xref: /titanic_41/usr/src/uts/common/vm/page.h (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 /*
29  * University Copyright- Copyright (c) 1982, 1986, 1988
30  * The Regents of the University of California
31  * All Rights Reserved
32  *
33  * University Acknowledgment- Portions of this document are derived from
34  * software developed by the University of California, Berkeley, and its
35  * contributors.
36  */
37 
38 #ifndef	_VM_PAGE_H
39 #define	_VM_PAGE_H
40 
41 #include <vm/seg.h>
42 
43 #ifdef	__cplusplus
44 extern "C" {
45 #endif
46 
47 #if defined(_KERNEL) || defined(_KMEMUSER)
48 
49 /*
50  * Shared/Exclusive lock.
51  */
52 
53 /*
54  * Types of page locking supported by page_lock & friends.
55  */
56 typedef enum {
57 	SE_SHARED,
58 	SE_EXCL			/* exclusive lock (value == -1) */
59 } se_t;
60 
61 /*
62  * For requesting that page_lock reclaim the page from the free list.
63  */
64 typedef enum {
65 	P_RECLAIM,		/* reclaim page from free list */
66 	P_NO_RECLAIM		/* DON`T reclaim the page	*/
67 } reclaim_t;
68 
69 /*
70  * Callers of page_try_reclaim_lock and page_lock_es can use this flag
71  * to get SE_EXCL access before reader/writers are given access.
72  */
73 #define	SE_EXCL_WANTED	0x02
74 
75 /*
76  * All page_*lock() requests will be denied unless this flag is set in
77  * the 'es' parameter.
78  */
79 #define	SE_RETIRED	0x04
80 
81 #endif	/* _KERNEL | _KMEMUSER */
82 
83 typedef int	selock_t;
84 
85 /*
86  * Define VM_STATS to turn on all sorts of statistic gathering about
87  * the VM layer.  By default, it is only turned on when DEBUG is
88  * also defined.
89  */
90 #ifdef DEBUG
91 #define	VM_STATS
92 #endif	/* DEBUG */
93 
94 #ifdef VM_STATS
95 #define	VM_STAT_ADD(stat)			(stat)++
96 #define	VM_STAT_COND_ADD(cond, stat)		((void) (!(cond) || (stat)++))
97 #else
98 #define	VM_STAT_ADD(stat)
99 #define	VM_STAT_COND_ADD(cond, stat)
100 #endif	/* VM_STATS */
101 
102 #ifdef _KERNEL
103 
104 /*
105  * PAGE_LLOCK_SIZE is 2 * NCPU, but no smaller than 128.
106  * PAGE_LLOCK_SHIFT is log2(PAGE_LLOCK_SIZE).
107  *
108  * We use ? : instead of #if because <vm/page.h> is included everywhere;
109  * NCPU_P2 is only a constant in the "unix" module.
110  *
111  */
112 #define	PAGE_LLOCK_SHIFT \
113 	    ((unsigned)(((2*NCPU_P2) > 128) ? NCPU_LOG2 + 1 : 7))
114 
115 #define	PAGE_LLOCK_SIZE (1ul << PAGE_LLOCK_SHIFT)
116 
117 /*
118  * The number of low order 0 (or less variable) bits in the page_t address.
119  */
120 #if defined(__sparc)
121 #define	PP_SHIFT		7
122 #else
123 #define	PP_SHIFT		6
124 #endif
125 
126 /*
127  * pp may be the root of a large page, and many low order bits will be 0.
128  * Shift and XOR multiple times to capture the good bits across the range of
129  * possible page sizes.
130  */
131 #define	PAGE_LLOCK_HASH(pp)	\
132 	(((((uintptr_t)(pp) >> PP_SHIFT) ^ \
133 	((uintptr_t)(pp) >> (PAGE_LLOCK_SHIFT + PP_SHIFT))) ^ \
134 	((uintptr_t)(pp) >> ((PAGE_LLOCK_SHIFT * 2) + PP_SHIFT)) ^ \
135 	((uintptr_t)(pp) >> ((PAGE_LLOCK_SHIFT * 3) + PP_SHIFT))) & \
136 	(PAGE_LLOCK_SIZE - 1))
137 
138 #define	page_struct_lock(pp)	\
139 	mutex_enter(&page_llocks[PAGE_LLOCK_HASH(PP_PAGEROOT(pp))].pad_mutex)
140 #define	page_struct_unlock(pp)	\
141 	mutex_exit(&page_llocks[PAGE_LLOCK_HASH(PP_PAGEROOT(pp))].pad_mutex)
142 
143 #endif	/* _KERNEL */
144 
145 #include <sys/t_lock.h>
146 
147 struct as;
148 
149 /*
150  * Each physical page has a page structure, which is used to maintain
151  * these pages as a cache.  A page can be found via a hashed lookup
152  * based on the [vp, offset].  If a page has an [vp, offset] identity,
153  * then it is entered on a doubly linked circular list off the
154  * vnode using the vpnext/vpprev pointers.   If the p_free bit
155  * is on, then the page is also on a doubly linked circular free
156  * list using next/prev pointers.  If the "p_selock" and "p_iolock"
157  * are held, then the page is currently being read in (exclusive p_selock)
158  * or written back (shared p_selock).  In this case, the next/prev pointers
159  * are used to link the pages together for a consecutive i/o request.  If
160  * the page is being brought in from its backing store, then other processes
161  * will wait for the i/o to complete before attaching to the page since it
162  * will have an "exclusive" lock.
163  *
164  * Each page structure has the locks described below along with
165  * the fields they protect:
166  *
167  *	p_selock	This is a per-page shared/exclusive lock that is
168  *			used to implement the logical shared/exclusive
169  *			lock for each page.  The "shared" lock is normally
170  *			used in most cases while the "exclusive" lock is
171  *			required to destroy or retain exclusive access to
172  *			a page (e.g., while reading in pages).  The appropriate
173  *			lock is always held whenever there is any reference
174  *			to a page structure (e.g., during i/o).
175  *			(Note that with the addition of the "writer-lock-wanted"
176  *			semantics (via SE_EWANTED), threads must not acquire
177  *			multiple reader locks or else a deadly embrace will
178  *			occur in the following situation: thread 1 obtains a
179  *			reader lock; next thread 2 fails to get a writer lock
180  *			but specified SE_EWANTED so it will wait by either
181  *			blocking (when using page_lock_es) or spinning while
182  *			retrying (when using page_try_reclaim_lock) until the
183  *			reader lock is released; then thread 1 attempts to
184  *			get another reader lock but is denied due to
185  *			SE_EWANTED being set, and now both threads are in a
186  *			deadly embrace.)
187  *
188  *				p_hash
189  *				p_vnode
190  *				p_offset
191  *
192  *				p_free
193  *				p_age
194  *
195  *	p_iolock	This is a binary semaphore lock that provides
196  *			exclusive access to the i/o list links in each
197  *			page structure.  It is always held while the page
198  *			is on an i/o list (i.e., involved in i/o).  That is,
199  *			even though a page may be only `shared' locked
200  *			while it is doing a write, the following fields may
201  *			change anyway.  Normally, the page must be
202  *			`exclusively' locked to change anything in it.
203  *
204  *				p_next
205  *				p_prev
206  *
207  * The following fields are protected by the global page_llocks[]:
208  *
209  *				p_lckcnt
210  *				p_cowcnt
211  *
212  * The following lists are protected by the global page_freelock:
213  *
214  *				page_cachelist
215  *				page_freelist
216  *
217  * The following, for our purposes, are protected by
218  * the global freemem_lock:
219  *
220  *				freemem
221  *				freemem_wait
222  *				freemem_cv
223  *
224  * The following fields are protected by hat layer lock(s).  When a page
225  * structure is not mapped and is not associated with a vnode (after a call
226  * to page_hashout() for example) the p_nrm field may be modified with out
227  * holding the hat layer lock:
228  *
229  *				p_nrm
230  *				p_mapping
231  *				p_share
232  *
233  * The following field is file system dependent.  How it is used and
234  * the locking strategies applied are up to the individual file system
235  * implementation.
236  *
237  *				p_fsdata
238  *
239  * The page structure is used to represent and control the system's
240  * physical pages.  There is one instance of the structure for each
241  * page that is not permenately allocated.  For example, the pages that
242  * hold the page structures are permanently held by the kernel
243  * and hence do not need page structures to track them.  The array
244  * of page structures is allocated early on in the kernel's life and
245  * is based on the amount of available physical memory.
246  *
247  * Each page structure may simultaneously appear on several linked lists.
248  * The lists are:  hash list, free or in i/o list, and a vnode's page list.
249  * Each type of list is protected by a different group of mutexes as described
250  * below:
251  *
252  * The hash list is used to quickly find a page when the page's vnode and
253  * offset within the vnode are known.  Each page that is hashed is
254  * connected via the `p_hash' field.  The anchor for each hash is in the
255  * array `page_hash'.  An array of mutexes, `ph_mutex', protects the
256  * lists anchored by page_hash[].  To either search or modify a given hash
257  * list, the appropriate mutex in the ph_mutex array must be held.
258  *
259  * The free list contains pages that are `free to be given away'.  For
260  * efficiency reasons, pages on this list are placed in two catagories:
261  * pages that are still associated with a vnode, and pages that are not
262  * associated with a vnode.  Free pages always have their `p_free' bit set,
263  * free pages that are still associated with a vnode also have their
264  * `p_age' bit set.  Pages on the free list are connected via their
265  * `p_next' and `p_prev' fields.  When a page is involved in some sort
266  * of i/o, it is not free and these fields may be used to link associated
267  * pages together.  At the moment, the free list is protected by a
268  * single mutex `page_freelock'.  The list of free pages still associated
269  * with a vnode is anchored by `page_cachelist' while other free pages
270  * are anchored in architecture dependent ways (to handle page coloring etc.).
271  *
272  * Pages associated with a given vnode appear on a list anchored in the
273  * vnode by the `v_pages' field.  They are linked together with
274  * `p_vpnext' and `p_vpprev'.  The field `p_offset' contains a page's
275  * offset within the vnode.  The pages on this list are not kept in
276  * offset order.  These lists, in a manner similar to the hash lists,
277  * are protected by an array of mutexes called `vph_hash'.  Before
278  * searching or modifying this chain the appropriate mutex in the
279  * vph_hash[] array must be held.
280  *
281  * Again, each of the lists that a page can appear on is protected by a
282  * mutex.  Before reading or writing any of the fields comprising the
283  * list, the appropriate lock must be held.  These list locks should only
284  * be held for very short intervals.
285  *
286  * In addition to the list locks, each page structure contains a
287  * shared/exclusive lock that protects various fields within it.
288  * To modify one of these fields, the `p_selock' must be exclusively held.
289  * To read a field with a degree of certainty, the lock must be at least
290  * held shared.
291  *
292  * Removing a page structure from one of the lists requires holding
293  * the appropriate list lock and the page's p_selock.  A page may be
294  * prevented from changing identity, being freed, or otherwise modified
295  * by acquiring p_selock shared.
296  *
297  * To avoid deadlocks, a strict locking protocol must be followed.  Basically
298  * there are two cases:  In the first case, the page structure in question
299  * is known ahead of time (e.g., when the page is to be added or removed
300  * from a list).  In the second case, the page structure is not known and
301  * must be found by searching one of the lists.
302  *
303  * When adding or removing a known page to one of the lists, first the
304  * page must be exclusively locked (since at least one of its fields
305  * will be modified), second the lock protecting the list must be acquired,
306  * third the page inserted or deleted, and finally the list lock dropped.
307  *
308  * The more interesting case occures when the particular page structure
309  * is not known ahead of time.  For example, when a call is made to
310  * page_lookup(), it is not known if a page with the desired (vnode and
311  * offset pair) identity exists.  So the appropriate mutex in ph_mutex is
312  * acquired, the hash list searched, and if the desired page is found
313  * an attempt is made to lock it.  The attempt to acquire p_selock must
314  * not block while the hash list lock is held.  A deadlock could occure
315  * if some other process was trying to remove the page from the list.
316  * The removing process (following the above protocol) would have exclusively
317  * locked the page, and be spinning waiting to acquire the lock protecting
318  * the hash list.  Since the searching process holds the hash list lock
319  * and is waiting to acquire the page lock, a deadlock occurs.
320  *
321  * The proper scheme to follow is: first, lock the appropriate list,
322  * search the list, and if the desired page is found either use
323  * page_trylock() (which will not block) or pass the address of the
324  * list lock to page_lock().  If page_lock() can not acquire the page's
325  * lock, it will drop the list lock before going to sleep.  page_lock()
326  * returns a value to indicate if the list lock was dropped allowing the
327  * calling program to react appropriately (i.e., retry the operation).
328  *
329  * If the list lock was dropped before the attempt at locking the page
330  * was made, checks would have to be made to ensure that the page had
331  * not changed identity before its lock was obtained.  This is because
332  * the interval between dropping the list lock and acquiring the page
333  * lock is indeterminate.
334  *
335  * In addition, when both a hash list lock (ph_mutex[]) and a vnode list
336  * lock (vph_mutex[]) are needed, the hash list lock must be acquired first.
337  * The routine page_hashin() is a good example of this sequence.
338  * This sequence is ASSERTed by checking that the vph_mutex[] is not held
339  * just before each acquisition of one of the mutexs in ph_mutex[].
340  *
341  * So, as a quick summary:
342  *
343  * 	pse_mutex[]'s protect the p_selock and p_cv fields.
344  *
345  * 	p_selock protects the p_free, p_age, p_vnode, p_offset and p_hash,
346  *
347  * 	ph_mutex[]'s protect the page_hash[] array and its chains.
348  *
349  * 	vph_mutex[]'s protect the v_pages field and the vp page chains.
350  *
351  *	First lock the page, then the hash chain, then the vnode chain.  When
352  *	this is not possible `trylocks' must be used.  Sleeping while holding
353  *	any of these mutexes (p_selock is not a mutex) is not allowed.
354  *
355  *
356  *	field		reading		writing		    ordering
357  *	======================================================================
358  *	p_vnode		p_selock(E,S)	p_selock(E)
359  *	p_offset
360  *	p_free
361  *	p_age
362  *	=====================================================================
363  *	p_hash		p_selock(E,S)	p_selock(E) &&	    p_selock, ph_mutex
364  *					ph_mutex[]
365  *	=====================================================================
366  *	p_vpnext	p_selock(E,S)	p_selock(E) &&	    p_selock, vph_mutex
367  *	p_vpprev			vph_mutex[]
368  *	=====================================================================
369  *	When the p_free bit is set:
370  *
371  *	p_next		p_selock(E,S)	p_selock(E) &&	    p_selock,
372  *	p_prev				page_freelock	    page_freelock
373  *
374  *	When the p_free bit is not set:
375  *
376  *	p_next		p_selock(E,S)	p_selock(E) &&	    p_selock, p_iolock
377  *	p_prev				p_iolock
378  *	=====================================================================
379  *	p_selock	pse_mutex[]	pse_mutex[]	    can`t acquire any
380  *	p_cv						    other mutexes or
381  *							    sleep while holding
382  *							    this lock.
383  *	=====================================================================
384  *	p_lckcnt	p_selock(E,S)	p_selock(E)
385  *					    OR
386  *					p_selock(S) &&
387  *					page_llocks[]
388  *	p_cowcnt
389  *	=====================================================================
390  *	p_nrm		hat layer lock	hat layer lock
391  *	p_mapping
392  *	p_pagenum
393  *	=====================================================================
394  *
395  *	where:
396  *		E----> exclusive version of p_selock.
397  *		S----> shared version of p_selock.
398  *
399  *
400  *	Global data structures and variable:
401  *
402  *	field		reading		writing		    ordering
403  *	=====================================================================
404  *	page_hash[]	ph_mutex[]	ph_mutex[]	    can hold this lock
405  *							    before acquiring
406  *							    a vph_mutex or
407  *							    pse_mutex.
408  *	=====================================================================
409  *	vp->v_pages	vph_mutex[]	vph_mutex[]	    can only acquire
410  *							    a pse_mutex while
411  *							    holding this lock.
412  *	=====================================================================
413  *	page_cachelist	page_freelock	page_freelock	    can't acquire any
414  *	page_freelist	page_freelock	page_freelock
415  *	=====================================================================
416  *	freemem		freemem_lock	freemem_lock	    can't acquire any
417  *	freemem_wait					    other mutexes while
418  *	freemem_cv					    holding this mutex.
419  *	=====================================================================
420  *
421  * Page relocation, PG_NORELOC and P_NORELOC.
422  *
423  * Pages may be relocated using the page_relocate() interface. Relocation
424  * involves moving the contents and identity of a page to another, free page.
425  * To relocate a page, the SE_EXCL lock must be obtained. The way to prevent
426  * a page from being relocated is to hold the SE_SHARED lock (the SE_EXCL
427  * lock must not be held indefinitely). If the page is going to be held
428  * SE_SHARED indefinitely, then the PG_NORELOC hint should be passed
429  * to page_create_va so that pages that are prevented from being relocated
430  * can be managed differently by the platform specific layer.
431  *
432  * Pages locked in memory using page_pp_lock (p_lckcnt/p_cowcnt != 0)
433  * are guaranteed to be held in memory, but can still be relocated
434  * providing the SE_EXCL lock can be obtained.
435  *
436  * The P_NORELOC bit in the page_t.p_state field is provided for use by
437  * the platform specific code in managing pages when the PG_NORELOC
438  * hint is used.
439  *
440  * Memory delete and page locking.
441  *
442  * The set of all usable pages is managed using the global page list as
443  * implemented by the memseg structure defined below. When memory is added
444  * or deleted this list changes. Additions to this list guarantee that the
445  * list is never corrupt.  In order to avoid the necessity of an additional
446  * lock to protect against failed accesses to the memseg being deleted and,
447  * more importantly, the page_ts, the memseg structure is never freed and the
448  * page_t virtual address space is remapped to a page (or pages) of
449  * zeros.  If a page_t is manipulated while it is p_selock'd, or if it is
450  * locked indirectly via a hash or freelist lock, it is not possible for
451  * memory delete to collect the page and so that part of the page list is
452  * prevented from being deleted. If the page is referenced outside of one
453  * of these locks, it is possible for the page_t being referenced to be
454  * deleted.  Examples of this are page_t pointers returned by
455  * page_numtopp_nolock, page_first and page_next.  Providing the page_t
456  * is re-checked after taking the p_selock (for p_vnode != NULL), the
457  * remapping to the zero pages will be detected.
458  *
459  *
460  * Page size (p_szc field) and page locking.
461  *
462  * p_szc field of free pages is changed by free list manager under freelist
463  * locks and is of no concern to the rest of VM subsystem.
464  *
465  * p_szc changes of allocated anonymous (swapfs) can only be done only after
466  * exclusively locking all constituent pages and calling hat_pageunload() on
467  * each of them. To prevent p_szc changes of non free anonymous (swapfs) large
468  * pages it's enough to either lock SHARED any of constituent pages or prevent
469  * hat_pageunload() by holding hat level lock that protects mapping lists (this
470  * method is for hat code only)
471  *
472  * To increase (promote) p_szc of allocated non anonymous file system pages
473  * one has to first lock exclusively all involved constituent pages and call
474  * hat_pageunload() on each of them. To prevent p_szc promote it's enough to
475  * either lock SHARED any of constituent pages that will be needed to make a
476  * large page or prevent hat_pageunload() by holding hat level lock that
477  * protects mapping lists (this method is for hat code only).
478  *
479  * To decrease (demote) p_szc of an allocated non anonymous file system large
480  * page one can either use the same method as used for changeing p_szc of
481  * anonymous large pages or if it's not possible to lock all constituent pages
482  * exclusively a different method can be used. In the second method one only
483  * has to exclusively lock one of constituent pages but then one has to
484  * acquire further locks by calling page_szc_lock() and
485  * hat_page_demote(). hat_page_demote() acquires hat level locks and then
486  * demotes the page. This mechanism relies on the fact that any code that
487  * needs to prevent p_szc of a file system large page from changeing either
488  * locks all constituent large pages at least SHARED or locks some pages at
489  * least SHARED and calls page_szc_lock() or uses hat level page locks.
490  * Demotion using this method is implemented by page_demote_vp_pages().
491  * Please see comments in front of page_demote_vp_pages(), hat_page_demote()
492  * and page_szc_lock() for more details.
493  *
494  * Lock order: p_selock, page_szc_lock, ph_mutex/vph_mutex/freelist,
495  * hat level locks.
496  */
497 
498 typedef struct page {
499 	u_offset_t	p_offset;	/* offset into vnode for this page */
500 	struct vnode	*p_vnode;	/* vnode that this page is named by */
501 	selock_t	p_selock;	/* shared/exclusive lock on the page */
502 #if defined(_LP64)
503 	uint_t		p_vpmref;	/* vpm ref - index of the vpmap_t */
504 #endif
505 	struct page	*p_hash;	/* hash by [vnode, offset] */
506 	struct page	*p_vpnext;	/* next page in vnode list */
507 	struct page	*p_vpprev;	/* prev page in vnode list */
508 	struct page	*p_next;	/* next page in free/intrans lists */
509 	struct page	*p_prev;	/* prev page in free/intrans lists */
510 	ushort_t	p_lckcnt;	/* number of locks on page data */
511 	ushort_t	p_cowcnt;	/* number of copy on write lock */
512 	kcondvar_t	p_cv;		/* page struct's condition var */
513 	kcondvar_t	p_io_cv;	/* for iolock */
514 	uchar_t		p_iolock_state;	/* replaces p_iolock */
515 	volatile uchar_t p_szc;		/* page size code */
516 	uchar_t		p_fsdata;	/* file system dependent byte */
517 	uchar_t		p_state;	/* p_free, p_noreloc */
518 	uchar_t		p_nrm;		/* non-cache, ref, mod readonly bits */
519 #if defined(__sparc)
520 	uchar_t		p_vcolor;	/* virtual color */
521 #else
522 	uchar_t		p_embed;	/* x86 - changes p_mapping & p_index */
523 #endif
524 	uchar_t		p_index;	/* MPSS mapping info. Not used on x86 */
525 	uchar_t		p_toxic;	/* page has an unrecoverable error */
526 	void		*p_mapping;	/* hat specific translation info */
527 	pfn_t		p_pagenum;	/* physical page number */
528 
529 	uint_t		p_share;	/* number of translations */
530 #if defined(_LP64)
531 	uint_t		p_sharepad;	/* pad for growing p_share */
532 #endif
533 	uint_t		p_slckcnt;	/* number of softlocks */
534 #if defined(__sparc)
535 	uint_t		p_kpmref;	/* number of kpm mapping sharers */
536 	struct kpme	*p_kpmelist;	/* kpm specific mapping info */
537 #else
538 	/* index of entry in p_map when p_embed is set */
539 	uint_t		p_mlentry;
540 #endif
541 #if defined(_LP64)
542 	kmutex_t	p_ilock;	/* protects p_vpmref */
543 #else
544 	uint64_t	p_msresv_2;	/* page allocation debugging */
545 #endif
546 } page_t;
547 
548 
549 typedef	page_t	devpage_t;
550 #define	devpage	page
551 
552 #define	PAGE_LOCK_MAXIMUM \
553 	((1 << (sizeof (((page_t *)0)->p_lckcnt) * NBBY)) - 1)
554 
555 #define	PAGE_SLOCK_MAXIMUM UINT_MAX
556 
557 /*
558  * Page hash table is a power-of-two in size, externally chained
559  * through the hash field.  PAGE_HASHAVELEN is the average length
560  * desired for this chain, from which the size of the page_hash
561  * table is derived at boot time and stored in the kernel variable
562  * page_hashsz.  In the hash function it is given by PAGE_HASHSZ.
563  *
564  * PAGE_HASH_FUNC returns an index into the page_hash[] array.  This
565  * index is also used to derive the mutex that protects the chain.
566  *
567  * In constructing the hash function, first we dispose of unimportant bits
568  * (page offset from "off" and the low 3 bits of "vp" which are zero for
569  * struct alignment). Then shift and sum the remaining bits a couple times
570  * in order to get as many source bits from the two source values into the
571  * resulting hashed value.  Note that this will perform quickly, since the
572  * shifting/summing are fast register to register operations with no additional
573  * memory references).
574  *
575  * PH_SHIFT_SIZE is the amount to use for the successive shifts in the hash
576  * function below.  The actual value is LOG2(PH_TABLE_SIZE), so that as many
577  * bits as possible will filter thru PAGE_HASH_FUNC() and PAGE_HASH_MUTEX().
578  *
579  * We use ? : instead of #if because <vm/page.h> is included everywhere;
580  * NCPU maps to a global variable outside of the "unix" module.
581  */
582 #if defined(_LP64)
583 #define	PH_SHIFT_SIZE	((NCPU < 4) ? 7		: (NCPU_LOG2 + 1))
584 #else	/* 32 bits */
585 #define	PH_SHIFT_SIZE	((NCPU < 4) ? 4		: 7)
586 #endif	/* _LP64 */
587 
588 #define	PH_TABLE_SIZE	(1ul << PH_SHIFT_SIZE)
589 
590 /*
591  *
592  * We take care to get as much randomness as possible from both the vp and
593  * the offset.  Workloads can have few vnodes with many offsets, many vnodes
594  * with few offsets or a moderate mix of both.  This hash should perform
595  * equally well for each of these possibilities and for all types of memory
596  * allocations.
597  *
598  * vnodes representing files are created over a long period of time and
599  * have good variation in the upper vp bits, and the right shifts below
600  * capture these bits.  However, swap vnodes are created quickly in a
601  * narrow vp* range.  Refer to comments at swap_alloc: vnum has exactly
602  * AN_VPSHIFT bits, so the kmem_alloc'd vnode addresses have approximately
603  * AN_VPSHIFT bits of variation above their VNODE_ALIGN low order 0 bits.
604  * Spread swap vnodes widely in the hash table by XOR'ing a term with the
605  * vp bits of variation left shifted to the top of the range.
606  */
607 
608 #define	PAGE_HASHSZ	page_hashsz
609 #define	PAGE_HASHAVELEN		4
610 #define	PAGE_HASH_FUNC(vp, off) \
611 	(((((uintptr_t)(off) >> PAGESHIFT) ^ \
612 	    ((uintptr_t)(off) >> (PAGESHIFT + PH_SHIFT_SIZE))) ^ \
613 	    (((uintptr_t)(vp) >> 3) ^ \
614 	    ((uintptr_t)(vp) >> (3 + PH_SHIFT_SIZE)) ^ \
615 	    ((uintptr_t)(vp) >> (3 + 2 * PH_SHIFT_SIZE)) ^ \
616 	    ((uintptr_t)(vp) << \
617 	    (page_hashsz_shift - AN_VPSHIFT - VNODE_ALIGN_LOG2)))) & \
618 	    (PAGE_HASHSZ - 1))
619 
620 #ifdef _KERNEL
621 
622 /*
623  * The page hash value is re-hashed to an index for the ph_mutex array.
624  *
625  * For 64 bit kernels, the mutex array is padded out to prevent false
626  * sharing of cache sub-blocks (64 bytes) of adjacent mutexes.
627  *
628  * For 32 bit kernels, we don't want to waste kernel address space with
629  * padding, so instead we rely on the hash function to introduce skew of
630  * adjacent vnode/offset indexes (the left shift part of the hash function).
631  * Since sizeof (kmutex_t) is 8, we shift an additional 3 to skew to a different
632  * 64 byte sub-block.
633  */
634 extern pad_mutex_t ph_mutex[];
635 
636 #define	PAGE_HASH_MUTEX(x) \
637 	&(ph_mutex[((x) ^ ((x) >> PH_SHIFT_SIZE) + ((x) << 3)) & \
638 		(PH_TABLE_SIZE - 1)].pad_mutex)
639 
640 /*
641  * Flags used while creating pages.
642  */
643 #define	PG_EXCL		0x0001
644 #define	PG_WAIT		0x0002		/* Blocking memory allocations */
645 #define	PG_PHYSCONTIG	0x0004		/* NOT SUPPORTED */
646 #define	PG_MATCH_COLOR	0x0008		/* SUPPORTED by free list routines */
647 #define	PG_NORELOC	0x0010		/* Non-relocatable alloc hint. */
648 					/* Page must be PP_ISNORELOC */
649 #define	PG_PANIC	0x0020		/* system will panic if alloc fails */
650 #define	PG_PUSHPAGE	0x0040		/* alloc may use reserve */
651 #define	PG_LOCAL	0x0080		/* alloc from given lgrp only */
652 #define	PG_NORMALPRI	0x0100		/* PG_WAIT like priority, but */
653 					/* non-blocking */
654 /*
655  * When p_selock has the SE_EWANTED bit set, threads waiting for SE_EXCL
656  * access are given priority over all other waiting threads.
657  */
658 #define	SE_EWANTED	0x40000000
659 #define	PAGE_LOCKED(pp)		(((pp)->p_selock & ~SE_EWANTED) != 0)
660 #define	PAGE_SHARED(pp)		(((pp)->p_selock & ~SE_EWANTED) > 0)
661 #define	PAGE_EXCL(pp)		((pp)->p_selock < 0)
662 #define	PAGE_LOCKED_SE(pp, se)	\
663 	((se) == SE_EXCL ? PAGE_EXCL(pp) : PAGE_SHARED(pp))
664 
665 extern	long page_hashsz;
666 extern	unsigned int page_hashsz_shift;
667 extern	page_t **page_hash;
668 
669 extern	pad_mutex_t page_llocks[];	/* page logical lock mutex */
670 extern	kmutex_t freemem_lock;		/* freemem lock */
671 
672 extern	pgcnt_t	total_pages;		/* total pages in the system */
673 
674 /*
675  * Variables controlling locking of physical memory.
676  */
677 extern	pgcnt_t	pages_pp_maximum;	/* tuning: lock + claim <= max */
678 extern	void init_pages_pp_maximum(void);
679 
680 struct lgrp;
681 
682 /* page_list_{add,sub} flags */
683 
684 /* which list */
685 #define	PG_FREE_LIST	0x0001
686 #define	PG_CACHE_LIST	0x0002
687 
688 /* where on list */
689 #define	PG_LIST_TAIL	0x0010
690 #define	PG_LIST_HEAD	0x0020
691 
692 /* called from */
693 #define	PG_LIST_ISINIT	0x1000
694 
695 /*
696  * Page frame operations.
697  */
698 page_t	*page_lookup(struct vnode *, u_offset_t, se_t);
699 page_t	*page_lookup_create(struct vnode *, u_offset_t, se_t, page_t *,
700 	spgcnt_t *, int);
701 page_t	*page_lookup_nowait(struct vnode *, u_offset_t, se_t);
702 page_t	*page_find(struct vnode *, u_offset_t);
703 page_t	*page_exists(struct vnode *, u_offset_t);
704 int	page_exists_physcontig(vnode_t *, u_offset_t, uint_t, page_t *[]);
705 int	page_exists_forreal(struct vnode *, u_offset_t, uint_t *);
706 void	page_needfree(spgcnt_t);
707 page_t	*page_create(struct vnode *, u_offset_t, size_t, uint_t);
708 int	page_alloc_pages(struct vnode *, struct seg *, caddr_t, page_t **,
709 	page_t **, uint_t, int, int);
710 page_t  *page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes,
711 	uint_t flags, struct seg *seg, caddr_t vaddr, void *arg);
712 page_t	*page_create_va(struct vnode *, u_offset_t, size_t, uint_t,
713 	struct seg *, caddr_t);
714 int	page_create_wait(pgcnt_t npages, uint_t flags);
715 void    page_create_putback(spgcnt_t npages);
716 void	page_free(page_t *, int);
717 void	page_free_at_startup(page_t *);
718 void	page_free_pages(page_t *);
719 void	free_vp_pages(struct vnode *, u_offset_t, size_t);
720 int	page_reclaim(page_t *, kmutex_t *);
721 int	page_reclaim_pages(page_t *, kmutex_t *, uint_t);
722 void	page_destroy(page_t *, int);
723 void	page_destroy_pages(page_t *);
724 void	page_destroy_free(page_t *);
725 void	page_rename(page_t *, struct vnode *, u_offset_t);
726 int	page_hashin(page_t *, struct vnode *, u_offset_t, kmutex_t *);
727 void	page_hashout(page_t *, kmutex_t *);
728 int	page_num_hashin(pfn_t, struct vnode *, u_offset_t);
729 void	page_add(page_t **, page_t *);
730 void	page_add_common(page_t **, page_t *);
731 void	page_sub(page_t **, page_t *);
732 void	page_sub_common(page_t **, page_t *);
733 page_t	*page_get_freelist(struct vnode *, u_offset_t, struct seg *,
734 		caddr_t, size_t, uint_t, struct lgrp *);
735 
736 page_t	*page_get_cachelist(struct vnode *, u_offset_t, struct seg *,
737 		caddr_t, uint_t, struct lgrp *);
738 #if defined(__i386) || defined(__amd64)
739 int	page_chk_freelist(uint_t);
740 #endif
741 void	page_list_add(page_t *, int);
742 void	page_boot_demote(page_t *);
743 void	page_promote_size(page_t *, uint_t);
744 void	page_list_add_pages(page_t *, int);
745 void	page_list_sub(page_t *, int);
746 void	page_list_sub_pages(page_t *, uint_t);
747 void	page_list_xfer(page_t *, int, int);
748 void	page_list_break(page_t **, page_t **, size_t);
749 void	page_list_concat(page_t **, page_t **);
750 void	page_vpadd(page_t **, page_t *);
751 void	page_vpsub(page_t **, page_t *);
752 int	page_lock(page_t *, se_t, kmutex_t *, reclaim_t);
753 int	page_lock_es(page_t *, se_t, kmutex_t *, reclaim_t, int);
754 void page_lock_clr_exclwanted(page_t *);
755 int	page_trylock(page_t *, se_t);
756 int	page_try_reclaim_lock(page_t *, se_t, int);
757 int	page_tryupgrade(page_t *);
758 void	page_downgrade(page_t *);
759 void	page_unlock(page_t *);
760 void	page_unlock_nocapture(page_t *);
761 void	page_lock_delete(page_t *);
762 int	page_deleted(page_t *);
763 int	page_pp_lock(page_t *, int, int);
764 void	page_pp_unlock(page_t *, int, int);
765 int	page_resv(pgcnt_t, uint_t);
766 void	page_unresv(pgcnt_t);
767 void	page_pp_useclaim(page_t *, page_t *, uint_t);
768 int	page_addclaim(page_t *);
769 int	page_subclaim(page_t *);
770 int	page_addclaim_pages(page_t **);
771 int	page_subclaim_pages(page_t **);
772 pfn_t	page_pptonum(page_t *);
773 page_t	*page_numtopp(pfn_t, se_t);
774 page_t	*page_numtopp_noreclaim(pfn_t, se_t);
775 page_t	*page_numtopp_nolock(pfn_t);
776 page_t	*page_numtopp_nowait(pfn_t, se_t);
777 page_t  *page_first();
778 page_t  *page_next(page_t *);
779 page_t  *page_list_next(page_t *);
780 page_t	*page_nextn(page_t *, ulong_t);
781 page_t	*page_next_scan_init(void **);
782 page_t	*page_next_scan_large(page_t *, ulong_t *, void **);
783 void    prefetch_page_r(void *);
784 int	ppcopy(page_t *, page_t *);
785 void	page_relocate_hash(page_t *, page_t *);
786 void	pagezero(page_t *, uint_t, uint_t);
787 void	pagescrub(page_t *, uint_t, uint_t);
788 void	page_io_lock(page_t *);
789 void	page_io_unlock(page_t *);
790 int	page_io_trylock(page_t *);
791 int	page_iolock_assert(page_t *);
792 void	page_iolock_init(page_t *);
793 void	page_io_wait(page_t *);
794 int	page_io_locked(page_t *);
795 pgcnt_t	page_busy(int);
796 void	page_lock_init(void);
797 ulong_t	page_share_cnt(page_t *);
798 int	page_isshared(page_t *);
799 int	page_isfree(page_t *);
800 int	page_isref(page_t *);
801 int	page_ismod(page_t *);
802 int	page_release(page_t *, int);
803 void	page_retire_init(void);
804 int	page_retire(uint64_t, uchar_t);
805 int	page_retire_check(uint64_t, uint64_t *);
806 int	page_unretire(uint64_t);
807 int	page_unretire_pp(page_t *, int);
808 void	page_tryretire(page_t *);
809 void	page_retire_mdboot();
810 uint64_t	page_retire_pend_count(void);
811 uint64_t	page_retire_pend_kas_count(void);
812 void	page_retire_incr_pend_count(void *);
813 void	page_retire_decr_pend_count(void *);
814 void	page_clrtoxic(page_t *, uchar_t);
815 void	page_settoxic(page_t *, uchar_t);
816 
817 int	page_mem_avail(pgcnt_t);
818 int	page_reclaim_mem(pgcnt_t, pgcnt_t, int);
819 
820 void page_set_props(page_t *, uint_t);
821 void page_clr_all_props(page_t *);
822 int page_clear_lck_cow(page_t *, int);
823 
824 kmutex_t	*page_vnode_mutex(struct vnode *);
825 kmutex_t	*page_se_mutex(struct page *);
826 kmutex_t	*page_szc_lock(struct page *);
827 int		page_szc_lock_assert(struct page *pp);
828 
829 /*
830  * Page relocation interfaces. page_relocate() is generic.
831  * page_get_replacement_page() is provided by the PSM.
832  * page_free_replacement_page() is generic.
833  */
834 int group_page_trylock(page_t *, se_t);
835 void group_page_unlock(page_t *);
836 int page_relocate(page_t **, page_t **, int, int, spgcnt_t *, struct lgrp *);
837 int do_page_relocate(page_t **, page_t **, int, spgcnt_t *, struct lgrp *);
838 page_t *page_get_replacement_page(page_t *, struct lgrp *, uint_t);
839 void page_free_replacement_page(page_t *);
840 int page_relocate_cage(page_t **, page_t **);
841 
842 int page_try_demote_pages(page_t *);
843 int page_try_demote_free_pages(page_t *);
844 void page_demote_free_pages(page_t *);
845 
846 struct anon_map;
847 
848 void page_mark_migrate(struct seg *, caddr_t, size_t, struct anon_map *,
849     ulong_t, vnode_t *, u_offset_t, int);
850 void page_migrate(struct seg *, caddr_t, page_t **, pgcnt_t);
851 
852 /*
853  * Tell the PIM we are adding physical memory
854  */
855 void add_physmem(page_t *, size_t, pfn_t);
856 void add_physmem_cb(page_t *, pfn_t);	/* callback for page_t part */
857 
858 /*
859  * hw_page_array[] is configured with hardware supported page sizes by
860  * platform specific code.
861  */
862 typedef struct {
863 	size_t	hp_size;
864 	uint_t	hp_shift;
865 	uint_t  hp_colors;
866 	pgcnt_t	hp_pgcnt;	/* base pagesize cnt */
867 } hw_pagesize_t;
868 
869 extern hw_pagesize_t	hw_page_array[];
870 extern uint_t		page_coloring_shift;
871 extern uint_t		page_colors_mask;
872 extern int		cpu_page_colors;
873 extern uint_t		colorequiv;
874 extern uchar_t		colorequivszc[];
875 
876 uint_t	page_num_pagesizes(void);
877 uint_t	page_num_user_pagesizes(int);
878 size_t	page_get_pagesize(uint_t);
879 size_t	page_get_user_pagesize(uint_t n);
880 pgcnt_t	page_get_pagecnt(uint_t);
881 uint_t	page_get_shift(uint_t);
882 int	page_szc(size_t);
883 int	page_szc_user_filtered(size_t);
884 
885 /* page_get_replacement page flags */
886 #define	PGR_SAMESZC	0x1	/* only look for page size same as orig */
887 #define	PGR_NORELOC	0x2	/* allocate a P_NORELOC page */
888 
889 /*
890  * macros for "masked arithmetic"
891  * The purpose is to step through all combinations of a set of bits while
892  * keeping some other bits fixed. Fixed bits need not be contiguous. The
893  * variable bits need not be contiguous either, or even right aligned. The
894  * trick is to set all fixed bits to 1, then increment, then restore the
895  * fixed bits. If incrementing causes a carry from a low bit position, the
896  * carry propagates thru the fixed bits, because they are temporarily set to 1.
897  *	v is the value
898  *	i is the increment
899  *	eq_mask defines the fixed bits
900  *	mask limits the size of the result
901  */
902 #define	ADD_MASKED(v, i, eq_mask, mask) \
903 	(((((v) | (eq_mask)) + (i)) & (mask) & ~(eq_mask)) | ((v) & (eq_mask)))
904 
905 /*
906  * convenience macro which increments by 1
907  */
908 #define	INC_MASKED(v, eq_mask, mask) ADD_MASKED(v, 1, eq_mask, mask)
909 
910 #endif	/* _KERNEL */
911 
912 /*
913  * Constants used for the p_iolock_state
914  */
915 #define	PAGE_IO_INUSE	0x1
916 #define	PAGE_IO_WANTED	0x2
917 
918 /*
919  * Constants used for page_release status
920  */
921 #define	PGREL_NOTREL    0x1
922 #define	PGREL_CLEAN	0x2
923 #define	PGREL_MOD	0x3
924 
925 /*
926  * The p_state field holds what used to be the p_age and p_free
927  * bits.  These fields are protected by p_selock (see above).
928  */
929 #define	P_FREE		0x80		/* Page on free list */
930 #define	P_NORELOC	0x40		/* Page is non-relocatable */
931 #define	P_MIGRATE	0x20		/* Migrate page on next touch */
932 #define	P_SWAP		0x10		/* belongs to vnode that is V_ISSWAP */
933 #define	P_BOOTPAGES	0x08		/* member of bootpages list */
934 #define	P_RAF		0x04		/* page retired at free */
935 
936 #define	PP_ISFREE(pp)		((pp)->p_state & P_FREE)
937 #define	PP_ISAGED(pp)		(((pp)->p_state & P_FREE) && \
938 					((pp)->p_vnode == NULL))
939 #define	PP_ISNORELOC(pp)	((pp)->p_state & P_NORELOC)
940 #define	PP_ISKAS(pp)		(VN_ISKAS((pp)->p_vnode))
941 #define	PP_ISNORELOCKERNEL(pp)	(PP_ISNORELOC(pp) && PP_ISKAS(pp))
942 #define	PP_ISMIGRATE(pp)	((pp)->p_state & P_MIGRATE)
943 #define	PP_ISSWAP(pp)		((pp)->p_state & P_SWAP)
944 #define	PP_ISBOOTPAGES(pp)	((pp)->p_state & P_BOOTPAGES)
945 #define	PP_ISRAF(pp)		((pp)->p_state & P_RAF)
946 
947 #define	PP_SETFREE(pp)		((pp)->p_state = ((pp)->p_state & ~P_MIGRATE) \
948 				| P_FREE)
949 #define	PP_SETAGED(pp)		ASSERT(PP_ISAGED(pp))
950 #define	PP_SETNORELOC(pp)	((pp)->p_state |= P_NORELOC)
951 #define	PP_SETMIGRATE(pp)	((pp)->p_state |= P_MIGRATE)
952 #define	PP_SETSWAP(pp)		((pp)->p_state |= P_SWAP)
953 #define	PP_SETBOOTPAGES(pp)	((pp)->p_state |= P_BOOTPAGES)
954 #define	PP_SETRAF(pp)		((pp)->p_state |= P_RAF)
955 
956 #define	PP_CLRFREE(pp)		((pp)->p_state &= ~P_FREE)
957 #define	PP_CLRAGED(pp)		ASSERT(!PP_ISAGED(pp))
958 #define	PP_CLRNORELOC(pp)	((pp)->p_state &= ~P_NORELOC)
959 #define	PP_CLRMIGRATE(pp)	((pp)->p_state &= ~P_MIGRATE)
960 #define	PP_CLRSWAP(pp)		((pp)->p_state &= ~P_SWAP)
961 #define	PP_CLRBOOTPAGES(pp)	((pp)->p_state &= ~P_BOOTPAGES)
962 #define	PP_CLRRAF(pp)		((pp)->p_state &= ~P_RAF)
963 
964 /*
965  * Flags for page_t p_toxic, for tracking memory hardware errors.
966  *
967  * These flags are OR'ed into p_toxic with page_settoxic() to track which
968  * error(s) have occurred on a given page. The flags are cleared with
969  * page_clrtoxic(). Both page_settoxic() and page_cleartoxic use atomic
970  * primitives to manipulate the p_toxic field so no other locking is needed.
971  *
972  * When an error occurs on a page, p_toxic is set to record the error. The
973  * error could be a memory error or something else (i.e. a datapath). The Page
974  * Retire mechanism does not try to determine the exact cause of the error;
975  * Page Retire rightly leaves that sort of determination to FMA's Diagnostic
976  * Engine (DE).
977  *
978  * Note that, while p_toxic bits can be set without holding any locks, they
979  * should only be cleared while holding the page exclusively locked.
980  * There is one exception to this, the PR_CAPTURE bit is protected by a mutex
981  * within the page capture logic and thus to set or clear the bit, that mutex
982  * needs to be held.  The page does not need to be locked but the page_clrtoxic
983  * function must be used as we need an atomic operation.
984  * Also note that there is what amounts to a hack to prevent recursion with
985  * large pages such that if we are unlocking a page and the PR_CAPTURE bit is
986  * set, we will only try to capture the page if the current threads T_CAPTURING
987  * flag is not set.  If the flag is set, the unlock will not try to capture
988  * the page even though the PR_CAPTURE bit is set.
989  *
990  * Pages with PR_UE or PR_FMA flags are retired unconditionally, while pages
991  * with PR_MCE are retired if the system has not retired too many of them.
992  *
993  * A page must be exclusively locked to be retired. Pages can be retired if
994  * they are mapped, modified, or both, as long as they are not marked PR_UE,
995  * since pages with uncorrectable errors cannot be relocated in memory.
996  * Once a page has been successfully retired it is zeroed, attached to the
997  * retired_pages vnode and, finally, PR_RETIRED is set in p_toxic. The other
998  * p_toxic bits are NOT cleared. Pages are not left locked after retiring them
999  * to avoid special case code throughout the kernel; rather, page_*lock() will
1000  * fail to lock the page, unless SE_RETIRED is passed as an argument.
1001  *
1002  * While we have your attention, go take a look at the comments at the
1003  * beginning of page_retire.c too.
1004  */
1005 #define	PR_OK		0x00	/* no problem */
1006 #define	PR_MCE		0x01	/* page has seen two or more CEs */
1007 #define	PR_UE		0x02	/* page has an unhandled UE */
1008 #define	PR_UE_SCRUBBED	0x04	/* page has seen a UE but was cleaned */
1009 #define	PR_FMA		0x08	/* A DE wants this page retired */
1010 #define	PR_CAPTURE	0x10	/* page is hashed on page_capture_hash[] */
1011 #define	PR_RESV		0x20	/* Reserved for future use */
1012 #define	PR_MSG		0x40	/* message(s) already printed for this page */
1013 #define	PR_RETIRED	0x80	/* This page has been retired */
1014 
1015 #define	PR_REASONS	(PR_UE | PR_MCE | PR_FMA)
1016 #define	PR_TOXIC	(PR_UE)
1017 #define	PR_ERRMASK	(PR_UE | PR_UE_SCRUBBED | PR_MCE | PR_FMA)
1018 #define	PR_TOXICFLAGS	(0xCF)
1019 
1020 #define	PP_RETIRED(pp)	((pp)->p_toxic & PR_RETIRED)
1021 #define	PP_TOXIC(pp)	((pp)->p_toxic & PR_TOXIC)
1022 #define	PP_PR_REQ(pp)	(((pp)->p_toxic & PR_REASONS) && !PP_RETIRED(pp))
1023 #define	PP_PR_NOSHARE(pp)						\
1024 	((((pp)->p_toxic & (PR_RETIRED | PR_FMA | PR_UE)) == PR_FMA) &&	\
1025 	!PP_ISKAS(pp))
1026 
1027 /*
1028  * Flags for page_unretire_pp
1029  */
1030 #define	PR_UNR_FREE	0x1
1031 #define	PR_UNR_CLEAN	0x2
1032 #define	PR_UNR_TEMP	0x4
1033 
1034 /*
1035  * kpm large page description.
1036  * The virtual address range of segkpm is divided into chunks of
1037  * kpm_pgsz. Each chunk is controlled by a kpm_page_t. The ushort
1038  * is sufficient for 2^^15 * PAGESIZE, so e.g. the maximum kpm_pgsz
1039  * for 8K is 256M and 2G for 64K pages. It it kept as small as
1040  * possible to save physical memory space.
1041  *
1042  * There are 2 segkpm mapping windows within in the virtual address
1043  * space when we have to prevent VAC alias conflicts. The so called
1044  * Alias window (mappings are always by PAGESIZE) is controlled by
1045  * kp_refcnta. The regular window is controlled by kp_refcnt for the
1046  * normal operation, which is to use the largest available pagesize.
1047  * When VAC alias conflicts are present within a chunk in the regular
1048  * window the large page mapping is broken up into smaller PAGESIZE
1049  * mappings. kp_refcntc is used to control the pages that are invoked
1050  * in the conflict and kp_refcnts holds the active mappings done
1051  * with the small page size. In non vac conflict mode kp_refcntc is
1052  * also used as "go" indication (-1) for the trap level tsbmiss
1053  * handler.
1054  */
1055 typedef struct kpm_page {
1056 	short kp_refcnt;	/* pages mapped large */
1057 	short kp_refcnta;	/* pages mapped in Alias window */
1058 	short kp_refcntc;	/* TL-tsbmiss flag; #vac alias conflict pages */
1059 	short kp_refcnts;	/* vac alias: pages mapped small */
1060 } kpm_page_t;
1061 
1062 /*
1063  * Note: khl_lock offset changes must be reflected in sfmmu_asm.s
1064  */
1065 typedef struct kpm_hlk {
1066 	kmutex_t khl_mutex;	/* kpm_page mutex */
1067 	uint_t   khl_lock;	/* trap level tsbmiss handling */
1068 } kpm_hlk_t;
1069 
1070 /*
1071  * kpm small page description.
1072  * When kpm_pgsz is equal to PAGESIZE a smaller representation is used
1073  * to save memory space. Alias range mappings and regular segkpm
1074  * mappings are done in units of PAGESIZE and can share the mapping
1075  * information and the mappings are always distinguishable by their
1076  * virtual address. Other information needed for VAC conflict prevention
1077  * is already available on a per page basis.
1078  *
1079  * The state about how a kpm page is mapped and whether it is ready to go
1080  * is indicated by the following 1 byte kpm_spage structure. This byte is
1081  * split into two 4-bit parts - kp_mapped and kp_mapped_go.
1082  * 	- kp_mapped == 1	the page is mapped cacheable
1083  *	- kp_mapped == 2	the page is mapped non-cacheable
1084  *	- kp_mapped_go == 1	the mapping is ready to be dropped in
1085  *	- kp_mapped_go == 0	the mapping is not ready to be dropped in.
1086  * When kp_mapped_go == 0, we will have C handler resolve the VAC conflict.
1087  * Otherwise, the assembly tsb miss handler can simply drop in the mapping
1088  * when a tsb miss occurs.
1089  */
1090 typedef union kpm_spage {
1091 	struct {
1092 #ifdef  _BIG_ENDIAN
1093 		uchar_t mapped_go: 4;	/* go or nogo flag */
1094 		uchar_t mapped: 4;	/* page mapped small */
1095 #else
1096 		uchar_t mapped: 4;	/* page mapped small */
1097 		uchar_t mapped_go: 4;	/* go or nogo flag */
1098 #endif
1099 	} kpm_spage_un;
1100 	uchar_t kp_mapped_flag;
1101 } kpm_spage_t;
1102 
1103 #define	kp_mapped	kpm_spage_un.mapped
1104 #define	kp_mapped_go	kpm_spage_un.mapped_go
1105 
1106 /*
1107  * Note: kshl_lock offset changes must be reflected in sfmmu_asm.s
1108  */
1109 typedef struct kpm_shlk {
1110 	uint_t   kshl_lock;	/* trap level tsbmiss handling */
1111 } kpm_shlk_t;
1112 
1113 /*
1114  * Each segment of physical memory is described by a memseg struct.
1115  * Within a segment, memory is considered contiguous. The members
1116  * can be categorized as follows:
1117  * . Platform independent:
1118  *         pages, epages, pages_base, pages_end, next, lnext.
1119  * . 64bit only but platform independent:
1120  *         kpm_pbase, kpm_nkpmpgs, kpm_pages, kpm_spages.
1121  * . Really platform or mmu specific:
1122  *         pagespa, epagespa, nextpa, kpm_pagespa.
1123  * . Mixed:
1124  *         msegflags.
1125  */
1126 struct memseg {
1127 	page_t *pages, *epages;		/* [from, to] in page array */
1128 	pfn_t pages_base, pages_end;	/* [from, to] in page numbers */
1129 	struct memseg *next;		/* next segment in list */
1130 	struct memseg *lnext;		/* next segment in deleted list */
1131 #if defined(__sparc)
1132 	uint64_t pagespa, epagespa;	/* [from, to] page array physical */
1133 	uint64_t nextpa;		/* physical next pointer */
1134 	pfn_t	kpm_pbase;		/* start of kpm range */
1135 	pgcnt_t kpm_nkpmpgs;		/* # of kpm_pgsz pages */
1136 	union _mseg_un {
1137 		kpm_page_t  *kpm_lpgs;	/* ptr to kpm_page array */
1138 		kpm_spage_t *kpm_spgs;	/* ptr to kpm_spage array */
1139 	} mseg_un;
1140 	uint64_t kpm_pagespa;		/* physical ptr to kpm (s)pages array */
1141 #endif /* __sparc */
1142 	uint_t msegflags;		/* memseg flags */
1143 };
1144 
1145 /* memseg union aliases */
1146 #define	kpm_pages	mseg_un.kpm_lpgs
1147 #define	kpm_spages	mseg_un.kpm_spgs
1148 
1149 /* msegflags */
1150 #define	MEMSEG_DYNAMIC		0x1	/* DR: memory was added dynamically */
1151 #define	MEMSEG_META_INCL	0x2	/* DR: memseg includes it's metadata */
1152 #define	MEMSEG_META_ALLOC	0x4	/* DR: memseg allocated it's metadata */
1153 
1154 /* memseg support macros */
1155 #define	MSEG_NPAGES(SEG)	((SEG)->pages_end - (SEG)->pages_base)
1156 
1157 /* memseg hash */
1158 #define	MEM_HASH_SHIFT		0x9
1159 #define	N_MEM_SLOTS		0x200		/* must be a power of 2 */
1160 #define	MEMSEG_PFN_HASH(pfn)	(((pfn)/mhash_per_slot) & (N_MEM_SLOTS - 1))
1161 
1162 /* memseg  externals */
1163 extern struct memseg *memsegs;		/* list of memory segments */
1164 extern ulong_t mhash_per_slot;
1165 extern uint64_t memsegspa;		/* memsegs as physical address */
1166 
1167 void build_pfn_hash();
1168 extern struct memseg *page_numtomemseg_nolock(pfn_t pfnum);
1169 
1170 /*
1171  * page capture related info:
1172  * The page capture routines allow us to asynchronously capture given pages
1173  * for the explicit use of the requestor.  New requestors can be added by
1174  * explicitly adding themselves to the PC_* flags below and incrementing
1175  * PC_NUM_CALLBACKS as necessary.
1176  *
1177  * Subsystems using page capture must register a callback before attempting
1178  * to capture a page.  A duration of -1 will indicate that we will never give
1179  * up while trying to capture a page and will only stop trying to capture the
1180  * given page once we have successfully captured it.  Thus the user needs to be
1181  * aware of the behavior of all callers who have a duration of -1.
1182  *
1183  * For now, only /dev/physmem and page retire use the page capture interface
1184  * and only a single request can be outstanding for a given page.  Thus, if
1185  * /dev/phsymem wants a page and page retire also wants the same page, only
1186  * the page retire request will be honored until the point in time that the
1187  * page is actually retired, at which point in time, subsequent requests by
1188  * /dev/physmem will succeed if the CAPTURE_GET_RETIRED flag was set.
1189  */
1190 
1191 #define	PC_RETIRE		(0)
1192 #define	PC_PHYSMEM		(1)
1193 #define	PC_NUM_CALLBACKS	(2)
1194 #define	PC_MASK			((1 << PC_NUM_CALLBACKS) - 1)
1195 
1196 #define	CAPTURE_RETIRE		(1 << PC_RETIRE)
1197 #define	CAPTURE_PHYSMEM		(1 << PC_PHYSMEM)
1198 
1199 #define	CAPTURE_ASYNC		(0x0200)
1200 
1201 #define	CAPTURE_GET_RETIRED	(0x1000)
1202 #define	CAPTURE_GET_CAGE	(0x2000)
1203 
1204 struct page_capture_callback {
1205 	int cb_active;		/* 1 means active, 0 means inactive */
1206 	clock_t duration;	/* the length in time that we'll attempt to */
1207 				/* capture this page asynchronously. (in HZ) */
1208 	krwlock_t cb_rwlock;
1209 	int (*cb_func)(page_t *, void *, uint_t); /* callback function */
1210 };
1211 
1212 extern kcondvar_t pc_cv;
1213 
1214 void page_capture_register_callback(uint_t index, clock_t duration,
1215     int (*cb_func)(page_t *, void *, uint_t));
1216 void page_capture_unregister_callback(uint_t index);
1217 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
1218 void page_unlock_capture(page_t *pp);
1219 int page_capture_unretire_pp(page_t *);
1220 
1221 extern int memsegs_trylock(int);
1222 extern void memsegs_lock(int);
1223 extern void memsegs_unlock(int);
1224 extern int memsegs_lock_held(void);
1225 extern void memlist_read_lock(void);
1226 extern void memlist_read_unlock(void);
1227 extern void memlist_write_lock(void);
1228 extern void memlist_write_unlock(void);
1229 
1230 #ifdef	__cplusplus
1231 }
1232 #endif
1233 
1234 #endif	/* _VM_PAGE_H */
1235