xref: /titanic_41/usr/src/uts/common/vm/seg_spt.c (revision 200c5a5a428f15c16e2a526ed69d462af62e8e1a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/param.h>
29 #include <sys/user.h>
30 #include <sys/mman.h>
31 #include <sys/kmem.h>
32 #include <sys/sysmacros.h>
33 #include <sys/cmn_err.h>
34 #include <sys/systm.h>
35 #include <sys/tuneable.h>
36 #include <vm/hat.h>
37 #include <vm/seg.h>
38 #include <vm/as.h>
39 #include <vm/anon.h>
40 #include <vm/page.h>
41 #include <sys/buf.h>
42 #include <sys/swap.h>
43 #include <sys/atomic.h>
44 #include <vm/seg_spt.h>
45 #include <sys/debug.h>
46 #include <sys/vtrace.h>
47 #include <sys/shm.h>
48 #include <sys/shm_impl.h>
49 #include <sys/lgrp.h>
50 #include <sys/vmsystm.h>
51 #include <sys/policy.h>
52 #include <sys/project.h>
53 #include <sys/tnf_probe.h>
54 #include <sys/zone.h>
55 
56 #define	SEGSPTADDR	(caddr_t)0x0
57 
58 /*
59  * # pages used for spt
60  */
61 size_t	spt_used;
62 
63 /*
64  * segspt_minfree is the memory left for system after ISM
65  * locked its pages; it is set up to 5% of availrmem in
66  * sptcreate when ISM is created.  ISM should not use more
67  * than ~90% of availrmem; if it does, then the performance
68  * of the system may decrease. Machines with large memories may
69  * be able to use up more memory for ISM so we set the default
70  * segspt_minfree to 5% (which gives ISM max 95% of availrmem.
71  * If somebody wants even more memory for ISM (risking hanging
72  * the system) they can patch the segspt_minfree to smaller number.
73  */
74 pgcnt_t segspt_minfree = 0;
75 
76 static int segspt_create(struct seg *seg, caddr_t argsp);
77 static int segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize);
78 static void segspt_free(struct seg *seg);
79 static void segspt_free_pages(struct seg *seg, caddr_t addr, size_t len);
80 static lgrp_mem_policy_info_t *segspt_getpolicy(struct seg *seg, caddr_t addr);
81 
82 static void
83 segspt_badop()
84 {
85 	panic("segspt_badop called");
86 	/*NOTREACHED*/
87 }
88 
89 #define	SEGSPT_BADOP(t)	(t(*)())segspt_badop
90 
91 struct seg_ops segspt_ops = {
92 	SEGSPT_BADOP(int),		/* dup */
93 	segspt_unmap,
94 	segspt_free,
95 	SEGSPT_BADOP(int),		/* fault */
96 	SEGSPT_BADOP(faultcode_t),	/* faulta */
97 	SEGSPT_BADOP(int),		/* setprot */
98 	SEGSPT_BADOP(int),		/* checkprot */
99 	SEGSPT_BADOP(int),		/* kluster */
100 	SEGSPT_BADOP(size_t),		/* swapout */
101 	SEGSPT_BADOP(int),		/* sync */
102 	SEGSPT_BADOP(size_t),		/* incore */
103 	SEGSPT_BADOP(int),		/* lockop */
104 	SEGSPT_BADOP(int),		/* getprot */
105 	SEGSPT_BADOP(u_offset_t), 	/* getoffset */
106 	SEGSPT_BADOP(int),		/* gettype */
107 	SEGSPT_BADOP(int),		/* getvp */
108 	SEGSPT_BADOP(int),		/* advise */
109 	SEGSPT_BADOP(void),		/* dump */
110 	SEGSPT_BADOP(int),		/* pagelock */
111 	SEGSPT_BADOP(int),		/* setpgsz */
112 	SEGSPT_BADOP(int),		/* getmemid */
113 	segspt_getpolicy,		/* getpolicy */
114 	SEGSPT_BADOP(int),		/* capable */
115 };
116 
117 static int segspt_shmdup(struct seg *seg, struct seg *newseg);
118 static int segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize);
119 static void segspt_shmfree(struct seg *seg);
120 static faultcode_t segspt_shmfault(struct hat *hat, struct seg *seg,
121 		caddr_t addr, size_t len, enum fault_type type, enum seg_rw rw);
122 static faultcode_t segspt_shmfaulta(struct seg *seg, caddr_t addr);
123 static int segspt_shmsetprot(register struct seg *seg, register caddr_t addr,
124 			register size_t len, register uint_t prot);
125 static int segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size,
126 			uint_t prot);
127 static int	segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta);
128 static size_t	segspt_shmswapout(struct seg *seg);
129 static size_t segspt_shmincore(struct seg *seg, caddr_t addr, size_t len,
130 			register char *vec);
131 static int segspt_shmsync(struct seg *seg, register caddr_t addr, size_t len,
132 			int attr, uint_t flags);
133 static int segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
134 			int attr, int op, ulong_t *lockmap, size_t pos);
135 static int segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len,
136 			uint_t *protv);
137 static u_offset_t segspt_shmgetoffset(struct seg *seg, caddr_t addr);
138 static int segspt_shmgettype(struct seg *seg, caddr_t addr);
139 static int segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
140 static int segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len,
141 			uint_t behav);
142 static void segspt_shmdump(struct seg *seg);
143 static int segspt_shmpagelock(struct seg *, caddr_t, size_t,
144 			struct page ***, enum lock_type, enum seg_rw);
145 static int segspt_shmsetpgsz(struct seg *, caddr_t, size_t, uint_t);
146 static int segspt_shmgetmemid(struct seg *, caddr_t, memid_t *);
147 static lgrp_mem_policy_info_t *segspt_shmgetpolicy(struct seg *, caddr_t);
148 static int segspt_shmcapable(struct seg *, segcapability_t);
149 
150 struct seg_ops segspt_shmops = {
151 	segspt_shmdup,
152 	segspt_shmunmap,
153 	segspt_shmfree,
154 	segspt_shmfault,
155 	segspt_shmfaulta,
156 	segspt_shmsetprot,
157 	segspt_shmcheckprot,
158 	segspt_shmkluster,
159 	segspt_shmswapout,
160 	segspt_shmsync,
161 	segspt_shmincore,
162 	segspt_shmlockop,
163 	segspt_shmgetprot,
164 	segspt_shmgetoffset,
165 	segspt_shmgettype,
166 	segspt_shmgetvp,
167 	segspt_shmadvise,	/* advise */
168 	segspt_shmdump,
169 	segspt_shmpagelock,
170 	segspt_shmsetpgsz,
171 	segspt_shmgetmemid,
172 	segspt_shmgetpolicy,
173 	segspt_shmcapable,
174 };
175 
176 static void segspt_purge(struct seg *seg);
177 static int segspt_reclaim(struct seg *, caddr_t, size_t, struct page **,
178 		enum seg_rw);
179 static int spt_anon_getpages(struct seg *seg, caddr_t addr, size_t len,
180 		page_t **ppa);
181 
182 
183 
184 /*ARGSUSED*/
185 int
186 sptcreate(size_t size, struct seg **sptseg, struct anon_map *amp,
187 	uint_t prot, uint_t flags, uint_t share_szc)
188 {
189 	int 	err;
190 	struct  as	*newas;
191 	struct	segspt_crargs sptcargs;
192 
193 #ifdef DEBUG
194 	TNF_PROBE_1(sptcreate, "spt", /* CSTYLED */,
195 			tnf_ulong, size, size );
196 #endif
197 	if (segspt_minfree == 0)	/* leave min 5% of availrmem for */
198 		segspt_minfree = availrmem/20;	/* for the system */
199 
200 	if (!hat_supported(HAT_SHARED_PT, (void *)0))
201 		return (EINVAL);
202 
203 	/*
204 	 * get a new as for this shared memory segment
205 	 */
206 	newas = as_alloc();
207 	newas->a_proc = NULL;
208 	sptcargs.amp = amp;
209 	sptcargs.prot = prot;
210 	sptcargs.flags = flags;
211 	sptcargs.szc = share_szc;
212 	/*
213 	 * create a shared page table (spt) segment
214 	 */
215 
216 	if (err = as_map(newas, SEGSPTADDR, size, segspt_create, &sptcargs)) {
217 		as_free(newas);
218 		return (err);
219 	}
220 	*sptseg = sptcargs.seg_spt;
221 	return (0);
222 }
223 
224 void
225 sptdestroy(struct as *as, struct anon_map *amp)
226 {
227 
228 #ifdef DEBUG
229 	TNF_PROBE_0(sptdestroy, "spt", /* CSTYLED */);
230 #endif
231 	(void) as_unmap(as, SEGSPTADDR, amp->size);
232 	as_free(as);
233 }
234 
235 /*
236  * called from seg_free().
237  * free (i.e., unlock, unmap, return to free list)
238  *  all the pages in the given seg.
239  */
240 void
241 segspt_free(struct seg	*seg)
242 {
243 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
244 
245 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
246 
247 	if (sptd != NULL) {
248 		if (sptd->spt_realsize)
249 			segspt_free_pages(seg, seg->s_base, sptd->spt_realsize);
250 
251 	if (sptd->spt_ppa_lckcnt)
252 		kmem_free(sptd->spt_ppa_lckcnt,
253 		    sizeof (*sptd->spt_ppa_lckcnt)
254 		    * btopr(sptd->spt_amp->size));
255 		kmem_free(sptd->spt_vp, sizeof (*sptd->spt_vp));
256 		mutex_destroy(&sptd->spt_lock);
257 		kmem_free(sptd, sizeof (*sptd));
258 	}
259 }
260 
261 /*ARGSUSED*/
262 static int
263 segspt_shmsync(struct seg *seg, caddr_t addr, size_t len, int attr,
264 	uint_t flags)
265 {
266 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
267 
268 	return (0);
269 }
270 
271 /*ARGSUSED*/
272 static size_t
273 segspt_shmincore(struct seg *seg, caddr_t addr, size_t len, char *vec)
274 {
275 	caddr_t	eo_seg;
276 	pgcnt_t	npages;
277 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
278 	struct seg	*sptseg;
279 	struct spt_data *sptd;
280 
281 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
282 #ifdef lint
283 	seg = seg;
284 #endif
285 	sptseg = shmd->shm_sptseg;
286 	sptd = sptseg->s_data;
287 
288 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
289 		eo_seg = addr + len;
290 		while (addr < eo_seg) {
291 			/* page exists, and it's locked. */
292 			*vec++ = SEG_PAGE_INCORE | SEG_PAGE_LOCKED |
293 				SEG_PAGE_ANON;
294 			addr += PAGESIZE;
295 		}
296 		return (len);
297 	} else {
298 		struct  anon_map *amp = shmd->shm_amp;
299 		struct  anon	*ap;
300 		page_t		*pp;
301 		pgcnt_t 	anon_index;
302 		struct vnode 	*vp;
303 		u_offset_t 	off;
304 		ulong_t		i;
305 		int		ret;
306 		anon_sync_obj_t	cookie;
307 
308 		addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
309 		anon_index = seg_page(seg, addr);
310 		npages = btopr(len);
311 		if (anon_index + npages > btopr(shmd->shm_amp->size)) {
312 			return (EINVAL);
313 		}
314 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
315 		for (i = 0; i < npages; i++, anon_index++) {
316 			ret = 0;
317 			anon_array_enter(amp, anon_index, &cookie);
318 			ap = anon_get_ptr(amp->ahp, anon_index);
319 			if (ap != NULL) {
320 				swap_xlate(ap, &vp, &off);
321 				anon_array_exit(&cookie);
322 				pp = page_lookup_nowait(vp, off, SE_SHARED);
323 				if (pp != NULL) {
324 					ret |= SEG_PAGE_INCORE | SEG_PAGE_ANON;
325 					page_unlock(pp);
326 				}
327 			} else {
328 				anon_array_exit(&cookie);
329 			}
330 			if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) {
331 				ret |= SEG_PAGE_LOCKED;
332 			}
333 			*vec++ = (char)ret;
334 		}
335 		ANON_LOCK_EXIT(&amp->a_rwlock);
336 		return (len);
337 	}
338 }
339 
340 static int
341 segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize)
342 {
343 	size_t share_size;
344 
345 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
346 
347 	/*
348 	 * seg.s_size may have been rounded up to the largest page size
349 	 * in shmat().
350 	 * XXX This should be cleanedup. sptdestroy should take a length
351 	 * argument which should be the same as sptcreate. Then
352 	 * this rounding would not be needed (or is done in shm.c)
353 	 * Only the check for full segment will be needed.
354 	 *
355 	 * XXX -- shouldn't raddr == 0 always? These tests don't seem
356 	 * to be useful at all.
357 	 */
358 	share_size = page_get_pagesize(seg->s_szc);
359 	ssize = P2ROUNDUP(ssize, share_size);
360 
361 	if (raddr == seg->s_base && ssize == seg->s_size) {
362 		seg_free(seg);
363 		return (0);
364 	} else
365 		return (EINVAL);
366 }
367 
368 int
369 segspt_create(struct seg *seg, caddr_t argsp)
370 {
371 	int		err;
372 	caddr_t		addr = seg->s_base;
373 	struct spt_data *sptd;
374 	struct 	segspt_crargs *sptcargs = (struct segspt_crargs *)argsp;
375 	struct anon_map *amp = sptcargs->amp;
376 	struct kshmid	*sp = amp->a_sp;
377 	struct	cred	*cred = CRED();
378 	ulong_t		i, j, anon_index = 0;
379 	pgcnt_t		npages = btopr(amp->size);
380 	struct vnode	*vp;
381 	page_t		**ppa;
382 	uint_t		hat_flags;
383 	size_t		pgsz;
384 	pgcnt_t		pgcnt;
385 	caddr_t		a;
386 	pgcnt_t		pidx;
387 	size_t		sz;
388 	proc_t		*procp = curproc;
389 	rctl_qty_t	lockedbytes = 0;
390 	kproject_t	*proj;
391 
392 	/*
393 	 * We are holding the a_lock on the underlying dummy as,
394 	 * so we can make calls to the HAT layer.
395 	 */
396 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
397 	ASSERT(sp != NULL);
398 
399 #ifdef DEBUG
400 	TNF_PROBE_2(segspt_create, "spt", /* CSTYLED */,
401 				tnf_opaque, addr, addr,
402 				tnf_ulong, len, seg->s_size);
403 #endif
404 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
405 		if (err = anon_swap_adjust(npages))
406 			return (err);
407 	}
408 	err = ENOMEM;
409 
410 	if ((sptd = kmem_zalloc(sizeof (*sptd), KM_NOSLEEP)) == NULL)
411 		goto out1;
412 
413 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
414 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * npages),
415 		    KM_NOSLEEP)) == NULL)
416 			goto out2;
417 	}
418 
419 	mutex_init(&sptd->spt_lock, NULL, MUTEX_DEFAULT, NULL);
420 
421 	if ((vp = kmem_zalloc(sizeof (*vp), KM_NOSLEEP)) == NULL)
422 		goto out3;
423 
424 	seg->s_ops = &segspt_ops;
425 	sptd->spt_vp = vp;
426 	sptd->spt_amp = amp;
427 	sptd->spt_prot = sptcargs->prot;
428 	sptd->spt_flags = sptcargs->flags;
429 	seg->s_data = (caddr_t)sptd;
430 	sptd->spt_ppa = NULL;
431 	sptd->spt_ppa_lckcnt = NULL;
432 	seg->s_szc = sptcargs->szc;
433 
434 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
435 	if (seg->s_szc > amp->a_szc) {
436 		amp->a_szc = seg->s_szc;
437 	}
438 	ANON_LOCK_EXIT(&amp->a_rwlock);
439 
440 	/*
441 	 * Set policy to affect initial allocation of pages in
442 	 * anon_map_createpages()
443 	 */
444 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, amp, anon_index,
445 	    NULL, 0, ptob(npages));
446 
447 	if (sptcargs->flags & SHM_PAGEABLE) {
448 		size_t  share_sz;
449 		pgcnt_t new_npgs, more_pgs;
450 		struct anon_hdr *nahp;
451 		zone_t *zone;
452 
453 		share_sz = page_get_pagesize(seg->s_szc);
454 		if (!IS_P2ALIGNED(amp->size, share_sz)) {
455 			/*
456 			 * We are rounding up the size of the anon array
457 			 * on 4 M boundary because we always create 4 M
458 			 * of page(s) when locking, faulting pages and we
459 			 * don't have to check for all corner cases e.g.
460 			 * if there is enough space to allocate 4 M
461 			 * page.
462 			 */
463 			new_npgs = btop(P2ROUNDUP(amp->size, share_sz));
464 			more_pgs = new_npgs - npages;
465 
466 			/*
467 			 * The zone will never be NULL, as a fully created
468 			 * shm always has an owning zone.
469 			 */
470 			zone = sp->shm_perm.ipc_zone;
471 			ASSERT(zone != NULL);
472 			if (anon_resv_zone(ptob(more_pgs), zone) == 0) {
473 				err = ENOMEM;
474 				goto out4;
475 			}
476 
477 			nahp = anon_create(new_npgs, ANON_SLEEP);
478 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
479 			(void) anon_copy_ptr(amp->ahp, 0, nahp, 0, npages,
480 			    ANON_SLEEP);
481 			anon_release(amp->ahp, npages);
482 			amp->ahp = nahp;
483 			ASSERT(amp->swresv == ptob(npages));
484 			amp->swresv = amp->size = ptob(new_npgs);
485 			ANON_LOCK_EXIT(&amp->a_rwlock);
486 			npages = new_npgs;
487 		}
488 
489 		sptd->spt_ppa_lckcnt = kmem_zalloc(npages *
490 		    sizeof (*sptd->spt_ppa_lckcnt), KM_SLEEP);
491 		sptd->spt_pcachecnt = 0;
492 		sptd->spt_realsize = ptob(npages);
493 		sptcargs->seg_spt = seg;
494 		return (0);
495 	}
496 
497 	/*
498 	 * get array of pages for each anon slot in amp
499 	 */
500 	if ((err = anon_map_createpages(amp, anon_index, ptob(npages), ppa,
501 	    seg, addr, S_CREATE, cred)) != 0)
502 		goto out4;
503 
504 	mutex_enter(&sp->shm_mlock);
505 
506 	/* May be partially locked, so, count bytes to charge for locking */
507 	for (i = 0; i < npages; i++)
508 		if (ppa[i]->p_lckcnt == 0)
509 			lockedbytes += PAGESIZE;
510 
511 	proj = sp->shm_perm.ipc_proj;
512 
513 	if (lockedbytes > 0) {
514 		mutex_enter(&procp->p_lock);
515 		if (rctl_incr_locked_mem(procp, proj, lockedbytes, 0)) {
516 			mutex_exit(&procp->p_lock);
517 			mutex_exit(&sp->shm_mlock);
518 			for (i = 0; i < npages; i++)
519 				page_unlock(ppa[i]);
520 			err = ENOMEM;
521 			goto out4;
522 		}
523 		mutex_exit(&procp->p_lock);
524 	}
525 
526 	/*
527 	 * addr is initial address corresponding to the first page on ppa list
528 	 */
529 	for (i = 0; i < npages; i++) {
530 		/* attempt to lock all pages */
531 		if (page_pp_lock(ppa[i], 0, 1) == 0) {
532 			/*
533 			 * if unable to lock any page, unlock all
534 			 * of them and return error
535 			 */
536 			for (j = 0; j < i; j++)
537 				page_pp_unlock(ppa[j], 0, 1);
538 			for (i = 0; i < npages; i++)
539 				page_unlock(ppa[i]);
540 			rctl_decr_locked_mem(NULL, proj, lockedbytes, 0);
541 			mutex_exit(&sp->shm_mlock);
542 			err = ENOMEM;
543 			goto out4;
544 		}
545 	}
546 	mutex_exit(&sp->shm_mlock);
547 
548 	/*
549 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
550 	 * for the entire life of the segment. For example platforms
551 	 * that do not support Dynamic Reconfiguration.
552 	 */
553 	hat_flags = HAT_LOAD_SHARE;
554 	if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, NULL))
555 		hat_flags |= HAT_LOAD_LOCK;
556 
557 	/*
558 	 * Load translations one lare page at a time
559 	 * to make sure we don't create mappings bigger than
560 	 * segment's size code in case underlying pages
561 	 * are shared with segvn's segment that uses bigger
562 	 * size code than we do.
563 	 */
564 	pgsz = page_get_pagesize(seg->s_szc);
565 	pgcnt = page_get_pagecnt(seg->s_szc);
566 	for (a = addr, pidx = 0; pidx < npages; a += pgsz, pidx += pgcnt) {
567 		sz = MIN(pgsz, ptob(npages - pidx));
568 		hat_memload_array(seg->s_as->a_hat, a, sz,
569 		    &ppa[pidx], sptd->spt_prot, hat_flags);
570 	}
571 
572 	/*
573 	 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
574 	 * we will leave the pages locked SE_SHARED for the life
575 	 * of the ISM segment. This will prevent any calls to
576 	 * hat_pageunload() on this ISM segment for those platforms.
577 	 */
578 	if (!(hat_flags & HAT_LOAD_LOCK)) {
579 		/*
580 		 * On platforms that support HAT_DYNAMIC_ISM_UNMAP,
581 		 * we no longer need to hold the SE_SHARED lock on the pages,
582 		 * since L_PAGELOCK and F_SOFTLOCK calls will grab the
583 		 * SE_SHARED lock on the pages as necessary.
584 		 */
585 		for (i = 0; i < npages; i++)
586 			page_unlock(ppa[i]);
587 	}
588 	sptd->spt_pcachecnt = 0;
589 	kmem_free(ppa, ((sizeof (page_t *)) * npages));
590 	sptd->spt_realsize = ptob(npages);
591 	atomic_add_long(&spt_used, npages);
592 	sptcargs->seg_spt = seg;
593 	return (0);
594 
595 out4:
596 	seg->s_data = NULL;
597 	kmem_free(vp, sizeof (*vp));
598 out3:
599 	mutex_destroy(&sptd->spt_lock);
600 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
601 		kmem_free(ppa, (sizeof (*ppa) * npages));
602 out2:
603 	kmem_free(sptd, sizeof (*sptd));
604 out1:
605 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
606 		anon_swap_restore(npages);
607 	return (err);
608 }
609 
610 /*ARGSUSED*/
611 void
612 segspt_free_pages(struct seg *seg, caddr_t addr, size_t len)
613 {
614 	struct page 	*pp;
615 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
616 	pgcnt_t		npages;
617 	ulong_t		anon_idx;
618 	struct anon_map *amp;
619 	struct anon 	*ap;
620 	struct vnode 	*vp;
621 	u_offset_t 	off;
622 	uint_t		hat_flags;
623 	int		root = 0;
624 	pgcnt_t		pgs, curnpgs = 0;
625 	page_t		*rootpp;
626 	rctl_qty_t	unlocked_bytes = 0;
627 	kproject_t	*proj;
628 	kshmid_t	*sp;
629 
630 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
631 
632 	len = P2ROUNDUP(len, PAGESIZE);
633 
634 	npages = btop(len);
635 
636 	hat_flags = HAT_UNLOAD_UNLOCK;
637 	if ((hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) ||
638 	    (sptd->spt_flags & SHM_PAGEABLE)) {
639 		hat_flags = HAT_UNLOAD;
640 	}
641 
642 	hat_unload(seg->s_as->a_hat, addr, len, hat_flags);
643 
644 	amp = sptd->spt_amp;
645 	if (sptd->spt_flags & SHM_PAGEABLE)
646 		npages = btop(amp->size);
647 
648 	ASSERT(amp != NULL);
649 
650 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
651 		sp = amp->a_sp;
652 		proj = sp->shm_perm.ipc_proj;
653 		mutex_enter(&sp->shm_mlock);
654 	}
655 	for (anon_idx = 0; anon_idx < npages; anon_idx++) {
656 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
657 			if ((ap = anon_get_ptr(amp->ahp, anon_idx)) == NULL) {
658 				panic("segspt_free_pages: null app");
659 				/*NOTREACHED*/
660 			}
661 		} else {
662 			if ((ap = anon_get_next_ptr(amp->ahp, &anon_idx))
663 			    == NULL)
664 				continue;
665 		}
666 		ASSERT(ANON_ISBUSY(anon_get_slot(amp->ahp, anon_idx)) == 0);
667 		swap_xlate(ap, &vp, &off);
668 
669 		/*
670 		 * If this platform supports HAT_DYNAMIC_ISM_UNMAP,
671 		 * the pages won't be having SE_SHARED lock at this
672 		 * point.
673 		 *
674 		 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
675 		 * the pages are still held SE_SHARED locked from the
676 		 * original segspt_create()
677 		 *
678 		 * Our goal is to get SE_EXCL lock on each page, remove
679 		 * permanent lock on it and invalidate the page.
680 		 */
681 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
682 			if (hat_flags == HAT_UNLOAD)
683 				pp = page_lookup(vp, off, SE_EXCL);
684 			else {
685 				if ((pp = page_find(vp, off)) == NULL) {
686 					panic("segspt_free_pages: "
687 					    "page not locked");
688 					/*NOTREACHED*/
689 				}
690 				if (!page_tryupgrade(pp)) {
691 					page_unlock(pp);
692 					pp = page_lookup(vp, off, SE_EXCL);
693 				}
694 			}
695 			if (pp == NULL) {
696 				panic("segspt_free_pages: "
697 				    "page not in the system");
698 				/*NOTREACHED*/
699 			}
700 			ASSERT(pp->p_lckcnt > 0);
701 			page_pp_unlock(pp, 0, 1);
702 			if (pp->p_lckcnt == 0)
703 				    unlocked_bytes += PAGESIZE;
704 		} else {
705 			if ((pp = page_lookup(vp, off, SE_EXCL)) == NULL)
706 				continue;
707 		}
708 		/*
709 		 * It's logical to invalidate the pages here as in most cases
710 		 * these were created by segspt.
711 		 */
712 		if (pp->p_szc != 0) {
713 			/*
714 			 * For DISM swap is released in shm_rm_amp.
715 			 */
716 			if ((sptd->spt_flags & SHM_PAGEABLE) == 0 &&
717 			    ap->an_pvp != NULL) {
718 				panic("segspt_free_pages: pvp non NULL");
719 				/*NOTREACHED*/
720 			}
721 			if (root == 0) {
722 				ASSERT(curnpgs == 0);
723 				root = 1;
724 				rootpp = pp;
725 				pgs = curnpgs = page_get_pagecnt(pp->p_szc);
726 				ASSERT(pgs > 1);
727 				ASSERT(IS_P2ALIGNED(pgs, pgs));
728 				ASSERT(!(page_pptonum(pp) & (pgs - 1)));
729 				curnpgs--;
730 			} else if ((page_pptonum(pp) & (pgs - 1)) == pgs - 1) {
731 				ASSERT(curnpgs == 1);
732 				ASSERT(page_pptonum(pp) ==
733 				    page_pptonum(rootpp) + (pgs - 1));
734 				page_destroy_pages(rootpp);
735 				root = 0;
736 				curnpgs = 0;
737 			} else {
738 				ASSERT(curnpgs > 1);
739 				ASSERT(page_pptonum(pp) ==
740 				    page_pptonum(rootpp) + (pgs - curnpgs));
741 				curnpgs--;
742 			}
743 		} else {
744 			if (root != 0 || curnpgs != 0) {
745 				panic("segspt_free_pages: bad large page");
746 				/*NOTREACHED*/
747 			}
748 			/*LINTED: constant in conditional context */
749 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
750 		}
751 	}
752 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
753 		if (unlocked_bytes > 0)
754 			rctl_decr_locked_mem(NULL, proj, unlocked_bytes, 0);
755 		mutex_exit(&sp->shm_mlock);
756 	}
757 	if (root != 0 || curnpgs != 0) {
758 		panic("segspt_free_pages: bad large page");
759 		/*NOTREACHED*/
760 	}
761 
762 	/*
763 	 * mark that pages have been released
764 	 */
765 	sptd->spt_realsize = 0;
766 
767 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
768 		atomic_add_long(&spt_used, -npages);
769 		anon_swap_restore(npages);
770 	}
771 }
772 
773 /*
774  * Get memory allocation policy info for specified address in given segment
775  */
776 static lgrp_mem_policy_info_t *
777 segspt_getpolicy(struct seg *seg, caddr_t addr)
778 {
779 	struct anon_map		*amp;
780 	ulong_t			anon_index;
781 	lgrp_mem_policy_info_t	*policy_info;
782 	struct spt_data		*spt_data;
783 
784 	ASSERT(seg != NULL);
785 
786 	/*
787 	 * Get anon_map from segspt
788 	 *
789 	 * Assume that no lock needs to be held on anon_map, since
790 	 * it should be protected by its reference count which must be
791 	 * nonzero for an existing segment
792 	 * Need to grab readers lock on policy tree though
793 	 */
794 	spt_data = (struct spt_data *)seg->s_data;
795 	if (spt_data == NULL)
796 		return (NULL);
797 	amp = spt_data->spt_amp;
798 	ASSERT(amp->refcnt != 0);
799 
800 	/*
801 	 * Get policy info
802 	 *
803 	 * Assume starting anon index of 0
804 	 */
805 	anon_index = seg_page(seg, addr);
806 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
807 
808 	return (policy_info);
809 }
810 
811 /*
812  * DISM only.
813  * Return locked pages over a given range.
814  *
815  * We will cache all DISM locked pages and save the pplist for the
816  * entire segment in the ppa field of the underlying DISM segment structure.
817  * Later, during a call to segspt_reclaim() we will use this ppa array
818  * to page_unlock() all of the pages and then we will free this ppa list.
819  */
820 /*ARGSUSED*/
821 static int
822 segspt_dismpagelock(struct seg *seg, caddr_t addr, size_t len,
823     struct page ***ppp, enum lock_type type, enum seg_rw rw)
824 {
825 	struct  shm_data *shmd = (struct shm_data *)seg->s_data;
826 	struct  seg	*sptseg = shmd->shm_sptseg;
827 	struct  spt_data *sptd = sptseg->s_data;
828 	pgcnt_t pg_idx, npages, tot_npages, npgs;
829 	struct  page **pplist, **pl, **ppa, *pp;
830 	struct  anon_map *amp;
831 	spgcnt_t	an_idx;
832 	int 	ret = ENOTSUP;
833 	uint_t	pl_built = 0;
834 	struct  anon *ap;
835 	struct  vnode *vp;
836 	u_offset_t off;
837 	pgcnt_t claim_availrmem = 0;
838 	uint_t	szc;
839 
840 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
841 
842 	/*
843 	 * We want to lock/unlock the entire ISM segment. Therefore,
844 	 * we will be using the underlying sptseg and it's base address
845 	 * and length for the caching arguments.
846 	 */
847 	ASSERT(sptseg);
848 	ASSERT(sptd);
849 
850 	pg_idx = seg_page(seg, addr);
851 	npages = btopr(len);
852 
853 	/*
854 	 * check if the request is larger than number of pages covered
855 	 * by amp
856 	 */
857 	if (pg_idx + npages > btopr(sptd->spt_amp->size)) {
858 		*ppp = NULL;
859 		return (ENOTSUP);
860 	}
861 
862 	if (type == L_PAGEUNLOCK) {
863 		ASSERT(sptd->spt_ppa != NULL);
864 
865 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
866 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
867 
868 		/*
869 		 * If someone is blocked while unmapping, we purge
870 		 * segment page cache and thus reclaim pplist synchronously
871 		 * without waiting for seg_pasync_thread. This speeds up
872 		 * unmapping in cases where munmap(2) is called, while
873 		 * raw async i/o is still in progress or where a thread
874 		 * exits on data fault in a multithreaded application.
875 		 */
876 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
877 			segspt_purge(seg);
878 		}
879 		return (0);
880 	} else if (type == L_PAGERECLAIM) {
881 		ASSERT(sptd->spt_ppa != NULL);
882 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
883 		    sptd->spt_ppa, sptd->spt_prot);
884 		return (0);
885 	}
886 
887 	if (sptd->spt_flags & DISM_PPA_CHANGED) {
888 		segspt_purge(seg);
889 		/*
890 		 * for DISM ppa needs to be rebuild since
891 		 * number of locked pages could be changed
892 		 */
893 		*ppp = NULL;
894 		return (ENOTSUP);
895 	}
896 
897 	/*
898 	 * First try to find pages in segment page cache, without
899 	 * holding the segment lock.
900 	 */
901 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
902 	    sptd->spt_prot);
903 	if (pplist != NULL) {
904 		ASSERT(sptd->spt_ppa != NULL);
905 		ASSERT(sptd->spt_ppa == pplist);
906 		ppa = sptd->spt_ppa;
907 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
908 			if (ppa[an_idx] == NULL) {
909 				seg_pinactive(seg, seg->s_base,
910 				    sptd->spt_amp->size, ppa,
911 				    sptd->spt_prot, segspt_reclaim);
912 				*ppp = NULL;
913 				return (ENOTSUP);
914 			}
915 			if ((szc = ppa[an_idx]->p_szc) != 0) {
916 				npgs = page_get_pagecnt(szc);
917 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
918 			} else {
919 				an_idx++;
920 			}
921 		}
922 		/*
923 		 * Since we cache the entire DISM segment, we want to
924 		 * set ppp to point to the first slot that corresponds
925 		 * to the requested addr, i.e. pg_idx.
926 		 */
927 		*ppp = &(sptd->spt_ppa[pg_idx]);
928 		return (0);
929 	}
930 
931 	/* The L_PAGELOCK case... */
932 	mutex_enter(&sptd->spt_lock);
933 	/*
934 	 * try to find pages in segment page cache with mutex
935 	 */
936 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
937 	    sptd->spt_prot);
938 	if (pplist != NULL) {
939 		ASSERT(sptd->spt_ppa != NULL);
940 		ASSERT(sptd->spt_ppa == pplist);
941 		ppa = sptd->spt_ppa;
942 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
943 			if (ppa[an_idx] == NULL) {
944 				mutex_exit(&sptd->spt_lock);
945 				seg_pinactive(seg, seg->s_base,
946 				    sptd->spt_amp->size, ppa,
947 				    sptd->spt_prot, segspt_reclaim);
948 				*ppp = NULL;
949 				return (ENOTSUP);
950 			}
951 			if ((szc = ppa[an_idx]->p_szc) != 0) {
952 				npgs = page_get_pagecnt(szc);
953 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
954 			} else {
955 				an_idx++;
956 			}
957 		}
958 		/*
959 		 * Since we cache the entire DISM segment, we want to
960 		 * set ppp to point to the first slot that corresponds
961 		 * to the requested addr, i.e. pg_idx.
962 		 */
963 		mutex_exit(&sptd->spt_lock);
964 		*ppp = &(sptd->spt_ppa[pg_idx]);
965 		return (0);
966 	}
967 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
968 	    SEGP_FAIL) {
969 		mutex_exit(&sptd->spt_lock);
970 		*ppp = NULL;
971 		return (ENOTSUP);
972 	}
973 
974 	/*
975 	 * No need to worry about protections because DISM pages are always rw.
976 	 */
977 	pl = pplist = NULL;
978 	amp = sptd->spt_amp;
979 
980 	/*
981 	 * Do we need to build the ppa array?
982 	 */
983 	if (sptd->spt_ppa == NULL) {
984 		pgcnt_t lpg_cnt = 0;
985 
986 		pl_built = 1;
987 		tot_npages = btopr(sptd->spt_amp->size);
988 
989 		ASSERT(sptd->spt_pcachecnt == 0);
990 		pplist = kmem_zalloc(sizeof (page_t *) * tot_npages, KM_SLEEP);
991 		pl = pplist;
992 
993 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
994 		for (an_idx = 0; an_idx < tot_npages; ) {
995 			ap = anon_get_ptr(amp->ahp, an_idx);
996 			/*
997 			 * Cache only mlocked pages. For large pages
998 			 * if one (constituent) page is mlocked
999 			 * all pages for that large page
1000 			 * are cached also. This is for quick
1001 			 * lookups of ppa array;
1002 			 */
1003 			if ((ap != NULL) && (lpg_cnt != 0 ||
1004 			    (sptd->spt_ppa_lckcnt[an_idx] != 0))) {
1005 
1006 				swap_xlate(ap, &vp, &off);
1007 				pp = page_lookup(vp, off, SE_SHARED);
1008 				ASSERT(pp != NULL);
1009 				if (lpg_cnt == 0) {
1010 					lpg_cnt++;
1011 					/*
1012 					 * For a small page, we are done --
1013 					 * lpg_count is reset to 0 below.
1014 					 *
1015 					 * For a large page, we are guaranteed
1016 					 * to find the anon structures of all
1017 					 * constituent pages and a non-zero
1018 					 * lpg_cnt ensures that we don't test
1019 					 * for mlock for these. We are done
1020 					 * when lpg_count reaches (npgs + 1).
1021 					 * If we are not the first constituent
1022 					 * page, restart at the first one.
1023 					 */
1024 					npgs = page_get_pagecnt(pp->p_szc);
1025 					if (!IS_P2ALIGNED(an_idx, npgs)) {
1026 						an_idx = P2ALIGN(an_idx, npgs);
1027 						page_unlock(pp);
1028 						continue;
1029 					}
1030 				}
1031 				if (++lpg_cnt > npgs)
1032 					lpg_cnt = 0;
1033 
1034 				/*
1035 				 * availrmem is decremented only
1036 				 * for unlocked pages
1037 				 */
1038 				if (sptd->spt_ppa_lckcnt[an_idx] == 0)
1039 					claim_availrmem++;
1040 				pplist[an_idx] = pp;
1041 			}
1042 			an_idx++;
1043 		}
1044 		ANON_LOCK_EXIT(&amp->a_rwlock);
1045 
1046 		mutex_enter(&freemem_lock);
1047 		if (availrmem < tune.t_minarmem + claim_availrmem) {
1048 			mutex_exit(&freemem_lock);
1049 			ret = FC_MAKE_ERR(ENOMEM);
1050 			claim_availrmem = 0;
1051 			goto insert_fail;
1052 		} else {
1053 			availrmem -= claim_availrmem;
1054 		}
1055 		mutex_exit(&freemem_lock);
1056 
1057 		sptd->spt_ppa = pl;
1058 	} else {
1059 		/*
1060 		 * We already have a valid ppa[].
1061 		 */
1062 		pl = sptd->spt_ppa;
1063 	}
1064 
1065 	ASSERT(pl != NULL);
1066 
1067 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
1068 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED | SEGP_ASYNC_FLUSH,
1069 	    segspt_reclaim);
1070 	if (ret == SEGP_FAIL) {
1071 		/*
1072 		 * seg_pinsert failed. We return
1073 		 * ENOTSUP, so that the as_pagelock() code will
1074 		 * then try the slower F_SOFTLOCK path.
1075 		 */
1076 		if (pl_built) {
1077 			/*
1078 			 * No one else has referenced the ppa[].
1079 			 * We created it and we need to destroy it.
1080 			 */
1081 			sptd->spt_ppa = NULL;
1082 		}
1083 		ret = ENOTSUP;
1084 		goto insert_fail;
1085 	}
1086 
1087 	/*
1088 	 * In either case, we increment softlockcnt on the 'real' segment.
1089 	 */
1090 	sptd->spt_pcachecnt++;
1091 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1092 
1093 	ppa = sptd->spt_ppa;
1094 	for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
1095 		if (ppa[an_idx] == NULL) {
1096 			mutex_exit(&sptd->spt_lock);
1097 			seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1098 			    pl, sptd->spt_prot, segspt_reclaim);
1099 			*ppp = NULL;
1100 			return (ENOTSUP);
1101 		}
1102 		if ((szc = ppa[an_idx]->p_szc) != 0) {
1103 			npgs = page_get_pagecnt(szc);
1104 			an_idx = P2ROUNDUP(an_idx + 1, npgs);
1105 		} else {
1106 			an_idx++;
1107 		}
1108 	}
1109 	/*
1110 	 * We can now drop the sptd->spt_lock since the ppa[]
1111 	 * exists and he have incremented pacachecnt.
1112 	 */
1113 	mutex_exit(&sptd->spt_lock);
1114 
1115 	/*
1116 	 * Since we cache the entire segment, we want to
1117 	 * set ppp to point to the first slot that corresponds
1118 	 * to the requested addr, i.e. pg_idx.
1119 	 */
1120 	*ppp = &(sptd->spt_ppa[pg_idx]);
1121 	return (ret);
1122 
1123 insert_fail:
1124 	/*
1125 	 * We will only reach this code if we tried and failed.
1126 	 *
1127 	 * And we can drop the lock on the dummy seg, once we've failed
1128 	 * to set up a new ppa[].
1129 	 */
1130 	mutex_exit(&sptd->spt_lock);
1131 
1132 	if (pl_built) {
1133 		mutex_enter(&freemem_lock);
1134 		availrmem += claim_availrmem;
1135 		mutex_exit(&freemem_lock);
1136 
1137 		/*
1138 		 * We created pl and we need to destroy it.
1139 		 */
1140 		pplist = pl;
1141 		for (an_idx = 0; an_idx < tot_npages; an_idx++) {
1142 			if (pplist[an_idx] != NULL)
1143 				page_unlock(pplist[an_idx]);
1144 		}
1145 		kmem_free(pl, sizeof (page_t *) * tot_npages);
1146 	}
1147 
1148 	if (shmd->shm_softlockcnt <= 0) {
1149 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1150 			mutex_enter(&seg->s_as->a_contents);
1151 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1152 				AS_CLRUNMAPWAIT(seg->s_as);
1153 				cv_broadcast(&seg->s_as->a_cv);
1154 			}
1155 			mutex_exit(&seg->s_as->a_contents);
1156 		}
1157 	}
1158 	*ppp = NULL;
1159 	return (ret);
1160 }
1161 
1162 
1163 
1164 /*
1165  * return locked pages over a given range.
1166  *
1167  * We will cache the entire ISM segment and save the pplist for the
1168  * entire segment in the ppa field of the underlying ISM segment structure.
1169  * Later, during a call to segspt_reclaim() we will use this ppa array
1170  * to page_unlock() all of the pages and then we will free this ppa list.
1171  */
1172 /*ARGSUSED*/
1173 static int
1174 segspt_shmpagelock(struct seg *seg, caddr_t addr, size_t len,
1175     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1176 {
1177 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1178 	struct seg	*sptseg = shmd->shm_sptseg;
1179 	struct spt_data *sptd = sptseg->s_data;
1180 	pgcnt_t np, page_index, npages;
1181 	caddr_t a, spt_base;
1182 	struct page **pplist, **pl, *pp;
1183 	struct anon_map *amp;
1184 	ulong_t anon_index;
1185 	int ret = ENOTSUP;
1186 	uint_t	pl_built = 0;
1187 	struct anon *ap;
1188 	struct vnode *vp;
1189 	u_offset_t off;
1190 
1191 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1192 
1193 	/*
1194 	 * We want to lock/unlock the entire ISM segment. Therefore,
1195 	 * we will be using the underlying sptseg and it's base address
1196 	 * and length for the caching arguments.
1197 	 */
1198 	ASSERT(sptseg);
1199 	ASSERT(sptd);
1200 
1201 	if (sptd->spt_flags & SHM_PAGEABLE) {
1202 		return (segspt_dismpagelock(seg, addr, len, ppp, type, rw));
1203 	}
1204 
1205 	page_index = seg_page(seg, addr);
1206 	npages = btopr(len);
1207 
1208 	/*
1209 	 * check if the request is larger than number of pages covered
1210 	 * by amp
1211 	 */
1212 	if (page_index + npages > btopr(sptd->spt_amp->size)) {
1213 		*ppp = NULL;
1214 		return (ENOTSUP);
1215 	}
1216 
1217 	if (type == L_PAGEUNLOCK) {
1218 
1219 		ASSERT(sptd->spt_ppa != NULL);
1220 
1221 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1222 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
1223 
1224 		/*
1225 		 * If someone is blocked while unmapping, we purge
1226 		 * segment page cache and thus reclaim pplist synchronously
1227 		 * without waiting for seg_pasync_thread. This speeds up
1228 		 * unmapping in cases where munmap(2) is called, while
1229 		 * raw async i/o is still in progress or where a thread
1230 		 * exits on data fault in a multithreaded application.
1231 		 */
1232 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
1233 			segspt_purge(seg);
1234 		}
1235 		return (0);
1236 	} else if (type == L_PAGERECLAIM) {
1237 		ASSERT(sptd->spt_ppa != NULL);
1238 
1239 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
1240 		    sptd->spt_ppa, sptd->spt_prot);
1241 		return (0);
1242 	}
1243 
1244 	/*
1245 	 * First try to find pages in segment page cache, without
1246 	 * holding the segment lock.
1247 	 */
1248 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1249 	    sptd->spt_prot);
1250 	if (pplist != NULL) {
1251 		ASSERT(sptd->spt_ppa == pplist);
1252 		ASSERT(sptd->spt_ppa[page_index]);
1253 		/*
1254 		 * Since we cache the entire ISM segment, we want to
1255 		 * set ppp to point to the first slot that corresponds
1256 		 * to the requested addr, i.e. page_index.
1257 		 */
1258 		*ppp = &(sptd->spt_ppa[page_index]);
1259 		return (0);
1260 	}
1261 
1262 	/* The L_PAGELOCK case... */
1263 	mutex_enter(&sptd->spt_lock);
1264 
1265 	/*
1266 	 * try to find pages in segment page cache
1267 	 */
1268 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1269 	    sptd->spt_prot);
1270 	if (pplist != NULL) {
1271 		ASSERT(sptd->spt_ppa == pplist);
1272 		/*
1273 		 * Since we cache the entire segment, we want to
1274 		 * set ppp to point to the first slot that corresponds
1275 		 * to the requested addr, i.e. page_index.
1276 		 */
1277 		mutex_exit(&sptd->spt_lock);
1278 		*ppp = &(sptd->spt_ppa[page_index]);
1279 		return (0);
1280 	}
1281 
1282 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
1283 	    SEGP_FAIL) {
1284 		mutex_exit(&sptd->spt_lock);
1285 		*ppp = NULL;
1286 		return (ENOTSUP);
1287 	}
1288 
1289 	/*
1290 	 * No need to worry about protections because ISM pages
1291 	 * are always rw.
1292 	 */
1293 	pl = pplist = NULL;
1294 
1295 	/*
1296 	 * Do we need to build the ppa array?
1297 	 */
1298 	if (sptd->spt_ppa == NULL) {
1299 		ASSERT(sptd->spt_ppa == pplist);
1300 
1301 		spt_base = sptseg->s_base;
1302 		pl_built = 1;
1303 
1304 		/*
1305 		 * availrmem is decremented once during anon_swap_adjust()
1306 		 * and is incremented during the anon_unresv(), which is
1307 		 * called from shm_rm_amp() when the segment is destroyed.
1308 		 */
1309 		amp = sptd->spt_amp;
1310 		ASSERT(amp != NULL);
1311 
1312 		/* pcachecnt is protected by sptd->spt_lock */
1313 		ASSERT(sptd->spt_pcachecnt == 0);
1314 		pplist = kmem_zalloc(sizeof (page_t *)
1315 		    * btopr(sptd->spt_amp->size), KM_SLEEP);
1316 		pl = pplist;
1317 
1318 		anon_index = seg_page(sptseg, spt_base);
1319 
1320 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1321 		for (a = spt_base; a < (spt_base + sptd->spt_amp->size);
1322 		    a += PAGESIZE, anon_index++, pplist++) {
1323 			ap = anon_get_ptr(amp->ahp, anon_index);
1324 			ASSERT(ap != NULL);
1325 			swap_xlate(ap, &vp, &off);
1326 			pp = page_lookup(vp, off, SE_SHARED);
1327 			ASSERT(pp != NULL);
1328 			*pplist = pp;
1329 		}
1330 		ANON_LOCK_EXIT(&amp->a_rwlock);
1331 
1332 		if (a < (spt_base + sptd->spt_amp->size)) {
1333 			ret = ENOTSUP;
1334 			goto insert_fail;
1335 		}
1336 		sptd->spt_ppa = pl;
1337 	} else {
1338 		/*
1339 		 * We already have a valid ppa[].
1340 		 */
1341 		pl = sptd->spt_ppa;
1342 	}
1343 
1344 	ASSERT(pl != NULL);
1345 
1346 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
1347 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED, segspt_reclaim);
1348 	if (ret == SEGP_FAIL) {
1349 		/*
1350 		 * seg_pinsert failed. We return
1351 		 * ENOTSUP, so that the as_pagelock() code will
1352 		 * then try the slower F_SOFTLOCK path.
1353 		 */
1354 		if (pl_built) {
1355 			/*
1356 			 * No one else has referenced the ppa[].
1357 			 * We created it and we need to destroy it.
1358 			 */
1359 			sptd->spt_ppa = NULL;
1360 		}
1361 		ret = ENOTSUP;
1362 		goto insert_fail;
1363 	}
1364 
1365 	/*
1366 	 * In either case, we increment softlockcnt on the 'real' segment.
1367 	 */
1368 	sptd->spt_pcachecnt++;
1369 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1370 
1371 	/*
1372 	 * We can now drop the sptd->spt_lock since the ppa[]
1373 	 * exists and he have incremented pacachecnt.
1374 	 */
1375 	mutex_exit(&sptd->spt_lock);
1376 
1377 	/*
1378 	 * Since we cache the entire segment, we want to
1379 	 * set ppp to point to the first slot that corresponds
1380 	 * to the requested addr, i.e. page_index.
1381 	 */
1382 	*ppp = &(sptd->spt_ppa[page_index]);
1383 	return (ret);
1384 
1385 insert_fail:
1386 	/*
1387 	 * We will only reach this code if we tried and failed.
1388 	 *
1389 	 * And we can drop the lock on the dummy seg, once we've failed
1390 	 * to set up a new ppa[].
1391 	 */
1392 	mutex_exit(&sptd->spt_lock);
1393 
1394 	if (pl_built) {
1395 		/*
1396 		 * We created pl and we need to destroy it.
1397 		 */
1398 		pplist = pl;
1399 		np = (((uintptr_t)(a - spt_base)) >> PAGESHIFT);
1400 		while (np) {
1401 			page_unlock(*pplist);
1402 			np--;
1403 			pplist++;
1404 		}
1405 		kmem_free(pl, sizeof (page_t *) *
1406 				btopr(sptd->spt_amp->size));
1407 	}
1408 	if (shmd->shm_softlockcnt <= 0) {
1409 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1410 			mutex_enter(&seg->s_as->a_contents);
1411 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1412 				AS_CLRUNMAPWAIT(seg->s_as);
1413 				cv_broadcast(&seg->s_as->a_cv);
1414 			}
1415 			mutex_exit(&seg->s_as->a_contents);
1416 		}
1417 	}
1418 	*ppp = NULL;
1419 	return (ret);
1420 }
1421 
1422 /*
1423  * purge any cached pages in the I/O page cache
1424  */
1425 static void
1426 segspt_purge(struct seg *seg)
1427 {
1428 	seg_ppurge(seg);
1429 }
1430 
1431 static int
1432 segspt_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
1433 	enum seg_rw rw)
1434 {
1435 	struct	shm_data *shmd = (struct shm_data *)seg->s_data;
1436 	struct	seg	*sptseg;
1437 	struct	spt_data *sptd;
1438 	pgcnt_t npages, i, free_availrmem = 0;
1439 	int	done = 0;
1440 
1441 #ifdef lint
1442 	addr = addr;
1443 #endif
1444 	sptseg = shmd->shm_sptseg;
1445 	sptd = sptseg->s_data;
1446 	npages = (len >> PAGESHIFT);
1447 	ASSERT(npages);
1448 	ASSERT(sptd->spt_pcachecnt != 0);
1449 	ASSERT(sptd->spt_ppa == pplist);
1450 	ASSERT(npages == btopr(sptd->spt_amp->size));
1451 	/*
1452 	 * Acquire the lock on the dummy seg and destroy the
1453 	 * ppa array IF this is the last pcachecnt.
1454 	 */
1455 	mutex_enter(&sptd->spt_lock);
1456 	if (--sptd->spt_pcachecnt == 0) {
1457 		for (i = 0; i < npages; i++) {
1458 			if (pplist[i] == NULL) {
1459 				continue;
1460 			}
1461 			if (rw == S_WRITE) {
1462 				hat_setrefmod(pplist[i]);
1463 			} else {
1464 				hat_setref(pplist[i]);
1465 			}
1466 			if ((sptd->spt_flags & SHM_PAGEABLE) &&
1467 			    (sptd->spt_ppa_lckcnt[i] == 0))
1468 				free_availrmem++;
1469 			page_unlock(pplist[i]);
1470 		}
1471 		if (sptd->spt_flags & SHM_PAGEABLE) {
1472 			mutex_enter(&freemem_lock);
1473 			availrmem += free_availrmem;
1474 			mutex_exit(&freemem_lock);
1475 		}
1476 		/*
1477 		 * Since we want to cach/uncache the entire ISM segment,
1478 		 * we will track the pplist in a segspt specific field
1479 		 * ppa, that is initialized at the time we add an entry to
1480 		 * the cache.
1481 		 */
1482 		ASSERT(sptd->spt_pcachecnt == 0);
1483 		kmem_free(pplist, sizeof (page_t *) * npages);
1484 		sptd->spt_ppa = NULL;
1485 		sptd->spt_flags &= ~DISM_PPA_CHANGED;
1486 		done = 1;
1487 	}
1488 	mutex_exit(&sptd->spt_lock);
1489 	/*
1490 	 * Now decrement softlockcnt.
1491 	 */
1492 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -1);
1493 
1494 	if (shmd->shm_softlockcnt <= 0) {
1495 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1496 			mutex_enter(&seg->s_as->a_contents);
1497 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1498 				AS_CLRUNMAPWAIT(seg->s_as);
1499 				cv_broadcast(&seg->s_as->a_cv);
1500 			}
1501 			mutex_exit(&seg->s_as->a_contents);
1502 		}
1503 	}
1504 	return (done);
1505 }
1506 
1507 /*
1508  * Do a F_SOFTUNLOCK call over the range requested.
1509  * The range must have already been F_SOFTLOCK'ed.
1510  *
1511  * The calls to acquire and release the anon map lock mutex were
1512  * removed in order to avoid a deadly embrace during a DR
1513  * memory delete operation.  (Eg. DR blocks while waiting for a
1514  * exclusive lock on a page that is being used for kaio; the
1515  * thread that will complete the kaio and call segspt_softunlock
1516  * blocks on the anon map lock; another thread holding the anon
1517  * map lock blocks on another page lock via the segspt_shmfault
1518  * -> page_lookup -> page_lookup_create -> page_lock_es code flow.)
1519  *
1520  * The appropriateness of the removal is based upon the following:
1521  * 1. If we are holding a segment's reader lock and the page is held
1522  * shared, then the corresponding element in anonmap which points to
1523  * anon struct cannot change and there is no need to acquire the
1524  * anonymous map lock.
1525  * 2. Threads in segspt_softunlock have a reader lock on the segment
1526  * and already have the shared page lock, so we are guaranteed that
1527  * the anon map slot cannot change and therefore can call anon_get_ptr()
1528  * without grabbing the anonymous map lock.
1529  * 3. Threads that softlock a shared page break copy-on-write, even if
1530  * its a read.  Thus cow faults can be ignored with respect to soft
1531  * unlocking, since the breaking of cow means that the anon slot(s) will
1532  * not be shared.
1533  */
1534 static void
1535 segspt_softunlock(struct seg *seg, caddr_t sptseg_addr,
1536 	size_t len, enum seg_rw rw)
1537 {
1538 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1539 	struct seg	*sptseg;
1540 	struct spt_data *sptd;
1541 	page_t *pp;
1542 	caddr_t adr;
1543 	struct vnode *vp;
1544 	u_offset_t offset;
1545 	ulong_t anon_index;
1546 	struct anon_map *amp;		/* XXX - for locknest */
1547 	struct anon *ap = NULL;
1548 	pgcnt_t npages;
1549 
1550 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1551 
1552 	sptseg = shmd->shm_sptseg;
1553 	sptd = sptseg->s_data;
1554 
1555 	/*
1556 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
1557 	 * and therefore their pages are SE_SHARED locked
1558 	 * for the entire life of the segment.
1559 	 */
1560 	if ((!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) &&
1561 		((sptd->spt_flags & SHM_PAGEABLE) == 0)) {
1562 		goto softlock_decrement;
1563 	}
1564 
1565 	/*
1566 	 * Any thread is free to do a page_find and
1567 	 * page_unlock() on the pages within this seg.
1568 	 *
1569 	 * We are already holding the as->a_lock on the user's
1570 	 * real segment, but we need to hold the a_lock on the
1571 	 * underlying dummy as. This is mostly to satisfy the
1572 	 * underlying HAT layer.
1573 	 */
1574 	AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1575 	hat_unlock(sptseg->s_as->a_hat, sptseg_addr, len);
1576 	AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1577 
1578 	amp = sptd->spt_amp;
1579 	ASSERT(amp != NULL);
1580 	anon_index = seg_page(sptseg, sptseg_addr);
1581 
1582 	for (adr = sptseg_addr; adr < sptseg_addr + len; adr += PAGESIZE) {
1583 		ap = anon_get_ptr(amp->ahp, anon_index++);
1584 		ASSERT(ap != NULL);
1585 		swap_xlate(ap, &vp, &offset);
1586 
1587 		/*
1588 		 * Use page_find() instead of page_lookup() to
1589 		 * find the page since we know that it has a
1590 		 * "shared" lock.
1591 		 */
1592 		pp = page_find(vp, offset);
1593 		ASSERT(ap == anon_get_ptr(amp->ahp, anon_index - 1));
1594 		if (pp == NULL) {
1595 			panic("segspt_softunlock: "
1596 			    "addr %p, ap %p, vp %p, off %llx",
1597 			    (void *)adr, (void *)ap, (void *)vp, offset);
1598 			/*NOTREACHED*/
1599 		}
1600 
1601 		if (rw == S_WRITE) {
1602 			hat_setrefmod(pp);
1603 		} else if (rw != S_OTHER) {
1604 			hat_setref(pp);
1605 		}
1606 		page_unlock(pp);
1607 	}
1608 
1609 softlock_decrement:
1610 	npages = btopr(len);
1611 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -npages);
1612 	if (shmd->shm_softlockcnt == 0) {
1613 		/*
1614 		 * All SOFTLOCKS are gone. Wakeup any waiting
1615 		 * unmappers so they can try again to unmap.
1616 		 * Check for waiters first without the mutex
1617 		 * held so we don't always grab the mutex on
1618 		 * softunlocks.
1619 		 */
1620 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1621 			mutex_enter(&seg->s_as->a_contents);
1622 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1623 				AS_CLRUNMAPWAIT(seg->s_as);
1624 				cv_broadcast(&seg->s_as->a_cv);
1625 			}
1626 			mutex_exit(&seg->s_as->a_contents);
1627 		}
1628 	}
1629 }
1630 
1631 int
1632 segspt_shmattach(struct seg *seg, caddr_t *argsp)
1633 {
1634 	struct shm_data *shmd_arg = (struct shm_data *)argsp;
1635 	struct shm_data *shmd;
1636 	struct anon_map *shm_amp = shmd_arg->shm_amp;
1637 	struct spt_data *sptd;
1638 	int error = 0;
1639 
1640 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1641 
1642 	shmd = kmem_zalloc((sizeof (*shmd)), KM_NOSLEEP);
1643 	if (shmd == NULL)
1644 		return (ENOMEM);
1645 
1646 	shmd->shm_sptas = shmd_arg->shm_sptas;
1647 	shmd->shm_amp = shm_amp;
1648 	shmd->shm_sptseg = shmd_arg->shm_sptseg;
1649 
1650 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, shm_amp, 0,
1651 	    NULL, 0, seg->s_size);
1652 
1653 	seg->s_data = (void *)shmd;
1654 	seg->s_ops = &segspt_shmops;
1655 	seg->s_szc = shmd->shm_sptseg->s_szc;
1656 	sptd = shmd->shm_sptseg->s_data;
1657 
1658 	if (sptd->spt_flags & SHM_PAGEABLE) {
1659 		if ((shmd->shm_vpage = kmem_zalloc(btopr(shm_amp->size),
1660 		    KM_NOSLEEP)) == NULL) {
1661 			seg->s_data = (void *)NULL;
1662 			kmem_free(shmd, (sizeof (*shmd)));
1663 			return (ENOMEM);
1664 		}
1665 		shmd->shm_lckpgs = 0;
1666 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1667 			if ((error = hat_share(seg->s_as->a_hat, seg->s_base,
1668 			    shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1669 			    seg->s_size, seg->s_szc)) != 0) {
1670 				kmem_free(shmd->shm_vpage,
1671 					btopr(shm_amp->size));
1672 			}
1673 		}
1674 	} else {
1675 		error = hat_share(seg->s_as->a_hat, seg->s_base,
1676 				shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1677 				seg->s_size, seg->s_szc);
1678 	}
1679 	if (error) {
1680 		seg->s_szc = 0;
1681 		seg->s_data = (void *)NULL;
1682 		kmem_free(shmd, (sizeof (*shmd)));
1683 	} else {
1684 		ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1685 		shm_amp->refcnt++;
1686 		ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1687 	}
1688 	return (error);
1689 }
1690 
1691 int
1692 segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize)
1693 {
1694 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1695 	int reclaim = 1;
1696 
1697 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1698 retry:
1699 	if (shmd->shm_softlockcnt > 0) {
1700 		if (reclaim == 1) {
1701 			segspt_purge(seg);
1702 			reclaim = 0;
1703 			goto retry;
1704 		}
1705 		return (EAGAIN);
1706 	}
1707 
1708 	if (ssize != seg->s_size) {
1709 #ifdef DEBUG
1710 		cmn_err(CE_WARN, "Incompatible ssize %lx s_size %lx\n",
1711 		    ssize, seg->s_size);
1712 #endif
1713 		return (EINVAL);
1714 	}
1715 
1716 	(void) segspt_shmlockop(seg, raddr, shmd->shm_amp->size, 0, MC_UNLOCK,
1717 	    NULL, 0);
1718 	hat_unshare(seg->s_as->a_hat, raddr, ssize, seg->s_szc);
1719 
1720 	seg_free(seg);
1721 
1722 	return (0);
1723 }
1724 
1725 void
1726 segspt_shmfree(struct seg *seg)
1727 {
1728 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1729 	struct anon_map *shm_amp = shmd->shm_amp;
1730 
1731 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1732 
1733 	(void) segspt_shmlockop(seg, seg->s_base, shm_amp->size, 0,
1734 		MC_UNLOCK, NULL, 0);
1735 
1736 	/*
1737 	 * Need to increment refcnt when attaching
1738 	 * and decrement when detaching because of dup().
1739 	 */
1740 	ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1741 	shm_amp->refcnt--;
1742 	ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1743 
1744 	if (shmd->shm_vpage) {	/* only for DISM */
1745 		kmem_free(shmd->shm_vpage, btopr(shm_amp->size));
1746 		shmd->shm_vpage = NULL;
1747 	}
1748 	kmem_free(shmd, sizeof (*shmd));
1749 }
1750 
1751 /*ARGSUSED*/
1752 int
1753 segspt_shmsetprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
1754 {
1755 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1756 
1757 	/*
1758 	 * Shared page table is more than shared mapping.
1759 	 *  Individual process sharing page tables can't change prot
1760 	 *  because there is only one set of page tables.
1761 	 *  This will be allowed after private page table is
1762 	 *  supported.
1763 	 */
1764 /* need to return correct status error? */
1765 	return (0);
1766 }
1767 
1768 
1769 faultcode_t
1770 segspt_dismfault(struct hat *hat, struct seg *seg, caddr_t addr,
1771     size_t len, enum fault_type type, enum seg_rw rw)
1772 {
1773 	struct  shm_data 	*shmd = (struct shm_data *)seg->s_data;
1774 	struct  seg		*sptseg = shmd->shm_sptseg;
1775 	struct  as		*curspt = shmd->shm_sptas;
1776 	struct  spt_data 	*sptd = sptseg->s_data;
1777 	pgcnt_t npages;
1778 	size_t  size;
1779 	caddr_t segspt_addr, shm_addr;
1780 	page_t  **ppa;
1781 	int	i;
1782 	ulong_t an_idx = 0;
1783 	int	err = 0;
1784 	int	dyn_ism_unmap = hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0);
1785 	size_t	pgsz;
1786 	pgcnt_t	pgcnt;
1787 	caddr_t	a;
1788 	pgcnt_t	pidx;
1789 
1790 #ifdef lint
1791 	hat = hat;
1792 #endif
1793 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1794 
1795 	/*
1796 	 * Because of the way spt is implemented
1797 	 * the realsize of the segment does not have to be
1798 	 * equal to the segment size itself. The segment size is
1799 	 * often in multiples of a page size larger than PAGESIZE.
1800 	 * The realsize is rounded up to the nearest PAGESIZE
1801 	 * based on what the user requested. This is a bit of
1802 	 * ungliness that is historical but not easily fixed
1803 	 * without re-designing the higher levels of ISM.
1804 	 */
1805 	ASSERT(addr >= seg->s_base);
1806 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1807 		return (FC_NOMAP);
1808 	/*
1809 	 * For all of the following cases except F_PROT, we need to
1810 	 * make any necessary adjustments to addr and len
1811 	 * and get all of the necessary page_t's into an array called ppa[].
1812 	 *
1813 	 * The code in shmat() forces base addr and len of ISM segment
1814 	 * to be aligned to largest page size supported. Therefore,
1815 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1816 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1817 	 * in large pagesize chunks, or else we will screw up the HAT
1818 	 * layer by calling hat_memload_array() with differing page sizes
1819 	 * over a given virtual range.
1820 	 */
1821 	pgsz = page_get_pagesize(sptseg->s_szc);
1822 	pgcnt = page_get_pagecnt(sptseg->s_szc);
1823 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);
1824 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz);
1825 	npages = btopr(size);
1826 
1827 	/*
1828 	 * Now we need to convert from addr in segshm to addr in segspt.
1829 	 */
1830 	an_idx = seg_page(seg, shm_addr);
1831 	segspt_addr = sptseg->s_base + ptob(an_idx);
1832 
1833 	ASSERT((segspt_addr + ptob(npages)) <=
1834 		(sptseg->s_base + sptd->spt_realsize));
1835 	ASSERT(segspt_addr < (sptseg->s_base + sptseg->s_size));
1836 
1837 	switch (type) {
1838 
1839 	case F_SOFTLOCK:
1840 
1841 		mutex_enter(&freemem_lock);
1842 		if (availrmem < tune.t_minarmem + npages) {
1843 			mutex_exit(&freemem_lock);
1844 			return (FC_MAKE_ERR(ENOMEM));
1845 		} else {
1846 			availrmem -= npages;
1847 		}
1848 		mutex_exit(&freemem_lock);
1849 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1850 		/*
1851 		 * Fall through to the F_INVAL case to load up the hat layer
1852 		 * entries with the HAT_LOAD_LOCK flag.
1853 		 */
1854 		/* FALLTHRU */
1855 	case F_INVAL:
1856 
1857 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1858 			return (FC_NOMAP);
1859 
1860 		ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1861 
1862 		err = spt_anon_getpages(sptseg, segspt_addr, size, ppa);
1863 		if (err != 0) {
1864 			if (type == F_SOFTLOCK) {
1865 				mutex_enter(&freemem_lock);
1866 				availrmem += npages;
1867 				mutex_exit(&freemem_lock);
1868 				atomic_add_long((ulong_t *)(
1869 				    &(shmd->shm_softlockcnt)), -npages);
1870 			}
1871 			goto dism_err;
1872 		}
1873 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1874 		a = segspt_addr;
1875 		pidx = 0;
1876 		if (type == F_SOFTLOCK) {
1877 
1878 			/*
1879 			 * Load up the translation keeping it
1880 			 * locked and don't unlock the page.
1881 			 */
1882 			for (; pidx < npages; a += pgsz, pidx += pgcnt) {
1883 				hat_memload_array(sptseg->s_as->a_hat,
1884 				    a, pgsz, &ppa[pidx], sptd->spt_prot,
1885 				    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
1886 			}
1887 		} else {
1888 			if (hat == seg->s_as->a_hat) {
1889 
1890 				/*
1891 				 * Migrate pages marked for migration
1892 				 */
1893 				if (lgrp_optimizations())
1894 					page_migrate(seg, shm_addr, ppa,
1895 					    npages);
1896 
1897 				/* CPU HAT */
1898 				for (; pidx < npages;
1899 				    a += pgsz, pidx += pgcnt) {
1900 					hat_memload_array(sptseg->s_as->a_hat,
1901 					    a, pgsz, &ppa[pidx],
1902 					    sptd->spt_prot,
1903 					    HAT_LOAD_SHARE);
1904 				}
1905 			} else {
1906 				/* XHAT. Pass real address */
1907 				hat_memload_array(hat, shm_addr,
1908 				    size, ppa, sptd->spt_prot, HAT_LOAD_SHARE);
1909 			}
1910 
1911 			/*
1912 			 * And now drop the SE_SHARED lock(s).
1913 			 */
1914 			if (dyn_ism_unmap) {
1915 				for (i = 0; i < npages; i++) {
1916 					page_unlock(ppa[i]);
1917 				}
1918 			}
1919 		}
1920 
1921 		if (!dyn_ism_unmap) {
1922 			if (hat_share(seg->s_as->a_hat, shm_addr,
1923 			    curspt->a_hat, segspt_addr, ptob(npages),
1924 			    seg->s_szc) != 0) {
1925 				panic("hat_share err in DISM fault");
1926 				/* NOTREACHED */
1927 			}
1928 			if (type == F_INVAL) {
1929 				for (i = 0; i < npages; i++) {
1930 					page_unlock(ppa[i]);
1931 				}
1932 			}
1933 		}
1934 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1935 dism_err:
1936 		kmem_free(ppa, npages * sizeof (page_t *));
1937 		return (err);
1938 
1939 	case F_SOFTUNLOCK:
1940 
1941 		mutex_enter(&freemem_lock);
1942 		availrmem += npages;
1943 		mutex_exit(&freemem_lock);
1944 
1945 		/*
1946 		 * This is a bit ugly, we pass in the real seg pointer,
1947 		 * but the segspt_addr is the virtual address within the
1948 		 * dummy seg.
1949 		 */
1950 		segspt_softunlock(seg, segspt_addr, size, rw);
1951 		return (0);
1952 
1953 	case F_PROT:
1954 
1955 		/*
1956 		 * This takes care of the unusual case where a user
1957 		 * allocates a stack in shared memory and a register
1958 		 * window overflow is written to that stack page before
1959 		 * it is otherwise modified.
1960 		 *
1961 		 * We can get away with this because ISM segments are
1962 		 * always rw. Other than this unusual case, there
1963 		 * should be no instances of protection violations.
1964 		 */
1965 		return (0);
1966 
1967 	default:
1968 #ifdef DEBUG
1969 		panic("segspt_dismfault default type?");
1970 #else
1971 		return (FC_NOMAP);
1972 #endif
1973 	}
1974 }
1975 
1976 
1977 faultcode_t
1978 segspt_shmfault(struct hat *hat, struct seg *seg, caddr_t addr,
1979     size_t len, enum fault_type type, enum seg_rw rw)
1980 {
1981 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
1982 	struct seg		*sptseg = shmd->shm_sptseg;
1983 	struct as		*curspt = shmd->shm_sptas;
1984 	struct spt_data 	*sptd   = sptseg->s_data;
1985 	pgcnt_t npages;
1986 	size_t size;
1987 	caddr_t sptseg_addr, shm_addr;
1988 	page_t *pp, **ppa;
1989 	int	i;
1990 	u_offset_t offset;
1991 	ulong_t anon_index = 0;
1992 	struct vnode *vp;
1993 	struct anon_map *amp;		/* XXX - for locknest */
1994 	struct anon *ap = NULL;
1995 	size_t		pgsz;
1996 	pgcnt_t		pgcnt;
1997 	caddr_t		a;
1998 	pgcnt_t		pidx;
1999 	size_t		sz;
2000 
2001 #ifdef lint
2002 	hat = hat;
2003 #endif
2004 
2005 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2006 
2007 	if (sptd->spt_flags & SHM_PAGEABLE) {
2008 		return (segspt_dismfault(hat, seg, addr, len, type, rw));
2009 	}
2010 
2011 	/*
2012 	 * Because of the way spt is implemented
2013 	 * the realsize of the segment does not have to be
2014 	 * equal to the segment size itself. The segment size is
2015 	 * often in multiples of a page size larger than PAGESIZE.
2016 	 * The realsize is rounded up to the nearest PAGESIZE
2017 	 * based on what the user requested. This is a bit of
2018 	 * ungliness that is historical but not easily fixed
2019 	 * without re-designing the higher levels of ISM.
2020 	 */
2021 	ASSERT(addr >= seg->s_base);
2022 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
2023 		return (FC_NOMAP);
2024 	/*
2025 	 * For all of the following cases except F_PROT, we need to
2026 	 * make any necessary adjustments to addr and len
2027 	 * and get all of the necessary page_t's into an array called ppa[].
2028 	 *
2029 	 * The code in shmat() forces base addr and len of ISM segment
2030 	 * to be aligned to largest page size supported. Therefore,
2031 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
2032 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
2033 	 * in large pagesize chunks, or else we will screw up the HAT
2034 	 * layer by calling hat_memload_array() with differing page sizes
2035 	 * over a given virtual range.
2036 	 */
2037 	pgsz = page_get_pagesize(sptseg->s_szc);
2038 	pgcnt = page_get_pagecnt(sptseg->s_szc);
2039 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);
2040 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz);
2041 	npages = btopr(size);
2042 
2043 	/*
2044 	 * Now we need to convert from addr in segshm to addr in segspt.
2045 	 */
2046 	anon_index = seg_page(seg, shm_addr);
2047 	sptseg_addr = sptseg->s_base + ptob(anon_index);
2048 
2049 	/*
2050 	 * And now we may have to adjust npages downward if we have
2051 	 * exceeded the realsize of the segment or initial anon
2052 	 * allocations.
2053 	 */
2054 	if ((sptseg_addr + ptob(npages)) >
2055 	    (sptseg->s_base + sptd->spt_realsize))
2056 		size = (sptseg->s_base + sptd->spt_realsize) - sptseg_addr;
2057 
2058 	npages = btopr(size);
2059 
2060 	ASSERT(sptseg_addr < (sptseg->s_base + sptseg->s_size));
2061 	ASSERT((sptd->spt_flags & SHM_PAGEABLE) == 0);
2062 
2063 	switch (type) {
2064 
2065 	case F_SOFTLOCK:
2066 
2067 		/*
2068 		 * availrmem is decremented once during anon_swap_adjust()
2069 		 * and is incremented during the anon_unresv(), which is
2070 		 * called from shm_rm_amp() when the segment is destroyed.
2071 		 */
2072 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
2073 		/*
2074 		 * Some platforms assume that ISM pages are SE_SHARED
2075 		 * locked for the entire life of the segment.
2076 		 */
2077 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0))
2078 			return (0);
2079 		/*
2080 		 * Fall through to the F_INVAL case to load up the hat layer
2081 		 * entries with the HAT_LOAD_LOCK flag.
2082 		 */
2083 
2084 		/* FALLTHRU */
2085 	case F_INVAL:
2086 
2087 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
2088 			return (FC_NOMAP);
2089 
2090 		/*
2091 		 * Some platforms that do NOT support DYNAMIC_ISM_UNMAP
2092 		 * may still rely on this call to hat_share(). That
2093 		 * would imply that those hat's can fault on a
2094 		 * HAT_LOAD_LOCK translation, which would seem
2095 		 * contradictory.
2096 		 */
2097 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
2098 			if (hat_share(seg->s_as->a_hat, seg->s_base,
2099 			    curspt->a_hat, sptseg->s_base,
2100 			    sptseg->s_size, sptseg->s_szc) != 0) {
2101 				panic("hat_share error in ISM fault");
2102 				/*NOTREACHED*/
2103 			}
2104 			return (0);
2105 		}
2106 		ppa = kmem_zalloc(sizeof (page_t *) * npages, KM_SLEEP);
2107 
2108 		/*
2109 		 * I see no need to lock the real seg,
2110 		 * here, because all of our work will be on the underlying
2111 		 * dummy seg.
2112 		 *
2113 		 * sptseg_addr and npages now account for large pages.
2114 		 */
2115 		amp = sptd->spt_amp;
2116 		ASSERT(amp != NULL);
2117 		anon_index = seg_page(sptseg, sptseg_addr);
2118 
2119 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2120 		for (i = 0; i < npages; i++) {
2121 			ap = anon_get_ptr(amp->ahp, anon_index++);
2122 			ASSERT(ap != NULL);
2123 			swap_xlate(ap, &vp, &offset);
2124 			pp = page_lookup(vp, offset, SE_SHARED);
2125 			ASSERT(pp != NULL);
2126 			ppa[i] = pp;
2127 		}
2128 		ANON_LOCK_EXIT(&amp->a_rwlock);
2129 		ASSERT(i == npages);
2130 
2131 		/*
2132 		 * We are already holding the as->a_lock on the user's
2133 		 * real segment, but we need to hold the a_lock on the
2134 		 * underlying dummy as. This is mostly to satisfy the
2135 		 * underlying HAT layer.
2136 		 */
2137 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
2138 		a = sptseg_addr;
2139 		pidx = 0;
2140 		if (type == F_SOFTLOCK) {
2141 			/*
2142 			 * Load up the translation keeping it
2143 			 * locked and don't unlock the page.
2144 			 */
2145 			for (; pidx < npages; a += pgsz, pidx += pgcnt) {
2146 				sz = MIN(pgsz, ptob(npages - pidx));
2147 				hat_memload_array(sptseg->s_as->a_hat, a,
2148 				    sz, &ppa[pidx], sptd->spt_prot,
2149 				    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
2150 			}
2151 		} else {
2152 			if (hat == seg->s_as->a_hat) {
2153 
2154 				/*
2155 				 * Migrate pages marked for migration.
2156 				 */
2157 				if (lgrp_optimizations())
2158 					page_migrate(seg, shm_addr, ppa,
2159 					    npages);
2160 
2161 				/* CPU HAT */
2162 				for (; pidx < npages;
2163 				    a += pgsz, pidx += pgcnt) {
2164 					sz = MIN(pgsz, ptob(npages - pidx));
2165 					hat_memload_array(sptseg->s_as->a_hat,
2166 					    a, sz, &ppa[pidx],
2167 					    sptd->spt_prot, HAT_LOAD_SHARE);
2168 				}
2169 			} else {
2170 				/* XHAT. Pass real address */
2171 				hat_memload_array(hat, shm_addr,
2172 				    ptob(npages), ppa, sptd->spt_prot,
2173 				    HAT_LOAD_SHARE);
2174 			}
2175 
2176 			/*
2177 			 * And now drop the SE_SHARED lock(s).
2178 			 */
2179 			for (i = 0; i < npages; i++)
2180 				page_unlock(ppa[i]);
2181 		}
2182 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
2183 
2184 		kmem_free(ppa, sizeof (page_t *) * npages);
2185 		return (0);
2186 	case F_SOFTUNLOCK:
2187 
2188 		/*
2189 		 * This is a bit ugly, we pass in the real seg pointer,
2190 		 * but the sptseg_addr is the virtual address within the
2191 		 * dummy seg.
2192 		 */
2193 		segspt_softunlock(seg, sptseg_addr, ptob(npages), rw);
2194 		return (0);
2195 
2196 	case F_PROT:
2197 
2198 		/*
2199 		 * This takes care of the unusual case where a user
2200 		 * allocates a stack in shared memory and a register
2201 		 * window overflow is written to that stack page before
2202 		 * it is otherwise modified.
2203 		 *
2204 		 * We can get away with this because ISM segments are
2205 		 * always rw. Other than this unusual case, there
2206 		 * should be no instances of protection violations.
2207 		 */
2208 		return (0);
2209 
2210 	default:
2211 #ifdef DEBUG
2212 		cmn_err(CE_WARN, "segspt_shmfault default type?");
2213 #endif
2214 		return (FC_NOMAP);
2215 	}
2216 }
2217 
2218 /*ARGSUSED*/
2219 static faultcode_t
2220 segspt_shmfaulta(struct seg *seg, caddr_t addr)
2221 {
2222 	return (0);
2223 }
2224 
2225 /*ARGSUSED*/
2226 static int
2227 segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta)
2228 {
2229 	return (0);
2230 }
2231 
2232 /*ARGSUSED*/
2233 static size_t
2234 segspt_shmswapout(struct seg *seg)
2235 {
2236 	return (0);
2237 }
2238 
2239 /*
2240  * duplicate the shared page tables
2241  */
2242 int
2243 segspt_shmdup(struct seg *seg, struct seg *newseg)
2244 {
2245 	struct shm_data		*shmd = (struct shm_data *)seg->s_data;
2246 	struct anon_map 	*amp = shmd->shm_amp;
2247 	struct shm_data 	*shmd_new;
2248 	struct seg		*spt_seg = shmd->shm_sptseg;
2249 	struct spt_data		*sptd = spt_seg->s_data;
2250 	int			error = 0;
2251 
2252 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2253 
2254 	shmd_new = kmem_zalloc((sizeof (*shmd_new)), KM_SLEEP);
2255 	newseg->s_data = (void *)shmd_new;
2256 	shmd_new->shm_sptas = shmd->shm_sptas;
2257 	shmd_new->shm_amp = amp;
2258 	shmd_new->shm_sptseg = shmd->shm_sptseg;
2259 	newseg->s_ops = &segspt_shmops;
2260 	newseg->s_szc = seg->s_szc;
2261 	ASSERT(seg->s_szc == shmd->shm_sptseg->s_szc);
2262 
2263 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2264 	amp->refcnt++;
2265 	ANON_LOCK_EXIT(&amp->a_rwlock);
2266 
2267 	if (sptd->spt_flags & SHM_PAGEABLE) {
2268 		shmd_new->shm_vpage = kmem_zalloc(btopr(amp->size), KM_SLEEP);
2269 		shmd_new->shm_lckpgs = 0;
2270 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
2271 			if ((error = hat_share(newseg->s_as->a_hat,
2272 			    newseg->s_base, shmd->shm_sptas->a_hat, SEGSPTADDR,
2273 			    seg->s_size, seg->s_szc)) != 0) {
2274 				kmem_free(shmd_new->shm_vpage,
2275 				btopr(amp->size));
2276 			}
2277 		}
2278 		return (error);
2279 	} else {
2280 		return (hat_share(newseg->s_as->a_hat, newseg->s_base,
2281 		    shmd->shm_sptas->a_hat, SEGSPTADDR, seg->s_size,
2282 		    seg->s_szc));
2283 
2284 	}
2285 }
2286 
2287 /*ARGSUSED*/
2288 int
2289 segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
2290 {
2291 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2292 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2293 
2294 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2295 
2296 	/*
2297 	 * ISM segment is always rw.
2298 	 */
2299 	return (((sptd->spt_prot & prot) != prot) ? EACCES : 0);
2300 }
2301 
2302 /*
2303  * Return an array of locked large pages, for empty slots allocate
2304  * private zero-filled anon pages.
2305  */
2306 static int
2307 spt_anon_getpages(
2308 	struct seg *sptseg,
2309 	caddr_t sptaddr,
2310 	size_t len,
2311 	page_t *ppa[])
2312 {
2313 	struct  spt_data *sptd = sptseg->s_data;
2314 	struct  anon_map *amp = sptd->spt_amp;
2315 	enum 	seg_rw rw = sptd->spt_prot;
2316 	uint_t	szc = sptseg->s_szc;
2317 	size_t	pg_sz, share_sz = page_get_pagesize(szc);
2318 	pgcnt_t	lp_npgs;
2319 	caddr_t	lp_addr, e_sptaddr;
2320 	uint_t	vpprot, ppa_szc = 0;
2321 	struct  vpage *vpage = NULL;
2322 	ulong_t	j, ppa_idx;
2323 	int	err, ierr = 0;
2324 	pgcnt_t	an_idx;
2325 	anon_sync_obj_t cookie;
2326 
2327 	ASSERT(IS_P2ALIGNED(sptaddr, share_sz) && IS_P2ALIGNED(len, share_sz));
2328 	ASSERT(len != 0);
2329 
2330 	pg_sz = share_sz;
2331 	lp_npgs = btop(pg_sz);
2332 	lp_addr = sptaddr;
2333 	e_sptaddr = sptaddr + len;
2334 	an_idx = seg_page(sptseg, sptaddr);
2335 	ppa_idx = 0;
2336 
2337 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2338 	/*CONSTCOND*/
2339 	while (1) {
2340 		for (; lp_addr < e_sptaddr;
2341 			an_idx += lp_npgs, lp_addr += pg_sz,
2342 			ppa_idx += lp_npgs) {
2343 
2344 			anon_array_enter(amp, an_idx, &cookie);
2345 			ppa_szc = (uint_t)-1;
2346 			ierr = anon_map_getpages(amp, an_idx, szc, sptseg,
2347 			    lp_addr, sptd->spt_prot, &vpprot, &ppa[ppa_idx],
2348 			    &ppa_szc, vpage, rw, 0, segvn_anypgsz, kcred);
2349 			anon_array_exit(&cookie);
2350 
2351 			if (ierr != 0) {
2352 				if (ierr > 0) {
2353 					err = FC_MAKE_ERR(ierr);
2354 					goto lpgs_err;
2355 				}
2356 				break;
2357 			}
2358 		}
2359 		if (lp_addr == e_sptaddr) {
2360 			break;
2361 		}
2362 		ASSERT(lp_addr < e_sptaddr);
2363 
2364 		/*
2365 		 * ierr == -1 means we failed to allocate a large page.
2366 		 * so do a size down operation.
2367 		 *
2368 		 * ierr == -2 means some other process that privately shares
2369 		 * pages with this process has allocated a larger page and we
2370 		 * need to retry with larger pages. So do a size up
2371 		 * operation. This relies on the fact that large pages are
2372 		 * never partially shared i.e. if we share any constituent
2373 		 * page of a large page with another process we must share the
2374 		 * entire large page. Note this cannot happen for SOFTLOCK
2375 		 * case, unless current address (lpaddr) is at the beginning
2376 		 * of the next page size boundary because the other process
2377 		 * couldn't have relocated locked pages.
2378 		 */
2379 		ASSERT(ierr == -1 || ierr == -2);
2380 		if (segvn_anypgsz) {
2381 			ASSERT(ierr == -2 || szc != 0);
2382 			ASSERT(ierr == -1 || szc < sptseg->s_szc);
2383 			szc = (ierr == -1) ? szc - 1 : szc + 1;
2384 		} else {
2385 			/*
2386 			 * For faults and segvn_anypgsz == 0
2387 			 * we need to be careful not to loop forever
2388 			 * if existing page is found with szc other
2389 			 * than 0 or seg->s_szc. This could be due
2390 			 * to page relocations on behalf of DR or
2391 			 * more likely large page creation. For this
2392 			 * case simply re-size to existing page's szc
2393 			 * if returned by anon_map_getpages().
2394 			 */
2395 			if (ppa_szc == (uint_t)-1) {
2396 				szc = (ierr == -1) ? 0 : sptseg->s_szc;
2397 			} else {
2398 				ASSERT(ppa_szc <= sptseg->s_szc);
2399 				ASSERT(ierr == -2 || ppa_szc < szc);
2400 				ASSERT(ierr == -1 || ppa_szc > szc);
2401 				szc = ppa_szc;
2402 			}
2403 		}
2404 		pg_sz = page_get_pagesize(szc);
2405 		lp_npgs = btop(pg_sz);
2406 		ASSERT(IS_P2ALIGNED(lp_addr, pg_sz));
2407 	}
2408 	ANON_LOCK_EXIT(&amp->a_rwlock);
2409 	return (0);
2410 
2411 lpgs_err:
2412 	ANON_LOCK_EXIT(&amp->a_rwlock);
2413 	for (j = 0; j < ppa_idx; j++)
2414 		page_unlock(ppa[j]);
2415 	return (err);
2416 }
2417 
2418 /*
2419  * count the number of bytes in a set of spt pages that are currently not
2420  * locked
2421  */
2422 static rctl_qty_t
2423 spt_unlockedbytes(pgcnt_t npages, page_t **ppa)
2424 {
2425 	ulong_t	i;
2426 	rctl_qty_t unlocked = 0;
2427 
2428 	for (i = 0; i < npages; i++) {
2429 		if (ppa[i]->p_lckcnt == 0)
2430 			unlocked += PAGESIZE;
2431 	}
2432 	return (unlocked);
2433 }
2434 
2435 int
2436 spt_lockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages,
2437     page_t **ppa, ulong_t *lockmap, size_t pos,
2438     rctl_qty_t *locked)
2439 {
2440 	struct shm_data *shmd = seg->s_data;
2441 	struct spt_data *sptd = shmd->shm_sptseg->s_data;
2442 	ulong_t	i;
2443 	int	kernel;
2444 
2445 	/* return the number of bytes actually locked */
2446 	*locked = 0;
2447 	for (i = 0; i < npages; anon_index++, pos++, i++) {
2448 		if (!(shmd->shm_vpage[anon_index] & DISM_PG_LOCKED)) {
2449 			if (sptd->spt_ppa_lckcnt[anon_index] <
2450 			    (ushort_t)DISM_LOCK_MAX) {
2451 				if (++sptd->spt_ppa_lckcnt[anon_index] ==
2452 				    (ushort_t)DISM_LOCK_MAX) {
2453 					cmn_err(CE_WARN,
2454 					    "DISM page lock limit "
2455 					    "reached on DISM offset 0x%lx\n",
2456 					    anon_index << PAGESHIFT);
2457 				}
2458 				kernel = (sptd->spt_ppa &&
2459 				    sptd->spt_ppa[anon_index]) ? 1 : 0;
2460 				if (!page_pp_lock(ppa[i], 0, kernel)) {
2461 					sptd->spt_ppa_lckcnt[anon_index]--;
2462 					return (EAGAIN);
2463 				}
2464 				/* if this is a newly locked page, count it */
2465 				if (ppa[i]->p_lckcnt == 1) {
2466 					*locked += PAGESIZE;
2467 				}
2468 				shmd->shm_lckpgs++;
2469 				shmd->shm_vpage[anon_index] |= DISM_PG_LOCKED;
2470 				if (lockmap != NULL)
2471 					BT_SET(lockmap, pos);
2472 			}
2473 		}
2474 	}
2475 	return (0);
2476 }
2477 
2478 /*ARGSUSED*/
2479 static int
2480 segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
2481     int attr, int op, ulong_t *lockmap, size_t pos)
2482 {
2483 	struct shm_data *shmd = seg->s_data;
2484 	struct seg	*sptseg = shmd->shm_sptseg;
2485 	struct spt_data *sptd = sptseg->s_data;
2486 	struct kshmid	*sp = sptd->spt_amp->a_sp;
2487 	pgcnt_t		npages, a_npages;
2488 	page_t		**ppa;
2489 	pgcnt_t 	an_idx, a_an_idx, ppa_idx;
2490 	caddr_t		spt_addr, a_addr;	/* spt and aligned address */
2491 	size_t		a_len;			/* aligned len */
2492 	size_t		share_sz;
2493 	ulong_t		i;
2494 	int		sts = 0;
2495 	rctl_qty_t	unlocked = 0;
2496 	rctl_qty_t	locked = 0;
2497 	struct proc	*p = curproc;
2498 	kproject_t	*proj;
2499 
2500 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2501 	ASSERT(sp != NULL);
2502 
2503 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
2504 		return (0);
2505 	}
2506 
2507 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2508 	an_idx = seg_page(seg, addr);
2509 	npages = btopr(len);
2510 
2511 	if (an_idx + npages > btopr(shmd->shm_amp->size)) {
2512 		return (ENOMEM);
2513 	}
2514 
2515 	/*
2516 	 * A shm's project never changes, so no lock needed.
2517 	 * The shm has a hold on the project, so it will not go away.
2518 	 * Since we have a mapping to shm within this zone, we know
2519 	 * that the zone will not go away.
2520 	 */
2521 	proj = sp->shm_perm.ipc_proj;
2522 
2523 	if (op == MC_LOCK) {
2524 
2525 		/*
2526 		 * Need to align addr and size request if they are not
2527 		 * aligned so we can always allocate large page(s) however
2528 		 * we only lock what was requested in initial request.
2529 		 */
2530 		share_sz = page_get_pagesize(sptseg->s_szc);
2531 		a_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
2532 		a_len = P2ROUNDUP((uintptr_t)(((addr + len) - a_addr)),
2533 				share_sz);
2534 		a_npages = btop(a_len);
2535 		a_an_idx = seg_page(seg, a_addr);
2536 		spt_addr = sptseg->s_base + ptob(a_an_idx);
2537 		ppa_idx = an_idx - a_an_idx;
2538 
2539 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * a_npages),
2540 			KM_NOSLEEP)) == NULL) {
2541 			return (ENOMEM);
2542 		}
2543 
2544 		/*
2545 		 * Don't cache any new pages for IO and
2546 		 * flush any cached pages.
2547 		 */
2548 		mutex_enter(&sptd->spt_lock);
2549 		if (sptd->spt_ppa != NULL)
2550 			sptd->spt_flags |= DISM_PPA_CHANGED;
2551 
2552 		sts = spt_anon_getpages(sptseg, spt_addr, a_len, ppa);
2553 		if (sts != 0) {
2554 			mutex_exit(&sptd->spt_lock);
2555 			kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2556 			return (sts);
2557 		}
2558 
2559 		mutex_enter(&sp->shm_mlock);
2560 		/* enforce locked memory rctl */
2561 		unlocked = spt_unlockedbytes(npages, &ppa[ppa_idx]);
2562 
2563 		mutex_enter(&p->p_lock);
2564 		if (rctl_incr_locked_mem(p, proj, unlocked, 0)) {
2565 			mutex_exit(&p->p_lock);
2566 			sts = EAGAIN;
2567 		} else {
2568 			mutex_exit(&p->p_lock);
2569 			sts = spt_lockpages(seg, an_idx, npages,
2570 			    &ppa[ppa_idx], lockmap, pos, &locked);
2571 
2572 			/*
2573 			 * correct locked count if not all pages could be
2574 			 * locked
2575 			 */
2576 			if ((unlocked - locked) > 0) {
2577 				rctl_decr_locked_mem(NULL, proj,
2578 				    (unlocked - locked), 0);
2579 			}
2580 		}
2581 		/*
2582 		 * unlock pages
2583 		 */
2584 		for (i = 0; i < a_npages; i++)
2585 			page_unlock(ppa[i]);
2586 		if (sptd->spt_ppa != NULL)
2587 			sptd->spt_flags |= DISM_PPA_CHANGED;
2588 		mutex_exit(&sp->shm_mlock);
2589 		mutex_exit(&sptd->spt_lock);
2590 
2591 		kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2592 
2593 	} else if (op == MC_UNLOCK) { /* unlock */
2594 		struct anon_map *amp;
2595 		struct anon 	*ap;
2596 		struct vnode 	*vp;
2597 		u_offset_t 	off;
2598 		struct page	*pp;
2599 		int		kernel;
2600 		anon_sync_obj_t cookie;
2601 		rctl_qty_t	unlocked = 0;
2602 
2603 		amp = sptd->spt_amp;
2604 		mutex_enter(&sptd->spt_lock);
2605 		if (shmd->shm_lckpgs == 0) {
2606 			mutex_exit(&sptd->spt_lock);
2607 			return (0);
2608 		}
2609 		/*
2610 		 * Don't cache new IO pages.
2611 		 */
2612 		if (sptd->spt_ppa != NULL)
2613 			sptd->spt_flags |= DISM_PPA_CHANGED;
2614 
2615 		mutex_enter(&sp->shm_mlock);
2616 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2617 		for (i = 0; i < npages; i++, an_idx++) {
2618 			if (shmd->shm_vpage[an_idx] & DISM_PG_LOCKED) {
2619 				anon_array_enter(amp, an_idx, &cookie);
2620 				ap = anon_get_ptr(amp->ahp, an_idx);
2621 				ASSERT(ap);
2622 
2623 				swap_xlate(ap, &vp, &off);
2624 				anon_array_exit(&cookie);
2625 				pp = page_lookup(vp, off, SE_SHARED);
2626 				ASSERT(pp);
2627 				/*
2628 				 * the availrmem is decremented only for
2629 				 * pages which are not in seg pcache,
2630 				 * for pages in seg pcache availrmem was
2631 				 * decremented in _dismpagelock() (if
2632 				 * they were not locked here)
2633 				 */
2634 				kernel = (sptd->spt_ppa &&
2635 				    sptd->spt_ppa[an_idx]) ? 1 : 0;
2636 				ASSERT(pp->p_lckcnt > 0);
2637 				page_pp_unlock(pp, 0, kernel);
2638 				if (pp->p_lckcnt == 0)
2639 					unlocked += PAGESIZE;
2640 				page_unlock(pp);
2641 				shmd->shm_vpage[an_idx] &= ~DISM_PG_LOCKED;
2642 				sptd->spt_ppa_lckcnt[an_idx]--;
2643 				shmd->shm_lckpgs--;
2644 			}
2645 		}
2646 		ANON_LOCK_EXIT(&amp->a_rwlock);
2647 		if (sptd->spt_ppa != NULL)
2648 			sptd->spt_flags |= DISM_PPA_CHANGED;
2649 		mutex_exit(&sptd->spt_lock);
2650 
2651 		rctl_decr_locked_mem(NULL, proj, unlocked, 0);
2652 		mutex_exit(&sp->shm_mlock);
2653 	}
2654 	return (sts);
2655 }
2656 
2657 /*ARGSUSED*/
2658 int
2659 segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
2660 {
2661 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2662 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2663 	spgcnt_t pgno = seg_page(seg, addr+len) - seg_page(seg, addr) + 1;
2664 
2665 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2666 
2667 	/*
2668 	 * ISM segment is always rw.
2669 	 */
2670 	while (--pgno >= 0)
2671 		*protv++ = sptd->spt_prot;
2672 	return (0);
2673 }
2674 
2675 /*ARGSUSED*/
2676 u_offset_t
2677 segspt_shmgetoffset(struct seg *seg, caddr_t addr)
2678 {
2679 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2680 
2681 	/* Offset does not matter in ISM memory */
2682 
2683 	return ((u_offset_t)0);
2684 }
2685 
2686 /* ARGSUSED */
2687 int
2688 segspt_shmgettype(struct seg *seg, caddr_t addr)
2689 {
2690 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2691 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2692 
2693 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2694 
2695 	/*
2696 	 * The shared memory mapping is always MAP_SHARED, SWAP is only
2697 	 * reserved for DISM
2698 	 */
2699 	return (MAP_SHARED |
2700 		((sptd->spt_flags & SHM_PAGEABLE) ? 0 : MAP_NORESERVE));
2701 }
2702 
2703 /*ARGSUSED*/
2704 int
2705 segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
2706 {
2707 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2708 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2709 
2710 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2711 
2712 	*vpp = sptd->spt_vp;
2713 	return (0);
2714 }
2715 
2716 /*ARGSUSED*/
2717 static int
2718 segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
2719 {
2720 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
2721 	struct spt_data	*sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2722 	struct anon_map	*amp;
2723 	pgcnt_t		pg_idx;
2724 
2725 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2726 
2727 	if (behav == MADV_FREE) {
2728 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0)
2729 			return (0);
2730 
2731 		amp = sptd->spt_amp;
2732 		pg_idx = seg_page(seg, addr);
2733 
2734 		mutex_enter(&sptd->spt_lock);
2735 		if (sptd->spt_ppa != NULL)
2736 			sptd->spt_flags |= DISM_PPA_CHANGED;
2737 		mutex_exit(&sptd->spt_lock);
2738 
2739 		/*
2740 		 * Purge all DISM cached pages
2741 		 */
2742 		seg_ppurge_seg(segspt_reclaim);
2743 
2744 		mutex_enter(&sptd->spt_lock);
2745 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2746 		anon_disclaim(amp, pg_idx, len, ANON_PGLOOKUP_BLK);
2747 		ANON_LOCK_EXIT(&amp->a_rwlock);
2748 		mutex_exit(&sptd->spt_lock);
2749 	} else if (lgrp_optimizations() && (behav == MADV_ACCESS_LWP ||
2750 	    behav == MADV_ACCESS_MANY || behav == MADV_ACCESS_DEFAULT)) {
2751 		int			already_set;
2752 		ulong_t			anon_index;
2753 		lgrp_mem_policy_t	policy;
2754 		caddr_t			shm_addr;
2755 		size_t			share_size;
2756 		size_t			size;
2757 		struct seg		*sptseg = shmd->shm_sptseg;
2758 		caddr_t			sptseg_addr;
2759 
2760 		/*
2761 		 * Align address and length to page size of underlying segment
2762 		 */
2763 		share_size = page_get_pagesize(shmd->shm_sptseg->s_szc);
2764 		shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
2765 		size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)),
2766 		    share_size);
2767 
2768 		amp = shmd->shm_amp;
2769 		anon_index = seg_page(seg, shm_addr);
2770 
2771 		/*
2772 		 * And now we may have to adjust size downward if we have
2773 		 * exceeded the realsize of the segment or initial anon
2774 		 * allocations.
2775 		 */
2776 		sptseg_addr = sptseg->s_base + ptob(anon_index);
2777 		if ((sptseg_addr + size) >
2778 		    (sptseg->s_base + sptd->spt_realsize))
2779 			size = (sptseg->s_base + sptd->spt_realsize) -
2780 			    sptseg_addr;
2781 
2782 		/*
2783 		 * Set memory allocation policy for this segment
2784 		 */
2785 		policy = lgrp_madv_to_policy(behav, len, MAP_SHARED);
2786 		already_set = lgrp_shm_policy_set(policy, amp, anon_index,
2787 		    NULL, 0, len);
2788 
2789 		/*
2790 		 * If random memory allocation policy set already,
2791 		 * don't bother reapplying it.
2792 		 */
2793 		if (already_set && !LGRP_MEM_POLICY_REAPPLICABLE(policy))
2794 			return (0);
2795 
2796 		/*
2797 		 * Mark any existing pages in the given range for
2798 		 * migration, flushing the I/O page cache, and using
2799 		 * underlying segment to calculate anon index and get
2800 		 * anonmap and vnode pointer from
2801 		 */
2802 		if (shmd->shm_softlockcnt > 0)
2803 			segspt_purge(seg);
2804 
2805 		page_mark_migrate(seg, shm_addr, size, amp, 0, NULL, 0, 0);
2806 	}
2807 
2808 	return (0);
2809 }
2810 
2811 /*ARGSUSED*/
2812 void
2813 segspt_shmdump(struct seg *seg)
2814 {
2815 	/* no-op for ISM segment */
2816 }
2817 
2818 /*ARGSUSED*/
2819 static faultcode_t
2820 segspt_shmsetpgsz(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
2821 {
2822 	return (ENOTSUP);
2823 }
2824 
2825 /*
2826  * get a memory ID for an addr in a given segment
2827  */
2828 static int
2829 segspt_shmgetmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
2830 {
2831 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2832 	struct anon 	*ap;
2833 	size_t		anon_index;
2834 	struct anon_map	*amp = shmd->shm_amp;
2835 	struct spt_data	*sptd = shmd->shm_sptseg->s_data;
2836 	struct seg	*sptseg = shmd->shm_sptseg;
2837 	anon_sync_obj_t	cookie;
2838 
2839 	anon_index = seg_page(seg, addr);
2840 
2841 	if (addr > (seg->s_base + sptd->spt_realsize)) {
2842 		return (EFAULT);
2843 	}
2844 
2845 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2846 	anon_array_enter(amp, anon_index, &cookie);
2847 	ap = anon_get_ptr(amp->ahp, anon_index);
2848 	if (ap == NULL) {
2849 		struct page *pp;
2850 		caddr_t spt_addr = sptseg->s_base + ptob(anon_index);
2851 
2852 		pp = anon_zero(sptseg, spt_addr, &ap, kcred);
2853 		if (pp == NULL) {
2854 			anon_array_exit(&cookie);
2855 			ANON_LOCK_EXIT(&amp->a_rwlock);
2856 			return (ENOMEM);
2857 		}
2858 		(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2859 		page_unlock(pp);
2860 	}
2861 	anon_array_exit(&cookie);
2862 	ANON_LOCK_EXIT(&amp->a_rwlock);
2863 	memidp->val[0] = (uintptr_t)ap;
2864 	memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
2865 	return (0);
2866 }
2867 
2868 /*
2869  * Get memory allocation policy info for specified address in given segment
2870  */
2871 static lgrp_mem_policy_info_t *
2872 segspt_shmgetpolicy(struct seg *seg, caddr_t addr)
2873 {
2874 	struct anon_map		*amp;
2875 	ulong_t			anon_index;
2876 	lgrp_mem_policy_info_t	*policy_info;
2877 	struct shm_data		*shm_data;
2878 
2879 	ASSERT(seg != NULL);
2880 
2881 	/*
2882 	 * Get anon_map from segshm
2883 	 *
2884 	 * Assume that no lock needs to be held on anon_map, since
2885 	 * it should be protected by its reference count which must be
2886 	 * nonzero for an existing segment
2887 	 * Need to grab readers lock on policy tree though
2888 	 */
2889 	shm_data = (struct shm_data *)seg->s_data;
2890 	if (shm_data == NULL)
2891 		return (NULL);
2892 	amp = shm_data->shm_amp;
2893 	ASSERT(amp->refcnt != 0);
2894 
2895 	/*
2896 	 * Get policy info
2897 	 *
2898 	 * Assume starting anon index of 0
2899 	 */
2900 	anon_index = seg_page(seg, addr);
2901 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
2902 
2903 	return (policy_info);
2904 }
2905 
2906 /*ARGSUSED*/
2907 static int
2908 segspt_shmcapable(struct seg *seg, segcapability_t capability)
2909 {
2910 	return (0);
2911 }
2912