1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/tuneable.h> 33 #include <sys/systm.h> 34 #include <sys/vm.h> 35 #include <sys/kmem.h> 36 #include <sys/vmem.h> 37 #include <sys/mman.h> 38 #include <sys/cmn_err.h> 39 #include <sys/debug.h> 40 #include <sys/dumphdr.h> 41 #include <sys/bootconf.h> 42 #include <sys/lgrp.h> 43 #include <vm/seg_kmem.h> 44 #include <vm/hat.h> 45 #include <vm/page.h> 46 #include <vm/vm_dep.h> 47 #include <vm/faultcode.h> 48 #include <sys/promif.h> 49 #include <vm/seg_kp.h> 50 #include <sys/bitmap.h> 51 #include <sys/mem_cage.h> 52 53 /* 54 * seg_kmem is the primary kernel memory segment driver. It 55 * maps the kernel heap [kernelheap, ekernelheap), module text, 56 * and all memory which was allocated before the VM was initialized 57 * into kas. 58 * 59 * Pages which belong to seg_kmem are hashed into &kvp vnode at 60 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 61 * They must never be paged out since segkmem_fault() is a no-op to 62 * prevent recursive faults. 63 * 64 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 65 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 66 * supports relocation the #ifdef kludges can be removed. 67 * 68 * seg_kmem pages may be subject to relocation by page_relocate(), 69 * provided that the HAT supports it; if this is so, segkmem_reloc 70 * will be set to a nonzero value. All boot time allocated memory as 71 * well as static memory is considered off limits to relocation. 72 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 73 * we request P_NORELOC pages for memory that isn't safe to relocate. 74 * 75 * The kernel heap is logically divided up into four pieces: 76 * 77 * heap32_arena is for allocations that require 32-bit absolute 78 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 79 * 80 * heap_core is for allocations that require 2GB *relative* 81 * offsets; in other words all memory from heap_core is within 82 * 2GB of all other memory from the same arena. This is a requirement 83 * of the addressing modes of some processors in supervisor code. 84 * 85 * heap_arena is the general heap arena. 86 * 87 * static_arena is the static memory arena. Allocations from it 88 * are not subject to relocation so it is safe to use the memory 89 * physical address as well as the virtual address (e.g. the VA to 90 * PA translations are static). Caches may import from static_arena; 91 * all other static memory allocations should use static_alloc_arena. 92 * 93 * On some platforms which have limited virtual address space, seg_kmem 94 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 95 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 96 * address space which is actually seg_kp mapped. 97 */ 98 99 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 100 101 char *kernelheap; /* start of primary kernel heap */ 102 char *ekernelheap; /* end of primary kernel heap */ 103 struct seg kvseg; /* primary kernel heap segment */ 104 struct seg kvseg_core; /* "core" kernel heap segment */ 105 struct seg kzioseg; /* Segment for zio mappings */ 106 vmem_t *heap_arena; /* primary kernel heap arena */ 107 vmem_t *heap_core_arena; /* core kernel heap arena */ 108 char *heap_core_base; /* start of core kernel heap arena */ 109 char *heap_lp_base; /* start of kernel large page heap arena */ 110 char *heap_lp_end; /* end of kernel large page heap arena */ 111 vmem_t *hat_memload_arena; /* HAT translation data */ 112 struct seg kvseg32; /* 32-bit kernel heap segment */ 113 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 114 vmem_t *heaptext_arena; /* heaptext arena */ 115 struct as kas; /* kernel address space */ 116 struct vnode kvp; /* vnode for all segkmem pages */ 117 struct vnode zvp; /* vnode for zfs pages */ 118 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 119 vmem_t *static_arena; /* arena for caches to import static memory */ 120 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 121 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 122 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 123 124 /* 125 * seg_kmem driver can map part of the kernel heap with large pages. 126 * Currently this functionality is implemented for sparc platforms only. 127 * 128 * The large page size "segkmem_lpsize" for kernel heap is selected in the 129 * platform specific code. It can also be modified via /etc/system file. 130 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 131 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 132 * match segkmem_lpsize. 133 * 134 * At boot time we carve from kernel heap arena a range of virtual addresses 135 * that will be used for large page mappings. This range [heap_lp_base, 136 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 137 * create "kmem_lp_arena" that caches memory already backed up by large 138 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 139 */ 140 141 size_t segkmem_lpsize; 142 static uint_t segkmem_lpshift = PAGESHIFT; 143 int segkmem_lpszc = 0; 144 145 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 146 size_t segkmem_heaplp_quantum; 147 vmem_t *heap_lp_arena; 148 static vmem_t *kmem_lp_arena; 149 static vmem_t *segkmem_ppa_arena; 150 static segkmem_lpcb_t segkmem_lpcb; 151 152 /* 153 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 154 * consumed by the large page heap. By default this parameter is set to 1/8 of 155 * physmem but can be adjusted through /etc/system either directly or 156 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 157 * we allow for large page heap. 158 */ 159 size_t segkmem_kmemlp_max; 160 static uint_t segkmem_kmemlp_pcnt; 161 162 /* 163 * Getting large pages for kernel heap could be problematic due to 164 * physical memory fragmentation. That's why we allow to preallocate 165 * "segkmem_kmemlp_min" bytes at boot time. 166 */ 167 static size_t segkmem_kmemlp_min; 168 169 /* 170 * Throttling is used to avoid expensive tries to allocate large pages 171 * for kernel heap when a lot of succesive attempts to do so fail. 172 */ 173 static ulong_t segkmem_lpthrottle_max = 0x400000; 174 static ulong_t segkmem_lpthrottle_start = 0x40; 175 static ulong_t segkmem_use_lpthrottle = 1; 176 177 /* 178 * Freed pages accumulate on a garbage list until segkmem is ready, 179 * at which point we call segkmem_gc() to free it all. 180 */ 181 typedef struct segkmem_gc_list { 182 struct segkmem_gc_list *gc_next; 183 vmem_t *gc_arena; 184 size_t gc_size; 185 } segkmem_gc_list_t; 186 187 static segkmem_gc_list_t *segkmem_gc_list; 188 189 /* 190 * Allocations from the hat_memload arena add VM_MEMLOAD to their 191 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 192 * to take steps to prevent infinite recursion. HAT allocations also 193 * must be non-relocatable to prevent recursive page faults. 194 */ 195 static void * 196 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 197 { 198 flags |= (VM_MEMLOAD | VM_NORELOC); 199 return (segkmem_alloc(vmp, size, flags)); 200 } 201 202 /* 203 * Allocations from static_arena arena (or any other arena that uses 204 * segkmem_alloc_permanent()) require non-relocatable (permanently 205 * wired) memory pages, since these pages are referenced by physical 206 * as well as virtual address. 207 */ 208 void * 209 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 210 { 211 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 212 } 213 214 /* 215 * Initialize kernel heap boundaries. 216 */ 217 void 218 kernelheap_init( 219 void *heap_start, 220 void *heap_end, 221 char *first_avail, 222 void *core_start, 223 void *core_end) 224 { 225 uintptr_t textbase; 226 size_t core_size; 227 size_t heap_size; 228 vmem_t *heaptext_parent; 229 size_t heap_lp_size = 0; 230 231 kernelheap = heap_start; 232 ekernelheap = heap_end; 233 234 #ifdef __sparc 235 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 236 heap_lp_base = ekernelheap - heap_lp_size; 237 heap_lp_end = heap_lp_base + heap_lp_size; 238 #endif /* __sparc */ 239 240 /* 241 * If this platform has a 'core' heap area, then the space for 242 * overflow module text should be carved out of the end of that 243 * heap. Otherwise, it gets carved out of the general purpose 244 * heap. 245 */ 246 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 247 if (core_size > 0) { 248 ASSERT(core_size >= HEAPTEXT_SIZE); 249 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 250 core_size -= HEAPTEXT_SIZE; 251 } 252 #ifndef __sparc 253 else { 254 ekernelheap -= HEAPTEXT_SIZE; 255 textbase = (uintptr_t)ekernelheap; 256 } 257 #endif 258 259 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 260 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 261 segkmem_alloc, segkmem_free); 262 263 if (core_size > 0) { 264 heap_core_arena = vmem_create("heap_core", core_start, 265 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 266 heap_core_base = core_start; 267 } else { 268 heap_core_arena = heap_arena; 269 heap_core_base = kernelheap; 270 } 271 272 /* 273 * reserve space for the large page heap. If large pages for kernel 274 * heap is enabled large page heap arean will be created later in the 275 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 276 * range will be returned back to the heap_arena. 277 */ 278 if (heap_lp_size) { 279 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 280 heap_lp_base, heap_lp_end, 281 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 282 } 283 284 /* 285 * Remove the already-spoken-for memory range [kernelheap, first_avail). 286 */ 287 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 288 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 289 290 #ifdef __sparc 291 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 292 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 293 NULL, NULL, 0, VM_SLEEP); 294 295 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 296 heaptext_parent = NULL; 297 #else /* __sparc */ 298 heap32_arena = heap_core_arena; 299 heaptext_parent = heap_core_arena; 300 #endif /* __sparc */ 301 302 heaptext_arena = vmem_create("heaptext", (void *)textbase, 303 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 304 305 /* 306 * Create a set of arenas for memory with static translations 307 * (e.g. VA -> PA translations cannot change). Since using 308 * kernel pages by physical address implies it isn't safe to 309 * walk across page boundaries, the static_arena quantum must 310 * be PAGESIZE. Any kmem caches that require static memory 311 * should source from static_arena, while direct allocations 312 * should only use static_alloc_arena. 313 */ 314 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 315 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 316 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 317 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 318 0, VM_SLEEP); 319 320 /* 321 * Create an arena for translation data (ptes, hmes, or hblks). 322 * We need an arena for this because hat_memload() is essential 323 * to vmem_populate() (see comments in common/os/vmem.c). 324 * 325 * Note: any kmem cache that allocates from hat_memload_arena 326 * must be created as a KMC_NOHASH cache (i.e. no external slab 327 * and bufctl structures to allocate) so that slab creation doesn't 328 * require anything more than a single vmem_alloc(). 329 */ 330 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 331 hat_memload_alloc, segkmem_free, heap_arena, 0, 332 VM_SLEEP | VMC_POPULATOR); 333 } 334 335 /* 336 * Grow kernel heap downward. 337 */ 338 void 339 kernelheap_extend(void *range_start, void *range_end) 340 { 341 size_t len = (uintptr_t)range_end - (uintptr_t)range_start; 342 343 ASSERT(range_start < range_end && range_end == kernelheap); 344 345 if (vmem_add(heap_arena, range_start, len, VM_NOSLEEP) == NULL) { 346 cmn_err(CE_WARN, "Could not grow kernel heap below 0x%p", 347 (void *)kernelheap); 348 } else { 349 kernelheap = range_start; 350 } 351 } 352 353 void 354 boot_mapin(caddr_t addr, size_t size) 355 { 356 caddr_t eaddr; 357 page_t *pp; 358 pfn_t pfnum; 359 360 if (page_resv(btop(size), KM_NOSLEEP) == 0) 361 panic("boot_mapin: page_resv failed"); 362 363 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 364 pfnum = va_to_pfn(addr); 365 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 366 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 367 368 /* 369 * must break up any large pages that may have constituent 370 * pages being utilized for BOP_ALLOC()'s before calling 371 * page_numtopp().The locking code (ie. page_reclaim()) 372 * can't handle them 373 */ 374 if (pp->p_szc != 0) 375 page_boot_demote(pp); 376 377 pp = page_numtopp(pfnum, SE_EXCL); 378 if (pp == NULL || PP_ISFREE(pp)) 379 panic("boot_alloc: pp is NULL or free"); 380 381 /* 382 * If the cage is on but doesn't yet contain this page, 383 * mark it as non-relocatable. 384 */ 385 if (kcage_on && !PP_ISNORELOC(pp)) 386 PP_SETNORELOC(pp); 387 388 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 389 pp->p_lckcnt = 1; 390 #if defined(__x86) 391 page_downgrade(pp); 392 #else 393 page_unlock(pp); 394 #endif 395 } 396 } 397 398 /* 399 * Get pages from boot and hash them into the kernel's vp. 400 * Used after page structs have been allocated, but before segkmem is ready. 401 */ 402 void * 403 boot_alloc(void *inaddr, size_t size, uint_t align) 404 { 405 caddr_t addr = inaddr; 406 407 if (bootops == NULL) 408 prom_panic("boot_alloc: attempt to allocate memory after " 409 "BOP_GONE"); 410 411 size = ptob(btopr(size)); 412 if (BOP_ALLOC(bootops, addr, size, align) != addr) 413 panic("boot_alloc: BOP_ALLOC failed"); 414 boot_mapin((caddr_t)addr, size); 415 return (addr); 416 } 417 418 static void 419 segkmem_badop() 420 { 421 panic("segkmem_badop"); 422 } 423 424 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 425 426 /*ARGSUSED*/ 427 static faultcode_t 428 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 429 enum fault_type type, enum seg_rw rw) 430 { 431 pgcnt_t npages; 432 spgcnt_t pg; 433 page_t *pp; 434 struct vnode *vp = seg->s_data; 435 436 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 437 438 if (seg->s_as != &kas || size > seg->s_size || 439 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 440 panic("segkmem_fault: bad args"); 441 442 if (segkp_bitmap && seg == &kvseg) { 443 /* 444 * If it is one of segkp pages, call segkp_fault. 445 */ 446 if (BT_TEST(segkp_bitmap, 447 btop((uintptr_t)(addr - seg->s_base)))) 448 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 449 } 450 451 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 452 return (FC_NOSUPPORT); 453 454 npages = btopr(size); 455 456 switch (type) { 457 case F_SOFTLOCK: /* lock down already-loaded translations */ 458 for (pg = 0; pg < npages; pg++) { 459 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 460 SE_SHARED); 461 if (pp == NULL) { 462 /* 463 * Hmm, no page. Does a kernel mapping 464 * exist for it? 465 */ 466 if (!hat_probe(kas.a_hat, addr)) { 467 addr -= PAGESIZE; 468 while (--pg >= 0) { 469 pp = page_find(vp, 470 (u_offset_t)(uintptr_t)addr); 471 if (pp) 472 page_unlock(pp); 473 addr -= PAGESIZE; 474 } 475 return (FC_NOMAP); 476 } 477 } 478 addr += PAGESIZE; 479 } 480 if (rw == S_OTHER) 481 hat_reserve(seg->s_as, addr, size); 482 return (0); 483 case F_SOFTUNLOCK: 484 while (npages--) { 485 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 486 if (pp) 487 page_unlock(pp); 488 addr += PAGESIZE; 489 } 490 return (0); 491 default: 492 return (FC_NOSUPPORT); 493 } 494 /*NOTREACHED*/ 495 } 496 497 static int 498 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 499 { 500 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 501 502 if (seg->s_as != &kas || size > seg->s_size || 503 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 504 panic("segkmem_setprot: bad args"); 505 506 if (segkp_bitmap && seg == &kvseg) { 507 508 /* 509 * If it is one of segkp pages, call segkp. 510 */ 511 if (BT_TEST(segkp_bitmap, 512 btop((uintptr_t)(addr - seg->s_base)))) 513 return (SEGOP_SETPROT(segkp, addr, size, prot)); 514 } 515 516 if (prot == 0) 517 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 518 else 519 hat_chgprot(kas.a_hat, addr, size, prot); 520 return (0); 521 } 522 523 /* 524 * This is a dummy segkmem function overloaded to call segkp 525 * when segkp is under the heap. 526 */ 527 /* ARGSUSED */ 528 static int 529 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 530 { 531 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 532 533 if (seg->s_as != &kas) 534 segkmem_badop(); 535 536 if (segkp_bitmap && seg == &kvseg) { 537 538 /* 539 * If it is one of segkp pages, call into segkp. 540 */ 541 if (BT_TEST(segkp_bitmap, 542 btop((uintptr_t)(addr - seg->s_base)))) 543 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 544 } 545 segkmem_badop(); 546 return (0); 547 } 548 549 /* 550 * This is a dummy segkmem function overloaded to call segkp 551 * when segkp is under the heap. 552 */ 553 /* ARGSUSED */ 554 static int 555 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 556 { 557 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 558 559 if (seg->s_as != &kas) 560 segkmem_badop(); 561 562 if (segkp_bitmap && seg == &kvseg) { 563 564 /* 565 * If it is one of segkp pages, call into segkp. 566 */ 567 if (BT_TEST(segkp_bitmap, 568 btop((uintptr_t)(addr - seg->s_base)))) 569 return (SEGOP_KLUSTER(segkp, addr, delta)); 570 } 571 segkmem_badop(); 572 return (0); 573 } 574 575 static void 576 segkmem_xdump_range(void *arg, void *start, size_t size) 577 { 578 struct as *as = arg; 579 caddr_t addr = start; 580 caddr_t addr_end = addr + size; 581 582 while (addr < addr_end) { 583 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 584 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 585 dump_addpage(as, addr, pfn); 586 addr += PAGESIZE; 587 dump_timeleft = dump_timeout; 588 } 589 } 590 591 static void 592 segkmem_dump_range(void *arg, void *start, size_t size) 593 { 594 caddr_t addr = start; 595 caddr_t addr_end = addr + size; 596 597 /* 598 * If we are about to start dumping the range of addresses we 599 * carved out of the kernel heap for the large page heap walk 600 * heap_lp_arena to find what segments are actually populated 601 */ 602 if (SEGKMEM_USE_LARGEPAGES && 603 addr == heap_lp_base && addr_end == heap_lp_end && 604 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 605 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 606 segkmem_xdump_range, arg); 607 } else { 608 segkmem_xdump_range(arg, start, size); 609 } 610 } 611 612 static void 613 segkmem_dump(struct seg *seg) 614 { 615 /* 616 * The kernel's heap_arena (represented by kvseg) is a very large 617 * VA space, most of which is typically unused. To speed up dumping 618 * we use vmem_walk() to quickly find the pieces of heap_arena that 619 * are actually in use. We do the same for heap32_arena and 620 * heap_core. 621 * 622 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 623 * may ultimately need to allocate memory. Reentrant walks are 624 * necessarily imperfect snapshots. The kernel heap continues 625 * to change during a live crash dump, for example. For a normal 626 * crash dump, however, we know that there won't be any other threads 627 * messing with the heap. Therefore, at worst, we may fail to dump 628 * the pages that get allocated by the act of dumping; but we will 629 * always dump every page that was allocated when the walk began. 630 * 631 * The other segkmem segments are dense (fully populated), so there's 632 * no need to use this technique when dumping them. 633 * 634 * Note: when adding special dump handling for any new sparsely- 635 * populated segments, be sure to add similar handling to the ::kgrep 636 * code in mdb. 637 */ 638 if (seg == &kvseg) { 639 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 640 segkmem_dump_range, seg->s_as); 641 #ifndef __sparc 642 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 643 segkmem_dump_range, seg->s_as); 644 #endif 645 } else if (seg == &kvseg_core) { 646 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 647 segkmem_dump_range, seg->s_as); 648 } else if (seg == &kvseg32) { 649 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 650 segkmem_dump_range, seg->s_as); 651 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 652 segkmem_dump_range, seg->s_as); 653 } else if (seg == &kzioseg) { 654 /* 655 * We don't want to dump pages attached to kzioseg since they 656 * contain file data from ZFS. If this page's segment is 657 * kzioseg return instead of writing it to the dump device. 658 */ 659 return; 660 } else { 661 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 662 } 663 } 664 665 /* 666 * lock/unlock kmem pages over a given range [addr, addr+len). 667 * Returns a shadow list of pages in ppp. If there are holes 668 * in the range (e.g. some of the kernel mappings do not have 669 * underlying page_ts) returns ENOTSUP so that as_pagelock() 670 * will handle the range via as_fault(F_SOFTLOCK). 671 */ 672 /*ARGSUSED*/ 673 static int 674 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 675 page_t ***ppp, enum lock_type type, enum seg_rw rw) 676 { 677 page_t **pplist, *pp; 678 pgcnt_t npages; 679 spgcnt_t pg; 680 size_t nb; 681 struct vnode *vp = seg->s_data; 682 683 ASSERT(ppp != NULL); 684 685 if (segkp_bitmap && seg == &kvseg) { 686 /* 687 * If it is one of segkp pages, call into segkp. 688 */ 689 if (BT_TEST(segkp_bitmap, 690 btop((uintptr_t)(addr - seg->s_base)))) 691 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, 692 type, rw)); 693 } 694 695 if (type == L_PAGERECLAIM) 696 return (ENOTSUP); 697 698 npages = btopr(len); 699 nb = sizeof (page_t *) * npages; 700 701 if (type == L_PAGEUNLOCK) { 702 pplist = *ppp; 703 ASSERT(pplist != NULL); 704 705 for (pg = 0; pg < npages; pg++) { 706 pp = pplist[pg]; 707 page_unlock(pp); 708 } 709 kmem_free(pplist, nb); 710 return (0); 711 } 712 713 ASSERT(type == L_PAGELOCK); 714 715 pplist = kmem_alloc(nb, KM_NOSLEEP); 716 if (pplist == NULL) { 717 *ppp = NULL; 718 return (ENOTSUP); /* take the slow path */ 719 } 720 721 for (pg = 0; pg < npages; pg++) { 722 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 723 if (pp == NULL) { 724 while (--pg >= 0) 725 page_unlock(pplist[pg]); 726 kmem_free(pplist, nb); 727 *ppp = NULL; 728 return (ENOTSUP); 729 } 730 pplist[pg] = pp; 731 addr += PAGESIZE; 732 } 733 734 *ppp = pplist; 735 return (0); 736 } 737 738 /* 739 * This is a dummy segkmem function overloaded to call segkp 740 * when segkp is under the heap. 741 */ 742 /* ARGSUSED */ 743 static int 744 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 745 { 746 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 747 748 if (seg->s_as != &kas) 749 segkmem_badop(); 750 751 if (segkp_bitmap && seg == &kvseg) { 752 753 /* 754 * If it is one of segkp pages, call into segkp. 755 */ 756 if (BT_TEST(segkp_bitmap, 757 btop((uintptr_t)(addr - seg->s_base)))) 758 return (SEGOP_GETMEMID(segkp, addr, memidp)); 759 } 760 segkmem_badop(); 761 return (0); 762 } 763 764 /*ARGSUSED*/ 765 static lgrp_mem_policy_info_t * 766 segkmem_getpolicy(struct seg *seg, caddr_t addr) 767 { 768 return (NULL); 769 } 770 771 /*ARGSUSED*/ 772 static int 773 segkmem_capable(struct seg *seg, segcapability_t capability) 774 { 775 if (capability == S_CAPABILITY_NOMINFLT) 776 return (1); 777 return (0); 778 } 779 780 static struct seg_ops segkmem_ops = { 781 SEGKMEM_BADOP(int), /* dup */ 782 SEGKMEM_BADOP(int), /* unmap */ 783 SEGKMEM_BADOP(void), /* free */ 784 segkmem_fault, 785 SEGKMEM_BADOP(faultcode_t), /* faulta */ 786 segkmem_setprot, 787 segkmem_checkprot, 788 segkmem_kluster, 789 SEGKMEM_BADOP(size_t), /* swapout */ 790 SEGKMEM_BADOP(int), /* sync */ 791 SEGKMEM_BADOP(size_t), /* incore */ 792 SEGKMEM_BADOP(int), /* lockop */ 793 SEGKMEM_BADOP(int), /* getprot */ 794 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 795 SEGKMEM_BADOP(int), /* gettype */ 796 SEGKMEM_BADOP(int), /* getvp */ 797 SEGKMEM_BADOP(int), /* advise */ 798 segkmem_dump, 799 segkmem_pagelock, 800 SEGKMEM_BADOP(int), /* setpgsz */ 801 segkmem_getmemid, 802 segkmem_getpolicy, /* getpolicy */ 803 segkmem_capable, /* capable */ 804 }; 805 806 int 807 segkmem_zio_create(struct seg *seg) 808 { 809 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 810 seg->s_ops = &segkmem_ops; 811 seg->s_data = &zvp; 812 kas.a_size += seg->s_size; 813 return (0); 814 } 815 816 int 817 segkmem_create(struct seg *seg) 818 { 819 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 820 seg->s_ops = &segkmem_ops; 821 seg->s_data = &kvp; 822 kas.a_size += seg->s_size; 823 return (0); 824 } 825 826 /*ARGSUSED*/ 827 page_t * 828 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 829 { 830 struct seg kseg; 831 int pgflags; 832 struct vnode *vp = arg; 833 834 if (vp == NULL) 835 vp = &kvp; 836 837 kseg.s_as = &kas; 838 pgflags = PG_EXCL; 839 840 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 841 pgflags |= PG_NORELOC; 842 if ((vmflag & VM_NOSLEEP) == 0) 843 pgflags |= PG_WAIT; 844 if (vmflag & VM_PANIC) 845 pgflags |= PG_PANIC; 846 if (vmflag & VM_PUSHPAGE) 847 pgflags |= PG_PUSHPAGE; 848 849 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 850 pgflags, &kseg, addr)); 851 } 852 853 /* 854 * Allocate pages to back the virtual address range [addr, addr + size). 855 * If addr is NULL, allocate the virtual address space as well. 856 */ 857 void * 858 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 859 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 860 { 861 page_t *ppl; 862 caddr_t addr = inaddr; 863 pgcnt_t npages = btopr(size); 864 int allocflag; 865 866 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 867 return (NULL); 868 869 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 870 871 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 872 if (inaddr == NULL) 873 vmem_free(vmp, addr, size); 874 return (NULL); 875 } 876 877 ppl = page_create_func(addr, size, vmflag, pcarg); 878 if (ppl == NULL) { 879 if (inaddr == NULL) 880 vmem_free(vmp, addr, size); 881 page_unresv(npages); 882 return (NULL); 883 } 884 885 /* 886 * Under certain conditions, we need to let the HAT layer know 887 * that it cannot safely allocate memory. Allocations from 888 * the hat_memload vmem arena always need this, to prevent 889 * infinite recursion. 890 * 891 * In addition, the x86 hat cannot safely do memory 892 * allocations while in vmem_populate(), because there 893 * is no simple bound on its usage. 894 */ 895 if (vmflag & VM_MEMLOAD) 896 allocflag = HAT_NO_KALLOC; 897 #if defined(__x86) 898 else if (vmem_is_populator()) 899 allocflag = HAT_NO_KALLOC; 900 #endif 901 else 902 allocflag = 0; 903 904 while (ppl != NULL) { 905 page_t *pp = ppl; 906 page_sub(&ppl, pp); 907 ASSERT(page_iolock_assert(pp)); 908 ASSERT(PAGE_EXCL(pp)); 909 page_io_unlock(pp); 910 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 911 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 912 HAT_LOAD_LOCK | allocflag); 913 pp->p_lckcnt = 1; 914 #if defined(__x86) 915 page_downgrade(pp); 916 #else 917 if (vmflag & SEGKMEM_SHARELOCKED) 918 page_downgrade(pp); 919 else 920 page_unlock(pp); 921 #endif 922 } 923 924 return (addr); 925 } 926 927 static void * 928 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 929 { 930 void *addr; 931 segkmem_gc_list_t *gcp, **prev_gcpp; 932 933 ASSERT(vp != NULL); 934 935 if (kvseg.s_base == NULL) { 936 #ifndef __sparc 937 if (bootops->bsys_alloc == NULL) 938 halt("Memory allocation between bop_alloc() and " 939 "kmem_alloc().\n"); 940 #endif 941 942 /* 943 * There's not a lot of memory to go around during boot, 944 * so recycle it if we can. 945 */ 946 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 947 prev_gcpp = &gcp->gc_next) { 948 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 949 *prev_gcpp = gcp->gc_next; 950 return (gcp); 951 } 952 } 953 954 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 955 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 956 panic("segkmem_alloc: boot_alloc failed"); 957 return (addr); 958 } 959 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 960 segkmem_page_create, vp)); 961 } 962 963 void * 964 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 965 { 966 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 967 } 968 969 void * 970 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 971 { 972 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp)); 973 } 974 975 /* 976 * Any changes to this routine must also be carried over to 977 * devmap_free_pages() in the seg_dev driver. This is because 978 * we currently don't have a special kernel segment for non-paged 979 * kernel memory that is exported by drivers to user space. 980 */ 981 static void 982 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp) 983 { 984 page_t *pp; 985 caddr_t addr = inaddr; 986 caddr_t eaddr; 987 pgcnt_t npages = btopr(size); 988 989 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 990 ASSERT(vp != NULL); 991 992 if (kvseg.s_base == NULL) { 993 segkmem_gc_list_t *gc = inaddr; 994 gc->gc_arena = vmp; 995 gc->gc_size = size; 996 gc->gc_next = segkmem_gc_list; 997 segkmem_gc_list = gc; 998 return; 999 } 1000 1001 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1002 1003 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1004 #if defined(__x86) 1005 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 1006 if (pp == NULL) 1007 panic("segkmem_free: page not found"); 1008 if (!page_tryupgrade(pp)) { 1009 /* 1010 * Some other thread has a sharelock. Wait for 1011 * it to drop the lock so we can free this page. 1012 */ 1013 page_unlock(pp); 1014 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 1015 SE_EXCL); 1016 } 1017 #else 1018 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1019 #endif 1020 if (pp == NULL) 1021 panic("segkmem_free: page not found"); 1022 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1023 pp->p_lckcnt = 0; 1024 page_destroy(pp, 0); 1025 } 1026 page_unresv(npages); 1027 1028 if (vmp != NULL) 1029 vmem_free(vmp, inaddr, size); 1030 1031 } 1032 1033 void 1034 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1035 { 1036 segkmem_free_vn(vmp, inaddr, size, &kvp); 1037 } 1038 1039 void 1040 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1041 { 1042 segkmem_free_vn(vmp, inaddr, size, &zvp); 1043 } 1044 1045 void 1046 segkmem_gc(void) 1047 { 1048 ASSERT(kvseg.s_base != NULL); 1049 while (segkmem_gc_list != NULL) { 1050 segkmem_gc_list_t *gc = segkmem_gc_list; 1051 segkmem_gc_list = gc->gc_next; 1052 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1053 } 1054 } 1055 1056 /* 1057 * Legacy entry points from here to end of file. 1058 */ 1059 void 1060 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1061 pfn_t pfn, uint_t flags) 1062 { 1063 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1064 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1065 flags | HAT_LOAD_LOCK); 1066 } 1067 1068 void 1069 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1070 { 1071 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1072 } 1073 1074 void * 1075 kmem_getpages(pgcnt_t npages, int kmflag) 1076 { 1077 return (kmem_alloc(ptob(npages), kmflag)); 1078 } 1079 1080 void 1081 kmem_freepages(void *addr, pgcnt_t npages) 1082 { 1083 kmem_free(addr, ptob(npages)); 1084 } 1085 1086 /* 1087 * segkmem_page_create_large() allocates a large page to be used for the kmem 1088 * caches. If kpr is enabled we ask for a relocatable page unless requested 1089 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1090 */ 1091 static page_t * 1092 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1093 { 1094 int pgflags; 1095 1096 pgflags = PG_EXCL; 1097 1098 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1099 pgflags |= PG_NORELOC; 1100 if (!(vmflag & VM_NOSLEEP)) 1101 pgflags |= PG_WAIT; 1102 if (vmflag & VM_PUSHPAGE) 1103 pgflags |= PG_PUSHPAGE; 1104 1105 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1106 pgflags, &kvseg, addr, arg)); 1107 } 1108 1109 /* 1110 * Allocate a large page to back the virtual address range 1111 * [addr, addr + size). If addr is NULL, allocate the virtual address 1112 * space as well. 1113 */ 1114 static void * 1115 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1116 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1117 void *pcarg) 1118 { 1119 caddr_t addr = inaddr, pa; 1120 size_t lpsize = segkmem_lpsize; 1121 pgcnt_t npages = btopr(size); 1122 pgcnt_t nbpages = btop(lpsize); 1123 pgcnt_t nlpages = size >> segkmem_lpshift; 1124 size_t ppasize = nbpages * sizeof (page_t *); 1125 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1126 int i; 1127 1128 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1129 return (NULL); 1130 } 1131 1132 /* 1133 * allocate an array we need for hat_memload_array. 1134 * we use a separate arena to avoid recursion. 1135 * we will not need this array when hat_memload_array learns pp++ 1136 */ 1137 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1138 goto fail_array_alloc; 1139 } 1140 1141 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1142 goto fail_vmem_alloc; 1143 1144 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1145 1146 /* create all the pages */ 1147 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1148 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1149 goto fail_page_create; 1150 page_list_concat(&pplist, &pp); 1151 } 1152 1153 /* at this point we have all the resource to complete the request */ 1154 while ((rootpp = pplist) != NULL) { 1155 for (i = 0; i < nbpages; i++) { 1156 ASSERT(pplist != NULL); 1157 pp = pplist; 1158 page_sub(&pplist, pp); 1159 ASSERT(page_iolock_assert(pp)); 1160 page_io_unlock(pp); 1161 ppa[i] = pp; 1162 } 1163 /* 1164 * Load the locked entry. It's OK to preload the entry into the 1165 * TSB since we now support large mappings in the kernel TSB. 1166 */ 1167 hat_memload_array(kas.a_hat, 1168 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1169 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1170 HAT_LOAD_LOCK); 1171 1172 for (--i; i >= 0; --i) { 1173 ppa[i]->p_lckcnt = 1; 1174 page_unlock(ppa[i]); 1175 } 1176 } 1177 1178 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1179 return (addr); 1180 1181 fail_page_create: 1182 while ((rootpp = pplist) != NULL) { 1183 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1184 ASSERT(pp != NULL); 1185 page_sub(&pplist, pp); 1186 ASSERT(page_iolock_assert(pp)); 1187 page_io_unlock(pp); 1188 } 1189 page_destroy_pages(rootpp); 1190 } 1191 1192 if (inaddr == NULL) 1193 vmem_free(vmp, addr, size); 1194 1195 fail_vmem_alloc: 1196 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1197 1198 fail_array_alloc: 1199 page_unresv(npages); 1200 1201 return (NULL); 1202 } 1203 1204 static void 1205 segkmem_free_one_lp(caddr_t addr, size_t size) 1206 { 1207 page_t *pp, *rootpp = NULL; 1208 pgcnt_t pgs_left = btopr(size); 1209 1210 ASSERT(size == segkmem_lpsize); 1211 1212 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1213 1214 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1215 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1216 if (pp == NULL) 1217 panic("segkmem_free_one_lp: page not found"); 1218 ASSERT(PAGE_EXCL(pp)); 1219 pp->p_lckcnt = 0; 1220 if (rootpp == NULL) 1221 rootpp = pp; 1222 } 1223 ASSERT(rootpp != NULL); 1224 page_destroy_pages(rootpp); 1225 1226 /* page_unresv() is done by the caller */ 1227 } 1228 1229 /* 1230 * This function is called to import new spans into the vmem arenas like 1231 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1232 * spans from large page arena - kmem_lp_arena. In order to do this it might 1233 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1234 * it was not able to satisfy the upgraded request it then calls regular 1235 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1236 */ 1237 void * 1238 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, int vmflag) 1239 { 1240 size_t size; 1241 kthread_t *t = curthread; 1242 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1243 1244 ASSERT(sizep != NULL); 1245 1246 size = *sizep; 1247 1248 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1249 !(vmflag & SEGKMEM_SHARELOCKED)) { 1250 1251 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1252 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1253 void *addr = NULL; 1254 ulong_t *lpthrtp = &lpcb->lp_throttle; 1255 ulong_t lpthrt = *lpthrtp; 1256 int dowakeup = 0; 1257 int doalloc = 1; 1258 1259 ASSERT(kmem_lp_arena != NULL); 1260 ASSERT(asize >= size); 1261 1262 if (lpthrt != 0) { 1263 /* try to update the throttle value */ 1264 lpthrt = atomic_add_long_nv(lpthrtp, 1); 1265 if (lpthrt >= segkmem_lpthrottle_max) { 1266 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1267 segkmem_lpthrottle_max / 4); 1268 } 1269 1270 /* 1271 * when we get above throttle start do an exponential 1272 * backoff at trying large pages and reaping 1273 */ 1274 if (lpthrt > segkmem_lpthrottle_start && 1275 (lpthrt & (lpthrt - 1))) { 1276 lpcb->allocs_throttled++; 1277 lpthrt--; 1278 if ((lpthrt & (lpthrt - 1)) == 0) 1279 kmem_reap(); 1280 return (segkmem_alloc(vmp, size, vmflag)); 1281 } 1282 } 1283 1284 if (!(vmflag & VM_NOSLEEP) && 1285 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1286 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1287 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1288 1289 /* 1290 * we are low on free memory in kmem_lp_arena 1291 * we let only one guy to allocate heap_lp 1292 * quantum size chunk that everybody is going to 1293 * share 1294 */ 1295 mutex_enter(&lpcb->lp_lock); 1296 1297 if (lpcb->lp_wait) { 1298 1299 /* we are not the first one - wait */ 1300 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1301 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1302 kmemlp_qnt) { 1303 doalloc = 0; 1304 } 1305 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1306 kmemlp_qnt) { 1307 1308 /* 1309 * we are the first one, make sure we import 1310 * a large page 1311 */ 1312 if (asize == kmemlp_qnt) 1313 asize += kmemlp_qnt; 1314 dowakeup = 1; 1315 lpcb->lp_wait = 1; 1316 } 1317 1318 mutex_exit(&lpcb->lp_lock); 1319 } 1320 1321 /* 1322 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1323 * large pages are not available. In that case this allocation 1324 * attempt will fail and we will retry allocation with small 1325 * pages. We also do not want to panic if this allocation fails 1326 * because we are going to retry. 1327 */ 1328 if (doalloc) { 1329 addr = vmem_alloc(kmem_lp_arena, asize, 1330 (vmflag | VM_ABORT) & ~VM_PANIC); 1331 1332 if (dowakeup) { 1333 mutex_enter(&lpcb->lp_lock); 1334 ASSERT(lpcb->lp_wait != 0); 1335 lpcb->lp_wait = 0; 1336 cv_broadcast(&lpcb->lp_cv); 1337 mutex_exit(&lpcb->lp_lock); 1338 } 1339 } 1340 1341 if (addr != NULL) { 1342 *sizep = asize; 1343 *lpthrtp = 0; 1344 return (addr); 1345 } 1346 1347 if (vmflag & VM_NOSLEEP) 1348 lpcb->nosleep_allocs_failed++; 1349 else 1350 lpcb->sleep_allocs_failed++; 1351 lpcb->alloc_bytes_failed += size; 1352 1353 /* if large page throttling is not started yet do it */ 1354 if (segkmem_use_lpthrottle && lpthrt == 0) { 1355 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1356 } 1357 } 1358 return (segkmem_alloc(vmp, size, vmflag)); 1359 } 1360 1361 void 1362 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1363 { 1364 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1365 segkmem_free(vmp, inaddr, size); 1366 } else { 1367 vmem_free(kmem_lp_arena, inaddr, size); 1368 } 1369 } 1370 1371 /* 1372 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1373 * into kmem_lp arena. In the process it maps the imported segment with 1374 * large pages 1375 */ 1376 static void * 1377 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1378 { 1379 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1380 void *addr; 1381 1382 ASSERT(size != 0); 1383 ASSERT(vmp == heap_lp_arena); 1384 1385 /* do not allow large page heap grow beyound limits */ 1386 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1387 lpcb->allocs_limited++; 1388 return (NULL); 1389 } 1390 1391 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1392 segkmem_page_create_large, NULL); 1393 return (addr); 1394 } 1395 1396 /* 1397 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1398 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1399 * large pages used to map it. 1400 */ 1401 static void 1402 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1403 { 1404 pgcnt_t nlpages = size >> segkmem_lpshift; 1405 size_t lpsize = segkmem_lpsize; 1406 caddr_t addr = inaddr; 1407 pgcnt_t npages = btopr(size); 1408 int i; 1409 1410 ASSERT(vmp == heap_lp_arena); 1411 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1412 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1413 1414 for (i = 0; i < nlpages; i++) { 1415 segkmem_free_one_lp(addr, lpsize); 1416 addr += lpsize; 1417 } 1418 1419 page_unresv(npages); 1420 1421 vmem_free(vmp, inaddr, size); 1422 } 1423 1424 /* 1425 * This function is called at system boot time by kmem_init right after 1426 * /etc/system file has been read. It checks based on hardware configuration 1427 * and /etc/system settings if system is going to use large pages. The 1428 * initialiazation necessary to actually start using large pages 1429 * happens later in the process after segkmem_heap_lp_init() is called. 1430 */ 1431 int 1432 segkmem_lpsetup() 1433 { 1434 int use_large_pages = 0; 1435 1436 #ifdef __sparc 1437 1438 size_t memtotal = physmem * PAGESIZE; 1439 1440 if (heap_lp_base == NULL) { 1441 segkmem_lpsize = PAGESIZE; 1442 return (0); 1443 } 1444 1445 /* get a platform dependent value of large page size for kernel heap */ 1446 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1447 1448 if (segkmem_lpsize <= PAGESIZE) { 1449 /* 1450 * put virtual space reserved for the large page kernel 1451 * back to the regular heap 1452 */ 1453 vmem_xfree(heap_arena, heap_lp_base, 1454 heap_lp_end - heap_lp_base); 1455 heap_lp_base = NULL; 1456 heap_lp_end = NULL; 1457 segkmem_lpsize = PAGESIZE; 1458 return (0); 1459 } 1460 1461 /* set heap_lp quantum if necessary */ 1462 if (segkmem_heaplp_quantum == 0 || 1463 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1464 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1465 segkmem_heaplp_quantum = segkmem_lpsize; 1466 } 1467 1468 /* set kmem_lp quantum if necessary */ 1469 if (segkmem_kmemlp_quantum == 0 || 1470 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1471 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1472 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1473 } 1474 1475 /* set total amount of memory allowed for large page kernel heap */ 1476 if (segkmem_kmemlp_max == 0) { 1477 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1478 segkmem_kmemlp_pcnt = 12; 1479 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1480 } 1481 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1482 segkmem_heaplp_quantum); 1483 1484 /* fix lp kmem preallocation request if necesssary */ 1485 if (segkmem_kmemlp_min) { 1486 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1487 segkmem_heaplp_quantum); 1488 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1489 segkmem_kmemlp_min = segkmem_kmemlp_max; 1490 } 1491 1492 use_large_pages = 1; 1493 segkmem_lpszc = page_szc(segkmem_lpsize); 1494 segkmem_lpshift = page_get_shift(segkmem_lpszc); 1495 1496 #endif 1497 return (use_large_pages); 1498 } 1499 1500 void 1501 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1502 { 1503 ASSERT(zio_mem_base != NULL); 1504 ASSERT(zio_mem_size != 0); 1505 1506 zio_arena = vmem_create("zio", zio_mem_base, zio_mem_size, PAGESIZE, 1507 NULL, NULL, NULL, 0, VM_SLEEP); 1508 1509 zio_alloc_arena = vmem_create("zio_buf", NULL, 0, PAGESIZE, 1510 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1511 1512 ASSERT(zio_arena != NULL); 1513 ASSERT(zio_alloc_arena != NULL); 1514 } 1515 1516 #ifdef __sparc 1517 1518 1519 static void * 1520 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1521 { 1522 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1523 void *addr; 1524 1525 if (ppaquantum <= PAGESIZE) 1526 return (segkmem_alloc(vmp, size, vmflag)); 1527 1528 ASSERT((size & (ppaquantum - 1)) == 0); 1529 1530 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1531 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1532 segkmem_page_create, NULL) == NULL) { 1533 vmem_xfree(vmp, addr, size); 1534 addr = NULL; 1535 } 1536 1537 return (addr); 1538 } 1539 1540 static void 1541 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1542 { 1543 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1544 1545 ASSERT(addr != NULL); 1546 1547 if (ppaquantum <= PAGESIZE) { 1548 segkmem_free(vmp, addr, size); 1549 } else { 1550 segkmem_free(NULL, addr, size); 1551 vmem_xfree(vmp, addr, size); 1552 } 1553 } 1554 1555 void 1556 segkmem_heap_lp_init() 1557 { 1558 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1559 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1560 size_t lpsize = segkmem_lpsize; 1561 size_t ppaquantum; 1562 void *addr; 1563 1564 if (segkmem_lpsize <= PAGESIZE) { 1565 ASSERT(heap_lp_base == NULL); 1566 ASSERT(heap_lp_end == NULL); 1567 return; 1568 } 1569 1570 ASSERT(segkmem_heaplp_quantum >= lpsize); 1571 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1572 ASSERT(lpcb->lp_uselp == 0); 1573 ASSERT(heap_lp_base != NULL); 1574 ASSERT(heap_lp_end != NULL); 1575 ASSERT(heap_lp_base < heap_lp_end); 1576 ASSERT(heap_lp_arena == NULL); 1577 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1578 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1579 1580 /* create large page heap arena */ 1581 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1582 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1583 1584 ASSERT(heap_lp_arena != NULL); 1585 1586 /* This arena caches memory already mapped by large pages */ 1587 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1588 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1589 1590 ASSERT(kmem_lp_arena != NULL); 1591 1592 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1593 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1594 1595 /* 1596 * this arena is used for the array of page_t pointers necessary 1597 * to call hat_mem_load_array 1598 */ 1599 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1600 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1601 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1602 VM_SLEEP); 1603 1604 ASSERT(segkmem_ppa_arena != NULL); 1605 1606 /* prealloacate some memory for the lp kernel heap */ 1607 if (segkmem_kmemlp_min) { 1608 1609 ASSERT(P2PHASE(segkmem_kmemlp_min, 1610 segkmem_heaplp_quantum) == 0); 1611 1612 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1613 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1614 1615 addr = vmem_add(kmem_lp_arena, addr, 1616 segkmem_kmemlp_min, VM_SLEEP); 1617 ASSERT(addr != NULL); 1618 } 1619 } 1620 1621 lpcb->lp_uselp = 1; 1622 } 1623 1624 #endif 1625