1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 /* 29 * Portions of this source code were derived from Berkeley 4.3 BSD 30 * under license from the Regents of the University of California. 31 */ 32 33 /* 34 * segkp is a segment driver that administers the allocation and deallocation 35 * of pageable variable size chunks of kernel virtual address space. Each 36 * allocated resource is page-aligned. 37 * 38 * The user may specify whether the resource should be initialized to 0, 39 * include a redzone, or locked in memory. 40 */ 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/thread.h> 45 #include <sys/param.h> 46 #include <sys/errno.h> 47 #include <sys/sysmacros.h> 48 #include <sys/systm.h> 49 #include <sys/buf.h> 50 #include <sys/mman.h> 51 #include <sys/vnode.h> 52 #include <sys/cmn_err.h> 53 #include <sys/swap.h> 54 #include <sys/tuneable.h> 55 #include <sys/kmem.h> 56 #include <sys/vmem.h> 57 #include <sys/cred.h> 58 #include <sys/dumphdr.h> 59 #include <sys/debug.h> 60 #include <sys/vtrace.h> 61 #include <sys/stack.h> 62 #include <sys/atomic.h> 63 #include <sys/archsystm.h> 64 #include <sys/lgrp.h> 65 66 #include <vm/as.h> 67 #include <vm/seg.h> 68 #include <vm/seg_kp.h> 69 #include <vm/seg_kmem.h> 70 #include <vm/anon.h> 71 #include <vm/page.h> 72 #include <vm/hat.h> 73 #include <sys/bitmap.h> 74 75 /* 76 * Private seg op routines 77 */ 78 static void segkp_badop(void); 79 static void segkp_dump(struct seg *seg); 80 static int segkp_checkprot(struct seg *seg, caddr_t addr, size_t len, 81 uint_t prot); 82 static int segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta); 83 static int segkp_pagelock(struct seg *seg, caddr_t addr, size_t len, 84 struct page ***page, enum lock_type type, 85 enum seg_rw rw); 86 static void segkp_insert(struct seg *seg, struct segkp_data *kpd); 87 static void segkp_delete(struct seg *seg, struct segkp_data *kpd); 88 static caddr_t segkp_get_internal(struct seg *seg, size_t len, uint_t flags, 89 struct segkp_data **tkpd, struct anon_map *amp); 90 static void segkp_release_internal(struct seg *seg, 91 struct segkp_data *kpd, size_t len); 92 static int segkp_unlock(struct hat *hat, struct seg *seg, caddr_t vaddr, 93 size_t len, struct segkp_data *kpd, uint_t flags); 94 static int segkp_load(struct hat *hat, struct seg *seg, caddr_t vaddr, 95 size_t len, struct segkp_data *kpd, uint_t flags); 96 static struct segkp_data *segkp_find(struct seg *seg, caddr_t vaddr); 97 static int segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp); 98 static lgrp_mem_policy_info_t *segkp_getpolicy(struct seg *seg, 99 caddr_t addr); 100 static int segkp_capable(struct seg *seg, segcapability_t capability); 101 102 /* 103 * Lock used to protect the hash table(s) and caches. 104 */ 105 static kmutex_t segkp_lock; 106 107 /* 108 * The segkp caches 109 */ 110 static struct segkp_cache segkp_cache[SEGKP_MAX_CACHE]; 111 112 #define SEGKP_BADOP(t) (t(*)())segkp_badop 113 114 /* 115 * When there are fewer than red_minavail bytes left on the stack, 116 * segkp_map_red() will map in the redzone (if called). 5000 seems 117 * to work reasonably well... 118 */ 119 long red_minavail = 5000; 120 121 /* 122 * will be set to 1 for 32 bit x86 systems only, in startup.c 123 */ 124 int segkp_fromheap = 0; 125 ulong_t *segkp_bitmap; 126 127 /* 128 * If segkp_map_red() is called with the redzone already mapped and 129 * with less than RED_DEEP_THRESHOLD bytes available on the stack, 130 * then the stack situation has become quite serious; if much more stack 131 * is consumed, we have the potential of scrogging the next thread/LWP 132 * structure. To help debug the "can't happen" panics which may 133 * result from this condition, we record hrestime and the calling thread 134 * in red_deep_hires and red_deep_thread respectively. 135 */ 136 #define RED_DEEP_THRESHOLD 2000 137 138 hrtime_t red_deep_hires; 139 kthread_t *red_deep_thread; 140 141 uint32_t red_nmapped; 142 uint32_t red_closest = UINT_MAX; 143 uint32_t red_ndoubles; 144 145 pgcnt_t anon_segkp_pages_locked; /* See vm/anon.h */ 146 pgcnt_t anon_segkp_pages_resv; /* anon reserved by seg_kp */ 147 148 static struct seg_ops segkp_ops = { 149 SEGKP_BADOP(int), /* dup */ 150 SEGKP_BADOP(int), /* unmap */ 151 SEGKP_BADOP(void), /* free */ 152 segkp_fault, 153 SEGKP_BADOP(faultcode_t), /* faulta */ 154 SEGKP_BADOP(int), /* setprot */ 155 segkp_checkprot, 156 segkp_kluster, 157 SEGKP_BADOP(size_t), /* swapout */ 158 SEGKP_BADOP(int), /* sync */ 159 SEGKP_BADOP(size_t), /* incore */ 160 SEGKP_BADOP(int), /* lockop */ 161 SEGKP_BADOP(int), /* getprot */ 162 SEGKP_BADOP(u_offset_t), /* getoffset */ 163 SEGKP_BADOP(int), /* gettype */ 164 SEGKP_BADOP(int), /* getvp */ 165 SEGKP_BADOP(int), /* advise */ 166 segkp_dump, /* dump */ 167 segkp_pagelock, /* pagelock */ 168 SEGKP_BADOP(int), /* setpgsz */ 169 segkp_getmemid, /* getmemid */ 170 segkp_getpolicy, /* getpolicy */ 171 segkp_capable, /* capable */ 172 }; 173 174 175 static void 176 segkp_badop(void) 177 { 178 panic("segkp_badop"); 179 /*NOTREACHED*/ 180 } 181 182 static void segkpinit_mem_config(struct seg *); 183 184 static uint32_t segkp_indel; 185 186 /* 187 * Allocate the segment specific private data struct and fill it in 188 * with the per kp segment mutex, anon ptr. array and hash table. 189 */ 190 int 191 segkp_create(struct seg *seg) 192 { 193 struct segkp_segdata *kpsd; 194 size_t np; 195 196 ASSERT(seg != NULL && seg->s_as == &kas); 197 ASSERT(RW_WRITE_HELD(&seg->s_as->a_lock)); 198 199 if (seg->s_size & PAGEOFFSET) { 200 panic("Bad segkp size"); 201 /*NOTREACHED*/ 202 } 203 204 kpsd = kmem_zalloc(sizeof (struct segkp_segdata), KM_SLEEP); 205 206 /* 207 * Allocate the virtual memory for segkp and initialize it 208 */ 209 if (segkp_fromheap) { 210 np = btop(kvseg.s_size); 211 segkp_bitmap = kmem_zalloc(BT_SIZEOFMAP(np), KM_SLEEP); 212 kpsd->kpsd_arena = vmem_create("segkp", NULL, 0, PAGESIZE, 213 vmem_alloc, vmem_free, heap_arena, 5 * PAGESIZE, VM_SLEEP); 214 } else { 215 segkp_bitmap = NULL; 216 np = btop(seg->s_size); 217 kpsd->kpsd_arena = vmem_create("segkp", seg->s_base, 218 seg->s_size, PAGESIZE, NULL, NULL, NULL, 5 * PAGESIZE, 219 VM_SLEEP); 220 } 221 222 kpsd->kpsd_anon = anon_create(np, ANON_SLEEP | ANON_ALLOC_FORCE); 223 224 kpsd->kpsd_hash = kmem_zalloc(SEGKP_HASHSZ * sizeof (struct segkp *), 225 KM_SLEEP); 226 seg->s_data = (void *)kpsd; 227 seg->s_ops = &segkp_ops; 228 segkpinit_mem_config(seg); 229 return (0); 230 } 231 232 233 /* 234 * Find a free 'freelist' and initialize it with the appropriate attributes 235 */ 236 void * 237 segkp_cache_init(struct seg *seg, int maxsize, size_t len, uint_t flags) 238 { 239 int i; 240 241 if ((flags & KPD_NO_ANON) && !(flags & KPD_LOCKED)) 242 return ((void *)-1); 243 244 mutex_enter(&segkp_lock); 245 for (i = 0; i < SEGKP_MAX_CACHE; i++) { 246 if (segkp_cache[i].kpf_inuse) 247 continue; 248 segkp_cache[i].kpf_inuse = 1; 249 segkp_cache[i].kpf_max = maxsize; 250 segkp_cache[i].kpf_flags = flags; 251 segkp_cache[i].kpf_seg = seg; 252 segkp_cache[i].kpf_len = len; 253 mutex_exit(&segkp_lock); 254 return ((void *)(uintptr_t)i); 255 } 256 mutex_exit(&segkp_lock); 257 return ((void *)-1); 258 } 259 260 /* 261 * Free all the cache resources. 262 */ 263 void 264 segkp_cache_free(void) 265 { 266 struct segkp_data *kpd; 267 struct seg *seg; 268 int i; 269 270 mutex_enter(&segkp_lock); 271 for (i = 0; i < SEGKP_MAX_CACHE; i++) { 272 if (!segkp_cache[i].kpf_inuse) 273 continue; 274 /* 275 * Disconnect the freelist and process each element 276 */ 277 kpd = segkp_cache[i].kpf_list; 278 seg = segkp_cache[i].kpf_seg; 279 segkp_cache[i].kpf_list = NULL; 280 segkp_cache[i].kpf_count = 0; 281 mutex_exit(&segkp_lock); 282 283 while (kpd != NULL) { 284 struct segkp_data *next; 285 286 next = kpd->kp_next; 287 segkp_release_internal(seg, kpd, kpd->kp_len); 288 kpd = next; 289 } 290 mutex_enter(&segkp_lock); 291 } 292 mutex_exit(&segkp_lock); 293 } 294 295 /* 296 * There are 2 entries into segkp_get_internal. The first includes a cookie 297 * used to access a pool of cached segkp resources. The second does not 298 * use the cache. 299 */ 300 caddr_t 301 segkp_get(struct seg *seg, size_t len, uint_t flags) 302 { 303 struct segkp_data *kpd = NULL; 304 305 if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) { 306 kpd->kp_cookie = -1; 307 return (stom(kpd->kp_base, flags)); 308 } 309 return (NULL); 310 } 311 312 /* 313 * Return a 'cached' segkp address 314 */ 315 caddr_t 316 segkp_cache_get(void *cookie) 317 { 318 struct segkp_cache *freelist = NULL; 319 struct segkp_data *kpd = NULL; 320 int index = (int)(uintptr_t)cookie; 321 struct seg *seg; 322 size_t len; 323 uint_t flags; 324 325 if (index < 0 || index >= SEGKP_MAX_CACHE) 326 return (NULL); 327 freelist = &segkp_cache[index]; 328 329 mutex_enter(&segkp_lock); 330 seg = freelist->kpf_seg; 331 flags = freelist->kpf_flags; 332 if (freelist->kpf_list != NULL) { 333 kpd = freelist->kpf_list; 334 freelist->kpf_list = kpd->kp_next; 335 freelist->kpf_count--; 336 mutex_exit(&segkp_lock); 337 kpd->kp_next = NULL; 338 segkp_insert(seg, kpd); 339 return (stom(kpd->kp_base, flags)); 340 } 341 len = freelist->kpf_len; 342 mutex_exit(&segkp_lock); 343 if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) { 344 kpd->kp_cookie = index; 345 return (stom(kpd->kp_base, flags)); 346 } 347 return (NULL); 348 } 349 350 caddr_t 351 segkp_get_withanonmap( 352 struct seg *seg, 353 size_t len, 354 uint_t flags, 355 struct anon_map *amp) 356 { 357 struct segkp_data *kpd = NULL; 358 359 ASSERT(amp != NULL); 360 flags |= KPD_HASAMP; 361 if (segkp_get_internal(seg, len, flags, &kpd, amp) != NULL) { 362 kpd->kp_cookie = -1; 363 return (stom(kpd->kp_base, flags)); 364 } 365 return (NULL); 366 } 367 368 /* 369 * This does the real work of segkp allocation. 370 * Return to client base addr. len must be page-aligned. A null value is 371 * returned if there are no more vm resources (e.g. pages, swap). The len 372 * and base recorded in the private data structure include the redzone 373 * and the redzone length (if applicable). If the user requests a redzone 374 * either the first or last page is left unmapped depending whether stacks 375 * grow to low or high memory. 376 * 377 * The client may also specify a no-wait flag. If that is set then the 378 * request will choose a non-blocking path when requesting resources. 379 * The default is make the client wait. 380 */ 381 static caddr_t 382 segkp_get_internal( 383 struct seg *seg, 384 size_t len, 385 uint_t flags, 386 struct segkp_data **tkpd, 387 struct anon_map *amp) 388 { 389 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 390 struct segkp_data *kpd; 391 caddr_t vbase = NULL; /* always first virtual, may not be mapped */ 392 pgcnt_t np = 0; /* number of pages in the resource */ 393 pgcnt_t segkpindex; 394 long i; 395 caddr_t va; 396 pgcnt_t pages = 0; 397 ulong_t anon_idx = 0; 398 int kmflag = (flags & KPD_NOWAIT) ? KM_NOSLEEP : KM_SLEEP; 399 caddr_t s_base = (segkp_fromheap) ? kvseg.s_base : seg->s_base; 400 401 if (len & PAGEOFFSET) { 402 panic("segkp_get: len is not page-aligned"); 403 /*NOTREACHED*/ 404 } 405 406 ASSERT(((flags & KPD_HASAMP) == 0) == (amp == NULL)); 407 408 /* Only allow KPD_NO_ANON if we are going to lock it down */ 409 if ((flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON) 410 return (NULL); 411 412 if ((kpd = kmem_zalloc(sizeof (struct segkp_data), kmflag)) == NULL) 413 return (NULL); 414 /* 415 * Fix up the len to reflect the REDZONE if applicable 416 */ 417 if (flags & KPD_HASREDZONE) 418 len += PAGESIZE; 419 np = btop(len); 420 421 vbase = vmem_alloc(SEGKP_VMEM(seg), len, kmflag | VM_BESTFIT); 422 if (vbase == NULL) { 423 kmem_free(kpd, sizeof (struct segkp_data)); 424 return (NULL); 425 } 426 427 /* If locking, reserve physical memory */ 428 if (flags & KPD_LOCKED) { 429 pages = btop(SEGKP_MAPLEN(len, flags)); 430 if (page_resv(pages, kmflag) == 0) { 431 vmem_free(SEGKP_VMEM(seg), vbase, len); 432 kmem_free(kpd, sizeof (struct segkp_data)); 433 return (NULL); 434 } 435 if ((flags & KPD_NO_ANON) == 0) 436 atomic_add_long(&anon_segkp_pages_locked, pages); 437 } 438 439 /* 440 * Reserve sufficient swap space for this vm resource. We'll 441 * actually allocate it in the loop below, but reserving it 442 * here allows us to back out more gracefully than if we 443 * had an allocation failure in the body of the loop. 444 * 445 * Note that we don't need swap space for the red zone page. 446 */ 447 if (amp != NULL) { 448 /* 449 * The swap reservation has been done, if required, and the 450 * anon_hdr is separate. 451 */ 452 anon_idx = 0; 453 kpd->kp_anon_idx = anon_idx; 454 kpd->kp_anon = amp->ahp; 455 456 TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u", 457 kpd, vbase, len, flags, 1); 458 459 } else if ((flags & KPD_NO_ANON) == 0) { 460 if (anon_resv_zone(SEGKP_MAPLEN(len, flags), NULL) == 0) { 461 if (flags & KPD_LOCKED) { 462 atomic_add_long(&anon_segkp_pages_locked, 463 -pages); 464 page_unresv(pages); 465 } 466 vmem_free(SEGKP_VMEM(seg), vbase, len); 467 kmem_free(kpd, sizeof (struct segkp_data)); 468 return (NULL); 469 } 470 atomic_add_long(&anon_segkp_pages_resv, 471 btop(SEGKP_MAPLEN(len, flags))); 472 anon_idx = ((uintptr_t)(vbase - s_base)) >> PAGESHIFT; 473 kpd->kp_anon_idx = anon_idx; 474 kpd->kp_anon = kpsd->kpsd_anon; 475 476 TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u", 477 kpd, vbase, len, flags, 1); 478 } else { 479 kpd->kp_anon = NULL; 480 kpd->kp_anon_idx = 0; 481 } 482 483 /* 484 * Allocate page and anon resources for the virtual address range 485 * except the redzone 486 */ 487 if (segkp_fromheap) 488 segkpindex = btop((uintptr_t)(vbase - kvseg.s_base)); 489 for (i = 0, va = vbase; i < np; i++, va += PAGESIZE) { 490 page_t *pl[2]; 491 struct vnode *vp; 492 anoff_t off; 493 int err; 494 page_t *pp = NULL; 495 496 /* 497 * Mark this page to be a segkp page in the bitmap. 498 */ 499 if (segkp_fromheap) { 500 BT_ATOMIC_SET(segkp_bitmap, segkpindex); 501 segkpindex++; 502 } 503 504 /* 505 * If this page is the red zone page, we don't need swap 506 * space for it. Note that we skip over the code that 507 * establishes MMU mappings, so that the page remains 508 * invalid. 509 */ 510 if ((flags & KPD_HASREDZONE) && KPD_REDZONE(kpd) == i) 511 continue; 512 513 if (kpd->kp_anon != NULL) { 514 struct anon *ap; 515 516 ASSERT(anon_get_ptr(kpd->kp_anon, anon_idx + i) 517 == NULL); 518 /* 519 * Determine the "vp" and "off" of the anon slot. 520 */ 521 ap = anon_alloc(NULL, 0); 522 if (amp != NULL) 523 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 524 (void) anon_set_ptr(kpd->kp_anon, anon_idx + i, 525 ap, ANON_SLEEP); 526 if (amp != NULL) 527 ANON_LOCK_EXIT(&->a_rwlock); 528 swap_xlate(ap, &vp, &off); 529 530 /* 531 * Create a page with the specified identity. The 532 * page is returned with the "shared" lock held. 533 */ 534 err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, 535 NULL, pl, PAGESIZE, seg, va, S_CREATE, 536 kcred, NULL); 537 if (err) { 538 /* 539 * XXX - This should not fail. 540 */ 541 panic("segkp_get: no pages"); 542 /*NOTREACHED*/ 543 } 544 pp = pl[0]; 545 } else { 546 ASSERT(page_exists(&kvp, 547 (u_offset_t)(uintptr_t)va) == NULL); 548 549 if ((pp = page_create_va(&kvp, 550 (u_offset_t)(uintptr_t)va, PAGESIZE, 551 (flags & KPD_NOWAIT ? 0 : PG_WAIT) | PG_EXCL | 552 PG_NORELOC, seg, va)) == NULL) { 553 /* 554 * Legitimize resource; then destroy it. 555 * Easier than trying to unwind here. 556 */ 557 kpd->kp_flags = flags; 558 kpd->kp_base = vbase; 559 kpd->kp_len = len; 560 segkp_release_internal(seg, kpd, va - vbase); 561 return (NULL); 562 } 563 page_io_unlock(pp); 564 } 565 566 if (flags & KPD_ZERO) 567 pagezero(pp, 0, PAGESIZE); 568 569 /* 570 * Load and lock an MMU translation for the page. 571 */ 572 hat_memload(seg->s_as->a_hat, va, pp, (PROT_READ|PROT_WRITE), 573 ((flags & KPD_LOCKED) ? HAT_LOAD_LOCK : HAT_LOAD)); 574 575 /* 576 * Now, release lock on the page. 577 */ 578 if (flags & KPD_LOCKED) { 579 /* 580 * Indicate to page_retire framework that this 581 * page can only be retired when it is freed. 582 */ 583 PP_SETRAF(pp); 584 page_downgrade(pp); 585 } else 586 page_unlock(pp); 587 } 588 589 kpd->kp_flags = flags; 590 kpd->kp_base = vbase; 591 kpd->kp_len = len; 592 segkp_insert(seg, kpd); 593 *tkpd = kpd; 594 return (stom(kpd->kp_base, flags)); 595 } 596 597 /* 598 * Release the resource to cache if the pool(designate by the cookie) 599 * has less than the maximum allowable. If inserted in cache, 600 * segkp_delete insures element is taken off of active list. 601 */ 602 void 603 segkp_release(struct seg *seg, caddr_t vaddr) 604 { 605 struct segkp_cache *freelist; 606 struct segkp_data *kpd = NULL; 607 608 if ((kpd = segkp_find(seg, vaddr)) == NULL) { 609 panic("segkp_release: null kpd"); 610 /*NOTREACHED*/ 611 } 612 613 if (kpd->kp_cookie != -1) { 614 freelist = &segkp_cache[kpd->kp_cookie]; 615 mutex_enter(&segkp_lock); 616 if (!segkp_indel && freelist->kpf_count < freelist->kpf_max) { 617 segkp_delete(seg, kpd); 618 kpd->kp_next = freelist->kpf_list; 619 freelist->kpf_list = kpd; 620 freelist->kpf_count++; 621 mutex_exit(&segkp_lock); 622 return; 623 } else { 624 mutex_exit(&segkp_lock); 625 kpd->kp_cookie = -1; 626 } 627 } 628 segkp_release_internal(seg, kpd, kpd->kp_len); 629 } 630 631 /* 632 * Free the entire resource. segkp_unlock gets called with the start of the 633 * mapped portion of the resource. The length is the size of the mapped 634 * portion 635 */ 636 static void 637 segkp_release_internal(struct seg *seg, struct segkp_data *kpd, size_t len) 638 { 639 caddr_t va; 640 long i; 641 long redzone; 642 size_t np; 643 page_t *pp; 644 struct vnode *vp; 645 anoff_t off; 646 struct anon *ap; 647 pgcnt_t segkpindex; 648 649 ASSERT(kpd != NULL); 650 ASSERT((kpd->kp_flags & KPD_HASAMP) == 0 || kpd->kp_cookie == -1); 651 np = btop(len); 652 653 /* Remove from active hash list */ 654 if (kpd->kp_cookie == -1) { 655 mutex_enter(&segkp_lock); 656 segkp_delete(seg, kpd); 657 mutex_exit(&segkp_lock); 658 } 659 660 /* 661 * Precompute redzone page index. 662 */ 663 redzone = -1; 664 if (kpd->kp_flags & KPD_HASREDZONE) 665 redzone = KPD_REDZONE(kpd); 666 667 668 va = kpd->kp_base; 669 670 hat_unload(seg->s_as->a_hat, va, (np << PAGESHIFT), 671 ((kpd->kp_flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD)); 672 /* 673 * Free up those anon resources that are quiescent. 674 */ 675 if (segkp_fromheap) 676 segkpindex = btop((uintptr_t)(va - kvseg.s_base)); 677 for (i = 0; i < np; i++, va += PAGESIZE) { 678 679 /* 680 * Clear the bit for this page from the bitmap. 681 */ 682 if (segkp_fromheap) { 683 BT_ATOMIC_CLEAR(segkp_bitmap, segkpindex); 684 segkpindex++; 685 } 686 687 if (i == redzone) 688 continue; 689 if (kpd->kp_anon) { 690 /* 691 * Free up anon resources and destroy the 692 * associated pages. 693 * 694 * Release the lock if there is one. Have to get the 695 * page to do this, unfortunately. 696 */ 697 if (kpd->kp_flags & KPD_LOCKED) { 698 ap = anon_get_ptr(kpd->kp_anon, 699 kpd->kp_anon_idx + i); 700 swap_xlate(ap, &vp, &off); 701 /* Find the shared-locked page. */ 702 pp = page_find(vp, (u_offset_t)off); 703 if (pp == NULL) { 704 panic("segkp_release: " 705 "kp_anon: no page to unlock "); 706 /*NOTREACHED*/ 707 } 708 if (PP_ISRAF(pp)) 709 PP_CLRRAF(pp); 710 711 page_unlock(pp); 712 } 713 if ((kpd->kp_flags & KPD_HASAMP) == 0) { 714 anon_free(kpd->kp_anon, kpd->kp_anon_idx + i, 715 PAGESIZE); 716 anon_unresv_zone(PAGESIZE, NULL); 717 atomic_add_long(&anon_segkp_pages_resv, 718 -1); 719 } 720 TRACE_5(TR_FAC_VM, 721 TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u", 722 kpd, va, PAGESIZE, 0, 0); 723 } else { 724 if (kpd->kp_flags & KPD_LOCKED) { 725 pp = page_find(&kvp, (u_offset_t)(uintptr_t)va); 726 if (pp == NULL) { 727 panic("segkp_release: " 728 "no page to unlock"); 729 /*NOTREACHED*/ 730 } 731 if (PP_ISRAF(pp)) 732 PP_CLRRAF(pp); 733 /* 734 * We should just upgrade the lock here 735 * but there is no upgrade that waits. 736 */ 737 page_unlock(pp); 738 } 739 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)va, 740 SE_EXCL); 741 if (pp != NULL) 742 page_destroy(pp, 0); 743 } 744 } 745 746 /* If locked, release physical memory reservation */ 747 if (kpd->kp_flags & KPD_LOCKED) { 748 pgcnt_t pages = btop(SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)); 749 if ((kpd->kp_flags & KPD_NO_ANON) == 0) 750 atomic_add_long(&anon_segkp_pages_locked, -pages); 751 page_unresv(pages); 752 } 753 754 vmem_free(SEGKP_VMEM(seg), kpd->kp_base, kpd->kp_len); 755 kmem_free(kpd, sizeof (struct segkp_data)); 756 } 757 758 /* 759 * segkp_map_red() will check the current frame pointer against the 760 * stack base. If the amount of stack remaining is questionable 761 * (less than red_minavail), then segkp_map_red() will map in the redzone 762 * and return 1. Otherwise, it will return 0. segkp_map_red() can 763 * _only_ be called when: 764 * 765 * - it is safe to sleep on page_create_va(). 766 * - the caller is non-swappable. 767 * 768 * It is up to the caller to remember whether segkp_map_red() successfully 769 * mapped the redzone, and, if so, to call segkp_unmap_red() at a later 770 * time. Note that the caller must _remain_ non-swappable until after 771 * calling segkp_unmap_red(). 772 * 773 * Currently, this routine is only called from pagefault() (which necessarily 774 * satisfies the above conditions). 775 */ 776 #if defined(STACK_GROWTH_DOWN) 777 int 778 segkp_map_red(void) 779 { 780 uintptr_t fp = STACK_BIAS + (uintptr_t)getfp(); 781 #ifndef _LP64 782 caddr_t stkbase; 783 #endif 784 785 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 786 787 /* 788 * Optimize for the common case where we simply return. 789 */ 790 if ((curthread->t_red_pp == NULL) && 791 (fp - (uintptr_t)curthread->t_stkbase >= red_minavail)) 792 return (0); 793 794 #if defined(_LP64) 795 /* 796 * XXX We probably need something better than this. 797 */ 798 panic("kernel stack overflow"); 799 /*NOTREACHED*/ 800 #else /* _LP64 */ 801 if (curthread->t_red_pp == NULL) { 802 page_t *red_pp; 803 struct seg kseg; 804 805 caddr_t red_va = (caddr_t) 806 (((uintptr_t)curthread->t_stkbase & (uintptr_t)PAGEMASK) - 807 PAGESIZE); 808 809 ASSERT(page_exists(&kvp, (u_offset_t)(uintptr_t)red_va) == 810 NULL); 811 812 /* 813 * Allocate the physical for the red page. 814 */ 815 /* 816 * No PG_NORELOC here to avoid waits. Unlikely to get 817 * a relocate happening in the short time the page exists 818 * and it will be OK anyway. 819 */ 820 821 kseg.s_as = &kas; 822 red_pp = page_create_va(&kvp, (u_offset_t)(uintptr_t)red_va, 823 PAGESIZE, PG_WAIT | PG_EXCL, &kseg, red_va); 824 ASSERT(red_pp != NULL); 825 826 /* 827 * So we now have a page to jam into the redzone... 828 */ 829 page_io_unlock(red_pp); 830 831 hat_memload(kas.a_hat, red_va, red_pp, 832 (PROT_READ|PROT_WRITE), HAT_LOAD_LOCK); 833 page_downgrade(red_pp); 834 835 /* 836 * The page is left SE_SHARED locked so we can hold on to 837 * the page_t pointer. 838 */ 839 curthread->t_red_pp = red_pp; 840 841 atomic_add_32(&red_nmapped, 1); 842 while (fp - (uintptr_t)curthread->t_stkbase < red_closest) { 843 (void) atomic_cas_32(&red_closest, red_closest, 844 (uint32_t)(fp - (uintptr_t)curthread->t_stkbase)); 845 } 846 return (1); 847 } 848 849 stkbase = (caddr_t)(((uintptr_t)curthread->t_stkbase & 850 (uintptr_t)PAGEMASK) - PAGESIZE); 851 852 atomic_add_32(&red_ndoubles, 1); 853 854 if (fp - (uintptr_t)stkbase < RED_DEEP_THRESHOLD) { 855 /* 856 * Oh boy. We're already deep within the mapped-in 857 * redzone page, and the caller is trying to prepare 858 * for a deep stack run. We're running without a 859 * redzone right now: if the caller plows off the 860 * end of the stack, it'll plow another thread or 861 * LWP structure. That situation could result in 862 * a very hard-to-debug panic, so, in the spirit of 863 * recording the name of one's killer in one's own 864 * blood, we're going to record hrestime and the calling 865 * thread. 866 */ 867 red_deep_hires = hrestime.tv_nsec; 868 red_deep_thread = curthread; 869 } 870 871 /* 872 * If this is a DEBUG kernel, and we've run too deep for comfort, toss. 873 */ 874 ASSERT(fp - (uintptr_t)stkbase >= RED_DEEP_THRESHOLD); 875 return (0); 876 #endif /* _LP64 */ 877 } 878 879 void 880 segkp_unmap_red(void) 881 { 882 page_t *pp; 883 caddr_t red_va = (caddr_t)(((uintptr_t)curthread->t_stkbase & 884 (uintptr_t)PAGEMASK) - PAGESIZE); 885 886 ASSERT(curthread->t_red_pp != NULL); 887 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 888 889 /* 890 * Because we locked the mapping down, we can't simply rely 891 * on page_destroy() to clean everything up; we need to call 892 * hat_unload() to explicitly unlock the mapping resources. 893 */ 894 hat_unload(kas.a_hat, red_va, PAGESIZE, HAT_UNLOAD_UNLOCK); 895 896 pp = curthread->t_red_pp; 897 898 ASSERT(pp == page_find(&kvp, (u_offset_t)(uintptr_t)red_va)); 899 900 /* 901 * Need to upgrade the SE_SHARED lock to SE_EXCL. 902 */ 903 if (!page_tryupgrade(pp)) { 904 /* 905 * As there is now wait for upgrade, release the 906 * SE_SHARED lock and wait for SE_EXCL. 907 */ 908 page_unlock(pp); 909 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)red_va, SE_EXCL); 910 /* pp may be NULL here, hence the test below */ 911 } 912 913 /* 914 * Destroy the page, with dontfree set to zero (i.e. free it). 915 */ 916 if (pp != NULL) 917 page_destroy(pp, 0); 918 curthread->t_red_pp = NULL; 919 } 920 #else 921 #error Red stacks only supported with downwards stack growth. 922 #endif 923 924 /* 925 * Handle a fault on an address corresponding to one of the 926 * resources in the segkp segment. 927 */ 928 faultcode_t 929 segkp_fault( 930 struct hat *hat, 931 struct seg *seg, 932 caddr_t vaddr, 933 size_t len, 934 enum fault_type type, 935 enum seg_rw rw) 936 { 937 struct segkp_data *kpd = NULL; 938 int err; 939 940 ASSERT(seg->s_as == &kas && RW_READ_HELD(&seg->s_as->a_lock)); 941 942 /* 943 * Sanity checks. 944 */ 945 if (type == F_PROT) { 946 panic("segkp_fault: unexpected F_PROT fault"); 947 /*NOTREACHED*/ 948 } 949 950 if ((kpd = segkp_find(seg, vaddr)) == NULL) 951 return (FC_NOMAP); 952 953 mutex_enter(&kpd->kp_lock); 954 955 if (type == F_SOFTLOCK) { 956 ASSERT(!(kpd->kp_flags & KPD_LOCKED)); 957 /* 958 * The F_SOFTLOCK case has more stringent 959 * range requirements: the given range must exactly coincide 960 * with the resource's mapped portion. Note reference to 961 * redzone is handled since vaddr would not equal base 962 */ 963 if (vaddr != stom(kpd->kp_base, kpd->kp_flags) || 964 len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) { 965 mutex_exit(&kpd->kp_lock); 966 return (FC_MAKE_ERR(EFAULT)); 967 } 968 969 if ((err = segkp_load(hat, seg, vaddr, len, kpd, KPD_LOCKED))) { 970 mutex_exit(&kpd->kp_lock); 971 return (FC_MAKE_ERR(err)); 972 } 973 kpd->kp_flags |= KPD_LOCKED; 974 mutex_exit(&kpd->kp_lock); 975 return (0); 976 } 977 978 if (type == F_INVAL) { 979 ASSERT(!(kpd->kp_flags & KPD_NO_ANON)); 980 981 /* 982 * Check if we touched the redzone. Somewhat optimistic 983 * here if we are touching the redzone of our own stack 984 * since we wouldn't have a stack to get this far... 985 */ 986 if ((kpd->kp_flags & KPD_HASREDZONE) && 987 btop((uintptr_t)(vaddr - kpd->kp_base)) == KPD_REDZONE(kpd)) 988 panic("segkp_fault: accessing redzone"); 989 990 /* 991 * This fault may occur while the page is being F_SOFTLOCK'ed. 992 * Return since a 2nd segkp_load is unnecessary and also would 993 * result in the page being locked twice and eventually 994 * hang the thread_reaper thread. 995 */ 996 if (kpd->kp_flags & KPD_LOCKED) { 997 mutex_exit(&kpd->kp_lock); 998 return (0); 999 } 1000 1001 err = segkp_load(hat, seg, vaddr, len, kpd, kpd->kp_flags); 1002 mutex_exit(&kpd->kp_lock); 1003 return (err ? FC_MAKE_ERR(err) : 0); 1004 } 1005 1006 if (type == F_SOFTUNLOCK) { 1007 uint_t flags; 1008 1009 /* 1010 * Make sure the addr is LOCKED and it has anon backing 1011 * before unlocking 1012 */ 1013 if ((kpd->kp_flags & (KPD_LOCKED|KPD_NO_ANON)) != KPD_LOCKED) { 1014 panic("segkp_fault: bad unlock"); 1015 /*NOTREACHED*/ 1016 } 1017 1018 if (vaddr != stom(kpd->kp_base, kpd->kp_flags) || 1019 len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) { 1020 panic("segkp_fault: bad range"); 1021 /*NOTREACHED*/ 1022 } 1023 1024 if (rw == S_WRITE) 1025 flags = kpd->kp_flags | KPD_WRITEDIRTY; 1026 else 1027 flags = kpd->kp_flags; 1028 err = segkp_unlock(hat, seg, vaddr, len, kpd, flags); 1029 kpd->kp_flags &= ~KPD_LOCKED; 1030 mutex_exit(&kpd->kp_lock); 1031 return (err ? FC_MAKE_ERR(err) : 0); 1032 } 1033 mutex_exit(&kpd->kp_lock); 1034 panic("segkp_fault: bogus fault type: %d\n", type); 1035 /*NOTREACHED*/ 1036 } 1037 1038 /* 1039 * Check that the given protections suffice over the range specified by 1040 * vaddr and len. For this segment type, the only issue is whether or 1041 * not the range lies completely within the mapped part of an allocated 1042 * resource. 1043 */ 1044 /* ARGSUSED */ 1045 static int 1046 segkp_checkprot(struct seg *seg, caddr_t vaddr, size_t len, uint_t prot) 1047 { 1048 struct segkp_data *kpd = NULL; 1049 caddr_t mbase; 1050 size_t mlen; 1051 1052 if ((kpd = segkp_find(seg, vaddr)) == NULL) 1053 return (EACCES); 1054 1055 mutex_enter(&kpd->kp_lock); 1056 mbase = stom(kpd->kp_base, kpd->kp_flags); 1057 mlen = SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags); 1058 if (len > mlen || vaddr < mbase || 1059 ((vaddr + len) > (mbase + mlen))) { 1060 mutex_exit(&kpd->kp_lock); 1061 return (EACCES); 1062 } 1063 mutex_exit(&kpd->kp_lock); 1064 return (0); 1065 } 1066 1067 1068 /* 1069 * Check to see if it makes sense to do kluster/read ahead to 1070 * addr + delta relative to the mapping at addr. We assume here 1071 * that delta is a signed PAGESIZE'd multiple (which can be negative). 1072 * 1073 * For seg_u we always "approve" of this action from our standpoint. 1074 */ 1075 /*ARGSUSED*/ 1076 static int 1077 segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 1078 { 1079 return (0); 1080 } 1081 1082 /* 1083 * Load and possibly lock intra-slot resources in the range given by 1084 * vaddr and len. 1085 */ 1086 static int 1087 segkp_load( 1088 struct hat *hat, 1089 struct seg *seg, 1090 caddr_t vaddr, 1091 size_t len, 1092 struct segkp_data *kpd, 1093 uint_t flags) 1094 { 1095 caddr_t va; 1096 caddr_t vlim; 1097 ulong_t i; 1098 uint_t lock; 1099 1100 ASSERT(MUTEX_HELD(&kpd->kp_lock)); 1101 1102 len = P2ROUNDUP(len, PAGESIZE); 1103 1104 /* If locking, reserve physical memory */ 1105 if (flags & KPD_LOCKED) { 1106 pgcnt_t pages = btop(len); 1107 if ((kpd->kp_flags & KPD_NO_ANON) == 0) 1108 atomic_add_long(&anon_segkp_pages_locked, pages); 1109 (void) page_resv(pages, KM_SLEEP); 1110 } 1111 1112 /* 1113 * Loop through the pages in the given range. 1114 */ 1115 va = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 1116 vaddr = va; 1117 vlim = va + len; 1118 lock = flags & KPD_LOCKED; 1119 i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT; 1120 for (; va < vlim; va += PAGESIZE, i++) { 1121 page_t *pl[2]; /* second element NULL terminator */ 1122 struct vnode *vp; 1123 anoff_t off; 1124 int err; 1125 struct anon *ap; 1126 1127 /* 1128 * Summon the page. If it's not resident, arrange 1129 * for synchronous i/o to pull it in. 1130 */ 1131 ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i); 1132 swap_xlate(ap, &vp, &off); 1133 1134 /* 1135 * The returned page list will have exactly one entry, 1136 * which is returned to us already kept. 1137 */ 1138 err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, NULL, 1139 pl, PAGESIZE, seg, va, S_READ, kcred, NULL); 1140 1141 if (err) { 1142 /* 1143 * Back out of what we've done so far. 1144 */ 1145 (void) segkp_unlock(hat, seg, vaddr, 1146 (va - vaddr), kpd, flags); 1147 return (err); 1148 } 1149 1150 /* 1151 * Load an MMU translation for the page. 1152 */ 1153 hat_memload(hat, va, pl[0], (PROT_READ|PROT_WRITE), 1154 lock ? HAT_LOAD_LOCK : HAT_LOAD); 1155 1156 if (!lock) { 1157 /* 1158 * Now, release "shared" lock on the page. 1159 */ 1160 page_unlock(pl[0]); 1161 } 1162 } 1163 return (0); 1164 } 1165 1166 /* 1167 * At the very least unload the mmu-translations and unlock the range if locked 1168 * Can be called with the following flag value KPD_WRITEDIRTY which specifies 1169 * any dirty pages should be written to disk. 1170 */ 1171 static int 1172 segkp_unlock( 1173 struct hat *hat, 1174 struct seg *seg, 1175 caddr_t vaddr, 1176 size_t len, 1177 struct segkp_data *kpd, 1178 uint_t flags) 1179 { 1180 caddr_t va; 1181 caddr_t vlim; 1182 ulong_t i; 1183 struct page *pp; 1184 struct vnode *vp; 1185 anoff_t off; 1186 struct anon *ap; 1187 1188 #ifdef lint 1189 seg = seg; 1190 #endif /* lint */ 1191 1192 ASSERT(MUTEX_HELD(&kpd->kp_lock)); 1193 1194 /* 1195 * Loop through the pages in the given range. It is assumed 1196 * segkp_unlock is called with page aligned base 1197 */ 1198 va = vaddr; 1199 vlim = va + len; 1200 i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT; 1201 hat_unload(hat, va, len, 1202 ((flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD)); 1203 for (; va < vlim; va += PAGESIZE, i++) { 1204 /* 1205 * Find the page associated with this part of the 1206 * slot, tracking it down through its associated swap 1207 * space. 1208 */ 1209 ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i); 1210 swap_xlate(ap, &vp, &off); 1211 1212 if (flags & KPD_LOCKED) { 1213 if ((pp = page_find(vp, off)) == NULL) { 1214 if (flags & KPD_LOCKED) { 1215 panic("segkp_softunlock: missing page"); 1216 /*NOTREACHED*/ 1217 } 1218 } 1219 } else { 1220 /* 1221 * Nothing to do if the slot is not locked and the 1222 * page doesn't exist. 1223 */ 1224 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) 1225 continue; 1226 } 1227 1228 /* 1229 * If the page doesn't have any translations, is 1230 * dirty and not being shared, then push it out 1231 * asynchronously and avoid waiting for the 1232 * pageout daemon to do it for us. 1233 * 1234 * XXX - Do we really need to get the "exclusive" 1235 * lock via an upgrade? 1236 */ 1237 if ((flags & KPD_WRITEDIRTY) && !hat_page_is_mapped(pp) && 1238 hat_ismod(pp) && page_tryupgrade(pp)) { 1239 /* 1240 * Hold the vnode before releasing the page lock to 1241 * prevent it from being freed and re-used by some 1242 * other thread. 1243 */ 1244 VN_HOLD(vp); 1245 page_unlock(pp); 1246 1247 /* 1248 * Want most powerful credentials we can get so 1249 * use kcred. 1250 */ 1251 (void) VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE, 1252 B_ASYNC | B_FREE, kcred, NULL); 1253 VN_RELE(vp); 1254 } else { 1255 page_unlock(pp); 1256 } 1257 } 1258 1259 /* If unlocking, release physical memory */ 1260 if (flags & KPD_LOCKED) { 1261 pgcnt_t pages = btopr(len); 1262 if ((kpd->kp_flags & KPD_NO_ANON) == 0) 1263 atomic_add_long(&anon_segkp_pages_locked, -pages); 1264 page_unresv(pages); 1265 } 1266 return (0); 1267 } 1268 1269 /* 1270 * Insert the kpd in the hash table. 1271 */ 1272 static void 1273 segkp_insert(struct seg *seg, struct segkp_data *kpd) 1274 { 1275 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 1276 int index; 1277 1278 /* 1279 * Insert the kpd based on the address that will be returned 1280 * via segkp_release. 1281 */ 1282 index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags)); 1283 mutex_enter(&segkp_lock); 1284 kpd->kp_next = kpsd->kpsd_hash[index]; 1285 kpsd->kpsd_hash[index] = kpd; 1286 mutex_exit(&segkp_lock); 1287 } 1288 1289 /* 1290 * Remove kpd from the hash table. 1291 */ 1292 static void 1293 segkp_delete(struct seg *seg, struct segkp_data *kpd) 1294 { 1295 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 1296 struct segkp_data **kpp; 1297 int index; 1298 1299 ASSERT(MUTEX_HELD(&segkp_lock)); 1300 1301 index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags)); 1302 for (kpp = &kpsd->kpsd_hash[index]; 1303 *kpp != NULL; kpp = &((*kpp)->kp_next)) { 1304 if (*kpp == kpd) { 1305 *kpp = kpd->kp_next; 1306 return; 1307 } 1308 } 1309 panic("segkp_delete: unable to find element to delete"); 1310 /*NOTREACHED*/ 1311 } 1312 1313 /* 1314 * Find the kpd associated with a vaddr. 1315 * 1316 * Most of the callers of segkp_find will pass the vaddr that 1317 * hashes to the desired index, but there are cases where 1318 * this is not true in which case we have to (potentially) scan 1319 * the whole table looking for it. This should be very rare 1320 * (e.g. a segkp_fault(F_INVAL) on an address somewhere in the 1321 * middle of the segkp_data region). 1322 */ 1323 static struct segkp_data * 1324 segkp_find(struct seg *seg, caddr_t vaddr) 1325 { 1326 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 1327 struct segkp_data *kpd; 1328 int i; 1329 int stop; 1330 1331 i = stop = SEGKP_HASH(vaddr); 1332 mutex_enter(&segkp_lock); 1333 do { 1334 for (kpd = kpsd->kpsd_hash[i]; kpd != NULL; 1335 kpd = kpd->kp_next) { 1336 if (vaddr >= kpd->kp_base && 1337 vaddr < kpd->kp_base + kpd->kp_len) { 1338 mutex_exit(&segkp_lock); 1339 return (kpd); 1340 } 1341 } 1342 if (--i < 0) 1343 i = SEGKP_HASHSZ - 1; /* Wrap */ 1344 } while (i != stop); 1345 mutex_exit(&segkp_lock); 1346 return (NULL); /* Not found */ 1347 } 1348 1349 /* 1350 * returns size of swappable area. 1351 */ 1352 size_t 1353 swapsize(caddr_t v) 1354 { 1355 struct segkp_data *kpd; 1356 1357 if ((kpd = segkp_find(segkp, v)) != NULL) 1358 return (SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)); 1359 else 1360 return (NULL); 1361 } 1362 1363 /* 1364 * Dump out all the active segkp pages 1365 */ 1366 static void 1367 segkp_dump(struct seg *seg) 1368 { 1369 int i; 1370 struct segkp_data *kpd; 1371 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 1372 1373 for (i = 0; i < SEGKP_HASHSZ; i++) { 1374 for (kpd = kpsd->kpsd_hash[i]; 1375 kpd != NULL; kpd = kpd->kp_next) { 1376 pfn_t pfn; 1377 caddr_t addr; 1378 caddr_t eaddr; 1379 1380 addr = kpd->kp_base; 1381 eaddr = addr + kpd->kp_len; 1382 while (addr < eaddr) { 1383 ASSERT(seg->s_as == &kas); 1384 pfn = hat_getpfnum(seg->s_as->a_hat, addr); 1385 if (pfn != PFN_INVALID) 1386 dump_addpage(seg->s_as, addr, pfn); 1387 addr += PAGESIZE; 1388 dump_timeleft = dump_timeout; 1389 } 1390 } 1391 } 1392 } 1393 1394 /*ARGSUSED*/ 1395 static int 1396 segkp_pagelock(struct seg *seg, caddr_t addr, size_t len, 1397 struct page ***ppp, enum lock_type type, enum seg_rw rw) 1398 { 1399 return (ENOTSUP); 1400 } 1401 1402 /*ARGSUSED*/ 1403 static int 1404 segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 1405 { 1406 return (ENODEV); 1407 } 1408 1409 /*ARGSUSED*/ 1410 static lgrp_mem_policy_info_t * 1411 segkp_getpolicy(struct seg *seg, caddr_t addr) 1412 { 1413 return (NULL); 1414 } 1415 1416 /*ARGSUSED*/ 1417 static int 1418 segkp_capable(struct seg *seg, segcapability_t capability) 1419 { 1420 return (0); 1421 } 1422 1423 #include <sys/mem_config.h> 1424 1425 /*ARGSUSED*/ 1426 static void 1427 segkp_mem_config_post_add(void *arg, pgcnt_t delta_pages) 1428 {} 1429 1430 /* 1431 * During memory delete, turn off caches so that pages are not held. 1432 * A better solution may be to unlock the pages while they are 1433 * in the cache so that they may be collected naturally. 1434 */ 1435 1436 /*ARGSUSED*/ 1437 static int 1438 segkp_mem_config_pre_del(void *arg, pgcnt_t delta_pages) 1439 { 1440 atomic_add_32(&segkp_indel, 1); 1441 segkp_cache_free(); 1442 return (0); 1443 } 1444 1445 /*ARGSUSED*/ 1446 static void 1447 segkp_mem_config_post_del(void *arg, pgcnt_t delta_pages, int cancelled) 1448 { 1449 atomic_add_32(&segkp_indel, -1); 1450 } 1451 1452 static kphysm_setup_vector_t segkp_mem_config_vec = { 1453 KPHYSM_SETUP_VECTOR_VERSION, 1454 segkp_mem_config_post_add, 1455 segkp_mem_config_pre_del, 1456 segkp_mem_config_post_del, 1457 }; 1458 1459 static void 1460 segkpinit_mem_config(struct seg *seg) 1461 { 1462 int ret; 1463 1464 ret = kphysm_setup_func_register(&segkp_mem_config_vec, (void *)seg); 1465 ASSERT(ret == 0); 1466 } 1467