1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/tuneable.h> 34 #include <sys/systm.h> 35 #include <sys/vm.h> 36 #include <sys/kmem.h> 37 #include <sys/vmem.h> 38 #include <sys/mman.h> 39 #include <sys/cmn_err.h> 40 #include <sys/debug.h> 41 #include <sys/dumphdr.h> 42 #include <sys/bootconf.h> 43 #include <sys/lgrp.h> 44 #include <vm/seg_kmem.h> 45 #include <vm/hat.h> 46 #include <vm/page.h> 47 #include <vm/vm_dep.h> 48 #include <vm/faultcode.h> 49 #include <sys/promif.h> 50 #include <vm/seg_kp.h> 51 #include <sys/bitmap.h> 52 #include <sys/mem_cage.h> 53 54 /* 55 * seg_kmem is the primary kernel memory segment driver. It 56 * maps the kernel heap [kernelheap, ekernelheap), module text, 57 * and all memory which was allocated before the VM was initialized 58 * into kas. 59 * 60 * Pages which belong to seg_kmem are hashed into &kvp vnode at 61 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 62 * They must never be paged out since segkmem_fault() is a no-op to 63 * prevent recursive faults. 64 * 65 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 66 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 67 * supports relocation the #ifdef kludges can be removed. 68 * 69 * seg_kmem pages may be subject to relocation by page_relocate(), 70 * provided that the HAT supports it; if this is so, segkmem_reloc 71 * will be set to a nonzero value. All boot time allocated memory as 72 * well as static memory is considered off limits to relocation. 73 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 74 * we request P_NORELOC pages for memory that isn't safe to relocate. 75 * 76 * The kernel heap is logically divided up into four pieces: 77 * 78 * heap32_arena is for allocations that require 32-bit absolute 79 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 80 * 81 * heap_core is for allocations that require 2GB *relative* 82 * offsets; in other words all memory from heap_core is within 83 * 2GB of all other memory from the same arena. This is a requirement 84 * of the addressing modes of some processors in supervisor code. 85 * 86 * heap_arena is the general heap arena. 87 * 88 * static_arena is the static memory arena. Allocations from it 89 * are not subject to relocation so it is safe to use the memory 90 * physical address as well as the virtual address (e.g. the VA to 91 * PA translations are static). Caches may import from static_arena; 92 * all other static memory allocations should use static_alloc_arena. 93 * 94 * On some platforms which have limited virtual address space, seg_kmem 95 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 96 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 97 * address space which is actually seg_kp mapped. 98 */ 99 100 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 101 102 char *kernelheap; /* start of primary kernel heap */ 103 char *ekernelheap; /* end of primary kernel heap */ 104 struct seg kvseg; /* primary kernel heap segment */ 105 struct seg kvseg_core; /* "core" kernel heap segment */ 106 vmem_t *heap_arena; /* primary kernel heap arena */ 107 vmem_t *heap_core_arena; /* core kernel heap arena */ 108 char *heap_core_base; /* start of core kernel heap arena */ 109 char *heap_lp_base; /* start of kernel large page heap arena */ 110 char *heap_lp_end; /* end of kernel large page heap arena */ 111 vmem_t *hat_memload_arena; /* HAT translation data */ 112 struct seg kvseg32; /* 32-bit kernel heap segment */ 113 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 114 vmem_t *heaptext_arena; /* heaptext arena */ 115 struct as kas; /* kernel address space */ 116 struct vnode kvp; /* vnode for all segkmem pages */ 117 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 118 vmem_t *static_arena; /* arena for caches to import static memory */ 119 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 120 121 /* 122 * seg_kmem driver can map part of the kernel heap with large pages. 123 * Currently this functionality is implemented for sparc platforms only. 124 * 125 * The large page size "segkmem_lpsize" for kernel heap is selected in the 126 * platform specific code. It can also be modified via /etc/system file. 127 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 128 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 129 * match segkmem_lpsize. 130 * 131 * At boot time we carve from kernel heap arena a range of virtual addresses 132 * that will be used for large page mappings. This range [heap_lp_base, 133 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 134 * create "kmem_lp_arena" that caches memory already backed up by large 135 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 136 */ 137 138 size_t segkmem_lpsize; 139 static uint_t segkmem_lpshift = PAGESHIFT; 140 141 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 142 size_t segkmem_heaplp_quantum; 143 vmem_t *heap_lp_arena; 144 static vmem_t *kmem_lp_arena; 145 static vmem_t *segkmem_ppa_arena; 146 static segkmem_lpcb_t segkmem_lpcb; 147 148 /* 149 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 150 * consumed by the large page heap. By default this parameter is set to 1/8 of 151 * physmem but can be adjusted through /etc/system either directly or 152 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 153 * we allow for large page heap. 154 */ 155 size_t segkmem_kmemlp_max; 156 static uint_t segkmem_kmemlp_pcnt; 157 158 /* 159 * Getting large pages for kernel heap could be problematic due to 160 * physical memory fragmentation. That's why we allow to preallocate 161 * "segkmem_kmemlp_min" bytes at boot time. 162 */ 163 static size_t segkmem_kmemlp_min; 164 165 /* 166 * Throttling is used to avoid expensive tries to allocate large pages 167 * for kernel heap when a lot of succesive attempts to do so fail. 168 */ 169 static ulong_t segkmem_lpthrottle_max = 0x400000; 170 static ulong_t segkmem_lpthrottle_start = 0x40; 171 static ulong_t segkmem_use_lpthrottle = 1; 172 173 /* 174 * Freed pages accumulate on a garbage list until segkmem is ready, 175 * at which point we call segkmem_gc() to free it all. 176 */ 177 typedef struct segkmem_gc_list { 178 struct segkmem_gc_list *gc_next; 179 vmem_t *gc_arena; 180 size_t gc_size; 181 } segkmem_gc_list_t; 182 183 static segkmem_gc_list_t *segkmem_gc_list; 184 185 /* 186 * Allocations from the hat_memload arena add VM_MEMLOAD to their 187 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 188 * to take steps to prevent infinite recursion. HAT allocations also 189 * must be non-relocatable to prevent recursive page faults. 190 */ 191 static void * 192 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 193 { 194 flags |= (VM_MEMLOAD | VM_NORELOC); 195 return (segkmem_alloc(vmp, size, flags)); 196 } 197 198 /* 199 * Allocations from static_arena arena (or any other arena that uses 200 * segkmem_alloc_permanent()) require non-relocatable (permanently 201 * wired) memory pages, since these pages are referenced by physical 202 * as well as virtual address. 203 */ 204 void * 205 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 206 { 207 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 208 } 209 210 /* 211 * Initialize kernel heap boundaries. 212 */ 213 void 214 kernelheap_init( 215 void *heap_start, 216 void *heap_end, 217 char *first_avail, 218 void *core_start, 219 void *core_end) 220 { 221 uintptr_t textbase; 222 size_t core_size; 223 size_t heap_size; 224 vmem_t *heaptext_parent; 225 size_t heap_lp_size = 0; 226 227 kernelheap = heap_start; 228 ekernelheap = heap_end; 229 230 #ifdef __sparc 231 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 232 heap_lp_base = ekernelheap - heap_lp_size; 233 heap_lp_end = heap_lp_base + heap_lp_size; 234 #endif /* __sparc */ 235 236 /* 237 * If this platform has a 'core' heap area, then the space for 238 * overflow module text should be carved out of the end of that 239 * heap. Otherwise, it gets carved out of the general purpose 240 * heap. 241 */ 242 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 243 if (core_size > 0) { 244 ASSERT(core_size >= HEAPTEXT_SIZE); 245 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 246 core_size -= HEAPTEXT_SIZE; 247 } 248 #ifndef __sparc 249 else { 250 ekernelheap -= HEAPTEXT_SIZE; 251 textbase = (uintptr_t)ekernelheap; 252 } 253 #endif 254 255 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 256 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 257 segkmem_alloc, segkmem_free); 258 259 if (core_size > 0) { 260 heap_core_arena = vmem_create("heap_core", core_start, 261 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 262 heap_core_base = core_start; 263 } else { 264 heap_core_arena = heap_arena; 265 heap_core_base = kernelheap; 266 } 267 268 /* 269 * reserve space for the large page heap. If large pages for kernel 270 * heap is enabled large page heap arean will be created later in the 271 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 272 * range will be returned back to the heap_arena. 273 */ 274 if (heap_lp_size) { 275 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 276 heap_lp_base, heap_lp_end, 277 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 278 } 279 280 /* 281 * Remove the already-spoken-for memory range [kernelheap, first_avail). 282 */ 283 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 284 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 285 286 #ifdef __sparc 287 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 288 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 289 NULL, NULL, 0, VM_SLEEP); 290 291 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 292 heaptext_parent = NULL; 293 #else /* __sparc */ 294 heap32_arena = heap_core_arena; 295 heaptext_parent = heap_core_arena; 296 #endif /* __sparc */ 297 298 heaptext_arena = vmem_create("heaptext", (void *)textbase, 299 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 300 301 /* 302 * Create a set of arenas for memory with static translations 303 * (e.g. VA -> PA translations cannot change). Since using 304 * kernel pages by physical address implies it isn't safe to 305 * walk across page boundaries, the static_arena quantum must 306 * be PAGESIZE. Any kmem caches that require static memory 307 * should source from static_arena, while direct allocations 308 * should only use static_alloc_arena. 309 */ 310 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 311 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 312 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 313 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 314 0, VM_SLEEP); 315 316 /* 317 * Create an arena for translation data (ptes, hmes, or hblks). 318 * We need an arena for this because hat_memload() is essential 319 * to vmem_populate() (see comments in common/os/vmem.c). 320 * 321 * Note: any kmem cache that allocates from hat_memload_arena 322 * must be created as a KMC_NOHASH cache (i.e. no external slab 323 * and bufctl structures to allocate) so that slab creation doesn't 324 * require anything more than a single vmem_alloc(). 325 */ 326 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 327 hat_memload_alloc, segkmem_free, heap_arena, 0, 328 VM_SLEEP | VMC_POPULATOR); 329 } 330 331 /* 332 * Grow kernel heap downward. 333 */ 334 void 335 kernelheap_extend(void *range_start, void *range_end) 336 { 337 size_t len = (uintptr_t)range_end - (uintptr_t)range_start; 338 339 ASSERT(range_start < range_end && range_end == kernelheap); 340 341 if (vmem_add(heap_arena, range_start, len, VM_NOSLEEP) == NULL) { 342 cmn_err(CE_WARN, "Could not grow kernel heap below 0x%p", 343 (void *)kernelheap); 344 } else { 345 kernelheap = range_start; 346 } 347 } 348 349 void 350 boot_mapin(caddr_t addr, size_t size) 351 { 352 caddr_t eaddr; 353 page_t *pp; 354 pfn_t pfnum; 355 356 if (page_resv(btop(size), KM_NOSLEEP) == 0) 357 panic("boot_mapin: page_resv failed"); 358 359 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 360 pfnum = va_to_pfn(addr); 361 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 362 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 363 364 /* 365 * must break up any large pages that may have constituent 366 * pages being utilized for BOP_ALLOC()'s before calling 367 * page_numtopp().The locking code (ie. page_reclaim()) 368 * can't handle them 369 */ 370 if (pp->p_szc != 0) 371 page_boot_demote(pp); 372 373 pp = page_numtopp(pfnum, SE_EXCL); 374 if (pp == NULL || PP_ISFREE(pp)) 375 panic("boot_alloc: pp is NULL or free"); 376 377 /* 378 * If the cage is on but doesn't yet contain this page, 379 * mark it as non-relocatable. 380 */ 381 if (kcage_on && !PP_ISNORELOC(pp)) 382 PP_SETNORELOC(pp); 383 384 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 385 pp->p_lckcnt = 1; 386 #if defined(__x86) 387 page_downgrade(pp); 388 #else 389 page_unlock(pp); 390 #endif 391 } 392 } 393 394 /* 395 * Get pages from boot and hash them into the kernel's vp. 396 * Used after page structs have been allocated, but before segkmem is ready. 397 */ 398 void * 399 boot_alloc(void *inaddr, size_t size, uint_t align) 400 { 401 caddr_t addr = inaddr; 402 403 if (bootops == NULL) 404 prom_panic("boot_alloc: attempt to allocate memory after " 405 "BOP_GONE"); 406 407 size = ptob(btopr(size)); 408 if (BOP_ALLOC(bootops, addr, size, align) != addr) 409 panic("boot_alloc: BOP_ALLOC failed"); 410 boot_mapin((caddr_t)addr, size); 411 return (addr); 412 } 413 414 static void 415 segkmem_badop() 416 { 417 panic("segkmem_badop"); 418 } 419 420 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 421 422 /*ARGSUSED*/ 423 static faultcode_t 424 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 425 enum fault_type type, enum seg_rw rw) 426 { 427 pgcnt_t npages; 428 spgcnt_t pg; 429 page_t *pp; 430 431 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 432 433 if (seg->s_as != &kas || size > seg->s_size || 434 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 435 panic("segkmem_fault: bad args"); 436 437 if (segkp_bitmap && seg == &kvseg) { 438 /* 439 * If it is one of segkp pages, call segkp_fault. 440 */ 441 if (BT_TEST(segkp_bitmap, 442 btop((uintptr_t)(addr - seg->s_base)))) 443 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 444 } 445 446 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 447 return (FC_NOSUPPORT); 448 449 npages = btopr(size); 450 451 switch (type) { 452 case F_SOFTLOCK: /* lock down already-loaded translations */ 453 for (pg = 0; pg < npages; pg++) { 454 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, 455 SE_SHARED); 456 if (pp == NULL) { 457 /* 458 * Hmm, no page. Does a kernel mapping 459 * exist for it? 460 */ 461 if (!hat_probe(kas.a_hat, addr)) { 462 addr -= PAGESIZE; 463 while (--pg >= 0) { 464 pp = page_find(&kvp, 465 (u_offset_t)(uintptr_t)addr); 466 if (pp) 467 page_unlock(pp); 468 addr -= PAGESIZE; 469 } 470 return (FC_NOMAP); 471 } 472 } 473 addr += PAGESIZE; 474 } 475 if (rw == S_OTHER) 476 hat_reserve(seg->s_as, addr, size); 477 return (0); 478 case F_SOFTUNLOCK: 479 while (npages--) { 480 pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr); 481 if (pp) 482 page_unlock(pp); 483 addr += PAGESIZE; 484 } 485 return (0); 486 default: 487 return (FC_NOSUPPORT); 488 } 489 /*NOTREACHED*/ 490 } 491 492 static int 493 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 494 { 495 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 496 497 if (seg->s_as != &kas || size > seg->s_size || 498 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 499 panic("segkmem_setprot: bad args"); 500 501 if (segkp_bitmap && seg == &kvseg) { 502 503 /* 504 * If it is one of segkp pages, call segkp. 505 */ 506 if (BT_TEST(segkp_bitmap, 507 btop((uintptr_t)(addr - seg->s_base)))) 508 return (SEGOP_SETPROT(segkp, addr, size, prot)); 509 } 510 511 if (prot == 0) 512 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 513 else 514 hat_chgprot(kas.a_hat, addr, size, prot); 515 return (0); 516 } 517 518 /* 519 * This is a dummy segkmem function overloaded to call segkp 520 * when segkp is under the heap. 521 */ 522 /* ARGSUSED */ 523 static int 524 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 525 { 526 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 527 528 if (seg->s_as != &kas) 529 segkmem_badop(); 530 531 if (segkp_bitmap && seg == &kvseg) { 532 533 /* 534 * If it is one of segkp pages, call into segkp. 535 */ 536 if (BT_TEST(segkp_bitmap, 537 btop((uintptr_t)(addr - seg->s_base)))) 538 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 539 } 540 segkmem_badop(); 541 return (0); 542 } 543 544 /* 545 * This is a dummy segkmem function overloaded to call segkp 546 * when segkp is under the heap. 547 */ 548 /* ARGSUSED */ 549 static int 550 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 551 { 552 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 553 554 if (seg->s_as != &kas) 555 segkmem_badop(); 556 557 if (segkp_bitmap && seg == &kvseg) { 558 559 /* 560 * If it is one of segkp pages, call into segkp. 561 */ 562 if (BT_TEST(segkp_bitmap, 563 btop((uintptr_t)(addr - seg->s_base)))) 564 return (SEGOP_KLUSTER(segkp, addr, delta)); 565 } 566 segkmem_badop(); 567 return (0); 568 } 569 570 static void 571 segkmem_xdump_range(void *arg, void *start, size_t size) 572 { 573 struct as *as = arg; 574 caddr_t addr = start; 575 caddr_t addr_end = addr + size; 576 577 while (addr < addr_end) { 578 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 579 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 580 dump_addpage(as, addr, pfn); 581 addr += PAGESIZE; 582 dump_timeleft = dump_timeout; 583 } 584 } 585 586 static void 587 segkmem_dump_range(void *arg, void *start, size_t size) 588 { 589 caddr_t addr = start; 590 caddr_t addr_end = addr + size; 591 592 /* 593 * If we are about to start dumping the range of addresses we 594 * carved out of the kernel heap for the large page heap walk 595 * heap_lp_arena to find what segments are actually populated 596 */ 597 if (SEGKMEM_USE_LARGEPAGES && 598 addr == heap_lp_base && addr_end == heap_lp_end && 599 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 600 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 601 segkmem_xdump_range, arg); 602 } else { 603 segkmem_xdump_range(arg, start, size); 604 } 605 } 606 607 static void 608 segkmem_dump(struct seg *seg) 609 { 610 /* 611 * The kernel's heap_arena (represented by kvseg) is a very large 612 * VA space, most of which is typically unused. To speed up dumping 613 * we use vmem_walk() to quickly find the pieces of heap_arena that 614 * are actually in use. We do the same for heap32_arena and 615 * heap_core. 616 * 617 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 618 * may ultimately need to allocate memory. Reentrant walks are 619 * necessarily imperfect snapshots. The kernel heap continues 620 * to change during a live crash dump, for example. For a normal 621 * crash dump, however, we know that there won't be any other threads 622 * messing with the heap. Therefore, at worst, we may fail to dump 623 * the pages that get allocated by the act of dumping; but we will 624 * always dump every page that was allocated when the walk began. 625 * 626 * The other segkmem segments are dense (fully populated), so there's 627 * no need to use this technique when dumping them. 628 * 629 * Note: when adding special dump handling for any new sparsely- 630 * populated segments, be sure to add similar handling to the ::kgrep 631 * code in mdb. 632 */ 633 if (seg == &kvseg) { 634 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 635 segkmem_dump_range, seg->s_as); 636 #ifndef __sparc 637 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 638 segkmem_dump_range, seg->s_as); 639 #endif 640 } else if (seg == &kvseg_core) { 641 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 642 segkmem_dump_range, seg->s_as); 643 } else if (seg == &kvseg32) { 644 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 645 segkmem_dump_range, seg->s_as); 646 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 647 segkmem_dump_range, seg->s_as); 648 } else { 649 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 650 } 651 } 652 653 /* 654 * lock/unlock kmem pages over a given range [addr, addr+len). 655 * Returns a shadow list of pages in ppp. If there are holes 656 * in the range (e.g. some of the kernel mappings do not have 657 * underlying page_ts) returns ENOTSUP so that as_pagelock() 658 * will handle the range via as_fault(F_SOFTLOCK). 659 */ 660 /*ARGSUSED*/ 661 static int 662 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 663 page_t ***ppp, enum lock_type type, enum seg_rw rw) 664 { 665 page_t **pplist, *pp; 666 pgcnt_t npages; 667 spgcnt_t pg; 668 size_t nb; 669 670 ASSERT(ppp != NULL); 671 672 if (segkp_bitmap && seg == &kvseg) { 673 /* 674 * If it is one of segkp pages, call into segkp. 675 */ 676 if (BT_TEST(segkp_bitmap, 677 btop((uintptr_t)(addr - seg->s_base)))) 678 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, 679 type, rw)); 680 } 681 682 if (type == L_PAGERECLAIM) 683 return (ENOTSUP); 684 685 npages = btopr(len); 686 nb = sizeof (page_t *) * npages; 687 688 if (type == L_PAGEUNLOCK) { 689 pplist = *ppp; 690 ASSERT(pplist != NULL); 691 692 for (pg = 0; pg < npages; pg++) { 693 pp = pplist[pg]; 694 page_unlock(pp); 695 } 696 kmem_free(pplist, nb); 697 return (0); 698 } 699 700 ASSERT(type == L_PAGELOCK); 701 702 pplist = kmem_alloc(nb, KM_NOSLEEP); 703 if (pplist == NULL) { 704 *ppp = NULL; 705 return (ENOTSUP); /* take the slow path */ 706 } 707 708 for (pg = 0; pg < npages; pg++) { 709 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 710 if (pp == NULL) { 711 while (--pg >= 0) 712 page_unlock(pplist[pg]); 713 kmem_free(pplist, nb); 714 *ppp = NULL; 715 return (ENOTSUP); 716 } 717 pplist[pg] = pp; 718 addr += PAGESIZE; 719 } 720 721 *ppp = pplist; 722 return (0); 723 } 724 725 /* 726 * This is a dummy segkmem function overloaded to call segkp 727 * when segkp is under the heap. 728 */ 729 /* ARGSUSED */ 730 static int 731 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 732 { 733 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 734 735 if (seg->s_as != &kas) 736 segkmem_badop(); 737 738 if (segkp_bitmap && seg == &kvseg) { 739 740 /* 741 * If it is one of segkp pages, call into segkp. 742 */ 743 if (BT_TEST(segkp_bitmap, 744 btop((uintptr_t)(addr - seg->s_base)))) 745 return (SEGOP_GETMEMID(segkp, addr, memidp)); 746 } 747 segkmem_badop(); 748 return (0); 749 } 750 751 /*ARGSUSED*/ 752 static lgrp_mem_policy_info_t * 753 segkmem_getpolicy(struct seg *seg, caddr_t addr) 754 { 755 return (NULL); 756 } 757 758 /*ARGSUSED*/ 759 static int 760 segkmem_capable(struct seg *seg, segcapability_t capability) 761 { 762 if (capability == S_CAPABILITY_NOMINFLT) 763 return (1); 764 return (0); 765 } 766 767 static struct seg_ops segkmem_ops = { 768 SEGKMEM_BADOP(int), /* dup */ 769 SEGKMEM_BADOP(int), /* unmap */ 770 SEGKMEM_BADOP(void), /* free */ 771 segkmem_fault, 772 SEGKMEM_BADOP(faultcode_t), /* faulta */ 773 segkmem_setprot, 774 segkmem_checkprot, 775 segkmem_kluster, 776 SEGKMEM_BADOP(size_t), /* swapout */ 777 SEGKMEM_BADOP(int), /* sync */ 778 SEGKMEM_BADOP(size_t), /* incore */ 779 SEGKMEM_BADOP(int), /* lockop */ 780 SEGKMEM_BADOP(int), /* getprot */ 781 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 782 SEGKMEM_BADOP(int), /* gettype */ 783 SEGKMEM_BADOP(int), /* getvp */ 784 SEGKMEM_BADOP(int), /* advise */ 785 segkmem_dump, 786 segkmem_pagelock, 787 SEGKMEM_BADOP(int), /* setpgsz */ 788 segkmem_getmemid, 789 segkmem_getpolicy, /* getpolicy */ 790 segkmem_capable, /* capable */ 791 }; 792 793 int 794 segkmem_create(struct seg *seg) 795 { 796 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 797 seg->s_ops = &segkmem_ops; 798 seg->s_data = NULL; 799 kas.a_size += seg->s_size; 800 return (0); 801 } 802 803 /*ARGSUSED*/ 804 page_t * 805 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 806 { 807 struct seg kseg; 808 int pgflags; 809 810 kseg.s_as = &kas; 811 pgflags = PG_EXCL; 812 813 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 814 pgflags |= PG_NORELOC; 815 if ((vmflag & VM_NOSLEEP) == 0) 816 pgflags |= PG_WAIT; 817 if (vmflag & VM_PANIC) 818 pgflags |= PG_PANIC; 819 if (vmflag & VM_PUSHPAGE) 820 pgflags |= PG_PUSHPAGE; 821 822 return (page_create_va(&kvp, (u_offset_t)(uintptr_t)addr, size, 823 pgflags, &kseg, addr)); 824 } 825 826 /* 827 * Allocate pages to back the virtual address range [addr, addr + size). 828 * If addr is NULL, allocate the virtual address space as well. 829 */ 830 void * 831 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 832 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 833 { 834 page_t *ppl; 835 caddr_t addr = inaddr; 836 pgcnt_t npages = btopr(size); 837 int allocflag; 838 839 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 840 return (NULL); 841 842 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 843 844 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 845 if (inaddr == NULL) 846 vmem_free(vmp, addr, size); 847 return (NULL); 848 } 849 850 ppl = page_create_func(addr, size, vmflag, pcarg); 851 if (ppl == NULL) { 852 if (inaddr == NULL) 853 vmem_free(vmp, addr, size); 854 page_unresv(npages); 855 return (NULL); 856 } 857 858 /* 859 * Under certain conditions, we need to let the HAT layer know 860 * that it cannot safely allocate memory. Allocations from 861 * the hat_memload vmem arena always need this, to prevent 862 * infinite recursion. 863 * 864 * In addition, the x86 hat cannot safely do memory 865 * allocations while in vmem_populate(), because there 866 * is no simple bound on its usage. 867 */ 868 if (vmflag & VM_MEMLOAD) 869 allocflag = HAT_NO_KALLOC; 870 #if defined(__x86) 871 else if (vmem_is_populator()) 872 allocflag = HAT_NO_KALLOC; 873 #endif 874 else 875 allocflag = 0; 876 877 while (ppl != NULL) { 878 page_t *pp = ppl; 879 page_sub(&ppl, pp); 880 ASSERT(page_iolock_assert(pp)); 881 ASSERT(PAGE_EXCL(pp)); 882 page_io_unlock(pp); 883 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 884 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 885 HAT_LOAD_LOCK | allocflag); 886 pp->p_lckcnt = 1; 887 #if defined(__x86) 888 page_downgrade(pp); 889 #else 890 if (vmflag & SEGKMEM_SHARELOCKED) 891 page_downgrade(pp); 892 else 893 page_unlock(pp); 894 #endif 895 } 896 897 return (addr); 898 } 899 900 void * 901 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 902 { 903 void *addr; 904 segkmem_gc_list_t *gcp, **prev_gcpp; 905 906 if (kvseg.s_base == NULL) { 907 #ifndef __sparc 908 if (bootops->bsys_alloc == NULL) 909 halt("Memory allocation between bop_alloc() and " 910 "kmem_alloc().\n"); 911 #endif 912 913 /* 914 * There's not a lot of memory to go around during boot, 915 * so recycle it if we can. 916 */ 917 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 918 prev_gcpp = &gcp->gc_next) { 919 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 920 *prev_gcpp = gcp->gc_next; 921 return (gcp); 922 } 923 } 924 925 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 926 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 927 panic("segkmem_alloc: boot_alloc failed"); 928 return (addr); 929 } 930 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 931 segkmem_page_create, NULL)); 932 } 933 934 /* 935 * Any changes to this routine must also be carried over to 936 * devmap_free_pages() in the seg_dev driver. This is because 937 * we currently don't have a special kernel segment for non-paged 938 * kernel memory that is exported by drivers to user space. 939 */ 940 void 941 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 942 { 943 page_t *pp; 944 caddr_t addr = inaddr; 945 caddr_t eaddr; 946 pgcnt_t npages = btopr(size); 947 948 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 949 950 if (kvseg.s_base == NULL) { 951 segkmem_gc_list_t *gc = inaddr; 952 gc->gc_arena = vmp; 953 gc->gc_size = size; 954 gc->gc_next = segkmem_gc_list; 955 segkmem_gc_list = gc; 956 return; 957 } 958 959 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 960 961 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 962 #if defined(__x86) 963 pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr); 964 if (pp == NULL) 965 panic("segkmem_free: page not found"); 966 if (!page_tryupgrade(pp)) { 967 /* 968 * Some other thread has a sharelock. Wait for 969 * it to drop the lock so we can free this page. 970 */ 971 page_unlock(pp); 972 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, 973 SE_EXCL); 974 } 975 #else 976 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 977 #endif 978 if (pp == NULL) 979 panic("segkmem_free: page not found"); 980 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 981 pp->p_lckcnt = 0; 982 page_destroy(pp, 0); 983 } 984 page_unresv(npages); 985 986 if (vmp != NULL) 987 vmem_free(vmp, inaddr, size); 988 } 989 990 void 991 segkmem_gc(void) 992 { 993 ASSERT(kvseg.s_base != NULL); 994 while (segkmem_gc_list != NULL) { 995 segkmem_gc_list_t *gc = segkmem_gc_list; 996 segkmem_gc_list = gc->gc_next; 997 segkmem_free(gc->gc_arena, gc, gc->gc_size); 998 } 999 } 1000 1001 /* 1002 * Legacy entry points from here to end of file. 1003 */ 1004 void 1005 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1006 pfn_t pfn, uint_t flags) 1007 { 1008 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1009 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1010 flags | HAT_LOAD_LOCK); 1011 } 1012 1013 void 1014 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1015 { 1016 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1017 } 1018 1019 void * 1020 kmem_getpages(pgcnt_t npages, int kmflag) 1021 { 1022 return (kmem_alloc(ptob(npages), kmflag)); 1023 } 1024 1025 void 1026 kmem_freepages(void *addr, pgcnt_t npages) 1027 { 1028 kmem_free(addr, ptob(npages)); 1029 } 1030 1031 /* 1032 * segkmem_page_create_large() allocates a large page to be used for the kmem 1033 * caches. If kpr is enabled we ask for a relocatable page unless requested 1034 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1035 */ 1036 static page_t * 1037 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1038 { 1039 int pgflags; 1040 1041 pgflags = PG_EXCL; 1042 1043 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1044 pgflags |= PG_NORELOC; 1045 if (!(vmflag & VM_NOSLEEP)) 1046 pgflags |= PG_WAIT; 1047 if (vmflag & VM_PUSHPAGE) 1048 pgflags |= PG_PUSHPAGE; 1049 1050 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1051 pgflags, &kvseg, addr, arg)); 1052 } 1053 1054 /* 1055 * Allocate a large page to back the virtual address range 1056 * [addr, addr + size). If addr is NULL, allocate the virtual address 1057 * space as well. 1058 */ 1059 static void * 1060 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1061 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1062 void *pcarg) 1063 { 1064 caddr_t addr = inaddr, pa; 1065 size_t lpsize = segkmem_lpsize; 1066 pgcnt_t npages = btopr(size); 1067 pgcnt_t nbpages = btop(lpsize); 1068 pgcnt_t nlpages = size >> segkmem_lpshift; 1069 size_t ppasize = nbpages * sizeof (page_t *); 1070 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1071 int i; 1072 1073 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1074 return (NULL); 1075 } 1076 1077 /* 1078 * allocate an array we need for hat_memload_array. 1079 * we use a separate arena to avoid recursion. 1080 * we will not need this array when hat_memload_array learns pp++ 1081 */ 1082 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1083 goto fail_array_alloc; 1084 } 1085 1086 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1087 goto fail_vmem_alloc; 1088 1089 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1090 1091 /* create all the pages */ 1092 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1093 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1094 goto fail_page_create; 1095 page_list_concat(&pplist, &pp); 1096 } 1097 1098 /* at this point we have all the resource to complete the request */ 1099 while ((rootpp = pplist) != NULL) { 1100 for (i = 0; i < nbpages; i++) { 1101 ASSERT(pplist != NULL); 1102 pp = pplist; 1103 page_sub(&pplist, pp); 1104 ASSERT(page_iolock_assert(pp)); 1105 page_io_unlock(pp); 1106 ppa[i] = pp; 1107 } 1108 /* 1109 * Load the locked entry. It's OK to preload the entry into the 1110 * TSB since we now support large mappings in the kernel TSB. 1111 */ 1112 hat_memload_array(kas.a_hat, 1113 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1114 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1115 HAT_LOAD_LOCK); 1116 1117 for (--i; i >= 0; --i) { 1118 ppa[i]->p_lckcnt = 1; 1119 page_unlock(ppa[i]); 1120 } 1121 } 1122 1123 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1124 return (addr); 1125 1126 fail_page_create: 1127 while ((rootpp = pplist) != NULL) { 1128 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1129 ASSERT(pp != NULL); 1130 page_sub(&pplist, pp); 1131 ASSERT(page_iolock_assert(pp)); 1132 page_io_unlock(pp); 1133 } 1134 page_destroy_pages(rootpp); 1135 } 1136 1137 if (inaddr == NULL) 1138 vmem_free(vmp, addr, size); 1139 1140 fail_vmem_alloc: 1141 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1142 1143 fail_array_alloc: 1144 page_unresv(npages); 1145 1146 return (NULL); 1147 } 1148 1149 static void 1150 segkmem_free_one_lp(caddr_t addr, size_t size) 1151 { 1152 page_t *pp, *rootpp = NULL; 1153 pgcnt_t pgs_left = btopr(size); 1154 1155 ASSERT(size == segkmem_lpsize); 1156 1157 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1158 1159 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1160 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1161 if (pp == NULL) 1162 panic("segkmem_free_one_lp: page not found"); 1163 ASSERT(PAGE_EXCL(pp)); 1164 pp->p_lckcnt = 0; 1165 if (rootpp == NULL) 1166 rootpp = pp; 1167 } 1168 ASSERT(rootpp != NULL); 1169 page_destroy_pages(rootpp); 1170 1171 /* page_unresv() is done by the caller */ 1172 } 1173 1174 /* 1175 * This function is called to import new spans into the vmem arenas like 1176 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1177 * spans from large page arena - kmem_lp_arena. In order to do this it might 1178 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1179 * it was not able to satisfy the upgraded request it then calls regular 1180 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1181 */ 1182 void * 1183 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, int vmflag) 1184 { 1185 size_t size; 1186 kthread_t *t = curthread; 1187 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1188 1189 ASSERT(sizep != NULL); 1190 1191 size = *sizep; 1192 1193 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1194 !(vmflag & SEGKMEM_SHARELOCKED)) { 1195 1196 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1197 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1198 void *addr = NULL; 1199 ulong_t *lpthrtp = &lpcb->lp_throttle; 1200 ulong_t lpthrt = *lpthrtp; 1201 int dowakeup = 0; 1202 int doalloc = 1; 1203 1204 ASSERT(kmem_lp_arena != NULL); 1205 ASSERT(asize >= size); 1206 1207 if (lpthrt != 0) { 1208 /* try to update the throttle value */ 1209 lpthrt = atomic_add_long_nv(lpthrtp, 1); 1210 if (lpthrt >= segkmem_lpthrottle_max) { 1211 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1212 segkmem_lpthrottle_max / 4); 1213 } 1214 1215 /* 1216 * when we get above throttle start do an exponential 1217 * backoff at trying large pages and reaping 1218 */ 1219 if (lpthrt > segkmem_lpthrottle_start && 1220 (lpthrt & (lpthrt - 1))) { 1221 lpcb->allocs_throttled++; 1222 lpthrt--; 1223 if ((lpthrt & (lpthrt - 1)) == 0) 1224 kmem_reap(); 1225 return (segkmem_alloc(vmp, size, vmflag)); 1226 } 1227 } 1228 1229 if (!(vmflag & VM_NOSLEEP) && 1230 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1231 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1232 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1233 1234 /* 1235 * we are low on free memory in kmem_lp_arena 1236 * we let only one guy to allocate heap_lp 1237 * quantum size chunk that everybody is going to 1238 * share 1239 */ 1240 mutex_enter(&lpcb->lp_lock); 1241 1242 if (lpcb->lp_wait) { 1243 1244 /* we are not the first one - wait */ 1245 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1246 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1247 kmemlp_qnt) { 1248 doalloc = 0; 1249 } 1250 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1251 kmemlp_qnt) { 1252 1253 /* 1254 * we are the first one, make sure we import 1255 * a large page 1256 */ 1257 if (asize == kmemlp_qnt) 1258 asize += kmemlp_qnt; 1259 dowakeup = 1; 1260 lpcb->lp_wait = 1; 1261 } 1262 1263 mutex_exit(&lpcb->lp_lock); 1264 } 1265 1266 /* 1267 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1268 * large pages are not available. In that case this allocation 1269 * attempt will fail and we will retry allocation with small 1270 * pages. We also do not want to panic if this allocation fails 1271 * because we are going to retry. 1272 */ 1273 if (doalloc) { 1274 addr = vmem_alloc(kmem_lp_arena, asize, 1275 (vmflag | VM_ABORT) & ~VM_PANIC); 1276 1277 if (dowakeup) { 1278 mutex_enter(&lpcb->lp_lock); 1279 ASSERT(lpcb->lp_wait != 0); 1280 lpcb->lp_wait = 0; 1281 cv_broadcast(&lpcb->lp_cv); 1282 mutex_exit(&lpcb->lp_lock); 1283 } 1284 } 1285 1286 if (addr != NULL) { 1287 *sizep = asize; 1288 *lpthrtp = 0; 1289 return (addr); 1290 } 1291 1292 if (vmflag & VM_NOSLEEP) 1293 lpcb->nosleep_allocs_failed++; 1294 else 1295 lpcb->sleep_allocs_failed++; 1296 lpcb->alloc_bytes_failed += size; 1297 1298 /* if large page throttling is not started yet do it */ 1299 if (segkmem_use_lpthrottle && lpthrt == 0) { 1300 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1301 } 1302 } 1303 return (segkmem_alloc(vmp, size, vmflag)); 1304 } 1305 1306 void 1307 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1308 { 1309 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1310 segkmem_free(vmp, inaddr, size); 1311 } else { 1312 vmem_free(kmem_lp_arena, inaddr, size); 1313 } 1314 } 1315 1316 /* 1317 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1318 * into kmem_lp arena. In the process it maps the imported segment with 1319 * large pages 1320 */ 1321 static void * 1322 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1323 { 1324 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1325 void *addr; 1326 1327 ASSERT(size != 0); 1328 ASSERT(vmp == heap_lp_arena); 1329 1330 /* do not allow large page heap grow beyound limits */ 1331 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1332 lpcb->allocs_limited++; 1333 return (NULL); 1334 } 1335 1336 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1337 segkmem_page_create_large, NULL); 1338 return (addr); 1339 } 1340 1341 /* 1342 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1343 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1344 * large pages used to map it. 1345 */ 1346 static void 1347 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1348 { 1349 pgcnt_t nlpages = size >> segkmem_lpshift; 1350 size_t lpsize = segkmem_lpsize; 1351 caddr_t addr = inaddr; 1352 pgcnt_t npages = btopr(size); 1353 int i; 1354 1355 ASSERT(vmp == heap_lp_arena); 1356 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1357 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1358 1359 for (i = 0; i < nlpages; i++) { 1360 segkmem_free_one_lp(addr, lpsize); 1361 addr += lpsize; 1362 } 1363 1364 page_unresv(npages); 1365 1366 vmem_free(vmp, inaddr, size); 1367 } 1368 1369 /* 1370 * This function is called at system boot time by kmem_init right after 1371 * /etc/system file has been read. It checks based on hardware configuration 1372 * and /etc/system settings if system is going to use large pages. The 1373 * initialiazation necessary to actually start using large pages 1374 * happens later in the process after segkmem_heap_lp_init() is called. 1375 */ 1376 int 1377 segkmem_lpsetup() 1378 { 1379 int use_large_pages = 0; 1380 1381 #ifdef __sparc 1382 1383 size_t memtotal = physmem * PAGESIZE; 1384 1385 if (heap_lp_base == NULL) { 1386 segkmem_lpsize = PAGESIZE; 1387 return (0); 1388 } 1389 1390 /* get a platform dependent value of large page size for kernel heap */ 1391 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1392 1393 if (segkmem_lpsize <= PAGESIZE) { 1394 /* 1395 * put virtual space reserved for the large page kernel 1396 * back to the regular heap 1397 */ 1398 vmem_xfree(heap_arena, heap_lp_base, 1399 heap_lp_end - heap_lp_base); 1400 heap_lp_base = NULL; 1401 heap_lp_end = NULL; 1402 segkmem_lpsize = PAGESIZE; 1403 return (0); 1404 } 1405 1406 /* set heap_lp quantum if necessary */ 1407 if (segkmem_heaplp_quantum == 0 || 1408 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1409 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1410 segkmem_heaplp_quantum = segkmem_lpsize; 1411 } 1412 1413 /* set kmem_lp quantum if necessary */ 1414 if (segkmem_kmemlp_quantum == 0 || 1415 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1416 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1417 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1418 } 1419 1420 /* set total amount of memory allowed for large page kernel heap */ 1421 if (segkmem_kmemlp_max == 0) { 1422 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1423 segkmem_kmemlp_pcnt = 12; 1424 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1425 } 1426 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1427 segkmem_heaplp_quantum); 1428 1429 /* fix lp kmem preallocation request if necesssary */ 1430 if (segkmem_kmemlp_min) { 1431 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1432 segkmem_heaplp_quantum); 1433 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1434 segkmem_kmemlp_min = segkmem_kmemlp_max; 1435 } 1436 1437 use_large_pages = 1; 1438 segkmem_lpshift = page_get_shift(page_szc(segkmem_lpsize)); 1439 1440 #endif 1441 return (use_large_pages); 1442 } 1443 1444 #ifdef __sparc 1445 1446 1447 static void * 1448 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1449 { 1450 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1451 void *addr; 1452 1453 if (ppaquantum <= PAGESIZE) 1454 return (segkmem_alloc(vmp, size, vmflag)); 1455 1456 ASSERT((size & (ppaquantum - 1)) == 0); 1457 1458 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1459 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1460 segkmem_page_create, NULL) == NULL) { 1461 vmem_xfree(vmp, addr, size); 1462 addr = NULL; 1463 } 1464 1465 return (addr); 1466 } 1467 1468 static void 1469 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1470 { 1471 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1472 1473 ASSERT(addr != NULL); 1474 1475 if (ppaquantum <= PAGESIZE) { 1476 segkmem_free(vmp, addr, size); 1477 } else { 1478 segkmem_free(NULL, addr, size); 1479 vmem_xfree(vmp, addr, size); 1480 } 1481 } 1482 1483 void 1484 segkmem_heap_lp_init() 1485 { 1486 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1487 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1488 size_t lpsize = segkmem_lpsize; 1489 size_t ppaquantum; 1490 void *addr; 1491 1492 if (segkmem_lpsize <= PAGESIZE) { 1493 ASSERT(heap_lp_base == NULL); 1494 ASSERT(heap_lp_end == NULL); 1495 return; 1496 } 1497 1498 ASSERT(segkmem_heaplp_quantum >= lpsize); 1499 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1500 ASSERT(lpcb->lp_uselp == 0); 1501 ASSERT(heap_lp_base != NULL); 1502 ASSERT(heap_lp_end != NULL); 1503 ASSERT(heap_lp_base < heap_lp_end); 1504 ASSERT(heap_lp_arena == NULL); 1505 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1506 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1507 1508 /* create large page heap arena */ 1509 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1510 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1511 1512 ASSERT(heap_lp_arena != NULL); 1513 1514 /* This arena caches memory already mapped by large pages */ 1515 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1516 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1517 1518 ASSERT(kmem_lp_arena != NULL); 1519 1520 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1521 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1522 1523 /* 1524 * this arena is used for the array of page_t pointers necessary 1525 * to call hat_mem_load_array 1526 */ 1527 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1528 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1529 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1530 VM_SLEEP); 1531 1532 ASSERT(segkmem_ppa_arena != NULL); 1533 1534 /* prealloacate some memory for the lp kernel heap */ 1535 if (segkmem_kmemlp_min) { 1536 1537 ASSERT(P2PHASE(segkmem_kmemlp_min, 1538 segkmem_heaplp_quantum) == 0); 1539 1540 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1541 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1542 1543 addr = vmem_add(kmem_lp_arena, addr, 1544 segkmem_kmemlp_min, VM_SLEEP); 1545 ASSERT(addr != NULL); 1546 } 1547 } 1548 1549 lpcb->lp_uselp = 1; 1550 } 1551 1552 #endif 1553