLTVNPAGES(28); 4097 anon_array_exit(&an_cookie); 4098 ANON_LOCK_EXIT(&->a_rwlock); 4099 SEGVN_RESTORE_SOFTLOCK_VP(type, pages); 4100 err = FC_MAKE_ERR(ierr); 4101 goto out; 4102 } 4103 4104 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode)); 4105 /* 4106 * p_szc can't be changed for locked 4107 * swapfs pages. 4108 */ 4109 ASSERT(svd->rcookie == 4110 HAT_INVALID_REGION_COOKIE); 4111 hat_memload_array(hat, a, pgsz, ppa, prot, 4112 hat_flag); 4113 4114 if (!(hat_flag & HAT_LOAD_LOCK)) { 4115 SEGVN_VMSTAT_FLTVNPAGES(29); 4116 for (i = 0; i < pages; i++) { 4117 page_unlock(ppa[i]); 4118 } 4119 } 4120 anon_array_exit(&an_cookie); 4121 ANON_LOCK_EXIT(&->a_rwlock); 4122 goto next; 4123 } 4124 4125 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE || 4126 (!svd->pageprot && svd->prot == (prot & vpprot))); 4127 4128 pfn = page_pptonum(ppa[0]); 4129 /* 4130 * hat_page_demote() needs an SE_EXCL lock on one of 4131 * constituent page_t's and it decreases root's p_szc 4132 * last. This means if root's p_szc is equal szc and 4133 * all its constituent pages are locked 4134 * hat_page_demote() that could have changed p_szc to 4135 * szc is already done and no new have page_demote() 4136 * can start for this large page. 4137 */ 4138 4139 /* 4140 * we need to make sure same mapping size is used for 4141 * the same address range if there's a possibility the 4142 * adddress is already mapped because hat layer panics 4143 * when translation is loaded for the range already 4144 * mapped with a different page size. We achieve it 4145 * by always using largest page size possible subject 4146 * to the constraints of page size, segment page size 4147 * and page alignment. Since mappings are invalidated 4148 * when those constraints change and make it 4149 * impossible to use previously used mapping size no 4150 * mapping size conflicts should happen. 4151 */ 4152 4153 chkszc: 4154 if ((pszc = ppa[0]->p_szc) == szc && 4155 IS_P2ALIGNED(pfn, pages)) { 4156 4157 SEGVN_VMSTAT_FLTVNPAGES(30); 4158 #ifdef DEBUG 4159 for (i = 0; i < pages; i++) { 4160 ASSERT(PAGE_LOCKED(ppa[i])); 4161 ASSERT(!PP_ISFREE(ppa[i])); 4162 ASSERT(page_pptonum(ppa[i]) == 4163 pfn + i); 4164 ASSERT(ppa[i]->p_szc == szc); 4165 ASSERT(ppa[i]->p_vnode == vp); 4166 ASSERT(ppa[i]->p_offset == 4167 off + (i << PAGESHIFT)); 4168 } 4169 #endif /* DEBUG */ 4170 /* 4171 * All pages are of szc we need and they are 4172 * all locked so they can't change szc. load 4173 * translations. 4174 * 4175 * if page got promoted since last check 4176 * we don't need pplist. 4177 */ 4178 if (pplist != NULL) { 4179 page_free_replacement_page(pplist); 4180 page_create_putback(pages); 4181 } 4182 if (PP_ISMIGRATE(ppa[0])) { 4183 page_migrate(seg, a, ppa, pages); 4184 } 4185 SEGVN_UPDATE_MODBITS(ppa, pages, rw, 4186 prot, vpprot); 4187 if (!xhat) { 4188 hat_memload_array_region(hat, a, pgsz, 4189 ppa, prot & vpprot, hat_flag, 4190 svd->rcookie); 4191 } else { 4192 /* 4193 * avoid large xhat mappings to FS 4194 * pages so that hat_page_demote() 4195 * doesn't need to check for xhat 4196 * large mappings. 4197 * Don't use regions with xhats. 4198 */ 4199 for (i = 0; i < pages; i++) { 4200 hat_memload(hat, 4201 a + (i << PAGESHIFT), 4202 ppa[i], prot & vpprot, 4203 hat_flag); 4204 } 4205 } 4206 4207 if (!(hat_flag & HAT_LOAD_LOCK)) { 4208 for (i = 0; i < pages; i++) { 4209 page_unlock(ppa[i]); 4210 } 4211 } 4212 if (amp != NULL) { 4213 anon_array_exit(&an_cookie); 4214 ANON_LOCK_EXIT(&->a_rwlock); 4215 } 4216 goto next; 4217 } 4218 4219 /* 4220 * See if upsize is possible. 4221 */ 4222 if (pszc > szc && szc < seg->s_szc && 4223 (segvn_anypgsz_vnode || pszc >= seg->s_szc)) { 4224 pgcnt_t aphase; 4225 uint_t pszc1 = MIN(pszc, seg->s_szc); 4226 ppgsz = page_get_pagesize(pszc1); 4227 ppages = btop(ppgsz); 4228 aphase = btop(P2PHASE((uintptr_t)a, ppgsz)); 4229 4230 ASSERT(type != F_SOFTLOCK); 4231 4232 SEGVN_VMSTAT_FLTVNPAGES(31); 4233 if (aphase != P2PHASE(pfn, ppages)) { 4234 segvn_faultvnmpss_align_err4++; 4235 } else { 4236 SEGVN_VMSTAT_FLTVNPAGES(32); 4237 if (pplist != NULL) { 4238 page_t *pl = pplist; 4239 page_free_replacement_page(pl); 4240 page_create_putback(pages); 4241 } 4242 for (i = 0; i < pages; i++) { 4243 page_unlock(ppa[i]); 4244 } 4245 if (amp != NULL) { 4246 anon_array_exit(&an_cookie); 4247 ANON_LOCK_EXIT(&->a_rwlock); 4248 } 4249 pszc = pszc1; 4250 ierr = -2; 4251 break; 4252 } 4253 } 4254 4255 /* 4256 * check if we should use smallest mapping size. 4257 */ 4258 upgrdfail = 0; 4259 if (szc == 0 || xhat || 4260 (pszc >= szc && 4261 !IS_P2ALIGNED(pfn, pages)) || 4262 (pszc < szc && 4263 !segvn_full_szcpages(ppa, szc, &upgrdfail, 4264 &pszc))) { 4265 4266 if (upgrdfail && type != F_SOFTLOCK) { 4267 /* 4268 * segvn_full_szcpages failed to lock 4269 * all pages EXCL. Size down. 4270 */ 4271 ASSERT(pszc < szc); 4272 4273 SEGVN_VMSTAT_FLTVNPAGES(33); 4274 4275 if (pplist != NULL) { 4276 page_t *pl = pplist; 4277 page_free_replacement_page(pl); 4278 page_create_putback(pages); 4279 } 4280 4281 for (i = 0; i < pages; i++) { 4282 page_unlock(ppa[i]); 4283 } 4284 if (amp != NULL) { 4285 anon_array_exit(&an_cookie); 4286 ANON_LOCK_EXIT(&->a_rwlock); 4287 } 4288 ierr = -1; 4289 break; 4290 } 4291 if (szc != 0 && !xhat && !upgrdfail) { 4292 segvn_faultvnmpss_align_err5++; 4293 } 4294 SEGVN_VMSTAT_FLTVNPAGES(34); 4295 if (pplist != NULL) { 4296 page_free_replacement_page(pplist); 4297 page_create_putback(pages); 4298 } 4299 SEGVN_UPDATE_MODBITS(ppa, pages, rw, 4300 prot, vpprot); 4301 if (upgrdfail && segvn_anypgsz_vnode) { 4302 /* SOFTLOCK case */ 4303 hat_memload_array_region(hat, a, pgsz, 4304 ppa, prot & vpprot, hat_flag, 4305 svd->rcookie); 4306 } else { 4307 for (i = 0; i < pages; i++) { 4308 hat_memload_region(hat, 4309 a + (i << PAGESHIFT), 4310 ppa[i], prot & vpprot, 4311 hat_flag, svd->rcookie); 4312 } 4313 } 4314 if (!(hat_flag & HAT_LOAD_LOCK)) { 4315 for (i = 0; i < pages; i++) { 4316 page_unlock(ppa[i]); 4317 } 4318 } 4319 if (amp != NULL) { 4320 anon_array_exit(&an_cookie); 4321 ANON_LOCK_EXIT(&->a_rwlock); 4322 } 4323 goto next; 4324 } 4325 4326 if (pszc == szc) { 4327 /* 4328 * segvn_full_szcpages() upgraded pages szc. 4329 */ 4330 ASSERT(pszc == ppa[0]->p_szc); 4331 ASSERT(IS_P2ALIGNED(pfn, pages)); 4332 goto chkszc; 4333 } 4334 4335 if (pszc > szc) { 4336 kmutex_t *szcmtx; 4337 SEGVN_VMSTAT_FLTVNPAGES(35); 4338 /* 4339 * p_szc of ppa[0] can change since we haven't 4340 * locked all constituent pages. Call 4341 * page_lock_szc() to prevent szc changes. 4342 * This should be a rare case that happens when 4343 * multiple segments use a different page size 4344 * to map the same file offsets. 4345 */ 4346 szcmtx = page_szc_lock(ppa[0]); 4347 pszc = ppa[0]->p_szc; 4348 ASSERT(szcmtx != NULL || pszc == 0); 4349 ASSERT(ppa[0]->p_szc <= pszc); 4350 if (pszc <= szc) { 4351 SEGVN_VMSTAT_FLTVNPAGES(36); 4352 if (szcmtx != NULL) { 4353 mutex_exit(szcmtx); 4354 } 4355 goto chkszc; 4356 } 4357 if (pplist != NULL) { 4358 /* 4359 * page got promoted since last check. 4360 * we don't need preaalocated large 4361 * page. 4362 */ 4363 SEGVN_VMSTAT_FLTVNPAGES(37); 4364 page_free_replacement_page(pplist); 4365 page_create_putback(pages); 4366 } 4367 SEGVN_UPDATE_MODBITS(ppa, pages, rw, 4368 prot, vpprot); 4369 hat_memload_array_region(hat, a, pgsz, ppa, 4370 prot & vpprot, hat_flag, svd->rcookie); 4371 mutex_exit(szcmtx); 4372 if (!(hat_flag & HAT_LOAD_LOCK)) { 4373 for (i = 0; i < pages; i++) { 4374 page_unlock(ppa[i]); 4375 } 4376 } 4377 if (amp != NULL) { 4378 anon_array_exit(&an_cookie); 4379 ANON_LOCK_EXIT(&->a_rwlock); 4380 } 4381 goto next; 4382 } 4383 4384 /* 4385 * if page got demoted since last check 4386 * we could have not allocated larger page. 4387 * allocate now. 4388 */ 4389 if (pplist == NULL && 4390 page_alloc_pages(vp, seg, a, &pplist, NULL, 4391 szc, 0, 0) && type != F_SOFTLOCK) { 4392 SEGVN_VMSTAT_FLTVNPAGES(38); 4393 for (i = 0; i < pages; i++) { 4394 page_unlock(ppa[i]); 4395 } 4396 if (amp != NULL) { 4397 anon_array_exit(&an_cookie); 4398 ANON_LOCK_EXIT(&->a_rwlock); 4399 } 4400 ierr = -1; 4401 alloc_failed |= (1 << szc); 4402 break; 4403 } 4404 4405 SEGVN_VMSTAT_FLTVNPAGES(39); 4406 4407 if (pplist != NULL) { 4408 segvn_relocate_pages(ppa, pplist); 4409 #ifdef DEBUG 4410 } else { 4411 ASSERT(type == F_SOFTLOCK); 4412 SEGVN_VMSTAT_FLTVNPAGES(40); 4413 #endif /* DEBUG */ 4414 } 4415 4416 SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot); 4417 4418 if (pplist == NULL && segvn_anypgsz_vnode == 0) { 4419 ASSERT(type == F_SOFTLOCK); 4420 for (i = 0; i < pages; i++) { 4421 ASSERT(ppa[i]->p_szc < szc); 4422 hat_memload_region(hat, 4423 a + (i << PAGESHIFT), 4424 ppa[i], prot & vpprot, hat_flag, 4425 svd->rcookie); 4426 } 4427 } else { 4428 ASSERT(pplist != NULL || type == F_SOFTLOCK); 4429 hat_memload_array_region(hat, a, pgsz, ppa, 4430 prot & vpprot, hat_flag, svd->rcookie); 4431 } 4432 if (!(hat_flag & HAT_LOAD_LOCK)) { 4433 for (i = 0; i < pages; i++) { 4434 ASSERT(PAGE_SHARED(ppa[i])); 4435 page_unlock(ppa[i]); 4436 } 4437 } 4438 if (amp != NULL) { 4439 anon_array_exit(&an_cookie); 4440 ANON_LOCK_EXIT(&->a_rwlock); 4441 } 4442 4443 next: 4444 if (vpage != NULL) { 4445 vpage += pages; 4446 } 4447 adjszc_chk = 1; 4448 } 4449 if (a == lpgeaddr) 4450 break; 4451 ASSERT(a < lpgeaddr); 4452 4453 ASSERT(!brkcow && !tron && type != F_SOFTLOCK); 4454 4455 /* 4456 * ierr == -1 means we failed to map with a large page. 4457 * (either due to allocation/relocation failures or 4458 * misalignment with other mappings to this file. 4459 * 4460 * ierr == -2 means some other thread allocated a large page 4461 * after we gave up tp map with a large page. retry with 4462 * larger mapping. 4463 */ 4464 ASSERT(ierr == -1 || ierr == -2); 4465 ASSERT(ierr == -2 || szc != 0); 4466 ASSERT(ierr == -1 || szc < seg->s_szc); 4467 if (ierr == -2) { 4468 SEGVN_VMSTAT_FLTVNPAGES(41); 4469 ASSERT(pszc > szc && pszc <= seg->s_szc); 4470 szc = pszc; 4471 } else if (segvn_anypgsz_vnode) { 4472 SEGVN_VMSTAT_FLTVNPAGES(42); 4473 szc--; 4474 } else { 4475 SEGVN_VMSTAT_FLTVNPAGES(43); 4476 ASSERT(pszc < szc); 4477 /* 4478 * other process created pszc large page. 4479 * but we still have to drop to 0 szc. 4480 */ 4481 szc = 0; 4482 } 4483 4484 pgsz = page_get_pagesize(szc); 4485 pages = btop(pgsz); 4486 if (ierr == -2) { 4487 /* 4488 * Size up case. Note lpgaddr may only be needed for 4489 * softlock case so we don't adjust it here. 4490 */ 4491 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz); 4492 ASSERT(a >= lpgaddr); 4493 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz); 4494 off = svd->offset + (uintptr_t)(a - seg->s_base); 4495 aindx = svd->anon_index + seg_page(seg, a); 4496 vpage = (svd->vpage != NULL) ? 4497 &svd->vpage[seg_page(seg, a)] : NULL; 4498 } else { 4499 /* 4500 * Size down case. Note lpgaddr may only be needed for 4501 * softlock case so we don't adjust it here. 4502 */ 4503 ASSERT(IS_P2ALIGNED(a, pgsz)); 4504 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz)); 4505 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz); 4506 ASSERT(a < lpgeaddr); 4507 if (a < addr) { 4508 SEGVN_VMSTAT_FLTVNPAGES(44); 4509 /* 4510 * The beginning of the large page region can 4511 * be pulled to the right to make a smaller 4512 * region. We haven't yet faulted a single 4513 * page. 4514 */ 4515 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz); 4516 ASSERT(a >= lpgaddr); 4517 off = svd->offset + 4518 (uintptr_t)(a - seg->s_base); 4519 aindx = svd->anon_index + seg_page(seg, a); 4520 vpage = (svd->vpage != NULL) ? 4521 &svd->vpage[seg_page(seg, a)] : NULL; 4522 } 4523 } 4524 } 4525 out: 4526 kmem_free(ppa, ppasize); 4527 if (!err && !vop_size_err) { 4528 SEGVN_VMSTAT_FLTVNPAGES(45); 4529 return (0); 4530 } 4531 if (type == F_SOFTLOCK && a > lpgaddr) { 4532 SEGVN_VMSTAT_FLTVNPAGES(46); 4533 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER); 4534 } 4535 if (!vop_size_err) { 4536 SEGVN_VMSTAT_FLTVNPAGES(47); 4537 return (err); 4538 } 4539 ASSERT(brkcow || tron || type == F_SOFTLOCK); 4540 /* 4541 * Large page end is mapped beyond the end of file and it's a cow 4542 * fault (can be a text replication induced cow) or softlock so we can't 4543 * reduce the map area. For now just demote the segment. This should 4544 * really only happen if the end of the file changed after the mapping 4545 * was established since when large page segments are created we make 4546 * sure they don't extend beyond the end of the file. 4547 */ 4548 SEGVN_VMSTAT_FLTVNPAGES(48); 4549 4550 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4551 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 4552 err = 0; 4553 if (seg->s_szc != 0) { 4554 segvn_fltvnpages_clrszc_cnt++; 4555 ASSERT(svd->softlockcnt == 0); 4556 err = segvn_clrszc(seg); 4557 if (err != 0) { 4558 segvn_fltvnpages_clrszc_err++; 4559 } 4560 } 4561 ASSERT(err || seg->s_szc == 0); 4562 SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock); 4563 /* segvn_fault will do its job as if szc had been zero to begin with */ 4564 return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err)); 4565 } 4566 4567 /* 4568 * This routine will attempt to fault in one large page. 4569 * it will use smaller pages if that fails. 4570 * It should only be called for pure anonymous segments. 4571 */ 4572 static faultcode_t 4573 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr, 4574 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr, 4575 caddr_t eaddr, int brkcow) 4576 { 4577 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 4578 struct anon_map *amp = svd->amp; 4579 uchar_t segtype = svd->type; 4580 uint_t szc = seg->s_szc; 4581 size_t pgsz = page_get_pagesize(szc); 4582 size_t maxpgsz = pgsz; 4583 pgcnt_t pages = btop(pgsz); 4584 uint_t ppaszc = szc; 4585 caddr_t a = lpgaddr; 4586 ulong_t aindx = svd->anon_index + seg_page(seg, a); 4587 struct vpage *vpage = (svd->vpage != NULL) ? 4588 &svd->vpage[seg_page(seg, a)] : NULL; 4589 page_t **ppa; 4590 uint_t ppa_szc; 4591 faultcode_t err; 4592 int ierr; 4593 uint_t protchk, prot, vpprot; 4594 ulong_t i; 4595 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD; 4596 anon_sync_obj_t cookie; 4597 int adjszc_chk; 4598 int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0; 4599 4600 ASSERT(szc != 0); 4601 ASSERT(amp != NULL); 4602 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */ 4603 ASSERT(!(svd->flags & MAP_NORESERVE)); 4604 ASSERT(type != F_SOFTUNLOCK); 4605 ASSERT(IS_P2ALIGNED(a, maxpgsz)); 4606 ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF); 4607 ASSERT(svd->tr_state != SEGVN_TR_INIT); 4608 4609 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 4610 4611 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]); 4612 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]); 4613 4614 if (svd->flags & MAP_TEXT) { 4615 hat_flag |= HAT_LOAD_TEXT; 4616 } 4617 4618 if (svd->pageprot) { 4619 switch (rw) { 4620 case S_READ: 4621 protchk = PROT_READ; 4622 break; 4623 case S_WRITE: 4624 protchk = PROT_WRITE; 4625 break; 4626 case S_EXEC: 4627 protchk = PROT_EXEC; 4628 break; 4629 case S_OTHER: 4630 default: 4631 protchk = PROT_READ | PROT_WRITE | PROT_EXEC; 4632 break; 4633 } 4634 VM_STAT_ADD(segvnvmstats.fltanpages[2]); 4635 } else { 4636 prot = svd->prot; 4637 /* caller has already done segment level protection check. */ 4638 } 4639 4640 ppa = kmem_cache_alloc(segvn_szc_cache[ppaszc], KM_SLEEP); 4641 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 4642 for (;;) { 4643 adjszc_chk = 0; 4644 for (; a < lpgeaddr; a += pgsz, aindx += pages) { 4645 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) { 4646 VM_STAT_ADD(segvnvmstats.fltanpages[3]); 4647 ASSERT(vpage != NULL); 4648 prot = VPP_PROT(vpage); 4649 ASSERT(sameprot(seg, a, maxpgsz)); 4650 if ((prot & protchk) == 0) { 4651 err = FC_PROT; 4652 goto error; 4653 } 4654 } 4655 if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) && 4656 pgsz < maxpgsz) { 4657 ASSERT(a > lpgaddr); 4658 szc = seg->s_szc; 4659 pgsz = maxpgsz; 4660 pages = btop(pgsz); 4661 ASSERT(IS_P2ALIGNED(aindx, pages)); 4662 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, 4663 pgsz); 4664 } 4665 if (type == F_SOFTLOCK) { 4666 atomic_add_long((ulong_t *)&svd->softlockcnt, 4667 pages); 4668 } 4669 anon_array_enter(amp, aindx, &cookie); 4670 ppa_szc = (uint_t)-1; 4671 ierr = anon_map_getpages(amp, aindx, szc, seg, a, 4672 prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow, 4673 segvn_anypgsz, pgflags, svd->cred); 4674 if (ierr != 0) { 4675 anon_array_exit(&cookie); 4676 VM_STAT_ADD(segvnvmstats.fltanpages[4]); 4677 if (type == F_SOFTLOCK) { 4678 atomic_add_long( 4679 (ulong_t *)&svd->softlockcnt, 4680 -pages); 4681 } 4682 if (ierr > 0) { 4683 VM_STAT_ADD(segvnvmstats.fltanpages[6]); 4684 err = FC_MAKE_ERR(ierr); 4685 goto error; 4686 } 4687 break; 4688 } 4689 4690 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode)); 4691 4692 ASSERT(segtype == MAP_SHARED || 4693 ppa[0]->p_szc <= szc); 4694 ASSERT(segtype == MAP_PRIVATE || 4695 ppa[0]->p_szc >= szc); 4696 4697 /* 4698 * Handle pages that have been marked for migration 4699 */ 4700 if (lgrp_optimizations()) 4701 page_migrate(seg, a, ppa, pages); 4702 4703 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 4704 4705 if (segtype == MAP_SHARED) { 4706 vpprot |= PROT_WRITE; 4707 } 4708 4709 hat_memload_array(hat, a, pgsz, ppa, 4710 prot & vpprot, hat_flag); 4711 4712 if (hat_flag & HAT_LOAD_LOCK) { 4713 VM_STAT_ADD(segvnvmstats.fltanpages[7]); 4714 } else { 4715 VM_STAT_ADD(segvnvmstats.fltanpages[8]); 4716 for (i = 0; i < pages; i++) 4717 page_unlock(ppa[i]); 4718 } 4719 if (vpage != NULL) 4720 vpage += pages; 4721 4722 anon_array_exit(&cookie); 4723 adjszc_chk = 1; 4724 } 4725 if (a == lpgeaddr) 4726 break; 4727 ASSERT(a < lpgeaddr); 4728 /* 4729 * ierr == -1 means we failed to allocate a large page. 4730 * so do a size down operation. 4731 * 4732 * ierr == -2 means some other process that privately shares 4733 * pages with this process has allocated a larger page and we 4734 * need to retry with larger pages. So do a size up 4735 * operation. This relies on the fact that large pages are 4736 * never partially shared i.e. if we share any constituent 4737 * page of a large page with another process we must share the 4738 * entire large page. Note this cannot happen for SOFTLOCK 4739 * case, unless current address (a) is at the beginning of the 4740 * next page size boundary because the other process couldn't 4741 * have relocated locked pages. 4742 */ 4743 ASSERT(ierr == -1 || ierr == -2); 4744 4745 if (segvn_anypgsz) { 4746 ASSERT(ierr == -2 || szc != 0); 4747 ASSERT(ierr == -1 || szc < seg->s_szc); 4748 szc = (ierr == -1) ? szc - 1 : szc + 1; 4749 } else { 4750 /* 4751 * For non COW faults and segvn_anypgsz == 0 4752 * we need to be careful not to loop forever 4753 * if existing page is found with szc other 4754 * than 0 or seg->s_szc. This could be due 4755 * to page relocations on behalf of DR or 4756 * more likely large page creation. For this 4757 * case simply re-size to existing page's szc 4758 * if returned by anon_map_getpages(). 4759 */ 4760 if (ppa_szc == (uint_t)-1) { 4761 szc = (ierr == -1) ? 0 : seg->s_szc; 4762 } else { 4763 ASSERT(ppa_szc <= seg->s_szc); 4764 ASSERT(ierr == -2 || ppa_szc < szc); 4765 ASSERT(ierr == -1 || ppa_szc > szc); 4766 szc = ppa_szc; 4767 } 4768 } 4769 4770 pgsz = page_get_pagesize(szc); 4771 pages = btop(pgsz); 4772 ASSERT(type != F_SOFTLOCK || ierr == -1 || 4773 (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz))); 4774 if (type == F_SOFTLOCK) { 4775 /* 4776 * For softlocks we cannot reduce the fault area 4777 * (calculated based on the largest page size for this 4778 * segment) for size down and a is already next 4779 * page size aligned as assertted above for size 4780 * ups. Therefore just continue in case of softlock. 4781 */ 4782 VM_STAT_ADD(segvnvmstats.fltanpages[9]); 4783 continue; /* keep lint happy */ 4784 } else if (ierr == -2) { 4785 4786 /* 4787 * Size up case. Note lpgaddr may only be needed for 4788 * softlock case so we don't adjust it here. 4789 */ 4790 VM_STAT_ADD(segvnvmstats.fltanpages[10]); 4791 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz); 4792 ASSERT(a >= lpgaddr); 4793 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz); 4794 aindx = svd->anon_index + seg_page(seg, a); 4795 vpage = (svd->vpage != NULL) ? 4796 &svd->vpage[seg_page(seg, a)] : NULL; 4797 } else { 4798 /* 4799 * Size down case. Note lpgaddr may only be needed for 4800 * softlock case so we don't adjust it here. 4801 */ 4802 VM_STAT_ADD(segvnvmstats.fltanpages[11]); 4803 ASSERT(IS_P2ALIGNED(a, pgsz)); 4804 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz)); 4805 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz); 4806 ASSERT(a < lpgeaddr); 4807 if (a < addr) { 4808 /* 4809 * The beginning of the large page region can 4810 * be pulled to the right to make a smaller 4811 * region. We haven't yet faulted a single 4812 * page. 4813 */ 4814 VM_STAT_ADD(segvnvmstats.fltanpages[12]); 4815 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz); 4816 ASSERT(a >= lpgaddr); 4817 aindx = svd->anon_index + seg_page(seg, a); 4818 vpage = (svd->vpage != NULL) ? 4819 &svd->vpage[seg_page(seg, a)] : NULL; 4820 } 4821 } 4822 } 4823 VM_STAT_ADD(segvnvmstats.fltanpages[13]); 4824 ANON_LOCK_EXIT(&->a_rwlock); 4825 kmem_cache_free(segvn_szc_cache[ppaszc], ppa); 4826 return (0); 4827 error: 4828 VM_STAT_ADD(segvnvmstats.fltanpages[14]); 4829 ANON_LOCK_EXIT(&->a_rwlock); 4830 kmem_cache_free(segvn_szc_cache[ppaszc], ppa); 4831 if (type == F_SOFTLOCK && a > lpgaddr) { 4832 VM_STAT_ADD(segvnvmstats.fltanpages[15]); 4833 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER); 4834 } 4835 return (err); 4836 } 4837 4838 int fltadvice = 1; /* set to free behind pages for sequential access */ 4839 4840 /* 4841 * This routine is called via a machine specific fault handling routine. 4842 * It is also called by software routines wishing to lock or unlock 4843 * a range of addresses. 4844 * 4845 * Here is the basic algorithm: 4846 * If unlocking 4847 * Call segvn_softunlock 4848 * Return 4849 * endif 4850 * Checking and set up work 4851 * If we will need some non-anonymous pages 4852 * Call VOP_GETPAGE over the range of non-anonymous pages 4853 * endif 4854 * Loop over all addresses requested 4855 * Call segvn_faultpage passing in page list 4856 * to load up translations and handle anonymous pages 4857 * endloop 4858 * Load up translation to any additional pages in page list not 4859 * already handled that fit into this segment 4860 */ 4861 static faultcode_t 4862 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len, 4863 enum fault_type type, enum seg_rw rw) 4864 { 4865 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 4866 page_t **plp, **ppp, *pp; 4867 u_offset_t off; 4868 caddr_t a; 4869 struct vpage *vpage; 4870 uint_t vpprot, prot; 4871 int err; 4872 page_t *pl[PVN_GETPAGE_NUM + 1]; 4873 size_t plsz, pl_alloc_sz; 4874 size_t page; 4875 ulong_t anon_index; 4876 struct anon_map *amp; 4877 int dogetpage = 0; 4878 caddr_t lpgaddr, lpgeaddr; 4879 size_t pgsz; 4880 anon_sync_obj_t cookie; 4881 int brkcow = BREAK_COW_SHARE(rw, type, svd->type); 4882 4883 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 4884 ASSERT(svd->amp == NULL || svd->rcookie == HAT_INVALID_REGION_COOKIE); 4885 4886 /* 4887 * First handle the easy stuff 4888 */ 4889 if (type == F_SOFTUNLOCK) { 4890 if (rw == S_READ_NOCOW) { 4891 rw = S_READ; 4892 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 4893 } 4894 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 4895 pgsz = (seg->s_szc == 0) ? PAGESIZE : 4896 page_get_pagesize(seg->s_szc); 4897 VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]); 4898 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr); 4899 segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw); 4900 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4901 return (0); 4902 } 4903 4904 ASSERT(svd->tr_state == SEGVN_TR_OFF || 4905 !HAT_IS_REGION_COOKIE_VALID(svd->rcookie)); 4906 if (brkcow == 0) { 4907 if (svd->tr_state == SEGVN_TR_INIT) { 4908 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 4909 if (svd->tr_state == SEGVN_TR_INIT) { 4910 ASSERT(svd->vp != NULL && svd->amp == NULL); 4911 ASSERT(svd->flags & MAP_TEXT); 4912 ASSERT(svd->type == MAP_PRIVATE); 4913 segvn_textrepl(seg); 4914 ASSERT(svd->tr_state != SEGVN_TR_INIT); 4915 ASSERT(svd->tr_state != SEGVN_TR_ON || 4916 svd->amp != NULL); 4917 } 4918 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4919 } 4920 } else if (svd->tr_state != SEGVN_TR_OFF) { 4921 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 4922 4923 if (rw == S_WRITE && svd->tr_state != SEGVN_TR_OFF) { 4924 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE)); 4925 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4926 return (FC_PROT); 4927 } 4928 4929 if (svd->tr_state == SEGVN_TR_ON) { 4930 ASSERT(svd->vp != NULL && svd->amp != NULL); 4931 segvn_textunrepl(seg, 0); 4932 ASSERT(svd->amp == NULL && 4933 svd->tr_state == SEGVN_TR_OFF); 4934 } else if (svd->tr_state != SEGVN_TR_OFF) { 4935 svd->tr_state = SEGVN_TR_OFF; 4936 } 4937 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 4938 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4939 } 4940 4941 top: 4942 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 4943 4944 /* 4945 * If we have the same protections for the entire segment, 4946 * insure that the access being attempted is legitimate. 4947 */ 4948 4949 if (svd->pageprot == 0) { 4950 uint_t protchk; 4951 4952 switch (rw) { 4953 case S_READ: 4954 case S_READ_NOCOW: 4955 protchk = PROT_READ; 4956 break; 4957 case S_WRITE: 4958 protchk = PROT_WRITE; 4959 break; 4960 case S_EXEC: 4961 protchk = PROT_EXEC; 4962 break; 4963 case S_OTHER: 4964 default: 4965 protchk = PROT_READ | PROT_WRITE | PROT_EXEC; 4966 break; 4967 } 4968 4969 if ((svd->prot & protchk) == 0) { 4970 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4971 return (FC_PROT); /* illegal access type */ 4972 } 4973 } 4974 4975 if (brkcow && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 4976 /* this must be SOFTLOCK S_READ fault */ 4977 ASSERT(svd->amp == NULL); 4978 ASSERT(svd->tr_state == SEGVN_TR_OFF); 4979 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4980 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 4981 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 4982 /* 4983 * this must be the first ever non S_READ_NOCOW 4984 * softlock for this segment. 4985 */ 4986 ASSERT(svd->softlockcnt == 0); 4987 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 4988 HAT_REGION_TEXT); 4989 svd->rcookie = HAT_INVALID_REGION_COOKIE; 4990 } 4991 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 4992 goto top; 4993 } 4994 4995 /* 4996 * We can't allow the long term use of softlocks for vmpss segments, 4997 * because in some file truncation cases we should be able to demote 4998 * the segment, which requires that there are no softlocks. The 4999 * only case where it's ok to allow a SOFTLOCK fault against a vmpss 5000 * segment is S_READ_NOCOW, where the caller holds the address space 5001 * locked as writer and calls softunlock before dropping the as lock. 5002 * S_READ_NOCOW is used by /proc to read memory from another user. 5003 * 5004 * Another deadlock between SOFTLOCK and file truncation can happen 5005 * because segvn_fault_vnodepages() calls the FS one pagesize at 5006 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages() 5007 * can cause a deadlock because the first set of page_t's remain 5008 * locked SE_SHARED. To avoid this, we demote segments on a first 5009 * SOFTLOCK if they have a length greater than the segment's 5010 * page size. 5011 * 5012 * So for now, we only avoid demoting a segment on a SOFTLOCK when 5013 * the access type is S_READ_NOCOW and the fault length is less than 5014 * or equal to the segment's page size. While this is quite restrictive, 5015 * it should be the most common case of SOFTLOCK against a vmpss 5016 * segment. 5017 * 5018 * For S_READ_NOCOW, it's safe not to do a copy on write because the 5019 * caller makes sure no COW will be caused by another thread for a 5020 * softlocked page. 5021 */ 5022 if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) { 5023 int demote = 0; 5024 5025 if (rw != S_READ_NOCOW) { 5026 demote = 1; 5027 } 5028 if (!demote && len > PAGESIZE) { 5029 pgsz = page_get_pagesize(seg->s_szc); 5030 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, 5031 lpgeaddr); 5032 if (lpgeaddr - lpgaddr > pgsz) { 5033 demote = 1; 5034 } 5035 } 5036 5037 ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 5038 5039 if (demote) { 5040 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5041 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 5042 if (seg->s_szc != 0) { 5043 segvn_vmpss_clrszc_cnt++; 5044 ASSERT(svd->softlockcnt == 0); 5045 err = segvn_clrszc(seg); 5046 if (err) { 5047 segvn_vmpss_clrszc_err++; 5048 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5049 return (FC_MAKE_ERR(err)); 5050 } 5051 } 5052 ASSERT(seg->s_szc == 0); 5053 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5054 goto top; 5055 } 5056 } 5057 5058 /* 5059 * Check to see if we need to allocate an anon_map structure. 5060 */ 5061 if (svd->amp == NULL && (svd->vp == NULL || brkcow)) { 5062 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 5063 /* 5064 * Drop the "read" lock on the segment and acquire 5065 * the "write" version since we have to allocate the 5066 * anon_map. 5067 */ 5068 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5069 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 5070 5071 if (svd->amp == NULL) { 5072 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP); 5073 svd->amp->a_szc = seg->s_szc; 5074 } 5075 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5076 5077 /* 5078 * Start all over again since segment protections 5079 * may have changed after we dropped the "read" lock. 5080 */ 5081 goto top; 5082 } 5083 5084 /* 5085 * S_READ_NOCOW vs S_READ distinction was 5086 * only needed for the code above. After 5087 * that we treat it as S_READ. 5088 */ 5089 if (rw == S_READ_NOCOW) { 5090 ASSERT(type == F_SOFTLOCK); 5091 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 5092 rw = S_READ; 5093 } 5094 5095 amp = svd->amp; 5096 5097 /* 5098 * MADV_SEQUENTIAL work is ignored for large page segments. 5099 */ 5100 if (seg->s_szc != 0) { 5101 pgsz = page_get_pagesize(seg->s_szc); 5102 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 5103 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr); 5104 if (svd->vp == NULL) { 5105 err = segvn_fault_anonpages(hat, seg, lpgaddr, 5106 lpgeaddr, type, rw, addr, addr + len, brkcow); 5107 } else { 5108 err = segvn_fault_vnodepages(hat, seg, lpgaddr, 5109 lpgeaddr, type, rw, addr, addr + len, brkcow); 5110 if (err == IE_RETRY) { 5111 ASSERT(seg->s_szc == 0); 5112 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock)); 5113 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5114 goto top; 5115 } 5116 } 5117 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5118 return (err); 5119 } 5120 5121 page = seg_page(seg, addr); 5122 if (amp != NULL) { 5123 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 5124 anon_index = svd->anon_index + page; 5125 5126 if (type == F_PROT && rw == S_READ && 5127 svd->tr_state == SEGVN_TR_OFF && 5128 svd->type == MAP_PRIVATE && svd->pageprot == 0) { 5129 size_t index = anon_index; 5130 struct anon *ap; 5131 5132 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5133 /* 5134 * The fast path could apply to S_WRITE also, except 5135 * that the protection fault could be caused by lazy 5136 * tlb flush when ro->rw. In this case, the pte is 5137 * RW already. But RO in the other cpu's tlb causes 5138 * the fault. Since hat_chgprot won't do anything if 5139 * pte doesn't change, we may end up faulting 5140 * indefinitely until the RO tlb entry gets replaced. 5141 */ 5142 for (a = addr; a < addr + len; a += PAGESIZE, index++) { 5143 anon_array_enter(amp, index, &cookie); 5144 ap = anon_get_ptr(amp->ahp, index); 5145 anon_array_exit(&cookie); 5146 if ((ap == NULL) || (ap->an_refcnt != 1)) { 5147 ANON_LOCK_EXIT(&->a_rwlock); 5148 goto slow; 5149 } 5150 } 5151 hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot); 5152 ANON_LOCK_EXIT(&->a_rwlock); 5153 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5154 return (0); 5155 } 5156 } 5157 slow: 5158 5159 if (svd->vpage == NULL) 5160 vpage = NULL; 5161 else 5162 vpage = &svd->vpage[page]; 5163 5164 off = svd->offset + (uintptr_t)(addr - seg->s_base); 5165 5166 /* 5167 * If MADV_SEQUENTIAL has been set for the particular page we 5168 * are faulting on, free behind all pages in the segment and put 5169 * them on the free list. 5170 */ 5171 5172 if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) { 5173 struct vpage *vpp; 5174 ulong_t fanon_index; 5175 size_t fpage; 5176 u_offset_t pgoff, fpgoff; 5177 struct vnode *fvp; 5178 struct anon *fap = NULL; 5179 5180 if (svd->advice == MADV_SEQUENTIAL || 5181 (svd->pageadvice && 5182 VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) { 5183 pgoff = off - PAGESIZE; 5184 fpage = page - 1; 5185 if (vpage != NULL) 5186 vpp = &svd->vpage[fpage]; 5187 if (amp != NULL) 5188 fanon_index = svd->anon_index + fpage; 5189 5190 while (pgoff > svd->offset) { 5191 if (svd->advice != MADV_SEQUENTIAL && 5192 (!svd->pageadvice || (vpage && 5193 VPP_ADVICE(vpp) != MADV_SEQUENTIAL))) 5194 break; 5195 5196 /* 5197 * If this is an anon page, we must find the 5198 * correct <vp, offset> for it 5199 */ 5200 fap = NULL; 5201 if (amp != NULL) { 5202 ANON_LOCK_ENTER(&->a_rwlock, 5203 RW_READER); 5204 anon_array_enter(amp, fanon_index, 5205 &cookie); 5206 fap = anon_get_ptr(amp->ahp, 5207 fanon_index); 5208 if (fap != NULL) { 5209 swap_xlate(fap, &fvp, &fpgoff); 5210 } else { 5211 fpgoff = pgoff; 5212 fvp = svd->vp; 5213 } 5214 anon_array_exit(&cookie); 5215 ANON_LOCK_EXIT(&->a_rwlock); 5216 } else { 5217 fpgoff = pgoff; 5218 fvp = svd->vp; 5219 } 5220 if (fvp == NULL) 5221 break; /* XXX */ 5222 /* 5223 * Skip pages that are free or have an 5224 * "exclusive" lock. 5225 */ 5226 pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED); 5227 if (pp == NULL) 5228 break; 5229 /* 5230 * We don't need the page_struct_lock to test 5231 * as this is only advisory; even if we 5232 * acquire it someone might race in and lock 5233 * the page after we unlock and before the 5234 * PUTPAGE, then VOP_PUTPAGE will do nothing. 5235 */ 5236 if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) { 5237 /* 5238 * Hold the vnode before releasing 5239 * the page lock to prevent it from 5240 * being freed and re-used by some 5241 * other thread. 5242 */ 5243 VN_HOLD(fvp); 5244 page_unlock(pp); 5245 /* 5246 * We should build a page list 5247 * to kluster putpages XXX 5248 */ 5249 (void) VOP_PUTPAGE(fvp, 5250 (offset_t)fpgoff, PAGESIZE, 5251 (B_DONTNEED|B_FREE|B_ASYNC), 5252 svd->cred, NULL); 5253 VN_RELE(fvp); 5254 } else { 5255 /* 5256 * XXX - Should the loop terminate if 5257 * the page is `locked'? 5258 */ 5259 page_unlock(pp); 5260 } 5261 --vpp; 5262 --fanon_index; 5263 pgoff -= PAGESIZE; 5264 } 5265 } 5266 } 5267 5268 plp = pl; 5269 *plp = NULL; 5270 pl_alloc_sz = 0; 5271 5272 /* 5273 * See if we need to call VOP_GETPAGE for 5274 * *any* of the range being faulted on. 5275 * We can skip all of this work if there 5276 * was no original vnode. 5277 */ 5278 if (svd->vp != NULL) { 5279 u_offset_t vp_off; 5280 size_t vp_len; 5281 struct anon *ap; 5282 vnode_t *vp; 5283 5284 vp_off = off; 5285 vp_len = len; 5286 5287 if (amp == NULL) 5288 dogetpage = 1; 5289 else { 5290 /* 5291 * Only acquire reader lock to prevent amp->ahp 5292 * from being changed. It's ok to miss pages, 5293 * hence we don't do anon_array_enter 5294 */ 5295 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5296 ap = anon_get_ptr(amp->ahp, anon_index); 5297 5298 if (len <= PAGESIZE) 5299 /* inline non_anon() */ 5300 dogetpage = (ap == NULL); 5301 else 5302 dogetpage = non_anon(amp->ahp, anon_index, 5303 &vp_off, &vp_len); 5304 ANON_LOCK_EXIT(&->a_rwlock); 5305 } 5306 5307 if (dogetpage) { 5308 enum seg_rw arw; 5309 struct as *as = seg->s_as; 5310 5311 if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) { 5312 /* 5313 * Page list won't fit in local array, 5314 * allocate one of the needed size. 5315 */ 5316 pl_alloc_sz = 5317 (btop(len) + 1) * sizeof (page_t *); 5318 plp = kmem_alloc(pl_alloc_sz, KM_SLEEP); 5319 plp[0] = NULL; 5320 plsz = len; 5321 } else if (rw == S_WRITE && svd->type == MAP_PRIVATE || 5322 svd->tr_state == SEGVN_TR_ON || rw == S_OTHER || 5323 (((size_t)(addr + PAGESIZE) < 5324 (size_t)(seg->s_base + seg->s_size)) && 5325 hat_probe(as->a_hat, addr + PAGESIZE))) { 5326 /* 5327 * Ask VOP_GETPAGE to return the exact number 5328 * of pages if 5329 * (a) this is a COW fault, or 5330 * (b) this is a software fault, or 5331 * (c) next page is already mapped. 5332 */ 5333 plsz = len; 5334 } else { 5335 /* 5336 * Ask VOP_GETPAGE to return adjacent pages 5337 * within the segment. 5338 */ 5339 plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t) 5340 ((seg->s_base + seg->s_size) - addr)); 5341 ASSERT((addr + plsz) <= 5342 (seg->s_base + seg->s_size)); 5343 } 5344 5345 /* 5346 * Need to get some non-anonymous pages. 5347 * We need to make only one call to GETPAGE to do 5348 * this to prevent certain deadlocking conditions 5349 * when we are doing locking. In this case 5350 * non_anon() should have picked up the smallest 5351 * range which includes all the non-anonymous 5352 * pages in the requested range. We have to 5353 * be careful regarding which rw flag to pass in 5354 * because on a private mapping, the underlying 5355 * object is never allowed to be written. 5356 */ 5357 if (rw == S_WRITE && svd->type == MAP_PRIVATE) { 5358 arw = S_READ; 5359 } else { 5360 arw = rw; 5361 } 5362 vp = svd->vp; 5363 TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE, 5364 "segvn_getpage:seg %p addr %p vp %p", 5365 seg, addr, vp); 5366 err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len, 5367 &vpprot, plp, plsz, seg, addr + (vp_off - off), arw, 5368 svd->cred, NULL); 5369 if (err) { 5370 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5371 segvn_pagelist_rele(plp); 5372 if (pl_alloc_sz) 5373 kmem_free(plp, pl_alloc_sz); 5374 return (FC_MAKE_ERR(err)); 5375 } 5376 if (svd->type == MAP_PRIVATE) 5377 vpprot &= ~PROT_WRITE; 5378 } 5379 } 5380 5381 /* 5382 * N.B. at this time the plp array has all the needed non-anon 5383 * pages in addition to (possibly) having some adjacent pages. 5384 */ 5385 5386 /* 5387 * Always acquire the anon_array_lock to prevent 5388 * 2 threads from allocating separate anon slots for 5389 * the same "addr". 5390 * 5391 * If this is a copy-on-write fault and we don't already 5392 * have the anon_array_lock, acquire it to prevent the 5393 * fault routine from handling multiple copy-on-write faults 5394 * on the same "addr" in the same address space. 5395 * 5396 * Only one thread should deal with the fault since after 5397 * it is handled, the other threads can acquire a translation 5398 * to the newly created private page. This prevents two or 5399 * more threads from creating different private pages for the 5400 * same fault. 5401 * 5402 * We grab "serialization" lock here if this is a MAP_PRIVATE segment 5403 * to prevent deadlock between this thread and another thread 5404 * which has soft-locked this page and wants to acquire serial_lock. 5405 * ( bug 4026339 ) 5406 * 5407 * The fix for bug 4026339 becomes unnecessary when using the 5408 * locking scheme with per amp rwlock and a global set of hash 5409 * lock, anon_array_lock. If we steal a vnode page when low 5410 * on memory and upgrad the page lock through page_rename, 5411 * then the page is PAGE_HANDLED, nothing needs to be done 5412 * for this page after returning from segvn_faultpage. 5413 * 5414 * But really, the page lock should be downgraded after 5415 * the stolen page is page_rename'd. 5416 */ 5417 5418 if (amp != NULL) 5419 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5420 5421 /* 5422 * Ok, now loop over the address range and handle faults 5423 */ 5424 for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) { 5425 err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot, 5426 type, rw, brkcow); 5427 if (err) { 5428 if (amp != NULL) 5429 ANON_LOCK_EXIT(&->a_rwlock); 5430 if (type == F_SOFTLOCK && a > addr) { 5431 segvn_softunlock(seg, addr, (a - addr), 5432 S_OTHER); 5433 } 5434 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5435 segvn_pagelist_rele(plp); 5436 if (pl_alloc_sz) 5437 kmem_free(plp, pl_alloc_sz); 5438 return (err); 5439 } 5440 if (vpage) { 5441 vpage++; 5442 } else if (svd->vpage) { 5443 page = seg_page(seg, addr); 5444 vpage = &svd->vpage[++page]; 5445 } 5446 } 5447 5448 /* Didn't get pages from the underlying fs so we're done */ 5449 if (!dogetpage) 5450 goto done; 5451 5452 /* 5453 * Now handle any other pages in the list returned. 5454 * If the page can be used, load up the translations now. 5455 * Note that the for loop will only be entered if "plp" 5456 * is pointing to a non-NULL page pointer which means that 5457 * VOP_GETPAGE() was called and vpprot has been initialized. 5458 */ 5459 if (svd->pageprot == 0) 5460 prot = svd->prot & vpprot; 5461 5462 5463 /* 5464 * Large Files: diff should be unsigned value because we started 5465 * supporting > 2GB segment sizes from 2.5.1 and when a 5466 * large file of size > 2GB gets mapped to address space 5467 * the diff value can be > 2GB. 5468 */ 5469 5470 for (ppp = plp; (pp = *ppp) != NULL; ppp++) { 5471 size_t diff; 5472 struct anon *ap; 5473 int anon_index; 5474 anon_sync_obj_t cookie; 5475 int hat_flag = HAT_LOAD_ADV; 5476 5477 if (svd->flags & MAP_TEXT) { 5478 hat_flag |= HAT_LOAD_TEXT; 5479 } 5480 5481 if (pp == PAGE_HANDLED) 5482 continue; 5483 5484 if (svd->tr_state != SEGVN_TR_ON && 5485 pp->p_offset >= svd->offset && 5486 pp->p_offset < svd->offset + seg->s_size) { 5487 5488 diff = pp->p_offset - svd->offset; 5489 5490 /* 5491 * Large Files: Following is the assertion 5492 * validating the above cast. 5493 */ 5494 ASSERT(svd->vp == pp->p_vnode); 5495 5496 page = btop(diff); 5497 if (svd->pageprot) 5498 prot = VPP_PROT(&svd->vpage[page]) & vpprot; 5499 5500 /* 5501 * Prevent other threads in the address space from 5502 * creating private pages (i.e., allocating anon slots) 5503 * while we are in the process of loading translations 5504 * to additional pages returned by the underlying 5505 * object. 5506 */ 5507 if (amp != NULL) { 5508 anon_index = svd->anon_index + page; 5509 anon_array_enter(amp, anon_index, &cookie); 5510 ap = anon_get_ptr(amp->ahp, anon_index); 5511 } 5512 if ((amp == NULL) || (ap == NULL)) { 5513 if (IS_VMODSORT(pp->p_vnode) || 5514 enable_mbit_wa) { 5515 if (rw == S_WRITE) 5516 hat_setmod(pp); 5517 else if (rw != S_OTHER && 5518 !hat_ismod(pp)) 5519 prot &= ~PROT_WRITE; 5520 } 5521 /* 5522 * Skip mapping read ahead pages marked 5523 * for migration, so they will get migrated 5524 * properly on fault 5525 */ 5526 ASSERT(amp == NULL || 5527 svd->rcookie == HAT_INVALID_REGION_COOKIE); 5528 if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) { 5529 hat_memload_region(hat, 5530 seg->s_base + diff, 5531 pp, prot, hat_flag, 5532 svd->rcookie); 5533 } 5534 } 5535 if (amp != NULL) 5536 anon_array_exit(&cookie); 5537 } 5538 page_unlock(pp); 5539 } 5540 done: 5541 if (amp != NULL) 5542 ANON_LOCK_EXIT(&->a_rwlock); 5543 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5544 if (pl_alloc_sz) 5545 kmem_free(plp, pl_alloc_sz); 5546 return (0); 5547 } 5548 5549 /* 5550 * This routine is used to start I/O on pages asynchronously. XXX it will 5551 * only create PAGESIZE pages. At fault time they will be relocated into 5552 * larger pages. 5553 */ 5554 static faultcode_t 5555 segvn_faulta(struct seg *seg, caddr_t addr) 5556 { 5557 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 5558 int err; 5559 struct anon_map *amp; 5560 vnode_t *vp; 5561 5562 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5563 5564 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 5565 if ((amp = svd->amp) != NULL) { 5566 struct anon *ap; 5567 5568 /* 5569 * Reader lock to prevent amp->ahp from being changed. 5570 * This is advisory, it's ok to miss a page, so 5571 * we don't do anon_array_enter lock. 5572 */ 5573 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5574 if ((ap = anon_get_ptr(amp->ahp, 5575 svd->anon_index + seg_page(seg, addr))) != NULL) { 5576 5577 err = anon_getpage(&ap, NULL, NULL, 5578 0, seg, addr, S_READ, svd->cred); 5579 5580 ANON_LOCK_EXIT(&->a_rwlock); 5581 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5582 if (err) 5583 return (FC_MAKE_ERR(err)); 5584 return (0); 5585 } 5586 ANON_LOCK_EXIT(&->a_rwlock); 5587 } 5588 5589 if (svd->vp == NULL) { 5590 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5591 return (0); /* zfod page - do nothing now */ 5592 } 5593 5594 vp = svd->vp; 5595 TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE, 5596 "segvn_getpage:seg %p addr %p vp %p", seg, addr, vp); 5597 err = VOP_GETPAGE(vp, 5598 (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)), 5599 PAGESIZE, NULL, NULL, 0, seg, addr, 5600 S_OTHER, svd->cred, NULL); 5601 5602 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5603 if (err) 5604 return (FC_MAKE_ERR(err)); 5605 return (0); 5606 } 5607 5608 static int 5609 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot) 5610 { 5611 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 5612 struct vpage *cvp, *svp, *evp; 5613 struct vnode *vp; 5614 size_t pgsz; 5615 pgcnt_t pgcnt; 5616 anon_sync_obj_t cookie; 5617 int unload_done = 0; 5618 5619 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5620 5621 if ((svd->maxprot & prot) != prot) 5622 return (EACCES); /* violated maxprot */ 5623 5624 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 5625 5626 /* return if prot is the same */ 5627 if (!svd->pageprot && svd->prot == prot) { 5628 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5629 return (0); 5630 } 5631 5632 /* 5633 * Since we change protections we first have to flush the cache. 5634 * This makes sure all the pagelock calls have to recheck 5635 * protections. 5636 */ 5637 if (svd->softlockcnt > 0) { 5638 ASSERT(svd->tr_state == SEGVN_TR_OFF); 5639 5640 /* 5641 * If this is shared segment non 0 softlockcnt 5642 * means locked pages are still in use. 5643 */ 5644 if (svd->type == MAP_SHARED) { 5645 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5646 return (EAGAIN); 5647 } 5648 5649 /* 5650 * Since we do have the segvn writers lock nobody can fill 5651 * the cache with entries belonging to this seg during 5652 * the purge. The flush either succeeds or we still have 5653 * pending I/Os. 5654 */ 5655 segvn_purge(seg); 5656 if (svd->softlockcnt > 0) { 5657 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5658 return (EAGAIN); 5659 } 5660 } 5661 5662 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 5663 ASSERT(svd->amp == NULL); 5664 ASSERT(svd->tr_state == SEGVN_TR_OFF); 5665 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 5666 HAT_REGION_TEXT); 5667 svd->rcookie = HAT_INVALID_REGION_COOKIE; 5668 unload_done = 1; 5669 } else if (svd->tr_state == SEGVN_TR_INIT) { 5670 svd->tr_state = SEGVN_TR_OFF; 5671 } else if (svd->tr_state == SEGVN_TR_ON) { 5672 ASSERT(svd->amp != NULL); 5673 segvn_textunrepl(seg, 0); 5674 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 5675 unload_done = 1; 5676 } 5677 5678 if ((prot & PROT_WRITE) && svd->type == MAP_SHARED && 5679 svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) { 5680 ASSERT(vn_is_mapped(svd->vp, V_WRITE)); 5681 segvn_inval_trcache(svd->vp); 5682 } 5683 if (seg->s_szc != 0) { 5684 int err; 5685 pgsz = page_get_pagesize(seg->s_szc); 5686 pgcnt = pgsz >> PAGESHIFT; 5687 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 5688 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) { 5689 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5690 ASSERT(seg->s_base != addr || seg->s_size != len); 5691 /* 5692 * If we are holding the as lock as a reader then 5693 * we need to return IE_RETRY and let the as 5694 * layer drop and re-acquire the lock as a writer. 5695 */ 5696 if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) 5697 return (IE_RETRY); 5698 VM_STAT_ADD(segvnvmstats.demoterange[1]); 5699 if (svd->type == MAP_PRIVATE || svd->vp != NULL) { 5700 err = segvn_demote_range(seg, addr, len, 5701 SDR_END, 0); 5702 } else { 5703 uint_t szcvec = map_pgszcvec(seg->s_base, 5704 pgsz, (uintptr_t)seg->s_base, 5705 (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0); 5706 err = segvn_demote_range(seg, addr, len, 5707 SDR_END, szcvec); 5708 } 5709 if (err == 0) 5710 return (IE_RETRY); 5711 if (err == ENOMEM) 5712 return (IE_NOMEM); 5713 return (err); 5714 } 5715 } 5716 5717 5718 /* 5719 * If it's a private mapping and we're making it writable then we 5720 * may have to reserve the additional swap space now. If we are 5721 * making writable only a part of the segment then we use its vpage 5722 * array to keep a record of the pages for which we have reserved 5723 * swap. In this case we set the pageswap field in the segment's 5724 * segvn structure to record this. 5725 * 5726 * If it's a private mapping to a file (i.e., vp != NULL) and we're 5727 * removing write permission on the entire segment and we haven't 5728 * modified any pages, we can release the swap space. 5729 */ 5730 if (svd->type == MAP_PRIVATE) { 5731 if (prot & PROT_WRITE) { 5732 if (!(svd->flags & MAP_NORESERVE) && 5733 !(svd->swresv && svd->pageswap == 0)) { 5734 size_t sz = 0; 5735 5736 /* 5737 * Start by determining how much swap 5738 * space is required. 5739 */ 5740 if (addr == seg->s_base && 5741 len == seg->s_size && 5742 svd->pageswap == 0) { 5743 /* The whole segment */ 5744 sz = seg->s_size; 5745 } else { 5746 /* 5747 * Make sure that the vpage array 5748 * exists, and make a note of the 5749 * range of elements corresponding 5750 * to len. 5751 */ 5752 segvn_vpage(seg); 5753 svp = &svd->vpage[seg_page(seg, addr)]; 5754 evp = &svd->vpage[seg_page(seg, 5755 addr + len)]; 5756 5757 if (svd->pageswap == 0) { 5758 /* 5759 * This is the first time we've 5760 * asked for a part of this 5761 * segment, so we need to 5762 * reserve everything we've 5763 * been asked for. 5764 */ 5765 sz = len; 5766 } else { 5767 /* 5768 * We have to count the number 5769 * of pages required. 5770 */ 5771 for (cvp = svp; cvp < evp; 5772 cvp++) { 5773 if (!VPP_ISSWAPRES(cvp)) 5774 sz++; 5775 } 5776 sz <<= PAGESHIFT; 5777 } 5778 } 5779 5780 /* Try to reserve the necessary swap. */ 5781 if (anon_resv_zone(sz, 5782 seg->s_as->a_proc->p_zone) == 0) { 5783 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5784 return (IE_NOMEM); 5785 } 5786 5787 /* 5788 * Make a note of how much swap space 5789 * we've reserved. 5790 */ 5791 if (svd->pageswap == 0 && sz == seg->s_size) { 5792 svd->swresv = sz; 5793 } else { 5794 ASSERT(svd->vpage != NULL); 5795 svd->swresv += sz; 5796 svd->pageswap = 1; 5797 for (cvp = svp; cvp < evp; cvp++) { 5798 if (!VPP_ISSWAPRES(cvp)) 5799 VPP_SETSWAPRES(cvp); 5800 } 5801 } 5802 } 5803 } else { 5804 /* 5805 * Swap space is released only if this segment 5806 * does not map anonymous memory, since read faults 5807 * on such segments still need an anon slot to read 5808 * in the data. 5809 */ 5810 if (svd->swresv != 0 && svd->vp != NULL && 5811 svd->amp == NULL && addr == seg->s_base && 5812 len == seg->s_size && svd->pageprot == 0) { 5813 ASSERT(svd->pageswap == 0); 5814 anon_unresv_zone(svd->swresv, 5815 seg->s_as->a_proc->p_zone); 5816 svd->swresv = 0; 5817 TRACE_3(TR_FAC_VM, TR_ANON_PROC, 5818 "anon proc:%p %lu %u", seg, 0, 0); 5819 } 5820 } 5821 } 5822 5823 if (addr == seg->s_base && len == seg->s_size && svd->vpage == NULL) { 5824 if (svd->prot == prot) { 5825 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5826 return (0); /* all done */ 5827 } 5828 svd->prot = (uchar_t)prot; 5829 } else if (svd->type == MAP_PRIVATE) { 5830 struct anon *ap = NULL; 5831 page_t *pp; 5832 u_offset_t offset, off; 5833 struct anon_map *amp; 5834 ulong_t anon_idx = 0; 5835 5836 /* 5837 * A vpage structure exists or else the change does not 5838 * involve the entire segment. Establish a vpage structure 5839 * if none is there. Then, for each page in the range, 5840 * adjust its individual permissions. Note that write- 5841 * enabling a MAP_PRIVATE page can affect the claims for 5842 * locked down memory. Overcommitting memory terminates 5843 * the operation. 5844 */ 5845 segvn_vpage(seg); 5846 svd->pageprot = 1; 5847 if ((amp = svd->amp) != NULL) { 5848 anon_idx = svd->anon_index + seg_page(seg, addr); 5849 ASSERT(seg->s_szc == 0 || 5850 IS_P2ALIGNED(anon_idx, pgcnt)); 5851 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5852 } 5853 5854 offset = svd->offset + (uintptr_t)(addr - seg->s_base); 5855 evp = &svd->vpage[seg_page(seg, addr + len)]; 5856 5857 /* 5858 * See Statement at the beginning of segvn_lockop regarding 5859 * the way cowcnts and lckcnts are handled. 5860 */ 5861 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) { 5862 5863 if (seg->s_szc != 0) { 5864 if (amp != NULL) { 5865 anon_array_enter(amp, anon_idx, 5866 &cookie); 5867 } 5868 if (IS_P2ALIGNED(anon_idx, pgcnt) && 5869 !segvn_claim_pages(seg, svp, offset, 5870 anon_idx, prot)) { 5871 if (amp != NULL) { 5872 anon_array_exit(&cookie); 5873 } 5874 break; 5875 } 5876 if (amp != NULL) { 5877 anon_array_exit(&cookie); 5878 } 5879 anon_idx++; 5880 } else { 5881 if (amp != NULL) { 5882 anon_array_enter(amp, anon_idx, 5883 &cookie); 5884 ap = anon_get_ptr(amp->ahp, anon_idx++); 5885 } 5886 5887 if (VPP_ISPPLOCK(svp) && 5888 VPP_PROT(svp) != prot) { 5889 5890 if (amp == NULL || ap == NULL) { 5891 vp = svd->vp; 5892 off = offset; 5893 } else 5894 swap_xlate(ap, &vp, &off); 5895 if (amp != NULL) 5896 anon_array_exit(&cookie); 5897 5898 if ((pp = page_lookup(vp, off, 5899 SE_SHARED)) == NULL) { 5900 panic("segvn_setprot: no page"); 5901 /*NOTREACHED*/ 5902 } 5903 ASSERT(seg->s_szc == 0); 5904 if ((VPP_PROT(svp) ^ prot) & 5905 PROT_WRITE) { 5906 if (prot & PROT_WRITE) { 5907 if (!page_addclaim( 5908 pp)) { 5909 page_unlock(pp); 5910 break; 5911 } 5912 } else { 5913 if (!page_subclaim( 5914 pp)) { 5915 page_unlock(pp); 5916 break; 5917 } 5918 } 5919 } 5920 page_unlock(pp); 5921 } else if (amp != NULL) 5922 anon_array_exit(&cookie); 5923 } 5924 VPP_SETPROT(svp, prot); 5925 offset += PAGESIZE; 5926 } 5927 if (amp != NULL) 5928 ANON_LOCK_EXIT(&->a_rwlock); 5929 5930 /* 5931 * Did we terminate prematurely? If so, simply unload 5932 * the translations to the things we've updated so far. 5933 */ 5934 if (svp != evp) { 5935 if (unload_done) { 5936 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5937 return (IE_NOMEM); 5938 } 5939 len = (svp - &svd->vpage[seg_page(seg, addr)]) * 5940 PAGESIZE; 5941 ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz)); 5942 if (len != 0) 5943 hat_unload(seg->s_as->a_hat, addr, 5944 len, HAT_UNLOAD); 5945 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5946 return (IE_NOMEM); 5947 } 5948 } else { 5949 segvn_vpage(seg); 5950 svd->pageprot = 1; 5951 evp = &svd->vpage[seg_page(seg, addr + len)]; 5952 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) { 5953 VPP_SETPROT(svp, prot); 5954 } 5955 } 5956 5957 if (unload_done) { 5958 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5959 return (0); 5960 } 5961 5962 if (((prot & PROT_WRITE) != 0 && 5963 (svd->vp != NULL || svd->type == MAP_PRIVATE)) || 5964 (prot & ~PROT_USER) == PROT_NONE) { 5965 /* 5966 * Either private or shared data with write access (in 5967 * which case we need to throw out all former translations 5968 * so that we get the right translations set up on fault 5969 * and we don't allow write access to any copy-on-write pages 5970 * that might be around or to prevent write access to pages 5971 * representing holes in a file), or we don't have permission 5972 * to access the memory at all (in which case we have to 5973 * unload any current translations that might exist). 5974 */ 5975 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD); 5976 } else { 5977 /* 5978 * A shared mapping or a private mapping in which write 5979 * protection is going to be denied - just change all the 5980 * protections over the range of addresses in question. 5981 * segvn does not support any other attributes other 5982 * than prot so we can use hat_chgattr. 5983 */ 5984 hat_chgattr(seg->s_as->a_hat, addr, len, prot); 5985 } 5986 5987 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 5988 5989 return (0); 5990 } 5991 5992 /* 5993 * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize, 5994 * to determine if the seg is capable of mapping the requested szc. 5995 */ 5996 static int 5997 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc) 5998 { 5999 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6000 struct segvn_data *nsvd; 6001 struct anon_map *amp = svd->amp; 6002 struct seg *nseg; 6003 caddr_t eaddr = addr + len, a; 6004 size_t pgsz = page_get_pagesize(szc); 6005 pgcnt_t pgcnt = page_get_pagecnt(szc); 6006 int err; 6007 u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base); 6008 extern struct vnode kvp; 6009 6010 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 6011 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size); 6012 6013 if (seg->s_szc == szc || segvn_lpg_disable != 0) { 6014 return (0); 6015 } 6016 6017 /* 6018 * addr should always be pgsz aligned but eaddr may be misaligned if 6019 * it's at the end of the segment. 6020 * 6021 * XXX we should assert this condition since as_setpagesize() logic 6022 * guarantees it. 6023 */ 6024 if (!IS_P2ALIGNED(addr, pgsz) || 6025 (!IS_P2ALIGNED(eaddr, pgsz) && 6026 eaddr != seg->s_base + seg->s_size)) { 6027 6028 segvn_setpgsz_align_err++; 6029 return (EINVAL); 6030 } 6031 6032 if (amp != NULL && svd->type == MAP_SHARED) { 6033 ulong_t an_idx = svd->anon_index + seg_page(seg, addr); 6034 if (!IS_P2ALIGNED(an_idx, pgcnt)) { 6035 6036 segvn_setpgsz_anon_align_err++; 6037 return (EINVAL); 6038 } 6039 } 6040 6041 if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas || 6042 szc > segvn_maxpgszc) { 6043 return (EINVAL); 6044 } 6045 6046 /* paranoid check */ 6047 if (svd->vp != NULL && 6048 (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) { 6049 return (EINVAL); 6050 } 6051 6052 if (seg->s_szc == 0 && svd->vp != NULL && 6053 map_addr_vacalign_check(addr, off)) { 6054 return (EINVAL); 6055 } 6056 6057 /* 6058 * Check that protections are the same within new page 6059 * size boundaries. 6060 */ 6061 if (svd->pageprot) { 6062 for (a = addr; a < eaddr; a += pgsz) { 6063 if ((a + pgsz) > eaddr) { 6064 if (!sameprot(seg, a, eaddr - a)) { 6065 return (EINVAL); 6066 } 6067 } else { 6068 if (!sameprot(seg, a, pgsz)) { 6069 return (EINVAL); 6070 } 6071 } 6072 } 6073 } 6074 6075 /* 6076 * Since we are changing page size we first have to flush 6077 * the cache. This makes sure all the pagelock calls have 6078 * to recheck protections. 6079 */ 6080 if (svd->softlockcnt > 0) { 6081 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6082 6083 /* 6084 * If this is shared segment non 0 softlockcnt 6085 * means locked pages are still in use. 6086 */ 6087 if (svd->type == MAP_SHARED) { 6088 return (EAGAIN); 6089 } 6090 6091 /* 6092 * Since we do have the segvn writers lock nobody can fill 6093 * the cache with entries belonging to this seg during 6094 * the purge. The flush either succeeds or we still have 6095 * pending I/Os. 6096 */ 6097 segvn_purge(seg); 6098 if (svd->softlockcnt > 0) { 6099 return (EAGAIN); 6100 } 6101 } 6102 6103 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 6104 ASSERT(svd->amp == NULL); 6105 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6106 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 6107 HAT_REGION_TEXT); 6108 svd->rcookie = HAT_INVALID_REGION_COOKIE; 6109 } else if (svd->tr_state == SEGVN_TR_INIT) { 6110 svd->tr_state = SEGVN_TR_OFF; 6111 } else if (svd->tr_state == SEGVN_TR_ON) { 6112 ASSERT(svd->amp != NULL); 6113 segvn_textunrepl(seg, 1); 6114 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 6115 amp = NULL; 6116 } 6117 6118 /* 6119 * Operation for sub range of existing segment. 6120 */ 6121 if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) { 6122 if (szc < seg->s_szc) { 6123 VM_STAT_ADD(segvnvmstats.demoterange[2]); 6124 err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0); 6125 if (err == 0) { 6126 return (IE_RETRY); 6127 } 6128 if (err == ENOMEM) { 6129 return (IE_NOMEM); 6130 } 6131 return (err); 6132 } 6133 if (addr != seg->s_base) { 6134 nseg = segvn_split_seg(seg, addr); 6135 if (eaddr != (nseg->s_base + nseg->s_size)) { 6136 /* eaddr is szc aligned */ 6137 (void) segvn_split_seg(nseg, eaddr); 6138 } 6139 return (IE_RETRY); 6140 } 6141 if (eaddr != (seg->s_base + seg->s_size)) { 6142 /* eaddr is szc aligned */ 6143 (void) segvn_split_seg(seg, eaddr); 6144 } 6145 return (IE_RETRY); 6146 } 6147 6148 /* 6149 * Break any low level sharing and reset seg->s_szc to 0. 6150 */ 6151 if ((err = segvn_clrszc(seg)) != 0) { 6152 if (err == ENOMEM) { 6153 err = IE_NOMEM; 6154 } 6155 return (err); 6156 } 6157 ASSERT(seg->s_szc == 0); 6158 6159 /* 6160 * If the end of the current segment is not pgsz aligned 6161 * then attempt to concatenate with the next segment. 6162 */ 6163 if (!IS_P2ALIGNED(eaddr, pgsz)) { 6164 nseg = AS_SEGNEXT(seg->s_as, seg); 6165 if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) { 6166 return (ENOMEM); 6167 } 6168 if (nseg->s_ops != &segvn_ops) { 6169 return (EINVAL); 6170 } 6171 nsvd = (struct segvn_data *)nseg->s_data; 6172 if (nsvd->softlockcnt > 0) { 6173 /* 6174 * If this is shared segment non 0 softlockcnt 6175 * means locked pages are still in use. 6176 */ 6177 if (nsvd->type == MAP_SHARED) { 6178 return (EAGAIN); 6179 } 6180 segvn_purge(nseg); 6181 if (nsvd->softlockcnt > 0) { 6182 return (EAGAIN); 6183 } 6184 } 6185 err = segvn_clrszc(nseg); 6186 if (err == ENOMEM) { 6187 err = IE_NOMEM; 6188 } 6189 if (err != 0) { 6190 return (err); 6191 } 6192 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE); 6193 err = segvn_concat(seg, nseg, 1); 6194 if (err == -1) { 6195 return (EINVAL); 6196 } 6197 if (err == -2) { 6198 return (IE_NOMEM); 6199 } 6200 return (IE_RETRY); 6201 } 6202 6203 /* 6204 * May need to re-align anon array to 6205 * new szc. 6206 */ 6207 if (amp != NULL) { 6208 if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) { 6209 struct anon_hdr *nahp; 6210 6211 ASSERT(svd->type == MAP_PRIVATE); 6212 6213 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 6214 ASSERT(amp->refcnt == 1); 6215 nahp = anon_create(btop(amp->size), ANON_NOSLEEP); 6216 if (nahp == NULL) { 6217 ANON_LOCK_EXIT(&->a_rwlock); 6218 return (IE_NOMEM); 6219 } 6220 if (anon_copy_ptr(amp->ahp, svd->anon_index, 6221 nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) { 6222 anon_release(nahp, btop(amp->size)); 6223 ANON_LOCK_EXIT(&->a_rwlock); 6224 return (IE_NOMEM); 6225 } 6226 anon_release(amp->ahp, btop(amp->size)); 6227 amp->ahp = nahp; 6228 svd->anon_index = 0; 6229 ANON_LOCK_EXIT(&->a_rwlock); 6230 } 6231 } 6232 if (svd->vp != NULL && szc != 0) { 6233 struct vattr va; 6234 u_offset_t eoffpage = svd->offset; 6235 va.va_mask = AT_SIZE; 6236 eoffpage += seg->s_size; 6237 eoffpage = btopr(eoffpage); 6238 if (VOP_GETATTR(svd->vp, &va, 0, svd->cred, NULL) != 0) { 6239 segvn_setpgsz_getattr_err++; 6240 return (EINVAL); 6241 } 6242 if (btopr(va.va_size) < eoffpage) { 6243 segvn_setpgsz_eof_err++; 6244 return (EINVAL); 6245 } 6246 if (amp != NULL) { 6247 /* 6248 * anon_fill_cow_holes() may call VOP_GETPAGE(). 6249 * don't take anon map lock here to avoid holding it 6250 * across VOP_GETPAGE() calls that may call back into 6251 * segvn for klsutering checks. We don't really need 6252 * anon map lock here since it's a private segment and 6253 * we hold as level lock as writers. 6254 */ 6255 if ((err = anon_fill_cow_holes(seg, seg->s_base, 6256 amp->ahp, svd->anon_index, svd->vp, svd->offset, 6257 seg->s_size, szc, svd->prot, svd->vpage, 6258 svd->cred)) != 0) { 6259 return (EINVAL); 6260 } 6261 } 6262 segvn_setvnode_mpss(svd->vp); 6263 } 6264 6265 if (amp != NULL) { 6266 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 6267 if (svd->type == MAP_PRIVATE) { 6268 amp->a_szc = szc; 6269 } else if (szc > amp->a_szc) { 6270 amp->a_szc = szc; 6271 } 6272 ANON_LOCK_EXIT(&->a_rwlock); 6273 } 6274 6275 seg->s_szc = szc; 6276 6277 return (0); 6278 } 6279 6280 static int 6281 segvn_clrszc(struct seg *seg) 6282 { 6283 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6284 struct anon_map *amp = svd->amp; 6285 size_t pgsz; 6286 pgcnt_t pages; 6287 int err = 0; 6288 caddr_t a = seg->s_base; 6289 caddr_t ea = a + seg->s_size; 6290 ulong_t an_idx = svd->anon_index; 6291 vnode_t *vp = svd->vp; 6292 struct vpage *vpage = svd->vpage; 6293 page_t *anon_pl[1 + 1], *pp; 6294 struct anon *ap, *oldap; 6295 uint_t prot = svd->prot, vpprot; 6296 int pageflag = 0; 6297 6298 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) || 6299 SEGVN_WRITE_HELD(seg->s_as, &svd->lock)); 6300 ASSERT(svd->softlockcnt == 0); 6301 6302 if (vp == NULL && amp == NULL) { 6303 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 6304 seg->s_szc = 0; 6305 return (0); 6306 } 6307 6308 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 6309 ASSERT(svd->amp == NULL); 6310 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6311 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 6312 HAT_REGION_TEXT); 6313 svd->rcookie = HAT_INVALID_REGION_COOKIE; 6314 } else if (svd->tr_state == SEGVN_TR_ON) { 6315 ASSERT(svd->amp != NULL); 6316 segvn_textunrepl(seg, 1); 6317 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF); 6318 amp = NULL; 6319 } else { 6320 if (svd->tr_state != SEGVN_TR_OFF) { 6321 ASSERT(svd->tr_state == SEGVN_TR_INIT); 6322 svd->tr_state = SEGVN_TR_OFF; 6323 } 6324 6325 /* 6326 * do HAT_UNLOAD_UNMAP since we are changing the pagesize. 6327 * unload argument is 0 when we are freeing the segment 6328 * and unload was already done. 6329 */ 6330 hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size, 6331 HAT_UNLOAD_UNMAP); 6332 } 6333 6334 if (amp == NULL || svd->type == MAP_SHARED) { 6335 seg->s_szc = 0; 6336 return (0); 6337 } 6338 6339 pgsz = page_get_pagesize(seg->s_szc); 6340 pages = btop(pgsz); 6341 6342 /* 6343 * XXX anon rwlock is not really needed because this is a 6344 * private segment and we are writers. 6345 */ 6346 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 6347 6348 for (; a < ea; a += pgsz, an_idx += pages) { 6349 if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) { 6350 ASSERT(vpage != NULL || svd->pageprot == 0); 6351 if (vpage != NULL) { 6352 ASSERT(sameprot(seg, a, pgsz)); 6353 prot = VPP_PROT(vpage); 6354 pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0; 6355 } 6356 if (seg->s_szc != 0) { 6357 ASSERT(vp == NULL || anon_pages(amp->ahp, 6358 an_idx, pages) == pages); 6359 if ((err = anon_map_demotepages(amp, an_idx, 6360 seg, a, prot, vpage, svd->cred)) != 0) { 6361 goto out; 6362 } 6363 } else { 6364 if (oldap->an_refcnt == 1) { 6365 continue; 6366 } 6367 if ((err = anon_getpage(&oldap, &vpprot, 6368 anon_pl, PAGESIZE, seg, a, S_READ, 6369 svd->cred))) { 6370 goto out; 6371 } 6372 if ((pp = anon_private(&ap, seg, a, prot, 6373 anon_pl[0], pageflag, svd->cred)) == NULL) { 6374 err = ENOMEM; 6375 goto out; 6376 } 6377 anon_decref(oldap); 6378 (void) anon_set_ptr(amp->ahp, an_idx, ap, 6379 ANON_SLEEP); 6380 page_unlock(pp); 6381 } 6382 } 6383 vpage = (vpage == NULL) ? NULL : vpage + pages; 6384 } 6385 6386 amp->a_szc = 0; 6387 seg->s_szc = 0; 6388 out: 6389 ANON_LOCK_EXIT(&->a_rwlock); 6390 return (err); 6391 } 6392 6393 static int 6394 segvn_claim_pages( 6395 struct seg *seg, 6396 struct vpage *svp, 6397 u_offset_t off, 6398 ulong_t anon_idx, 6399 uint_t prot) 6400 { 6401 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc); 6402 size_t ppasize = (pgcnt + 1) * sizeof (page_t *); 6403 page_t **ppa; 6404 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6405 struct anon_map *amp = svd->amp; 6406 struct vpage *evp = svp + pgcnt; 6407 caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT) 6408 + seg->s_base; 6409 struct anon *ap; 6410 struct vnode *vp = svd->vp; 6411 page_t *pp; 6412 pgcnt_t pg_idx, i; 6413 int err = 0; 6414 anoff_t aoff; 6415 int anon = (amp != NULL) ? 1 : 0; 6416 6417 ASSERT(svd->type == MAP_PRIVATE); 6418 ASSERT(svd->vpage != NULL); 6419 ASSERT(seg->s_szc != 0); 6420 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); 6421 ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt)); 6422 ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT)); 6423 6424 if (VPP_PROT(svp) == prot) 6425 return (1); 6426 if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE)) 6427 return (1); 6428 6429 ppa = kmem_alloc(ppasize, KM_SLEEP); 6430 if (anon && vp != NULL) { 6431 if (anon_get_ptr(amp->ahp, anon_idx) == NULL) { 6432 anon = 0; 6433 ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt)); 6434 } 6435 ASSERT(!anon || 6436 anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt); 6437 } 6438 6439 for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) { 6440 if (!VPP_ISPPLOCK(svp)) 6441 continue; 6442 if (anon) { 6443 ap = anon_get_ptr(amp->ahp, anon_idx); 6444 if (ap == NULL) { 6445 panic("segvn_claim_pages: no anon slot"); 6446 } 6447 swap_xlate(ap, &vp, &aoff); 6448 off = (u_offset_t)aoff; 6449 } 6450 ASSERT(vp != NULL); 6451 if ((pp = page_lookup(vp, 6452 (u_offset_t)off, SE_SHARED)) == NULL) { 6453 panic("segvn_claim_pages: no page"); 6454 } 6455 ppa[pg_idx++] = pp; 6456 off += PAGESIZE; 6457 } 6458 6459 if (ppa[0] == NULL) { 6460 kmem_free(ppa, ppasize); 6461 return (1); 6462 } 6463 6464 ASSERT(pg_idx <= pgcnt); 6465 ppa[pg_idx] = NULL; 6466 6467 if (prot & PROT_WRITE) 6468 err = page_addclaim_pages(ppa); 6469 else 6470 err = page_subclaim_pages(ppa); 6471 6472 for (i = 0; i < pg_idx; i++) { 6473 ASSERT(ppa[i] != NULL); 6474 page_unlock(ppa[i]); 6475 } 6476 6477 kmem_free(ppa, ppasize); 6478 return (err); 6479 } 6480 6481 /* 6482 * Returns right (upper address) segment if split occurred. 6483 * If the address is equal to the beginning or end of its segment it returns 6484 * the current segment. 6485 */ 6486 static struct seg * 6487 segvn_split_seg(struct seg *seg, caddr_t addr) 6488 { 6489 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6490 struct seg *nseg; 6491 size_t nsize; 6492 struct segvn_data *nsvd; 6493 6494 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 6495 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6496 6497 ASSERT(addr >= seg->s_base); 6498 ASSERT(addr <= seg->s_base + seg->s_size); 6499 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 6500 6501 if (addr == seg->s_base || addr == seg->s_base + seg->s_size) 6502 return (seg); 6503 6504 nsize = seg->s_base + seg->s_size - addr; 6505 seg->s_size = addr - seg->s_base; 6506 nseg = seg_alloc(seg->s_as, addr, nsize); 6507 ASSERT(nseg != NULL); 6508 nseg->s_ops = seg->s_ops; 6509 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP); 6510 nseg->s_data = (void *)nsvd; 6511 nseg->s_szc = seg->s_szc; 6512 *nsvd = *svd; 6513 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE); 6514 nsvd->seg = nseg; 6515 rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL); 6516 6517 if (nsvd->vp != NULL) { 6518 VN_HOLD(nsvd->vp); 6519 nsvd->offset = svd->offset + 6520 (uintptr_t)(nseg->s_base - seg->s_base); 6521 if (nsvd->type == MAP_SHARED) 6522 lgrp_shm_policy_init(NULL, nsvd->vp); 6523 } else { 6524 /* 6525 * The offset for an anonymous segment has no signifigance in 6526 * terms of an offset into a file. If we were to use the above 6527 * calculation instead, the structures read out of 6528 * /proc/<pid>/xmap would be more difficult to decipher since 6529 * it would be unclear whether two seemingly contiguous 6530 * prxmap_t structures represented different segments or a 6531 * single segment that had been split up into multiple prxmap_t 6532 * structures (e.g. if some part of the segment had not yet 6533 * been faulted in). 6534 */ 6535 nsvd->offset = 0; 6536 } 6537 6538 ASSERT(svd->softlockcnt == 0); 6539 ASSERT(svd->softlockcnt_sbase == 0); 6540 ASSERT(svd->softlockcnt_send == 0); 6541 crhold(svd->cred); 6542 6543 if (svd->vpage != NULL) { 6544 size_t bytes = vpgtob(seg_pages(seg)); 6545 size_t nbytes = vpgtob(seg_pages(nseg)); 6546 struct vpage *ovpage = svd->vpage; 6547 6548 svd->vpage = kmem_alloc(bytes, KM_SLEEP); 6549 bcopy(ovpage, svd->vpage, bytes); 6550 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP); 6551 bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes); 6552 kmem_free(ovpage, bytes + nbytes); 6553 } 6554 if (svd->amp != NULL && svd->type == MAP_PRIVATE) { 6555 struct anon_map *oamp = svd->amp, *namp; 6556 struct anon_hdr *nahp; 6557 6558 ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER); 6559 ASSERT(oamp->refcnt == 1); 6560 nahp = anon_create(btop(seg->s_size), ANON_SLEEP); 6561 (void) anon_copy_ptr(oamp->ahp, svd->anon_index, 6562 nahp, 0, btop(seg->s_size), ANON_SLEEP); 6563 6564 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP); 6565 namp->a_szc = nseg->s_szc; 6566 (void) anon_copy_ptr(oamp->ahp, 6567 svd->anon_index + btop(seg->s_size), 6568 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP); 6569 anon_release(oamp->ahp, btop(oamp->size)); 6570 oamp->ahp = nahp; 6571 oamp->size = seg->s_size; 6572 svd->anon_index = 0; 6573 nsvd->amp = namp; 6574 nsvd->anon_index = 0; 6575 ANON_LOCK_EXIT(&oamp->a_rwlock); 6576 } else if (svd->amp != NULL) { 6577 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc); 6578 ASSERT(svd->amp == nsvd->amp); 6579 ASSERT(seg->s_szc <= svd->amp->a_szc); 6580 nsvd->anon_index = svd->anon_index + seg_pages(seg); 6581 ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt)); 6582 ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER); 6583 svd->amp->refcnt++; 6584 ANON_LOCK_EXIT(&svd->amp->a_rwlock); 6585 } 6586 6587 /* 6588 * Split the amount of swap reserved. 6589 */ 6590 if (svd->swresv) { 6591 /* 6592 * For MAP_NORESERVE, only allocate swap reserve for pages 6593 * being used. Other segments get enough to cover whole 6594 * segment. 6595 */ 6596 if (svd->flags & MAP_NORESERVE) { 6597 size_t oswresv; 6598 6599 ASSERT(svd->amp); 6600 oswresv = svd->swresv; 6601 svd->swresv = ptob(anon_pages(svd->amp->ahp, 6602 svd->anon_index, btop(seg->s_size))); 6603 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp, 6604 nsvd->anon_index, btop(nseg->s_size))); 6605 ASSERT(oswresv >= (svd->swresv + nsvd->swresv)); 6606 } else { 6607 if (svd->pageswap) { 6608 svd->swresv = segvn_count_swap_by_vpages(seg); 6609 ASSERT(nsvd->swresv >= svd->swresv); 6610 nsvd->swresv -= svd->swresv; 6611 } else { 6612 ASSERT(svd->swresv == seg->s_size + 6613 nseg->s_size); 6614 svd->swresv = seg->s_size; 6615 nsvd->swresv = nseg->s_size; 6616 } 6617 } 6618 } 6619 6620 return (nseg); 6621 } 6622 6623 /* 6624 * called on memory operations (unmap, setprot, setpagesize) for a subset 6625 * of a large page segment to either demote the memory range (SDR_RANGE) 6626 * or the ends (SDR_END) by addr/len. 6627 * 6628 * returns 0 on success. returns errno, including ENOMEM, on failure. 6629 */ 6630 static int 6631 segvn_demote_range( 6632 struct seg *seg, 6633 caddr_t addr, 6634 size_t len, 6635 int flag, 6636 uint_t szcvec) 6637 { 6638 caddr_t eaddr = addr + len; 6639 caddr_t lpgaddr, lpgeaddr; 6640 struct seg *nseg; 6641 struct seg *badseg1 = NULL; 6642 struct seg *badseg2 = NULL; 6643 size_t pgsz; 6644 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6645 int err; 6646 uint_t szc = seg->s_szc; 6647 uint_t tszcvec; 6648 6649 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 6650 ASSERT(svd->tr_state == SEGVN_TR_OFF); 6651 ASSERT(szc != 0); 6652 pgsz = page_get_pagesize(szc); 6653 ASSERT(seg->s_base != addr || seg->s_size != len); 6654 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size); 6655 ASSERT(svd->softlockcnt == 0); 6656 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 6657 ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED)); 6658 6659 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr); 6660 ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr); 6661 if (flag == SDR_RANGE) { 6662 /* demote entire range */ 6663 badseg1 = nseg = segvn_split_seg(seg, lpgaddr); 6664 (void) segvn_split_seg(nseg, lpgeaddr); 6665 ASSERT(badseg1->s_base == lpgaddr); 6666 ASSERT(badseg1->s_size == lpgeaddr - lpgaddr); 6667 } else if (addr != lpgaddr) { 6668 ASSERT(flag == SDR_END); 6669 badseg1 = nseg = segvn_split_seg(seg, lpgaddr); 6670 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz && 6671 eaddr < lpgaddr + 2 * pgsz) { 6672 (void) segvn_split_seg(nseg, lpgeaddr); 6673 ASSERT(badseg1->s_base == lpgaddr); 6674 ASSERT(badseg1->s_size == 2 * pgsz); 6675 } else { 6676 nseg = segvn_split_seg(nseg, lpgaddr + pgsz); 6677 ASSERT(badseg1->s_base == lpgaddr); 6678 ASSERT(badseg1->s_size == pgsz); 6679 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) { 6680 ASSERT(lpgeaddr - lpgaddr > 2 * pgsz); 6681 nseg = segvn_split_seg(nseg, lpgeaddr - pgsz); 6682 badseg2 = nseg; 6683 (void) segvn_split_seg(nseg, lpgeaddr); 6684 ASSERT(badseg2->s_base == lpgeaddr - pgsz); 6685 ASSERT(badseg2->s_size == pgsz); 6686 } 6687 } 6688 } else { 6689 ASSERT(flag == SDR_END); 6690 ASSERT(eaddr < lpgeaddr); 6691 badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz); 6692 (void) segvn_split_seg(nseg, lpgeaddr); 6693 ASSERT(badseg1->s_base == lpgeaddr - pgsz); 6694 ASSERT(badseg1->s_size == pgsz); 6695 } 6696 6697 ASSERT(badseg1 != NULL); 6698 ASSERT(badseg1->s_szc == szc); 6699 ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz || 6700 badseg1->s_size == 2 * pgsz); 6701 ASSERT(sameprot(badseg1, badseg1->s_base, pgsz)); 6702 ASSERT(badseg1->s_size == pgsz || 6703 sameprot(badseg1, badseg1->s_base + pgsz, pgsz)); 6704 if (err = segvn_clrszc(badseg1)) { 6705 return (err); 6706 } 6707 ASSERT(badseg1->s_szc == 0); 6708 6709 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) { 6710 uint_t tszc = highbit(tszcvec) - 1; 6711 caddr_t ta = MAX(addr, badseg1->s_base); 6712 caddr_t te; 6713 size_t tpgsz = page_get_pagesize(tszc); 6714 6715 ASSERT(svd->type == MAP_SHARED); 6716 ASSERT(flag == SDR_END); 6717 ASSERT(tszc < szc && tszc > 0); 6718 6719 if (eaddr > badseg1->s_base + badseg1->s_size) { 6720 te = badseg1->s_base + badseg1->s_size; 6721 } else { 6722 te = eaddr; 6723 } 6724 6725 ASSERT(ta <= te); 6726 badseg1->s_szc = tszc; 6727 if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) { 6728 if (badseg2 != NULL) { 6729 err = segvn_demote_range(badseg1, ta, te - ta, 6730 SDR_END, tszcvec); 6731 if (err != 0) { 6732 return (err); 6733 } 6734 } else { 6735 return (segvn_demote_range(badseg1, ta, 6736 te - ta, SDR_END, tszcvec)); 6737 } 6738 } 6739 } 6740 6741 if (badseg2 == NULL) 6742 return (0); 6743 ASSERT(badseg2->s_szc == szc); 6744 ASSERT(badseg2->s_size == pgsz); 6745 ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size)); 6746 if (err = segvn_clrszc(badseg2)) { 6747 return (err); 6748 } 6749 ASSERT(badseg2->s_szc == 0); 6750 6751 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) { 6752 uint_t tszc = highbit(tszcvec) - 1; 6753 size_t tpgsz = page_get_pagesize(tszc); 6754 6755 ASSERT(svd->type == MAP_SHARED); 6756 ASSERT(flag == SDR_END); 6757 ASSERT(tszc < szc && tszc > 0); 6758 ASSERT(badseg2->s_base > addr); 6759 ASSERT(eaddr > badseg2->s_base); 6760 ASSERT(eaddr < badseg2->s_base + badseg2->s_size); 6761 6762 badseg2->s_szc = tszc; 6763 if (!IS_P2ALIGNED(eaddr, tpgsz)) { 6764 return (segvn_demote_range(badseg2, badseg2->s_base, 6765 eaddr - badseg2->s_base, SDR_END, tszcvec)); 6766 } 6767 } 6768 6769 return (0); 6770 } 6771 6772 static int 6773 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot) 6774 { 6775 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6776 struct vpage *vp, *evp; 6777 6778 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 6779 6780 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 6781 /* 6782 * If segment protection can be used, simply check against them. 6783 */ 6784 if (svd->pageprot == 0) { 6785 int err; 6786 6787 err = ((svd->prot & prot) != prot) ? EACCES : 0; 6788 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6789 return (err); 6790 } 6791 6792 /* 6793 * Have to check down to the vpage level. 6794 */ 6795 evp = &svd->vpage[seg_page(seg, addr + len)]; 6796 for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) { 6797 if ((VPP_PROT(vp) & prot) != prot) { 6798 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6799 return (EACCES); 6800 } 6801 } 6802 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6803 return (0); 6804 } 6805 6806 static int 6807 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv) 6808 { 6809 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6810 size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1; 6811 6812 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 6813 6814 if (pgno != 0) { 6815 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 6816 if (svd->pageprot == 0) { 6817 do { 6818 protv[--pgno] = svd->prot; 6819 } while (pgno != 0); 6820 } else { 6821 size_t pgoff = seg_page(seg, addr); 6822 6823 do { 6824 pgno--; 6825 protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]); 6826 } while (pgno != 0); 6827 } 6828 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 6829 } 6830 return (0); 6831 } 6832 6833 static u_offset_t 6834 segvn_getoffset(struct seg *seg, caddr_t addr) 6835 { 6836 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6837 6838 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 6839 6840 return (svd->offset + (uintptr_t)(addr - seg->s_base)); 6841 } 6842 6843 /*ARGSUSED*/ 6844 static int 6845 segvn_gettype(struct seg *seg, caddr_t addr) 6846 { 6847 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6848 6849 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 6850 6851 return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT | 6852 MAP_INITDATA))); 6853 } 6854 6855 /*ARGSUSED*/ 6856 static int 6857 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp) 6858 { 6859 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6860 6861 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 6862 6863 *vpp = svd->vp; 6864 return (0); 6865 } 6866 6867 /* 6868 * Check to see if it makes sense to do kluster/read ahead to 6869 * addr + delta relative to the mapping at addr. We assume here 6870 * that delta is a signed PAGESIZE'd multiple (which can be negative). 6871 * 6872 * For segvn, we currently "approve" of the action if we are 6873 * still in the segment and it maps from the same vp/off, 6874 * or if the advice stored in segvn_data or vpages allows it. 6875 * Currently, klustering is not allowed only if MADV_RANDOM is set. 6876 */ 6877 static int 6878 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 6879 { 6880 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6881 struct anon *oap, *ap; 6882 ssize_t pd; 6883 size_t page; 6884 struct vnode *vp1, *vp2; 6885 u_offset_t off1, off2; 6886 struct anon_map *amp; 6887 6888 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 6889 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) || 6890 SEGVN_LOCK_HELD(seg->s_as, &svd->lock)); 6891 6892 if (addr + delta < seg->s_base || 6893 addr + delta >= (seg->s_base + seg->s_size)) 6894 return (-1); /* exceeded segment bounds */ 6895 6896 pd = delta / (ssize_t)PAGESIZE; /* divide to preserve sign bit */ 6897 page = seg_page(seg, addr); 6898 6899 /* 6900 * Check to see if either of the pages addr or addr + delta 6901 * have advice set that prevents klustering (if MADV_RANDOM advice 6902 * is set for entire segment, or MADV_SEQUENTIAL is set and delta 6903 * is negative). 6904 */ 6905 if (svd->advice == MADV_RANDOM || 6906 svd->advice == MADV_SEQUENTIAL && delta < 0) 6907 return (-1); 6908 else if (svd->pageadvice && svd->vpage) { 6909 struct vpage *bvpp, *evpp; 6910 6911 bvpp = &svd->vpage[page]; 6912 evpp = &svd->vpage[page + pd]; 6913 if (VPP_ADVICE(bvpp) == MADV_RANDOM || 6914 VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0) 6915 return (-1); 6916 if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) && 6917 VPP_ADVICE(evpp) == MADV_RANDOM) 6918 return (-1); 6919 } 6920 6921 if (svd->type == MAP_SHARED) 6922 return (0); /* shared mapping - all ok */ 6923 6924 if ((amp = svd->amp) == NULL) 6925 return (0); /* off original vnode */ 6926 6927 page += svd->anon_index; 6928 6929 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 6930 6931 oap = anon_get_ptr(amp->ahp, page); 6932 ap = anon_get_ptr(amp->ahp, page + pd); 6933 6934 ANON_LOCK_EXIT(&->a_rwlock); 6935 6936 if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) { 6937 return (-1); /* one with and one without an anon */ 6938 } 6939 6940 if (oap == NULL) { /* implies that ap == NULL */ 6941 return (0); /* off original vnode */ 6942 } 6943 6944 /* 6945 * Now we know we have two anon pointers - check to 6946 * see if they happen to be properly allocated. 6947 */ 6948 6949 /* 6950 * XXX We cheat here and don't lock the anon slots. We can't because 6951 * we may have been called from the anon layer which might already 6952 * have locked them. We are holding a refcnt on the slots so they 6953 * can't disappear. The worst that will happen is we'll get the wrong 6954 * names (vp, off) for the slots and make a poor klustering decision. 6955 */ 6956 swap_xlate(ap, &vp1, &off1); 6957 swap_xlate(oap, &vp2, &off2); 6958 6959 6960 if (!VOP_CMP(vp1, vp2, NULL) || off1 - off2 != delta) 6961 return (-1); 6962 return (0); 6963 } 6964 6965 /* 6966 * Swap the pages of seg out to secondary storage, returning the 6967 * number of bytes of storage freed. 6968 * 6969 * The basic idea is first to unload all translations and then to call 6970 * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the 6971 * swap device. Pages to which other segments have mappings will remain 6972 * mapped and won't be swapped. Our caller (as_swapout) has already 6973 * performed the unloading step. 6974 * 6975 * The value returned is intended to correlate well with the process's 6976 * memory requirements. However, there are some caveats: 6977 * 1) When given a shared segment as argument, this routine will 6978 * only succeed in swapping out pages for the last sharer of the 6979 * segment. (Previous callers will only have decremented mapping 6980 * reference counts.) 6981 * 2) We assume that the hat layer maintains a large enough translation 6982 * cache to capture process reference patterns. 6983 */ 6984 static size_t 6985 segvn_swapout(struct seg *seg) 6986 { 6987 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 6988 struct anon_map *amp; 6989 pgcnt_t pgcnt = 0; 6990 pgcnt_t npages; 6991 pgcnt_t page; 6992 ulong_t anon_index; 6993 6994 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 6995 6996 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 6997 /* 6998 * Find pages unmapped by our caller and force them 6999 * out to the virtual swap device. 7000 */ 7001 if ((amp = svd->amp) != NULL) 7002 anon_index = svd->anon_index; 7003 npages = seg->s_size >> PAGESHIFT; 7004 for (page = 0; page < npages; page++) { 7005 page_t *pp; 7006 struct anon *ap; 7007 struct vnode *vp; 7008 u_offset_t off; 7009 anon_sync_obj_t cookie; 7010 7011 /* 7012 * Obtain <vp, off> pair for the page, then look it up. 7013 * 7014 * Note that this code is willing to consider regular 7015 * pages as well as anon pages. Is this appropriate here? 7016 */ 7017 ap = NULL; 7018 if (amp != NULL) { 7019 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7020 if (anon_array_try_enter(amp, anon_index + page, 7021 &cookie)) { 7022 ANON_LOCK_EXIT(&->a_rwlock); 7023 continue; 7024 } 7025 ap = anon_get_ptr(amp->ahp, anon_index + page); 7026 if (ap != NULL) { 7027 swap_xlate(ap, &vp, &off); 7028 } else { 7029 vp = svd->vp; 7030 off = svd->offset + ptob(page); 7031 } 7032 anon_array_exit(&cookie); 7033 ANON_LOCK_EXIT(&->a_rwlock); 7034 } else { 7035 vp = svd->vp; 7036 off = svd->offset + ptob(page); 7037 } 7038 if (vp == NULL) { /* untouched zfod page */ 7039 ASSERT(ap == NULL); 7040 continue; 7041 } 7042 7043 pp = page_lookup_nowait(vp, off, SE_SHARED); 7044 if (pp == NULL) 7045 continue; 7046 7047 7048 /* 7049 * Examine the page to see whether it can be tossed out, 7050 * keeping track of how many we've found. 7051 */ 7052 if (!page_tryupgrade(pp)) { 7053 /* 7054 * If the page has an i/o lock and no mappings, 7055 * it's very likely that the page is being 7056 * written out as a result of klustering. 7057 * Assume this is so and take credit for it here. 7058 */ 7059 if (!page_io_trylock(pp)) { 7060 if (!hat_page_is_mapped(pp)) 7061 pgcnt++; 7062 } else { 7063 page_io_unlock(pp); 7064 } 7065 page_unlock(pp); 7066 continue; 7067 } 7068 ASSERT(!page_iolock_assert(pp)); 7069 7070 7071 /* 7072 * Skip if page is locked or has mappings. 7073 * We don't need the page_struct_lock to look at lckcnt 7074 * and cowcnt because the page is exclusive locked. 7075 */ 7076 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 7077 hat_page_is_mapped(pp)) { 7078 page_unlock(pp); 7079 continue; 7080 } 7081 7082 /* 7083 * dispose skips large pages so try to demote first. 7084 */ 7085 if (pp->p_szc != 0 && !page_try_demote_pages(pp)) { 7086 page_unlock(pp); 7087 /* 7088 * XXX should skip the remaining page_t's of this 7089 * large page. 7090 */ 7091 continue; 7092 } 7093 7094 ASSERT(pp->p_szc == 0); 7095 7096 /* 7097 * No longer mapped -- we can toss it out. How 7098 * we do so depends on whether or not it's dirty. 7099 */ 7100 if (hat_ismod(pp) && pp->p_vnode) { 7101 /* 7102 * We must clean the page before it can be 7103 * freed. Setting B_FREE will cause pvn_done 7104 * to free the page when the i/o completes. 7105 * XXX: This also causes it to be accounted 7106 * as a pageout instead of a swap: need 7107 * B_SWAPOUT bit to use instead of B_FREE. 7108 * 7109 * Hold the vnode before releasing the page lock 7110 * to prevent it from being freed and re-used by 7111 * some other thread. 7112 */ 7113 VN_HOLD(vp); 7114 page_unlock(pp); 7115 7116 /* 7117 * Queue all i/o requests for the pageout thread 7118 * to avoid saturating the pageout devices. 7119 */ 7120 if (!queue_io_request(vp, off)) 7121 VN_RELE(vp); 7122 } else { 7123 /* 7124 * The page was clean, free it. 7125 * 7126 * XXX: Can we ever encounter modified pages 7127 * with no associated vnode here? 7128 */ 7129 ASSERT(pp->p_vnode != NULL); 7130 /*LINTED: constant in conditional context*/ 7131 VN_DISPOSE(pp, B_FREE, 0, kcred); 7132 } 7133 7134 /* 7135 * Credit now even if i/o is in progress. 7136 */ 7137 pgcnt++; 7138 } 7139 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7140 7141 /* 7142 * Wakeup pageout to initiate i/o on all queued requests. 7143 */ 7144 cv_signal_pageout(); 7145 return (ptob(pgcnt)); 7146 } 7147 7148 /* 7149 * Synchronize primary storage cache with real object in virtual memory. 7150 * 7151 * XXX - Anonymous pages should not be sync'ed out at all. 7152 */ 7153 static int 7154 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags) 7155 { 7156 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 7157 struct vpage *vpp; 7158 page_t *pp; 7159 u_offset_t offset; 7160 struct vnode *vp; 7161 u_offset_t off; 7162 caddr_t eaddr; 7163 int bflags; 7164 int err = 0; 7165 int segtype; 7166 int pageprot; 7167 int prot; 7168 ulong_t anon_index; 7169 struct anon_map *amp; 7170 struct anon *ap; 7171 anon_sync_obj_t cookie; 7172 7173 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 7174 7175 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 7176 7177 if (svd->softlockcnt > 0) { 7178 /* 7179 * If this is shared segment non 0 softlockcnt 7180 * means locked pages are still in use. 7181 */ 7182 if (svd->type == MAP_SHARED) { 7183 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7184 return (EAGAIN); 7185 } 7186 7187 /* 7188 * flush all pages from seg cache 7189 * otherwise we may deadlock in swap_putpage 7190 * for B_INVAL page (4175402). 7191 * 7192 * Even if we grab segvn WRITER's lock 7193 * here, there might be another thread which could've 7194 * successfully performed lookup/insert just before 7195 * we acquired the lock here. So, grabbing either 7196 * lock here is of not much use. Until we devise 7197 * a strategy at upper layers to solve the 7198 * synchronization issues completely, we expect 7199 * applications to handle this appropriately. 7200 */ 7201 segvn_purge(seg); 7202 if (svd->softlockcnt > 0) { 7203 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7204 return (EAGAIN); 7205 } 7206 } else if (svd->type == MAP_SHARED && svd->amp != NULL && 7207 svd->amp->a_softlockcnt > 0) { 7208 /* 7209 * Try to purge this amp's entries from pcache. It will 7210 * succeed only if other segments that share the amp have no 7211 * outstanding softlock's. 7212 */ 7213 segvn_purge(seg); 7214 if (svd->amp->a_softlockcnt > 0 || svd->softlockcnt > 0) { 7215 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7216 return (EAGAIN); 7217 } 7218 } 7219 7220 vpp = svd->vpage; 7221 offset = svd->offset + (uintptr_t)(addr - seg->s_base); 7222 bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) | 7223 ((flags & MS_INVALIDATE) ? B_INVAL : 0); 7224 7225 if (attr) { 7226 pageprot = attr & ~(SHARED|PRIVATE); 7227 segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE; 7228 7229 /* 7230 * We are done if the segment types don't match 7231 * or if we have segment level protections and 7232 * they don't match. 7233 */ 7234 if (svd->type != segtype) { 7235 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7236 return (0); 7237 } 7238 if (vpp == NULL) { 7239 if (svd->prot != pageprot) { 7240 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7241 return (0); 7242 } 7243 prot = svd->prot; 7244 } else 7245 vpp = &svd->vpage[seg_page(seg, addr)]; 7246 7247 } else if (svd->vp && svd->amp == NULL && 7248 (flags & MS_INVALIDATE) == 0) { 7249 7250 /* 7251 * No attributes, no anonymous pages and MS_INVALIDATE flag 7252 * is not on, just use one big request. 7253 */ 7254 err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len, 7255 bflags, svd->cred, NULL); 7256 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7257 return (err); 7258 } 7259 7260 if ((amp = svd->amp) != NULL) 7261 anon_index = svd->anon_index + seg_page(seg, addr); 7262 7263 for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) { 7264 ap = NULL; 7265 if (amp != NULL) { 7266 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7267 anon_array_enter(amp, anon_index, &cookie); 7268 ap = anon_get_ptr(amp->ahp, anon_index++); 7269 if (ap != NULL) { 7270 swap_xlate(ap, &vp, &off); 7271 } else { 7272 vp = svd->vp; 7273 off = offset; 7274 } 7275 anon_array_exit(&cookie); 7276 ANON_LOCK_EXIT(&->a_rwlock); 7277 } else { 7278 vp = svd->vp; 7279 off = offset; 7280 } 7281 offset += PAGESIZE; 7282 7283 if (vp == NULL) /* untouched zfod page */ 7284 continue; 7285 7286 if (attr) { 7287 if (vpp) { 7288 prot = VPP_PROT(vpp); 7289 vpp++; 7290 } 7291 if (prot != pageprot) { 7292 continue; 7293 } 7294 } 7295 7296 /* 7297 * See if any of these pages are locked -- if so, then we 7298 * will have to truncate an invalidate request at the first 7299 * locked one. We don't need the page_struct_lock to test 7300 * as this is only advisory; even if we acquire it someone 7301 * might race in and lock the page after we unlock and before 7302 * we do the PUTPAGE, then PUTPAGE simply does nothing. 7303 */ 7304 if (flags & MS_INVALIDATE) { 7305 if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) { 7306 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 7307 page_unlock(pp); 7308 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7309 return (EBUSY); 7310 } 7311 if (ap != NULL && pp->p_szc != 0 && 7312 page_tryupgrade(pp)) { 7313 if (pp->p_lckcnt == 0 && 7314 pp->p_cowcnt == 0) { 7315 /* 7316 * swapfs VN_DISPOSE() won't 7317 * invalidate large pages. 7318 * Attempt to demote. 7319 * XXX can't help it if it 7320 * fails. But for swapfs 7321 * pages it is no big deal. 7322 */ 7323 (void) page_try_demote_pages( 7324 pp); 7325 } 7326 } 7327 page_unlock(pp); 7328 } 7329 } else if (svd->type == MAP_SHARED && amp != NULL) { 7330 /* 7331 * Avoid writing out to disk ISM's large pages 7332 * because segspt_free_pages() relies on NULL an_pvp 7333 * of anon slots of such pages. 7334 */ 7335 7336 ASSERT(svd->vp == NULL); 7337 /* 7338 * swapfs uses page_lookup_nowait if not freeing or 7339 * invalidating and skips a page if 7340 * page_lookup_nowait returns NULL. 7341 */ 7342 pp = page_lookup_nowait(vp, off, SE_SHARED); 7343 if (pp == NULL) { 7344 continue; 7345 } 7346 if (pp->p_szc != 0) { 7347 page_unlock(pp); 7348 continue; 7349 } 7350 7351 /* 7352 * Note ISM pages are created large so (vp, off)'s 7353 * page cannot suddenly become large after we unlock 7354 * pp. 7355 */ 7356 page_unlock(pp); 7357 } 7358 /* 7359 * XXX - Should ultimately try to kluster 7360 * calls to VOP_PUTPAGE() for performance. 7361 */ 7362 VN_HOLD(vp); 7363 err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE, 7364 bflags, svd->cred, NULL); 7365 VN_RELE(vp); 7366 if (err) 7367 break; 7368 } 7369 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7370 return (err); 7371 } 7372 7373 /* 7374 * Determine if we have data corresponding to pages in the 7375 * primary storage virtual memory cache (i.e., "in core"). 7376 */ 7377 static size_t 7378 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec) 7379 { 7380 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 7381 struct vnode *vp, *avp; 7382 u_offset_t offset, aoffset; 7383 size_t p, ep; 7384 int ret; 7385 struct vpage *vpp; 7386 page_t *pp; 7387 uint_t start; 7388 struct anon_map *amp; /* XXX - for locknest */ 7389 struct anon *ap; 7390 uint_t attr; 7391 anon_sync_obj_t cookie; 7392 7393 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 7394 7395 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 7396 if (svd->amp == NULL && svd->vp == NULL) { 7397 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7398 bzero(vec, btopr(len)); 7399 return (len); /* no anonymous pages created yet */ 7400 } 7401 7402 p = seg_page(seg, addr); 7403 ep = seg_page(seg, addr + len); 7404 start = svd->vp ? SEG_PAGE_VNODEBACKED : 0; 7405 7406 amp = svd->amp; 7407 for (; p < ep; p++, addr += PAGESIZE) { 7408 vpp = (svd->vpage) ? &svd->vpage[p]: NULL; 7409 ret = start; 7410 ap = NULL; 7411 avp = NULL; 7412 /* Grab the vnode/offset for the anon slot */ 7413 if (amp != NULL) { 7414 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7415 anon_array_enter(amp, svd->anon_index + p, &cookie); 7416 ap = anon_get_ptr(amp->ahp, svd->anon_index + p); 7417 if (ap != NULL) { 7418 swap_xlate(ap, &avp, &aoffset); 7419 } 7420 anon_array_exit(&cookie); 7421 ANON_LOCK_EXIT(&->a_rwlock); 7422 } 7423 if ((avp != NULL) && page_exists(avp, aoffset)) { 7424 /* A page exists for the anon slot */ 7425 ret |= SEG_PAGE_INCORE; 7426 7427 /* 7428 * If page is mapped and writable 7429 */ 7430 attr = (uint_t)0; 7431 if ((hat_getattr(seg->s_as->a_hat, addr, 7432 &attr) != -1) && (attr & PROT_WRITE)) { 7433 ret |= SEG_PAGE_ANON; 7434 } 7435 /* 7436 * Don't get page_struct lock for lckcnt and cowcnt, 7437 * since this is purely advisory. 7438 */ 7439 if ((pp = page_lookup_nowait(avp, aoffset, 7440 SE_SHARED)) != NULL) { 7441 if (pp->p_lckcnt) 7442 ret |= SEG_PAGE_SOFTLOCK; 7443 if (pp->p_cowcnt) 7444 ret |= SEG_PAGE_HASCOW; 7445 page_unlock(pp); 7446 } 7447 } 7448 7449 /* Gather vnode statistics */ 7450 vp = svd->vp; 7451 offset = svd->offset + (uintptr_t)(addr - seg->s_base); 7452 7453 if (vp != NULL) { 7454 /* 7455 * Try to obtain a "shared" lock on the page 7456 * without blocking. If this fails, determine 7457 * if the page is in memory. 7458 */ 7459 pp = page_lookup_nowait(vp, offset, SE_SHARED); 7460 if ((pp == NULL) && (page_exists(vp, offset))) { 7461 /* Page is incore, and is named */ 7462 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE); 7463 } 7464 /* 7465 * Don't get page_struct lock for lckcnt and cowcnt, 7466 * since this is purely advisory. 7467 */ 7468 if (pp != NULL) { 7469 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE); 7470 if (pp->p_lckcnt) 7471 ret |= SEG_PAGE_SOFTLOCK; 7472 if (pp->p_cowcnt) 7473 ret |= SEG_PAGE_HASCOW; 7474 page_unlock(pp); 7475 } 7476 } 7477 7478 /* Gather virtual page information */ 7479 if (vpp) { 7480 if (VPP_ISPPLOCK(vpp)) 7481 ret |= SEG_PAGE_LOCKED; 7482 vpp++; 7483 } 7484 7485 *vec++ = (char)ret; 7486 } 7487 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7488 return (len); 7489 } 7490 7491 /* 7492 * Statement for p_cowcnts/p_lckcnts. 7493 * 7494 * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region 7495 * irrespective of the following factors or anything else: 7496 * 7497 * (1) anon slots are populated or not 7498 * (2) cow is broken or not 7499 * (3) refcnt on ap is 1 or greater than 1 7500 * 7501 * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock 7502 * and munlock. 7503 * 7504 * 7505 * Handling p_cowcnts/p_lckcnts during copy-on-write fault: 7506 * 7507 * if vpage has PROT_WRITE 7508 * transfer cowcnt on the oldpage -> cowcnt on the newpage 7509 * else 7510 * transfer lckcnt on the oldpage -> lckcnt on the newpage 7511 * 7512 * During copy-on-write, decrement p_cowcnt on the oldpage and increment 7513 * p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE. 7514 * 7515 * We may also break COW if softlocking on read access in the physio case. 7516 * In this case, vpage may not have PROT_WRITE. So, we need to decrement 7517 * p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the 7518 * vpage doesn't have PROT_WRITE. 7519 * 7520 * 7521 * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region: 7522 * 7523 * If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and 7524 * increment p_lckcnt by calling page_subclaim() which takes care of 7525 * availrmem accounting and p_lckcnt overflow. 7526 * 7527 * If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and 7528 * increment p_cowcnt by calling page_addclaim() which takes care of 7529 * availrmem availability and p_cowcnt overflow. 7530 */ 7531 7532 /* 7533 * Lock down (or unlock) pages mapped by this segment. 7534 * 7535 * XXX only creates PAGESIZE pages if anon slots are not initialized. 7536 * At fault time they will be relocated into larger pages. 7537 */ 7538 static int 7539 segvn_lockop(struct seg *seg, caddr_t addr, size_t len, 7540 int attr, int op, ulong_t *lockmap, size_t pos) 7541 { 7542 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 7543 struct vpage *vpp; 7544 struct vpage *evp; 7545 page_t *pp; 7546 u_offset_t offset; 7547 u_offset_t off; 7548 int segtype; 7549 int pageprot; 7550 int claim; 7551 struct vnode *vp; 7552 ulong_t anon_index; 7553 struct anon_map *amp; 7554 struct anon *ap; 7555 struct vattr va; 7556 anon_sync_obj_t cookie; 7557 struct kshmid *sp = NULL; 7558 struct proc *p = curproc; 7559 kproject_t *proj = NULL; 7560 int chargeproc = 1; 7561 size_t locked_bytes = 0; 7562 size_t unlocked_bytes = 0; 7563 int err = 0; 7564 7565 /* 7566 * Hold write lock on address space because may split or concatenate 7567 * segments 7568 */ 7569 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 7570 7571 /* 7572 * If this is a shm, use shm's project and zone, else use 7573 * project and zone of calling process 7574 */ 7575 7576 /* Determine if this segment backs a sysV shm */ 7577 if (svd->amp != NULL && svd->amp->a_sp != NULL) { 7578 ASSERT(svd->type == MAP_SHARED); 7579 ASSERT(svd->tr_state == SEGVN_TR_OFF); 7580 sp = svd->amp->a_sp; 7581 proj = sp->shm_perm.ipc_proj; 7582 chargeproc = 0; 7583 } 7584 7585 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 7586 if (attr) { 7587 pageprot = attr & ~(SHARED|PRIVATE); 7588 segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE; 7589 7590 /* 7591 * We are done if the segment types don't match 7592 * or if we have segment level protections and 7593 * they don't match. 7594 */ 7595 if (svd->type != segtype) { 7596 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7597 return (0); 7598 } 7599 if (svd->pageprot == 0 && svd->prot != pageprot) { 7600 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7601 return (0); 7602 } 7603 } 7604 7605 if (op == MC_LOCK) { 7606 if (svd->tr_state == SEGVN_TR_INIT) { 7607 svd->tr_state = SEGVN_TR_OFF; 7608 } else if (svd->tr_state == SEGVN_TR_ON) { 7609 ASSERT(svd->amp != NULL); 7610 segvn_textunrepl(seg, 0); 7611 ASSERT(svd->amp == NULL && 7612 svd->tr_state == SEGVN_TR_OFF); 7613 } 7614 } 7615 7616 /* 7617 * If we're locking, then we must create a vpage structure if 7618 * none exists. If we're unlocking, then check to see if there 7619 * is a vpage -- if not, then we could not have locked anything. 7620 */ 7621 7622 if ((vpp = svd->vpage) == NULL) { 7623 if (op == MC_LOCK) 7624 segvn_vpage(seg); 7625 else { 7626 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7627 return (0); 7628 } 7629 } 7630 7631 /* 7632 * The anonymous data vector (i.e., previously 7633 * unreferenced mapping to swap space) can be allocated 7634 * by lazily testing for its existence. 7635 */ 7636 if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) { 7637 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 7638 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP); 7639 svd->amp->a_szc = seg->s_szc; 7640 } 7641 7642 if ((amp = svd->amp) != NULL) { 7643 anon_index = svd->anon_index + seg_page(seg, addr); 7644 } 7645 7646 offset = svd->offset + (uintptr_t)(addr - seg->s_base); 7647 evp = &svd->vpage[seg_page(seg, addr + len)]; 7648 7649 if (sp != NULL) 7650 mutex_enter(&sp->shm_mlock); 7651 7652 /* determine number of unlocked bytes in range for lock operation */ 7653 if (op == MC_LOCK) { 7654 7655 if (sp == NULL) { 7656 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp; 7657 vpp++) { 7658 if (!VPP_ISPPLOCK(vpp)) 7659 unlocked_bytes += PAGESIZE; 7660 } 7661 } else { 7662 ulong_t i_idx, i_edx; 7663 anon_sync_obj_t i_cookie; 7664 struct anon *i_ap; 7665 struct vnode *i_vp; 7666 u_offset_t i_off; 7667 7668 /* Only count sysV pages once for locked memory */ 7669 i_edx = svd->anon_index + seg_page(seg, addr + len); 7670 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7671 for (i_idx = anon_index; i_idx < i_edx; i_idx++) { 7672 anon_array_enter(amp, i_idx, &i_cookie); 7673 i_ap = anon_get_ptr(amp->ahp, i_idx); 7674 if (i_ap == NULL) { 7675 unlocked_bytes += PAGESIZE; 7676 anon_array_exit(&i_cookie); 7677 continue; 7678 } 7679 swap_xlate(i_ap, &i_vp, &i_off); 7680 anon_array_exit(&i_cookie); 7681 pp = page_lookup(i_vp, i_off, SE_SHARED); 7682 if (pp == NULL) { 7683 unlocked_bytes += PAGESIZE; 7684 continue; 7685 } else if (pp->p_lckcnt == 0) 7686 unlocked_bytes += PAGESIZE; 7687 page_unlock(pp); 7688 } 7689 ANON_LOCK_EXIT(&->a_rwlock); 7690 } 7691 7692 mutex_enter(&p->p_lock); 7693 err = rctl_incr_locked_mem(p, proj, unlocked_bytes, 7694 chargeproc); 7695 mutex_exit(&p->p_lock); 7696 7697 if (err) { 7698 if (sp != NULL) 7699 mutex_exit(&sp->shm_mlock); 7700 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7701 return (err); 7702 } 7703 } 7704 /* 7705 * Loop over all pages in the range. Process if we're locking and 7706 * page has not already been locked in this mapping; or if we're 7707 * unlocking and the page has been locked. 7708 */ 7709 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp; 7710 vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) { 7711 if ((attr == 0 || VPP_PROT(vpp) == pageprot) && 7712 ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) || 7713 (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) { 7714 7715 if (amp != NULL) 7716 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 7717 /* 7718 * If this isn't a MAP_NORESERVE segment and 7719 * we're locking, allocate anon slots if they 7720 * don't exist. The page is brought in later on. 7721 */ 7722 if (op == MC_LOCK && svd->vp == NULL && 7723 ((svd->flags & MAP_NORESERVE) == 0) && 7724 amp != NULL && 7725 ((ap = anon_get_ptr(amp->ahp, anon_index)) 7726 == NULL)) { 7727 anon_array_enter(amp, anon_index, &cookie); 7728 7729 if ((ap = anon_get_ptr(amp->ahp, 7730 anon_index)) == NULL) { 7731 pp = anon_zero(seg, addr, &ap, 7732 svd->cred); 7733 if (pp == NULL) { 7734 anon_array_exit(&cookie); 7735 ANON_LOCK_EXIT(&->a_rwlock); 7736 err = ENOMEM; 7737 goto out; 7738 } 7739 ASSERT(anon_get_ptr(amp->ahp, 7740 anon_index) == NULL); 7741 (void) anon_set_ptr(amp->ahp, 7742 anon_index, ap, ANON_SLEEP); 7743 page_unlock(pp); 7744 } 7745 anon_array_exit(&cookie); 7746 } 7747 7748 /* 7749 * Get name for page, accounting for 7750 * existence of private copy. 7751 */ 7752 ap = NULL; 7753 if (amp != NULL) { 7754 anon_array_enter(amp, anon_index, &cookie); 7755 ap = anon_get_ptr(amp->ahp, anon_index); 7756 if (ap != NULL) { 7757 swap_xlate(ap, &vp, &off); 7758 } else { 7759 if (svd->vp == NULL && 7760 (svd->flags & MAP_NORESERVE)) { 7761 anon_array_exit(&cookie); 7762 ANON_LOCK_EXIT(&->a_rwlock); 7763 continue; 7764 } 7765 vp = svd->vp; 7766 off = offset; 7767 } 7768 if (op != MC_LOCK || ap == NULL) { 7769 anon_array_exit(&cookie); 7770 ANON_LOCK_EXIT(&->a_rwlock); 7771 } 7772 } else { 7773 vp = svd->vp; 7774 off = offset; 7775 } 7776 7777 /* 7778 * Get page frame. It's ok if the page is 7779 * not available when we're unlocking, as this 7780 * may simply mean that a page we locked got 7781 * truncated out of existence after we locked it. 7782 * 7783 * Invoke VOP_GETPAGE() to obtain the page struct 7784 * since we may need to read it from disk if its 7785 * been paged out. 7786 */ 7787 if (op != MC_LOCK) 7788 pp = page_lookup(vp, off, SE_SHARED); 7789 else { 7790 page_t *pl[1 + 1]; 7791 int error; 7792 7793 ASSERT(vp != NULL); 7794 7795 error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, 7796 (uint_t *)NULL, pl, PAGESIZE, seg, addr, 7797 S_OTHER, svd->cred, NULL); 7798 7799 if (error && ap != NULL) { 7800 anon_array_exit(&cookie); 7801 ANON_LOCK_EXIT(&->a_rwlock); 7802 } 7803 7804 /* 7805 * If the error is EDEADLK then we must bounce 7806 * up and drop all vm subsystem locks and then 7807 * retry the operation later 7808 * This behavior is a temporary measure because 7809 * ufs/sds logging is badly designed and will 7810 * deadlock if we don't allow this bounce to 7811 * happen. The real solution is to re-design 7812 * the logging code to work properly. See bug 7813 * 4125102 for details of the problem. 7814 */ 7815 if (error == EDEADLK) { 7816 err = error; 7817 goto out; 7818 } 7819 /* 7820 * Quit if we fail to fault in the page. Treat 7821 * the failure as an error, unless the addr 7822 * is mapped beyond the end of a file. 7823 */ 7824 if (error && svd->vp) { 7825 va.va_mask = AT_SIZE; 7826 if (VOP_GETATTR(svd->vp, &va, 0, 7827 svd->cred, NULL) != 0) { 7828 err = EIO; 7829 goto out; 7830 } 7831 if (btopr(va.va_size) >= 7832 btopr(off + 1)) { 7833 err = EIO; 7834 goto out; 7835 } 7836 goto out; 7837 7838 } else if (error) { 7839 err = EIO; 7840 goto out; 7841 } 7842 pp = pl[0]; 7843 ASSERT(pp != NULL); 7844 } 7845 7846 /* 7847 * See Statement at the beginning of this routine. 7848 * 7849 * claim is always set if MAP_PRIVATE and PROT_WRITE 7850 * irrespective of following factors: 7851 * 7852 * (1) anon slots are populated or not 7853 * (2) cow is broken or not 7854 * (3) refcnt on ap is 1 or greater than 1 7855 * 7856 * See 4140683 for details 7857 */ 7858 claim = ((VPP_PROT(vpp) & PROT_WRITE) && 7859 (svd->type == MAP_PRIVATE)); 7860 7861 /* 7862 * Perform page-level operation appropriate to 7863 * operation. If locking, undo the SOFTLOCK 7864 * performed to bring the page into memory 7865 * after setting the lock. If unlocking, 7866 * and no page was found, account for the claim 7867 * separately. 7868 */ 7869 if (op == MC_LOCK) { 7870 int ret = 1; /* Assume success */ 7871 7872 ASSERT(!VPP_ISPPLOCK(vpp)); 7873 7874 ret = page_pp_lock(pp, claim, 0); 7875 if (ap != NULL) { 7876 if (ap->an_pvp != NULL) { 7877 anon_swap_free(ap, pp); 7878 } 7879 anon_array_exit(&cookie); 7880 ANON_LOCK_EXIT(&->a_rwlock); 7881 } 7882 if (ret == 0) { 7883 /* locking page failed */ 7884 page_unlock(pp); 7885 err = EAGAIN; 7886 goto out; 7887 } 7888 VPP_SETPPLOCK(vpp); 7889 if (sp != NULL) { 7890 if (pp->p_lckcnt == 1) 7891 locked_bytes += PAGESIZE; 7892 } else 7893 locked_bytes += PAGESIZE; 7894 7895 if (lockmap != (ulong_t *)NULL) 7896 BT_SET(lockmap, pos); 7897 7898 page_unlock(pp); 7899 } else { 7900 ASSERT(VPP_ISPPLOCK(vpp)); 7901 if (pp != NULL) { 7902 /* sysV pages should be locked */ 7903 ASSERT(sp == NULL || pp->p_lckcnt > 0); 7904 page_pp_unlock(pp, claim, 0); 7905 if (sp != NULL) { 7906 if (pp->p_lckcnt == 0) 7907 unlocked_bytes 7908 += PAGESIZE; 7909 } else 7910 unlocked_bytes += PAGESIZE; 7911 page_unlock(pp); 7912 } else { 7913 ASSERT(sp == NULL); 7914 unlocked_bytes += PAGESIZE; 7915 } 7916 VPP_CLRPPLOCK(vpp); 7917 } 7918 } 7919 } 7920 out: 7921 if (op == MC_LOCK) { 7922 /* Credit back bytes that did not get locked */ 7923 if ((unlocked_bytes - locked_bytes) > 0) { 7924 if (proj == NULL) 7925 mutex_enter(&p->p_lock); 7926 rctl_decr_locked_mem(p, proj, 7927 (unlocked_bytes - locked_bytes), chargeproc); 7928 if (proj == NULL) 7929 mutex_exit(&p->p_lock); 7930 } 7931 7932 } else { 7933 /* Account bytes that were unlocked */ 7934 if (unlocked_bytes > 0) { 7935 if (proj == NULL) 7936 mutex_enter(&p->p_lock); 7937 rctl_decr_locked_mem(p, proj, unlocked_bytes, 7938 chargeproc); 7939 if (proj == NULL) 7940 mutex_exit(&p->p_lock); 7941 } 7942 } 7943 if (sp != NULL) 7944 mutex_exit(&sp->shm_mlock); 7945 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7946 7947 return (err); 7948 } 7949 7950 /* 7951 * Set advice from user for specified pages 7952 * There are 5 types of advice: 7953 * MADV_NORMAL - Normal (default) behavior (whatever that is) 7954 * MADV_RANDOM - Random page references 7955 * do not allow readahead or 'klustering' 7956 * MADV_SEQUENTIAL - Sequential page references 7957 * Pages previous to the one currently being 7958 * accessed (determined by fault) are 'not needed' 7959 * and are freed immediately 7960 * MADV_WILLNEED - Pages are likely to be used (fault ahead in mctl) 7961 * MADV_DONTNEED - Pages are not needed (synced out in mctl) 7962 * MADV_FREE - Contents can be discarded 7963 * MADV_ACCESS_DEFAULT- Default access 7964 * MADV_ACCESS_LWP - Next LWP will access heavily 7965 * MADV_ACCESS_MANY- Many LWPs or processes will access heavily 7966 */ 7967 static int 7968 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav) 7969 { 7970 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 7971 size_t page; 7972 int err = 0; 7973 int already_set; 7974 struct anon_map *amp; 7975 ulong_t anon_index; 7976 struct seg *next; 7977 lgrp_mem_policy_t policy; 7978 struct seg *prev; 7979 struct vnode *vp; 7980 7981 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 7982 7983 /* 7984 * In case of MADV_FREE, we won't be modifying any segment private 7985 * data structures; so, we only need to grab READER's lock 7986 */ 7987 if (behav != MADV_FREE) { 7988 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER); 7989 if (svd->tr_state != SEGVN_TR_OFF) { 7990 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 7991 return (0); 7992 } 7993 } else { 7994 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 7995 } 7996 7997 /* 7998 * Large pages are assumed to be only turned on when accesses to the 7999 * segment's address range have spatial and temporal locality. That 8000 * justifies ignoring MADV_SEQUENTIAL for large page segments. 8001 * Also, ignore advice affecting lgroup memory allocation 8002 * if don't need to do lgroup optimizations on this system 8003 */ 8004 8005 if ((behav == MADV_SEQUENTIAL && 8006 (seg->s_szc != 0 || HAT_IS_REGION_COOKIE_VALID(svd->rcookie))) || 8007 (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT || 8008 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) { 8009 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8010 return (0); 8011 } 8012 8013 if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT || 8014 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) { 8015 /* 8016 * Since we are going to unload hat mappings 8017 * we first have to flush the cache. Otherwise 8018 * this might lead to system panic if another 8019 * thread is doing physio on the range whose 8020 * mappings are unloaded by madvise(3C). 8021 */ 8022 if (svd->softlockcnt > 0) { 8023 /* 8024 * If this is shared segment non 0 softlockcnt 8025 * means locked pages are still in use. 8026 */ 8027 if (svd->type == MAP_SHARED) { 8028 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8029 return (EAGAIN); 8030 } 8031 /* 8032 * Since we do have the segvn writers lock 8033 * nobody can fill the cache with entries 8034 * belonging to this seg during the purge. 8035 * The flush either succeeds or we still 8036 * have pending I/Os. In the later case, 8037 * madvise(3C) fails. 8038 */ 8039 segvn_purge(seg); 8040 if (svd->softlockcnt > 0) { 8041 /* 8042 * Since madvise(3C) is advisory and 8043 * it's not part of UNIX98, madvise(3C) 8044 * failure here doesn't cause any hardship. 8045 * Note that we don't block in "as" layer. 8046 */ 8047 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8048 return (EAGAIN); 8049 } 8050 } else if (svd->type == MAP_SHARED && svd->amp != NULL && 8051 svd->amp->a_softlockcnt > 0) { 8052 /* 8053 * Try to purge this amp's entries from pcache. It 8054 * will succeed only if other segments that share the 8055 * amp have no outstanding softlock's. 8056 */ 8057 segvn_purge(seg); 8058 } 8059 } 8060 8061 amp = svd->amp; 8062 vp = svd->vp; 8063 if (behav == MADV_FREE) { 8064 /* 8065 * MADV_FREE is not supported for segments with 8066 * underlying object; if anonmap is NULL, anon slots 8067 * are not yet populated and there is nothing for 8068 * us to do. As MADV_FREE is advisory, we don't 8069 * return error in either case. 8070 */ 8071 if (vp != NULL || amp == NULL) { 8072 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8073 return (0); 8074 } 8075 8076 segvn_purge(seg); 8077 8078 page = seg_page(seg, addr); 8079 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 8080 anon_disclaim(amp, svd->anon_index + page, len); 8081 ANON_LOCK_EXIT(&->a_rwlock); 8082 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8083 return (0); 8084 } 8085 8086 /* 8087 * If advice is to be applied to entire segment, 8088 * use advice field in seg_data structure 8089 * otherwise use appropriate vpage entry. 8090 */ 8091 if ((addr == seg->s_base) && (len == seg->s_size)) { 8092 switch (behav) { 8093 case MADV_ACCESS_LWP: 8094 case MADV_ACCESS_MANY: 8095 case MADV_ACCESS_DEFAULT: 8096 /* 8097 * Set memory allocation policy for this segment 8098 */ 8099 policy = lgrp_madv_to_policy(behav, len, svd->type); 8100 if (svd->type == MAP_SHARED) 8101 already_set = lgrp_shm_policy_set(policy, amp, 8102 svd->anon_index, vp, svd->offset, len); 8103 else { 8104 /* 8105 * For private memory, need writers lock on 8106 * address space because the segment may be 8107 * split or concatenated when changing policy 8108 */ 8109 if (AS_READ_HELD(seg->s_as, 8110 &seg->s_as->a_lock)) { 8111 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8112 return (IE_RETRY); 8113 } 8114 8115 already_set = lgrp_privm_policy_set(policy, 8116 &svd->policy_info, len); 8117 } 8118 8119 /* 8120 * If policy set already and it shouldn't be reapplied, 8121 * don't do anything. 8122 */ 8123 if (already_set && 8124 !LGRP_MEM_POLICY_REAPPLICABLE(policy)) 8125 break; 8126 8127 /* 8128 * Mark any existing pages in given range for 8129 * migration 8130 */ 8131 page_mark_migrate(seg, addr, len, amp, svd->anon_index, 8132 vp, svd->offset, 1); 8133 8134 /* 8135 * If same policy set already or this is a shared 8136 * memory segment, don't need to try to concatenate 8137 * segment with adjacent ones. 8138 */ 8139 if (already_set || svd->type == MAP_SHARED) 8140 break; 8141 8142 /* 8143 * Try to concatenate this segment with previous 8144 * one and next one, since we changed policy for 8145 * this one and it may be compatible with adjacent 8146 * ones now. 8147 */ 8148 prev = AS_SEGPREV(seg->s_as, seg); 8149 next = AS_SEGNEXT(seg->s_as, seg); 8150 8151 if (next && next->s_ops == &segvn_ops && 8152 addr + len == next->s_base) 8153 (void) segvn_concat(seg, next, 1); 8154 8155 if (prev && prev->s_ops == &segvn_ops && 8156 addr == prev->s_base + prev->s_size) { 8157 /* 8158 * Drop lock for private data of current 8159 * segment before concatenating (deleting) it 8160 * and return IE_REATTACH to tell as_ctl() that 8161 * current segment has changed 8162 */ 8163 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8164 if (!segvn_concat(prev, seg, 1)) 8165 err = IE_REATTACH; 8166 8167 return (err); 8168 } 8169 break; 8170 8171 case MADV_SEQUENTIAL: 8172 /* 8173 * unloading mapping guarantees 8174 * detection in segvn_fault 8175 */ 8176 ASSERT(seg->s_szc == 0); 8177 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 8178 hat_unload(seg->s_as->a_hat, addr, len, 8179 HAT_UNLOAD); 8180 /* FALLTHROUGH */ 8181 case MADV_NORMAL: 8182 case MADV_RANDOM: 8183 svd->advice = (uchar_t)behav; 8184 svd->pageadvice = 0; 8185 break; 8186 case MADV_WILLNEED: /* handled in memcntl */ 8187 case MADV_DONTNEED: /* handled in memcntl */ 8188 case MADV_FREE: /* handled above */ 8189 break; 8190 default: 8191 err = EINVAL; 8192 } 8193 } else { 8194 caddr_t eaddr; 8195 struct seg *new_seg; 8196 struct segvn_data *new_svd; 8197 u_offset_t off; 8198 caddr_t oldeaddr; 8199 8200 page = seg_page(seg, addr); 8201 8202 segvn_vpage(seg); 8203 8204 switch (behav) { 8205 struct vpage *bvpp, *evpp; 8206 8207 case MADV_ACCESS_LWP: 8208 case MADV_ACCESS_MANY: 8209 case MADV_ACCESS_DEFAULT: 8210 /* 8211 * Set memory allocation policy for portion of this 8212 * segment 8213 */ 8214 8215 /* 8216 * Align address and length of advice to page 8217 * boundaries for large pages 8218 */ 8219 if (seg->s_szc != 0) { 8220 size_t pgsz; 8221 8222 pgsz = page_get_pagesize(seg->s_szc); 8223 addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz); 8224 len = P2ROUNDUP(len, pgsz); 8225 } 8226 8227 /* 8228 * Check to see whether policy is set already 8229 */ 8230 policy = lgrp_madv_to_policy(behav, len, svd->type); 8231 8232 anon_index = svd->anon_index + page; 8233 off = svd->offset + (uintptr_t)(addr - seg->s_base); 8234 8235 if (svd->type == MAP_SHARED) 8236 already_set = lgrp_shm_policy_set(policy, amp, 8237 anon_index, vp, off, len); 8238 else 8239 already_set = 8240 (policy == svd->policy_info.mem_policy); 8241 8242 /* 8243 * If policy set already and it shouldn't be reapplied, 8244 * don't do anything. 8245 */ 8246 if (already_set && 8247 !LGRP_MEM_POLICY_REAPPLICABLE(policy)) 8248 break; 8249 8250 /* 8251 * For private memory, need writers lock on 8252 * address space because the segment may be 8253 * split or concatenated when changing policy 8254 */ 8255 if (svd->type == MAP_PRIVATE && 8256 AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) { 8257 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8258 return (IE_RETRY); 8259 } 8260 8261 /* 8262 * Mark any existing pages in given range for 8263 * migration 8264 */ 8265 page_mark_migrate(seg, addr, len, amp, svd->anon_index, 8266 vp, svd->offset, 1); 8267 8268 /* 8269 * Don't need to try to split or concatenate 8270 * segments, since policy is same or this is a shared 8271 * memory segment 8272 */ 8273 if (already_set || svd->type == MAP_SHARED) 8274 break; 8275 8276 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) { 8277 ASSERT(svd->amp == NULL); 8278 ASSERT(svd->tr_state == SEGVN_TR_OFF); 8279 ASSERT(svd->softlockcnt == 0); 8280 hat_leave_region(seg->s_as->a_hat, svd->rcookie, 8281 HAT_REGION_TEXT); 8282 svd->rcookie = HAT_INVALID_REGION_COOKIE; 8283 } 8284 8285 /* 8286 * Split off new segment if advice only applies to a 8287 * portion of existing segment starting in middle 8288 */ 8289 new_seg = NULL; 8290 eaddr = addr + len; 8291 oldeaddr = seg->s_base + seg->s_size; 8292 if (addr > seg->s_base) { 8293 /* 8294 * Must flush I/O page cache 8295 * before splitting segment 8296 */ 8297 if (svd->softlockcnt > 0) 8298 segvn_purge(seg); 8299 8300 /* 8301 * Split segment and return IE_REATTACH to tell 8302 * as_ctl() that current segment changed 8303 */ 8304 new_seg = segvn_split_seg(seg, addr); 8305 new_svd = (struct segvn_data *)new_seg->s_data; 8306 err = IE_REATTACH; 8307 8308 /* 8309 * If new segment ends where old one 8310 * did, try to concatenate the new 8311 * segment with next one. 8312 */ 8313 if (eaddr == oldeaddr) { 8314 /* 8315 * Set policy for new segment 8316 */ 8317 (void) lgrp_privm_policy_set(policy, 8318 &new_svd->policy_info, 8319 new_seg->s_size); 8320 8321 next = AS_SEGNEXT(new_seg->s_as, 8322 new_seg); 8323 8324 if (next && 8325 next->s_ops == &segvn_ops && 8326 eaddr == next->s_base) 8327 (void) segvn_concat(new_seg, 8328 next, 1); 8329 } 8330 } 8331 8332 /* 8333 * Split off end of existing segment if advice only 8334 * applies to a portion of segment ending before 8335 * end of the existing segment 8336 */ 8337 if (eaddr < oldeaddr) { 8338 /* 8339 * Must flush I/O page cache 8340 * before splitting segment 8341 */ 8342 if (svd->softlockcnt > 0) 8343 segvn_purge(seg); 8344 8345 /* 8346 * If beginning of old segment was already 8347 * split off, use new segment to split end off 8348 * from. 8349 */ 8350 if (new_seg != NULL && new_seg != seg) { 8351 /* 8352 * Split segment 8353 */ 8354 (void) segvn_split_seg(new_seg, eaddr); 8355 8356 /* 8357 * Set policy for new segment 8358 */ 8359 (void) lgrp_privm_policy_set(policy, 8360 &new_svd->policy_info, 8361 new_seg->s_size); 8362 } else { 8363 /* 8364 * Split segment and return IE_REATTACH 8365 * to tell as_ctl() that current 8366 * segment changed 8367 */ 8368 (void) segvn_split_seg(seg, eaddr); 8369 err = IE_REATTACH; 8370 8371 (void) lgrp_privm_policy_set(policy, 8372 &svd->policy_info, seg->s_size); 8373 8374 /* 8375 * If new segment starts where old one 8376 * did, try to concatenate it with 8377 * previous segment. 8378 */ 8379 if (addr == seg->s_base) { 8380 prev = AS_SEGPREV(seg->s_as, 8381 seg); 8382 8383 /* 8384 * Drop lock for private data 8385 * of current segment before 8386 * concatenating (deleting) it 8387 */ 8388 if (prev && 8389 prev->s_ops == 8390 &segvn_ops && 8391 addr == prev->s_base + 8392 prev->s_size) { 8393 SEGVN_LOCK_EXIT( 8394 seg->s_as, 8395 &svd->lock); 8396 (void) segvn_concat( 8397 prev, seg, 1); 8398 return (err); 8399 } 8400 } 8401 } 8402 } 8403 break; 8404 case MADV_SEQUENTIAL: 8405 ASSERT(seg->s_szc == 0); 8406 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE); 8407 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD); 8408 /* FALLTHROUGH */ 8409 case MADV_NORMAL: 8410 case MADV_RANDOM: 8411 bvpp = &svd->vpage[page]; 8412 evpp = &svd->vpage[page + (len >> PAGESHIFT)]; 8413 for (; bvpp < evpp; bvpp++) 8414 VPP_SETADVICE(bvpp, behav); 8415 svd->advice = MADV_NORMAL; 8416 break; 8417 case MADV_WILLNEED: /* handled in memcntl */ 8418 case MADV_DONTNEED: /* handled in memcntl */ 8419 case MADV_FREE: /* handled above */ 8420 break; 8421 default: 8422 err = EINVAL; 8423 } 8424 } 8425 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8426 return (err); 8427 } 8428 8429 /* 8430 * Create a vpage structure for this seg. 8431 */ 8432 static void 8433 segvn_vpage(struct seg *seg) 8434 { 8435 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 8436 struct vpage *vp, *evp; 8437 8438 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock)); 8439 8440 /* 8441 * If no vpage structure exists, allocate one. Copy the protections 8442 * and the advice from the segment itself to the individual pages. 8443 */ 8444 if (svd->vpage == NULL) { 8445 svd->pageadvice = 1; 8446 svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage), 8447 KM_SLEEP); 8448 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)]; 8449 for (vp = svd->vpage; vp < evp; vp++) { 8450 VPP_SETPROT(vp, svd->prot); 8451 VPP_SETADVICE(vp, svd->advice); 8452 } 8453 } 8454 } 8455 8456 /* 8457 * Dump the pages belonging to this segvn segment. 8458 */ 8459 static void 8460 segvn_dump(struct seg *seg) 8461 { 8462 struct segvn_data *svd; 8463 page_t *pp; 8464 struct anon_map *amp; 8465 ulong_t anon_index; 8466 struct vnode *vp; 8467 u_offset_t off, offset; 8468 pfn_t pfn; 8469 pgcnt_t page, npages; 8470 caddr_t addr; 8471 8472 npages = seg_pages(seg); 8473 svd = (struct segvn_data *)seg->s_data; 8474 vp = svd->vp; 8475 off = offset = svd->offset; 8476 addr = seg->s_base; 8477 8478 if ((amp = svd->amp) != NULL) { 8479 anon_index = svd->anon_index; 8480 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 8481 } 8482 8483 for (page = 0; page < npages; page++, offset += PAGESIZE) { 8484 struct anon *ap; 8485 int we_own_it = 0; 8486 8487 if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) { 8488 swap_xlate_nopanic(ap, &vp, &off); 8489 } else { 8490 vp = svd->vp; 8491 off = offset; 8492 } 8493 8494 /* 8495 * If pp == NULL, the page either does not exist 8496 * or is exclusively locked. So determine if it 8497 * exists before searching for it. 8498 */ 8499 8500 if ((pp = page_lookup_nowait(vp, off, SE_SHARED))) 8501 we_own_it = 1; 8502 else 8503 pp = page_exists(vp, off); 8504 8505 if (pp) { 8506 pfn = page_pptonum(pp); 8507 dump_addpage(seg->s_as, addr, pfn); 8508 if (we_own_it) 8509 page_unlock(pp); 8510 } 8511 addr += PAGESIZE; 8512 dump_timeleft = dump_timeout; 8513 } 8514 8515 if (amp != NULL) 8516 ANON_LOCK_EXIT(&->a_rwlock); 8517 } 8518 8519 #ifdef DEBUG 8520 static uint32_t segvn_pglock_mtbf = 0; 8521 #endif 8522 8523 #define PCACHE_SHWLIST ((page_t *)-2) 8524 #define NOPCACHE_SHWLIST ((page_t *)-1) 8525 8526 /* 8527 * Lock/Unlock anon pages over a given range. Return shadow list. This routine 8528 * uses global segment pcache to cache shadow lists (i.e. pp arrays) of pages 8529 * to avoid the overhead of per page locking, unlocking for subsequent IOs to 8530 * the same parts of the segment. Currently shadow list creation is only 8531 * supported for pure anon segments. MAP_PRIVATE segment pcache entries are 8532 * tagged with segment pointer, starting virtual address and length. This 8533 * approach for MAP_SHARED segments may add many pcache entries for the same 8534 * set of pages and lead to long hash chains that decrease pcache lookup 8535 * performance. To avoid this issue for shared segments shared anon map and 8536 * starting anon index are used for pcache entry tagging. This allows all 8537 * segments to share pcache entries for the same anon range and reduces pcache 8538 * chain's length as well as memory overhead from duplicate shadow lists and 8539 * pcache entries. 8540 * 8541 * softlockcnt field in segvn_data structure counts the number of F_SOFTLOCK'd 8542 * pages via segvn_fault() and pagelock'd pages via this routine. But pagelock 8543 * part of softlockcnt accounting is done differently for private and shared 8544 * segments. In private segment case softlock is only incremented when a new 8545 * shadow list is created but not when an existing one is found via 8546 * seg_plookup(). pcache entries have reference count incremented/decremented 8547 * by each seg_plookup()/seg_pinactive() operation. Only entries that have 0 8548 * reference count can be purged (and purging is needed before segment can be 8549 * freed). When a private segment pcache entry is purged segvn_reclaim() will 8550 * decrement softlockcnt. Since in private segment case each of its pcache 8551 * entries only belongs to this segment we can expect that when 8552 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this 8553 * segment purge will succeed and softlockcnt will drop to 0. In shared 8554 * segment case reference count in pcache entry counts active locks from many 8555 * different segments so we can't expect segment purging to succeed even when 8556 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this 8557 * segment. To be able to determine when there're no pending pagelocks in 8558 * shared segment case we don't rely on purging to make softlockcnt drop to 0 8559 * but instead softlockcnt is incremented and decremented for every 8560 * segvn_pagelock(L_PAGELOCK/L_PAGEUNLOCK) call regardless if a new shadow 8561 * list was created or an existing one was found. When softlockcnt drops to 0 8562 * this segment no longer has any claims for pcached shadow lists and the 8563 * segment can be freed even if there're still active pcache entries 8564 * shared by this segment anon map. Shared segment pcache entries belong to 8565 * anon map and are typically removed when anon map is freed after all 8566 * processes destroy the segments that use this anon map. 8567 */ 8568 static int 8569 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp, 8570 enum lock_type type, enum seg_rw rw) 8571 { 8572 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 8573 size_t np; 8574 pgcnt_t adjustpages; 8575 pgcnt_t npages; 8576 ulong_t anon_index; 8577 uint_t protchk = (rw == S_READ) ? PROT_READ : PROT_WRITE; 8578 uint_t error; 8579 struct anon_map *amp; 8580 pgcnt_t anpgcnt; 8581 struct page **pplist, **pl, *pp; 8582 caddr_t a; 8583 size_t page; 8584 caddr_t lpgaddr, lpgeaddr; 8585 anon_sync_obj_t cookie; 8586 int anlock; 8587 struct anon_map *pamp; 8588 caddr_t paddr; 8589 seg_preclaim_cbfunc_t preclaim_callback; 8590 size_t pgsz; 8591 int use_pcache; 8592 size_t wlen; 8593 uint_t pflags = 0; 8594 int sftlck_sbase = 0; 8595 int sftlck_send = 0; 8596 8597 #ifdef DEBUG 8598 if (type == L_PAGELOCK && segvn_pglock_mtbf) { 8599 hrtime_t ts = gethrtime(); 8600 if ((ts % segvn_pglock_mtbf) == 0) { 8601 return (ENOTSUP); 8602 } 8603 if ((ts % segvn_pglock_mtbf) == 1) { 8604 return (EFAULT); 8605 } 8606 } 8607 #endif 8608 8609 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START, 8610 "segvn_pagelock: start seg %p addr %p", seg, addr); 8611 8612 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 8613 ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK); 8614 8615 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 8616 8617 /* 8618 * for now we only support pagelock to anon memory. We would have to 8619 * check protections for vnode objects and call into the vnode driver. 8620 * That's too much for a fast path. Let the fault entry point handle 8621 * it. 8622 */ 8623 if (svd->vp != NULL) { 8624 if (type == L_PAGELOCK) { 8625 error = ENOTSUP; 8626 goto out; 8627 } 8628 panic("segvn_pagelock(L_PAGEUNLOCK): vp != NULL"); 8629 } 8630 if ((amp = svd->amp) == NULL) { 8631 if (type == L_PAGELOCK) { 8632 error = EFAULT; 8633 goto out; 8634 } 8635 panic("segvn_pagelock(L_PAGEUNLOCK): amp == NULL"); 8636 } 8637 if (rw != S_READ && rw != S_WRITE) { 8638 if (type == L_PAGELOCK) { 8639 error = ENOTSUP; 8640 goto out; 8641 } 8642 panic("segvn_pagelock(L_PAGEUNLOCK): bad rw"); 8643 } 8644 8645 if (seg->s_szc != 0) { 8646 /* 8647 * We are adjusting the pagelock region to the large page size 8648 * boundary because the unlocked part of a large page cannot 8649 * be freed anyway unless all constituent pages of a large 8650 * page are locked. Bigger regions reduce pcache chain length 8651 * and improve lookup performance. The tradeoff is that the 8652 * very first segvn_pagelock() call for a given page is more 8653 * expensive if only 1 page_t is needed for IO. This is only 8654 * an issue if pcache entry doesn't get reused by several 8655 * subsequent calls. We optimize here for the case when pcache 8656 * is heavily used by repeated IOs to the same address range. 8657 * 8658 * Note segment's page size cannot change while we are holding 8659 * as lock. And then it cannot change while softlockcnt is 8660 * not 0. This will allow us to correctly recalculate large 8661 * page size region for the matching pageunlock/reclaim call 8662 * since as_pageunlock() caller must always match 8663 * as_pagelock() call's addr and len. 8664 * 8665 * For pageunlock *ppp points to the pointer of page_t that 8666 * corresponds to the real unadjusted start address. Similar 8667 * for pagelock *ppp must point to the pointer of page_t that 8668 * corresponds to the real unadjusted start address. 8669 */ 8670 pgsz = page_get_pagesize(seg->s_szc); 8671 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr); 8672 adjustpages = btop((uintptr_t)(addr - lpgaddr)); 8673 } else if (len < segvn_pglock_comb_thrshld) { 8674 lpgaddr = addr; 8675 lpgeaddr = addr + len; 8676 adjustpages = 0; 8677 pgsz = PAGESIZE; 8678 } else { 8679 /* 8680 * Align the address range of large enough requests to allow 8681 * combining of different shadow lists into 1 to reduce memory 8682 * overhead from potentially overlapping large shadow lists 8683 * (worst case is we have a 1MB IO into buffers with start 8684 * addresses separated by 4K). Alignment is only possible if 8685 * padded chunks have sufficient access permissions. Note 8686 * permissions won't change between L_PAGELOCK and 8687 * L_PAGEUNLOCK calls since non 0 softlockcnt will force 8688 * segvn_setprot() to wait until softlockcnt drops to 0. This 8689 * allows us to determine in L_PAGEUNLOCK the same range we 8690 * computed in L_PAGELOCK. 8691 * 8692 * If alignment is limited by segment ends set 8693 * sftlck_sbase/sftlck_send flags. In L_PAGELOCK case when 8694 * these flags are set bump softlockcnt_sbase/softlockcnt_send 8695 * per segment counters. In L_PAGEUNLOCK case decrease 8696 * softlockcnt_sbase/softlockcnt_send counters if 8697 * sftlck_sbase/sftlck_send flags are set. When 8698 * softlockcnt_sbase/softlockcnt_send are non 0 8699 * segvn_concat()/segvn_extend_prev()/segvn_extend_next() 8700 * won't merge the segments. This restriction combined with 8701 * restriction on segment unmapping and splitting for segments 8702 * that have non 0 softlockcnt allows L_PAGEUNLOCK to 8703 * correctly determine the same range that was previously 8704 * locked by matching L_PAGELOCK. 8705 */ 8706 pflags = SEGP_PSHIFT | (segvn_pglock_comb_bshift << 16); 8707 pgsz = PAGESIZE; 8708 if (svd->type == MAP_PRIVATE) { 8709 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)addr, 8710 segvn_pglock_comb_balign); 8711 if (lpgaddr < seg->s_base) { 8712 lpgaddr = seg->s_base; 8713 sftlck_sbase = 1; 8714 } 8715 } else { 8716 ulong_t aix = svd->anon_index + seg_page(seg, addr); 8717 ulong_t aaix = P2ALIGN(aix, segvn_pglock_comb_palign); 8718 if (aaix < svd->anon_index) { 8719 lpgaddr = seg->s_base; 8720 sftlck_sbase = 1; 8721 } else { 8722 lpgaddr = addr - ptob(aix - aaix); 8723 ASSERT(lpgaddr >= seg->s_base); 8724 } 8725 } 8726 if (svd->pageprot && lpgaddr != addr) { 8727 struct vpage *vp = &svd->vpage[seg_page(seg, lpgaddr)]; 8728 struct vpage *evp = &svd->vpage[seg_page(seg, addr)]; 8729 while (vp < evp) { 8730 if ((VPP_PROT(vp) & protchk) == 0) { 8731 break; 8732 } 8733 vp++; 8734 } 8735 if (vp < evp) { 8736 lpgaddr = addr; 8737 pflags = 0; 8738 } 8739 } 8740 lpgeaddr = addr + len; 8741 if (pflags) { 8742 if (svd->type == MAP_PRIVATE) { 8743 lpgeaddr = (caddr_t)P2ROUNDUP( 8744 (uintptr_t)lpgeaddr, 8745 segvn_pglock_comb_balign); 8746 } else { 8747 ulong_t aix = svd->anon_index + 8748 seg_page(seg, lpgeaddr); 8749 ulong_t aaix = P2ROUNDUP(aix, 8750 segvn_pglock_comb_palign); 8751 if (aaix < aix) { 8752 lpgeaddr = 0; 8753 } else { 8754 lpgeaddr += ptob(aaix - aix); 8755 } 8756 } 8757 if (lpgeaddr == 0 || 8758 lpgeaddr > seg->s_base + seg->s_size) { 8759 lpgeaddr = seg->s_base + seg->s_size; 8760 sftlck_send = 1; 8761 } 8762 } 8763 if (svd->pageprot && lpgeaddr != addr + len) { 8764 struct vpage *vp; 8765 struct vpage *evp; 8766 8767 vp = &svd->vpage[seg_page(seg, addr + len)]; 8768 evp = &svd->vpage[seg_page(seg, lpgeaddr)]; 8769 8770 while (vp < evp) { 8771 if ((VPP_PROT(vp) & protchk) == 0) { 8772 break; 8773 } 8774 vp++; 8775 } 8776 if (vp < evp) { 8777 lpgeaddr = addr + len; 8778 } 8779 } 8780 adjustpages = btop((uintptr_t)(addr - lpgaddr)); 8781 } 8782 8783 /* 8784 * For MAP_SHARED segments we create pcache entries tagged by amp and 8785 * anon index so that we can share pcache entries with other segments 8786 * that map this amp. For private segments pcache entries are tagged 8787 * with segment and virtual address. 8788 */ 8789 if (svd->type == MAP_SHARED) { 8790 pamp = amp; 8791 paddr = (caddr_t)((lpgaddr - seg->s_base) + 8792 ptob(svd->anon_index)); 8793 preclaim_callback = shamp_reclaim; 8794 } else { 8795 pamp = NULL; 8796 paddr = lpgaddr; 8797 preclaim_callback = segvn_reclaim; 8798 } 8799 8800 if (type == L_PAGEUNLOCK) { 8801 VM_STAT_ADD(segvnvmstats.pagelock[0]); 8802 8803 /* 8804 * update hat ref bits for /proc. We need to make sure 8805 * that threads tracing the ref and mod bits of the 8806 * address space get the right data. 8807 * Note: page ref and mod bits are updated at reclaim time 8808 */ 8809 if (seg->s_as->a_vbits) { 8810 for (a = addr; a < addr + len; a += PAGESIZE) { 8811 if (rw == S_WRITE) { 8812 hat_setstat(seg->s_as, a, 8813 PAGESIZE, P_REF | P_MOD); 8814 } else { 8815 hat_setstat(seg->s_as, a, 8816 PAGESIZE, P_REF); 8817 } 8818 } 8819 } 8820 8821 /* 8822 * Check the shadow list entry after the last page used in 8823 * this IO request. If it's NOPCACHE_SHWLIST the shadow list 8824 * was not inserted into pcache and is not large page 8825 * adjusted. In this case call reclaim callback directly and 8826 * don't adjust the shadow list start and size for large 8827 * pages. 8828 */ 8829 npages = btop(len); 8830 if ((*ppp)[npages] == NOPCACHE_SHWLIST) { 8831 void *ptag; 8832 if (pamp != NULL) { 8833 ASSERT(svd->type == MAP_SHARED); 8834 ptag = (void *)pamp; 8835 paddr = (caddr_t)((addr - seg->s_base) + 8836 ptob(svd->anon_index)); 8837 } else { 8838 ptag = (void *)seg; 8839 paddr = addr; 8840 } 8841 (*preclaim_callback)(ptag, paddr, len, *ppp, rw, 0); 8842 } else { 8843 ASSERT((*ppp)[npages] == PCACHE_SHWLIST || 8844 IS_SWAPFSVP((*ppp)[npages]->p_vnode)); 8845 len = lpgeaddr - lpgaddr; 8846 npages = btop(len); 8847 seg_pinactive(seg, pamp, paddr, len, 8848 *ppp - adjustpages, rw, pflags, preclaim_callback); 8849 } 8850 8851 if (pamp != NULL) { 8852 ASSERT(svd->type == MAP_SHARED); 8853 ASSERT(svd->softlockcnt >= npages); 8854 atomic_add_long((ulong_t *)&svd->softlockcnt, -npages); 8855 } 8856 8857 if (sftlck_sbase) { 8858 ASSERT(svd->softlockcnt_sbase > 0); 8859 atomic_add_long((ulong_t *)&svd->softlockcnt_sbase, -1); 8860 } 8861 if (sftlck_send) { 8862 ASSERT(svd->softlockcnt_send > 0); 8863 atomic_add_long((ulong_t *)&svd->softlockcnt_send, -1); 8864 } 8865 8866 /* 8867 * If someone is blocked while unmapping, we purge 8868 * segment page cache and thus reclaim pplist synchronously 8869 * without waiting for seg_pasync_thread. This speeds up 8870 * unmapping in cases where munmap(2) is called, while 8871 * raw async i/o is still in progress or where a thread 8872 * exits on data fault in a multithreaded application. 8873 */ 8874 if (AS_ISUNMAPWAIT(seg->s_as)) { 8875 if (svd->softlockcnt == 0) { 8876 mutex_enter(&seg->s_as->a_contents); 8877 if (AS_ISUNMAPWAIT(seg->s_as)) { 8878 AS_CLRUNMAPWAIT(seg->s_as); 8879 cv_broadcast(&seg->s_as->a_cv); 8880 } 8881 mutex_exit(&seg->s_as->a_contents); 8882 } else if (pamp == NULL) { 8883 /* 8884 * softlockcnt is not 0 and this is a 8885 * MAP_PRIVATE segment. Try to purge its 8886 * pcache entries to reduce softlockcnt. 8887 * If it drops to 0 segvn_reclaim() 8888 * will wake up a thread waiting on 8889 * unmapwait flag. 8890 * 8891 * We don't purge MAP_SHARED segments with non 8892 * 0 softlockcnt since IO is still in progress 8893 * for such segments. 8894 */ 8895 ASSERT(svd->type == MAP_PRIVATE); 8896 segvn_purge(seg); 8897 } 8898 } 8899 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8900 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END, 8901 "segvn_pagelock: unlock seg %p addr %p", seg, addr); 8902 return (0); 8903 } 8904 8905 /* The L_PAGELOCK case ... */ 8906 8907 VM_STAT_ADD(segvnvmstats.pagelock[1]); 8908 8909 /* 8910 * For MAP_SHARED segments we have to check protections before 8911 * seg_plookup() since pcache entries may be shared by many segments 8912 * with potentially different page protections. 8913 */ 8914 if (pamp != NULL) { 8915 ASSERT(svd->type == MAP_SHARED); 8916 if (svd->pageprot == 0) { 8917 if ((svd->prot & protchk) == 0) { 8918 error = EACCES; 8919 goto out; 8920 } 8921 } else { 8922 /* 8923 * check page protections 8924 */ 8925 caddr_t ea; 8926 8927 if (seg->s_szc) { 8928 a = lpgaddr; 8929 ea = lpgeaddr; 8930 } else { 8931 a = addr; 8932 ea = addr + len; 8933 } 8934 for (; a < ea; a += pgsz) { 8935 struct vpage *vp; 8936 8937 ASSERT(seg->s_szc == 0 || 8938 sameprot(seg, a, pgsz)); 8939 vp = &svd->vpage[seg_page(seg, a)]; 8940 if ((VPP_PROT(vp) & protchk) == 0) { 8941 error = EACCES; 8942 goto out; 8943 } 8944 } 8945 } 8946 } 8947 8948 /* 8949 * try to find pages in segment page cache 8950 */ 8951 pplist = seg_plookup(seg, pamp, paddr, lpgeaddr - lpgaddr, rw, pflags); 8952 if (pplist != NULL) { 8953 if (pamp != NULL) { 8954 npages = btop((uintptr_t)(lpgeaddr - lpgaddr)); 8955 ASSERT(svd->type == MAP_SHARED); 8956 atomic_add_long((ulong_t *)&svd->softlockcnt, 8957 npages); 8958 } 8959 if (sftlck_sbase) { 8960 atomic_add_long((ulong_t *)&svd->softlockcnt_sbase, 1); 8961 } 8962 if (sftlck_send) { 8963 atomic_add_long((ulong_t *)&svd->softlockcnt_send, 1); 8964 } 8965 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 8966 *ppp = pplist + adjustpages; 8967 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END, 8968 "segvn_pagelock: cache hit seg %p addr %p", seg, addr); 8969 return (0); 8970 } 8971 8972 /* 8973 * For MAP_SHARED segments we already verified above that segment 8974 * protections allow this pagelock operation. 8975 */ 8976 if (pamp == NULL) { 8977 ASSERT(svd->type == MAP_PRIVATE); 8978 if (svd->pageprot == 0) { 8979 if ((svd->prot & protchk) == 0) { 8980 error = EACCES; 8981 goto out; 8982 } 8983 if (svd->prot & PROT_WRITE) { 8984 wlen = lpgeaddr - lpgaddr; 8985 } else { 8986 wlen = 0; 8987 ASSERT(rw == S_READ); 8988 } 8989 } else { 8990 int wcont = 1; 8991 /* 8992 * check page protections 8993 */ 8994 for (a = lpgaddr, wlen = 0; a < lpgeaddr; a += pgsz) { 8995 struct vpage *vp; 8996 8997 ASSERT(seg->s_szc == 0 || 8998 sameprot(seg, a, pgsz)); 8999 vp = &svd->vpage[seg_page(seg, a)]; 9000 if ((VPP_PROT(vp) & protchk) == 0) { 9001 error = EACCES; 9002 goto out; 9003 } 9004 if (wcont && (VPP_PROT(vp) & PROT_WRITE)) { 9005 wlen += pgsz; 9006 } else { 9007 wcont = 0; 9008 ASSERT(rw == S_READ); 9009 } 9010 } 9011 } 9012 ASSERT(rw == S_READ || wlen == lpgeaddr - lpgaddr); 9013 ASSERT(rw == S_WRITE || wlen <= lpgeaddr - lpgaddr); 9014 } 9015 9016 /* 9017 * Only build large page adjusted shadow list if we expect to insert 9018 * it into pcache. For large enough pages it's a big overhead to 9019 * create a shadow list of the entire large page. But this overhead 9020 * should be amortized over repeated pcache hits on subsequent reuse 9021 * of this shadow list (IO into any range within this shadow list will 9022 * find it in pcache since we large page align the request for pcache 9023 * lookups). pcache performance is improved with bigger shadow lists 9024 * as it reduces the time to pcache the entire big segment and reduces 9025 * pcache chain length. 9026 */ 9027 if (seg_pinsert_check(seg, pamp, paddr, 9028 lpgeaddr - lpgaddr, pflags) == SEGP_SUCCESS) { 9029 addr = lpgaddr; 9030 len = lpgeaddr - lpgaddr; 9031 use_pcache = 1; 9032 } else { 9033 use_pcache = 0; 9034 /* 9035 * Since this entry will not be inserted into the pcache, we 9036 * will not do any adjustments to the starting address or 9037 * size of the memory to be locked. 9038 */ 9039 adjustpages = 0; 9040 } 9041 npages = btop(len); 9042 9043 pplist = kmem_alloc(sizeof (page_t *) * (npages + 1), KM_SLEEP); 9044 pl = pplist; 9045 *ppp = pplist + adjustpages; 9046 /* 9047 * If use_pcache is 0 this shadow list is not large page adjusted. 9048 * Record this info in the last entry of shadow array so that 9049 * L_PAGEUNLOCK can determine if it should large page adjust the 9050 * address range to find the real range that was locked. 9051 */ 9052 pl[npages] = use_pcache ? PCACHE_SHWLIST : NOPCACHE_SHWLIST; 9053 9054 page = seg_page(seg, addr); 9055 anon_index = svd->anon_index + page; 9056 9057 anlock = 0; 9058 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 9059 ASSERT(amp->a_szc >= seg->s_szc); 9060 anpgcnt = page_get_pagecnt(amp->a_szc); 9061 for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) { 9062 struct anon *ap; 9063 struct vnode *vp; 9064 u_offset_t off; 9065 9066 /* 9067 * Lock and unlock anon array only once per large page. 9068 * anon_array_enter() locks the root anon slot according to 9069 * a_szc which can't change while anon map is locked. We lock 9070 * anon the first time through this loop and each time we 9071 * reach anon index that corresponds to a root of a large 9072 * page. 9073 */ 9074 if (a == addr || P2PHASE(anon_index, anpgcnt) == 0) { 9075 ASSERT(anlock == 0); 9076 anon_array_enter(amp, anon_index, &cookie); 9077 anlock = 1; 9078 } 9079 ap = anon_get_ptr(amp->ahp, anon_index); 9080 9081 /* 9082 * We must never use seg_pcache for COW pages 9083 * because we might end up with original page still 9084 * lying in seg_pcache even after private page is 9085 * created. This leads to data corruption as 9086 * aio_write refers to the page still in cache 9087 * while all other accesses refer to the private 9088 * page. 9089 */ 9090 if (ap == NULL || ap->an_refcnt != 1) { 9091 struct vpage *vpage; 9092 9093 if (seg->s_szc) { 9094 error = EFAULT; 9095 break; 9096 } 9097 if (svd->vpage != NULL) { 9098 vpage = &svd->vpage[seg_page(seg, a)]; 9099 } else { 9100 vpage = NULL; 9101 } 9102 ASSERT(anlock); 9103 anon_array_exit(&cookie); 9104 anlock = 0; 9105 pp = NULL; 9106 error = segvn_faultpage(seg->s_as->a_hat, seg, a, 0, 9107 vpage, &pp, 0, F_INVAL, rw, 1); 9108 if (error) { 9109 error = fc_decode(error); 9110 break; 9111 } 9112 anon_array_enter(amp, anon_index, &cookie); 9113 anlock = 1; 9114 ap = anon_get_ptr(amp->ahp, anon_index); 9115 if (ap == NULL || ap->an_refcnt != 1) { 9116 error = EFAULT; 9117 break; 9118 } 9119 } 9120 swap_xlate(ap, &vp, &off); 9121 pp = page_lookup_nowait(vp, off, SE_SHARED); 9122 if (pp == NULL) { 9123 error = EFAULT; 9124 break; 9125 } 9126 if (ap->an_pvp != NULL) { 9127 anon_swap_free(ap, pp); 9128 } 9129 /* 9130 * Unlock anon if this is the last slot in a large page. 9131 */ 9132 if (P2PHASE(anon_index, anpgcnt) == anpgcnt - 1) { 9133 ASSERT(anlock); 9134 anon_array_exit(&cookie); 9135 anlock = 0; 9136 } 9137 *pplist++ = pp; 9138 } 9139 if (anlock) { /* Ensure the lock is dropped */ 9140 anon_array_exit(&cookie); 9141 } 9142 ANON_LOCK_EXIT(&->a_rwlock); 9143 9144 if (a >= addr + len) { 9145 atomic_add_long((ulong_t *)&svd->softlockcnt, npages); 9146 if (pamp != NULL) { 9147 ASSERT(svd->type == MAP_SHARED); 9148 atomic_add_long((ulong_t *)&pamp->a_softlockcnt, 9149 npages); 9150 wlen = len; 9151 } 9152 if (sftlck_sbase) { 9153 atomic_add_long((ulong_t *)&svd->softlockcnt_sbase, 1); 9154 } 9155 if (sftlck_send) { 9156 atomic_add_long((ulong_t *)&svd->softlockcnt_send, 1); 9157 } 9158 if (use_pcache) { 9159 (void) seg_pinsert(seg, pamp, paddr, len, wlen, pl, 9160 rw, pflags, preclaim_callback); 9161 } 9162 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 9163 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END, 9164 "segvn_pagelock: cache fill seg %p addr %p", seg, addr); 9165 return (0); 9166 } 9167 9168 pplist = pl; 9169 np = ((uintptr_t)(a - addr)) >> PAGESHIFT; 9170 while (np > (uint_t)0) { 9171 ASSERT(PAGE_LOCKED(*pplist)); 9172 page_unlock(*pplist); 9173 np--; 9174 pplist++; 9175 } 9176 kmem_free(pl, sizeof (page_t *) * (npages + 1)); 9177 out: 9178 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 9179 *ppp = NULL; 9180 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END, 9181 "segvn_pagelock: cache miss seg %p addr %p", seg, addr); 9182 return (error); 9183 } 9184 9185 /* 9186 * purge any cached pages in the I/O page cache 9187 */ 9188 static void 9189 segvn_purge(struct seg *seg) 9190 { 9191 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9192 9193 /* 9194 * pcache is only used by pure anon segments. 9195 */ 9196 if (svd->amp == NULL || svd->vp != NULL) { 9197 return; 9198 } 9199 9200 /* 9201 * For MAP_SHARED segments non 0 segment's softlockcnt means 9202 * active IO is still in progress via this segment. So we only 9203 * purge MAP_SHARED segments when their softlockcnt is 0. 9204 */ 9205 if (svd->type == MAP_PRIVATE) { 9206 if (svd->softlockcnt) { 9207 seg_ppurge(seg, NULL, 0); 9208 } 9209 } else if (svd->softlockcnt == 0 && svd->amp->a_softlockcnt != 0) { 9210 seg_ppurge(seg, svd->amp, 0); 9211 } 9212 } 9213 9214 /* 9215 * If async argument is not 0 we are called from pcache async thread and don't 9216 * hold AS lock. 9217 */ 9218 9219 /*ARGSUSED*/ 9220 static int 9221 segvn_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist, 9222 enum seg_rw rw, int async) 9223 { 9224 struct seg *seg = (struct seg *)ptag; 9225 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9226 pgcnt_t np, npages; 9227 struct page **pl; 9228 9229 npages = np = btop(len); 9230 ASSERT(npages); 9231 9232 ASSERT(svd->vp == NULL && svd->amp != NULL); 9233 ASSERT(svd->softlockcnt >= npages); 9234 ASSERT(async || AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 9235 9236 pl = pplist; 9237 9238 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST); 9239 ASSERT(!async || pl[np] == PCACHE_SHWLIST); 9240 9241 while (np > (uint_t)0) { 9242 if (rw == S_WRITE) { 9243 hat_setrefmod(*pplist); 9244 } else { 9245 hat_setref(*pplist); 9246 } 9247 page_unlock(*pplist); 9248 np--; 9249 pplist++; 9250 } 9251 9252 kmem_free(pl, sizeof (page_t *) * (npages + 1)); 9253 9254 /* 9255 * If we are pcache async thread we don't hold AS lock. This means if 9256 * softlockcnt drops to 0 after the decrement below address space may 9257 * get freed. We can't allow it since after softlock derement to 0 we 9258 * still need to access as structure for possible wakeup of unmap 9259 * waiters. To prevent the disappearance of as we take this segment 9260 * segfree_syncmtx. segvn_free() also takes this mutex as a barrier to 9261 * make sure this routine completes before segment is freed. 9262 * 9263 * The second complication we have to deal with in async case is a 9264 * possibility of missed wake up of unmap wait thread. When we don't 9265 * hold as lock here we may take a_contents lock before unmap wait 9266 * thread that was first to see softlockcnt was still not 0. As a 9267 * result we'll fail to wake up an unmap wait thread. To avoid this 9268 * race we set nounmapwait flag in as structure if we drop softlockcnt 9269 * to 0 when we were called by pcache async thread. unmapwait thread 9270 * will not block if this flag is set. 9271 */ 9272 if (async) { 9273 mutex_enter(&svd->segfree_syncmtx); 9274 } 9275 9276 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -npages)) { 9277 if (async || AS_ISUNMAPWAIT(seg->s_as)) { 9278 mutex_enter(&seg->s_as->a_contents); 9279 if (async) { 9280 AS_SETNOUNMAPWAIT(seg->s_as); 9281 } 9282 if (AS_ISUNMAPWAIT(seg->s_as)) { 9283 AS_CLRUNMAPWAIT(seg->s_as); 9284 cv_broadcast(&seg->s_as->a_cv); 9285 } 9286 mutex_exit(&seg->s_as->a_contents); 9287 } 9288 } 9289 9290 if (async) { 9291 mutex_exit(&svd->segfree_syncmtx); 9292 } 9293 return (0); 9294 } 9295 9296 /*ARGSUSED*/ 9297 static int 9298 shamp_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist, 9299 enum seg_rw rw, int async) 9300 { 9301 amp_t *amp = (amp_t *)ptag; 9302 pgcnt_t np, npages; 9303 struct page **pl; 9304 9305 npages = np = btop(len); 9306 ASSERT(npages); 9307 ASSERT(amp->a_softlockcnt >= npages); 9308 9309 pl = pplist; 9310 9311 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST); 9312 ASSERT(!async || pl[np] == PCACHE_SHWLIST); 9313 9314 while (np > (uint_t)0) { 9315 if (rw == S_WRITE) { 9316 hat_setrefmod(*pplist); 9317 } else { 9318 hat_setref(*pplist); 9319 } 9320 page_unlock(*pplist); 9321 np--; 9322 pplist++; 9323 } 9324 9325 kmem_free(pl, sizeof (page_t *) * (npages + 1)); 9326 9327 /* 9328 * If somebody sleeps in anonmap_purge() wake them up if a_softlockcnt 9329 * drops to 0. anon map can't be freed until a_softlockcnt drops to 0 9330 * and anonmap_purge() acquires a_purgemtx. 9331 */ 9332 mutex_enter(&->a_purgemtx); 9333 if (!atomic_add_long_nv((ulong_t *)&->a_softlockcnt, -npages) && 9334 amp->a_purgewait) { 9335 amp->a_purgewait = 0; 9336 cv_broadcast(&->a_purgecv); 9337 } 9338 mutex_exit(&->a_purgemtx); 9339 return (0); 9340 } 9341 9342 /* 9343 * get a memory ID for an addr in a given segment 9344 * 9345 * XXX only creates PAGESIZE pages if anon slots are not initialized. 9346 * At fault time they will be relocated into larger pages. 9347 */ 9348 static int 9349 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 9350 { 9351 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9352 struct anon *ap = NULL; 9353 ulong_t anon_index; 9354 struct anon_map *amp; 9355 anon_sync_obj_t cookie; 9356 9357 if (svd->type == MAP_PRIVATE) { 9358 memidp->val[0] = (uintptr_t)seg->s_as; 9359 memidp->val[1] = (uintptr_t)addr; 9360 return (0); 9361 } 9362 9363 if (svd->type == MAP_SHARED) { 9364 if (svd->vp) { 9365 memidp->val[0] = (uintptr_t)svd->vp; 9366 memidp->val[1] = (u_longlong_t)svd->offset + 9367 (uintptr_t)(addr - seg->s_base); 9368 return (0); 9369 } else { 9370 9371 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER); 9372 if ((amp = svd->amp) != NULL) { 9373 anon_index = svd->anon_index + 9374 seg_page(seg, addr); 9375 } 9376 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 9377 9378 ASSERT(amp != NULL); 9379 9380 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 9381 anon_array_enter(amp, anon_index, &cookie); 9382 ap = anon_get_ptr(amp->ahp, anon_index); 9383 if (ap == NULL) { 9384 page_t *pp; 9385 9386 pp = anon_zero(seg, addr, &ap, svd->cred); 9387 if (pp == NULL) { 9388 anon_array_exit(&cookie); 9389 ANON_LOCK_EXIT(&->a_rwlock); 9390 return (ENOMEM); 9391 } 9392 ASSERT(anon_get_ptr(amp->ahp, anon_index) 9393 == NULL); 9394 (void) anon_set_ptr(amp->ahp, anon_index, 9395 ap, ANON_SLEEP); 9396 page_unlock(pp); 9397 } 9398 9399 anon_array_exit(&cookie); 9400 ANON_LOCK_EXIT(&->a_rwlock); 9401 9402 memidp->val[0] = (uintptr_t)ap; 9403 memidp->val[1] = (uintptr_t)addr & PAGEOFFSET; 9404 return (0); 9405 } 9406 } 9407 return (EINVAL); 9408 } 9409 9410 static int 9411 sameprot(struct seg *seg, caddr_t a, size_t len) 9412 { 9413 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9414 struct vpage *vpage; 9415 spgcnt_t pages = btop(len); 9416 uint_t prot; 9417 9418 if (svd->pageprot == 0) 9419 return (1); 9420 9421 ASSERT(svd->vpage != NULL); 9422 9423 vpage = &svd->vpage[seg_page(seg, a)]; 9424 prot = VPP_PROT(vpage); 9425 vpage++; 9426 pages--; 9427 while (pages-- > 0) { 9428 if (prot != VPP_PROT(vpage)) 9429 return (0); 9430 vpage++; 9431 } 9432 return (1); 9433 } 9434 9435 /* 9436 * Get memory allocation policy info for specified address in given segment 9437 */ 9438 static lgrp_mem_policy_info_t * 9439 segvn_getpolicy(struct seg *seg, caddr_t addr) 9440 { 9441 struct anon_map *amp; 9442 ulong_t anon_index; 9443 lgrp_mem_policy_info_t *policy_info; 9444 struct segvn_data *svn_data; 9445 u_offset_t vn_off; 9446 vnode_t *vp; 9447 9448 ASSERT(seg != NULL); 9449 9450 svn_data = (struct segvn_data *)seg->s_data; 9451 if (svn_data == NULL) 9452 return (NULL); 9453 9454 /* 9455 * Get policy info for private or shared memory 9456 */ 9457 if (svn_data->type != MAP_SHARED) { 9458 if (svn_data->tr_state != SEGVN_TR_ON) { 9459 policy_info = &svn_data->policy_info; 9460 } else { 9461 policy_info = &svn_data->tr_policy_info; 9462 ASSERT(policy_info->mem_policy == 9463 LGRP_MEM_POLICY_NEXT_SEG); 9464 } 9465 } else { 9466 amp = svn_data->amp; 9467 anon_index = svn_data->anon_index + seg_page(seg, addr); 9468 vp = svn_data->vp; 9469 vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base); 9470 policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off); 9471 } 9472 9473 return (policy_info); 9474 } 9475 9476 /*ARGSUSED*/ 9477 static int 9478 segvn_capable(struct seg *seg, segcapability_t capability) 9479 { 9480 return (0); 9481 } 9482 9483 /* 9484 * Bind text vnode segment to an amp. If we bind successfully mappings will be 9485 * established to per vnode mapping per lgroup amp pages instead of to vnode 9486 * pages. There's one amp per vnode text mapping per lgroup. Many processes 9487 * may share the same text replication amp. If a suitable amp doesn't already 9488 * exist in svntr hash table create a new one. We may fail to bind to amp if 9489 * segment is not eligible for text replication. Code below first checks for 9490 * these conditions. If binding is successful segment tr_state is set to on 9491 * and svd->amp points to the amp to use. Otherwise tr_state is set to off and 9492 * svd->amp remains as NULL. 9493 */ 9494 static void 9495 segvn_textrepl(struct seg *seg) 9496 { 9497 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9498 vnode_t *vp = svd->vp; 9499 u_offset_t off = svd->offset; 9500 size_t size = seg->s_size; 9501 u_offset_t eoff = off + size; 9502 uint_t szc = seg->s_szc; 9503 ulong_t hash = SVNTR_HASH_FUNC(vp); 9504 svntr_t *svntrp; 9505 struct vattr va; 9506 proc_t *p = seg->s_as->a_proc; 9507 lgrp_id_t lgrp_id; 9508 lgrp_id_t olid; 9509 int first; 9510 struct anon_map *amp; 9511 9512 ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 9513 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock)); 9514 ASSERT(p != NULL); 9515 ASSERT(svd->tr_state == SEGVN_TR_INIT); 9516 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie)); 9517 ASSERT(svd->flags & MAP_TEXT); 9518 ASSERT(svd->type == MAP_PRIVATE); 9519 ASSERT(vp != NULL && svd->amp == NULL); 9520 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE)); 9521 ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0); 9522 ASSERT(seg->s_as != &kas); 9523 ASSERT(off < eoff); 9524 ASSERT(svntr_hashtab != NULL); 9525 9526 /* 9527 * If numa optimizations are no longer desired bail out. 9528 */ 9529 if (!lgrp_optimizations()) { 9530 svd->tr_state = SEGVN_TR_OFF; 9531 return; 9532 } 9533 9534 /* 9535 * Avoid creating anon maps with size bigger than the file size. 9536 * If VOP_GETATTR() call fails bail out. 9537 */ 9538 va.va_mask = AT_SIZE | AT_MTIME | AT_CTIME; 9539 if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL) != 0) { 9540 svd->tr_state = SEGVN_TR_OFF; 9541 SEGVN_TR_ADDSTAT(gaerr); 9542 return; 9543 } 9544 if (btopr(va.va_size) < btopr(eoff)) { 9545 svd->tr_state = SEGVN_TR_OFF; 9546 SEGVN_TR_ADDSTAT(overmap); 9547 return; 9548 } 9549 9550 /* 9551 * VVMEXEC may not be set yet if exec() prefaults text segment. Set 9552 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED 9553 * mapping that checks if trcache for this vnode needs to be 9554 * invalidated can't miss us. 9555 */ 9556 if (!(vp->v_flag & VVMEXEC)) { 9557 mutex_enter(&vp->v_lock); 9558 vp->v_flag |= VVMEXEC; 9559 mutex_exit(&vp->v_lock); 9560 } 9561 mutex_enter(&svntr_hashtab[hash].tr_lock); 9562 /* 9563 * Bail out if potentially MAP_SHARED writable mappings exist to this 9564 * vnode. We don't want to use old file contents from existing 9565 * replicas if this mapping was established after the original file 9566 * was changed. 9567 */ 9568 if (vn_is_mapped(vp, V_WRITE)) { 9569 mutex_exit(&svntr_hashtab[hash].tr_lock); 9570 svd->tr_state = SEGVN_TR_OFF; 9571 SEGVN_TR_ADDSTAT(wrcnt); 9572 return; 9573 } 9574 svntrp = svntr_hashtab[hash].tr_head; 9575 for (; svntrp != NULL; svntrp = svntrp->tr_next) { 9576 ASSERT(svntrp->tr_refcnt != 0); 9577 if (svntrp->tr_vp != vp) { 9578 continue; 9579 } 9580 9581 /* 9582 * Bail out if the file or its attributes were changed after 9583 * this replication entry was created since we need to use the 9584 * latest file contents. Note that mtime test alone is not 9585 * sufficient because a user can explicitly change mtime via 9586 * utimes(2) interfaces back to the old value after modifiying 9587 * the file contents. To detect this case we also have to test 9588 * ctime which among other things records the time of the last 9589 * mtime change by utimes(2). ctime is not changed when the file 9590 * is only read or executed so we expect that typically existing 9591 * replication amp's can be used most of the time. 9592 */ 9593 if (!svntrp->tr_valid || 9594 svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec || 9595 svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec || 9596 svntrp->tr_ctime.tv_sec != va.va_ctime.tv_sec || 9597 svntrp->tr_ctime.tv_nsec != va.va_ctime.tv_nsec) { 9598 mutex_exit(&svntr_hashtab[hash].tr_lock); 9599 svd->tr_state = SEGVN_TR_OFF; 9600 SEGVN_TR_ADDSTAT(stale); 9601 return; 9602 } 9603 /* 9604 * if off, eoff and szc match current segment we found the 9605 * existing entry we can use. 9606 */ 9607 if (svntrp->tr_off == off && svntrp->tr_eoff == eoff && 9608 svntrp->tr_szc == szc) { 9609 break; 9610 } 9611 /* 9612 * Don't create different but overlapping in file offsets 9613 * entries to avoid replication of the same file pages more 9614 * than once per lgroup. 9615 */ 9616 if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) || 9617 (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) { 9618 mutex_exit(&svntr_hashtab[hash].tr_lock); 9619 svd->tr_state = SEGVN_TR_OFF; 9620 SEGVN_TR_ADDSTAT(overlap); 9621 return; 9622 } 9623 } 9624 /* 9625 * If we didn't find existing entry create a new one. 9626 */ 9627 if (svntrp == NULL) { 9628 svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP); 9629 if (svntrp == NULL) { 9630 mutex_exit(&svntr_hashtab[hash].tr_lock); 9631 svd->tr_state = SEGVN_TR_OFF; 9632 SEGVN_TR_ADDSTAT(nokmem); 9633 return; 9634 } 9635 #ifdef DEBUG 9636 { 9637 lgrp_id_t i; 9638 for (i = 0; i < NLGRPS_MAX; i++) { 9639 ASSERT(svntrp->tr_amp[i] == NULL); 9640 } 9641 } 9642 #endif /* DEBUG */ 9643 svntrp->tr_vp = vp; 9644 svntrp->tr_off = off; 9645 svntrp->tr_eoff = eoff; 9646 svntrp->tr_szc = szc; 9647 svntrp->tr_valid = 1; 9648 svntrp->tr_mtime = va.va_mtime; 9649 svntrp->tr_ctime = va.va_ctime; 9650 svntrp->tr_refcnt = 0; 9651 svntrp->tr_next = svntr_hashtab[hash].tr_head; 9652 svntr_hashtab[hash].tr_head = svntrp; 9653 } 9654 first = 1; 9655 again: 9656 /* 9657 * We want to pick a replica with pages on main thread's (t_tid = 1, 9658 * aka T1) lgrp. Currently text replication is only optimized for 9659 * workloads that either have all threads of a process on the same 9660 * lgrp or execute their large text primarily on main thread. 9661 */ 9662 lgrp_id = p->p_t1_lgrpid; 9663 if (lgrp_id == LGRP_NONE) { 9664 /* 9665 * In case exec() prefaults text on non main thread use 9666 * current thread lgrpid. It will become main thread anyway 9667 * soon. 9668 */ 9669 lgrp_id = lgrp_home_id(curthread); 9670 } 9671 /* 9672 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet. Otherwise 9673 * just set it to NLGRPS_MAX if it's different from current process T1 9674 * home lgrp. p_tr_lgrpid is used to detect if process uses text 9675 * replication and T1 new home is different from lgrp used for text 9676 * replication. When this happens asyncronous segvn thread rechecks if 9677 * segments should change lgrps used for text replication. If we fail 9678 * to set p_tr_lgrpid with cas32 then set it to NLGRPS_MAX without cas 9679 * if it's not already NLGRPS_MAX and not equal lgrp_id we want to 9680 * use. We don't need to use cas in this case because another thread 9681 * that races in between our non atomic check and set may only change 9682 * p_tr_lgrpid to NLGRPS_MAX at this point. 9683 */ 9684 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX); 9685 olid = p->p_tr_lgrpid; 9686 if (lgrp_id != olid && olid != NLGRPS_MAX) { 9687 lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX; 9688 if (cas32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) != olid) { 9689 olid = p->p_tr_lgrpid; 9690 ASSERT(olid != LGRP_NONE); 9691 if (olid != lgrp_id && olid != NLGRPS_MAX) { 9692 p->p_tr_lgrpid = NLGRPS_MAX; 9693 } 9694 } 9695 ASSERT(p->p_tr_lgrpid != LGRP_NONE); 9696 membar_producer(); 9697 /* 9698 * lgrp_move_thread() won't schedule async recheck after 9699 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not 9700 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid 9701 * is not LGRP_NONE. 9702 */ 9703 if (first && p->p_t1_lgrpid != LGRP_NONE && 9704 p->p_t1_lgrpid != lgrp_id) { 9705 first = 0; 9706 goto again; 9707 } 9708 } 9709 /* 9710 * If no amp was created yet for lgrp_id create a new one as long as 9711 * we have enough memory to afford it. 9712 */ 9713 if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) { 9714 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size); 9715 if (trmem > segvn_textrepl_max_bytes) { 9716 SEGVN_TR_ADDSTAT(normem); 9717 goto fail; 9718 } 9719 if (anon_try_resv_zone(size, NULL) == 0) { 9720 SEGVN_TR_ADDSTAT(noanon); 9721 goto fail; 9722 } 9723 amp = anonmap_alloc(size, size, ANON_NOSLEEP); 9724 if (amp == NULL) { 9725 anon_unresv_zone(size, NULL); 9726 SEGVN_TR_ADDSTAT(nokmem); 9727 goto fail; 9728 } 9729 ASSERT(amp->refcnt == 1); 9730 amp->a_szc = szc; 9731 svntrp->tr_amp[lgrp_id] = amp; 9732 SEGVN_TR_ADDSTAT(newamp); 9733 } 9734 svntrp->tr_refcnt++; 9735 ASSERT(svd->svn_trnext == NULL); 9736 ASSERT(svd->svn_trprev == NULL); 9737 svd->svn_trnext = svntrp->tr_svnhead; 9738 svd->svn_trprev = NULL; 9739 if (svntrp->tr_svnhead != NULL) { 9740 svntrp->tr_svnhead->svn_trprev = svd; 9741 } 9742 svntrp->tr_svnhead = svd; 9743 ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size); 9744 ASSERT(amp->refcnt >= 1); 9745 svd->amp = amp; 9746 svd->anon_index = 0; 9747 svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG; 9748 svd->tr_policy_info.mem_lgrpid = lgrp_id; 9749 svd->tr_state = SEGVN_TR_ON; 9750 mutex_exit(&svntr_hashtab[hash].tr_lock); 9751 SEGVN_TR_ADDSTAT(repl); 9752 return; 9753 fail: 9754 ASSERT(segvn_textrepl_bytes >= size); 9755 atomic_add_long(&segvn_textrepl_bytes, -size); 9756 ASSERT(svntrp != NULL); 9757 ASSERT(svntrp->tr_amp[lgrp_id] == NULL); 9758 if (svntrp->tr_refcnt == 0) { 9759 ASSERT(svntrp == svntr_hashtab[hash].tr_head); 9760 svntr_hashtab[hash].tr_head = svntrp->tr_next; 9761 mutex_exit(&svntr_hashtab[hash].tr_lock); 9762 kmem_cache_free(svntr_cache, svntrp); 9763 } else { 9764 mutex_exit(&svntr_hashtab[hash].tr_lock); 9765 } 9766 svd->tr_state = SEGVN_TR_OFF; 9767 } 9768 9769 /* 9770 * Convert seg back to regular vnode mapping seg by unbinding it from its text 9771 * replication amp. This routine is most typically called when segment is 9772 * unmapped but can also be called when segment no longer qualifies for text 9773 * replication (e.g. due to protection changes). If unload_unmap is set use 9774 * HAT_UNLOAD_UNMAP flag in hat_unload_callback(). If we are the last user of 9775 * svntr free all its anon maps and remove it from the hash table. 9776 */ 9777 static void 9778 segvn_textunrepl(struct seg *seg, int unload_unmap) 9779 { 9780 struct segvn_data *svd = (struct segvn_data *)seg->s_data; 9781 vnode_t *vp = svd->vp; 9782 u_offset_t off = svd->offset; 9783 size_t size = seg->s_size; 9784 u_offset_t eoff = off + size; 9785 uint_t szc = seg->s_szc; 9786 ulong_t hash = SVNTR_HASH_FUNC(vp); 9787 svntr_t *svntrp; 9788 svntr_t **prv_svntrp; 9789 lgrp_id_t lgrp_id = svd->tr_policy_info.mem_lgrpid; 9790 lgrp_id_t i; 9791 9792 ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 9793 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) || 9794 SEGVN_WRITE_HELD(seg->s_as, &svd->lock)); 9795 ASSERT(svd->tr_state == SEGVN_TR_ON); 9796 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie)); 9797 ASSERT(svd->amp != NULL); 9798 ASSERT(svd->amp->refcnt >= 1); 9799 ASSERT(svd->anon_index == 0); 9800 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX); 9801 ASSERT(svntr_hashtab != NULL); 9802 9803 mutex_enter(&svntr_hashtab[hash].tr_lock); 9804 prv_svntrp = &svntr_hashtab[hash].tr_head; 9805 for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) { 9806 ASSERT(svntrp->tr_refcnt != 0); 9807 if (svntrp->tr_vp == vp && svntrp->tr_off == off && 9808 svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) { 9809 break; 9810 } 9811 } 9812 if (svntrp == NULL) { 9813 panic("segvn_textunrepl: svntr record not found"); 9814 } 9815 if (svntrp->tr_amp[lgrp_id] != svd->amp) { 9816 panic("segvn_textunrepl: amp mismatch"); 9817 } 9818 svd->tr_state = SEGVN_TR_OFF; 9819 svd->amp = NULL; 9820 if (svd->svn_trprev == NULL) { 9821 ASSERT(svntrp->tr_svnhead == svd); 9822 svntrp->tr_svnhead = svd->svn_trnext; 9823 if (svntrp->tr_svnhead != NULL) { 9824 svntrp->tr_svnhead->svn_trprev = NULL; 9825 } 9826 svd->svn_trnext = NULL; 9827 } else { 9828 svd->svn_trprev->svn_trnext = svd->svn_trnext; 9829 if (svd->svn_trnext != NULL) { 9830 svd->svn_trnext->svn_trprev = svd->svn_trprev; 9831 svd->svn_trnext = NULL; 9832 } 9833 svd->svn_trprev = NULL; 9834 } 9835 if (--svntrp->tr_refcnt) { 9836 mutex_exit(&svntr_hashtab[hash].tr_lock); 9837 goto done; 9838 } 9839 *prv_svntrp = svntrp->tr_next; 9840 mutex_exit(&svntr_hashtab[hash].tr_lock); 9841 for (i = 0; i < NLGRPS_MAX; i++) { 9842 struct anon_map *amp = svntrp->tr_amp[i]; 9843 if (amp == NULL) { 9844 continue; 9845 } 9846 ASSERT(amp->refcnt == 1); 9847 ASSERT(amp->swresv == size); 9848 ASSERT(amp->size == size); 9849 ASSERT(amp->a_szc == szc); 9850 if (amp->a_szc != 0) { 9851 anon_free_pages(amp->ahp, 0, size, szc); 9852 } else { 9853 anon_free(amp->ahp, 0, size); 9854 } 9855 svntrp->tr_amp[i] = NULL; 9856 ASSERT(segvn_textrepl_bytes >= size); 9857 atomic_add_long(&segvn_textrepl_bytes, -size); 9858 anon_unresv_zone(amp->swresv, NULL); 9859 amp->refcnt = 0; 9860 anonmap_free(amp); 9861 } 9862 kmem_cache_free(svntr_cache, svntrp); 9863 done: 9864 hat_unload_callback(seg->s_as->a_hat, seg->s_base, size, 9865 unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL); 9866 } 9867 9868 /* 9869 * This is called when a MAP_SHARED writable mapping is created to a vnode 9870 * that is currently used for execution (VVMEXEC flag is set). In this case we 9871 * need to prevent further use of existing replicas. 9872 */ 9873 static void 9874 segvn_inval_trcache(vnode_t *vp) 9875 { 9876 ulong_t hash = SVNTR_HASH_FUNC(vp); 9877 svntr_t *svntrp; 9878 9879 ASSERT(vp->v_flag & VVMEXEC); 9880 9881 if (svntr_hashtab == NULL) { 9882 return; 9883 } 9884 9885 mutex_enter(&svntr_hashtab[hash].tr_lock); 9886 svntrp = svntr_hashtab[hash].tr_head; 9887 for (; svntrp != NULL; svntrp = svntrp->tr_next) { 9888 ASSERT(svntrp->tr_refcnt != 0); 9889 if (svntrp->tr_vp == vp && svntrp->tr_valid) { 9890 svntrp->tr_valid = 0; 9891 } 9892 } 9893 mutex_exit(&svntr_hashtab[hash].tr_lock); 9894 } 9895 9896 static void 9897 segvn_trasync_thread(void) 9898 { 9899 callb_cpr_t cpr_info; 9900 kmutex_t cpr_lock; /* just for CPR stuff */ 9901 9902 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL); 9903 9904 CALLB_CPR_INIT(&cpr_info, &cpr_lock, 9905 callb_generic_cpr, "segvn_async"); 9906 9907 if (segvn_update_textrepl_interval == 0) { 9908 segvn_update_textrepl_interval = segvn_update_tr_time * hz; 9909 } else { 9910 segvn_update_textrepl_interval *= hz; 9911 } 9912 (void) timeout(segvn_trupdate_wakeup, NULL, 9913 segvn_update_textrepl_interval); 9914 9915 for (;;) { 9916 mutex_enter(&cpr_lock); 9917 CALLB_CPR_SAFE_BEGIN(&cpr_info); 9918 mutex_exit(&cpr_lock); 9919 sema_p(&segvn_trasync_sem); 9920 mutex_enter(&cpr_lock); 9921 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 9922 mutex_exit(&cpr_lock); 9923 segvn_trupdate(); 9924 } 9925 } 9926 9927 static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0; 9928 9929 static void 9930 segvn_trupdate_wakeup(void *dummy) 9931 { 9932 uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations(); 9933 9934 if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) { 9935 segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs; 9936 sema_v(&segvn_trasync_sem); 9937 } 9938 9939 if (!segvn_disable_textrepl_update && 9940 segvn_update_textrepl_interval != 0) { 9941 (void) timeout(segvn_trupdate_wakeup, dummy, 9942 segvn_update_textrepl_interval); 9943 } 9944 } 9945 9946 static void 9947 segvn_trupdate(void) 9948 { 9949 ulong_t hash; 9950 svntr_t *svntrp; 9951 segvn_data_t *svd; 9952 9953 ASSERT(svntr_hashtab != NULL); 9954 9955 for (hash = 0; hash < svntr_hashtab_sz; hash++) { 9956 mutex_enter(&svntr_hashtab[hash].tr_lock); 9957 svntrp = svntr_hashtab[hash].tr_head; 9958 for (; svntrp != NULL; svntrp = svntrp->tr_next) { 9959 ASSERT(svntrp->tr_refcnt != 0); 9960 svd = svntrp->tr_svnhead; 9961 for (; svd != NULL; svd = svd->svn_trnext) { 9962 segvn_trupdate_seg(svd->seg, svd, svntrp, 9963 hash); 9964 } 9965 } 9966 mutex_exit(&svntr_hashtab[hash].tr_lock); 9967 } 9968 } 9969 9970 static void 9971 segvn_trupdate_seg(struct seg *seg, 9972 segvn_data_t *svd, 9973 svntr_t *svntrp, 9974 ulong_t hash) 9975 { 9976 proc_t *p; 9977 lgrp_id_t lgrp_id; 9978 struct as *as; 9979 size_t size; 9980 struct anon_map *amp; 9981 9982 ASSERT(svd->vp != NULL); 9983 ASSERT(svd->vp == svntrp->tr_vp); 9984 ASSERT(svd->offset == svntrp->tr_off); 9985 ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff); 9986 ASSERT(seg != NULL); 9987 ASSERT(svd->seg == seg); 9988 ASSERT(seg->s_data == (void *)svd); 9989 ASSERT(seg->s_szc == svntrp->tr_szc); 9990 ASSERT(svd->tr_state == SEGVN_TR_ON); 9991 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie)); 9992 ASSERT(svd->amp != NULL); 9993 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG); 9994 ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE); 9995 ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX); 9996 ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp); 9997 ASSERT(svntrp->tr_refcnt != 0); 9998 ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock)); 9999 10000 as = seg->s_as; 10001 ASSERT(as != NULL && as != &kas); 10002 p = as->a_proc; 10003 ASSERT(p != NULL); 10004 ASSERT(p->p_tr_lgrpid != LGRP_NONE); 10005 lgrp_id = p->p_t1_lgrpid; 10006 if (lgrp_id == LGRP_NONE) { 10007 return; 10008 } 10009 ASSERT(lgrp_id < NLGRPS_MAX); 10010 if (svd->tr_policy_info.mem_lgrpid == lgrp_id) { 10011 return; 10012 } 10013 10014 /* 10015 * Use tryenter locking since we are locking as/seg and svntr hash 10016 * lock in reverse from syncrounous thread order. 10017 */ 10018 if (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_READER)) { 10019 SEGVN_TR_ADDSTAT(nolock); 10020 if (segvn_lgrp_trthr_migrs_snpsht) { 10021 segvn_lgrp_trthr_migrs_snpsht = 0; 10022 } 10023 return; 10024 } 10025 if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) { 10026 AS_LOCK_EXIT(as, &as->a_lock); 10027 SEGVN_TR_ADDSTAT(nolock); 10028 if (segvn_lgrp_trthr_migrs_snpsht) { 10029 segvn_lgrp_trthr_migrs_snpsht = 0; 10030 } 10031 return; 10032 } 10033 size = seg->s_size; 10034 if (svntrp->tr_amp[lgrp_id] == NULL) { 10035 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size); 10036 if (trmem > segvn_textrepl_max_bytes) { 10037 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 10038 AS_LOCK_EXIT(as, &as->a_lock); 10039 atomic_add_long(&segvn_textrepl_bytes, -size); 10040 SEGVN_TR_ADDSTAT(normem); 10041 return; 10042 } 10043 if (anon_try_resv_zone(size, NULL) == 0) { 10044 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 10045 AS_LOCK_EXIT(as, &as->a_lock); 10046 atomic_add_long(&segvn_textrepl_bytes, -size); 10047 SEGVN_TR_ADDSTAT(noanon); 10048 return; 10049 } 10050 amp = anonmap_alloc(size, size, KM_NOSLEEP); 10051 if (amp == NULL) { 10052 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 10053 AS_LOCK_EXIT(as, &as->a_lock); 10054 atomic_add_long(&segvn_textrepl_bytes, -size); 10055 anon_unresv_zone(size, NULL); 10056 SEGVN_TR_ADDSTAT(nokmem); 10057 return; 10058 } 10059 ASSERT(amp->refcnt == 1); 10060 amp->a_szc = seg->s_szc; 10061 svntrp->tr_amp[lgrp_id] = amp; 10062 } 10063 /* 10064 * We don't need to drop the bucket lock but here we give other 10065 * threads a chance. svntr and svd can't be unlinked as long as 10066 * segment lock is held as a writer and AS held as well. After we 10067 * retake bucket lock we'll continue from where we left. We'll be able 10068 * to reach the end of either list since new entries are always added 10069 * to the beginning of the lists. 10070 */ 10071 mutex_exit(&svntr_hashtab[hash].tr_lock); 10072 hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL); 10073 mutex_enter(&svntr_hashtab[hash].tr_lock); 10074 10075 ASSERT(svd->tr_state == SEGVN_TR_ON); 10076 ASSERT(svd->amp != NULL); 10077 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG); 10078 ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id); 10079 ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]); 10080 10081 svd->tr_policy_info.mem_lgrpid = lgrp_id; 10082 svd->amp = svntrp->tr_amp[lgrp_id]; 10083 p->p_tr_lgrpid = NLGRPS_MAX; 10084 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock); 10085 AS_LOCK_EXIT(as, &as->a_lock); 10086 10087 ASSERT(svntrp->tr_refcnt != 0); 10088 ASSERT(svd->vp == svntrp->tr_vp); 10089 ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id); 10090 ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]); 10091 ASSERT(svd->seg == seg); 10092 ASSERT(svd->tr_state == SEGVN_TR_ON); 10093 10094 SEGVN_TR_ADDSTAT(asyncrepl); 10095 } 10096