1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/tuneable.h> 34 #include <sys/systm.h> 35 #include <sys/vm.h> 36 #include <sys/kmem.h> 37 #include <sys/vmem.h> 38 #include <sys/mman.h> 39 #include <sys/cmn_err.h> 40 #include <sys/debug.h> 41 #include <sys/dumphdr.h> 42 #include <sys/bootconf.h> 43 #include <sys/lgrp.h> 44 #include <vm/seg_kmem.h> 45 #include <vm/hat.h> 46 #include <vm/page.h> 47 #include <vm/vm_dep.h> 48 #include <vm/faultcode.h> 49 #include <sys/promif.h> 50 #include <vm/seg_kp.h> 51 #include <sys/bitmap.h> 52 #include <sys/mem_cage.h> 53 54 /* 55 * seg_kmem is the primary kernel memory segment driver. It 56 * maps the kernel heap [kernelheap, ekernelheap), module text, 57 * and all memory which was allocated before the VM was initialized 58 * into kas. 59 * 60 * Pages which belong to seg_kmem are hashed into &kvp vnode at 61 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 62 * They must never be paged out since segkmem_fault() is a no-op to 63 * prevent recursive faults. 64 * 65 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 66 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 67 * supports relocation the #ifdef kludges can be removed. 68 * 69 * seg_kmem pages may be subject to relocation by page_relocate(), 70 * provided that the HAT supports it; if this is so, segkmem_reloc 71 * will be set to a nonzero value. All boot time allocated memory as 72 * well as static memory is considered off limits to relocation. 73 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 74 * we request P_NORELOC pages for memory that isn't safe to relocate. 75 * 76 * The kernel heap is logically divided up into four pieces: 77 * 78 * heap32_arena is for allocations that require 32-bit absolute 79 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 80 * 81 * heap_core is for allocations that require 2GB *relative* 82 * offsets; in other words all memory from heap_core is within 83 * 2GB of all other memory from the same arena. This is a requirement 84 * of the addressing modes of some processors in supervisor code. 85 * 86 * heap_arena is the general heap arena. 87 * 88 * static_arena is the static memory arena. Allocations from it 89 * are not subject to relocation so it is safe to use the memory 90 * physical address as well as the virtual address (e.g. the VA to 91 * PA translations are static). Caches may import from static_arena; 92 * all other static memory allocations should use static_alloc_arena. 93 * 94 * On some platforms which have limited virtual address space, seg_kmem 95 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 96 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 97 * address space which is actually seg_kp mapped. 98 */ 99 100 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 101 102 char *kernelheap; /* start of primary kernel heap */ 103 char *ekernelheap; /* end of primary kernel heap */ 104 struct seg kvseg; /* primary kernel heap segment */ 105 struct seg kvseg_core; /* "core" kernel heap segment */ 106 vmem_t *heap_arena; /* primary kernel heap arena */ 107 vmem_t *heap_core_arena; /* core kernel heap arena */ 108 char *heap_core_base; /* start of core kernel heap arena */ 109 char *heap_lp_base; /* start of kernel large page heap arena */ 110 char *heap_lp_end; /* end of kernel large page heap arena */ 111 vmem_t *hat_memload_arena; /* HAT translation data */ 112 struct seg kvseg32; /* 32-bit kernel heap segment */ 113 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 114 vmem_t *heaptext_arena; /* heaptext arena */ 115 struct as kas; /* kernel address space */ 116 struct vnode kvp; /* vnode for all segkmem pages */ 117 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 118 vmem_t *static_arena; /* arena for caches to import static memory */ 119 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 120 121 /* 122 * seg_kmem driver can map part of the kernel heap with large pages. 123 * Currently this functionality is implemented for sparc platforms only. 124 * 125 * The large page size "segkmem_lpsize" for kernel heap is selected in the 126 * platform specific code. It can also be modified via /etc/system file. 127 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 128 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 129 * match segkmem_lpsize. 130 * 131 * At boot time we carve from kernel heap arena a range of virtual addresses 132 * that will be used for large page mappings. This range [heap_lp_base, 133 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 134 * create "kmem_lp_arena" that caches memory already backed up by large 135 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 136 */ 137 138 size_t segkmem_lpsize; 139 static uint_t segkmem_lpshift = PAGESHIFT; 140 141 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 142 size_t segkmem_heaplp_quantum; 143 vmem_t *heap_lp_arena; 144 static vmem_t *kmem_lp_arena; 145 static vmem_t *segkmem_ppa_arena; 146 static segkmem_lpcb_t segkmem_lpcb; 147 148 /* 149 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 150 * consumed by the large page heap. By default this parameter is set to 1/8 of 151 * physmem but can be adjusted through /etc/system either directly or 152 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 153 * we allow for large page heap. 154 */ 155 size_t segkmem_kmemlp_max; 156 static uint_t segkmem_kmemlp_pcnt; 157 158 /* 159 * Getting large pages for kernel heap could be problematic due to 160 * physical memory fragmentation. That's why we allow to preallocate 161 * "segkmem_kmemlp_min" bytes at boot time. 162 */ 163 static size_t segkmem_kmemlp_min; 164 165 /* 166 * Throttling is used to avoid expensive tries to allocate large pages 167 * for kernel heap when a lot of succesive attempts to do so fail. 168 */ 169 static ulong_t segkmem_lpthrottle_max = 0x400000; 170 static ulong_t segkmem_lpthrottle_start = 0x40; 171 static ulong_t segkmem_use_lpthrottle = 1; 172 173 /* 174 * Freed pages accumulate on a garbage list until segkmem is ready, 175 * at which point we call segkmem_gc() to free it all. 176 */ 177 typedef struct segkmem_gc_list { 178 struct segkmem_gc_list *gc_next; 179 vmem_t *gc_arena; 180 size_t gc_size; 181 } segkmem_gc_list_t; 182 183 static segkmem_gc_list_t *segkmem_gc_list; 184 185 /* 186 * Allocations from the hat_memload arena add VM_MEMLOAD to their 187 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 188 * to take steps to prevent infinite recursion. HAT allocations also 189 * must be non-relocatable to prevent recursive page faults. 190 */ 191 static void * 192 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 193 { 194 flags |= (VM_MEMLOAD | VM_NORELOC); 195 return (segkmem_alloc(vmp, size, flags)); 196 } 197 198 /* 199 * Allocations from static_arena arena (or any other arena that uses 200 * segkmem_alloc_permanent()) require non-relocatable (permanently 201 * wired) memory pages, since these pages are referenced by physical 202 * as well as virtual address. 203 */ 204 void * 205 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 206 { 207 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 208 } 209 210 /* 211 * Initialize kernel heap boundaries. 212 */ 213 void 214 kernelheap_init( 215 void *heap_start, 216 void *heap_end, 217 char *first_avail, 218 void *core_start, 219 void *core_end) 220 { 221 uintptr_t textbase; 222 size_t core_size; 223 size_t heap_size; 224 vmem_t *heaptext_parent; 225 size_t heap_lp_size = 0; 226 227 kernelheap = heap_start; 228 ekernelheap = heap_end; 229 230 #ifdef __sparc 231 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 232 heap_lp_base = ekernelheap - heap_lp_size; 233 heap_lp_end = heap_lp_base + heap_lp_size; 234 #endif /* __sparc */ 235 236 /* 237 * If this platform has a 'core' heap area, then the space for 238 * overflow module text should be carved out of the end of that 239 * heap. Otherwise, it gets carved out of the general purpose 240 * heap. 241 */ 242 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 243 if (core_size > 0) { 244 ASSERT(core_size >= HEAPTEXT_SIZE); 245 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 246 core_size -= HEAPTEXT_SIZE; 247 } 248 #ifndef __sparc 249 else { 250 ekernelheap -= HEAPTEXT_SIZE; 251 textbase = (uintptr_t)ekernelheap; 252 } 253 #endif 254 255 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 256 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 257 segkmem_alloc, segkmem_free); 258 259 if (core_size > 0) { 260 heap_core_arena = vmem_create("heap_core", core_start, 261 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 262 heap_core_base = core_start; 263 } else { 264 heap_core_arena = heap_arena; 265 heap_core_base = kernelheap; 266 } 267 268 /* 269 * reserve space for the large page heap. If large pages for kernel 270 * heap is enabled large page heap arean will be created later in the 271 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 272 * range will be returned back to the heap_arena. 273 */ 274 if (heap_lp_size) { 275 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 276 heap_lp_base, heap_lp_end, 277 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 278 } 279 280 /* 281 * Remove the already-spoken-for memory range [kernelheap, first_avail). 282 */ 283 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 284 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 285 286 #ifdef __sparc 287 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 288 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 289 NULL, NULL, 0, VM_SLEEP); 290 291 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 292 heaptext_parent = NULL; 293 #else /* __sparc */ 294 heap32_arena = heap_core_arena; 295 heaptext_parent = heap_core_arena; 296 #endif /* __sparc */ 297 298 heaptext_arena = vmem_create("heaptext", (void *)textbase, 299 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 300 301 /* 302 * Create a set of arenas for memory with static translations 303 * (e.g. VA -> PA translations cannot change). Since using 304 * kernel pages by physical address implies it isn't safe to 305 * walk across page boundaries, the static_arena quantum must 306 * be PAGESIZE. Any kmem caches that require static memory 307 * should source from static_arena, while direct allocations 308 * should only use static_alloc_arena. 309 */ 310 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 311 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 312 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 313 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 314 0, VM_SLEEP); 315 316 /* 317 * Create an arena for translation data (ptes, hmes, or hblks). 318 * We need an arena for this because hat_memload() is essential 319 * to vmem_populate() (see comments in common/os/vmem.c). 320 * 321 * Note: any kmem cache that allocates from hat_memload_arena 322 * must be created as a KMC_NOHASH cache (i.e. no external slab 323 * and bufctl structures to allocate) so that slab creation doesn't 324 * require anything more than a single vmem_alloc(). 325 */ 326 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 327 hat_memload_alloc, segkmem_free, heap_arena, 0, 328 VM_SLEEP | VMC_POPULATOR); 329 } 330 331 /* 332 * Grow kernel heap downward. 333 */ 334 void 335 kernelheap_extend(void *range_start, void *range_end) 336 { 337 size_t len = (uintptr_t)range_end - (uintptr_t)range_start; 338 339 ASSERT(range_start < range_end && range_end == kernelheap); 340 341 if (vmem_add(heap_arena, range_start, len, VM_NOSLEEP) == NULL) { 342 cmn_err(CE_WARN, "Could not grow kernel heap below 0x%p", 343 (void *)kernelheap); 344 } else { 345 kernelheap = range_start; 346 } 347 } 348 349 void 350 boot_mapin(caddr_t addr, size_t size) 351 { 352 caddr_t eaddr; 353 page_t *pp; 354 pfn_t pfnum; 355 356 if (page_resv(btop(size), KM_NOSLEEP) == 0) 357 panic("boot_mapin: page_resv failed"); 358 359 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 360 pfnum = va_to_pfn(addr); 361 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 362 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 363 364 /* 365 * must break up any large pages that may have constituent 366 * pages being utilized for BOP_ALLOC()'s before calling 367 * page_numtopp().The locking code (ie. page_reclaim()) 368 * can't handle them 369 */ 370 if (pp->p_szc != 0) 371 page_boot_demote(pp); 372 373 pp = page_numtopp(pfnum, SE_EXCL); 374 if (pp == NULL || PP_ISFREE(pp)) 375 panic("boot_alloc: pp is NULL or free"); 376 377 /* 378 * If the cage is on but doesn't yet contain this page, 379 * mark it as non-relocatable. 380 */ 381 if (kcage_on && !PP_ISNORELOC(pp)) 382 PP_SETNORELOC(pp); 383 384 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 385 pp->p_lckcnt = 1; 386 #if defined(__x86) 387 page_downgrade(pp); 388 #else 389 page_unlock(pp); 390 #endif 391 } 392 } 393 394 /* 395 * Get pages from boot and hash them into the kernel's vp. 396 * Used after page structs have been allocated, but before segkmem is ready. 397 */ 398 void * 399 boot_alloc(void *inaddr, size_t size, uint_t align) 400 { 401 caddr_t addr = inaddr; 402 403 if (bootops == NULL) 404 prom_panic("boot_alloc: attempt to allocate memory after " 405 "BOP_GONE"); 406 407 size = ptob(btopr(size)); 408 if (BOP_ALLOC(bootops, addr, size, align) != addr) 409 panic("boot_alloc: BOP_ALLOC failed"); 410 boot_mapin((caddr_t)addr, size); 411 return (addr); 412 } 413 414 static void 415 segkmem_badop() 416 { 417 panic("segkmem_badop"); 418 } 419 420 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 421 422 /*ARGSUSED*/ 423 static faultcode_t 424 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 425 enum fault_type type, enum seg_rw rw) 426 { 427 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 428 429 if (seg->s_as != &kas || size > seg->s_size || 430 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 431 panic("segkmem_fault: bad args"); 432 433 if (segkp_bitmap && seg == &kvseg) { 434 435 /* 436 * If it is one of segkp pages, call segkp_fault. 437 */ 438 if (BT_TEST(segkp_bitmap, 439 btop((uintptr_t)(addr - seg->s_base)))) 440 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 441 } 442 443 switch (type) { 444 case F_SOFTLOCK: /* lock down already-loaded translations */ 445 if (rw == S_OTHER) { 446 hat_reserve(seg->s_as, addr, size); 447 return (0); 448 } 449 /*FALLTHROUGH*/ 450 case F_SOFTUNLOCK: 451 if (rw == S_READ || rw == S_WRITE) 452 return (0); 453 /*FALLTHROUGH*/ 454 default: 455 break; 456 } 457 return (FC_NOSUPPORT); 458 } 459 460 static int 461 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 462 { 463 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 464 465 if (seg->s_as != &kas || size > seg->s_size || 466 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 467 panic("segkmem_setprot: bad args"); 468 469 if (segkp_bitmap && seg == &kvseg) { 470 471 /* 472 * If it is one of segkp pages, call segkp. 473 */ 474 if (BT_TEST(segkp_bitmap, 475 btop((uintptr_t)(addr - seg->s_base)))) 476 return (SEGOP_SETPROT(segkp, addr, size, prot)); 477 } 478 479 if (prot == 0) 480 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 481 else 482 hat_chgprot(kas.a_hat, addr, size, prot); 483 return (0); 484 } 485 486 /* 487 * This is a dummy segkmem function overloaded to call segkp 488 * when segkp is under the heap. 489 */ 490 /* ARGSUSED */ 491 static int 492 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 493 { 494 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 495 496 if (seg->s_as != &kas) 497 segkmem_badop(); 498 499 if (segkp_bitmap && seg == &kvseg) { 500 501 /* 502 * If it is one of segkp pages, call into segkp. 503 */ 504 if (BT_TEST(segkp_bitmap, 505 btop((uintptr_t)(addr - seg->s_base)))) 506 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 507 } 508 segkmem_badop(); 509 return (0); 510 } 511 512 /* 513 * This is a dummy segkmem function overloaded to call segkp 514 * when segkp is under the heap. 515 */ 516 /* ARGSUSED */ 517 static int 518 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 519 { 520 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 521 522 if (seg->s_as != &kas) 523 segkmem_badop(); 524 525 if (segkp_bitmap && seg == &kvseg) { 526 527 /* 528 * If it is one of segkp pages, call into segkp. 529 */ 530 if (BT_TEST(segkp_bitmap, 531 btop((uintptr_t)(addr - seg->s_base)))) 532 return (SEGOP_KLUSTER(segkp, addr, delta)); 533 } 534 segkmem_badop(); 535 return (0); 536 } 537 538 static void 539 segkmem_xdump_range(void *arg, void *start, size_t size) 540 { 541 struct as *as = arg; 542 caddr_t addr = start; 543 caddr_t addr_end = addr + size; 544 545 while (addr < addr_end) { 546 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 547 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 548 dump_addpage(as, addr, pfn); 549 addr += PAGESIZE; 550 dump_timeleft = dump_timeout; 551 } 552 } 553 554 static void 555 segkmem_dump_range(void *arg, void *start, size_t size) 556 { 557 caddr_t addr = start; 558 caddr_t addr_end = addr + size; 559 560 /* 561 * If we are about to start dumping the range of addresses we 562 * carved out of the kernel heap for the large page heap walk 563 * heap_lp_arena to find what segments are actually populated 564 */ 565 if (SEGKMEM_USE_LARGEPAGES && 566 addr == heap_lp_base && addr_end == heap_lp_end && 567 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 568 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 569 segkmem_xdump_range, arg); 570 } else { 571 segkmem_xdump_range(arg, start, size); 572 } 573 } 574 575 static void 576 segkmem_dump(struct seg *seg) 577 { 578 /* 579 * The kernel's heap_arena (represented by kvseg) is a very large 580 * VA space, most of which is typically unused. To speed up dumping 581 * we use vmem_walk() to quickly find the pieces of heap_arena that 582 * are actually in use. We do the same for heap32_arena and 583 * heap_core. 584 * 585 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 586 * may ultimately need to allocate memory. Reentrant walks are 587 * necessarily imperfect snapshots. The kernel heap continues 588 * to change during a live crash dump, for example. For a normal 589 * crash dump, however, we know that there won't be any other threads 590 * messing with the heap. Therefore, at worst, we may fail to dump 591 * the pages that get allocated by the act of dumping; but we will 592 * always dump every page that was allocated when the walk began. 593 * 594 * The other segkmem segments are dense (fully populated), so there's 595 * no need to use this technique when dumping them. 596 * 597 * Note: when adding special dump handling for any new sparsely- 598 * populated segments, be sure to add similar handling to the ::kgrep 599 * code in mdb. 600 */ 601 if (seg == &kvseg) { 602 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 603 segkmem_dump_range, seg->s_as); 604 #ifndef __sparc 605 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 606 segkmem_dump_range, seg->s_as); 607 #endif 608 } else if (seg == &kvseg_core) { 609 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 610 segkmem_dump_range, seg->s_as); 611 } else if (seg == &kvseg32) { 612 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 613 segkmem_dump_range, seg->s_as); 614 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 615 segkmem_dump_range, seg->s_as); 616 } else { 617 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 618 } 619 } 620 621 /* 622 * lock/unlock kmem pages over a given range [addr, addr+len). 623 * Returns a shadow list of pages in ppp if *ppp is not NULL 624 * and memory can be allocated to hold the shadow list. 625 */ 626 /*ARGSUSED*/ 627 static int 628 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 629 page_t ***ppp, enum lock_type type, enum seg_rw rw) 630 { 631 page_t **pplist, *pp; 632 pgcnt_t npages; 633 size_t nb; 634 635 if (segkp_bitmap && seg == &kvseg) { 636 /* 637 * If it is one of segkp pages, call into segkp. 638 */ 639 if (BT_TEST(segkp_bitmap, 640 btop((uintptr_t)(addr - seg->s_base)))) 641 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, 642 type, rw)); 643 } 644 645 if (type == L_PAGERECLAIM) 646 return (ENOTSUP); 647 648 npages = btopr(len); 649 nb = sizeof (page_t *) * npages; 650 651 if (type == L_PAGEUNLOCK) { 652 if ((pplist = *ppp) == NULL) { 653 /* 654 * No shadow list. Iterate over the range 655 * using page_find() and unlock the pages 656 * that we encounter. 657 */ 658 while (npages--) { 659 pp = page_find(&kvp, 660 (u_offset_t)(uintptr_t)addr); 661 if (pp) 662 page_unlock(pp); 663 addr += PAGESIZE; 664 } 665 return (0); 666 } 667 668 while (npages--) { 669 pp = *pplist++; 670 if (pp) 671 page_unlock(pp); 672 } 673 kmem_free(*ppp, nb); 674 return (0); 675 } 676 677 ASSERT(type == L_PAGELOCK); 678 679 pplist = NULL; 680 if (ppp != NULL) 681 *ppp = pplist = kmem_alloc(nb, KM_NOSLEEP); 682 683 while (npages--) { 684 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 685 /* 686 * We'd like to ASSERT(pp != NULL) here, but we can't 687 * because there are legitimate cases where the address 688 * isn't really mapped -- for instance, attaching a 689 * kernel debugger and poking at a non-existent address. 690 */ 691 if (pplist) 692 *pplist++ = pp; 693 addr += PAGESIZE; 694 } 695 return (0); 696 } 697 698 /* 699 * This is a dummy segkmem function overloaded to call segkp 700 * when segkp is under the heap. 701 */ 702 /* ARGSUSED */ 703 static int 704 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 705 { 706 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 707 708 if (seg->s_as != &kas) 709 segkmem_badop(); 710 711 if (segkp_bitmap && seg == &kvseg) { 712 713 /* 714 * If it is one of segkp pages, call into segkp. 715 */ 716 if (BT_TEST(segkp_bitmap, 717 btop((uintptr_t)(addr - seg->s_base)))) 718 return (SEGOP_GETMEMID(segkp, addr, memidp)); 719 } 720 segkmem_badop(); 721 return (0); 722 } 723 724 /*ARGSUSED*/ 725 static lgrp_mem_policy_info_t * 726 segkmem_getpolicy(struct seg *seg, caddr_t addr) 727 { 728 return (NULL); 729 } 730 731 732 static struct seg_ops segkmem_ops = { 733 SEGKMEM_BADOP(int), /* dup */ 734 SEGKMEM_BADOP(int), /* unmap */ 735 SEGKMEM_BADOP(void), /* free */ 736 segkmem_fault, 737 SEGKMEM_BADOP(faultcode_t), /* faulta */ 738 segkmem_setprot, 739 segkmem_checkprot, 740 segkmem_kluster, 741 SEGKMEM_BADOP(size_t), /* swapout */ 742 SEGKMEM_BADOP(int), /* sync */ 743 SEGKMEM_BADOP(size_t), /* incore */ 744 SEGKMEM_BADOP(int), /* lockop */ 745 SEGKMEM_BADOP(int), /* getprot */ 746 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 747 SEGKMEM_BADOP(int), /* gettype */ 748 SEGKMEM_BADOP(int), /* getvp */ 749 SEGKMEM_BADOP(int), /* advise */ 750 segkmem_dump, 751 segkmem_pagelock, 752 SEGKMEM_BADOP(int), /* setpgsz */ 753 segkmem_getmemid, 754 segkmem_getpolicy, /* getpolicy */ 755 }; 756 757 int 758 segkmem_create(struct seg *seg) 759 { 760 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 761 seg->s_ops = &segkmem_ops; 762 seg->s_data = NULL; 763 kas.a_size += seg->s_size; 764 return (0); 765 } 766 767 /*ARGSUSED*/ 768 page_t * 769 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 770 { 771 struct seg kseg; 772 int pgflags; 773 774 kseg.s_as = &kas; 775 pgflags = PG_EXCL; 776 777 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 778 pgflags |= PG_NORELOC; 779 if ((vmflag & VM_NOSLEEP) == 0) 780 pgflags |= PG_WAIT; 781 if (vmflag & VM_PANIC) 782 pgflags |= PG_PANIC; 783 if (vmflag & VM_PUSHPAGE) 784 pgflags |= PG_PUSHPAGE; 785 786 return (page_create_va(&kvp, (u_offset_t)(uintptr_t)addr, size, 787 pgflags, &kseg, addr)); 788 } 789 790 /* 791 * Allocate pages to back the virtual address range [addr, addr + size). 792 * If addr is NULL, allocate the virtual address space as well. 793 */ 794 void * 795 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 796 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 797 { 798 page_t *ppl; 799 caddr_t addr = inaddr; 800 pgcnt_t npages = btopr(size); 801 int allocflag; 802 803 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 804 return (NULL); 805 806 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 807 808 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 809 if (inaddr == NULL) 810 vmem_free(vmp, addr, size); 811 return (NULL); 812 } 813 814 ppl = page_create_func(addr, size, vmflag, pcarg); 815 if (ppl == NULL) { 816 if (inaddr == NULL) 817 vmem_free(vmp, addr, size); 818 page_unresv(npages); 819 return (NULL); 820 } 821 822 /* 823 * Under certain conditions, we need to let the HAT layer know 824 * that it cannot safely allocate memory. Allocations from 825 * the hat_memload vmem arena always need this, to prevent 826 * infinite recursion. 827 * 828 * In addition, the x86 hat cannot safely do memory 829 * allocations while in vmem_populate(), because there 830 * is no simple bound on its usage. 831 */ 832 if (vmflag & VM_MEMLOAD) 833 allocflag = HAT_NO_KALLOC; 834 #if defined(__x86) 835 else if (vmem_is_populator()) 836 allocflag = HAT_NO_KALLOC; 837 #endif 838 else 839 allocflag = 0; 840 841 while (ppl != NULL) { 842 page_t *pp = ppl; 843 page_sub(&ppl, pp); 844 ASSERT(page_iolock_assert(pp)); 845 ASSERT(PAGE_EXCL(pp)); 846 page_io_unlock(pp); 847 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 848 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 849 HAT_LOAD_LOCK | allocflag); 850 pp->p_lckcnt = 1; 851 #if defined(__x86) 852 page_downgrade(pp); 853 #else 854 if (vmflag & SEGKMEM_SHARELOCKED) 855 page_downgrade(pp); 856 else 857 page_unlock(pp); 858 #endif 859 } 860 861 return (addr); 862 } 863 864 void * 865 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 866 { 867 void *addr; 868 segkmem_gc_list_t *gcp, **prev_gcpp; 869 870 if (kvseg.s_base == NULL) { 871 #ifndef __sparc 872 if (bootops->bsys_alloc == NULL) 873 halt("Memory allocation between bop_alloc() and " 874 "kmem_alloc().\n"); 875 #endif 876 877 /* 878 * There's not a lot of memory to go around during boot, 879 * so recycle it if we can. 880 */ 881 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 882 prev_gcpp = &gcp->gc_next) { 883 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 884 *prev_gcpp = gcp->gc_next; 885 return (gcp); 886 } 887 } 888 889 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 890 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 891 panic("segkmem_alloc: boot_alloc failed"); 892 return (addr); 893 } 894 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 895 segkmem_page_create, NULL)); 896 } 897 898 /* 899 * Any changes to this routine must also be carried over to 900 * devmap_free_pages() in the seg_dev driver. This is because 901 * we currently don't have a special kernel segment for non-paged 902 * kernel memory that is exported by drivers to user space. 903 */ 904 void 905 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 906 { 907 page_t *pp; 908 caddr_t addr = inaddr; 909 caddr_t eaddr; 910 pgcnt_t npages = btopr(size); 911 912 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 913 914 if (kvseg.s_base == NULL) { 915 segkmem_gc_list_t *gc = inaddr; 916 gc->gc_arena = vmp; 917 gc->gc_size = size; 918 gc->gc_next = segkmem_gc_list; 919 segkmem_gc_list = gc; 920 return; 921 } 922 923 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 924 925 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 926 #if defined(__x86) 927 pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr); 928 if (pp == NULL) 929 panic("segkmem_free: page not found"); 930 if (!page_tryupgrade(pp)) { 931 /* 932 * Some other thread has a sharelock. Wait for 933 * it to drop the lock so we can free this page. 934 */ 935 page_unlock(pp); 936 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, 937 SE_EXCL); 938 } 939 #else 940 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 941 #endif 942 if (pp == NULL) 943 panic("segkmem_free: page not found"); 944 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 945 pp->p_lckcnt = 0; 946 page_destroy(pp, 0); 947 } 948 page_unresv(npages); 949 950 if (vmp != NULL) 951 vmem_free(vmp, inaddr, size); 952 } 953 954 void 955 segkmem_gc(void) 956 { 957 ASSERT(kvseg.s_base != NULL); 958 while (segkmem_gc_list != NULL) { 959 segkmem_gc_list_t *gc = segkmem_gc_list; 960 segkmem_gc_list = gc->gc_next; 961 segkmem_free(gc->gc_arena, gc, gc->gc_size); 962 } 963 } 964 965 /* 966 * Legacy entry points from here to end of file. 967 */ 968 void 969 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 970 pfn_t pfn, uint_t flags) 971 { 972 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 973 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 974 flags | HAT_LOAD_LOCK); 975 } 976 977 void 978 segkmem_mapout(struct seg *seg, void *addr, size_t size) 979 { 980 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 981 } 982 983 void * 984 kmem_getpages(pgcnt_t npages, int kmflag) 985 { 986 return (kmem_alloc(ptob(npages), kmflag)); 987 } 988 989 void 990 kmem_freepages(void *addr, pgcnt_t npages) 991 { 992 kmem_free(addr, ptob(npages)); 993 } 994 995 /* 996 * segkmem_page_create_large() allocates a large page to be used for the kmem 997 * caches. If kpr is enabled we ask for a relocatable page unless requested 998 * otherwise. If kpr is disabled we have to ask for a non-reloc page 999 */ 1000 static page_t * 1001 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1002 { 1003 int pgflags; 1004 1005 pgflags = PG_EXCL; 1006 1007 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1008 pgflags |= PG_NORELOC; 1009 if (!(vmflag & VM_NOSLEEP)) 1010 pgflags |= PG_WAIT; 1011 if (vmflag & VM_PUSHPAGE) 1012 pgflags |= PG_PUSHPAGE; 1013 1014 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1015 pgflags, &kvseg, addr, arg)); 1016 } 1017 1018 /* 1019 * Allocate a large page to back the virtual address range 1020 * [addr, addr + size). If addr is NULL, allocate the virtual address 1021 * space as well. 1022 */ 1023 static void * 1024 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1025 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1026 void *pcarg) 1027 { 1028 caddr_t addr = inaddr, pa; 1029 size_t lpsize = segkmem_lpsize; 1030 pgcnt_t npages = btopr(size); 1031 pgcnt_t nbpages = btop(lpsize); 1032 pgcnt_t nlpages = size >> segkmem_lpshift; 1033 size_t ppasize = nbpages * sizeof (page_t *); 1034 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1035 int i; 1036 1037 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1038 return (NULL); 1039 } 1040 1041 /* 1042 * allocate an array we need for hat_memload_array. 1043 * we use a separate arena to avoid recursion. 1044 * we will not need this array when hat_memload_array learns pp++ 1045 */ 1046 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1047 goto fail_array_alloc; 1048 } 1049 1050 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1051 goto fail_vmem_alloc; 1052 1053 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1054 1055 /* create all the pages */ 1056 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1057 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1058 goto fail_page_create; 1059 page_list_concat(&pplist, &pp); 1060 } 1061 1062 /* at this point we have all the resource to complete the request */ 1063 while ((rootpp = pplist) != NULL) { 1064 for (i = 0; i < nbpages; i++) { 1065 ASSERT(pplist != NULL); 1066 pp = pplist; 1067 page_sub(&pplist, pp); 1068 ASSERT(page_iolock_assert(pp)); 1069 page_io_unlock(pp); 1070 ppa[i] = pp; 1071 } 1072 /* 1073 * Load the locked entry. It's OK to preload the entry into the 1074 * TSB since we now support large mappings in the kernel TSB. 1075 */ 1076 hat_memload_array(kas.a_hat, 1077 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1078 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1079 HAT_LOAD_LOCK); 1080 1081 for (--i; i >= 0; --i) { 1082 ppa[i]->p_lckcnt = 1; 1083 page_unlock(ppa[i]); 1084 } 1085 } 1086 1087 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1088 return (addr); 1089 1090 fail_page_create: 1091 while ((rootpp = pplist) != NULL) { 1092 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1093 ASSERT(pp != NULL); 1094 page_sub(&pplist, pp); 1095 ASSERT(page_iolock_assert(pp)); 1096 page_io_unlock(pp); 1097 } 1098 page_destroy_pages(rootpp); 1099 } 1100 1101 if (inaddr == NULL) 1102 vmem_free(vmp, addr, size); 1103 1104 fail_vmem_alloc: 1105 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1106 1107 fail_array_alloc: 1108 page_unresv(npages); 1109 1110 return (NULL); 1111 } 1112 1113 static void 1114 segkmem_free_one_lp(caddr_t addr, size_t size) 1115 { 1116 page_t *pp, *rootpp = NULL; 1117 pgcnt_t pgs_left = btopr(size); 1118 1119 ASSERT(size == segkmem_lpsize); 1120 1121 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1122 1123 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1124 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1125 if (pp == NULL) 1126 panic("segkmem_free_one_lp: page not found"); 1127 ASSERT(PAGE_EXCL(pp)); 1128 pp->p_lckcnt = 0; 1129 if (rootpp == NULL) 1130 rootpp = pp; 1131 } 1132 ASSERT(rootpp != NULL); 1133 page_destroy_pages(rootpp); 1134 1135 /* page_unresv() is done by the caller */ 1136 } 1137 1138 /* 1139 * This function is called to import new spans into the vmem arenas like 1140 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1141 * spans from large page arena - kmem_lp_arena. In order to do this it might 1142 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1143 * it was not able to satisfy the upgraded request it then calls regular 1144 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1145 */ 1146 void * 1147 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, int vmflag) 1148 { 1149 size_t size; 1150 kthread_t *t = curthread; 1151 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1152 1153 ASSERT(sizep != NULL); 1154 1155 size = *sizep; 1156 1157 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1158 !(vmflag & SEGKMEM_SHARELOCKED)) { 1159 1160 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1161 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1162 void *addr = NULL; 1163 ulong_t *lpthrtp = &lpcb->lp_throttle; 1164 ulong_t lpthrt = *lpthrtp; 1165 int dowakeup = 0; 1166 int doalloc = 1; 1167 1168 ASSERT(kmem_lp_arena != NULL); 1169 ASSERT(asize >= size); 1170 1171 if (lpthrt != 0) { 1172 /* try to update the throttle value */ 1173 lpthrt = atomic_add_long_nv(lpthrtp, 1); 1174 if (lpthrt >= segkmem_lpthrottle_max) { 1175 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1176 segkmem_lpthrottle_max / 4); 1177 } 1178 1179 /* 1180 * when we get above throttle start do an exponential 1181 * backoff at trying large pages and reaping 1182 */ 1183 if (lpthrt > segkmem_lpthrottle_start && 1184 (lpthrt & (lpthrt - 1))) { 1185 lpcb->allocs_throttled++; 1186 lpthrt--; 1187 if ((lpthrt & (lpthrt - 1)) == 0) 1188 kmem_reap(); 1189 return (segkmem_alloc(vmp, size, vmflag)); 1190 } 1191 } 1192 1193 if (!(vmflag & VM_NOSLEEP) && 1194 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1195 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1196 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1197 1198 /* 1199 * we are low on free memory in kmem_lp_arena 1200 * we let only one guy to allocate heap_lp 1201 * quantum size chunk that everybody is going to 1202 * share 1203 */ 1204 mutex_enter(&lpcb->lp_lock); 1205 1206 if (lpcb->lp_wait) { 1207 1208 /* we are not the first one - wait */ 1209 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1210 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1211 kmemlp_qnt) { 1212 doalloc = 0; 1213 } 1214 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1215 kmemlp_qnt) { 1216 1217 /* 1218 * we are the first one, make sure we import 1219 * a large page 1220 */ 1221 if (asize == kmemlp_qnt) 1222 asize += kmemlp_qnt; 1223 dowakeup = 1; 1224 lpcb->lp_wait = 1; 1225 } 1226 1227 mutex_exit(&lpcb->lp_lock); 1228 } 1229 1230 /* 1231 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1232 * large pages are not available. In that case this allocation 1233 * attempt will fail and we will retry allocation with small 1234 * pages. We also do not want to panic if this allocation fails 1235 * because we are going to retry. 1236 */ 1237 if (doalloc) { 1238 addr = vmem_alloc(kmem_lp_arena, asize, 1239 (vmflag | VM_ABORT) & ~VM_PANIC); 1240 1241 if (dowakeup) { 1242 mutex_enter(&lpcb->lp_lock); 1243 ASSERT(lpcb->lp_wait != 0); 1244 lpcb->lp_wait = 0; 1245 cv_broadcast(&lpcb->lp_cv); 1246 mutex_exit(&lpcb->lp_lock); 1247 } 1248 } 1249 1250 if (addr != NULL) { 1251 *sizep = asize; 1252 *lpthrtp = 0; 1253 return (addr); 1254 } 1255 1256 if (vmflag & VM_NOSLEEP) 1257 lpcb->nosleep_allocs_failed++; 1258 else 1259 lpcb->sleep_allocs_failed++; 1260 lpcb->alloc_bytes_failed += size; 1261 1262 /* if large page throttling is not started yet do it */ 1263 if (segkmem_use_lpthrottle && lpthrt == 0) { 1264 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1265 } 1266 } 1267 return (segkmem_alloc(vmp, size, vmflag)); 1268 } 1269 1270 void 1271 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1272 { 1273 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1274 segkmem_free(vmp, inaddr, size); 1275 } else { 1276 vmem_free(kmem_lp_arena, inaddr, size); 1277 } 1278 } 1279 1280 /* 1281 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1282 * into kmem_lp arena. In the process it maps the imported segment with 1283 * large pages 1284 */ 1285 static void * 1286 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1287 { 1288 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1289 void *addr; 1290 1291 ASSERT(size != 0); 1292 ASSERT(vmp == heap_lp_arena); 1293 1294 /* do not allow large page heap grow beyound limits */ 1295 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1296 lpcb->allocs_limited++; 1297 return (NULL); 1298 } 1299 1300 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1301 segkmem_page_create_large, NULL); 1302 return (addr); 1303 } 1304 1305 /* 1306 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1307 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1308 * large pages used to map it. 1309 */ 1310 static void 1311 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1312 { 1313 pgcnt_t nlpages = size >> segkmem_lpshift; 1314 size_t lpsize = segkmem_lpsize; 1315 caddr_t addr = inaddr; 1316 pgcnt_t npages = btopr(size); 1317 int i; 1318 1319 ASSERT(vmp == heap_lp_arena); 1320 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1321 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1322 1323 for (i = 0; i < nlpages; i++) { 1324 segkmem_free_one_lp(addr, lpsize); 1325 addr += lpsize; 1326 } 1327 1328 page_unresv(npages); 1329 1330 vmem_free(vmp, inaddr, size); 1331 } 1332 1333 /* 1334 * This function is called at system boot time by kmem_init right after 1335 * /etc/system file has been read. It checks based on hardware configuration 1336 * and /etc/system settings if system is going to use large pages. The 1337 * initialiazation necessary to actually start using large pages 1338 * happens later in the process after segkmem_heap_lp_init() is called. 1339 */ 1340 int 1341 segkmem_lpsetup() 1342 { 1343 int use_large_pages = 0; 1344 1345 #ifdef __sparc 1346 1347 size_t memtotal = physmem * PAGESIZE; 1348 1349 if (heap_lp_base == NULL) { 1350 segkmem_lpsize = PAGESIZE; 1351 return (0); 1352 } 1353 1354 /* get a platform dependent value of large page size for kernel heap */ 1355 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1356 1357 if (segkmem_lpsize <= PAGESIZE) { 1358 /* 1359 * put virtual space reserved for the large page kernel 1360 * back to the regular heap 1361 */ 1362 vmem_xfree(heap_arena, heap_lp_base, 1363 heap_lp_end - heap_lp_base); 1364 heap_lp_base = NULL; 1365 heap_lp_end = NULL; 1366 segkmem_lpsize = PAGESIZE; 1367 return (0); 1368 } 1369 1370 /* set heap_lp quantum if necessary */ 1371 if (segkmem_heaplp_quantum == 0 || 1372 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1373 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1374 segkmem_heaplp_quantum = segkmem_lpsize; 1375 } 1376 1377 /* set kmem_lp quantum if necessary */ 1378 if (segkmem_kmemlp_quantum == 0 || 1379 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1380 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1381 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1382 } 1383 1384 /* set total amount of memory allowed for large page kernel heap */ 1385 if (segkmem_kmemlp_max == 0) { 1386 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1387 segkmem_kmemlp_pcnt = 12; 1388 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1389 } 1390 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1391 segkmem_heaplp_quantum); 1392 1393 /* fix lp kmem preallocation request if necesssary */ 1394 if (segkmem_kmemlp_min) { 1395 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1396 segkmem_heaplp_quantum); 1397 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1398 segkmem_kmemlp_min = segkmem_kmemlp_max; 1399 } 1400 1401 use_large_pages = 1; 1402 segkmem_lpshift = page_get_shift(page_szc(segkmem_lpsize)); 1403 1404 #endif 1405 return (use_large_pages); 1406 } 1407 1408 #ifdef __sparc 1409 1410 1411 static void * 1412 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1413 { 1414 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1415 void *addr; 1416 1417 if (ppaquantum <= PAGESIZE) 1418 return (segkmem_alloc(vmp, size, vmflag)); 1419 1420 ASSERT((size & (ppaquantum - 1)) == 0); 1421 1422 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1423 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1424 segkmem_page_create, NULL) == NULL) { 1425 vmem_xfree(vmp, addr, size); 1426 addr = NULL; 1427 } 1428 1429 return (addr); 1430 } 1431 1432 static void 1433 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1434 { 1435 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1436 1437 ASSERT(addr != NULL); 1438 1439 if (ppaquantum <= PAGESIZE) { 1440 segkmem_free(vmp, addr, size); 1441 } else { 1442 segkmem_free(NULL, addr, size); 1443 vmem_xfree(vmp, addr, size); 1444 } 1445 } 1446 1447 void 1448 segkmem_heap_lp_init() 1449 { 1450 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1451 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1452 size_t lpsize = segkmem_lpsize; 1453 size_t ppaquantum; 1454 void *addr; 1455 1456 if (segkmem_lpsize <= PAGESIZE) { 1457 ASSERT(heap_lp_base == NULL); 1458 ASSERT(heap_lp_end == NULL); 1459 return; 1460 } 1461 1462 ASSERT(segkmem_heaplp_quantum >= lpsize); 1463 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1464 ASSERT(lpcb->lp_uselp == 0); 1465 ASSERT(heap_lp_base != NULL); 1466 ASSERT(heap_lp_end != NULL); 1467 ASSERT(heap_lp_base < heap_lp_end); 1468 ASSERT(heap_lp_arena == NULL); 1469 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1470 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1471 1472 /* create large page heap arena */ 1473 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1474 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1475 1476 ASSERT(heap_lp_arena != NULL); 1477 1478 /* This arena caches memory already mapped by large pages */ 1479 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1480 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1481 1482 ASSERT(kmem_lp_arena != NULL); 1483 1484 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1485 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1486 1487 /* 1488 * this arena is used for the array of page_t pointers necessary 1489 * to call hat_mem_load_array 1490 */ 1491 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1492 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1493 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1494 VM_SLEEP); 1495 1496 ASSERT(segkmem_ppa_arena != NULL); 1497 1498 /* prealloacate some memory for the lp kernel heap */ 1499 if (segkmem_kmemlp_min) { 1500 1501 ASSERT(P2PHASE(segkmem_kmemlp_min, 1502 segkmem_heaplp_quantum) == 0); 1503 1504 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1505 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1506 1507 addr = vmem_add(kmem_lp_arena, addr, 1508 segkmem_kmemlp_min, VM_SLEEP); 1509 ASSERT(addr != NULL); 1510 } 1511 } 1512 1513 lpcb->lp_uselp = 1; 1514 } 1515 1516 #endif 1517