xref: /titanic_41/usr/src/uts/common/vm/seg_map.c (revision ac129f9e461b8dcebfdc989e9b22b78d2af5730c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 /*
35  * VM - generic vnode mapping segment.
36  *
37  * The segmap driver is used only by the kernel to get faster (than seg_vn)
38  * mappings [lower routine overhead; more persistent cache] to random
39  * vnode/offsets.  Note than the kernel may (and does) use seg_vn as well.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/sysmacros.h>
46 #include <sys/buf.h>
47 #include <sys/systm.h>
48 #include <sys/vnode.h>
49 #include <sys/mman.h>
50 #include <sys/errno.h>
51 #include <sys/cred.h>
52 #include <sys/kmem.h>
53 #include <sys/vtrace.h>
54 #include <sys/cmn_err.h>
55 #include <sys/debug.h>
56 #include <sys/thread.h>
57 #include <sys/dumphdr.h>
58 #include <sys/bitmap.h>
59 #include <sys/lgrp.h>
60 
61 #include <vm/seg_kmem.h>
62 #include <vm/hat.h>
63 #include <vm/as.h>
64 #include <vm/seg.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/seg_map.h>
67 #include <vm/page.h>
68 #include <vm/pvn.h>
69 #include <vm/rm.h>
70 
71 /*
72  * Private seg op routines.
73  */
74 static void	segmap_free(struct seg *seg);
75 faultcode_t segmap_fault(struct hat *hat, struct seg *seg, caddr_t addr,
76 			size_t len, enum fault_type type, enum seg_rw rw);
77 static faultcode_t segmap_faulta(struct seg *seg, caddr_t addr);
78 static int	segmap_checkprot(struct seg *seg, caddr_t addr, size_t len,
79 			uint_t prot);
80 static int	segmap_kluster(struct seg *seg, caddr_t addr, ssize_t);
81 static int	segmap_getprot(struct seg *seg, caddr_t addr, size_t len,
82 			uint_t *protv);
83 static u_offset_t	segmap_getoffset(struct seg *seg, caddr_t addr);
84 static int	segmap_gettype(struct seg *seg, caddr_t addr);
85 static int	segmap_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
86 static void	segmap_dump(struct seg *seg);
87 static int	segmap_pagelock(struct seg *seg, caddr_t addr, size_t len,
88 			struct page ***ppp, enum lock_type type,
89 			enum seg_rw rw);
90 static void	segmap_badop(void);
91 static int	segmap_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp);
92 static lgrp_mem_policy_info_t	*segmap_getpolicy(struct seg *seg,
93     caddr_t addr);
94 static int	segmap_capable(struct seg *seg, segcapability_t capability);
95 
96 /* segkpm support */
97 static caddr_t	segmap_pagecreate_kpm(struct seg *, vnode_t *, u_offset_t,
98 			struct smap *, enum seg_rw);
99 struct smap	*get_smap_kpm(caddr_t, page_t **);
100 
101 #define	SEGMAP_BADOP(t)	(t(*)())segmap_badop
102 
103 static struct seg_ops segmap_ops = {
104 	SEGMAP_BADOP(int),	/* dup */
105 	SEGMAP_BADOP(int),	/* unmap */
106 	segmap_free,
107 	segmap_fault,
108 	segmap_faulta,
109 	SEGMAP_BADOP(int),	/* setprot */
110 	segmap_checkprot,
111 	segmap_kluster,
112 	SEGMAP_BADOP(size_t),	/* swapout */
113 	SEGMAP_BADOP(int),	/* sync */
114 	SEGMAP_BADOP(size_t),	/* incore */
115 	SEGMAP_BADOP(int),	/* lockop */
116 	segmap_getprot,
117 	segmap_getoffset,
118 	segmap_gettype,
119 	segmap_getvp,
120 	SEGMAP_BADOP(int),	/* advise */
121 	segmap_dump,
122 	segmap_pagelock,	/* pagelock */
123 	SEGMAP_BADOP(int),	/* setpgsz */
124 	segmap_getmemid,	/* getmemid */
125 	segmap_getpolicy,	/* getpolicy */
126 	segmap_capable,		/* capable */
127 };
128 
129 /*
130  * Private segmap routines.
131  */
132 static void	segmap_unlock(struct hat *hat, struct seg *seg, caddr_t addr,
133 			size_t len, enum seg_rw rw, struct smap *smp);
134 static void	segmap_smapadd(struct smap *smp);
135 static struct smap *segmap_hashin(struct smap *smp, struct vnode *vp,
136 			u_offset_t off, int hashid);
137 static void	segmap_hashout(struct smap *smp);
138 
139 
140 /*
141  * Statistics for segmap operations.
142  *
143  * No explicit locking to protect these stats.
144  */
145 struct segmapcnt segmapcnt = {
146 	{ "fault",		KSTAT_DATA_ULONG },
147 	{ "faulta",		KSTAT_DATA_ULONG },
148 	{ "getmap",		KSTAT_DATA_ULONG },
149 	{ "get_use",		KSTAT_DATA_ULONG },
150 	{ "get_reclaim",	KSTAT_DATA_ULONG },
151 	{ "get_reuse",		KSTAT_DATA_ULONG },
152 	{ "get_unused",		KSTAT_DATA_ULONG },
153 	{ "get_nofree",		KSTAT_DATA_ULONG },
154 	{ "rel_async",		KSTAT_DATA_ULONG },
155 	{ "rel_write",		KSTAT_DATA_ULONG },
156 	{ "rel_free",		KSTAT_DATA_ULONG },
157 	{ "rel_abort",		KSTAT_DATA_ULONG },
158 	{ "rel_dontneed",	KSTAT_DATA_ULONG },
159 	{ "release",		KSTAT_DATA_ULONG },
160 	{ "pagecreate",		KSTAT_DATA_ULONG },
161 	{ "free_notfree",	KSTAT_DATA_ULONG },
162 	{ "free_dirty",		KSTAT_DATA_ULONG },
163 	{ "free",		KSTAT_DATA_ULONG },
164 	{ "stolen",		KSTAT_DATA_ULONG },
165 	{ "get_nomtx",		KSTAT_DATA_ULONG }
166 };
167 
168 kstat_named_t *segmapcnt_ptr = (kstat_named_t *)&segmapcnt;
169 uint_t segmapcnt_ndata = sizeof (segmapcnt) / sizeof (kstat_named_t);
170 
171 /*
172  * Return number of map pages in segment.
173  */
174 #define	MAP_PAGES(seg)		((seg)->s_size >> MAXBSHIFT)
175 
176 /*
177  * Translate addr into smap number within segment.
178  */
179 #define	MAP_PAGE(seg, addr)  (((addr) - (seg)->s_base) >> MAXBSHIFT)
180 
181 /*
182  * Translate addr in seg into struct smap pointer.
183  */
184 #define	GET_SMAP(seg, addr)	\
185 	&(((struct segmap_data *)((seg)->s_data))->smd_sm[MAP_PAGE(seg, addr)])
186 
187 /*
188  * Bit in map (16 bit bitmap).
189  */
190 #define	SMAP_BIT_MASK(bitindex)	(1 << ((bitindex) & 0xf))
191 
192 static int smd_colormsk = 0;
193 static int smd_ncolor = 0;
194 static int smd_nfree = 0;
195 static int smd_freemsk = 0;
196 #ifdef DEBUG
197 static int *colors_used;
198 #endif
199 static struct smap *smd_smap;
200 static struct smaphash *smd_hash;
201 #ifdef SEGMAP_HASHSTATS
202 static unsigned int *smd_hash_len;
203 #endif
204 static struct smfree *smd_free;
205 static ulong_t smd_hashmsk = 0;
206 
207 #define	SEGMAP_MAXCOLOR		2
208 #define	SEGMAP_CACHE_PAD	64
209 
210 union segmap_cpu {
211 	struct {
212 		uint32_t	scpu_free_ndx[SEGMAP_MAXCOLOR];
213 		struct smap	*scpu_last_smap;
214 		ulong_t		scpu_getmap;
215 		ulong_t		scpu_release;
216 		ulong_t		scpu_get_reclaim;
217 		ulong_t		scpu_fault;
218 		ulong_t		scpu_pagecreate;
219 		ulong_t		scpu_get_reuse;
220 	} scpu;
221 	char	scpu_pad[SEGMAP_CACHE_PAD];
222 };
223 static union segmap_cpu *smd_cpu;
224 
225 /*
226  * There are three locks in seg_map:
227  *	- per freelist mutexes
228  *	- per hashchain mutexes
229  *	- per smap mutexes
230  *
231  * The lock ordering is to get the smap mutex to lock down the slot
232  * first then the hash lock (for hash in/out (vp, off) list) or the
233  * freelist lock to put the slot back on the free list.
234  *
235  * The hash search is done by only holding the hashchain lock, when a wanted
236  * slot is found, we drop the hashchain lock then lock the slot so there
237  * is no overlapping of hashchain and smap locks. After the slot is
238  * locked, we verify again if the slot is still what we are looking
239  * for.
240  *
241  * Allocation of a free slot is done by holding the freelist lock,
242  * then locking the smap slot at the head of the freelist. This is
243  * in reversed lock order so mutex_tryenter() is used.
244  *
245  * The smap lock protects all fields in smap structure except for
246  * the link fields for hash/free lists which are protected by
247  * hashchain and freelist locks.
248  */
249 
250 #define	SHASHMTX(hashid)	(&smd_hash[hashid].sh_mtx)
251 
252 #define	SMP2SMF(smp)		(&smd_free[(smp - smd_smap) & smd_freemsk])
253 #define	SMP2SMF_NDX(smp)	(ushort_t)((smp - smd_smap) & smd_freemsk)
254 
255 #define	SMAPMTX(smp) (&smp->sm_mtx)
256 
257 #define	SMAP_HASHFUNC(vp, off, hashid) \
258 	{ \
259 	hashid = ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
260 		((off) >> MAXBSHIFT)) & smd_hashmsk); \
261 	}
262 
263 /*
264  * The most frequently updated kstat counters are kept in the
265  * per cpu array to avoid hot cache blocks. The update function
266  * sums the cpu local counters to update the global counters.
267  */
268 
269 /* ARGSUSED */
270 int
271 segmap_kstat_update(kstat_t *ksp, int rw)
272 {
273 	int i;
274 	ulong_t	getmap, release, get_reclaim;
275 	ulong_t	fault, pagecreate, get_reuse;
276 
277 	if (rw == KSTAT_WRITE)
278 		return (EACCES);
279 	getmap = release = get_reclaim = (ulong_t)0;
280 	fault = pagecreate = get_reuse = (ulong_t)0;
281 	for (i = 0; i < max_ncpus; i++) {
282 		getmap += smd_cpu[i].scpu.scpu_getmap;
283 		release  += smd_cpu[i].scpu.scpu_release;
284 		get_reclaim += smd_cpu[i].scpu.scpu_get_reclaim;
285 		fault  += smd_cpu[i].scpu.scpu_fault;
286 		pagecreate  += smd_cpu[i].scpu.scpu_pagecreate;
287 		get_reuse += smd_cpu[i].scpu.scpu_get_reuse;
288 	}
289 	segmapcnt.smp_getmap.value.ul = getmap;
290 	segmapcnt.smp_release.value.ul = release;
291 	segmapcnt.smp_get_reclaim.value.ul = get_reclaim;
292 	segmapcnt.smp_fault.value.ul = fault;
293 	segmapcnt.smp_pagecreate.value.ul = pagecreate;
294 	segmapcnt.smp_get_reuse.value.ul = get_reuse;
295 	return (0);
296 }
297 
298 int
299 segmap_create(struct seg *seg, void *argsp)
300 {
301 	struct segmap_data *smd;
302 	struct smap *smp;
303 	struct smfree *sm;
304 	struct segmap_crargs *a = (struct segmap_crargs *)argsp;
305 	struct smaphash *shashp;
306 	union segmap_cpu *scpu;
307 	long i, npages;
308 	size_t hashsz;
309 	uint_t nfreelist;
310 	extern void prefetch_smap_w(void *);
311 	extern int max_ncpus;
312 
313 	ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock));
314 
315 	if (((uintptr_t)seg->s_base | seg->s_size) & MAXBOFFSET) {
316 		panic("segkmap not MAXBSIZE aligned");
317 		/*NOTREACHED*/
318 	}
319 
320 	smd = kmem_zalloc(sizeof (struct segmap_data), KM_SLEEP);
321 
322 	seg->s_data = (void *)smd;
323 	seg->s_ops = &segmap_ops;
324 	smd->smd_prot = a->prot;
325 
326 	/*
327 	 * Scale the number of smap freelists to be
328 	 * proportional to max_ncpus * number of virtual colors.
329 	 * The caller can over-ride this scaling by providing
330 	 * a non-zero a->nfreelist argument.
331 	 */
332 	nfreelist = a->nfreelist;
333 	if (nfreelist == 0)
334 		nfreelist = max_ncpus;
335 	else if (nfreelist < 0 || nfreelist > 4 * max_ncpus) {
336 		cmn_err(CE_WARN, "segmap_create: nfreelist out of range "
337 		"%d, using %d", nfreelist, max_ncpus);
338 		nfreelist = max_ncpus;
339 	}
340 	if (nfreelist & (nfreelist - 1)) {
341 		/* round up nfreelist to the next power of two. */
342 		nfreelist = 1 << (highbit(nfreelist));
343 	}
344 
345 	/*
346 	 * Get the number of virtual colors - must be a power of 2.
347 	 */
348 	if (a->shmsize)
349 		smd_ncolor = a->shmsize >> MAXBSHIFT;
350 	else
351 		smd_ncolor = 1;
352 	ASSERT((smd_ncolor & (smd_ncolor - 1)) == 0);
353 	ASSERT(smd_ncolor <= SEGMAP_MAXCOLOR);
354 	smd_colormsk = smd_ncolor - 1;
355 	smd->smd_nfree = smd_nfree = smd_ncolor * nfreelist;
356 	smd_freemsk = smd_nfree - 1;
357 
358 	/*
359 	 * Allocate and initialize the freelist headers.
360 	 * Note that sm_freeq[1] starts out as the release queue. This
361 	 * is known when the smap structures are initialized below.
362 	 */
363 	smd_free = smd->smd_free =
364 	    kmem_zalloc(smd_nfree * sizeof (struct smfree), KM_SLEEP);
365 	for (i = 0; i < smd_nfree; i++) {
366 		sm = &smd->smd_free[i];
367 		mutex_init(&sm->sm_freeq[0].smq_mtx, NULL, MUTEX_DEFAULT, NULL);
368 		mutex_init(&sm->sm_freeq[1].smq_mtx, NULL, MUTEX_DEFAULT, NULL);
369 		sm->sm_allocq = &sm->sm_freeq[0];
370 		sm->sm_releq = &sm->sm_freeq[1];
371 	}
372 
373 	/*
374 	 * Allocate and initialize the smap hash chain headers.
375 	 * Compute hash size rounding down to the next power of two.
376 	 */
377 	npages = MAP_PAGES(seg);
378 	smd->smd_npages = npages;
379 	hashsz = npages / SMAP_HASHAVELEN;
380 	hashsz = 1 << (highbit(hashsz)-1);
381 	smd_hashmsk = hashsz - 1;
382 	smd_hash = smd->smd_hash =
383 	    kmem_alloc(hashsz * sizeof (struct smaphash), KM_SLEEP);
384 #ifdef SEGMAP_HASHSTATS
385 	smd_hash_len =
386 	    kmem_zalloc(hashsz * sizeof (unsigned int), KM_SLEEP);
387 #endif
388 	for (i = 0, shashp = smd_hash; i < hashsz; i++, shashp++) {
389 		shashp->sh_hash_list = NULL;
390 		mutex_init(&shashp->sh_mtx, NULL, MUTEX_DEFAULT, NULL);
391 	}
392 
393 	/*
394 	 * Allocate and initialize the smap structures.
395 	 * Link all slots onto the appropriate freelist.
396 	 * The smap array is large enough to affect boot time
397 	 * on large systems, so use memory prefetching and only
398 	 * go through the array 1 time. Inline a optimized version
399 	 * of segmap_smapadd to add structures to freelists with
400 	 * knowledge that no locks are needed here.
401 	 */
402 	smd_smap = smd->smd_sm =
403 		kmem_alloc(sizeof (struct smap) * npages, KM_SLEEP);
404 
405 	for (smp = &smd->smd_sm[MAP_PAGES(seg) - 1];
406 	    smp >= smd->smd_sm; smp--) {
407 		struct smap *smpfreelist;
408 		struct sm_freeq *releq;
409 
410 		prefetch_smap_w((char *)smp);
411 
412 		smp->sm_vp = NULL;
413 		smp->sm_hash = NULL;
414 		smp->sm_off = 0;
415 		smp->sm_bitmap = 0;
416 		smp->sm_refcnt = 0;
417 		mutex_init(&smp->sm_mtx, NULL, MUTEX_DEFAULT, NULL);
418 		smp->sm_free_ndx = SMP2SMF_NDX(smp);
419 
420 		sm = SMP2SMF(smp);
421 		releq = sm->sm_releq;
422 
423 		smpfreelist = releq->smq_free;
424 		if (smpfreelist == 0) {
425 			releq->smq_free = smp->sm_next = smp->sm_prev = smp;
426 		} else {
427 			smp->sm_next = smpfreelist;
428 			smp->sm_prev = smpfreelist->sm_prev;
429 			smpfreelist->sm_prev = smp;
430 			smp->sm_prev->sm_next = smp;
431 			releq->smq_free = smp->sm_next;
432 		}
433 
434 		/*
435 		 * sm_flag = 0 (no SM_QNDX_ZERO) implies smap on sm_freeq[1]
436 		 */
437 		smp->sm_flags = 0;
438 
439 #ifdef	SEGKPM_SUPPORT
440 		/*
441 		 * Due to the fragile prefetch loop no
442 		 * separate function is used here.
443 		 */
444 		smp->sm_kpme_next = NULL;
445 		smp->sm_kpme_prev = NULL;
446 		smp->sm_kpme_page = NULL;
447 #endif
448 	}
449 
450 	/*
451 	 * Allocate the per color indices that distribute allocation
452 	 * requests over the free lists. Each cpu will have a private
453 	 * rotor index to spread the allocations even across the available
454 	 * smap freelists. Init the scpu_last_smap field to the first
455 	 * smap element so there is no need to check for NULL.
456 	 */
457 	smd_cpu =
458 		kmem_zalloc(sizeof (union segmap_cpu) * max_ncpus, KM_SLEEP);
459 	for (i = 0, scpu = smd_cpu; i < max_ncpus; i++, scpu++) {
460 		int j;
461 		for (j = 0; j < smd_ncolor; j++)
462 			scpu->scpu.scpu_free_ndx[j] = j;
463 		scpu->scpu.scpu_last_smap = smd_smap;
464 	}
465 
466 	if (vpm_enable) {
467 		vpm_init();
468 	}
469 
470 #ifdef DEBUG
471 	/*
472 	 * Keep track of which colors are used more often.
473 	 */
474 	colors_used = kmem_zalloc(smd_nfree * sizeof (int), KM_SLEEP);
475 #endif /* DEBUG */
476 
477 	return (0);
478 }
479 
480 static void
481 segmap_free(seg)
482 	struct seg *seg;
483 {
484 	ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock));
485 }
486 
487 /*
488  * Do a F_SOFTUNLOCK call over the range requested.
489  * The range must have already been F_SOFTLOCK'ed.
490  */
491 static void
492 segmap_unlock(
493 	struct hat *hat,
494 	struct seg *seg,
495 	caddr_t addr,
496 	size_t len,
497 	enum seg_rw rw,
498 	struct smap *smp)
499 {
500 	page_t *pp;
501 	caddr_t adr;
502 	u_offset_t off;
503 	struct vnode *vp;
504 	kmutex_t *smtx;
505 
506 	ASSERT(smp->sm_refcnt > 0);
507 
508 #ifdef lint
509 	seg = seg;
510 #endif
511 
512 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
513 
514 		/*
515 		 * We're called only from segmap_fault and this was a
516 		 * NOP in case of a kpm based smap, so dangerous things
517 		 * must have happened in the meantime. Pages are prefaulted
518 		 * and locked in segmap_getmapflt and they will not be
519 		 * unlocked until segmap_release.
520 		 */
521 		panic("segmap_unlock: called with kpm addr %p", (void *)addr);
522 		/*NOTREACHED*/
523 	}
524 
525 	vp = smp->sm_vp;
526 	off = smp->sm_off + (u_offset_t)((uintptr_t)addr & MAXBOFFSET);
527 
528 	hat_unlock(hat, addr, P2ROUNDUP(len, PAGESIZE));
529 	for (adr = addr; adr < addr + len; adr += PAGESIZE, off += PAGESIZE) {
530 		ushort_t bitmask;
531 
532 		/*
533 		 * Use page_find() instead of page_lookup() to
534 		 * find the page since we know that it has
535 		 * "shared" lock.
536 		 */
537 		pp = page_find(vp, off);
538 		if (pp == NULL) {
539 			panic("segmap_unlock: page not found");
540 			/*NOTREACHED*/
541 		}
542 
543 		if (rw == S_WRITE) {
544 			hat_setrefmod(pp);
545 		} else if (rw != S_OTHER) {
546 			TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT,
547 				"segmap_fault:pp %p vp %p offset %llx",
548 				pp, vp, off);
549 			hat_setref(pp);
550 		}
551 
552 		/*
553 		 * Clear bitmap, if the bit corresponding to "off" is set,
554 		 * since the page and translation are being unlocked.
555 		 */
556 		bitmask = SMAP_BIT_MASK((off - smp->sm_off) >> PAGESHIFT);
557 
558 		/*
559 		 * Large Files: Following assertion is to verify
560 		 * the correctness of the cast to (int) above.
561 		 */
562 		ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
563 		smtx = SMAPMTX(smp);
564 		mutex_enter(smtx);
565 		if (smp->sm_bitmap & bitmask) {
566 			smp->sm_bitmap &= ~bitmask;
567 		}
568 		mutex_exit(smtx);
569 
570 		page_unlock(pp);
571 	}
572 }
573 
574 #define	MAXPPB	(MAXBSIZE/4096)	/* assumes minimum page size of 4k */
575 
576 /*
577  * This routine is called via a machine specific fault handling
578  * routine.  It is also called by software routines wishing to
579  * lock or unlock a range of addresses.
580  *
581  * Note that this routine expects a page-aligned "addr".
582  */
583 faultcode_t
584 segmap_fault(
585 	struct hat *hat,
586 	struct seg *seg,
587 	caddr_t addr,
588 	size_t len,
589 	enum fault_type type,
590 	enum seg_rw rw)
591 {
592 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
593 	struct smap *smp;
594 	page_t *pp, **ppp;
595 	struct vnode *vp;
596 	u_offset_t off;
597 	page_t *pl[MAXPPB + 1];
598 	uint_t prot;
599 	u_offset_t addroff;
600 	caddr_t adr;
601 	int err;
602 	u_offset_t sm_off;
603 	int hat_flag;
604 
605 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
606 		int newpage;
607 		kmutex_t *smtx;
608 
609 		/*
610 		 * Pages are successfully prefaulted and locked in
611 		 * segmap_getmapflt and can't be unlocked until
612 		 * segmap_release. No hat mappings have to be locked
613 		 * and they also can't be unlocked as long as the
614 		 * caller owns an active kpm addr.
615 		 */
616 #ifndef DEBUG
617 		if (type != F_SOFTUNLOCK)
618 			return (0);
619 #endif
620 
621 		if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
622 			panic("segmap_fault: smap not found "
623 			    "for addr %p", (void *)addr);
624 			/*NOTREACHED*/
625 		}
626 
627 		smtx = SMAPMTX(smp);
628 #ifdef	DEBUG
629 		newpage = smp->sm_flags & SM_KPM_NEWPAGE;
630 		if (newpage) {
631 			cmn_err(CE_WARN, "segmap_fault: newpage? smp %p",
632 				(void *)smp);
633 		}
634 
635 		if (type != F_SOFTUNLOCK) {
636 			mutex_exit(smtx);
637 			return (0);
638 		}
639 #endif
640 		mutex_exit(smtx);
641 		vp = smp->sm_vp;
642 		sm_off = smp->sm_off;
643 
644 		if (vp == NULL)
645 			return (FC_MAKE_ERR(EIO));
646 
647 		ASSERT(smp->sm_refcnt > 0);
648 
649 		addroff = (u_offset_t)((uintptr_t)addr & MAXBOFFSET);
650 		if (addroff + len > MAXBSIZE)
651 			panic("segmap_fault: endaddr %p exceeds MAXBSIZE chunk",
652 			    (void *)(addr + len));
653 
654 		off = sm_off + addroff;
655 
656 		pp = page_find(vp, off);
657 
658 		if (pp == NULL)
659 			panic("segmap_fault: softunlock page not found");
660 
661 		/*
662 		 * Set ref bit also here in case of S_OTHER to avoid the
663 		 * overhead of supporting other cases than F_SOFTUNLOCK
664 		 * with segkpm. We can do this because the underlying
665 		 * pages are locked anyway.
666 		 */
667 		if (rw == S_WRITE) {
668 			hat_setrefmod(pp);
669 		} else {
670 			TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT,
671 				"segmap_fault:pp %p vp %p offset %llx",
672 				pp, vp, off);
673 			hat_setref(pp);
674 		}
675 
676 		return (0);
677 	}
678 
679 	smd_cpu[CPU->cpu_seqid].scpu.scpu_fault++;
680 	smp = GET_SMAP(seg, addr);
681 	vp = smp->sm_vp;
682 	sm_off = smp->sm_off;
683 
684 	if (vp == NULL)
685 		return (FC_MAKE_ERR(EIO));
686 
687 	ASSERT(smp->sm_refcnt > 0);
688 
689 	addroff = (u_offset_t)((uintptr_t)addr & MAXBOFFSET);
690 	if (addroff + len > MAXBSIZE) {
691 		panic("segmap_fault: endaddr %p "
692 		    "exceeds MAXBSIZE chunk", (void *)(addr + len));
693 		/*NOTREACHED*/
694 	}
695 	off = sm_off + addroff;
696 
697 	/*
698 	 * First handle the easy stuff
699 	 */
700 	if (type == F_SOFTUNLOCK) {
701 		segmap_unlock(hat, seg, addr, len, rw, smp);
702 		return (0);
703 	}
704 
705 	TRACE_3(TR_FAC_VM, TR_SEGMAP_GETPAGE,
706 		"segmap_getpage:seg %p addr %p vp %p", seg, addr, vp);
707 	err = VOP_GETPAGE(vp, (offset_t)off, len, &prot, pl, MAXBSIZE,
708 	    seg, addr, rw, CRED(), NULL);
709 
710 	if (err)
711 		return (FC_MAKE_ERR(err));
712 
713 	prot &= smd->smd_prot;
714 
715 	/*
716 	 * Handle all pages returned in the pl[] array.
717 	 * This loop is coded on the assumption that if
718 	 * there was no error from the VOP_GETPAGE routine,
719 	 * that the page list returned will contain all the
720 	 * needed pages for the vp from [off..off + len].
721 	 */
722 	ppp = pl;
723 	while ((pp = *ppp++) != NULL) {
724 		u_offset_t poff;
725 		ASSERT(pp->p_vnode == vp);
726 		hat_flag = HAT_LOAD;
727 
728 		/*
729 		 * Verify that the pages returned are within the range
730 		 * of this segmap region.  Note that it is theoretically
731 		 * possible for pages outside this range to be returned,
732 		 * but it is not very likely.  If we cannot use the
733 		 * page here, just release it and go on to the next one.
734 		 */
735 		if (pp->p_offset < sm_off ||
736 		    pp->p_offset >= sm_off + MAXBSIZE) {
737 			(void) page_release(pp, 1);
738 			continue;
739 		}
740 
741 		ASSERT(hat == kas.a_hat);
742 		poff = pp->p_offset;
743 		adr = addr + (poff - off);
744 		if (adr >= addr && adr < addr + len) {
745 			hat_setref(pp);
746 			TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT,
747 			    "segmap_fault:pp %p vp %p offset %llx",
748 			    pp, vp, poff);
749 			if (type == F_SOFTLOCK)
750 				hat_flag = HAT_LOAD_LOCK;
751 		}
752 
753 		/*
754 		 * Deal with VMODSORT pages here. If we know this is a write
755 		 * do the setmod now and allow write protection.
756 		 * As long as it's modified or not S_OTHER, remove write
757 		 * protection. With S_OTHER it's up to the FS to deal with this.
758 		 */
759 		if (IS_VMODSORT(vp)) {
760 			if (rw == S_WRITE)
761 				hat_setmod(pp);
762 			else if (rw != S_OTHER && !hat_ismod(pp))
763 				prot &= ~PROT_WRITE;
764 		}
765 
766 		hat_memload(hat, adr, pp, prot, hat_flag);
767 		if (hat_flag != HAT_LOAD_LOCK)
768 			page_unlock(pp);
769 	}
770 	return (0);
771 }
772 
773 /*
774  * This routine is used to start I/O on pages asynchronously.
775  */
776 static faultcode_t
777 segmap_faulta(struct seg *seg, caddr_t addr)
778 {
779 	struct smap *smp;
780 	struct vnode *vp;
781 	u_offset_t off;
782 	int err;
783 
784 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
785 		int	newpage;
786 		kmutex_t *smtx;
787 
788 		/*
789 		 * Pages are successfully prefaulted and locked in
790 		 * segmap_getmapflt and can't be unlocked until
791 		 * segmap_release. No hat mappings have to be locked
792 		 * and they also can't be unlocked as long as the
793 		 * caller owns an active kpm addr.
794 		 */
795 #ifdef	DEBUG
796 		if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
797 			panic("segmap_faulta: smap not found "
798 			    "for addr %p", (void *)addr);
799 			/*NOTREACHED*/
800 		}
801 
802 		smtx = SMAPMTX(smp);
803 		newpage = smp->sm_flags & SM_KPM_NEWPAGE;
804 		mutex_exit(smtx);
805 		if (newpage)
806 			cmn_err(CE_WARN, "segmap_faulta: newpage? smp %p",
807 			    (void *)smp);
808 #endif
809 		return (0);
810 	}
811 
812 	segmapcnt.smp_faulta.value.ul++;
813 	smp = GET_SMAP(seg, addr);
814 
815 	ASSERT(smp->sm_refcnt > 0);
816 
817 	vp = smp->sm_vp;
818 	off = smp->sm_off;
819 
820 	if (vp == NULL) {
821 		cmn_err(CE_WARN, "segmap_faulta - no vp");
822 		return (FC_MAKE_ERR(EIO));
823 	}
824 
825 	TRACE_3(TR_FAC_VM, TR_SEGMAP_GETPAGE,
826 		"segmap_getpage:seg %p addr %p vp %p", seg, addr, vp);
827 
828 	err = VOP_GETPAGE(vp, (offset_t)(off + ((offset_t)((uintptr_t)addr
829 	    & MAXBOFFSET))), PAGESIZE, (uint_t *)NULL, (page_t **)NULL, 0,
830 	    seg, addr, S_READ, CRED(), NULL);
831 
832 	if (err)
833 		return (FC_MAKE_ERR(err));
834 	return (0);
835 }
836 
837 /*ARGSUSED*/
838 static int
839 segmap_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
840 {
841 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
842 
843 	ASSERT(seg->s_as && RW_LOCK_HELD(&seg->s_as->a_lock));
844 
845 	/*
846 	 * Need not acquire the segment lock since
847 	 * "smd_prot" is a read-only field.
848 	 */
849 	return (((smd->smd_prot & prot) != prot) ? EACCES : 0);
850 }
851 
852 static int
853 segmap_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
854 {
855 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
856 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
857 
858 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
859 
860 	if (pgno != 0) {
861 		do
862 			protv[--pgno] = smd->smd_prot;
863 		while (pgno != 0);
864 	}
865 	return (0);
866 }
867 
868 static u_offset_t
869 segmap_getoffset(struct seg *seg, caddr_t addr)
870 {
871 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
872 
873 	ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock));
874 
875 	return ((u_offset_t)smd->smd_sm->sm_off + (addr - seg->s_base));
876 }
877 
878 /*ARGSUSED*/
879 static int
880 segmap_gettype(struct seg *seg, caddr_t addr)
881 {
882 	ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock));
883 
884 	return (MAP_SHARED);
885 }
886 
887 /*ARGSUSED*/
888 static int
889 segmap_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
890 {
891 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
892 
893 	ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock));
894 
895 	/* XXX - This doesn't make any sense */
896 	*vpp = smd->smd_sm->sm_vp;
897 	return (0);
898 }
899 
900 /*
901  * Check to see if it makes sense to do kluster/read ahead to
902  * addr + delta relative to the mapping at addr.  We assume here
903  * that delta is a signed PAGESIZE'd multiple (which can be negative).
904  *
905  * For segmap we always "approve" of this action from our standpoint.
906  */
907 /*ARGSUSED*/
908 static int
909 segmap_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
910 {
911 	return (0);
912 }
913 
914 static void
915 segmap_badop()
916 {
917 	panic("segmap_badop");
918 	/*NOTREACHED*/
919 }
920 
921 /*
922  * Special private segmap operations
923  */
924 
925 /*
926  * Add smap to the appropriate free list.
927  */
928 static void
929 segmap_smapadd(struct smap *smp)
930 {
931 	struct smfree *sm;
932 	struct smap *smpfreelist;
933 	struct sm_freeq *releq;
934 
935 	ASSERT(MUTEX_HELD(SMAPMTX(smp)));
936 
937 	if (smp->sm_refcnt != 0) {
938 		panic("segmap_smapadd");
939 		/*NOTREACHED*/
940 	}
941 
942 	sm = &smd_free[smp->sm_free_ndx];
943 	/*
944 	 * Add to the tail of the release queue
945 	 * Note that sm_releq and sm_allocq could toggle
946 	 * before we get the lock. This does not affect
947 	 * correctness as the 2 queues are only maintained
948 	 * to reduce lock pressure.
949 	 */
950 	releq = sm->sm_releq;
951 	if (releq == &sm->sm_freeq[0])
952 		smp->sm_flags |= SM_QNDX_ZERO;
953 	else
954 		smp->sm_flags &= ~SM_QNDX_ZERO;
955 	mutex_enter(&releq->smq_mtx);
956 	smpfreelist = releq->smq_free;
957 	if (smpfreelist == 0) {
958 		int want;
959 
960 		releq->smq_free = smp->sm_next = smp->sm_prev = smp;
961 		/*
962 		 * Both queue mutexes held to set sm_want;
963 		 * snapshot the value before dropping releq mutex.
964 		 * If sm_want appears after the releq mutex is dropped,
965 		 * then the smap just freed is already gone.
966 		 */
967 		want = sm->sm_want;
968 		mutex_exit(&releq->smq_mtx);
969 		/*
970 		 * See if there was a waiter before dropping the releq mutex
971 		 * then recheck after obtaining sm_freeq[0] mutex as
972 		 * the another thread may have already signaled.
973 		 */
974 		if (want) {
975 			mutex_enter(&sm->sm_freeq[0].smq_mtx);
976 			if (sm->sm_want)
977 				cv_signal(&sm->sm_free_cv);
978 			mutex_exit(&sm->sm_freeq[0].smq_mtx);
979 		}
980 	} else {
981 		smp->sm_next = smpfreelist;
982 		smp->sm_prev = smpfreelist->sm_prev;
983 		smpfreelist->sm_prev = smp;
984 		smp->sm_prev->sm_next = smp;
985 		mutex_exit(&releq->smq_mtx);
986 	}
987 }
988 
989 
990 static struct smap *
991 segmap_hashin(struct smap *smp, struct vnode *vp, u_offset_t off, int hashid)
992 {
993 	struct smap **hpp;
994 	struct smap *tmp;
995 	kmutex_t *hmtx;
996 
997 	ASSERT(MUTEX_HELD(SMAPMTX(smp)));
998 	ASSERT(smp->sm_vp == NULL);
999 	ASSERT(smp->sm_hash == NULL);
1000 	ASSERT(smp->sm_prev == NULL);
1001 	ASSERT(smp->sm_next == NULL);
1002 	ASSERT(hashid >= 0 && hashid <= smd_hashmsk);
1003 
1004 	hmtx = SHASHMTX(hashid);
1005 
1006 	mutex_enter(hmtx);
1007 	/*
1008 	 * First we need to verify that no one has created a smp
1009 	 * with (vp,off) as its tag before we us.
1010 	 */
1011 	for (tmp = smd_hash[hashid].sh_hash_list;
1012 	    tmp != NULL; tmp = tmp->sm_hash)
1013 		if (tmp->sm_vp == vp && tmp->sm_off == off)
1014 			break;
1015 
1016 	if (tmp == NULL) {
1017 		/*
1018 		 * No one created one yet.
1019 		 *
1020 		 * Funniness here - we don't increment the ref count on the
1021 		 * vnode * even though we have another pointer to it here.
1022 		 * The reason for this is that we don't want the fact that
1023 		 * a seg_map entry somewhere refers to a vnode to prevent the
1024 		 * vnode * itself from going away.  This is because this
1025 		 * reference to the vnode is a "soft one".  In the case where
1026 		 * a mapping is being used by a rdwr [or directory routine?]
1027 		 * there already has to be a non-zero ref count on the vnode.
1028 		 * In the case where the vp has been freed and the the smap
1029 		 * structure is on the free list, there are no pages in memory
1030 		 * that can refer to the vnode.  Thus even if we reuse the same
1031 		 * vnode/smap structure for a vnode which has the same
1032 		 * address but represents a different object, we are ok.
1033 		 */
1034 		smp->sm_vp = vp;
1035 		smp->sm_off = off;
1036 
1037 		hpp = &smd_hash[hashid].sh_hash_list;
1038 		smp->sm_hash = *hpp;
1039 		*hpp = smp;
1040 #ifdef SEGMAP_HASHSTATS
1041 		smd_hash_len[hashid]++;
1042 #endif
1043 	}
1044 	mutex_exit(hmtx);
1045 
1046 	return (tmp);
1047 }
1048 
1049 static void
1050 segmap_hashout(struct smap *smp)
1051 {
1052 	struct smap **hpp, *hp;
1053 	struct vnode *vp;
1054 	kmutex_t *mtx;
1055 	int hashid;
1056 	u_offset_t off;
1057 
1058 	ASSERT(MUTEX_HELD(SMAPMTX(smp)));
1059 
1060 	vp = smp->sm_vp;
1061 	off = smp->sm_off;
1062 
1063 	SMAP_HASHFUNC(vp, off, hashid);	/* macro assigns hashid */
1064 	mtx = SHASHMTX(hashid);
1065 	mutex_enter(mtx);
1066 
1067 	hpp = &smd_hash[hashid].sh_hash_list;
1068 	for (;;) {
1069 		hp = *hpp;
1070 		if (hp == NULL) {
1071 			panic("segmap_hashout");
1072 			/*NOTREACHED*/
1073 		}
1074 		if (hp == smp)
1075 			break;
1076 		hpp = &hp->sm_hash;
1077 	}
1078 
1079 	*hpp = smp->sm_hash;
1080 	smp->sm_hash = NULL;
1081 #ifdef SEGMAP_HASHSTATS
1082 	smd_hash_len[hashid]--;
1083 #endif
1084 	mutex_exit(mtx);
1085 
1086 	smp->sm_vp = NULL;
1087 	smp->sm_off = (u_offset_t)0;
1088 
1089 }
1090 
1091 /*
1092  * Attempt to free unmodified, unmapped, and non locked segmap
1093  * pages.
1094  */
1095 void
1096 segmap_pagefree(struct vnode *vp, u_offset_t off)
1097 {
1098 	u_offset_t pgoff;
1099 	page_t  *pp;
1100 
1101 	for (pgoff = off; pgoff < off + MAXBSIZE; pgoff += PAGESIZE) {
1102 
1103 		if ((pp = page_lookup_nowait(vp, pgoff, SE_EXCL)) == NULL)
1104 			continue;
1105 
1106 		switch (page_release(pp, 1)) {
1107 		case PGREL_NOTREL:
1108 			segmapcnt.smp_free_notfree.value.ul++;
1109 			break;
1110 		case PGREL_MOD:
1111 			segmapcnt.smp_free_dirty.value.ul++;
1112 			break;
1113 		case PGREL_CLEAN:
1114 			segmapcnt.smp_free.value.ul++;
1115 			break;
1116 		}
1117 	}
1118 }
1119 
1120 /*
1121  * Locks held on entry: smap lock
1122  * Locks held on exit : smap lock.
1123  */
1124 
1125 static void
1126 grab_smp(struct smap *smp, page_t *pp)
1127 {
1128 	ASSERT(MUTEX_HELD(SMAPMTX(smp)));
1129 	ASSERT(smp->sm_refcnt == 0);
1130 
1131 	if (smp->sm_vp != (struct vnode *)NULL) {
1132 		struct vnode	*vp = smp->sm_vp;
1133 		u_offset_t 	off = smp->sm_off;
1134 		/*
1135 		 * Destroy old vnode association and
1136 		 * unload any hardware translations to
1137 		 * the old object.
1138 		 */
1139 		smd_cpu[CPU->cpu_seqid].scpu.scpu_get_reuse++;
1140 		segmap_hashout(smp);
1141 
1142 		/*
1143 		 * This node is off freelist and hashlist,
1144 		 * so there is no reason to drop/reacquire sm_mtx
1145 		 * across calls to hat_unload.
1146 		 */
1147 		if (segmap_kpm) {
1148 			caddr_t vaddr;
1149 			int hat_unload_needed = 0;
1150 
1151 			/*
1152 			 * unload kpm mapping
1153 			 */
1154 			if (pp != NULL) {
1155 				vaddr = hat_kpm_page2va(pp, 1);
1156 				hat_kpm_mapout(pp, GET_KPME(smp), vaddr);
1157 				page_unlock(pp);
1158 			}
1159 
1160 			/*
1161 			 * Check if we have (also) the rare case of a
1162 			 * non kpm mapping.
1163 			 */
1164 			if (smp->sm_flags & SM_NOTKPM_RELEASED) {
1165 				hat_unload_needed = 1;
1166 				smp->sm_flags &= ~SM_NOTKPM_RELEASED;
1167 			}
1168 
1169 			if (hat_unload_needed) {
1170 				hat_unload(kas.a_hat, segkmap->s_base +
1171 				    ((smp - smd_smap) * MAXBSIZE),
1172 				    MAXBSIZE, HAT_UNLOAD);
1173 			}
1174 
1175 		} else {
1176 			ASSERT(smp->sm_flags & SM_NOTKPM_RELEASED);
1177 			smp->sm_flags &= ~SM_NOTKPM_RELEASED;
1178 			hat_unload(kas.a_hat, segkmap->s_base +
1179 			    ((smp - smd_smap) * MAXBSIZE),
1180 			    MAXBSIZE, HAT_UNLOAD);
1181 		}
1182 		segmap_pagefree(vp, off);
1183 	}
1184 }
1185 
1186 static struct smap *
1187 get_free_smp(int free_ndx)
1188 {
1189 	struct smfree *sm;
1190 	kmutex_t *smtx;
1191 	struct smap *smp, *first;
1192 	struct sm_freeq *allocq, *releq;
1193 	struct kpme *kpme;
1194 	page_t *pp = NULL;
1195 	int end_ndx, page_locked = 0;
1196 
1197 	end_ndx = free_ndx;
1198 	sm = &smd_free[free_ndx];
1199 
1200 retry_queue:
1201 	allocq = sm->sm_allocq;
1202 	mutex_enter(&allocq->smq_mtx);
1203 
1204 	if ((smp = allocq->smq_free) == NULL) {
1205 
1206 skip_queue:
1207 		/*
1208 		 * The alloc list is empty or this queue is being skipped;
1209 		 * first see if the allocq toggled.
1210 		 */
1211 		if (sm->sm_allocq != allocq) {
1212 			/* queue changed */
1213 			mutex_exit(&allocq->smq_mtx);
1214 			goto retry_queue;
1215 		}
1216 		releq = sm->sm_releq;
1217 		if (!mutex_tryenter(&releq->smq_mtx)) {
1218 			/* cannot get releq; a free smp may be there now */
1219 			mutex_exit(&allocq->smq_mtx);
1220 
1221 			/*
1222 			 * This loop could spin forever if this thread has
1223 			 * higher priority than the thread that is holding
1224 			 * releq->smq_mtx. In order to force the other thread
1225 			 * to run, we'll lock/unlock the mutex which is safe
1226 			 * since we just unlocked the allocq mutex.
1227 			 */
1228 			mutex_enter(&releq->smq_mtx);
1229 			mutex_exit(&releq->smq_mtx);
1230 			goto retry_queue;
1231 		}
1232 		if (releq->smq_free == NULL) {
1233 			/*
1234 			 * This freelist is empty.
1235 			 * This should not happen unless clients
1236 			 * are failing to release the segmap
1237 			 * window after accessing the data.
1238 			 * Before resorting to sleeping, try
1239 			 * the next list of the same color.
1240 			 */
1241 			free_ndx = (free_ndx + smd_ncolor) & smd_freemsk;
1242 			if (free_ndx != end_ndx) {
1243 				mutex_exit(&releq->smq_mtx);
1244 				mutex_exit(&allocq->smq_mtx);
1245 				sm = &smd_free[free_ndx];
1246 				goto retry_queue;
1247 			}
1248 			/*
1249 			 * Tried all freelists of the same color once,
1250 			 * wait on this list and hope something gets freed.
1251 			 */
1252 			segmapcnt.smp_get_nofree.value.ul++;
1253 			sm->sm_want++;
1254 			mutex_exit(&sm->sm_freeq[1].smq_mtx);
1255 			cv_wait(&sm->sm_free_cv,
1256 				&sm->sm_freeq[0].smq_mtx);
1257 			sm->sm_want--;
1258 			mutex_exit(&sm->sm_freeq[0].smq_mtx);
1259 			sm = &smd_free[free_ndx];
1260 			goto retry_queue;
1261 		} else {
1262 			/*
1263 			 * Something on the rele queue; flip the alloc
1264 			 * and rele queues and retry.
1265 			 */
1266 			sm->sm_allocq = releq;
1267 			sm->sm_releq = allocq;
1268 			mutex_exit(&allocq->smq_mtx);
1269 			mutex_exit(&releq->smq_mtx);
1270 			if (page_locked) {
1271 				delay(hz >> 2);
1272 				page_locked = 0;
1273 			}
1274 			goto retry_queue;
1275 		}
1276 	} else {
1277 		/*
1278 		 * Fastpath the case we get the smap mutex
1279 		 * on the first try.
1280 		 */
1281 		first = smp;
1282 next_smap:
1283 		smtx = SMAPMTX(smp);
1284 		if (!mutex_tryenter(smtx)) {
1285 			/*
1286 			 * Another thread is trying to reclaim this slot.
1287 			 * Skip to the next queue or smap.
1288 			 */
1289 			if ((smp = smp->sm_next) == first) {
1290 				goto skip_queue;
1291 			} else {
1292 				goto next_smap;
1293 			}
1294 		} else {
1295 			/*
1296 			 * if kpme exists, get shared lock on the page
1297 			 */
1298 			if (segmap_kpm && smp->sm_vp != NULL) {
1299 
1300 				kpme = GET_KPME(smp);
1301 				pp = kpme->kpe_page;
1302 
1303 				if (pp != NULL) {
1304 					if (!page_trylock(pp, SE_SHARED)) {
1305 						smp = smp->sm_next;
1306 						mutex_exit(smtx);
1307 						page_locked = 1;
1308 
1309 						pp = NULL;
1310 
1311 						if (smp == first) {
1312 							goto skip_queue;
1313 						} else {
1314 							goto next_smap;
1315 						}
1316 					} else {
1317 						if (kpme->kpe_page == NULL) {
1318 							page_unlock(pp);
1319 							pp = NULL;
1320 						}
1321 					}
1322 				}
1323 			}
1324 
1325 			/*
1326 			 * At this point, we've selected smp.  Remove smp
1327 			 * from its freelist.  If smp is the first one in
1328 			 * the freelist, update the head of the freelist.
1329 			 */
1330 			if (first == smp) {
1331 				ASSERT(first == allocq->smq_free);
1332 				allocq->smq_free = smp->sm_next;
1333 			}
1334 
1335 			/*
1336 			 * if the head of the freelist still points to smp,
1337 			 * then there are no more free smaps in that list.
1338 			 */
1339 			if (allocq->smq_free == smp)
1340 				/*
1341 				 * Took the last one
1342 				 */
1343 				allocq->smq_free = NULL;
1344 			else {
1345 				smp->sm_prev->sm_next = smp->sm_next;
1346 				smp->sm_next->sm_prev = smp->sm_prev;
1347 			}
1348 			mutex_exit(&allocq->smq_mtx);
1349 			smp->sm_prev = smp->sm_next = NULL;
1350 
1351 			/*
1352 			 * if pp != NULL, pp must have been locked;
1353 			 * grab_smp() unlocks pp.
1354 			 */
1355 			ASSERT((pp == NULL) || PAGE_LOCKED(pp));
1356 			grab_smp(smp, pp);
1357 			/* return smp locked. */
1358 			ASSERT(SMAPMTX(smp) == smtx);
1359 			ASSERT(MUTEX_HELD(smtx));
1360 			return (smp);
1361 		}
1362 	}
1363 }
1364 
1365 /*
1366  * Special public segmap operations
1367  */
1368 
1369 /*
1370  * Create pages (without using VOP_GETPAGE) and load up translations to them.
1371  * If softlock is TRUE, then set things up so that it looks like a call
1372  * to segmap_fault with F_SOFTLOCK.
1373  *
1374  * Returns 1, if a page is created by calling page_create_va(), or 0 otherwise.
1375  *
1376  * All fields in the generic segment (struct seg) are considered to be
1377  * read-only for "segmap" even though the kernel address space (kas) may
1378  * not be locked, hence no lock is needed to access them.
1379  */
1380 int
1381 segmap_pagecreate(struct seg *seg, caddr_t addr, size_t len, int softlock)
1382 {
1383 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
1384 	page_t *pp;
1385 	u_offset_t off;
1386 	struct smap *smp;
1387 	struct vnode *vp;
1388 	caddr_t eaddr;
1389 	int newpage = 0;
1390 	uint_t prot;
1391 	kmutex_t *smtx;
1392 	int hat_flag;
1393 
1394 	ASSERT(seg->s_as == &kas);
1395 
1396 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
1397 		/*
1398 		 * Pages are successfully prefaulted and locked in
1399 		 * segmap_getmapflt and can't be unlocked until
1400 		 * segmap_release. The SM_KPM_NEWPAGE flag is set
1401 		 * in segmap_pagecreate_kpm when new pages are created.
1402 		 * and it is returned as "newpage" indication here.
1403 		 */
1404 		if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
1405 			panic("segmap_pagecreate: smap not found "
1406 			    "for addr %p", (void *)addr);
1407 			/*NOTREACHED*/
1408 		}
1409 
1410 		smtx = SMAPMTX(smp);
1411 		newpage = smp->sm_flags & SM_KPM_NEWPAGE;
1412 		smp->sm_flags &= ~SM_KPM_NEWPAGE;
1413 		mutex_exit(smtx);
1414 
1415 		return (newpage);
1416 	}
1417 
1418 	smd_cpu[CPU->cpu_seqid].scpu.scpu_pagecreate++;
1419 
1420 	eaddr = addr + len;
1421 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1422 
1423 	smp = GET_SMAP(seg, addr);
1424 
1425 	/*
1426 	 * We don't grab smp mutex here since we assume the smp
1427 	 * has a refcnt set already which prevents the slot from
1428 	 * changing its id.
1429 	 */
1430 	ASSERT(smp->sm_refcnt > 0);
1431 
1432 	vp = smp->sm_vp;
1433 	off = smp->sm_off + ((u_offset_t)((uintptr_t)addr & MAXBOFFSET));
1434 	prot = smd->smd_prot;
1435 
1436 	for (; addr < eaddr; addr += PAGESIZE, off += PAGESIZE) {
1437 		hat_flag = HAT_LOAD;
1438 		pp = page_lookup(vp, off, SE_SHARED);
1439 		if (pp == NULL) {
1440 			ushort_t bitindex;
1441 
1442 			if ((pp = page_create_va(vp, off,
1443 			    PAGESIZE, PG_WAIT, seg, addr)) == NULL) {
1444 				panic("segmap_pagecreate: page_create failed");
1445 				/*NOTREACHED*/
1446 			}
1447 			newpage = 1;
1448 			page_io_unlock(pp);
1449 
1450 			/*
1451 			 * Since pages created here do not contain valid
1452 			 * data until the caller writes into them, the
1453 			 * "exclusive" lock will not be dropped to prevent
1454 			 * other users from accessing the page.  We also
1455 			 * have to lock the translation to prevent a fault
1456 			 * from occurring when the virtual address mapped by
1457 			 * this page is written into.  This is necessary to
1458 			 * avoid a deadlock since we haven't dropped the
1459 			 * "exclusive" lock.
1460 			 */
1461 			bitindex = (ushort_t)((off - smp->sm_off) >> PAGESHIFT);
1462 
1463 			/*
1464 			 * Large Files: The following assertion is to
1465 			 * verify the cast above.
1466 			 */
1467 			ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
1468 			smtx = SMAPMTX(smp);
1469 			mutex_enter(smtx);
1470 			smp->sm_bitmap |= SMAP_BIT_MASK(bitindex);
1471 			mutex_exit(smtx);
1472 
1473 			hat_flag = HAT_LOAD_LOCK;
1474 		} else if (softlock) {
1475 			hat_flag = HAT_LOAD_LOCK;
1476 		}
1477 
1478 		if (IS_VMODSORT(pp->p_vnode) && (prot & PROT_WRITE))
1479 			hat_setmod(pp);
1480 
1481 		hat_memload(kas.a_hat, addr, pp, prot, hat_flag);
1482 
1483 		if (hat_flag != HAT_LOAD_LOCK)
1484 			page_unlock(pp);
1485 
1486 		TRACE_5(TR_FAC_VM, TR_SEGMAP_PAGECREATE,
1487 		    "segmap_pagecreate:seg %p addr %p pp %p vp %p offset %llx",
1488 		    seg, addr, pp, vp, off);
1489 	}
1490 
1491 	return (newpage);
1492 }
1493 
1494 void
1495 segmap_pageunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
1496 {
1497 	struct smap	*smp;
1498 	ushort_t	bitmask;
1499 	page_t		*pp;
1500 	struct	vnode	*vp;
1501 	u_offset_t	off;
1502 	caddr_t		eaddr;
1503 	kmutex_t	*smtx;
1504 
1505 	ASSERT(seg->s_as == &kas);
1506 
1507 	eaddr = addr + len;
1508 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1509 
1510 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
1511 		/*
1512 		 * Pages are successfully prefaulted and locked in
1513 		 * segmap_getmapflt and can't be unlocked until
1514 		 * segmap_release, so no pages or hat mappings have
1515 		 * to be unlocked at this point.
1516 		 */
1517 #ifdef DEBUG
1518 		if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
1519 			panic("segmap_pageunlock: smap not found "
1520 			    "for addr %p", (void *)addr);
1521 			/*NOTREACHED*/
1522 		}
1523 
1524 		ASSERT(smp->sm_refcnt > 0);
1525 		mutex_exit(SMAPMTX(smp));
1526 #endif
1527 		return;
1528 	}
1529 
1530 	smp = GET_SMAP(seg, addr);
1531 	smtx = SMAPMTX(smp);
1532 
1533 	ASSERT(smp->sm_refcnt > 0);
1534 
1535 	vp = smp->sm_vp;
1536 	off = smp->sm_off + ((u_offset_t)((uintptr_t)addr & MAXBOFFSET));
1537 
1538 	for (; addr < eaddr; addr += PAGESIZE, off += PAGESIZE) {
1539 		bitmask = SMAP_BIT_MASK((int)(off - smp->sm_off) >> PAGESHIFT);
1540 
1541 		/*
1542 		 * Large Files: Following assertion is to verify
1543 		 * the correctness of the cast to (int) above.
1544 		 */
1545 		ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
1546 
1547 		/*
1548 		 * If the bit corresponding to "off" is set,
1549 		 * clear this bit in the bitmap, unlock translations,
1550 		 * and release the "exclusive" lock on the page.
1551 		 */
1552 		if (smp->sm_bitmap & bitmask) {
1553 			mutex_enter(smtx);
1554 			smp->sm_bitmap &= ~bitmask;
1555 			mutex_exit(smtx);
1556 
1557 			hat_unlock(kas.a_hat, addr, PAGESIZE);
1558 
1559 			/*
1560 			 * Use page_find() instead of page_lookup() to
1561 			 * find the page since we know that it has
1562 			 * "exclusive" lock.
1563 			 */
1564 			pp = page_find(vp, off);
1565 			if (pp == NULL) {
1566 				panic("segmap_pageunlock: page not found");
1567 				/*NOTREACHED*/
1568 			}
1569 			if (rw == S_WRITE) {
1570 				hat_setrefmod(pp);
1571 			} else if (rw != S_OTHER) {
1572 				hat_setref(pp);
1573 			}
1574 
1575 			page_unlock(pp);
1576 		}
1577 	}
1578 }
1579 
1580 caddr_t
1581 segmap_getmap(struct seg *seg, struct vnode *vp, u_offset_t off)
1582 {
1583 	return (segmap_getmapflt(seg, vp, off, MAXBSIZE, 0, S_OTHER));
1584 }
1585 
1586 /*
1587  * This is the magic virtual address that offset 0 of an ELF
1588  * file gets mapped to in user space. This is used to pick
1589  * the vac color on the freelist.
1590  */
1591 #define	ELF_OFFZERO_VA	(0x10000)
1592 /*
1593  * segmap_getmap allocates a MAXBSIZE big slot to map the vnode vp
1594  * in the range <off, off + len). off doesn't need to be MAXBSIZE aligned.
1595  * The return address is  always MAXBSIZE aligned.
1596  *
1597  * If forcefault is nonzero and the MMU translations haven't yet been created,
1598  * segmap_getmap will call segmap_fault(..., F_INVAL, rw) to create them.
1599  */
1600 caddr_t
1601 segmap_getmapflt(
1602 	struct seg *seg,
1603 	struct vnode *vp,
1604 	u_offset_t off,
1605 	size_t len,
1606 	int forcefault,
1607 	enum seg_rw rw)
1608 {
1609 	struct smap *smp, *nsmp;
1610 	extern struct vnode *common_specvp();
1611 	caddr_t baseaddr;			/* MAXBSIZE aligned */
1612 	u_offset_t baseoff;
1613 	int newslot;
1614 	caddr_t vaddr;
1615 	int color, hashid;
1616 	kmutex_t *hashmtx, *smapmtx;
1617 	struct smfree *sm;
1618 	page_t	*pp;
1619 	struct kpme *kpme;
1620 	uint_t	prot;
1621 	caddr_t base;
1622 	page_t	*pl[MAXPPB + 1];
1623 	int	error;
1624 	int	is_kpm = 1;
1625 
1626 	ASSERT(seg->s_as == &kas);
1627 	ASSERT(seg == segkmap);
1628 
1629 	baseoff = off & (offset_t)MAXBMASK;
1630 	if (off + len > baseoff + MAXBSIZE) {
1631 		panic("segmap_getmap bad len");
1632 		/*NOTREACHED*/
1633 	}
1634 
1635 	/*
1636 	 * If this is a block device we have to be sure to use the
1637 	 * "common" block device vnode for the mapping.
1638 	 */
1639 	if (vp->v_type == VBLK)
1640 		vp = common_specvp(vp);
1641 
1642 	smd_cpu[CPU->cpu_seqid].scpu.scpu_getmap++;
1643 
1644 	if (segmap_kpm == 0 ||
1645 	    (forcefault == SM_PAGECREATE && rw != S_WRITE)) {
1646 		is_kpm = 0;
1647 	}
1648 
1649 	SMAP_HASHFUNC(vp, off, hashid);	/* macro assigns hashid */
1650 	hashmtx = SHASHMTX(hashid);
1651 
1652 retry_hash:
1653 	mutex_enter(hashmtx);
1654 	for (smp = smd_hash[hashid].sh_hash_list;
1655 	    smp != NULL; smp = smp->sm_hash)
1656 		if (smp->sm_vp == vp && smp->sm_off == baseoff)
1657 			break;
1658 	mutex_exit(hashmtx);
1659 
1660 vrfy_smp:
1661 	if (smp != NULL) {
1662 
1663 		ASSERT(vp->v_count != 0);
1664 
1665 		/*
1666 		 * Get smap lock and recheck its tag. The hash lock
1667 		 * is dropped since the hash is based on (vp, off)
1668 		 * and (vp, off) won't change when we have smap mtx.
1669 		 */
1670 		smapmtx = SMAPMTX(smp);
1671 		mutex_enter(smapmtx);
1672 		if (smp->sm_vp != vp || smp->sm_off != baseoff) {
1673 			mutex_exit(smapmtx);
1674 			goto retry_hash;
1675 		}
1676 
1677 		if (smp->sm_refcnt == 0) {
1678 
1679 			smd_cpu[CPU->cpu_seqid].scpu.scpu_get_reclaim++;
1680 
1681 			/*
1682 			 * Could still be on the free list. However, this
1683 			 * could also be an smp that is transitioning from
1684 			 * the free list when we have too much contention
1685 			 * for the smapmtx's. In this case, we have an
1686 			 * unlocked smp that is not on the free list any
1687 			 * longer, but still has a 0 refcnt.  The only way
1688 			 * to be sure is to check the freelist pointers.
1689 			 * Since we now have the smapmtx, we are guaranteed
1690 			 * that the (vp, off) won't change, so we are safe
1691 			 * to reclaim it.  get_free_smp() knows that this
1692 			 * can happen, and it will check the refcnt.
1693 			 */
1694 
1695 			if ((smp->sm_next != NULL)) {
1696 				struct sm_freeq *freeq;
1697 
1698 				ASSERT(smp->sm_prev != NULL);
1699 				sm = &smd_free[smp->sm_free_ndx];
1700 
1701 				if (smp->sm_flags & SM_QNDX_ZERO)
1702 					freeq = &sm->sm_freeq[0];
1703 				else
1704 					freeq = &sm->sm_freeq[1];
1705 
1706 				mutex_enter(&freeq->smq_mtx);
1707 				if (freeq->smq_free != smp) {
1708 					/*
1709 					 * fastpath normal case
1710 					 */
1711 					smp->sm_prev->sm_next = smp->sm_next;
1712 					smp->sm_next->sm_prev = smp->sm_prev;
1713 				} else if (smp == smp->sm_next) {
1714 					/*
1715 					 * Taking the last smap on freelist
1716 					 */
1717 					freeq->smq_free = NULL;
1718 				} else {
1719 					/*
1720 					 * Reclaiming 1st smap on list
1721 					 */
1722 					freeq->smq_free = smp->sm_next;
1723 					smp->sm_prev->sm_next = smp->sm_next;
1724 					smp->sm_next->sm_prev = smp->sm_prev;
1725 				}
1726 				mutex_exit(&freeq->smq_mtx);
1727 				smp->sm_prev = smp->sm_next = NULL;
1728 			} else {
1729 				ASSERT(smp->sm_prev == NULL);
1730 				segmapcnt.smp_stolen.value.ul++;
1731 			}
1732 
1733 		} else {
1734 			segmapcnt.smp_get_use.value.ul++;
1735 		}
1736 		smp->sm_refcnt++;		/* another user */
1737 
1738 		/*
1739 		 * We don't invoke segmap_fault via TLB miss, so we set ref
1740 		 * and mod bits in advance. For S_OTHER  we set them in
1741 		 * segmap_fault F_SOFTUNLOCK.
1742 		 */
1743 		if (is_kpm) {
1744 			if (rw == S_WRITE) {
1745 				smp->sm_flags |= SM_WRITE_DATA;
1746 			} else if (rw == S_READ) {
1747 				smp->sm_flags |= SM_READ_DATA;
1748 			}
1749 		}
1750 		mutex_exit(smapmtx);
1751 
1752 		newslot = 0;
1753 	} else {
1754 
1755 		uint32_t free_ndx, *free_ndxp;
1756 		union segmap_cpu *scpu;
1757 
1758 		/*
1759 		 * On a PAC machine or a machine with anti-alias
1760 		 * hardware, smd_colormsk will be zero.
1761 		 *
1762 		 * On a VAC machine- pick color by offset in the file
1763 		 * so we won't get VAC conflicts on elf files.
1764 		 * On data files, color does not matter but we
1765 		 * don't know what kind of file it is so we always
1766 		 * pick color by offset. This causes color
1767 		 * corresponding to file offset zero to be used more
1768 		 * heavily.
1769 		 */
1770 		color = (baseoff >> MAXBSHIFT) & smd_colormsk;
1771 		scpu = smd_cpu+CPU->cpu_seqid;
1772 		free_ndxp = &scpu->scpu.scpu_free_ndx[color];
1773 		free_ndx = (*free_ndxp += smd_ncolor) & smd_freemsk;
1774 #ifdef DEBUG
1775 		colors_used[free_ndx]++;
1776 #endif /* DEBUG */
1777 
1778 		/*
1779 		 * Get a locked smp slot from the free list.
1780 		 */
1781 		smp = get_free_smp(free_ndx);
1782 		smapmtx = SMAPMTX(smp);
1783 
1784 		ASSERT(smp->sm_vp == NULL);
1785 
1786 		if ((nsmp = segmap_hashin(smp, vp, baseoff, hashid)) != NULL) {
1787 			/*
1788 			 * Failed to hashin, there exists one now.
1789 			 * Return the smp we just allocated.
1790 			 */
1791 			segmap_smapadd(smp);
1792 			mutex_exit(smapmtx);
1793 
1794 			smp = nsmp;
1795 			goto vrfy_smp;
1796 		}
1797 		smp->sm_refcnt++;		/* another user */
1798 
1799 		/*
1800 		 * We don't invoke segmap_fault via TLB miss, so we set ref
1801 		 * and mod bits in advance. For S_OTHER  we set them in
1802 		 * segmap_fault F_SOFTUNLOCK.
1803 		 */
1804 		if (is_kpm) {
1805 			if (rw == S_WRITE) {
1806 				smp->sm_flags |= SM_WRITE_DATA;
1807 			} else if (rw == S_READ) {
1808 				smp->sm_flags |= SM_READ_DATA;
1809 			}
1810 		}
1811 		mutex_exit(smapmtx);
1812 
1813 		newslot = 1;
1814 	}
1815 
1816 	if (!is_kpm)
1817 		goto use_segmap_range;
1818 
1819 	/*
1820 	 * Use segkpm
1821 	 */
1822 	/* Lint directive required until 6746211 is fixed */
1823 	/*CONSTCOND*/
1824 	ASSERT(PAGESIZE == MAXBSIZE);
1825 
1826 	/*
1827 	 * remember the last smp faulted on this cpu.
1828 	 */
1829 	(smd_cpu+CPU->cpu_seqid)->scpu.scpu_last_smap = smp;
1830 
1831 	if (forcefault == SM_PAGECREATE) {
1832 		baseaddr = segmap_pagecreate_kpm(seg, vp, baseoff, smp, rw);
1833 		return (baseaddr);
1834 	}
1835 
1836 	if (newslot == 0 &&
1837 	    (pp = GET_KPME(smp)->kpe_page) != NULL) {
1838 
1839 		/* fastpath */
1840 		switch (rw) {
1841 		case S_READ:
1842 		case S_WRITE:
1843 			if (page_trylock(pp, SE_SHARED)) {
1844 				if (PP_ISFREE(pp) ||
1845 				    !(pp->p_vnode == vp &&
1846 				    pp->p_offset == baseoff)) {
1847 					page_unlock(pp);
1848 					pp = page_lookup(vp, baseoff,
1849 						SE_SHARED);
1850 				}
1851 			} else {
1852 				pp = page_lookup(vp, baseoff, SE_SHARED);
1853 			}
1854 
1855 			if (pp == NULL) {
1856 				ASSERT(GET_KPME(smp)->kpe_page == NULL);
1857 				break;
1858 			}
1859 
1860 			if (rw == S_WRITE &&
1861 			    hat_page_getattr(pp, P_MOD | P_REF) !=
1862 			    (P_MOD | P_REF)) {
1863 				page_unlock(pp);
1864 				break;
1865 			}
1866 
1867 			/*
1868 			 * We have the p_selock as reader, grab_smp
1869 			 * can't hit us, we have bumped the smap
1870 			 * refcnt and hat_pageunload needs the
1871 			 * p_selock exclusive.
1872 			 */
1873 			kpme = GET_KPME(smp);
1874 			if (kpme->kpe_page == pp) {
1875 				baseaddr = hat_kpm_page2va(pp, 0);
1876 			} else if (kpme->kpe_page == NULL) {
1877 				baseaddr = hat_kpm_mapin(pp, kpme);
1878 			} else {
1879 				panic("segmap_getmapflt: stale "
1880 				    "kpme page, kpme %p", (void *)kpme);
1881 				/*NOTREACHED*/
1882 			}
1883 
1884 			/*
1885 			 * We don't invoke segmap_fault via TLB miss,
1886 			 * so we set ref and mod bits in advance.
1887 			 * For S_OTHER and we set them in segmap_fault
1888 			 * F_SOFTUNLOCK.
1889 			 */
1890 			if (rw == S_READ && !hat_isref(pp))
1891 				hat_setref(pp);
1892 
1893 			return (baseaddr);
1894 		default:
1895 			break;
1896 		}
1897 	}
1898 
1899 	base = segkpm_create_va(baseoff);
1900 	error = VOP_GETPAGE(vp, (offset_t)baseoff, len, &prot, pl, MAXBSIZE,
1901 	    seg, base, rw, CRED(), NULL);
1902 
1903 	pp = pl[0];
1904 	if (error || pp == NULL) {
1905 		/*
1906 		 * Use segmap address slot and let segmap_fault deal
1907 		 * with the error cases. There is no error return
1908 		 * possible here.
1909 		 */
1910 		goto use_segmap_range;
1911 	}
1912 
1913 	ASSERT(pl[1] == NULL);
1914 
1915 	/*
1916 	 * When prot is not returned w/ PROT_ALL the returned pages
1917 	 * are not backed by fs blocks. For most of the segmap users
1918 	 * this is no problem, they don't write to the pages in the
1919 	 * same request and therefore don't rely on a following
1920 	 * trap driven segmap_fault. With SM_LOCKPROTO users it
1921 	 * is more secure to use segkmap adresses to allow
1922 	 * protection segmap_fault's.
1923 	 */
1924 	if (prot != PROT_ALL && forcefault == SM_LOCKPROTO) {
1925 		/*
1926 		 * Use segmap address slot and let segmap_fault
1927 		 * do the error return.
1928 		 */
1929 		ASSERT(rw != S_WRITE);
1930 		ASSERT(PAGE_LOCKED(pp));
1931 		page_unlock(pp);
1932 		forcefault = 0;
1933 		goto use_segmap_range;
1934 	}
1935 
1936 	/*
1937 	 * We have the p_selock as reader, grab_smp can't hit us, we
1938 	 * have bumped the smap refcnt and hat_pageunload needs the
1939 	 * p_selock exclusive.
1940 	 */
1941 	kpme = GET_KPME(smp);
1942 	if (kpme->kpe_page == pp) {
1943 		baseaddr = hat_kpm_page2va(pp, 0);
1944 	} else if (kpme->kpe_page == NULL) {
1945 		baseaddr = hat_kpm_mapin(pp, kpme);
1946 	} else {
1947 		panic("segmap_getmapflt: stale kpme page after "
1948 		    "VOP_GETPAGE, kpme %p", (void *)kpme);
1949 		/*NOTREACHED*/
1950 	}
1951 
1952 	smd_cpu[CPU->cpu_seqid].scpu.scpu_fault++;
1953 
1954 	return (baseaddr);
1955 
1956 
1957 use_segmap_range:
1958 	baseaddr = seg->s_base + ((smp - smd_smap) * MAXBSIZE);
1959 	TRACE_4(TR_FAC_VM, TR_SEGMAP_GETMAP,
1960 	    "segmap_getmap:seg %p addr %p vp %p offset %llx",
1961 	    seg, baseaddr, vp, baseoff);
1962 
1963 	/*
1964 	 * Prefault the translations
1965 	 */
1966 	vaddr = baseaddr + (off - baseoff);
1967 	if (forcefault && (newslot || !hat_probe(kas.a_hat, vaddr))) {
1968 
1969 		caddr_t pgaddr = (caddr_t)((uintptr_t)vaddr &
1970 		    (uintptr_t)PAGEMASK);
1971 
1972 		(void) segmap_fault(kas.a_hat, seg, pgaddr,
1973 		    (vaddr + len - pgaddr + PAGESIZE - 1) & (uintptr_t)PAGEMASK,
1974 		    F_INVAL, rw);
1975 	}
1976 
1977 	return (baseaddr);
1978 }
1979 
1980 int
1981 segmap_release(struct seg *seg, caddr_t addr, uint_t flags)
1982 {
1983 	struct smap	*smp;
1984 	int 		error;
1985 	int		bflags = 0;
1986 	struct vnode	*vp;
1987 	u_offset_t	offset;
1988 	kmutex_t	*smtx;
1989 	int		is_kpm = 0;
1990 	page_t		*pp;
1991 
1992 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
1993 
1994 		if (((uintptr_t)addr & MAXBOFFSET) != 0) {
1995 			panic("segmap_release: addr %p not "
1996 			    "MAXBSIZE aligned", (void *)addr);
1997 			/*NOTREACHED*/
1998 		}
1999 
2000 		if ((smp = get_smap_kpm(addr, &pp)) == NULL) {
2001 			panic("segmap_release: smap not found "
2002 			    "for addr %p", (void *)addr);
2003 			/*NOTREACHED*/
2004 		}
2005 
2006 		TRACE_3(TR_FAC_VM, TR_SEGMAP_RELMAP,
2007 			"segmap_relmap:seg %p addr %p smp %p",
2008 			seg, addr, smp);
2009 
2010 		smtx = SMAPMTX(smp);
2011 
2012 		/*
2013 		 * For compatibility reasons segmap_pagecreate_kpm sets this
2014 		 * flag to allow a following segmap_pagecreate to return
2015 		 * this as "newpage" flag. When segmap_pagecreate is not
2016 		 * called at all we clear it now.
2017 		 */
2018 		smp->sm_flags &= ~SM_KPM_NEWPAGE;
2019 		is_kpm = 1;
2020 		if (smp->sm_flags & SM_WRITE_DATA) {
2021 			hat_setrefmod(pp);
2022 		} else if (smp->sm_flags & SM_READ_DATA) {
2023 			hat_setref(pp);
2024 		}
2025 	} else {
2026 		if (addr < seg->s_base || addr >= seg->s_base + seg->s_size ||
2027 		    ((uintptr_t)addr & MAXBOFFSET) != 0) {
2028 			panic("segmap_release: bad addr %p", (void *)addr);
2029 			/*NOTREACHED*/
2030 		}
2031 		smp = GET_SMAP(seg, addr);
2032 
2033 		TRACE_3(TR_FAC_VM, TR_SEGMAP_RELMAP,
2034 			"segmap_relmap:seg %p addr %p smp %p",
2035 			seg, addr, smp);
2036 
2037 		smtx = SMAPMTX(smp);
2038 		mutex_enter(smtx);
2039 		smp->sm_flags |= SM_NOTKPM_RELEASED;
2040 	}
2041 
2042 	ASSERT(smp->sm_refcnt > 0);
2043 
2044 	/*
2045 	 * Need to call VOP_PUTPAGE() if any flags (except SM_DONTNEED)
2046 	 * are set.
2047 	 */
2048 	if ((flags & ~SM_DONTNEED) != 0) {
2049 		if (flags & SM_WRITE)
2050 			segmapcnt.smp_rel_write.value.ul++;
2051 		if (flags & SM_ASYNC) {
2052 			bflags |= B_ASYNC;
2053 			segmapcnt.smp_rel_async.value.ul++;
2054 		}
2055 		if (flags & SM_INVAL) {
2056 			bflags |= B_INVAL;
2057 			segmapcnt.smp_rel_abort.value.ul++;
2058 		}
2059 		if (flags & SM_DESTROY) {
2060 			bflags |= (B_INVAL|B_TRUNC);
2061 			segmapcnt.smp_rel_abort.value.ul++;
2062 		}
2063 		if (smp->sm_refcnt == 1) {
2064 			/*
2065 			 * We only bother doing the FREE and DONTNEED flags
2066 			 * if no one else is still referencing this mapping.
2067 			 */
2068 			if (flags & SM_FREE) {
2069 				bflags |= B_FREE;
2070 				segmapcnt.smp_rel_free.value.ul++;
2071 			}
2072 			if (flags & SM_DONTNEED) {
2073 				bflags |= B_DONTNEED;
2074 				segmapcnt.smp_rel_dontneed.value.ul++;
2075 			}
2076 		}
2077 	} else {
2078 		smd_cpu[CPU->cpu_seqid].scpu.scpu_release++;
2079 	}
2080 
2081 	vp = smp->sm_vp;
2082 	offset = smp->sm_off;
2083 
2084 	if (--smp->sm_refcnt == 0) {
2085 
2086 		smp->sm_flags &= ~(SM_WRITE_DATA | SM_READ_DATA);
2087 
2088 		if (flags & (SM_INVAL|SM_DESTROY)) {
2089 			segmap_hashout(smp);	/* remove map info */
2090 			if (is_kpm) {
2091 				hat_kpm_mapout(pp, GET_KPME(smp), addr);
2092 				if (smp->sm_flags & SM_NOTKPM_RELEASED) {
2093 					smp->sm_flags &= ~SM_NOTKPM_RELEASED;
2094 					hat_unload(kas.a_hat, addr, MAXBSIZE,
2095 						HAT_UNLOAD);
2096 				}
2097 
2098 			} else {
2099 				if (segmap_kpm)
2100 					segkpm_mapout_validkpme(GET_KPME(smp));
2101 
2102 				smp->sm_flags &= ~SM_NOTKPM_RELEASED;
2103 				hat_unload(kas.a_hat, addr, MAXBSIZE,
2104 					HAT_UNLOAD);
2105 			}
2106 		}
2107 		segmap_smapadd(smp);	/* add to free list */
2108 	}
2109 
2110 	mutex_exit(smtx);
2111 
2112 	if (is_kpm)
2113 		page_unlock(pp);
2114 	/*
2115 	 * Now invoke VOP_PUTPAGE() if any flags (except SM_DONTNEED)
2116 	 * are set.
2117 	 */
2118 	if ((flags & ~SM_DONTNEED) != 0) {
2119 		error = VOP_PUTPAGE(vp, offset, MAXBSIZE,
2120 		    bflags, CRED(), NULL);
2121 	} else {
2122 		error = 0;
2123 	}
2124 
2125 	return (error);
2126 }
2127 
2128 /*
2129  * Dump the pages belonging to this segmap segment.
2130  */
2131 static void
2132 segmap_dump(struct seg *seg)
2133 {
2134 	struct segmap_data *smd;
2135 	struct smap *smp, *smp_end;
2136 	page_t *pp;
2137 	pfn_t pfn;
2138 	u_offset_t off;
2139 	caddr_t addr;
2140 
2141 	smd = (struct segmap_data *)seg->s_data;
2142 	addr = seg->s_base;
2143 	for (smp = smd->smd_sm, smp_end = smp + smd->smd_npages;
2144 	    smp < smp_end; smp++) {
2145 
2146 		if (smp->sm_refcnt) {
2147 			for (off = 0; off < MAXBSIZE; off += PAGESIZE) {
2148 				int we_own_it = 0;
2149 
2150 				/*
2151 				 * If pp == NULL, the page either does
2152 				 * not exist or is exclusively locked.
2153 				 * So determine if it exists before
2154 				 * searching for it.
2155 				 */
2156 				if ((pp = page_lookup_nowait(smp->sm_vp,
2157 				    smp->sm_off + off, SE_SHARED)))
2158 					we_own_it = 1;
2159 				else
2160 					pp = page_exists(smp->sm_vp,
2161 					    smp->sm_off + off);
2162 
2163 				if (pp) {
2164 					pfn = page_pptonum(pp);
2165 					dump_addpage(seg->s_as,
2166 						addr + off, pfn);
2167 					if (we_own_it)
2168 						page_unlock(pp);
2169 				}
2170 				dump_timeleft = dump_timeout;
2171 			}
2172 		}
2173 		addr += MAXBSIZE;
2174 	}
2175 }
2176 
2177 /*ARGSUSED*/
2178 static int
2179 segmap_pagelock(struct seg *seg, caddr_t addr, size_t len,
2180     struct page ***ppp, enum lock_type type, enum seg_rw rw)
2181 {
2182 	return (ENOTSUP);
2183 }
2184 
2185 static int
2186 segmap_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
2187 {
2188 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
2189 
2190 	memidp->val[0] = (uintptr_t)smd->smd_sm->sm_vp;
2191 	memidp->val[1] = smd->smd_sm->sm_off + (uintptr_t)(addr - seg->s_base);
2192 	return (0);
2193 }
2194 
2195 /*ARGSUSED*/
2196 static lgrp_mem_policy_info_t *
2197 segmap_getpolicy(struct seg *seg, caddr_t addr)
2198 {
2199 	return (NULL);
2200 }
2201 
2202 /*ARGSUSED*/
2203 static int
2204 segmap_capable(struct seg *seg, segcapability_t capability)
2205 {
2206 	return (0);
2207 }
2208 
2209 
2210 #ifdef	SEGKPM_SUPPORT
2211 
2212 /*
2213  * segkpm support routines
2214  */
2215 
2216 static caddr_t
2217 segmap_pagecreate_kpm(struct seg *seg, vnode_t *vp, u_offset_t off,
2218 	struct smap *smp, enum seg_rw rw)
2219 {
2220 	caddr_t	base;
2221 	page_t	*pp;
2222 	int	newpage = 0;
2223 	struct kpme	*kpme;
2224 
2225 	ASSERT(smp->sm_refcnt > 0);
2226 
2227 	if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
2228 		kmutex_t *smtx;
2229 
2230 		base = segkpm_create_va(off);
2231 
2232 		if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT,
2233 		    seg, base)) == NULL) {
2234 			panic("segmap_pagecreate_kpm: "
2235 			    "page_create failed");
2236 			/*NOTREACHED*/
2237 		}
2238 
2239 		newpage = 1;
2240 		page_io_unlock(pp);
2241 		ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
2242 
2243 		/*
2244 		 * Mark this here until the following segmap_pagecreate
2245 		 * or segmap_release.
2246 		 */
2247 		smtx = SMAPMTX(smp);
2248 		mutex_enter(smtx);
2249 		smp->sm_flags |= SM_KPM_NEWPAGE;
2250 		mutex_exit(smtx);
2251 	}
2252 
2253 	kpme = GET_KPME(smp);
2254 	if (!newpage && kpme->kpe_page == pp)
2255 		base = hat_kpm_page2va(pp, 0);
2256 	else
2257 		base = hat_kpm_mapin(pp, kpme);
2258 
2259 	/*
2260 	 * FS code may decide not to call segmap_pagecreate and we
2261 	 * don't invoke segmap_fault via TLB miss, so we have to set
2262 	 * ref and mod bits in advance.
2263 	 */
2264 	if (rw == S_WRITE) {
2265 		hat_setrefmod(pp);
2266 	} else {
2267 		ASSERT(rw == S_READ);
2268 		hat_setref(pp);
2269 	}
2270 
2271 	smd_cpu[CPU->cpu_seqid].scpu.scpu_pagecreate++;
2272 
2273 	return (base);
2274 }
2275 
2276 /*
2277  * Find the smap structure corresponding to the
2278  * KPM addr and return it locked.
2279  */
2280 struct smap *
2281 get_smap_kpm(caddr_t addr, page_t **ppp)
2282 {
2283 	struct smap	*smp;
2284 	struct vnode	*vp;
2285 	u_offset_t	offset;
2286 	caddr_t		baseaddr = (caddr_t)((uintptr_t)addr & MAXBMASK);
2287 	int		hashid;
2288 	kmutex_t	*hashmtx;
2289 	page_t		*pp;
2290 	union segmap_cpu *scpu;
2291 
2292 	pp = hat_kpm_vaddr2page(baseaddr);
2293 
2294 	ASSERT(pp && !PP_ISFREE(pp));
2295 	ASSERT(PAGE_LOCKED(pp));
2296 	ASSERT(((uintptr_t)pp->p_offset & MAXBOFFSET) == 0);
2297 
2298 	vp = pp->p_vnode;
2299 	offset = pp->p_offset;
2300 	ASSERT(vp != NULL);
2301 
2302 	/*
2303 	 * Assume the last smap used on this cpu is the one needed.
2304 	 */
2305 	scpu = smd_cpu+CPU->cpu_seqid;
2306 	smp = scpu->scpu.scpu_last_smap;
2307 	mutex_enter(&smp->sm_mtx);
2308 	if (smp->sm_vp == vp && smp->sm_off == offset) {
2309 		ASSERT(smp->sm_refcnt > 0);
2310 	} else {
2311 		/*
2312 		 * Assumption wrong, find the smap on the hash chain.
2313 		 */
2314 		mutex_exit(&smp->sm_mtx);
2315 		SMAP_HASHFUNC(vp, offset, hashid); /* macro assigns hashid */
2316 		hashmtx = SHASHMTX(hashid);
2317 
2318 		mutex_enter(hashmtx);
2319 		smp = smd_hash[hashid].sh_hash_list;
2320 		for (; smp != NULL; smp = smp->sm_hash) {
2321 			if (smp->sm_vp == vp && smp->sm_off == offset)
2322 				break;
2323 		}
2324 		mutex_exit(hashmtx);
2325 		if (smp) {
2326 			mutex_enter(&smp->sm_mtx);
2327 			ASSERT(smp->sm_vp == vp && smp->sm_off == offset);
2328 		}
2329 	}
2330 
2331 	if (ppp)
2332 		*ppp = smp ? pp : NULL;
2333 
2334 	return (smp);
2335 }
2336 
2337 #else	/* SEGKPM_SUPPORT */
2338 
2339 /* segkpm stubs */
2340 
2341 /*ARGSUSED*/
2342 static caddr_t
2343 segmap_pagecreate_kpm(struct seg *seg, vnode_t *vp, u_offset_t off,
2344 	struct smap *smp, enum seg_rw rw)
2345 {
2346 	return (NULL);
2347 }
2348 
2349 /*ARGSUSED*/
2350 struct smap *
2351 get_smap_kpm(caddr_t addr, page_t **ppp)
2352 {
2353 	return (NULL);
2354 }
2355 
2356 #endif	/* SEGKPM_SUPPORT */
2357