xref: /titanic_41/usr/src/uts/common/vm/page_retire.c (revision 1ae0874509b6811fdde1dfd46f0d93fd09867a3f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Page Retire - Big Theory Statement.
31  *
32  * This file handles removing sections of faulty memory from use when the
33  * user land FMA Diagnosis Engine requests that a page be removed or when
34  * a CE or UE is detected by the hardware.
35  *
36  * In the bad old days, the kernel side of Page Retire did a lot of the work
37  * on its own. Now, with the DE keeping track of errors, the kernel side is
38  * rather simple minded on most platforms.
39  *
40  * Errors are all reflected to the DE, and after digesting the error and
41  * looking at all previously reported errors, the DE decides what should
42  * be done about the current error. If the DE wants a particular page to
43  * be retired, then the kernel page retire code is invoked via an ioctl.
44  * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling
45  * page retire to handle the error. Since page retire is just a simple
46  * mechanism it doesn't need to differentiate between the different callers.
47  *
48  * The p_toxic field in the page_t is used to indicate which errors have
49  * occurred and what action has been taken on a given page. Because errors are
50  * reported without regard to the locked state of a page, no locks are used
51  * to SET the error bits in p_toxic. However, in order to clear the error
52  * bits, the page_t must be held exclusively locked.
53  *
54  * When page_retire() is called, it must be able to acquire locks, sleep, etc.
55  * It must not be called from high-level interrupt context.
56  *
57  * Depending on how the requested page is being used at the time of the retire
58  * request (and on the availability of sufficient system resources), the page
59  * may be retired immediately, or just marked for retirement later. For
60  * example, locked pages are marked, while free pages are retired. Multiple
61  * requests may be made to retire the same page, although there is no need
62  * to: once the p_toxic flags are set, the page will be retired as soon as it
63  * can be exclusively locked.
64  *
65  * The retire mechanism is driven centrally out of page_unlock(). To expedite
66  * the retirement of pages, further requests for SE_SHARED locks are denied
67  * as long as a page retirement is pending. In addition, as long as pages are
68  * pending retirement a background thread runs periodically trying to retire
69  * those pages. Pages which could not be retired while the system is running
70  * are scrubbed prior to rebooting to avoid latent errors on the next boot.
71  *
72  * UE pages without persistent errors are scrubbed and returned to service.
73  * Recidivist pages, as well as FMA-directed requests for retirement, result
74  * in the page being taken out of service. Once the decision is made to take
75  * a page out of service, the page is cleared, hashed onto the retired_pages
76  * vnode, marked as retired, and it is unlocked.  No other requesters (except
77  * for unretire) are allowed to lock retired pages.
78  *
79  * The public routines return (sadly) 0 if they worked and a non-zero error
80  * value if something went wrong. This is done for the ioctl side of the
81  * world to allow errors to be reflected all the way out to user land. The
82  * non-zero values are explained in comments atop each function.
83  */
84 
85 /*
86  * Things to fix:
87  *
88  * 	1. Cleanup SE_EWANTED.  Since we're aggressive about trying to retire
89  *	pages, we can use page_retire_pp() to replace SE_EWANTED and all
90  *	the special delete_memory_thread() code just goes away.
91  *
92  * 	2. Trying to retire non-relocatable kvp pages may result in a
93  *      quagmire. This is because seg_kmem() no longer keeps its pages locked,
94  *      and calls page_lookup() in the free path; since kvp pages are modified
95  *      and don't have a usable backing store, page_retire() can't do anything
96  *      with them, and we'll keep denying the lock to seg_kmem_free() in a
97  *      vicious cycle. To prevent that, we don't deny locks to kvp pages, and
98  *      hence only call page_retire_pp() from page_unlock() in the free path.
99  *      Since most kernel pages are indefinitely held anyway, and don't
100  *      participate in I/O, this is of little consequence.
101  *
102  *      3. Low memory situations will be interesting. If we don't have
103  *      enough memory for page_relocate() to succeed, we won't be able to
104  *      retire dirty pages; nobody will be able to push them out to disk
105  *      either, since we aggressively deny the page lock. We could change
106  *      fsflush so it can recognize this situation, grab the lock, and push
107  *      the page out, where we'll catch it in the free path and retire it.
108  *
109  *	4. Beware of places that have code like this in them:
110  *
111  *		if (! page_tryupgrade(pp)) {
112  *			page_unlock(pp);
113  *			while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) {
114  *				/ *NOTHING* /
115  *			}
116  *		}
117  *		page_free(pp);
118  *
119  *	The problem is that pp can change identity right after the
120  *	page_unlock() call.  In particular, page_retire() can step in
121  *	there, change pp's identity, and hash pp onto the retired_vnode.
122  *
123  *	Of course, other functions besides page_retire() can have the
124  *	same effect. A kmem reader can waltz by, set up a mapping to the
125  *	page, and then unlock the page. Page_free() will then go castors
126  *	up. So if anybody is doing this, it's already a bug.
127  *
128  *      5. mdboot()'s call into page_retire_hunt() should probably be
129  *      moved lower. Where the call is made now, we can get into trouble
130  *      by scrubbing a kernel page that is then accessed later.
131  */
132 
133 #include <sys/types.h>
134 #include <sys/param.h>
135 #include <sys/systm.h>
136 #include <sys/mman.h>
137 #include <sys/vnode.h>
138 #include <sys/cmn_err.h>
139 #include <sys/ksynch.h>
140 #include <sys/thread.h>
141 #include <sys/disp.h>
142 #include <sys/ontrap.h>
143 #include <sys/vmsystm.h>
144 #include <sys/mem_config.h>
145 #include <sys/atomic.h>
146 #include <sys/callb.h>
147 #include <vm/page.h>
148 #include <vm/vm_dep.h>
149 #include <vm/as.h>
150 #include <vm/hat.h>
151 
152 /*
153  * vnode for all pages which are retired from the VM system;
154  */
155 vnode_t *retired_pages;
156 
157 /*
158  * Background thread that wakes up periodically to try to retire pending
159  * pages. This prevents threads from becoming blocked indefinitely in
160  * page_lookup() or some other routine should the page(s) they are waiting
161  * on become eligible for social security.
162  */
163 static void page_retire_thread(void);
164 static kthread_t *pr_thread_id;
165 static kcondvar_t pr_cv;
166 static kmutex_t pr_thread_mutex;
167 static clock_t pr_thread_shortwait;
168 static clock_t pr_thread_longwait;
169 
170 /*
171  * Make a list of all of the pages that have been marked for retirement
172  * but are not yet retired.  At system shutdown, we will scrub all of the
173  * pages in the list in case there are outstanding UEs.  Then, we
174  * cross-check this list against the number of pages that are yet to be
175  * retired, and if we find inconsistencies, we scan every page_t in the
176  * whole system looking for any pages that need to be scrubbed for UEs.
177  * The background thread also uses this queue to determine which pages
178  * it should keep trying to retire.
179  */
180 #ifdef	DEBUG
181 #define	PR_PENDING_QMAX	32
182 #else	/* DEBUG */
183 #define	PR_PENDING_QMAX	256
184 #endif	/* DEBUG */
185 page_t		*pr_pending_q[PR_PENDING_QMAX];
186 kmutex_t	pr_q_mutex;
187 
188 /*
189  * Page retire global kstats
190  */
191 struct page_retire_kstat {
192 	kstat_named_t	pr_retired;
193 	kstat_named_t	pr_requested;
194 	kstat_named_t	pr_requested_free;
195 	kstat_named_t	pr_enqueue_fail;
196 	kstat_named_t	pr_dequeue_fail;
197 	kstat_named_t	pr_pending;
198 	kstat_named_t	pr_failed;
199 	kstat_named_t	pr_failed_kernel;
200 	kstat_named_t	pr_limit;
201 	kstat_named_t	pr_limit_exceeded;
202 	kstat_named_t	pr_fma;
203 	kstat_named_t	pr_mce;
204 	kstat_named_t	pr_ue;
205 	kstat_named_t	pr_ue_cleared_retire;
206 	kstat_named_t	pr_ue_cleared_free;
207 	kstat_named_t	pr_ue_persistent;
208 	kstat_named_t	pr_unretired;
209 };
210 
211 static struct page_retire_kstat page_retire_kstat = {
212 	{ "pages_retired",		KSTAT_DATA_UINT64},
213 	{ "pages_retire_request",	KSTAT_DATA_UINT64},
214 	{ "pages_retire_request_free",	KSTAT_DATA_UINT64},
215 	{ "pages_notenqueued", 		KSTAT_DATA_UINT64},
216 	{ "pages_notdequeued", 		KSTAT_DATA_UINT64},
217 	{ "pages_pending", 		KSTAT_DATA_UINT64},
218 	{ "pages_deferred",		KSTAT_DATA_UINT64},
219 	{ "pages_deferred_kernel",	KSTAT_DATA_UINT64},
220 	{ "pages_limit",		KSTAT_DATA_UINT64},
221 	{ "pages_limit_exceeded",	KSTAT_DATA_UINT64},
222 	{ "pages_fma",			KSTAT_DATA_UINT64},
223 	{ "pages_multiple_ce",		KSTAT_DATA_UINT64},
224 	{ "pages_ue",			KSTAT_DATA_UINT64},
225 	{ "pages_ue_cleared_retired",	KSTAT_DATA_UINT64},
226 	{ "pages_ue_cleared_freed",	KSTAT_DATA_UINT64},
227 	{ "pages_ue_persistent",	KSTAT_DATA_UINT64},
228 	{ "pages_unretired",		KSTAT_DATA_UINT64},
229 };
230 
231 static kstat_t  *page_retire_ksp = NULL;
232 
233 #define	PR_INCR_KSTAT(stat)	\
234 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1)
235 #define	PR_DECR_KSTAT(stat)	\
236 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1)
237 
238 #define	PR_KSTAT_RETIRED_CE	(page_retire_kstat.pr_mce.value.ui64)
239 #define	PR_KSTAT_RETIRED_FMA	(page_retire_kstat.pr_fma.value.ui64)
240 #define	PR_KSTAT_RETIRED_NOTUE	(PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA)
241 #define	PR_KSTAT_PENDING	(page_retire_kstat.pr_pending.value.ui64)
242 #define	PR_KSTAT_EQFAIL		(page_retire_kstat.pr_enqueue_fail.value.ui64)
243 #define	PR_KSTAT_DQFAIL		(page_retire_kstat.pr_dequeue_fail.value.ui64)
244 
245 /*
246  * Limit the number of multiple CE page retires.
247  * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in
248  * basis points, where 100 basis points equals one percent.
249  */
250 #define	MCE_BPT	10
251 uint64_t	max_pages_retired_bps = MCE_BPT;
252 #define	PAGE_RETIRE_LIMIT	((physmem * max_pages_retired_bps) / 10000)
253 
254 /*
255  * Control over the verbosity of page retirement.
256  *
257  * When set to zero (the default), no messages will be printed.
258  * When set to one, summary messages will be printed.
259  * When set > one, all messages will be printed.
260  *
261  * A value of one will trigger detailed messages for retirement operations,
262  * and is intended as a platform tunable for processors where FMA's DE does
263  * not run (e.g., spitfire). Values > one are intended for debugging only.
264  */
265 int page_retire_messages = 0;
266 
267 /*
268  * Control whether or not we return scrubbed UE pages to service.
269  * By default we do not since FMA wants to run its diagnostics first
270  * and then ask us to unretire the page if it passes. Non-FMA platforms
271  * may set this to zero so we will only retire recidivist pages. It should
272  * not be changed by the user.
273  */
274 int page_retire_first_ue = 1;
275 
276 /*
277  * Master enable for page retire. This prevents a CE or UE early in boot
278  * from trying to retire a page before page_retire_init() has finished
279  * setting things up. This is internal only and is not a tunable!
280  */
281 static int pr_enable = 0;
282 
283 extern struct vnode kvp;
284 
285 #ifdef	DEBUG
286 struct page_retire_debug {
287 	int prd_dup1;
288 	int prd_dup2;
289 	int prd_qdup;
290 	int prd_noaction;
291 	int prd_queued;
292 	int prd_notqueued;
293 	int prd_dequeue;
294 	int prd_top;
295 	int prd_locked;
296 	int prd_reloc;
297 	int prd_relocfail;
298 	int prd_mod;
299 	int prd_mod_late;
300 	int prd_kern;
301 	int prd_free;
302 	int prd_noreclaim;
303 	int prd_hashout;
304 	int prd_fma;
305 	int prd_uescrubbed;
306 	int prd_uenotscrubbed;
307 	int prd_mce;
308 	int prd_prlocked;
309 	int prd_prnotlocked;
310 	int prd_prretired;
311 	int prd_ulocked;
312 	int prd_unotretired;
313 	int prd_udestroy;
314 	int prd_uhashout;
315 	int prd_uunretired;
316 	int prd_unotlocked;
317 	int prd_checkhit;
318 	int prd_checkmiss_pend;
319 	int prd_checkmiss_noerr;
320 	int prd_tctop;
321 	int prd_tclocked;
322 	int prd_hunt;
323 	int prd_dohunt;
324 	int prd_earlyhunt;
325 	int prd_latehunt;
326 	int prd_nofreedemote;
327 	int prd_nodemote;
328 	int prd_demoted;
329 } pr_debug;
330 
331 #define	PR_DEBUG(foo)	((pr_debug.foo)++)
332 
333 /*
334  * A type histogram. We record the incidence of the various toxic
335  * flag combinations along with the interesting page attributes. The
336  * goal is to get as many combinations as we can while driving all
337  * pr_debug values nonzero (indicating we've exercised all possible
338  * code paths across all possible page types). Not all combinations
339  * will make sense -- e.g. PRT_MOD|PRT_KERNEL.
340  *
341  * pr_type offset bit encoding (when examining with a debugger):
342  *
343  *    PRT_NAMED  - 0x4
344  *    PRT_KERNEL - 0x8
345  *    PRT_FREE   - 0x10
346  *    PRT_MOD    - 0x20
347  *    PRT_FMA    - 0x0
348  *    PRT_MCE    - 0x40
349  *    PRT_UE     - 0x80
350  */
351 
352 #define	PRT_NAMED	0x01
353 #define	PRT_KERNEL	0x02
354 #define	PRT_FREE	0x04
355 #define	PRT_MOD		0x08
356 #define	PRT_FMA		0x00	/* yes, this is not a mistake */
357 #define	PRT_MCE		0x10
358 #define	PRT_UE		0x20
359 #define	PRT_ALL		0x3F
360 
361 int pr_types[PRT_ALL+1];
362 
363 #define	PR_TYPES(pp)	{			\
364 	int whichtype = 0;			\
365 	if (pp->p_vnode)			\
366 		whichtype |= PRT_NAMED;		\
367 	if (PP_ISKVP(pp))			\
368 		whichtype |= PRT_KERNEL;	\
369 	if (PP_ISFREE(pp))			\
370 		whichtype |= PRT_FREE;		\
371 	if (hat_ismod(pp))			\
372 		whichtype |= PRT_MOD;		\
373 	if (pp->p_toxic & PR_UE)		\
374 		whichtype |= PRT_UE;		\
375 	if (pp->p_toxic & PR_MCE)		\
376 		whichtype |= PRT_MCE;		\
377 	pr_types[whichtype]++;			\
378 }
379 
380 int recl_calls;
381 int recl_mtbf = 3;
382 int reloc_calls;
383 int reloc_mtbf = 7;
384 int pr_calls;
385 int pr_mtbf = 15;
386 
387 #define	MTBF(v, f)	(((++(v)) & (f)) != (f))
388 
389 #else	/* DEBUG */
390 
391 #define	PR_DEBUG(foo)	/* nothing */
392 #define	PR_TYPES(foo)	/* nothing */
393 #define	MTBF(v, f)	(1)
394 
395 #endif	/* DEBUG */
396 
397 /*
398  * page_retire_done() - completion processing
399  *
400  * Used by the page_retire code for common completion processing.
401  * It keeps track of how many times a given result has happened,
402  * and writes out an occasional message.
403  *
404  * May be called with a NULL pp (PRD_INVALID_PA case).
405  */
406 #define	PRD_INVALID_KEY		-1
407 #define	PRD_SUCCESS		0
408 #define	PRD_PENDING		1
409 #define	PRD_FAILED		2
410 #define	PRD_DUPLICATE		3
411 #define	PRD_INVALID_PA		4
412 #define	PRD_LIMIT		5
413 #define	PRD_UE_SCRUBBED		6
414 #define	PRD_UNR_SUCCESS		7
415 #define	PRD_UNR_CANTLOCK	8
416 #define	PRD_UNR_NOT		9
417 
418 typedef struct page_retire_op {
419 	int	pr_key;		/* one of the PRD_* defines from above */
420 	int	pr_count;	/* How many times this has happened */
421 	int	pr_retval;	/* return value */
422 	int	pr_msglvl;	/* message level - when to print */
423 	char	*pr_message;	/* Cryptic message for field service */
424 } page_retire_op_t;
425 
426 static page_retire_op_t page_retire_ops[] = {
427 	/* key			count	retval	msglvl	message */
428 	{PRD_SUCCESS,		0,	0,	1,
429 		"Page 0x%08x.%08x removed from service"},
430 	{PRD_PENDING,		0,	EAGAIN,	2,
431 		"Page 0x%08x.%08x will be retired on free"},
432 	{PRD_FAILED,		0,	EAGAIN,	0, NULL},
433 	{PRD_DUPLICATE,		0,	EIO,	2,
434 		"Page 0x%08x.%08x already retired or pending"},
435 	{PRD_INVALID_PA,	0,	EINVAL, 2,
436 		"PA 0x%08x.%08x is not a relocatable page"},
437 	{PRD_LIMIT,		0,	0,	1,
438 		"Page 0x%08x.%08x not retired due to limit exceeded"},
439 	{PRD_UE_SCRUBBED,	0,	0,	1,
440 		"Previously reported error on page 0x%08x.%08x cleared"},
441 	{PRD_UNR_SUCCESS,	0,	0,	1,
442 		"Page 0x%08x.%08x returned to service"},
443 	{PRD_UNR_CANTLOCK,	0,	EAGAIN,	2,
444 		"Page 0x%08x.%08x could not be unretired"},
445 	{PRD_UNR_NOT,		0,	EIO,	2,
446 		"Page 0x%08x.%08x is not retired"},
447 	{PRD_INVALID_KEY,	0,	0,	0, NULL} /* MUST BE LAST! */
448 };
449 
450 /*
451  * print a message if page_retire_messages is true.
452  */
453 #define	PR_MESSAGE(debuglvl, msglvl, msg, pa)				\
454 {									\
455 	uint64_t p = (uint64_t)pa;					\
456 	if (page_retire_messages >= msglvl && msg != NULL) {		\
457 		cmn_err(debuglvl, msg,					\
458 		    (uint32_t)(p >> 32), (uint32_t)p);			\
459 	}								\
460 }
461 
462 /*
463  * Note that multiple bits may be set in a single settoxic operation.
464  * May be called without the page locked.
465  */
466 void
467 page_settoxic(page_t *pp, uchar_t bits)
468 {
469 	atomic_or_8(&pp->p_toxic, bits);
470 }
471 
472 /*
473  * Note that multiple bits may cleared in a single clrtoxic operation.
474  * Must be called with the page exclusively locked to prevent races which
475  * may attempt to retire a page without any toxic bits set.
476  */
477 void
478 page_clrtoxic(page_t *pp, uchar_t bits)
479 {
480 	ASSERT(PAGE_EXCL(pp));
481 	atomic_and_8(&pp->p_toxic, ~bits);
482 }
483 
484 /*
485  * Prints any page retire messages to the user, and decides what
486  * error code is appropriate for the condition reported.
487  */
488 static int
489 page_retire_done(page_t *pp, int code)
490 {
491 	page_retire_op_t *prop;
492 	uint64_t	pa = 0;
493 	int		i;
494 
495 	if (pp != NULL) {
496 		pa = mmu_ptob((uint64_t)pp->p_pagenum);
497 	}
498 
499 	prop = NULL;
500 	for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) {
501 		if (page_retire_ops[i].pr_key == code) {
502 			prop = &page_retire_ops[i];
503 			break;
504 		}
505 	}
506 
507 #ifdef	DEBUG
508 	if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) {
509 		cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code);
510 	}
511 #endif
512 
513 	ASSERT(prop->pr_key == code);
514 
515 	prop->pr_count++;
516 
517 	PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa);
518 	if (pp != NULL) {
519 		page_settoxic(pp, PR_MSG);
520 	}
521 
522 	return (prop->pr_retval);
523 }
524 
525 /*
526  * On a reboot, our friend mdboot() wants to clear up any PP_PR_REQ() pages
527  * that we were not able to retire. On large machines, walking the complete
528  * page_t array and looking at every page_t takes too long. So, as a page is
529  * marked toxic, we track it using a list that can be processed at reboot
530  * time.  page_retire_enqueue() will do its best to try to avoid duplicate
531  * entries, but if we get too many errors at once the queue can overflow,
532  * in which case we will end up walking every page_t as a last resort.
533  * The background thread also makes use of this queue to find which pages
534  * are pending retirement.
535  */
536 static void
537 page_retire_enqueue(page_t *pp)
538 {
539 	int	nslot = -1;
540 	int	i;
541 
542 	mutex_enter(&pr_q_mutex);
543 
544 	/*
545 	 * Check to make sure retire hasn't already dequeued it.
546 	 * In the meantime if the page was cleaned up, no need
547 	 * to enqueue it.
548 	 */
549 	if (PP_RETIRED(pp) || pp->p_toxic == 0) {
550 		mutex_exit(&pr_q_mutex);
551 		PR_DEBUG(prd_noaction);
552 		return;
553 	}
554 
555 	for (i = 0; i < PR_PENDING_QMAX; i++) {
556 		if (pr_pending_q[i] == pp) {
557 			mutex_exit(&pr_q_mutex);
558 			PR_DEBUG(prd_qdup);
559 			return;
560 		} else if (nslot == -1 && pr_pending_q[i] == NULL) {
561 			nslot = i;
562 		}
563 	}
564 
565 	PR_INCR_KSTAT(pr_pending);
566 
567 	if (nslot != -1) {
568 		pr_pending_q[nslot] = pp;
569 		PR_DEBUG(prd_queued);
570 	} else {
571 		PR_INCR_KSTAT(pr_enqueue_fail);
572 		PR_DEBUG(prd_notqueued);
573 	}
574 	mutex_exit(&pr_q_mutex);
575 }
576 
577 static void
578 page_retire_dequeue(page_t *pp)
579 {
580 	int i;
581 
582 	mutex_enter(&pr_q_mutex);
583 
584 	for (i = 0; i < PR_PENDING_QMAX; i++) {
585 		if (pr_pending_q[i] == pp) {
586 			pr_pending_q[i] = NULL;
587 			break;
588 		}
589 	}
590 
591 	if (i == PR_PENDING_QMAX) {
592 		PR_INCR_KSTAT(pr_dequeue_fail);
593 	}
594 
595 	PR_DECR_KSTAT(pr_pending);
596 	PR_DEBUG(prd_dequeue);
597 
598 	mutex_exit(&pr_q_mutex);
599 }
600 
601 /*
602  * Act like page_destroy(), but instead of freeing the page, hash it onto
603  * the retired_pages vnode, and mark it retired.
604  *
605  * For fun, we try to scrub the page until it's squeaky clean.
606  * availrmem is adjusted here.
607  */
608 static void
609 page_retire_destroy(page_t *pp)
610 {
611 	u_offset_t off = (u_offset_t)((uintptr_t)pp);
612 
613 	ASSERT(PAGE_EXCL(pp));
614 	ASSERT(!PP_ISFREE(pp));
615 	ASSERT(pp->p_szc == 0);
616 	ASSERT(!hat_page_is_mapped(pp));
617 	ASSERT(!pp->p_vnode);
618 
619 	page_clr_all_props(pp);
620 	pagescrub(pp, 0, MMU_PAGESIZE);
621 
622 	pp->p_next = NULL;
623 	pp->p_prev = NULL;
624 	if (page_hashin(pp, retired_pages, off, NULL) == 0) {
625 		cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp);
626 	}
627 
628 	page_settoxic(pp, PR_RETIRED);
629 	page_clrtoxic(pp, PR_BUSY);
630 	page_retire_dequeue(pp);
631 	PR_INCR_KSTAT(pr_retired);
632 
633 	if (pp->p_toxic & PR_FMA) {
634 		PR_INCR_KSTAT(pr_fma);
635 	} else if (pp->p_toxic & PR_UE) {
636 		PR_INCR_KSTAT(pr_ue);
637 	} else {
638 		PR_INCR_KSTAT(pr_mce);
639 	}
640 
641 	mutex_enter(&freemem_lock);
642 	availrmem--;
643 	mutex_exit(&freemem_lock);
644 
645 	page_unlock(pp);
646 }
647 
648 /*
649  * Check whether the number of pages which have been retired already exceeds
650  * the maximum allowable percentage of memory which may be retired.
651  *
652  * Returns 1 if the limit has been exceeded.
653  */
654 static int
655 page_retire_limit(void)
656 {
657 	if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) {
658 		PR_INCR_KSTAT(pr_limit_exceeded);
659 		return (1);
660 	}
661 
662 	return (0);
663 }
664 
665 #define	MSG_DM	"Data Mismatch occurred at PA 0x%08x.%08x"		\
666 	"[ 0x%x != 0x%x ] while attempting to clear previously "	\
667 	"reported error; page removed from service"
668 
669 #define	MSG_UE	"Uncorrectable Error occurred at PA 0x%08x.%08x while "	\
670 	"attempting to clear previously reported error; page removed "	\
671 	"from service"
672 
673 /*
674  * Attempt to clear a UE from a page.
675  * Returns 1 if the error has been successfully cleared.
676  */
677 static int
678 page_clear_transient_ue(page_t *pp)
679 {
680 	caddr_t		kaddr;
681 	uint8_t		rb, wb;
682 	uint64_t	pa;
683 	uint32_t	pa_hi, pa_lo;
684 	on_trap_data_t	otd;
685 	int		errors = 0;
686 	int		i;
687 
688 	ASSERT(PAGE_EXCL(pp));
689 	ASSERT(PP_PR_REQ(pp));
690 	ASSERT(pp->p_szc == 0);
691 	ASSERT(!hat_page_is_mapped(pp));
692 
693 	/*
694 	 * Clear the page and attempt to clear the UE.  If we trap
695 	 * on the next access to the page, we know the UE has recurred.
696 	 */
697 	pagescrub(pp, 0, PAGESIZE);
698 
699 	/*
700 	 * Map the page and write a bunch of bit patterns to compare
701 	 * what we wrote with what we read back.  This isn't a perfect
702 	 * test but it should be good enough to catch most of the
703 	 * recurring UEs. If this fails to catch a recurrent UE, we'll
704 	 * retire the page the next time we see a UE on the page.
705 	 */
706 	kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1);
707 
708 	pa = ptob((uint64_t)page_pptonum(pp));
709 	pa_hi = (uint32_t)(pa >> 32);
710 	pa_lo = (uint32_t)pa;
711 
712 	/*
713 	 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing
714 	 * the cache in between reading and writing.  We do this under
715 	 * on_trap() protection to avoid recursion.
716 	 */
717 	if (on_trap(&otd, OT_DATA_EC)) {
718 		PR_MESSAGE(CE_WARN, 1, MSG_UE, pa);
719 		errors = 1;
720 	} else {
721 		for (wb = 0xff; wb > 0; wb--) {
722 			for (i = 0; i < PAGESIZE; i++) {
723 				kaddr[i] = wb;
724 			}
725 
726 			sync_data_memory(kaddr, PAGESIZE);
727 
728 			for (i = 0; i < PAGESIZE; i++) {
729 				rb = kaddr[i];
730 				if (rb != wb) {
731 					/*
732 					 * We had a mismatch without a trap.
733 					 * Uh-oh. Something is really wrong
734 					 * with this system.
735 					 */
736 					if (page_retire_messages) {
737 						cmn_err(CE_WARN, MSG_DM,
738 						    pa_hi, pa_lo, rb, wb);
739 					}
740 					errors = 1;
741 					goto out;	/* double break */
742 				}
743 			}
744 		}
745 	}
746 out:
747 	no_trap();
748 	ppmapout(kaddr);
749 
750 	return (errors ? 0 : 1);
751 }
752 
753 /*
754  * Try to clear a page_t with a single UE. If the UE was transient, it is
755  * returned to service, and we return 1. Otherwise we return 0 meaning
756  * that further processing is required to retire the page.
757  */
758 static int
759 page_retire_transient_ue(page_t *pp)
760 {
761 	ASSERT(PAGE_EXCL(pp));
762 	ASSERT(!hat_page_is_mapped(pp));
763 
764 	/*
765 	 * If this page is a repeat offender, retire him under the
766 	 * "two strikes and you're out" rule. The caller is responsible
767 	 * for scrubbing the page to try to clear the error.
768 	 */
769 	if (pp->p_toxic & PR_UE_SCRUBBED) {
770 		PR_INCR_KSTAT(pr_ue_persistent);
771 		return (0);
772 	}
773 
774 	if (page_clear_transient_ue(pp)) {
775 		/*
776 		 * We set the PR_SCRUBBED_UE bit; if we ever see this
777 		 * page again, we will retire it, no questions asked.
778 		 */
779 		page_settoxic(pp, PR_UE_SCRUBBED);
780 
781 		if (page_retire_first_ue) {
782 			PR_INCR_KSTAT(pr_ue_cleared_retire);
783 			return (0);
784 		} else {
785 			PR_INCR_KSTAT(pr_ue_cleared_free);
786 
787 			page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG | PR_BUSY);
788 			page_retire_dequeue(pp);
789 
790 			/* LINTED: CONSTCOND */
791 			VN_DISPOSE(pp, B_FREE, 1, kcred);
792 			return (1);
793 		}
794 	}
795 
796 	PR_INCR_KSTAT(pr_ue_persistent);
797 	return (0);
798 }
799 
800 /*
801  * Update the statistics dynamically when our kstat is read.
802  */
803 static int
804 page_retire_kstat_update(kstat_t *ksp, int rw)
805 {
806 	struct page_retire_kstat *pr;
807 
808 	if (ksp == NULL)
809 	    return (EINVAL);
810 
811 	switch (rw) {
812 
813 	case KSTAT_READ:
814 		pr = (struct page_retire_kstat *)ksp->ks_data;
815 		ASSERT(pr == &page_retire_kstat);
816 		pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT;
817 		return (0);
818 
819 	case KSTAT_WRITE:
820 		return (EACCES);
821 
822 	default:
823 		return (EINVAL);
824 	}
825 	/*NOTREACHED*/
826 }
827 
828 /*
829  * Initialize the page retire mechanism:
830  *
831  *   - Establish the correctable error retire limit.
832  *   - Initialize locks.
833  *   - Build the retired_pages vnode.
834  *   - Set up the kstats.
835  *   - Fire off the background thread.
836  *   - Tell page_tryretire() it's OK to start retiring pages.
837  */
838 void
839 page_retire_init(void)
840 {
841 	const fs_operation_def_t retired_vnodeops_template[] = {NULL, NULL};
842 	struct vnodeops *vops;
843 
844 	const uint_t page_retire_ndata =
845 	    sizeof (page_retire_kstat) / sizeof (kstat_named_t);
846 
847 	ASSERT(page_retire_ksp == NULL);
848 
849 	if (max_pages_retired_bps <= 0) {
850 		max_pages_retired_bps = MCE_BPT;
851 	}
852 
853 	mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL);
854 
855 	retired_pages = vn_alloc(KM_SLEEP);
856 	if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) {
857 		cmn_err(CE_PANIC,
858 		    "page_retired_init: can't make retired vnodeops");
859 	}
860 	vn_setops(retired_pages, vops);
861 
862 	if ((page_retire_ksp = kstat_create("unix", 0, "page_retire",
863 	    "misc", KSTAT_TYPE_NAMED, page_retire_ndata,
864 	    KSTAT_FLAG_VIRTUAL)) == NULL) {
865 		cmn_err(CE_WARN, "kstat_create for page_retire failed");
866 	} else {
867 		page_retire_ksp->ks_data = (void *)&page_retire_kstat;
868 		page_retire_ksp->ks_update = page_retire_kstat_update;
869 		kstat_install(page_retire_ksp);
870 	}
871 
872 	pr_thread_shortwait = 23 * hz;
873 	pr_thread_longwait = 1201 * hz;
874 	mutex_init(&pr_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
875 	cv_init(&pr_cv, NULL, CV_DEFAULT, NULL);
876 	pr_thread_id = thread_create(NULL, 0, page_retire_thread, NULL, 0, &p0,
877 	    TS_RUN, minclsyspri);
878 
879 	pr_enable = 1;
880 }
881 
882 /*
883  * page_retire_hunt() callback for the retire thread.
884  */
885 static void
886 page_retire_thread_cb(page_t *pp)
887 {
888 	PR_DEBUG(prd_tctop);
889 	if (!PP_ISKVP(pp) && page_trylock(pp, SE_EXCL)) {
890 		PR_DEBUG(prd_tclocked);
891 		page_unlock(pp);
892 	}
893 }
894 
895 /*
896  * page_retire_hunt() callback for mdboot().
897  *
898  * It is necessary to scrub any failing pages prior to reboot in order to
899  * prevent a latent error trap from occurring on the next boot.
900  */
901 void
902 page_retire_mdboot_cb(page_t *pp)
903 {
904 	/*
905 	 * Don't scrub the kernel, since we might still need it, unless
906 	 * we have UEs on the page, in which case we have nothing to lose.
907 	 */
908 	if (!PP_ISKVP(pp) || PP_TOXIC(pp)) {
909 		pp->p_selock = -1;	/* pacify ASSERTs */
910 		PP_CLRFREE(pp);
911 		pagescrub(pp, 0, PAGESIZE);
912 		pp->p_selock = 0;
913 	}
914 	pp->p_toxic = 0;
915 }
916 
917 /*
918  * Hunt down any pages in the system that have not yet been retired, invoking
919  * the provided callback function on each of them.
920  */
921 void
922 page_retire_hunt(void (*callback)(page_t *))
923 {
924 	page_t *pp;
925 	page_t *first;
926 	uint64_t tbr, found;
927 	int i;
928 
929 	PR_DEBUG(prd_hunt);
930 
931 	if (PR_KSTAT_PENDING == 0) {
932 		return;
933 	}
934 
935 	PR_DEBUG(prd_dohunt);
936 
937 	found = 0;
938 	mutex_enter(&pr_q_mutex);
939 
940 	tbr = PR_KSTAT_PENDING;
941 
942 	for (i = 0; i < PR_PENDING_QMAX; i++) {
943 		if ((pp = pr_pending_q[i]) != NULL) {
944 			mutex_exit(&pr_q_mutex);
945 			callback(pp);
946 			mutex_enter(&pr_q_mutex);
947 			found++;
948 		}
949 	}
950 
951 	if (PR_KSTAT_EQFAIL == PR_KSTAT_DQFAIL && found == tbr) {
952 		mutex_exit(&pr_q_mutex);
953 		PR_DEBUG(prd_earlyhunt);
954 		return;
955 	}
956 	mutex_exit(&pr_q_mutex);
957 
958 	PR_DEBUG(prd_latehunt);
959 
960 	/*
961 	 * We've lost track of a page somewhere. Hunt it down.
962 	 */
963 	memsegs_lock(0);
964 	pp = first = page_first();
965 	do {
966 		if (PP_PR_REQ(pp)) {
967 			callback(pp);
968 			if (++found == tbr) {
969 				break;	/* got 'em all */
970 			}
971 		}
972 	} while ((pp = page_next(pp)) != first);
973 	memsegs_unlock(0);
974 }
975 
976 /*
977  * The page_retire_thread loops forever, looking to see if there are
978  * pages still waiting to be retired.
979  */
980 static void
981 page_retire_thread(void)
982 {
983 	callb_cpr_t c;
984 
985 	CALLB_CPR_INIT(&c, &pr_thread_mutex, callb_generic_cpr, "page_retire");
986 
987 	mutex_enter(&pr_thread_mutex);
988 	for (;;) {
989 		if (pr_enable && PR_KSTAT_PENDING) {
990 			/*
991 			 * Sigh. It's SO broken how we have to try to shake
992 			 * loose the holder of the page. Since we have no
993 			 * idea who or what has it locked, we go bang on
994 			 * every door in the city to try to locate it.
995 			 */
996 			kmem_reap();
997 			seg_preap();
998 			page_retire_hunt(page_retire_thread_cb);
999 			CALLB_CPR_SAFE_BEGIN(&c);
1000 			(void) cv_timedwait(&pr_cv, &pr_thread_mutex,
1001 			    lbolt + pr_thread_shortwait);
1002 			CALLB_CPR_SAFE_END(&c, &pr_thread_mutex);
1003 		} else {
1004 			CALLB_CPR_SAFE_BEGIN(&c);
1005 			(void) cv_timedwait(&pr_cv, &pr_thread_mutex,
1006 			    lbolt + pr_thread_longwait);
1007 			CALLB_CPR_SAFE_END(&c, &pr_thread_mutex);
1008 		}
1009 	}
1010 	/*NOTREACHED*/
1011 }
1012 
1013 /*
1014  * page_retire_pp() decides what to do with a failing page.
1015  *
1016  * When we get a free page (e.g. the scrubber or in the free path) life is
1017  * nice because the page is clean and marked free -- those always retire
1018  * nicely. From there we go by order of difficulty. If the page has data,
1019  * we attempt to relocate its contents to a suitable replacement page. If
1020  * that does not succeed, we look to see if it is clean. If after all of
1021  * this we have a clean, unmapped page (which we usually do!), we retire it.
1022  * If the page is not clean, we still process it regardless on a UE; for
1023  * CEs or FMA requests, we fail leaving the page in service. The page will
1024  * eventually be tried again later. We always return with the page unlocked
1025  * since we are called from page_unlock().
1026  *
1027  * We don't call panic or do anything fancy down in here. Our boss the DE
1028  * gets paid handsomely to do his job of figuring out what to do when errors
1029  * occur. We just do what he tells us to do.
1030  */
1031 static int
1032 page_retire_pp(page_t *pp)
1033 {
1034 	int		toxic;
1035 
1036 	ASSERT(PAGE_EXCL(pp));
1037 	ASSERT(pp->p_iolock_state == 0);
1038 	ASSERT(pp->p_szc == 0);
1039 
1040 	PR_DEBUG(prd_top);
1041 	PR_TYPES(pp);
1042 
1043 	toxic = pp->p_toxic;
1044 	ASSERT(toxic & PR_REASONS);
1045 
1046 	if ((toxic & (PR_FMA | PR_MCE)) && !(toxic & PR_UE) &&
1047 	    page_retire_limit()) {
1048 		page_clrtoxic(pp, PR_FMA | PR_MCE | PR_MSG | PR_BUSY);
1049 		page_retire_dequeue(pp);
1050 		page_unlock(pp);
1051 		return (page_retire_done(pp, PRD_LIMIT));
1052 	}
1053 
1054 	if (PP_ISFREE(pp)) {
1055 		int dbgnoreclaim = MTBF(recl_calls, recl_mtbf) == 0;
1056 
1057 		PR_DEBUG(prd_free);
1058 
1059 		if (dbgnoreclaim || !page_reclaim(pp, NULL)) {
1060 			PR_DEBUG(prd_noreclaim);
1061 			PR_INCR_KSTAT(pr_failed);
1062 			/*
1063 			 * page_reclaim() returns with `pp' unlocked when
1064 			 * it fails.
1065 			 */
1066 			if (dbgnoreclaim)
1067 				page_unlock(pp);
1068 			return (page_retire_done(pp, PRD_FAILED));
1069 		}
1070 	}
1071 	ASSERT(!PP_ISFREE(pp));
1072 
1073 	if ((toxic & PR_UE) == 0 && pp->p_vnode && !PP_ISNORELOCKERNEL(pp) &&
1074 	    MTBF(reloc_calls, reloc_mtbf)) {
1075 		page_t *newpp;
1076 		spgcnt_t count;
1077 
1078 		/*
1079 		 * If we can relocate the page, great! newpp will go
1080 		 * on without us, and everything is fine.  Regardless
1081 		 * of whether the relocation succeeds, we are still
1082 		 * going to take `pp' around back and shoot it.
1083 		 */
1084 		newpp = NULL;
1085 		if (page_relocate(&pp, &newpp, 0, 0, &count, NULL) == 0) {
1086 			PR_DEBUG(prd_reloc);
1087 			page_unlock(newpp);
1088 			ASSERT(hat_page_getattr(pp, P_MOD) == 0);
1089 		} else {
1090 			PR_DEBUG(prd_relocfail);
1091 		}
1092 	}
1093 
1094 	if (hat_ismod(pp)) {
1095 		PR_DEBUG(prd_mod);
1096 		PR_INCR_KSTAT(pr_failed);
1097 		page_unlock(pp);
1098 		return (page_retire_done(pp, PRD_FAILED));
1099 	}
1100 
1101 	if (PP_ISKVP(pp)) {
1102 		PR_DEBUG(prd_kern);
1103 		PR_INCR_KSTAT(pr_failed_kernel);
1104 		page_unlock(pp);
1105 		return (page_retire_done(pp, PRD_FAILED));
1106 	}
1107 
1108 	if (pp->p_lckcnt || pp->p_cowcnt) {
1109 		PR_DEBUG(prd_locked);
1110 		PR_INCR_KSTAT(pr_failed);
1111 		page_unlock(pp);
1112 		return (page_retire_done(pp, PRD_FAILED));
1113 	}
1114 
1115 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1116 	ASSERT(!hat_page_is_mapped(pp));
1117 
1118 	/*
1119 	 * If the page is modified, and was not relocated; we can't
1120 	 * retire it without dropping data on the floor. We have to
1121 	 * recheck after unloading since the dirty bit could have been
1122 	 * set since we last checked.
1123 	 */
1124 	if (hat_ismod(pp)) {
1125 		PR_DEBUG(prd_mod_late);
1126 		PR_INCR_KSTAT(pr_failed);
1127 		page_unlock(pp);
1128 		return (page_retire_done(pp, PRD_FAILED));
1129 	}
1130 
1131 	if (pp->p_vnode) {
1132 		PR_DEBUG(prd_hashout);
1133 		page_hashout(pp, NULL);
1134 	}
1135 	ASSERT(!pp->p_vnode);
1136 
1137 	/*
1138 	 * The problem page is locked, demoted, unmapped, not free,
1139 	 * hashed out, and not COW or mlocked (whew!).
1140 	 *
1141 	 * Now we select our ammunition, take it around back, and shoot it.
1142 	 */
1143 	if (toxic & PR_UE) {
1144 		if (page_retire_transient_ue(pp)) {
1145 			PR_DEBUG(prd_uescrubbed);
1146 			return (page_retire_done(pp, PRD_UE_SCRUBBED));
1147 		} else {
1148 			PR_DEBUG(prd_uenotscrubbed);
1149 			page_retire_destroy(pp);
1150 			return (page_retire_done(pp, PRD_SUCCESS));
1151 		}
1152 	} else if (toxic & PR_FMA) {
1153 		PR_DEBUG(prd_fma);
1154 		page_retire_destroy(pp);
1155 		return (page_retire_done(pp, PRD_SUCCESS));
1156 	} else if (toxic & PR_MCE) {
1157 		PR_DEBUG(prd_mce);
1158 		page_retire_destroy(pp);
1159 		return (page_retire_done(pp, PRD_SUCCESS));
1160 	}
1161 	panic("page_retire_pp: bad toxic flags %d", toxic);
1162 	/*NOTREACHED*/
1163 }
1164 
1165 /*
1166  * Try to retire a page when we stumble onto it in the page lock routines.
1167  */
1168 void
1169 page_tryretire(page_t *pp)
1170 {
1171 	ASSERT(PAGE_EXCL(pp));
1172 
1173 	if (!pr_enable) {
1174 		page_unlock(pp);
1175 		return;
1176 	}
1177 
1178 	/*
1179 	 * If the page is a big page, try to break it up.
1180 	 *
1181 	 * If there are other bad pages besides `pp', they will be
1182 	 * recursively retired for us thanks to a bit of magic.
1183 	 * If the page is a small page with errors, try to retire it.
1184 	 */
1185 	if (pp->p_szc > 0) {
1186 		if (PP_ISFREE(pp) && !page_try_demote_free_pages(pp)) {
1187 			page_unlock(pp);
1188 			PR_DEBUG(prd_nofreedemote);
1189 			return;
1190 		} else if (!page_try_demote_pages(pp)) {
1191 			page_unlock(pp);
1192 			PR_DEBUG(prd_nodemote);
1193 			return;
1194 		}
1195 		PR_DEBUG(prd_demoted);
1196 		page_unlock(pp);
1197 	} else {
1198 		(void) page_retire_pp(pp);
1199 	}
1200 }
1201 
1202 /*
1203  * page_retire() - the front door in to retire a page.
1204  *
1205  * Ideally, page_retire() would instantly retire the requested page.
1206  * Unfortunately, some pages are locked or otherwise tied up and cannot be
1207  * retired right away. To deal with that, bits are set in p_toxic of the
1208  * page_t. An attempt is made to lock the page; if the attempt is successful,
1209  * we instantly unlock the page counting on page_unlock() to notice p_toxic
1210  * is nonzero and to call back into page_retire_pp(). Success is determined
1211  * by looking to see whether the page has been retired once it has been
1212  * unlocked.
1213  *
1214  * Returns:
1215  *
1216  *   - 0 on success,
1217  *   - EINVAL when the PA is whacko,
1218  *   - EIO if the page is already retired or already pending retirement, or
1219  *   - EAGAIN if the page could not be _immediately_ retired but is pending.
1220  */
1221 int
1222 page_retire(uint64_t pa, uchar_t reason)
1223 {
1224 	page_t	*pp;
1225 
1226 	ASSERT(reason & PR_REASONS);		/* there must be a reason */
1227 	ASSERT(!(reason & ~PR_REASONS));	/* but no other bits */
1228 
1229 	pp = page_numtopp_nolock(mmu_btop(pa));
1230 	if (pp == NULL) {
1231 		PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on"
1232 		    " page 0x%08x.%08x; page is not relocatable memory", pa);
1233 		return (page_retire_done(pp, PRD_INVALID_PA));
1234 	}
1235 	if (PP_RETIRED(pp)) {
1236 		PR_DEBUG(prd_dup1);
1237 		return (page_retire_done(pp, PRD_DUPLICATE));
1238 	}
1239 
1240 	if ((reason & PR_UE) && !PP_TOXIC(pp)) {
1241 		PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on"
1242 		    " page 0x%08x.%08x", pa);
1243 	} else if (PP_PR_REQ(pp)) {
1244 		PR_DEBUG(prd_dup2);
1245 		return (page_retire_done(pp, PRD_DUPLICATE));
1246 	} else {
1247 		PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of"
1248 		    " page 0x%08x.%08x", pa);
1249 	}
1250 	page_settoxic(pp, reason);
1251 	page_retire_enqueue(pp);
1252 
1253 	/*
1254 	 * And now for some magic.
1255 	 *
1256 	 * We marked this page toxic up above.  All there is left to do is
1257 	 * to try to lock the page and then unlock it.  The page lock routines
1258 	 * will intercept the page and retire it if they can.  If the page
1259 	 * cannot be locked, 's okay -- page_unlock() will eventually get it,
1260 	 * or the background thread, until then the lock routines will deny
1261 	 * further locks on it.
1262 	 */
1263 	if (MTBF(pr_calls, pr_mtbf) && page_trylock(pp, SE_EXCL)) {
1264 		PR_DEBUG(prd_prlocked);
1265 		page_unlock(pp);
1266 	} else {
1267 		PR_DEBUG(prd_prnotlocked);
1268 	}
1269 
1270 	if (PP_RETIRED(pp)) {
1271 		PR_DEBUG(prd_prretired);
1272 		return (0);
1273 	} else {
1274 		cv_signal(&pr_cv);
1275 		PR_INCR_KSTAT(pr_failed);
1276 
1277 		if (pp->p_toxic & PR_MSG) {
1278 			return (page_retire_done(pp, PRD_FAILED));
1279 		} else {
1280 			return (page_retire_done(pp, PRD_PENDING));
1281 		}
1282 	}
1283 }
1284 
1285 /*
1286  * Take a retired page off the retired-pages vnode and clear the toxic flags.
1287  * If "free" is nonzero, lock it and put it back on the freelist. If "free"
1288  * is zero, the caller already holds SE_EXCL lock so we simply unretire it
1289  * and don't do anything else with it.
1290  *
1291  * Any unretire messages are printed from this routine.
1292  *
1293  * Returns 0 if page pp was unretired; else an error code.
1294  */
1295 int
1296 page_unretire_pp(page_t *pp, int free)
1297 {
1298 	/*
1299 	 * To be retired, a page has to be hashed onto the retired_pages vnode
1300 	 * and have PR_RETIRED set in p_toxic.
1301 	 */
1302 	if (free == 0 || page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) {
1303 		ASSERT(PAGE_EXCL(pp));
1304 		PR_DEBUG(prd_ulocked);
1305 		if (!PP_RETIRED(pp)) {
1306 			PR_DEBUG(prd_unotretired);
1307 			page_unlock(pp);
1308 			return (page_retire_done(pp, PRD_UNR_NOT));
1309 		}
1310 
1311 		PR_MESSAGE(CE_NOTE, 1, "unretiring retired"
1312 		    " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum));
1313 		if (pp->p_toxic & PR_FMA) {
1314 			PR_DECR_KSTAT(pr_fma);
1315 		} else if (pp->p_toxic & PR_UE) {
1316 			PR_DECR_KSTAT(pr_ue);
1317 		} else {
1318 			PR_DECR_KSTAT(pr_mce);
1319 		}
1320 		page_clrtoxic(pp, PR_ALLFLAGS);
1321 
1322 		if (free) {
1323 			PR_DEBUG(prd_udestroy);
1324 			page_destroy(pp, 0);
1325 		} else {
1326 			PR_DEBUG(prd_uhashout);
1327 			page_hashout(pp, NULL);
1328 		}
1329 
1330 		mutex_enter(&freemem_lock);
1331 		availrmem++;
1332 		mutex_exit(&freemem_lock);
1333 
1334 		PR_DEBUG(prd_uunretired);
1335 		PR_DECR_KSTAT(pr_retired);
1336 		PR_INCR_KSTAT(pr_unretired);
1337 		return (page_retire_done(pp, PRD_UNR_SUCCESS));
1338 	}
1339 	PR_DEBUG(prd_unotlocked);
1340 	return (page_retire_done(pp, PRD_UNR_CANTLOCK));
1341 }
1342 
1343 /*
1344  * Return a page to service by moving it from the retired_pages vnode
1345  * onto the freelist.
1346  *
1347  * Called from mmioctl_page_retire() on behalf of the FMA DE.
1348  *
1349  * Returns:
1350  *
1351  *   - 0 if the page is unretired,
1352  *   - EAGAIN if the pp can not be locked,
1353  *   - EINVAL if the PA is whacko, and
1354  *   - EIO if the pp is not retired.
1355  */
1356 int
1357 page_unretire(uint64_t pa)
1358 {
1359 	page_t	*pp;
1360 
1361 	pp = page_numtopp_nolock(mmu_btop(pa));
1362 	if (pp == NULL) {
1363 		return (page_retire_done(pp, PRD_INVALID_PA));
1364 	}
1365 
1366 	return (page_unretire_pp(pp, 1));
1367 }
1368 
1369 /*
1370  * Test a page to see if it is retired. If errors is non-NULL, the toxic
1371  * bits of the page are returned. Returns 0 on success, error code on failure.
1372  */
1373 int
1374 page_retire_check_pp(page_t *pp, uint64_t *errors)
1375 {
1376 	int rc;
1377 
1378 	if (PP_RETIRED(pp)) {
1379 		PR_DEBUG(prd_checkhit);
1380 		rc = 0;
1381 	} else if (PP_PR_REQ(pp)) {
1382 		PR_DEBUG(prd_checkmiss_pend);
1383 		rc = EAGAIN;
1384 	} else {
1385 		PR_DEBUG(prd_checkmiss_noerr);
1386 		rc = EIO;
1387 	}
1388 
1389 	/*
1390 	 * We have magically arranged the bit values returned to fmd(1M)
1391 	 * to line up with the FMA, MCE, and UE bits of the page_t.
1392 	 */
1393 	if (errors) {
1394 		uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK);
1395 		if (toxic & PR_UE_SCRUBBED) {
1396 			toxic &= ~PR_UE_SCRUBBED;
1397 			toxic |= PR_UE;
1398 		}
1399 		*errors = toxic;
1400 	}
1401 
1402 	return (rc);
1403 }
1404 
1405 /*
1406  * Test to see if the page_t for a given PA is retired, and return the
1407  * hardware errors we have seen on the page if requested.
1408  *
1409  * Called from mmioctl_page_retire on behalf of the FMA DE.
1410  *
1411  * Returns:
1412  *
1413  *   - 0 if the page is retired,
1414  *   - EIO if the page is not retired and has no errors,
1415  *   - EAGAIN if the page is not retired but is pending; and
1416  *   - EINVAL if the PA is whacko.
1417  */
1418 int
1419 page_retire_check(uint64_t pa, uint64_t *errors)
1420 {
1421 	page_t	*pp;
1422 
1423 	if (errors) {
1424 		*errors = 0;
1425 	}
1426 
1427 	pp = page_numtopp_nolock(mmu_btop(pa));
1428 	if (pp == NULL) {
1429 		return (page_retire_done(pp, PRD_INVALID_PA));
1430 	}
1431 
1432 	return (page_retire_check_pp(pp, errors));
1433 }
1434 
1435 /*
1436  * Page retire self-test. For now, it always returns 0.
1437  */
1438 int
1439 page_retire_test(void)
1440 {
1441 	page_t *first, *pp, *cpp, *cpp2, *lpp;
1442 
1443 	/*
1444 	 * Tests the corner case where a large page can't be retired
1445 	 * because one of the constituent pages is locked. We mark
1446 	 * one page to be retired and try to retire it, and mark the
1447 	 * other page to be retired but don't try to retire it, so
1448 	 * that page_unlock() in the failure path will recurse and try
1449 	 * to retire THAT page. This is the worst possible situation
1450 	 * we can get ourselves into.
1451 	 */
1452 	memsegs_lock(0);
1453 	pp = first = page_first();
1454 	do {
1455 		if (pp->p_szc && PP_PAGEROOT(pp) == pp) {
1456 			cpp = pp + 1;
1457 			lpp = PP_ISFREE(pp)? pp : pp + 2;
1458 			cpp2 = pp + 3;
1459 			if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED))
1460 				continue;
1461 			if (!page_trylock(cpp, SE_EXCL)) {
1462 				page_unlock(lpp);
1463 				continue;
1464 			}
1465 			page_settoxic(cpp, PR_FMA | PR_BUSY);
1466 			page_settoxic(cpp2, PR_FMA);
1467 			page_tryretire(cpp);	/* will fail */
1468 			page_unlock(lpp);
1469 			(void) page_retire(cpp->p_pagenum, PR_FMA);
1470 			(void) page_retire(cpp2->p_pagenum, PR_FMA);
1471 		}
1472 	} while ((pp = page_next(pp)) != first);
1473 	memsegs_unlock(0);
1474 
1475 	return (0);
1476 }
1477