1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #ifndef _SYS_SYSMACROS_H 31 #define _SYS_SYSMACROS_H 32 33 #pragma ident "%Z%%M% %I% %E% SMI" 34 35 #include <sys/param.h> 36 37 #ifdef __cplusplus 38 extern "C" { 39 #endif 40 41 /* 42 * Some macros for units conversion 43 */ 44 /* 45 * Disk blocks (sectors) and bytes. 46 */ 47 #define dtob(DD) ((DD) << DEV_BSHIFT) 48 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 49 #define btodt(BB) ((BB) >> DEV_BSHIFT) 50 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 51 52 /* common macros */ 53 #ifndef MIN 54 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 55 #endif 56 #ifndef MAX 57 #define MAX(a, b) ((a) < (b) ? (b) : (a)) 58 #endif 59 #ifndef ABS 60 #define ABS(a) ((a) < 0 ? -(a) : (a)) 61 #endif 62 63 #ifdef _KERNEL 64 65 /* 66 * Convert a single byte to/from binary-coded decimal (BCD). 67 */ 68 extern unsigned char byte_to_bcd[256]; 69 extern unsigned char bcd_to_byte[256]; 70 71 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff] 72 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff] 73 74 #endif /* _KERNEL */ 75 76 /* 77 * WARNING: The device number macros defined here should not be used by device 78 * drivers or user software. Device drivers should use the device functions 79 * defined in the DDI/DKI interface (see also ddi.h). Application software 80 * should make use of the library routines available in makedev(3). A set of 81 * new device macros are provided to operate on the expanded device number 82 * format supported in SVR4. Macro versions of the DDI device functions are 83 * provided for use by kernel proper routines only. Macro routines bmajor(), 84 * major(), minor(), emajor(), eminor(), and makedev() will be removed or 85 * their definitions changed at the next major release following SVR4. 86 */ 87 88 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */ 89 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */ 90 #define O_MAXMAJ 0x7f /* SVR3 max major value */ 91 #define O_MAXMIN 0xff /* SVR3 max minor value */ 92 93 94 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */ 95 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */ 96 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */ 97 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */ 98 /* For 3b2 hardware devices the minor is */ 99 /* restricted to 256 (0-255) */ 100 101 #ifdef _LP64 102 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */ 103 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */ 104 #define L_MAXMAJ 0xfffffffful /* max major value */ 105 #define L_MAXMIN 0xfffffffful /* max minor value */ 106 #else 107 #define L_BITSMAJOR L_BITSMAJOR32 108 #define L_BITSMINOR L_BITSMINOR32 109 #define L_MAXMAJ L_MAXMAJ32 110 #define L_MAXMIN L_MAXMIN32 111 #endif 112 113 #ifdef _KERNEL 114 115 /* major part of a device internal to the kernel */ 116 117 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 118 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 119 120 /* get internal major part of expanded device number */ 121 122 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ) 123 124 /* minor part of a device internal to the kernel */ 125 126 #define minor(x) (minor_t)((x) & O_MAXMIN) 127 128 /* get internal minor part of expanded device number */ 129 130 #define getminor(x) (minor_t)((x) & L_MAXMIN) 131 132 #else 133 134 /* major part of a device external from the kernel (same as emajor below) */ 135 136 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 137 138 /* minor part of a device external from the kernel (same as eminor below) */ 139 140 #define minor(x) (minor_t)((x) & O_MAXMIN) 141 142 #endif /* _KERNEL */ 143 144 /* create old device number */ 145 146 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN)) 147 148 /* make an new device number */ 149 150 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN)) 151 152 153 /* 154 * emajor() allows kernel/driver code to print external major numbers 155 * eminor() allows kernel/driver code to print external minor numbers 156 */ 157 158 #define emajor(x) \ 159 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \ 160 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ) 161 162 #define eminor(x) \ 163 (minor_t)((x) & O_MAXMIN) 164 165 /* 166 * get external major and minor device 167 * components from expanded device number 168 */ 169 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \ 170 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ)) 171 #define geteminor(x) (minor_t)((x) & L_MAXMIN) 172 173 /* 174 * These are versions of the kernel routines for compressing and 175 * expanding long device numbers that don't return errors. 176 */ 177 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR) 178 179 #define DEVCMPL(x) (x) 180 #define DEVEXPL(x) (x) 181 182 #else 183 184 #define DEVCMPL(x) \ 185 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \ 186 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \ 187 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32))) 188 189 #define DEVEXPL(x) \ 190 (((x) == NODEV32) ? NODEV : \ 191 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32)) 192 193 #endif /* L_BITSMAJOR32 ... */ 194 195 /* convert to old (SVR3.2) dev format */ 196 197 #define cmpdev(x) \ 198 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \ 199 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \ 200 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN))) 201 202 /* convert to new (SVR4) dev format */ 203 204 #define expdev(x) \ 205 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \ 206 ((x) & O_MAXMIN)) 207 208 /* 209 * Macro for checking power of 2 address alignment. 210 */ 211 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) 212 213 /* 214 * Macros for counting and rounding. 215 */ 216 #define howmany(x, y) (((x)+((y)-1))/(y)) 217 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) 218 219 /* 220 * Macro to determine if value is a power of 2 221 */ 222 #define ISP2(x) (((x) & ((x) - 1)) == 0) 223 224 /* 225 * Macros for various sorts of alignment and rounding when the alignment 226 * is known to be a power of 2. 227 */ 228 #define P2ALIGN(x, align) ((x) & -(align)) 229 #define P2PHASE(x, align) ((x) & ((align) - 1)) 230 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 231 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 232 #define P2END(x, align) (-(~(x) & -(align))) 233 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 234 #define P2CROSS(x, y, align) (((x) ^ (y)) > (align) - 1) 235 /* 236 * Determine whether two numbers have the same high-order bit. 237 */ 238 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y))) 239 240 /* 241 * Typed version of the P2* macros. These macros should be used to ensure 242 * that the result is correctly calculated based on the data type of (x), 243 * which is passed in as the last argument, regardless of the data 244 * type of the alignment. For example, if (x) is of type uint64_t, 245 * and we want to round it up to a page boundary using "PAGESIZE" as 246 * the alignment, we can do either 247 * P2ROUNDUP(x, (uint64_t)PAGESIZE) 248 * or 249 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t) 250 */ 251 #define P2ALIGN_TYPED(x, align, type) \ 252 ((type)(x) & -(type)(align)) 253 #define P2PHASE_TYPED(x, align, type) \ 254 ((type)(x) & ((type)(align) - 1)) 255 #define P2NPHASE_TYPED(x, align, type) \ 256 (-(type)(x) & ((type)(align) - 1)) 257 #define P2ROUNDUP_TYPED(x, align, type) \ 258 (-(-(type)(x) & -(type)(align))) 259 #define P2END_TYPED(x, align, type) \ 260 (-(~(type)(x) & -(type)(align))) 261 #define P2PHASEUP_TYPED(x, align, phase, type) \ 262 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align))) 263 #define P2CROSS_TYPED(x, y, align, type) \ 264 (((type)(x) ^ (type)(y)) > (type)(align) - 1) 265 #define P2SAMEHIGHBIT_TYPED(x, y, type) \ 266 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y))) 267 268 /* 269 * Macros to atomically increment/decrement a variable. mutex and var 270 * must be pointers. 271 */ 272 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex) 273 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex) 274 275 /* 276 * Macros to declare bitfields - the order in the parameter list is 277 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields 278 * because if a field crosses a byte boundary it's not likely to be meaningful 279 * without reassembly in its nonnative endianness. 280 */ 281 #if defined(_BIT_FIELDS_LTOH) 282 #define DECL_BITFIELD2(_a, _b) \ 283 uint8_t _a, _b 284 #define DECL_BITFIELD3(_a, _b, _c) \ 285 uint8_t _a, _b, _c 286 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 287 uint8_t _a, _b, _c, _d 288 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 289 uint8_t _a, _b, _c, _d, _e 290 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 291 uint8_t _a, _b, _c, _d, _e, _f 292 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 293 uint8_t _a, _b, _c, _d, _e, _f, _g 294 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 295 uint8_t _a, _b, _c, _d, _e, _f, _g, _h 296 #elif defined(_BIT_FIELDS_HTOL) 297 #define DECL_BITFIELD2(_a, _b) \ 298 uint8_t _b, _a 299 #define DECL_BITFIELD3(_a, _b, _c) \ 300 uint8_t _c, _b, _a 301 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 302 uint8_t _d, _c, _b, _a 303 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 304 uint8_t _e, _d, _c, _b, _a 305 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 306 uint8_t _f, _e, _d, _c, _b, _a 307 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 308 uint8_t _g, _f, _e, _d, _c, _b, _a 309 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 310 uint8_t _h, _g, _f, _e, _d, _c, _b, _a 311 #else 312 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined 313 #endif /* _BIT_FIELDS_LTOH */ 314 315 #if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof) 316 317 /* avoid any possibility of clashing with <stddef.h> version */ 318 319 #define offsetof(s, m) ((size_t)(&(((s *)0)->m))) 320 #endif 321 322 #ifdef __cplusplus 323 } 324 #endif 325 326 #endif /* _SYS_SYSMACROS_H */ 327