1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/tuneable.h> 33 #include <sys/systm.h> 34 #include <sys/vm.h> 35 #include <sys/kmem.h> 36 #include <sys/vmem.h> 37 #include <sys/mman.h> 38 #include <sys/cmn_err.h> 39 #include <sys/debug.h> 40 #include <sys/dumphdr.h> 41 #include <sys/bootconf.h> 42 #include <sys/lgrp.h> 43 #include <vm/seg_kmem.h> 44 #include <vm/hat.h> 45 #include <vm/page.h> 46 #include <vm/vm_dep.h> 47 #include <vm/faultcode.h> 48 #include <sys/promif.h> 49 #include <vm/seg_kp.h> 50 #include <sys/bitmap.h> 51 #include <sys/mem_cage.h> 52 53 /* 54 * seg_kmem is the primary kernel memory segment driver. It 55 * maps the kernel heap [kernelheap, ekernelheap), module text, 56 * and all memory which was allocated before the VM was initialized 57 * into kas. 58 * 59 * Pages which belong to seg_kmem are hashed into &kvp vnode at 60 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 61 * They must never be paged out since segkmem_fault() is a no-op to 62 * prevent recursive faults. 63 * 64 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 65 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 66 * supports relocation the #ifdef kludges can be removed. 67 * 68 * seg_kmem pages may be subject to relocation by page_relocate(), 69 * provided that the HAT supports it; if this is so, segkmem_reloc 70 * will be set to a nonzero value. All boot time allocated memory as 71 * well as static memory is considered off limits to relocation. 72 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 73 * we request P_NORELOC pages for memory that isn't safe to relocate. 74 * 75 * The kernel heap is logically divided up into four pieces: 76 * 77 * heap32_arena is for allocations that require 32-bit absolute 78 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 79 * 80 * heap_core is for allocations that require 2GB *relative* 81 * offsets; in other words all memory from heap_core is within 82 * 2GB of all other memory from the same arena. This is a requirement 83 * of the addressing modes of some processors in supervisor code. 84 * 85 * heap_arena is the general heap arena. 86 * 87 * static_arena is the static memory arena. Allocations from it 88 * are not subject to relocation so it is safe to use the memory 89 * physical address as well as the virtual address (e.g. the VA to 90 * PA translations are static). Caches may import from static_arena; 91 * all other static memory allocations should use static_alloc_arena. 92 * 93 * On some platforms which have limited virtual address space, seg_kmem 94 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 95 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 96 * address space which is actually seg_kp mapped. 97 */ 98 99 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 100 101 char *kernelheap; /* start of primary kernel heap */ 102 char *ekernelheap; /* end of primary kernel heap */ 103 struct seg kvseg; /* primary kernel heap segment */ 104 struct seg kvseg_core; /* "core" kernel heap segment */ 105 struct seg kzioseg; /* Segment for zio mappings */ 106 vmem_t *heap_arena; /* primary kernel heap arena */ 107 vmem_t *heap_core_arena; /* core kernel heap arena */ 108 char *heap_core_base; /* start of core kernel heap arena */ 109 char *heap_lp_base; /* start of kernel large page heap arena */ 110 char *heap_lp_end; /* end of kernel large page heap arena */ 111 vmem_t *hat_memload_arena; /* HAT translation data */ 112 struct seg kvseg32; /* 32-bit kernel heap segment */ 113 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 114 vmem_t *heaptext_arena; /* heaptext arena */ 115 struct as kas; /* kernel address space */ 116 struct vnode kvp; /* vnode for all segkmem pages */ 117 struct vnode zvp; /* vnode for zfs pages */ 118 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 119 vmem_t *static_arena; /* arena for caches to import static memory */ 120 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 121 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 122 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 123 124 /* 125 * seg_kmem driver can map part of the kernel heap with large pages. 126 * Currently this functionality is implemented for sparc platforms only. 127 * 128 * The large page size "segkmem_lpsize" for kernel heap is selected in the 129 * platform specific code. It can also be modified via /etc/system file. 130 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 131 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 132 * match segkmem_lpsize. 133 * 134 * At boot time we carve from kernel heap arena a range of virtual addresses 135 * that will be used for large page mappings. This range [heap_lp_base, 136 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 137 * create "kmem_lp_arena" that caches memory already backed up by large 138 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 139 */ 140 141 size_t segkmem_lpsize; 142 static uint_t segkmem_lpshift = PAGESHIFT; 143 144 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 145 size_t segkmem_heaplp_quantum; 146 vmem_t *heap_lp_arena; 147 static vmem_t *kmem_lp_arena; 148 static vmem_t *segkmem_ppa_arena; 149 static segkmem_lpcb_t segkmem_lpcb; 150 151 /* 152 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 153 * consumed by the large page heap. By default this parameter is set to 1/8 of 154 * physmem but can be adjusted through /etc/system either directly or 155 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 156 * we allow for large page heap. 157 */ 158 size_t segkmem_kmemlp_max; 159 static uint_t segkmem_kmemlp_pcnt; 160 161 /* 162 * Getting large pages for kernel heap could be problematic due to 163 * physical memory fragmentation. That's why we allow to preallocate 164 * "segkmem_kmemlp_min" bytes at boot time. 165 */ 166 static size_t segkmem_kmemlp_min; 167 168 /* 169 * Throttling is used to avoid expensive tries to allocate large pages 170 * for kernel heap when a lot of succesive attempts to do so fail. 171 */ 172 static ulong_t segkmem_lpthrottle_max = 0x400000; 173 static ulong_t segkmem_lpthrottle_start = 0x40; 174 static ulong_t segkmem_use_lpthrottle = 1; 175 176 /* 177 * Freed pages accumulate on a garbage list until segkmem is ready, 178 * at which point we call segkmem_gc() to free it all. 179 */ 180 typedef struct segkmem_gc_list { 181 struct segkmem_gc_list *gc_next; 182 vmem_t *gc_arena; 183 size_t gc_size; 184 } segkmem_gc_list_t; 185 186 static segkmem_gc_list_t *segkmem_gc_list; 187 188 /* 189 * Allocations from the hat_memload arena add VM_MEMLOAD to their 190 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 191 * to take steps to prevent infinite recursion. HAT allocations also 192 * must be non-relocatable to prevent recursive page faults. 193 */ 194 static void * 195 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 196 { 197 flags |= (VM_MEMLOAD | VM_NORELOC); 198 return (segkmem_alloc(vmp, size, flags)); 199 } 200 201 /* 202 * Allocations from static_arena arena (or any other arena that uses 203 * segkmem_alloc_permanent()) require non-relocatable (permanently 204 * wired) memory pages, since these pages are referenced by physical 205 * as well as virtual address. 206 */ 207 void * 208 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 209 { 210 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 211 } 212 213 /* 214 * Initialize kernel heap boundaries. 215 */ 216 void 217 kernelheap_init( 218 void *heap_start, 219 void *heap_end, 220 char *first_avail, 221 void *core_start, 222 void *core_end) 223 { 224 uintptr_t textbase; 225 size_t core_size; 226 size_t heap_size; 227 vmem_t *heaptext_parent; 228 size_t heap_lp_size = 0; 229 230 kernelheap = heap_start; 231 ekernelheap = heap_end; 232 233 #ifdef __sparc 234 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 235 heap_lp_base = ekernelheap - heap_lp_size; 236 heap_lp_end = heap_lp_base + heap_lp_size; 237 #endif /* __sparc */ 238 239 /* 240 * If this platform has a 'core' heap area, then the space for 241 * overflow module text should be carved out of the end of that 242 * heap. Otherwise, it gets carved out of the general purpose 243 * heap. 244 */ 245 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 246 if (core_size > 0) { 247 ASSERT(core_size >= HEAPTEXT_SIZE); 248 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 249 core_size -= HEAPTEXT_SIZE; 250 } 251 #ifndef __sparc 252 else { 253 ekernelheap -= HEAPTEXT_SIZE; 254 textbase = (uintptr_t)ekernelheap; 255 } 256 #endif 257 258 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 259 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 260 segkmem_alloc, segkmem_free); 261 262 if (core_size > 0) { 263 heap_core_arena = vmem_create("heap_core", core_start, 264 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 265 heap_core_base = core_start; 266 } else { 267 heap_core_arena = heap_arena; 268 heap_core_base = kernelheap; 269 } 270 271 /* 272 * reserve space for the large page heap. If large pages for kernel 273 * heap is enabled large page heap arean will be created later in the 274 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 275 * range will be returned back to the heap_arena. 276 */ 277 if (heap_lp_size) { 278 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 279 heap_lp_base, heap_lp_end, 280 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 281 } 282 283 /* 284 * Remove the already-spoken-for memory range [kernelheap, first_avail). 285 */ 286 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 287 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 288 289 #ifdef __sparc 290 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 291 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 292 NULL, NULL, 0, VM_SLEEP); 293 294 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 295 heaptext_parent = NULL; 296 #else /* __sparc */ 297 heap32_arena = heap_core_arena; 298 heaptext_parent = heap_core_arena; 299 #endif /* __sparc */ 300 301 heaptext_arena = vmem_create("heaptext", (void *)textbase, 302 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 303 304 /* 305 * Create a set of arenas for memory with static translations 306 * (e.g. VA -> PA translations cannot change). Since using 307 * kernel pages by physical address implies it isn't safe to 308 * walk across page boundaries, the static_arena quantum must 309 * be PAGESIZE. Any kmem caches that require static memory 310 * should source from static_arena, while direct allocations 311 * should only use static_alloc_arena. 312 */ 313 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 314 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 315 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 316 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 317 0, VM_SLEEP); 318 319 /* 320 * Create an arena for translation data (ptes, hmes, or hblks). 321 * We need an arena for this because hat_memload() is essential 322 * to vmem_populate() (see comments in common/os/vmem.c). 323 * 324 * Note: any kmem cache that allocates from hat_memload_arena 325 * must be created as a KMC_NOHASH cache (i.e. no external slab 326 * and bufctl structures to allocate) so that slab creation doesn't 327 * require anything more than a single vmem_alloc(). 328 */ 329 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 330 hat_memload_alloc, segkmem_free, heap_arena, 0, 331 VM_SLEEP | VMC_POPULATOR); 332 } 333 334 /* 335 * Grow kernel heap downward. 336 */ 337 void 338 kernelheap_extend(void *range_start, void *range_end) 339 { 340 size_t len = (uintptr_t)range_end - (uintptr_t)range_start; 341 342 ASSERT(range_start < range_end && range_end == kernelheap); 343 344 if (vmem_add(heap_arena, range_start, len, VM_NOSLEEP) == NULL) { 345 cmn_err(CE_WARN, "Could not grow kernel heap below 0x%p", 346 (void *)kernelheap); 347 } else { 348 kernelheap = range_start; 349 } 350 } 351 352 void 353 boot_mapin(caddr_t addr, size_t size) 354 { 355 caddr_t eaddr; 356 page_t *pp; 357 pfn_t pfnum; 358 359 if (page_resv(btop(size), KM_NOSLEEP) == 0) 360 panic("boot_mapin: page_resv failed"); 361 362 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 363 pfnum = va_to_pfn(addr); 364 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 365 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 366 367 /* 368 * must break up any large pages that may have constituent 369 * pages being utilized for BOP_ALLOC()'s before calling 370 * page_numtopp().The locking code (ie. page_reclaim()) 371 * can't handle them 372 */ 373 if (pp->p_szc != 0) 374 page_boot_demote(pp); 375 376 pp = page_numtopp(pfnum, SE_EXCL); 377 if (pp == NULL || PP_ISFREE(pp)) 378 panic("boot_alloc: pp is NULL or free"); 379 380 /* 381 * If the cage is on but doesn't yet contain this page, 382 * mark it as non-relocatable. 383 */ 384 if (kcage_on && !PP_ISNORELOC(pp)) 385 PP_SETNORELOC(pp); 386 387 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 388 pp->p_lckcnt = 1; 389 #if defined(__x86) 390 page_downgrade(pp); 391 #else 392 page_unlock(pp); 393 #endif 394 } 395 } 396 397 /* 398 * Get pages from boot and hash them into the kernel's vp. 399 * Used after page structs have been allocated, but before segkmem is ready. 400 */ 401 void * 402 boot_alloc(void *inaddr, size_t size, uint_t align) 403 { 404 caddr_t addr = inaddr; 405 406 if (bootops == NULL) 407 prom_panic("boot_alloc: attempt to allocate memory after " 408 "BOP_GONE"); 409 410 size = ptob(btopr(size)); 411 if (BOP_ALLOC(bootops, addr, size, align) != addr) 412 panic("boot_alloc: BOP_ALLOC failed"); 413 boot_mapin((caddr_t)addr, size); 414 return (addr); 415 } 416 417 static void 418 segkmem_badop() 419 { 420 panic("segkmem_badop"); 421 } 422 423 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 424 425 /*ARGSUSED*/ 426 static faultcode_t 427 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 428 enum fault_type type, enum seg_rw rw) 429 { 430 pgcnt_t npages; 431 spgcnt_t pg; 432 page_t *pp; 433 struct vnode *vp = seg->s_data; 434 435 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 436 437 if (seg->s_as != &kas || size > seg->s_size || 438 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 439 panic("segkmem_fault: bad args"); 440 441 if (segkp_bitmap && seg == &kvseg) { 442 /* 443 * If it is one of segkp pages, call segkp_fault. 444 */ 445 if (BT_TEST(segkp_bitmap, 446 btop((uintptr_t)(addr - seg->s_base)))) 447 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 448 } 449 450 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 451 return (FC_NOSUPPORT); 452 453 npages = btopr(size); 454 455 switch (type) { 456 case F_SOFTLOCK: /* lock down already-loaded translations */ 457 for (pg = 0; pg < npages; pg++) { 458 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 459 SE_SHARED); 460 if (pp == NULL) { 461 /* 462 * Hmm, no page. Does a kernel mapping 463 * exist for it? 464 */ 465 if (!hat_probe(kas.a_hat, addr)) { 466 addr -= PAGESIZE; 467 while (--pg >= 0) { 468 pp = page_find(vp, 469 (u_offset_t)(uintptr_t)addr); 470 if (pp) 471 page_unlock(pp); 472 addr -= PAGESIZE; 473 } 474 return (FC_NOMAP); 475 } 476 } 477 addr += PAGESIZE; 478 } 479 if (rw == S_OTHER) 480 hat_reserve(seg->s_as, addr, size); 481 return (0); 482 case F_SOFTUNLOCK: 483 while (npages--) { 484 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 485 if (pp) 486 page_unlock(pp); 487 addr += PAGESIZE; 488 } 489 return (0); 490 default: 491 return (FC_NOSUPPORT); 492 } 493 /*NOTREACHED*/ 494 } 495 496 static int 497 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 498 { 499 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 500 501 if (seg->s_as != &kas || size > seg->s_size || 502 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 503 panic("segkmem_setprot: bad args"); 504 505 if (segkp_bitmap && seg == &kvseg) { 506 507 /* 508 * If it is one of segkp pages, call segkp. 509 */ 510 if (BT_TEST(segkp_bitmap, 511 btop((uintptr_t)(addr - seg->s_base)))) 512 return (SEGOP_SETPROT(segkp, addr, size, prot)); 513 } 514 515 if (prot == 0) 516 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 517 else 518 hat_chgprot(kas.a_hat, addr, size, prot); 519 return (0); 520 } 521 522 /* 523 * This is a dummy segkmem function overloaded to call segkp 524 * when segkp is under the heap. 525 */ 526 /* ARGSUSED */ 527 static int 528 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 529 { 530 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 531 532 if (seg->s_as != &kas) 533 segkmem_badop(); 534 535 if (segkp_bitmap && seg == &kvseg) { 536 537 /* 538 * If it is one of segkp pages, call into segkp. 539 */ 540 if (BT_TEST(segkp_bitmap, 541 btop((uintptr_t)(addr - seg->s_base)))) 542 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 543 } 544 segkmem_badop(); 545 return (0); 546 } 547 548 /* 549 * This is a dummy segkmem function overloaded to call segkp 550 * when segkp is under the heap. 551 */ 552 /* ARGSUSED */ 553 static int 554 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 555 { 556 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 557 558 if (seg->s_as != &kas) 559 segkmem_badop(); 560 561 if (segkp_bitmap && seg == &kvseg) { 562 563 /* 564 * If it is one of segkp pages, call into segkp. 565 */ 566 if (BT_TEST(segkp_bitmap, 567 btop((uintptr_t)(addr - seg->s_base)))) 568 return (SEGOP_KLUSTER(segkp, addr, delta)); 569 } 570 segkmem_badop(); 571 return (0); 572 } 573 574 static void 575 segkmem_xdump_range(void *arg, void *start, size_t size) 576 { 577 struct as *as = arg; 578 caddr_t addr = start; 579 caddr_t addr_end = addr + size; 580 581 while (addr < addr_end) { 582 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 583 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 584 dump_addpage(as, addr, pfn); 585 addr += PAGESIZE; 586 dump_timeleft = dump_timeout; 587 } 588 } 589 590 static void 591 segkmem_dump_range(void *arg, void *start, size_t size) 592 { 593 caddr_t addr = start; 594 caddr_t addr_end = addr + size; 595 596 /* 597 * If we are about to start dumping the range of addresses we 598 * carved out of the kernel heap for the large page heap walk 599 * heap_lp_arena to find what segments are actually populated 600 */ 601 if (SEGKMEM_USE_LARGEPAGES && 602 addr == heap_lp_base && addr_end == heap_lp_end && 603 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 604 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 605 segkmem_xdump_range, arg); 606 } else { 607 segkmem_xdump_range(arg, start, size); 608 } 609 } 610 611 static void 612 segkmem_dump(struct seg *seg) 613 { 614 /* 615 * The kernel's heap_arena (represented by kvseg) is a very large 616 * VA space, most of which is typically unused. To speed up dumping 617 * we use vmem_walk() to quickly find the pieces of heap_arena that 618 * are actually in use. We do the same for heap32_arena and 619 * heap_core. 620 * 621 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 622 * may ultimately need to allocate memory. Reentrant walks are 623 * necessarily imperfect snapshots. The kernel heap continues 624 * to change during a live crash dump, for example. For a normal 625 * crash dump, however, we know that there won't be any other threads 626 * messing with the heap. Therefore, at worst, we may fail to dump 627 * the pages that get allocated by the act of dumping; but we will 628 * always dump every page that was allocated when the walk began. 629 * 630 * The other segkmem segments are dense (fully populated), so there's 631 * no need to use this technique when dumping them. 632 * 633 * Note: when adding special dump handling for any new sparsely- 634 * populated segments, be sure to add similar handling to the ::kgrep 635 * code in mdb. 636 */ 637 if (seg == &kvseg) { 638 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 639 segkmem_dump_range, seg->s_as); 640 #ifndef __sparc 641 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 642 segkmem_dump_range, seg->s_as); 643 #endif 644 } else if (seg == &kvseg_core) { 645 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 646 segkmem_dump_range, seg->s_as); 647 } else if (seg == &kvseg32) { 648 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 649 segkmem_dump_range, seg->s_as); 650 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 651 segkmem_dump_range, seg->s_as); 652 } else if (seg == &kzioseg) { 653 /* 654 * We don't want to dump pages attached to kzioseg since they 655 * contain file data from ZFS. If this page's segment is 656 * kzioseg return instead of writing it to the dump device. 657 */ 658 return; 659 } else { 660 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 661 } 662 } 663 664 /* 665 * lock/unlock kmem pages over a given range [addr, addr+len). 666 * Returns a shadow list of pages in ppp. If there are holes 667 * in the range (e.g. some of the kernel mappings do not have 668 * underlying page_ts) returns ENOTSUP so that as_pagelock() 669 * will handle the range via as_fault(F_SOFTLOCK). 670 */ 671 /*ARGSUSED*/ 672 static int 673 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 674 page_t ***ppp, enum lock_type type, enum seg_rw rw) 675 { 676 page_t **pplist, *pp; 677 pgcnt_t npages; 678 spgcnt_t pg; 679 size_t nb; 680 struct vnode *vp = seg->s_data; 681 682 ASSERT(ppp != NULL); 683 684 if (segkp_bitmap && seg == &kvseg) { 685 /* 686 * If it is one of segkp pages, call into segkp. 687 */ 688 if (BT_TEST(segkp_bitmap, 689 btop((uintptr_t)(addr - seg->s_base)))) 690 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, 691 type, rw)); 692 } 693 694 if (type == L_PAGERECLAIM) 695 return (ENOTSUP); 696 697 npages = btopr(len); 698 nb = sizeof (page_t *) * npages; 699 700 if (type == L_PAGEUNLOCK) { 701 pplist = *ppp; 702 ASSERT(pplist != NULL); 703 704 for (pg = 0; pg < npages; pg++) { 705 pp = pplist[pg]; 706 page_unlock(pp); 707 } 708 kmem_free(pplist, nb); 709 return (0); 710 } 711 712 ASSERT(type == L_PAGELOCK); 713 714 pplist = kmem_alloc(nb, KM_NOSLEEP); 715 if (pplist == NULL) { 716 *ppp = NULL; 717 return (ENOTSUP); /* take the slow path */ 718 } 719 720 for (pg = 0; pg < npages; pg++) { 721 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 722 if (pp == NULL) { 723 while (--pg >= 0) 724 page_unlock(pplist[pg]); 725 kmem_free(pplist, nb); 726 *ppp = NULL; 727 return (ENOTSUP); 728 } 729 pplist[pg] = pp; 730 addr += PAGESIZE; 731 } 732 733 *ppp = pplist; 734 return (0); 735 } 736 737 /* 738 * This is a dummy segkmem function overloaded to call segkp 739 * when segkp is under the heap. 740 */ 741 /* ARGSUSED */ 742 static int 743 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 744 { 745 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 746 747 if (seg->s_as != &kas) 748 segkmem_badop(); 749 750 if (segkp_bitmap && seg == &kvseg) { 751 752 /* 753 * If it is one of segkp pages, call into segkp. 754 */ 755 if (BT_TEST(segkp_bitmap, 756 btop((uintptr_t)(addr - seg->s_base)))) 757 return (SEGOP_GETMEMID(segkp, addr, memidp)); 758 } 759 segkmem_badop(); 760 return (0); 761 } 762 763 /*ARGSUSED*/ 764 static lgrp_mem_policy_info_t * 765 segkmem_getpolicy(struct seg *seg, caddr_t addr) 766 { 767 return (NULL); 768 } 769 770 /*ARGSUSED*/ 771 static int 772 segkmem_capable(struct seg *seg, segcapability_t capability) 773 { 774 if (capability == S_CAPABILITY_NOMINFLT) 775 return (1); 776 return (0); 777 } 778 779 static struct seg_ops segkmem_ops = { 780 SEGKMEM_BADOP(int), /* dup */ 781 SEGKMEM_BADOP(int), /* unmap */ 782 SEGKMEM_BADOP(void), /* free */ 783 segkmem_fault, 784 SEGKMEM_BADOP(faultcode_t), /* faulta */ 785 segkmem_setprot, 786 segkmem_checkprot, 787 segkmem_kluster, 788 SEGKMEM_BADOP(size_t), /* swapout */ 789 SEGKMEM_BADOP(int), /* sync */ 790 SEGKMEM_BADOP(size_t), /* incore */ 791 SEGKMEM_BADOP(int), /* lockop */ 792 SEGKMEM_BADOP(int), /* getprot */ 793 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 794 SEGKMEM_BADOP(int), /* gettype */ 795 SEGKMEM_BADOP(int), /* getvp */ 796 SEGKMEM_BADOP(int), /* advise */ 797 segkmem_dump, 798 segkmem_pagelock, 799 SEGKMEM_BADOP(int), /* setpgsz */ 800 segkmem_getmemid, 801 segkmem_getpolicy, /* getpolicy */ 802 segkmem_capable, /* capable */ 803 }; 804 805 int 806 segkmem_zio_create(struct seg *seg) 807 { 808 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 809 seg->s_ops = &segkmem_ops; 810 seg->s_data = &zvp; 811 kas.a_size += seg->s_size; 812 return (0); 813 } 814 815 int 816 segkmem_create(struct seg *seg) 817 { 818 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 819 seg->s_ops = &segkmem_ops; 820 seg->s_data = &kvp; 821 kas.a_size += seg->s_size; 822 return (0); 823 } 824 825 /*ARGSUSED*/ 826 page_t * 827 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 828 { 829 struct seg kseg; 830 int pgflags; 831 struct vnode *vp = arg; 832 833 if (vp == NULL) 834 vp = &kvp; 835 836 kseg.s_as = &kas; 837 pgflags = PG_EXCL; 838 839 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 840 pgflags |= PG_NORELOC; 841 if ((vmflag & VM_NOSLEEP) == 0) 842 pgflags |= PG_WAIT; 843 if (vmflag & VM_PANIC) 844 pgflags |= PG_PANIC; 845 if (vmflag & VM_PUSHPAGE) 846 pgflags |= PG_PUSHPAGE; 847 848 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 849 pgflags, &kseg, addr)); 850 } 851 852 /* 853 * Allocate pages to back the virtual address range [addr, addr + size). 854 * If addr is NULL, allocate the virtual address space as well. 855 */ 856 void * 857 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 858 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 859 { 860 page_t *ppl; 861 caddr_t addr = inaddr; 862 pgcnt_t npages = btopr(size); 863 int allocflag; 864 865 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 866 return (NULL); 867 868 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 869 870 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 871 if (inaddr == NULL) 872 vmem_free(vmp, addr, size); 873 return (NULL); 874 } 875 876 ppl = page_create_func(addr, size, vmflag, pcarg); 877 if (ppl == NULL) { 878 if (inaddr == NULL) 879 vmem_free(vmp, addr, size); 880 page_unresv(npages); 881 return (NULL); 882 } 883 884 /* 885 * Under certain conditions, we need to let the HAT layer know 886 * that it cannot safely allocate memory. Allocations from 887 * the hat_memload vmem arena always need this, to prevent 888 * infinite recursion. 889 * 890 * In addition, the x86 hat cannot safely do memory 891 * allocations while in vmem_populate(), because there 892 * is no simple bound on its usage. 893 */ 894 if (vmflag & VM_MEMLOAD) 895 allocflag = HAT_NO_KALLOC; 896 #if defined(__x86) 897 else if (vmem_is_populator()) 898 allocflag = HAT_NO_KALLOC; 899 #endif 900 else 901 allocflag = 0; 902 903 while (ppl != NULL) { 904 page_t *pp = ppl; 905 page_sub(&ppl, pp); 906 ASSERT(page_iolock_assert(pp)); 907 ASSERT(PAGE_EXCL(pp)); 908 page_io_unlock(pp); 909 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 910 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 911 HAT_LOAD_LOCK | allocflag); 912 pp->p_lckcnt = 1; 913 #if defined(__x86) 914 page_downgrade(pp); 915 #else 916 if (vmflag & SEGKMEM_SHARELOCKED) 917 page_downgrade(pp); 918 else 919 page_unlock(pp); 920 #endif 921 } 922 923 return (addr); 924 } 925 926 static void * 927 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 928 { 929 void *addr; 930 segkmem_gc_list_t *gcp, **prev_gcpp; 931 932 ASSERT(vp != NULL); 933 934 if (kvseg.s_base == NULL) { 935 #ifndef __sparc 936 if (bootops->bsys_alloc == NULL) 937 halt("Memory allocation between bop_alloc() and " 938 "kmem_alloc().\n"); 939 #endif 940 941 /* 942 * There's not a lot of memory to go around during boot, 943 * so recycle it if we can. 944 */ 945 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 946 prev_gcpp = &gcp->gc_next) { 947 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 948 *prev_gcpp = gcp->gc_next; 949 return (gcp); 950 } 951 } 952 953 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 954 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 955 panic("segkmem_alloc: boot_alloc failed"); 956 return (addr); 957 } 958 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 959 segkmem_page_create, vp)); 960 } 961 962 void * 963 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 964 { 965 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 966 } 967 968 void * 969 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 970 { 971 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp)); 972 } 973 974 /* 975 * Any changes to this routine must also be carried over to 976 * devmap_free_pages() in the seg_dev driver. This is because 977 * we currently don't have a special kernel segment for non-paged 978 * kernel memory that is exported by drivers to user space. 979 */ 980 static void 981 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp) 982 { 983 page_t *pp; 984 caddr_t addr = inaddr; 985 caddr_t eaddr; 986 pgcnt_t npages = btopr(size); 987 988 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 989 ASSERT(vp != NULL); 990 991 if (kvseg.s_base == NULL) { 992 segkmem_gc_list_t *gc = inaddr; 993 gc->gc_arena = vmp; 994 gc->gc_size = size; 995 gc->gc_next = segkmem_gc_list; 996 segkmem_gc_list = gc; 997 return; 998 } 999 1000 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1001 1002 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1003 #if defined(__x86) 1004 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 1005 if (pp == NULL) 1006 panic("segkmem_free: page not found"); 1007 if (!page_tryupgrade(pp)) { 1008 /* 1009 * Some other thread has a sharelock. Wait for 1010 * it to drop the lock so we can free this page. 1011 */ 1012 page_unlock(pp); 1013 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 1014 SE_EXCL); 1015 } 1016 #else 1017 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1018 #endif 1019 if (pp == NULL) 1020 panic("segkmem_free: page not found"); 1021 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1022 pp->p_lckcnt = 0; 1023 page_destroy(pp, 0); 1024 } 1025 page_unresv(npages); 1026 1027 if (vmp != NULL) 1028 vmem_free(vmp, inaddr, size); 1029 1030 } 1031 1032 void 1033 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1034 { 1035 segkmem_free_vn(vmp, inaddr, size, &kvp); 1036 } 1037 1038 void 1039 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1040 { 1041 segkmem_free_vn(vmp, inaddr, size, &zvp); 1042 } 1043 1044 void 1045 segkmem_gc(void) 1046 { 1047 ASSERT(kvseg.s_base != NULL); 1048 while (segkmem_gc_list != NULL) { 1049 segkmem_gc_list_t *gc = segkmem_gc_list; 1050 segkmem_gc_list = gc->gc_next; 1051 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1052 } 1053 } 1054 1055 /* 1056 * Legacy entry points from here to end of file. 1057 */ 1058 void 1059 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1060 pfn_t pfn, uint_t flags) 1061 { 1062 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1063 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1064 flags | HAT_LOAD_LOCK); 1065 } 1066 1067 void 1068 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1069 { 1070 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1071 } 1072 1073 void * 1074 kmem_getpages(pgcnt_t npages, int kmflag) 1075 { 1076 return (kmem_alloc(ptob(npages), kmflag)); 1077 } 1078 1079 void 1080 kmem_freepages(void *addr, pgcnt_t npages) 1081 { 1082 kmem_free(addr, ptob(npages)); 1083 } 1084 1085 /* 1086 * segkmem_page_create_large() allocates a large page to be used for the kmem 1087 * caches. If kpr is enabled we ask for a relocatable page unless requested 1088 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1089 */ 1090 static page_t * 1091 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1092 { 1093 int pgflags; 1094 1095 pgflags = PG_EXCL; 1096 1097 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1098 pgflags |= PG_NORELOC; 1099 if (!(vmflag & VM_NOSLEEP)) 1100 pgflags |= PG_WAIT; 1101 if (vmflag & VM_PUSHPAGE) 1102 pgflags |= PG_PUSHPAGE; 1103 1104 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1105 pgflags, &kvseg, addr, arg)); 1106 } 1107 1108 /* 1109 * Allocate a large page to back the virtual address range 1110 * [addr, addr + size). If addr is NULL, allocate the virtual address 1111 * space as well. 1112 */ 1113 static void * 1114 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1115 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1116 void *pcarg) 1117 { 1118 caddr_t addr = inaddr, pa; 1119 size_t lpsize = segkmem_lpsize; 1120 pgcnt_t npages = btopr(size); 1121 pgcnt_t nbpages = btop(lpsize); 1122 pgcnt_t nlpages = size >> segkmem_lpshift; 1123 size_t ppasize = nbpages * sizeof (page_t *); 1124 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1125 int i; 1126 1127 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1128 return (NULL); 1129 } 1130 1131 /* 1132 * allocate an array we need for hat_memload_array. 1133 * we use a separate arena to avoid recursion. 1134 * we will not need this array when hat_memload_array learns pp++ 1135 */ 1136 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1137 goto fail_array_alloc; 1138 } 1139 1140 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1141 goto fail_vmem_alloc; 1142 1143 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1144 1145 /* create all the pages */ 1146 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1147 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1148 goto fail_page_create; 1149 page_list_concat(&pplist, &pp); 1150 } 1151 1152 /* at this point we have all the resource to complete the request */ 1153 while ((rootpp = pplist) != NULL) { 1154 for (i = 0; i < nbpages; i++) { 1155 ASSERT(pplist != NULL); 1156 pp = pplist; 1157 page_sub(&pplist, pp); 1158 ASSERT(page_iolock_assert(pp)); 1159 page_io_unlock(pp); 1160 ppa[i] = pp; 1161 } 1162 /* 1163 * Load the locked entry. It's OK to preload the entry into the 1164 * TSB since we now support large mappings in the kernel TSB. 1165 */ 1166 hat_memload_array(kas.a_hat, 1167 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1168 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1169 HAT_LOAD_LOCK); 1170 1171 for (--i; i >= 0; --i) { 1172 ppa[i]->p_lckcnt = 1; 1173 page_unlock(ppa[i]); 1174 } 1175 } 1176 1177 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1178 return (addr); 1179 1180 fail_page_create: 1181 while ((rootpp = pplist) != NULL) { 1182 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1183 ASSERT(pp != NULL); 1184 page_sub(&pplist, pp); 1185 ASSERT(page_iolock_assert(pp)); 1186 page_io_unlock(pp); 1187 } 1188 page_destroy_pages(rootpp); 1189 } 1190 1191 if (inaddr == NULL) 1192 vmem_free(vmp, addr, size); 1193 1194 fail_vmem_alloc: 1195 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1196 1197 fail_array_alloc: 1198 page_unresv(npages); 1199 1200 return (NULL); 1201 } 1202 1203 static void 1204 segkmem_free_one_lp(caddr_t addr, size_t size) 1205 { 1206 page_t *pp, *rootpp = NULL; 1207 pgcnt_t pgs_left = btopr(size); 1208 1209 ASSERT(size == segkmem_lpsize); 1210 1211 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1212 1213 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1214 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1215 if (pp == NULL) 1216 panic("segkmem_free_one_lp: page not found"); 1217 ASSERT(PAGE_EXCL(pp)); 1218 pp->p_lckcnt = 0; 1219 if (rootpp == NULL) 1220 rootpp = pp; 1221 } 1222 ASSERT(rootpp != NULL); 1223 page_destroy_pages(rootpp); 1224 1225 /* page_unresv() is done by the caller */ 1226 } 1227 1228 /* 1229 * This function is called to import new spans into the vmem arenas like 1230 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1231 * spans from large page arena - kmem_lp_arena. In order to do this it might 1232 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1233 * it was not able to satisfy the upgraded request it then calls regular 1234 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1235 */ 1236 void * 1237 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, int vmflag) 1238 { 1239 size_t size; 1240 kthread_t *t = curthread; 1241 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1242 1243 ASSERT(sizep != NULL); 1244 1245 size = *sizep; 1246 1247 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1248 !(vmflag & SEGKMEM_SHARELOCKED)) { 1249 1250 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1251 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1252 void *addr = NULL; 1253 ulong_t *lpthrtp = &lpcb->lp_throttle; 1254 ulong_t lpthrt = *lpthrtp; 1255 int dowakeup = 0; 1256 int doalloc = 1; 1257 1258 ASSERT(kmem_lp_arena != NULL); 1259 ASSERT(asize >= size); 1260 1261 if (lpthrt != 0) { 1262 /* try to update the throttle value */ 1263 lpthrt = atomic_add_long_nv(lpthrtp, 1); 1264 if (lpthrt >= segkmem_lpthrottle_max) { 1265 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1266 segkmem_lpthrottle_max / 4); 1267 } 1268 1269 /* 1270 * when we get above throttle start do an exponential 1271 * backoff at trying large pages and reaping 1272 */ 1273 if (lpthrt > segkmem_lpthrottle_start && 1274 (lpthrt & (lpthrt - 1))) { 1275 lpcb->allocs_throttled++; 1276 lpthrt--; 1277 if ((lpthrt & (lpthrt - 1)) == 0) 1278 kmem_reap(); 1279 return (segkmem_alloc(vmp, size, vmflag)); 1280 } 1281 } 1282 1283 if (!(vmflag & VM_NOSLEEP) && 1284 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1285 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1286 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1287 1288 /* 1289 * we are low on free memory in kmem_lp_arena 1290 * we let only one guy to allocate heap_lp 1291 * quantum size chunk that everybody is going to 1292 * share 1293 */ 1294 mutex_enter(&lpcb->lp_lock); 1295 1296 if (lpcb->lp_wait) { 1297 1298 /* we are not the first one - wait */ 1299 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1300 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1301 kmemlp_qnt) { 1302 doalloc = 0; 1303 } 1304 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1305 kmemlp_qnt) { 1306 1307 /* 1308 * we are the first one, make sure we import 1309 * a large page 1310 */ 1311 if (asize == kmemlp_qnt) 1312 asize += kmemlp_qnt; 1313 dowakeup = 1; 1314 lpcb->lp_wait = 1; 1315 } 1316 1317 mutex_exit(&lpcb->lp_lock); 1318 } 1319 1320 /* 1321 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1322 * large pages are not available. In that case this allocation 1323 * attempt will fail and we will retry allocation with small 1324 * pages. We also do not want to panic if this allocation fails 1325 * because we are going to retry. 1326 */ 1327 if (doalloc) { 1328 addr = vmem_alloc(kmem_lp_arena, asize, 1329 (vmflag | VM_ABORT) & ~VM_PANIC); 1330 1331 if (dowakeup) { 1332 mutex_enter(&lpcb->lp_lock); 1333 ASSERT(lpcb->lp_wait != 0); 1334 lpcb->lp_wait = 0; 1335 cv_broadcast(&lpcb->lp_cv); 1336 mutex_exit(&lpcb->lp_lock); 1337 } 1338 } 1339 1340 if (addr != NULL) { 1341 *sizep = asize; 1342 *lpthrtp = 0; 1343 return (addr); 1344 } 1345 1346 if (vmflag & VM_NOSLEEP) 1347 lpcb->nosleep_allocs_failed++; 1348 else 1349 lpcb->sleep_allocs_failed++; 1350 lpcb->alloc_bytes_failed += size; 1351 1352 /* if large page throttling is not started yet do it */ 1353 if (segkmem_use_lpthrottle && lpthrt == 0) { 1354 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1355 } 1356 } 1357 return (segkmem_alloc(vmp, size, vmflag)); 1358 } 1359 1360 void 1361 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1362 { 1363 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1364 segkmem_free(vmp, inaddr, size); 1365 } else { 1366 vmem_free(kmem_lp_arena, inaddr, size); 1367 } 1368 } 1369 1370 /* 1371 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1372 * into kmem_lp arena. In the process it maps the imported segment with 1373 * large pages 1374 */ 1375 static void * 1376 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1377 { 1378 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1379 void *addr; 1380 1381 ASSERT(size != 0); 1382 ASSERT(vmp == heap_lp_arena); 1383 1384 /* do not allow large page heap grow beyound limits */ 1385 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1386 lpcb->allocs_limited++; 1387 return (NULL); 1388 } 1389 1390 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1391 segkmem_page_create_large, NULL); 1392 return (addr); 1393 } 1394 1395 /* 1396 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1397 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1398 * large pages used to map it. 1399 */ 1400 static void 1401 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1402 { 1403 pgcnt_t nlpages = size >> segkmem_lpshift; 1404 size_t lpsize = segkmem_lpsize; 1405 caddr_t addr = inaddr; 1406 pgcnt_t npages = btopr(size); 1407 int i; 1408 1409 ASSERT(vmp == heap_lp_arena); 1410 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1411 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1412 1413 for (i = 0; i < nlpages; i++) { 1414 segkmem_free_one_lp(addr, lpsize); 1415 addr += lpsize; 1416 } 1417 1418 page_unresv(npages); 1419 1420 vmem_free(vmp, inaddr, size); 1421 } 1422 1423 /* 1424 * This function is called at system boot time by kmem_init right after 1425 * /etc/system file has been read. It checks based on hardware configuration 1426 * and /etc/system settings if system is going to use large pages. The 1427 * initialiazation necessary to actually start using large pages 1428 * happens later in the process after segkmem_heap_lp_init() is called. 1429 */ 1430 int 1431 segkmem_lpsetup() 1432 { 1433 int use_large_pages = 0; 1434 1435 #ifdef __sparc 1436 1437 size_t memtotal = physmem * PAGESIZE; 1438 1439 if (heap_lp_base == NULL) { 1440 segkmem_lpsize = PAGESIZE; 1441 return (0); 1442 } 1443 1444 /* get a platform dependent value of large page size for kernel heap */ 1445 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1446 1447 if (segkmem_lpsize <= PAGESIZE) { 1448 /* 1449 * put virtual space reserved for the large page kernel 1450 * back to the regular heap 1451 */ 1452 vmem_xfree(heap_arena, heap_lp_base, 1453 heap_lp_end - heap_lp_base); 1454 heap_lp_base = NULL; 1455 heap_lp_end = NULL; 1456 segkmem_lpsize = PAGESIZE; 1457 return (0); 1458 } 1459 1460 /* set heap_lp quantum if necessary */ 1461 if (segkmem_heaplp_quantum == 0 || 1462 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1463 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1464 segkmem_heaplp_quantum = segkmem_lpsize; 1465 } 1466 1467 /* set kmem_lp quantum if necessary */ 1468 if (segkmem_kmemlp_quantum == 0 || 1469 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1470 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1471 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1472 } 1473 1474 /* set total amount of memory allowed for large page kernel heap */ 1475 if (segkmem_kmemlp_max == 0) { 1476 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1477 segkmem_kmemlp_pcnt = 12; 1478 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1479 } 1480 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1481 segkmem_heaplp_quantum); 1482 1483 /* fix lp kmem preallocation request if necesssary */ 1484 if (segkmem_kmemlp_min) { 1485 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1486 segkmem_heaplp_quantum); 1487 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1488 segkmem_kmemlp_min = segkmem_kmemlp_max; 1489 } 1490 1491 use_large_pages = 1; 1492 segkmem_lpshift = page_get_shift(page_szc(segkmem_lpsize)); 1493 1494 #endif 1495 return (use_large_pages); 1496 } 1497 1498 void 1499 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1500 { 1501 ASSERT(zio_mem_base != NULL); 1502 ASSERT(zio_mem_size != 0); 1503 1504 zio_arena = vmem_create("zio", zio_mem_base, zio_mem_size, PAGESIZE, 1505 NULL, NULL, NULL, 0, VM_SLEEP); 1506 1507 zio_alloc_arena = vmem_create("zio_buf", NULL, 0, PAGESIZE, 1508 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1509 1510 ASSERT(zio_arena != NULL); 1511 ASSERT(zio_alloc_arena != NULL); 1512 } 1513 1514 #ifdef __sparc 1515 1516 1517 static void * 1518 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1519 { 1520 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1521 void *addr; 1522 1523 if (ppaquantum <= PAGESIZE) 1524 return (segkmem_alloc(vmp, size, vmflag)); 1525 1526 ASSERT((size & (ppaquantum - 1)) == 0); 1527 1528 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1529 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1530 segkmem_page_create, NULL) == NULL) { 1531 vmem_xfree(vmp, addr, size); 1532 addr = NULL; 1533 } 1534 1535 return (addr); 1536 } 1537 1538 static void 1539 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1540 { 1541 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1542 1543 ASSERT(addr != NULL); 1544 1545 if (ppaquantum <= PAGESIZE) { 1546 segkmem_free(vmp, addr, size); 1547 } else { 1548 segkmem_free(NULL, addr, size); 1549 vmem_xfree(vmp, addr, size); 1550 } 1551 } 1552 1553 void 1554 segkmem_heap_lp_init() 1555 { 1556 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1557 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1558 size_t lpsize = segkmem_lpsize; 1559 size_t ppaquantum; 1560 void *addr; 1561 1562 if (segkmem_lpsize <= PAGESIZE) { 1563 ASSERT(heap_lp_base == NULL); 1564 ASSERT(heap_lp_end == NULL); 1565 return; 1566 } 1567 1568 ASSERT(segkmem_heaplp_quantum >= lpsize); 1569 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1570 ASSERT(lpcb->lp_uselp == 0); 1571 ASSERT(heap_lp_base != NULL); 1572 ASSERT(heap_lp_end != NULL); 1573 ASSERT(heap_lp_base < heap_lp_end); 1574 ASSERT(heap_lp_arena == NULL); 1575 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1576 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1577 1578 /* create large page heap arena */ 1579 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1580 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1581 1582 ASSERT(heap_lp_arena != NULL); 1583 1584 /* This arena caches memory already mapped by large pages */ 1585 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1586 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1587 1588 ASSERT(kmem_lp_arena != NULL); 1589 1590 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1591 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1592 1593 /* 1594 * this arena is used for the array of page_t pointers necessary 1595 * to call hat_mem_load_array 1596 */ 1597 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1598 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1599 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1600 VM_SLEEP); 1601 1602 ASSERT(segkmem_ppa_arena != NULL); 1603 1604 /* prealloacate some memory for the lp kernel heap */ 1605 if (segkmem_kmemlp_min) { 1606 1607 ASSERT(P2PHASE(segkmem_kmemlp_min, 1608 segkmem_heaplp_quantum) == 0); 1609 1610 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1611 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1612 1613 addr = vmem_add(kmem_lp_arena, addr, 1614 segkmem_kmemlp_min, VM_SLEEP); 1615 ASSERT(addr != NULL); 1616 } 1617 } 1618 1619 lpcb->lp_uselp = 1; 1620 } 1621 1622 #endif 1623