1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/t_lock.h> 27 #include <sys/param.h> 28 #include <sys/sysmacros.h> 29 #include <sys/tuneable.h> 30 #include <sys/systm.h> 31 #include <sys/vm.h> 32 #include <sys/kmem.h> 33 #include <sys/vmem.h> 34 #include <sys/mman.h> 35 #include <sys/cmn_err.h> 36 #include <sys/debug.h> 37 #include <sys/dumphdr.h> 38 #include <sys/bootconf.h> 39 #include <sys/lgrp.h> 40 #include <vm/seg_kmem.h> 41 #include <vm/hat.h> 42 #include <vm/page.h> 43 #include <vm/vm_dep.h> 44 #include <vm/faultcode.h> 45 #include <sys/promif.h> 46 #include <vm/seg_kp.h> 47 #include <sys/bitmap.h> 48 #include <sys/mem_cage.h> 49 50 #ifdef __sparc 51 #include <sys/ivintr.h> 52 #include <sys/panic.h> 53 #endif 54 55 /* 56 * seg_kmem is the primary kernel memory segment driver. It 57 * maps the kernel heap [kernelheap, ekernelheap), module text, 58 * and all memory which was allocated before the VM was initialized 59 * into kas. 60 * 61 * Pages which belong to seg_kmem are hashed into &kvp vnode at 62 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 63 * They must never be paged out since segkmem_fault() is a no-op to 64 * prevent recursive faults. 65 * 66 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 67 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 68 * supports relocation the #ifdef kludges can be removed. 69 * 70 * seg_kmem pages may be subject to relocation by page_relocate(), 71 * provided that the HAT supports it; if this is so, segkmem_reloc 72 * will be set to a nonzero value. All boot time allocated memory as 73 * well as static memory is considered off limits to relocation. 74 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 75 * we request P_NORELOC pages for memory that isn't safe to relocate. 76 * 77 * The kernel heap is logically divided up into four pieces: 78 * 79 * heap32_arena is for allocations that require 32-bit absolute 80 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 81 * 82 * heap_core is for allocations that require 2GB *relative* 83 * offsets; in other words all memory from heap_core is within 84 * 2GB of all other memory from the same arena. This is a requirement 85 * of the addressing modes of some processors in supervisor code. 86 * 87 * heap_arena is the general heap arena. 88 * 89 * static_arena is the static memory arena. Allocations from it 90 * are not subject to relocation so it is safe to use the memory 91 * physical address as well as the virtual address (e.g. the VA to 92 * PA translations are static). Caches may import from static_arena; 93 * all other static memory allocations should use static_alloc_arena. 94 * 95 * On some platforms which have limited virtual address space, seg_kmem 96 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 97 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 98 * address space which is actually seg_kp mapped. 99 */ 100 101 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 102 103 char *kernelheap; /* start of primary kernel heap */ 104 char *ekernelheap; /* end of primary kernel heap */ 105 struct seg kvseg; /* primary kernel heap segment */ 106 struct seg kvseg_core; /* "core" kernel heap segment */ 107 struct seg kzioseg; /* Segment for zio mappings */ 108 vmem_t *heap_arena; /* primary kernel heap arena */ 109 vmem_t *heap_core_arena; /* core kernel heap arena */ 110 char *heap_core_base; /* start of core kernel heap arena */ 111 char *heap_lp_base; /* start of kernel large page heap arena */ 112 char *heap_lp_end; /* end of kernel large page heap arena */ 113 vmem_t *hat_memload_arena; /* HAT translation data */ 114 struct seg kvseg32; /* 32-bit kernel heap segment */ 115 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 116 vmem_t *heaptext_arena; /* heaptext arena */ 117 struct as kas; /* kernel address space */ 118 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 119 vmem_t *static_arena; /* arena for caches to import static memory */ 120 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 121 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 122 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 123 124 /* 125 * seg_kmem driver can map part of the kernel heap with large pages. 126 * Currently this functionality is implemented for sparc platforms only. 127 * 128 * The large page size "segkmem_lpsize" for kernel heap is selected in the 129 * platform specific code. It can also be modified via /etc/system file. 130 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 131 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 132 * match segkmem_lpsize. 133 * 134 * At boot time we carve from kernel heap arena a range of virtual addresses 135 * that will be used for large page mappings. This range [heap_lp_base, 136 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 137 * create "kmem_lp_arena" that caches memory already backed up by large 138 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 139 */ 140 141 size_t segkmem_lpsize; 142 static uint_t segkmem_lpshift = PAGESHIFT; 143 int segkmem_lpszc = 0; 144 145 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 146 size_t segkmem_heaplp_quantum; 147 vmem_t *heap_lp_arena; 148 static vmem_t *kmem_lp_arena; 149 static vmem_t *segkmem_ppa_arena; 150 static segkmem_lpcb_t segkmem_lpcb; 151 152 /* 153 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 154 * consumed by the large page heap. By default this parameter is set to 1/8 of 155 * physmem but can be adjusted through /etc/system either directly or 156 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 157 * we allow for large page heap. 158 */ 159 size_t segkmem_kmemlp_max; 160 static uint_t segkmem_kmemlp_pcnt; 161 162 /* 163 * Getting large pages for kernel heap could be problematic due to 164 * physical memory fragmentation. That's why we allow to preallocate 165 * "segkmem_kmemlp_min" bytes at boot time. 166 */ 167 static size_t segkmem_kmemlp_min; 168 169 /* 170 * Throttling is used to avoid expensive tries to allocate large pages 171 * for kernel heap when a lot of succesive attempts to do so fail. 172 */ 173 static ulong_t segkmem_lpthrottle_max = 0x400000; 174 static ulong_t segkmem_lpthrottle_start = 0x40; 175 static ulong_t segkmem_use_lpthrottle = 1; 176 177 /* 178 * Freed pages accumulate on a garbage list until segkmem is ready, 179 * at which point we call segkmem_gc() to free it all. 180 */ 181 typedef struct segkmem_gc_list { 182 struct segkmem_gc_list *gc_next; 183 vmem_t *gc_arena; 184 size_t gc_size; 185 } segkmem_gc_list_t; 186 187 static segkmem_gc_list_t *segkmem_gc_list; 188 189 /* 190 * Allocations from the hat_memload arena add VM_MEMLOAD to their 191 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 192 * to take steps to prevent infinite recursion. HAT allocations also 193 * must be non-relocatable to prevent recursive page faults. 194 */ 195 static void * 196 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 197 { 198 flags |= (VM_MEMLOAD | VM_NORELOC); 199 return (segkmem_alloc(vmp, size, flags)); 200 } 201 202 /* 203 * Allocations from static_arena arena (or any other arena that uses 204 * segkmem_alloc_permanent()) require non-relocatable (permanently 205 * wired) memory pages, since these pages are referenced by physical 206 * as well as virtual address. 207 */ 208 void * 209 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 210 { 211 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 212 } 213 214 /* 215 * Initialize kernel heap boundaries. 216 */ 217 void 218 kernelheap_init( 219 void *heap_start, 220 void *heap_end, 221 char *first_avail, 222 void *core_start, 223 void *core_end) 224 { 225 uintptr_t textbase; 226 size_t core_size; 227 size_t heap_size; 228 vmem_t *heaptext_parent; 229 size_t heap_lp_size = 0; 230 #ifdef __sparc 231 size_t kmem64_sz = kmem64_aligned_end - kmem64_base; 232 #endif /* __sparc */ 233 234 kernelheap = heap_start; 235 ekernelheap = heap_end; 236 237 #ifdef __sparc 238 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 239 /* 240 * Bias heap_lp start address by kmem64_sz to reduce collisions 241 * in 4M kernel TSB between kmem64 area and heap_lp 242 */ 243 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M); 244 if (kmem64_sz <= heap_lp_size / 2) 245 heap_lp_size -= kmem64_sz; 246 heap_lp_base = ekernelheap - heap_lp_size; 247 heap_lp_end = heap_lp_base + heap_lp_size; 248 #endif /* __sparc */ 249 250 /* 251 * If this platform has a 'core' heap area, then the space for 252 * overflow module text should be carved out of the end of that 253 * heap. Otherwise, it gets carved out of the general purpose 254 * heap. 255 */ 256 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 257 if (core_size > 0) { 258 ASSERT(core_size >= HEAPTEXT_SIZE); 259 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 260 core_size -= HEAPTEXT_SIZE; 261 } 262 #ifndef __sparc 263 else { 264 ekernelheap -= HEAPTEXT_SIZE; 265 textbase = (uintptr_t)ekernelheap; 266 } 267 #endif 268 269 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 270 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 271 segkmem_alloc, segkmem_free); 272 273 if (core_size > 0) { 274 heap_core_arena = vmem_create("heap_core", core_start, 275 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 276 heap_core_base = core_start; 277 } else { 278 heap_core_arena = heap_arena; 279 heap_core_base = kernelheap; 280 } 281 282 /* 283 * reserve space for the large page heap. If large pages for kernel 284 * heap is enabled large page heap arean will be created later in the 285 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 286 * range will be returned back to the heap_arena. 287 */ 288 if (heap_lp_size) { 289 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 290 heap_lp_base, heap_lp_end, 291 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 292 } 293 294 /* 295 * Remove the already-spoken-for memory range [kernelheap, first_avail). 296 */ 297 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 298 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 299 300 #ifdef __sparc 301 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 302 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 303 NULL, NULL, 0, VM_SLEEP); 304 /* 305 * Prom claims the physical and virtual resources used by panicbuf 306 * and inter_vec_table. So reserve space for panicbuf, intr_vec_table, 307 * reserved interrupt vector data structures from 32-bit heap. 308 */ 309 (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0, 310 panicbuf, panicbuf + PANICBUFSIZE, 311 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 312 313 (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0, 314 intr_vec_table, (caddr_t)intr_vec_table + IVSIZE, 315 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 316 317 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 318 heaptext_parent = NULL; 319 #else /* __sparc */ 320 heap32_arena = heap_core_arena; 321 heaptext_parent = heap_core_arena; 322 #endif /* __sparc */ 323 324 heaptext_arena = vmem_create("heaptext", (void *)textbase, 325 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 326 327 /* 328 * Create a set of arenas for memory with static translations 329 * (e.g. VA -> PA translations cannot change). Since using 330 * kernel pages by physical address implies it isn't safe to 331 * walk across page boundaries, the static_arena quantum must 332 * be PAGESIZE. Any kmem caches that require static memory 333 * should source from static_arena, while direct allocations 334 * should only use static_alloc_arena. 335 */ 336 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 337 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 338 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 339 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 340 0, VM_SLEEP); 341 342 /* 343 * Create an arena for translation data (ptes, hmes, or hblks). 344 * We need an arena for this because hat_memload() is essential 345 * to vmem_populate() (see comments in common/os/vmem.c). 346 * 347 * Note: any kmem cache that allocates from hat_memload_arena 348 * must be created as a KMC_NOHASH cache (i.e. no external slab 349 * and bufctl structures to allocate) so that slab creation doesn't 350 * require anything more than a single vmem_alloc(). 351 */ 352 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 353 hat_memload_alloc, segkmem_free, heap_arena, 0, 354 VM_SLEEP | VMC_POPULATOR | VMC_DUMPSAFE); 355 } 356 357 void 358 boot_mapin(caddr_t addr, size_t size) 359 { 360 caddr_t eaddr; 361 page_t *pp; 362 pfn_t pfnum; 363 364 if (page_resv(btop(size), KM_NOSLEEP) == 0) 365 panic("boot_mapin: page_resv failed"); 366 367 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 368 pfnum = va_to_pfn(addr); 369 if (pfnum == PFN_INVALID) 370 continue; 371 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 372 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 373 374 /* 375 * must break up any large pages that may have constituent 376 * pages being utilized for BOP_ALLOC()'s before calling 377 * page_numtopp().The locking code (ie. page_reclaim()) 378 * can't handle them 379 */ 380 if (pp->p_szc != 0) 381 page_boot_demote(pp); 382 383 pp = page_numtopp(pfnum, SE_EXCL); 384 if (pp == NULL || PP_ISFREE(pp)) 385 panic("boot_alloc: pp is NULL or free"); 386 387 /* 388 * If the cage is on but doesn't yet contain this page, 389 * mark it as non-relocatable. 390 */ 391 if (kcage_on && !PP_ISNORELOC(pp)) { 392 PP_SETNORELOC(pp); 393 PLCNT_XFER_NORELOC(pp); 394 } 395 396 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 397 pp->p_lckcnt = 1; 398 #if defined(__x86) 399 page_downgrade(pp); 400 #else 401 page_unlock(pp); 402 #endif 403 } 404 } 405 406 /* 407 * Get pages from boot and hash them into the kernel's vp. 408 * Used after page structs have been allocated, but before segkmem is ready. 409 */ 410 void * 411 boot_alloc(void *inaddr, size_t size, uint_t align) 412 { 413 caddr_t addr = inaddr; 414 415 if (bootops == NULL) 416 prom_panic("boot_alloc: attempt to allocate memory after " 417 "BOP_GONE"); 418 419 size = ptob(btopr(size)); 420 #ifdef __sparc 421 if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr) 422 panic("boot_alloc: bop_alloc_chunk failed"); 423 #else 424 if (BOP_ALLOC(bootops, addr, size, align) != addr) 425 panic("boot_alloc: BOP_ALLOC failed"); 426 #endif 427 boot_mapin((caddr_t)addr, size); 428 return (addr); 429 } 430 431 static void 432 segkmem_badop() 433 { 434 panic("segkmem_badop"); 435 } 436 437 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 438 439 /*ARGSUSED*/ 440 static faultcode_t 441 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 442 enum fault_type type, enum seg_rw rw) 443 { 444 pgcnt_t npages; 445 spgcnt_t pg; 446 page_t *pp; 447 struct vnode *vp = seg->s_data; 448 449 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 450 451 if (seg->s_as != &kas || size > seg->s_size || 452 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 453 panic("segkmem_fault: bad args"); 454 455 /* 456 * If it is one of segkp pages, call segkp_fault. 457 */ 458 if (segkp_bitmap && seg == &kvseg && 459 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 460 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 461 462 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 463 return (FC_NOSUPPORT); 464 465 npages = btopr(size); 466 467 switch (type) { 468 case F_SOFTLOCK: /* lock down already-loaded translations */ 469 for (pg = 0; pg < npages; pg++) { 470 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 471 SE_SHARED); 472 if (pp == NULL) { 473 /* 474 * Hmm, no page. Does a kernel mapping 475 * exist for it? 476 */ 477 if (!hat_probe(kas.a_hat, addr)) { 478 addr -= PAGESIZE; 479 while (--pg >= 0) { 480 pp = page_find(vp, (u_offset_t) 481 (uintptr_t)addr); 482 if (pp) 483 page_unlock(pp); 484 addr -= PAGESIZE; 485 } 486 return (FC_NOMAP); 487 } 488 } 489 addr += PAGESIZE; 490 } 491 if (rw == S_OTHER) 492 hat_reserve(seg->s_as, addr, size); 493 return (0); 494 case F_SOFTUNLOCK: 495 while (npages--) { 496 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 497 if (pp) 498 page_unlock(pp); 499 addr += PAGESIZE; 500 } 501 return (0); 502 default: 503 return (FC_NOSUPPORT); 504 } 505 /*NOTREACHED*/ 506 } 507 508 static int 509 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 510 { 511 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 512 513 if (seg->s_as != &kas || size > seg->s_size || 514 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 515 panic("segkmem_setprot: bad args"); 516 517 /* 518 * If it is one of segkp pages, call segkp. 519 */ 520 if (segkp_bitmap && seg == &kvseg && 521 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 522 return (SEGOP_SETPROT(segkp, addr, size, prot)); 523 524 if (prot == 0) 525 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 526 else 527 hat_chgprot(kas.a_hat, addr, size, prot); 528 return (0); 529 } 530 531 /* 532 * This is a dummy segkmem function overloaded to call segkp 533 * when segkp is under the heap. 534 */ 535 /* ARGSUSED */ 536 static int 537 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 538 { 539 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 540 541 if (seg->s_as != &kas) 542 segkmem_badop(); 543 544 /* 545 * If it is one of segkp pages, call into segkp. 546 */ 547 if (segkp_bitmap && seg == &kvseg && 548 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 549 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 550 551 segkmem_badop(); 552 return (0); 553 } 554 555 /* 556 * This is a dummy segkmem function overloaded to call segkp 557 * when segkp is under the heap. 558 */ 559 /* ARGSUSED */ 560 static int 561 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 562 { 563 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 564 565 if (seg->s_as != &kas) 566 segkmem_badop(); 567 568 /* 569 * If it is one of segkp pages, call into segkp. 570 */ 571 if (segkp_bitmap && seg == &kvseg && 572 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 573 return (SEGOP_KLUSTER(segkp, addr, delta)); 574 575 segkmem_badop(); 576 return (0); 577 } 578 579 static void 580 segkmem_xdump_range(void *arg, void *start, size_t size) 581 { 582 struct as *as = arg; 583 caddr_t addr = start; 584 caddr_t addr_end = addr + size; 585 586 while (addr < addr_end) { 587 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 588 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 589 dump_addpage(as, addr, pfn); 590 addr += PAGESIZE; 591 dump_timeleft = dump_timeout; 592 } 593 } 594 595 static void 596 segkmem_dump_range(void *arg, void *start, size_t size) 597 { 598 caddr_t addr = start; 599 caddr_t addr_end = addr + size; 600 601 /* 602 * If we are about to start dumping the range of addresses we 603 * carved out of the kernel heap for the large page heap walk 604 * heap_lp_arena to find what segments are actually populated 605 */ 606 if (SEGKMEM_USE_LARGEPAGES && 607 addr == heap_lp_base && addr_end == heap_lp_end && 608 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 609 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 610 segkmem_xdump_range, arg); 611 } else { 612 segkmem_xdump_range(arg, start, size); 613 } 614 } 615 616 static void 617 segkmem_dump(struct seg *seg) 618 { 619 /* 620 * The kernel's heap_arena (represented by kvseg) is a very large 621 * VA space, most of which is typically unused. To speed up dumping 622 * we use vmem_walk() to quickly find the pieces of heap_arena that 623 * are actually in use. We do the same for heap32_arena and 624 * heap_core. 625 * 626 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 627 * may ultimately need to allocate memory. Reentrant walks are 628 * necessarily imperfect snapshots. The kernel heap continues 629 * to change during a live crash dump, for example. For a normal 630 * crash dump, however, we know that there won't be any other threads 631 * messing with the heap. Therefore, at worst, we may fail to dump 632 * the pages that get allocated by the act of dumping; but we will 633 * always dump every page that was allocated when the walk began. 634 * 635 * The other segkmem segments are dense (fully populated), so there's 636 * no need to use this technique when dumping them. 637 * 638 * Note: when adding special dump handling for any new sparsely- 639 * populated segments, be sure to add similar handling to the ::kgrep 640 * code in mdb. 641 */ 642 if (seg == &kvseg) { 643 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 644 segkmem_dump_range, seg->s_as); 645 #ifndef __sparc 646 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 647 segkmem_dump_range, seg->s_as); 648 #endif 649 } else if (seg == &kvseg_core) { 650 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 651 segkmem_dump_range, seg->s_as); 652 } else if (seg == &kvseg32) { 653 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 654 segkmem_dump_range, seg->s_as); 655 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 656 segkmem_dump_range, seg->s_as); 657 } else if (seg == &kzioseg) { 658 /* 659 * We don't want to dump pages attached to kzioseg since they 660 * contain file data from ZFS. If this page's segment is 661 * kzioseg return instead of writing it to the dump device. 662 */ 663 return; 664 } else { 665 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 666 } 667 } 668 669 /* 670 * lock/unlock kmem pages over a given range [addr, addr+len). 671 * Returns a shadow list of pages in ppp. If there are holes 672 * in the range (e.g. some of the kernel mappings do not have 673 * underlying page_ts) returns ENOTSUP so that as_pagelock() 674 * will handle the range via as_fault(F_SOFTLOCK). 675 */ 676 /*ARGSUSED*/ 677 static int 678 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 679 page_t ***ppp, enum lock_type type, enum seg_rw rw) 680 { 681 page_t **pplist, *pp; 682 pgcnt_t npages; 683 spgcnt_t pg; 684 size_t nb; 685 struct vnode *vp = seg->s_data; 686 687 ASSERT(ppp != NULL); 688 689 /* 690 * If it is one of segkp pages, call into segkp. 691 */ 692 if (segkp_bitmap && seg == &kvseg && 693 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 694 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw)); 695 696 npages = btopr(len); 697 nb = sizeof (page_t *) * npages; 698 699 if (type == L_PAGEUNLOCK) { 700 pplist = *ppp; 701 ASSERT(pplist != NULL); 702 703 for (pg = 0; pg < npages; pg++) { 704 pp = pplist[pg]; 705 page_unlock(pp); 706 } 707 kmem_free(pplist, nb); 708 return (0); 709 } 710 711 ASSERT(type == L_PAGELOCK); 712 713 pplist = kmem_alloc(nb, KM_NOSLEEP); 714 if (pplist == NULL) { 715 *ppp = NULL; 716 return (ENOTSUP); /* take the slow path */ 717 } 718 719 for (pg = 0; pg < npages; pg++) { 720 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 721 if (pp == NULL) { 722 while (--pg >= 0) 723 page_unlock(pplist[pg]); 724 kmem_free(pplist, nb); 725 *ppp = NULL; 726 return (ENOTSUP); 727 } 728 pplist[pg] = pp; 729 addr += PAGESIZE; 730 } 731 732 *ppp = pplist; 733 return (0); 734 } 735 736 /* 737 * This is a dummy segkmem function overloaded to call segkp 738 * when segkp is under the heap. 739 */ 740 /* ARGSUSED */ 741 static int 742 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 743 { 744 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 745 746 if (seg->s_as != &kas) 747 segkmem_badop(); 748 749 /* 750 * If it is one of segkp pages, call into segkp. 751 */ 752 if (segkp_bitmap && seg == &kvseg && 753 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 754 return (SEGOP_GETMEMID(segkp, addr, memidp)); 755 756 segkmem_badop(); 757 return (0); 758 } 759 760 /*ARGSUSED*/ 761 static lgrp_mem_policy_info_t * 762 segkmem_getpolicy(struct seg *seg, caddr_t addr) 763 { 764 return (NULL); 765 } 766 767 /*ARGSUSED*/ 768 static int 769 segkmem_capable(struct seg *seg, segcapability_t capability) 770 { 771 if (capability == S_CAPABILITY_NOMINFLT) 772 return (1); 773 return (0); 774 } 775 776 static struct seg_ops segkmem_ops = { 777 SEGKMEM_BADOP(int), /* dup */ 778 SEGKMEM_BADOP(int), /* unmap */ 779 SEGKMEM_BADOP(void), /* free */ 780 segkmem_fault, 781 SEGKMEM_BADOP(faultcode_t), /* faulta */ 782 segkmem_setprot, 783 segkmem_checkprot, 784 segkmem_kluster, 785 SEGKMEM_BADOP(size_t), /* swapout */ 786 SEGKMEM_BADOP(int), /* sync */ 787 SEGKMEM_BADOP(size_t), /* incore */ 788 SEGKMEM_BADOP(int), /* lockop */ 789 SEGKMEM_BADOP(int), /* getprot */ 790 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 791 SEGKMEM_BADOP(int), /* gettype */ 792 SEGKMEM_BADOP(int), /* getvp */ 793 SEGKMEM_BADOP(int), /* advise */ 794 segkmem_dump, 795 segkmem_pagelock, 796 SEGKMEM_BADOP(int), /* setpgsz */ 797 segkmem_getmemid, 798 segkmem_getpolicy, /* getpolicy */ 799 segkmem_capable, /* capable */ 800 }; 801 802 int 803 segkmem_zio_create(struct seg *seg) 804 { 805 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 806 seg->s_ops = &segkmem_ops; 807 seg->s_data = &zvp; 808 kas.a_size += seg->s_size; 809 return (0); 810 } 811 812 int 813 segkmem_create(struct seg *seg) 814 { 815 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 816 seg->s_ops = &segkmem_ops; 817 seg->s_data = &kvp; 818 kas.a_size += seg->s_size; 819 return (0); 820 } 821 822 /*ARGSUSED*/ 823 page_t * 824 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 825 { 826 struct seg kseg; 827 int pgflags; 828 struct vnode *vp = arg; 829 830 if (vp == NULL) 831 vp = &kvp; 832 833 kseg.s_as = &kas; 834 pgflags = PG_EXCL; 835 836 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 837 pgflags |= PG_NORELOC; 838 if ((vmflag & VM_NOSLEEP) == 0) 839 pgflags |= PG_WAIT; 840 if (vmflag & VM_PANIC) 841 pgflags |= PG_PANIC; 842 if (vmflag & VM_PUSHPAGE) 843 pgflags |= PG_PUSHPAGE; 844 if (vmflag & VM_NORMALPRI) { 845 ASSERT(vmflag & VM_NOSLEEP); 846 pgflags |= PG_NORMALPRI; 847 } 848 849 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 850 pgflags, &kseg, addr)); 851 } 852 853 /* 854 * Allocate pages to back the virtual address range [addr, addr + size). 855 * If addr is NULL, allocate the virtual address space as well. 856 */ 857 void * 858 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 859 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 860 { 861 page_t *ppl; 862 caddr_t addr = inaddr; 863 pgcnt_t npages = btopr(size); 864 int allocflag; 865 866 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 867 return (NULL); 868 869 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 870 871 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 872 if (inaddr == NULL) 873 vmem_free(vmp, addr, size); 874 return (NULL); 875 } 876 877 ppl = page_create_func(addr, size, vmflag, pcarg); 878 if (ppl == NULL) { 879 if (inaddr == NULL) 880 vmem_free(vmp, addr, size); 881 page_unresv(npages); 882 return (NULL); 883 } 884 885 /* 886 * Under certain conditions, we need to let the HAT layer know 887 * that it cannot safely allocate memory. Allocations from 888 * the hat_memload vmem arena always need this, to prevent 889 * infinite recursion. 890 * 891 * In addition, the x86 hat cannot safely do memory 892 * allocations while in vmem_populate(), because there 893 * is no simple bound on its usage. 894 */ 895 if (vmflag & VM_MEMLOAD) 896 allocflag = HAT_NO_KALLOC; 897 #if defined(__x86) 898 else if (vmem_is_populator()) 899 allocflag = HAT_NO_KALLOC; 900 #endif 901 else 902 allocflag = 0; 903 904 while (ppl != NULL) { 905 page_t *pp = ppl; 906 page_sub(&ppl, pp); 907 ASSERT(page_iolock_assert(pp)); 908 ASSERT(PAGE_EXCL(pp)); 909 page_io_unlock(pp); 910 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 911 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 912 HAT_LOAD_LOCK | allocflag); 913 pp->p_lckcnt = 1; 914 #if defined(__x86) 915 page_downgrade(pp); 916 #else 917 if (vmflag & SEGKMEM_SHARELOCKED) 918 page_downgrade(pp); 919 else 920 page_unlock(pp); 921 #endif 922 } 923 924 return (addr); 925 } 926 927 static void * 928 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 929 { 930 void *addr; 931 segkmem_gc_list_t *gcp, **prev_gcpp; 932 933 ASSERT(vp != NULL); 934 935 if (kvseg.s_base == NULL) { 936 #ifndef __sparc 937 if (bootops->bsys_alloc == NULL) 938 halt("Memory allocation between bop_alloc() and " 939 "kmem_alloc().\n"); 940 #endif 941 942 /* 943 * There's not a lot of memory to go around during boot, 944 * so recycle it if we can. 945 */ 946 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 947 prev_gcpp = &gcp->gc_next) { 948 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 949 *prev_gcpp = gcp->gc_next; 950 return (gcp); 951 } 952 } 953 954 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 955 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 956 panic("segkmem_alloc: boot_alloc failed"); 957 return (addr); 958 } 959 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 960 segkmem_page_create, vp)); 961 } 962 963 void * 964 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 965 { 966 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 967 } 968 969 void * 970 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 971 { 972 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp)); 973 } 974 975 /* 976 * Any changes to this routine must also be carried over to 977 * devmap_free_pages() in the seg_dev driver. This is because 978 * we currently don't have a special kernel segment for non-paged 979 * kernel memory that is exported by drivers to user space. 980 */ 981 static void 982 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp, 983 void (*func)(page_t *)) 984 { 985 page_t *pp; 986 caddr_t addr = inaddr; 987 caddr_t eaddr; 988 pgcnt_t npages = btopr(size); 989 990 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 991 ASSERT(vp != NULL); 992 993 if (kvseg.s_base == NULL) { 994 segkmem_gc_list_t *gc = inaddr; 995 gc->gc_arena = vmp; 996 gc->gc_size = size; 997 gc->gc_next = segkmem_gc_list; 998 segkmem_gc_list = gc; 999 return; 1000 } 1001 1002 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1003 1004 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1005 #if defined(__x86) 1006 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 1007 if (pp == NULL) 1008 panic("segkmem_free: page not found"); 1009 if (!page_tryupgrade(pp)) { 1010 /* 1011 * Some other thread has a sharelock. Wait for 1012 * it to drop the lock so we can free this page. 1013 */ 1014 page_unlock(pp); 1015 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 1016 SE_EXCL); 1017 } 1018 #else 1019 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1020 #endif 1021 if (pp == NULL) 1022 panic("segkmem_free: page not found"); 1023 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1024 pp->p_lckcnt = 0; 1025 if (func) 1026 func(pp); 1027 else 1028 page_destroy(pp, 0); 1029 } 1030 if (func == NULL) 1031 page_unresv(npages); 1032 1033 if (vmp != NULL) 1034 vmem_free(vmp, inaddr, size); 1035 1036 } 1037 1038 void 1039 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *)) 1040 { 1041 segkmem_free_vn(vmp, inaddr, size, &kvp, func); 1042 } 1043 1044 void 1045 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1046 { 1047 segkmem_free_vn(vmp, inaddr, size, &kvp, NULL); 1048 } 1049 1050 void 1051 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1052 { 1053 segkmem_free_vn(vmp, inaddr, size, &zvp, NULL); 1054 } 1055 1056 void 1057 segkmem_gc(void) 1058 { 1059 ASSERT(kvseg.s_base != NULL); 1060 while (segkmem_gc_list != NULL) { 1061 segkmem_gc_list_t *gc = segkmem_gc_list; 1062 segkmem_gc_list = gc->gc_next; 1063 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1064 } 1065 } 1066 1067 /* 1068 * Legacy entry points from here to end of file. 1069 */ 1070 void 1071 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1072 pfn_t pfn, uint_t flags) 1073 { 1074 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1075 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1076 flags | HAT_LOAD_LOCK); 1077 } 1078 1079 void 1080 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1081 { 1082 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1083 } 1084 1085 void * 1086 kmem_getpages(pgcnt_t npages, int kmflag) 1087 { 1088 return (kmem_alloc(ptob(npages), kmflag)); 1089 } 1090 1091 void 1092 kmem_freepages(void *addr, pgcnt_t npages) 1093 { 1094 kmem_free(addr, ptob(npages)); 1095 } 1096 1097 /* 1098 * segkmem_page_create_large() allocates a large page to be used for the kmem 1099 * caches. If kpr is enabled we ask for a relocatable page unless requested 1100 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1101 */ 1102 static page_t * 1103 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1104 { 1105 int pgflags; 1106 1107 pgflags = PG_EXCL; 1108 1109 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1110 pgflags |= PG_NORELOC; 1111 if (!(vmflag & VM_NOSLEEP)) 1112 pgflags |= PG_WAIT; 1113 if (vmflag & VM_PUSHPAGE) 1114 pgflags |= PG_PUSHPAGE; 1115 if (vmflag & VM_NORMALPRI) 1116 pgflags |= PG_NORMALPRI; 1117 1118 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1119 pgflags, &kvseg, addr, arg)); 1120 } 1121 1122 /* 1123 * Allocate a large page to back the virtual address range 1124 * [addr, addr + size). If addr is NULL, allocate the virtual address 1125 * space as well. 1126 */ 1127 static void * 1128 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1129 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1130 void *pcarg) 1131 { 1132 caddr_t addr = inaddr, pa; 1133 size_t lpsize = segkmem_lpsize; 1134 pgcnt_t npages = btopr(size); 1135 pgcnt_t nbpages = btop(lpsize); 1136 pgcnt_t nlpages = size >> segkmem_lpshift; 1137 size_t ppasize = nbpages * sizeof (page_t *); 1138 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1139 int i; 1140 1141 vmflag |= VM_NOSLEEP; 1142 1143 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1144 return (NULL); 1145 } 1146 1147 /* 1148 * allocate an array we need for hat_memload_array. 1149 * we use a separate arena to avoid recursion. 1150 * we will not need this array when hat_memload_array learns pp++ 1151 */ 1152 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1153 goto fail_array_alloc; 1154 } 1155 1156 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1157 goto fail_vmem_alloc; 1158 1159 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1160 1161 /* create all the pages */ 1162 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1163 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1164 goto fail_page_create; 1165 page_list_concat(&pplist, &pp); 1166 } 1167 1168 /* at this point we have all the resource to complete the request */ 1169 while ((rootpp = pplist) != NULL) { 1170 for (i = 0; i < nbpages; i++) { 1171 ASSERT(pplist != NULL); 1172 pp = pplist; 1173 page_sub(&pplist, pp); 1174 ASSERT(page_iolock_assert(pp)); 1175 page_io_unlock(pp); 1176 ppa[i] = pp; 1177 } 1178 /* 1179 * Load the locked entry. It's OK to preload the entry into the 1180 * TSB since we now support large mappings in the kernel TSB. 1181 */ 1182 hat_memload_array(kas.a_hat, 1183 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1184 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1185 HAT_LOAD_LOCK); 1186 1187 for (--i; i >= 0; --i) { 1188 ppa[i]->p_lckcnt = 1; 1189 page_unlock(ppa[i]); 1190 } 1191 } 1192 1193 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1194 return (addr); 1195 1196 fail_page_create: 1197 while ((rootpp = pplist) != NULL) { 1198 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1199 ASSERT(pp != NULL); 1200 page_sub(&pplist, pp); 1201 ASSERT(page_iolock_assert(pp)); 1202 page_io_unlock(pp); 1203 } 1204 page_destroy_pages(rootpp); 1205 } 1206 1207 if (inaddr == NULL) 1208 vmem_free(vmp, addr, size); 1209 1210 fail_vmem_alloc: 1211 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1212 1213 fail_array_alloc: 1214 page_unresv(npages); 1215 1216 return (NULL); 1217 } 1218 1219 static void 1220 segkmem_free_one_lp(caddr_t addr, size_t size) 1221 { 1222 page_t *pp, *rootpp = NULL; 1223 pgcnt_t pgs_left = btopr(size); 1224 1225 ASSERT(size == segkmem_lpsize); 1226 1227 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1228 1229 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1230 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1231 if (pp == NULL) 1232 panic("segkmem_free_one_lp: page not found"); 1233 ASSERT(PAGE_EXCL(pp)); 1234 pp->p_lckcnt = 0; 1235 if (rootpp == NULL) 1236 rootpp = pp; 1237 } 1238 ASSERT(rootpp != NULL); 1239 page_destroy_pages(rootpp); 1240 1241 /* page_unresv() is done by the caller */ 1242 } 1243 1244 /* 1245 * This function is called to import new spans into the vmem arenas like 1246 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1247 * spans from large page arena - kmem_lp_arena. In order to do this it might 1248 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1249 * it was not able to satisfy the upgraded request it then calls regular 1250 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1251 */ 1252 /*ARGSUSED*/ 1253 void * 1254 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 1255 { 1256 size_t size; 1257 kthread_t *t = curthread; 1258 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1259 1260 ASSERT(sizep != NULL); 1261 1262 size = *sizep; 1263 1264 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1265 !(vmflag & SEGKMEM_SHARELOCKED)) { 1266 1267 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1268 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1269 void *addr = NULL; 1270 ulong_t *lpthrtp = &lpcb->lp_throttle; 1271 ulong_t lpthrt = *lpthrtp; 1272 int dowakeup = 0; 1273 int doalloc = 1; 1274 1275 ASSERT(kmem_lp_arena != NULL); 1276 ASSERT(asize >= size); 1277 1278 if (lpthrt != 0) { 1279 /* try to update the throttle value */ 1280 lpthrt = atomic_inc_ulong_nv(lpthrtp); 1281 if (lpthrt >= segkmem_lpthrottle_max) { 1282 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1283 segkmem_lpthrottle_max / 4); 1284 } 1285 1286 /* 1287 * when we get above throttle start do an exponential 1288 * backoff at trying large pages and reaping 1289 */ 1290 if (lpthrt > segkmem_lpthrottle_start && 1291 (lpthrt & (lpthrt - 1))) { 1292 lpcb->allocs_throttled++; 1293 lpthrt--; 1294 if ((lpthrt & (lpthrt - 1)) == 0) 1295 kmem_reap(); 1296 return (segkmem_alloc(vmp, size, vmflag)); 1297 } 1298 } 1299 1300 if (!(vmflag & VM_NOSLEEP) && 1301 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1302 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1303 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1304 1305 /* 1306 * we are low on free memory in kmem_lp_arena 1307 * we let only one guy to allocate heap_lp 1308 * quantum size chunk that everybody is going to 1309 * share 1310 */ 1311 mutex_enter(&lpcb->lp_lock); 1312 1313 if (lpcb->lp_wait) { 1314 1315 /* we are not the first one - wait */ 1316 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1317 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1318 kmemlp_qnt) { 1319 doalloc = 0; 1320 } 1321 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1322 kmemlp_qnt) { 1323 1324 /* 1325 * we are the first one, make sure we import 1326 * a large page 1327 */ 1328 if (asize == kmemlp_qnt) 1329 asize += kmemlp_qnt; 1330 dowakeup = 1; 1331 lpcb->lp_wait = 1; 1332 } 1333 1334 mutex_exit(&lpcb->lp_lock); 1335 } 1336 1337 /* 1338 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1339 * large pages are not available. In that case this allocation 1340 * attempt will fail and we will retry allocation with small 1341 * pages. We also do not want to panic if this allocation fails 1342 * because we are going to retry. 1343 */ 1344 if (doalloc) { 1345 addr = vmem_alloc(kmem_lp_arena, asize, 1346 (vmflag | VM_ABORT) & ~VM_PANIC); 1347 1348 if (dowakeup) { 1349 mutex_enter(&lpcb->lp_lock); 1350 ASSERT(lpcb->lp_wait != 0); 1351 lpcb->lp_wait = 0; 1352 cv_broadcast(&lpcb->lp_cv); 1353 mutex_exit(&lpcb->lp_lock); 1354 } 1355 } 1356 1357 if (addr != NULL) { 1358 *sizep = asize; 1359 *lpthrtp = 0; 1360 return (addr); 1361 } 1362 1363 if (vmflag & VM_NOSLEEP) 1364 lpcb->nosleep_allocs_failed++; 1365 else 1366 lpcb->sleep_allocs_failed++; 1367 lpcb->alloc_bytes_failed += size; 1368 1369 /* if large page throttling is not started yet do it */ 1370 if (segkmem_use_lpthrottle && lpthrt == 0) { 1371 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1372 } 1373 } 1374 return (segkmem_alloc(vmp, size, vmflag)); 1375 } 1376 1377 void 1378 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1379 { 1380 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1381 segkmem_free(vmp, inaddr, size); 1382 } else { 1383 vmem_free(kmem_lp_arena, inaddr, size); 1384 } 1385 } 1386 1387 /* 1388 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1389 * into kmem_lp arena. In the process it maps the imported segment with 1390 * large pages 1391 */ 1392 static void * 1393 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1394 { 1395 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1396 void *addr; 1397 1398 ASSERT(size != 0); 1399 ASSERT(vmp == heap_lp_arena); 1400 1401 /* do not allow large page heap grow beyound limits */ 1402 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1403 lpcb->allocs_limited++; 1404 return (NULL); 1405 } 1406 1407 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1408 segkmem_page_create_large, NULL); 1409 return (addr); 1410 } 1411 1412 /* 1413 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1414 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1415 * large pages used to map it. 1416 */ 1417 static void 1418 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1419 { 1420 pgcnt_t nlpages = size >> segkmem_lpshift; 1421 size_t lpsize = segkmem_lpsize; 1422 caddr_t addr = inaddr; 1423 pgcnt_t npages = btopr(size); 1424 int i; 1425 1426 ASSERT(vmp == heap_lp_arena); 1427 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1428 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1429 1430 for (i = 0; i < nlpages; i++) { 1431 segkmem_free_one_lp(addr, lpsize); 1432 addr += lpsize; 1433 } 1434 1435 page_unresv(npages); 1436 1437 vmem_free(vmp, inaddr, size); 1438 } 1439 1440 /* 1441 * This function is called at system boot time by kmem_init right after 1442 * /etc/system file has been read. It checks based on hardware configuration 1443 * and /etc/system settings if system is going to use large pages. The 1444 * initialiazation necessary to actually start using large pages 1445 * happens later in the process after segkmem_heap_lp_init() is called. 1446 */ 1447 int 1448 segkmem_lpsetup() 1449 { 1450 int use_large_pages = 0; 1451 1452 #ifdef __sparc 1453 1454 size_t memtotal = physmem * PAGESIZE; 1455 1456 if (heap_lp_base == NULL) { 1457 segkmem_lpsize = PAGESIZE; 1458 return (0); 1459 } 1460 1461 /* get a platform dependent value of large page size for kernel heap */ 1462 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1463 1464 if (segkmem_lpsize <= PAGESIZE) { 1465 /* 1466 * put virtual space reserved for the large page kernel 1467 * back to the regular heap 1468 */ 1469 vmem_xfree(heap_arena, heap_lp_base, 1470 heap_lp_end - heap_lp_base); 1471 heap_lp_base = NULL; 1472 heap_lp_end = NULL; 1473 segkmem_lpsize = PAGESIZE; 1474 return (0); 1475 } 1476 1477 /* set heap_lp quantum if necessary */ 1478 if (segkmem_heaplp_quantum == 0 || 1479 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1480 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1481 segkmem_heaplp_quantum = segkmem_lpsize; 1482 } 1483 1484 /* set kmem_lp quantum if necessary */ 1485 if (segkmem_kmemlp_quantum == 0 || 1486 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1487 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1488 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1489 } 1490 1491 /* set total amount of memory allowed for large page kernel heap */ 1492 if (segkmem_kmemlp_max == 0) { 1493 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1494 segkmem_kmemlp_pcnt = 12; 1495 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1496 } 1497 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1498 segkmem_heaplp_quantum); 1499 1500 /* fix lp kmem preallocation request if necesssary */ 1501 if (segkmem_kmemlp_min) { 1502 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1503 segkmem_heaplp_quantum); 1504 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1505 segkmem_kmemlp_min = segkmem_kmemlp_max; 1506 } 1507 1508 use_large_pages = 1; 1509 segkmem_lpszc = page_szc(segkmem_lpsize); 1510 segkmem_lpshift = page_get_shift(segkmem_lpszc); 1511 1512 #endif 1513 return (use_large_pages); 1514 } 1515 1516 void 1517 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1518 { 1519 ASSERT(zio_mem_base != NULL); 1520 ASSERT(zio_mem_size != 0); 1521 1522 /* 1523 * To reduce VA space fragmentation, we set up quantum caches for the 1524 * smaller sizes; we chose 32k because that translates to 128k VA 1525 * slabs, which matches nicely with the common 128k zio_data bufs. 1526 */ 1527 zio_arena = vmem_create("zfs_file_data", zio_mem_base, zio_mem_size, 1528 PAGESIZE, NULL, NULL, NULL, 32 * 1024, VM_SLEEP); 1529 1530 zio_alloc_arena = vmem_create("zfs_file_data_buf", NULL, 0, PAGESIZE, 1531 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1532 1533 ASSERT(zio_arena != NULL); 1534 ASSERT(zio_alloc_arena != NULL); 1535 } 1536 1537 #ifdef __sparc 1538 1539 1540 static void * 1541 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1542 { 1543 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1544 void *addr; 1545 1546 if (ppaquantum <= PAGESIZE) 1547 return (segkmem_alloc(vmp, size, vmflag)); 1548 1549 ASSERT((size & (ppaquantum - 1)) == 0); 1550 1551 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1552 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1553 segkmem_page_create, NULL) == NULL) { 1554 vmem_xfree(vmp, addr, size); 1555 addr = NULL; 1556 } 1557 1558 return (addr); 1559 } 1560 1561 static void 1562 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1563 { 1564 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1565 1566 ASSERT(addr != NULL); 1567 1568 if (ppaquantum <= PAGESIZE) { 1569 segkmem_free(vmp, addr, size); 1570 } else { 1571 segkmem_free(NULL, addr, size); 1572 vmem_xfree(vmp, addr, size); 1573 } 1574 } 1575 1576 void 1577 segkmem_heap_lp_init() 1578 { 1579 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1580 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1581 size_t lpsize = segkmem_lpsize; 1582 size_t ppaquantum; 1583 void *addr; 1584 1585 if (segkmem_lpsize <= PAGESIZE) { 1586 ASSERT(heap_lp_base == NULL); 1587 ASSERT(heap_lp_end == NULL); 1588 return; 1589 } 1590 1591 ASSERT(segkmem_heaplp_quantum >= lpsize); 1592 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1593 ASSERT(lpcb->lp_uselp == 0); 1594 ASSERT(heap_lp_base != NULL); 1595 ASSERT(heap_lp_end != NULL); 1596 ASSERT(heap_lp_base < heap_lp_end); 1597 ASSERT(heap_lp_arena == NULL); 1598 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1599 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1600 1601 /* create large page heap arena */ 1602 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1603 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1604 1605 ASSERT(heap_lp_arena != NULL); 1606 1607 /* This arena caches memory already mapped by large pages */ 1608 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1609 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1610 1611 ASSERT(kmem_lp_arena != NULL); 1612 1613 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1614 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1615 1616 /* 1617 * this arena is used for the array of page_t pointers necessary 1618 * to call hat_mem_load_array 1619 */ 1620 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1621 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1622 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1623 VM_SLEEP); 1624 1625 ASSERT(segkmem_ppa_arena != NULL); 1626 1627 /* prealloacate some memory for the lp kernel heap */ 1628 if (segkmem_kmemlp_min) { 1629 1630 ASSERT(P2PHASE(segkmem_kmemlp_min, 1631 segkmem_heaplp_quantum) == 0); 1632 1633 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1634 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1635 1636 addr = vmem_add(kmem_lp_arena, addr, 1637 segkmem_kmemlp_min, VM_SLEEP); 1638 ASSERT(addr != NULL); 1639 } 1640 } 1641 1642 lpcb->lp_uselp = 1; 1643 } 1644 1645 #endif 1646