1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_SUNDDI_H 28 #define _SYS_SUNDDI_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Sun Specific DDI definitions 34 */ 35 36 #include <sys/isa_defs.h> 37 #include <sys/dditypes.h> 38 #include <sys/ddipropdefs.h> 39 #include <sys/devops.h> 40 #include <sys/time.h> 41 #include <sys/cmn_err.h> 42 #include <sys/ddidevmap.h> 43 #include <sys/ddi_impldefs.h> 44 #include <sys/ddi_implfuncs.h> 45 #include <sys/ddi_isa.h> 46 #include <sys/model.h> 47 #include <sys/devctl.h> 48 #if defined(__i386) || defined(__amd64) 49 #include <sys/dma_engine.h> 50 #endif 51 #include <sys/sunpm.h> 52 #include <sys/nvpair.h> 53 #include <sys/sysevent.h> 54 #include <sys/thread.h> 55 #include <sys/stream.h> 56 #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) 57 #include <asm/sunddi.h> 58 #endif 59 60 #ifdef __cplusplus 61 extern "C" { 62 #endif 63 64 /* 65 * Generic Sun DDI definitions. 66 */ 67 68 #define DDI_SUCCESS (0) /* successful return */ 69 #define DDI_FAILURE (-1) /* unsuccessful return */ 70 #define DDI_NOT_WELL_FORMED (-2) /* A dev_info node is not valid */ 71 #define DDI_EAGAIN (-3) /* not enough interrupt resources */ 72 #define DDI_EINVAL (-4) /* invalid request or arguments */ 73 #define DDI_ENOTSUP (-5) /* operation is not supported */ 74 #define DDI_EPENDING (-6) /* operation or an event is pending */ 75 76 /* 77 * General-purpose DDI error return value definitions 78 */ 79 #define DDI_ENOMEM 1 /* memory not available */ 80 #define DDI_EBUSY 2 /* busy */ 81 #define DDI_ETRANSPORT 3 /* transport down */ 82 #define DDI_ECONTEXT 4 /* context error */ 83 84 85 /* 86 * General DDI sleep/nosleep allocation flags 87 */ 88 #define DDI_SLEEP 0 89 #define DDI_NOSLEEP 1 90 91 /* 92 * The following special nodeid values are reserved for use when creating 93 * nodes ONLY. They specify the attributes of the DDI_NC_PSEUDO class node 94 * being created: 95 * 96 * o DEVI_PSEUDO_NODEID specifics a node without persistence. 97 * o DEVI_SID_NODEID specifies a node with persistence. 98 * 99 * A node with the 'persistent' attribute will not be automatically removed by 100 * the framework in the current implementation - driver.conf nodes are without 101 * persistence. 102 * 103 * The actual nodeid value may be assigned by the framework and may be 104 * different than these special values. Drivers may not make assumptions 105 * about the nodeid value that is actually assigned to the node. 106 */ 107 108 #define DEVI_PSEUDO_NODEID ((int)-1) 109 #define DEVI_SID_NODEID ((int)-2) 110 111 #define DEVI_PSEUDO_NEXNAME "pseudo" 112 #define DEVI_ISA_NEXNAME "isa" 113 #define DEVI_EISA_NEXNAME "eisa" 114 115 /* 116 * ddi_create_minor_node flags 117 */ 118 #define CLONE_DEV 1 /* device is a clone device */ 119 #define PRIVONLY_DEV 0x10 /* policy-based permissions only */ 120 121 /* 122 * Historical values used for the flag field in ddi_create_minor_node. 123 * Future use of flag bits should avoid these fields to keep binary 124 * compatibility 125 * #define GLOBAL_DEV 0x2 126 * #define NODEBOUND_DEV 0x4 127 * #define NODESPECIFIC_DEV 0x6 128 * #define ENUMERATED_DEV 0x8 129 */ 130 131 /* 132 * Device type defines which are used by the 'node_type' element of the 133 * ddi_minor_data structure 134 */ 135 #define DDI_NT_SERIAL "ddi_serial" /* Serial port */ 136 #define DDI_NT_SERIAL_MB "ddi_serial:mb" /* the 'built-in' serial */ 137 /* ports (the old ttya, b */ 138 /* (,c ,d)) */ 139 #define DDI_NT_SERIAL_DO "ddi_serial:dialout" /* dialout ports */ 140 #define DDI_NT_SERIAL_MB_DO "ddi_serial:dialout,mb" /* dialout for onboard */ 141 /* ports */ 142 #define DDI_NT_SERIAL_LOMCON "ddi_serial:lomcon" /* LOMlite2 console port */ 143 144 /* 145 * *_CHAN disk type devices have channel numbers or target numbers. 146 * (i.e. ipi and scsi devices) 147 */ 148 #define DDI_NT_BLOCK "ddi_block" /* hard disks */ 149 /* 150 * The next define is for block type devices that can possible exist on 151 * a sub-bus like the scsi bus or the ipi channel. The 'disks' program 152 * will pick up on this and create logical names like c0t0d0s0 instead of 153 * c0d0s0 154 */ 155 #define DDI_NT_BLOCK_CHAN "ddi_block:channel" 156 #define DDI_NT_BLOCK_WWN "ddi_block:wwn" 157 #define DDI_NT_CD "ddi_block:cdrom" /* rom drives (cd-rom) */ 158 #define DDI_NT_CD_CHAN "ddi_block:cdrom:channel" /* rom drives (scsi type) */ 159 #define DDI_NT_FD "ddi_block:diskette" /* floppy disks */ 160 161 #define DDI_NT_ENCLOSURE "ddi_enclosure" 162 #define DDI_NT_SCSI_ENCLOSURE "ddi_enclosure:scsi" 163 164 165 #define DDI_NT_TAPE "ddi_byte:tape" /* tape drives */ 166 167 #define DDI_NT_NET "ddi_network" /* DLPI network devices */ 168 169 #define DDI_NT_MAC "ddi_mac" /* MAC devices */ 170 171 #define DDI_NT_DISPLAY "ddi_display" /* display devices */ 172 173 #define DDI_PSEUDO "ddi_pseudo" /* general pseudo devices */ 174 175 #define DDI_NT_AUDIO "ddi_audio" /* audio device */ 176 177 #define DDI_NT_MOUSE "ddi_mouse" /* mouse device */ 178 179 #define DDI_NT_KEYBOARD "ddi_keyboard" /* keyboard device */ 180 181 #define DDI_NT_PARALLEL "ddi_parallel" /* parallel port */ 182 183 #define DDI_NT_PRINTER "ddi_printer" /* printer device */ 184 185 #define DDI_NT_UGEN "ddi_generic:usb" /* USB generic drv */ 186 187 #define DDI_NT_NEXUS "ddi_ctl:devctl" /* nexus drivers */ 188 189 #define DDI_NT_SCSI_NEXUS "ddi_ctl:devctl:scsi" /* nexus drivers */ 190 191 #define DDI_NT_ATTACHMENT_POINT "ddi_ctl:attachment_point" /* attachment pt */ 192 193 #define DDI_NT_SCSI_ATTACHMENT_POINT "ddi_ctl:attachment_point:scsi" 194 /* scsi attachment pt */ 195 #define DDI_NT_PCI_ATTACHMENT_POINT "ddi_ctl:attachment_point:pci" 196 /* PCI attachment pt */ 197 #define DDI_NT_SBD_ATTACHMENT_POINT "ddi_ctl:attachment_point:sbd" 198 /* generic bd attachment pt */ 199 #define DDI_NT_FC_ATTACHMENT_POINT "ddi_ctl:attachment_point:fc" 200 /* FC attachment pt */ 201 #define DDI_NT_USB_ATTACHMENT_POINT "ddi_ctl:attachment_point:usb" 202 /* USB devices */ 203 #define DDI_NT_BLOCK_FABRIC "ddi_block:fabric" 204 /* Fabric Devices */ 205 #define DDI_NT_IB_ATTACHMENT_POINT "ddi_ctl:attachment_point:ib" 206 /* IB devices */ 207 #define DDI_NT_SMARTCARD_READER "ddi_smartcard_reader" /* Smartcard reader */ 208 209 #define DDI_NT_AV_ASYNC "ddi_av:async" /* asynchronous AV device */ 210 #define DDI_NT_AV_ISOCH "ddi_av:isoch" /* isochronous AV device */ 211 212 /* Device types used for agpgart driver related devices */ 213 #define DDI_NT_AGP_PSEUDO "ddi_agp:pseudo" /* agpgart pseudo device */ 214 #define DDI_NT_AGP_MASTER "ddi_agp:master" /* agp master device */ 215 #define DDI_NT_AGP_TARGET "ddi_agp:target" /* agp target device */ 216 #define DDI_NT_AGP_CPUGART "ddi_agp:cpugart" /* amd64 on-cpu gart device */ 217 218 #define DDI_NT_REGACC "ddi_tool_reg" /* tool register access */ 219 #define DDI_NT_INTRCTL "ddi_tool_intr" /* tool intr access */ 220 221 /* 222 * DDI event definitions 223 */ 224 #define EC_DEVFS "EC_devfs" /* Event class devfs */ 225 226 /* Class devfs subclasses */ 227 #define ESC_DEVFS_MINOR_CREATE "ESC_devfs_minor_create" 228 #define ESC_DEVFS_MINOR_REMOVE "ESC_devfs_minor_remove" 229 #define ESC_DEVFS_DEVI_ADD "ESC_devfs_devi_add" 230 #define ESC_DEVFS_DEVI_REMOVE "ESC_devfs_devi_remove" 231 #define ESC_DEVFS_INSTANCE_MOD "ESC_devfs_instance_mod" 232 #define ESC_DEVFS_BRANCH_ADD "ESC_devfs_branch_add" 233 #define ESC_DEVFS_BRANCH_REMOVE "ESC_devfs_branch_remove" 234 235 /* DDI/NDI event publisher */ 236 #define EP_DDI SUNW_KERN_PUB"ddi" 237 238 /* 239 * devfs event class attributes 240 * 241 * The following attributes are private to EC_DEVFS 242 * event data. 243 */ 244 #define DEVFS_DRIVER_NAME "di.driver" 245 #define DEVFS_INSTANCE "di.instance" 246 #define DEVFS_PATHNAME "di.path" 247 #define DEVFS_DEVI_CLASS "di.devi_class" 248 #define DEVFS_BRANCH_EVENT "di.branch_event" 249 #define DEVFS_MINOR_NAME "mi.name" 250 #define DEVFS_MINOR_NODETYPE "mi.nodetype" 251 #define DEVFS_MINOR_ISCLONE "mi.isclone" 252 #define DEVFS_MINOR_MAJNUM "mi.majorno" 253 #define DEVFS_MINOR_MINORNUM "mi.minorno" 254 255 /* 256 * Fault-related definitions 257 * 258 * The specific numeric values have been chosen to be ordered, but 259 * not consecutive, to allow for future interpolation if required. 260 */ 261 typedef enum { 262 DDI_SERVICE_LOST = -32, 263 DDI_SERVICE_DEGRADED = -16, 264 DDI_SERVICE_UNAFFECTED = 0, 265 DDI_SERVICE_RESTORED = 16 266 } ddi_fault_impact_t; 267 268 typedef enum { 269 DDI_DATAPATH_FAULT = -32, 270 DDI_DEVICE_FAULT = -16, 271 DDI_EXTERNAL_FAULT = 0 272 } ddi_fault_location_t; 273 274 typedef enum { 275 DDI_DEVSTATE_OFFLINE = -32, 276 DDI_DEVSTATE_DOWN = -16, 277 DDI_DEVSTATE_QUIESCED = 0, 278 DDI_DEVSTATE_DEGRADED = 16, 279 DDI_DEVSTATE_UP = 32 280 } ddi_devstate_t; 281 282 #ifdef _KERNEL 283 284 /* 285 * Common property definitions 286 */ 287 #define DDI_FORCEATTACH "ddi-forceattach" 288 #define DDI_NO_AUTODETACH "ddi-no-autodetach" 289 290 /* 291 * Values that the function supplied to the dev_info 292 * tree traversal functions defined below must return. 293 */ 294 295 /* 296 * Continue search, if appropriate. 297 */ 298 #define DDI_WALK_CONTINUE 0 299 300 /* 301 * Terminate current depth of traversal. That is, terminate 302 * the current traversal of children nodes, but continue 303 * traversing sibling nodes and their children (if any). 304 */ 305 306 #define DDI_WALK_PRUNECHILD -1 307 308 /* 309 * Terminate current width of traversal. That is, terminate 310 * the current traversal of sibling nodes, but continue with 311 * traversing children nodes and their siblings (if appropriate). 312 */ 313 314 #define DDI_WALK_PRUNESIB -2 315 316 /* 317 * Terminate the entire search. 318 */ 319 320 #define DDI_WALK_TERMINATE -3 321 322 /* 323 * Terminate the entire search because an error occurred in function 324 */ 325 #define DDI_WALK_ERROR -4 326 327 /* 328 * Drivers that are prepared to support full driver layering 329 * should create and export a null-valued property of the following 330 * name. 331 * 332 * Such drivers should be prepared to be called with FKLYR in 333 * the 'flag' argument of their open(9E), close(9E) routines, and 334 * with FKIOCTL in the 'mode' argument of their ioctl(9E) routines. 335 * 336 * See ioctl(9E) and ddi_copyin(9F) for details. 337 */ 338 #define DDI_KERNEL_IOCTL "ddi-kernel-ioctl" 339 340 /* 341 * Model definitions for ddi_mmap_get_model(9F) and ddi_model_convert_from(9F). 342 */ 343 #define DDI_MODEL_MASK DATAMODEL_MASK /* Note: 0x0FF00000 */ 344 #define DDI_MODEL_ILP32 DATAMODEL_ILP32 345 #define DDI_MODEL_LP64 DATAMODEL_LP64 346 #define DDI_MODEL_NATIVE DATAMODEL_NATIVE 347 #define DDI_MODEL_NONE DATAMODEL_NONE 348 349 /* 350 * Functions and data references which really should be in <sys/ddi.h> 351 */ 352 353 extern int maxphys; 354 extern void minphys(struct buf *); 355 extern int physio(int (*)(struct buf *), struct buf *, dev_t, 356 int, void (*)(struct buf *), struct uio *); 357 extern void disksort(struct diskhd *, struct buf *); 358 359 extern long strtol(const char *, char **, int); 360 extern unsigned long strtoul(const char *, char **, int); 361 extern size_t strlen(const char *) __PURE; 362 extern char *strcpy(char *, const char *); 363 extern char *strncpy(char *, const char *, size_t); 364 /* Need to be consistent with <string.h> C++ definition for strchr() */ 365 #if __cplusplus >= 199711L 366 extern const char *strchr(const char *, int); 367 #ifndef _STRCHR_INLINE 368 #define _STRCHR_INLINE 369 extern "C++" { 370 inline char *strchr(char *__s, int __c) { 371 return (char *)strchr((const char *)__s, __c); 372 } 373 } 374 #endif /* _STRCHR_INLINE */ 375 #else 376 extern char *strchr(const char *, int); 377 #endif /* __cplusplus >= 199711L */ 378 #define DDI_STRSAME(s1, s2) ((*(s1) == *(s2)) && (strcmp((s1), (s2)) == 0)) 379 extern int strcmp(const char *, const char *) __PURE; 380 extern int strncmp(const char *, const char *, size_t) __PURE; 381 extern char *strncat(char *, const char *, size_t); 382 extern size_t strlcat(char *, const char *, size_t); 383 extern size_t strlcpy(char *, const char *, size_t); 384 extern size_t strspn(const char *, const char *); 385 extern int bcmp(const void *, const void *, size_t) __PURE; 386 extern int stoi(char **); 387 extern void numtos(ulong_t, char *); 388 extern void bcopy(const void *, void *, size_t); 389 extern void bzero(void *, size_t); 390 391 extern void *memcpy(void *, const void *, size_t); 392 extern void *memset(void *, int, size_t); 393 extern void *memmove(void *, const void *, size_t); 394 extern int memcmp(const void *, const void *, size_t) __PURE; 395 /* Need to be consistent with <string.h> C++ definition for memchr() */ 396 #if __cplusplus >= 199711L 397 extern const void *memchr(const void *, int, size_t); 398 #ifndef _MEMCHR_INLINE 399 #define _MEMCHR_INLINE 400 extern "C++" { 401 inline void *memchr(void * __s, int __c, size_t __n) { 402 return (void *)memchr((const void *)__s, __c, __n); 403 } 404 } 405 #endif /* _MEMCHR_INLINE */ 406 #else 407 extern void *memchr(const void *, int, size_t); 408 #endif /* __cplusplus >= 199711L */ 409 410 extern int ddi_strtol(const char *, char **, int, long *); 411 extern int ddi_strtoul(const char *, char **, int, unsigned long *); 412 413 /* 414 * ddi_map_regs 415 * 416 * Map in the register set given by rnumber. 417 * The register number determine which register 418 * set will be mapped if more than one exists. 419 * The parent driver gets the information 420 * from parent private data and sets up the 421 * appropriate mappings and returns the kernel 422 * virtual address of the register set in *kaddrp. 423 * The offset specifies an offset into the register 424 * space to start from and len indicates the size 425 * of the area to map. If len and offset are 0 then 426 * the entire space is mapped. It returns DDI_SUCCESS on 427 * success or DDI_FAILURE otherwise. 428 * 429 */ 430 int 431 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, 432 off_t offset, off_t len); 433 434 /* 435 * ddi_unmap_regs 436 * 437 * Undo mappings set up by ddi_map_regs. 438 * The register number determines which register 439 * set will be unmapped if more than one exists. 440 * This is provided for drivers preparing 441 * to detach themselves from the system to 442 * allow them to release allocated mappings. 443 * 444 * The kaddrp and len specify the area to be 445 * unmapped. *kaddrp was returned from ddi_map_regs 446 * and len should match what ddi_map_regs was called 447 * with. 448 */ 449 450 void 451 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, 452 off_t offset, off_t len); 453 454 int 455 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset, off_t len, 456 caddr_t *addrp); 457 458 int 459 ddi_apply_range(dev_info_t *dip, dev_info_t *rdip, struct regspec *rp); 460 461 /* 462 * ddi_rnumber_to_regspec: Not for use by leaf drivers. 463 */ 464 struct regspec * 465 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber); 466 467 int 468 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 469 off_t len, caddr_t *vaddrp); 470 471 int 472 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 473 off_t len, caddr_t *vaddrp); 474 475 #ifdef _LP64 476 477 int ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p); 478 int ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p); 479 int ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p); 480 int ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p); 481 482 int ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val); 483 int ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val); 484 int ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val); 485 int ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val); 486 487 #else /* _ILP32 */ 488 489 int ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p); 490 #define ddi_peek8 ddi_peekc 491 492 int ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p); 493 #define ddi_peek16 ddi_peeks 494 495 int ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p); 496 #define ddi_peek32 ddi_peekl 497 498 int ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p); 499 #define ddi_peek64 ddi_peekd 500 501 int ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val); 502 #define ddi_poke8 ddi_pokec 503 504 int ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val); 505 #define ddi_poke16 ddi_pokes 506 507 int ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val); 508 #define ddi_poke32 ddi_pokel 509 510 int ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val); 511 #define ddi_poke64 ddi_poked 512 513 #endif /* _LP64 */ 514 515 /* 516 * Peek and poke to and from a uio structure in xfersize pieces, 517 * using the parent nexi. 518 */ 519 int ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw, 520 caddr_t addr, size_t len, uint_t xfersize); 521 522 /* 523 * Pagesize conversions using the parent nexi 524 */ 525 unsigned long ddi_btop(dev_info_t *dip, unsigned long bytes); 526 unsigned long ddi_btopr(dev_info_t *dip, unsigned long bytes); 527 unsigned long ddi_ptob(dev_info_t *dip, unsigned long pages); 528 529 /* 530 * There are no more "block" interrupt functions, per se. 531 * All thread of control should be done with MP/MT lockings. 532 * 533 * However, there are certain times in which a driver needs 534 * absolutely a critical guaranteed non-preemptable time 535 * in which to execute a few instructions. 536 * 537 * The following pair of functions attempt to guarantee this, 538 * but they are dangerous to use. That is, use them with 539 * extreme care. They do not guarantee to stop other processors 540 * from executing, but they do guarantee that the caller 541 * of ddi_enter_critical will continue to run until the 542 * caller calls ddi_exit_critical. No intervening DDI functions 543 * may be called between an entry and an exit from a critical 544 * region. 545 * 546 * ddi_enter_critical returns an integer identifier which must 547 * be passed to ddi_exit_critical. 548 * 549 * Be very sparing in the use of these functions since it is 550 * likely that absolutely nothing else can occur in the system 551 * whilst in the critical region. 552 */ 553 554 unsigned int 555 ddi_enter_critical(void); 556 557 void 558 ddi_exit_critical(unsigned int); 559 560 /* 561 * devmap functions 562 */ 563 int 564 devmap_setup(dev_t dev, offset_t off, ddi_as_handle_t as, caddr_t *addrp, 565 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 566 struct cred *cred); 567 568 int 569 ddi_devmap_segmap(dev_t dev, off_t off, ddi_as_handle_t as, caddr_t *addrp, 570 off_t len, uint_t prot, uint_t maxprot, uint_t flags, 571 struct cred *cred); 572 573 int 574 devmap_load(devmap_cookie_t dhp, offset_t offset, size_t len, uint_t type, 575 uint_t rw); 576 577 int 578 devmap_unload(devmap_cookie_t dhp, offset_t offset, size_t len); 579 580 int 581 devmap_devmem_setup(devmap_cookie_t dhp, dev_info_t *dip, 582 struct devmap_callback_ctl *callback_ops, 583 uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, 584 uint_t flags, ddi_device_acc_attr_t *accattrp); 585 586 int 587 devmap_umem_setup(devmap_cookie_t dhp, dev_info_t *dip, 588 struct devmap_callback_ctl *callback_ops, 589 ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, 590 uint_t flags, ddi_device_acc_attr_t *accattrp); 591 592 int 593 devmap_devmem_remap(devmap_cookie_t dhp, dev_info_t *dip, 594 uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, 595 uint_t flags, ddi_device_acc_attr_t *accattrp); 596 597 int 598 devmap_umem_remap(devmap_cookie_t dhp, dev_info_t *dip, 599 ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, 600 uint_t flags, ddi_device_acc_attr_t *accattrp); 601 602 void 603 devmap_set_ctx_timeout(devmap_cookie_t dhp, clock_t ticks); 604 605 int 606 devmap_default_access(devmap_cookie_t dhp, void *pvtp, offset_t off, 607 size_t len, uint_t type, uint_t rw); 608 609 int 610 devmap_do_ctxmgt(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len, 611 uint_t type, uint_t rw, int (*ctxmgt)(devmap_cookie_t, void *, offset_t, 612 size_t, uint_t, uint_t)); 613 614 615 void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t *cookiep); 616 617 void ddi_umem_free(ddi_umem_cookie_t cookie); 618 619 /* 620 * Functions to lock user memory and do repeated I/O or do devmap_umem_setup 621 */ 622 int 623 ddi_umem_lock(caddr_t addr, size_t size, int flags, ddi_umem_cookie_t *cookie); 624 625 void 626 ddi_umem_unlock(ddi_umem_cookie_t cookie); 627 628 struct buf * 629 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len, int direction, 630 dev_t dev, daddr_t blkno, int (*iodone)(struct buf *), int sleepflag); 631 632 /* 633 * Mapping functions 634 */ 635 int 636 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len, 637 uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp); 638 639 int 640 ddi_segmap_setup(dev_t dev, off_t offset, struct as *as, caddr_t *addrp, 641 off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cred, 642 ddi_device_acc_attr_t *accattrp, uint_t rnumber); 643 644 int 645 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg, caddr_t addr, 646 struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock); 647 648 int 649 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp, 650 uint_t rnumber, uint_t *hat_flags); 651 652 /* 653 * Property functions: See also, ddipropdefs.h. 654 * In general, the underlying driver MUST be held 655 * to call it's property functions. 656 */ 657 658 /* 659 * Used to create, modify, and lookup integer properties 660 */ 661 int ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags, 662 char *name, int defvalue); 663 int64_t ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags, 664 char *name, int64_t defvalue); 665 int ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 666 char *name, int **data, uint_t *nelements); 667 int ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 668 char *name, int64_t **data, uint_t *nelements); 669 int ddi_prop_update_int(dev_t match_dev, dev_info_t *dip, 670 char *name, int data); 671 int ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip, 672 char *name, int64_t data); 673 int ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip, 674 char *name, int *data, uint_t nelements); 675 int ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip, 676 char *name, int64_t *data, uint_t nelements); 677 /* 678 * Used to create, modify, and lookup string properties 679 */ 680 int ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags, 681 char *name, char **data); 682 int ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 683 char *name, char ***data, uint_t *nelements); 684 int ddi_prop_update_string(dev_t match_dev, dev_info_t *dip, 685 char *name, char *data); 686 int ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip, 687 char *name, char **data, uint_t nelements); 688 689 /* 690 * Used to create, modify, and lookup byte properties 691 */ 692 int ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 693 char *name, uchar_t **data, uint_t *nelements); 694 int ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip, 695 char *name, uchar_t *data, uint_t nelements); 696 697 /* 698 * Used to verify the existence of a property or to see if a boolean 699 * property exists. 700 */ 701 int ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name); 702 703 /* 704 * Used to free the data returned by the above property routines. 705 */ 706 void ddi_prop_free(void *data); 707 708 /* 709 * nopropop: For internal use in `dummy' cb_prop_op functions only 710 */ 711 712 int 713 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 714 char *name, caddr_t valuep, int *lengthp); 715 716 /* 717 * ddi_prop_op: The basic property operator for drivers. 718 * 719 * In ddi_prop_op, the type of valuep is interpreted based on prop_op: 720 * 721 * prop_op valuep 722 * ------ ------ 723 * 724 * PROP_LEN <unused> 725 * 726 * PROP_LEN_AND_VAL_BUF Pointer to callers buffer 727 * 728 * PROP_LEN_AND_VAL_ALLOC Address of callers pointer (will be set to 729 * address of allocated buffer, if successful) 730 */ 731 732 int 733 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 734 char *name, caddr_t valuep, int *lengthp); 735 736 /* ddi_prop_op_size: for drivers that implement size in bytes */ 737 int 738 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 739 int mod_flags, char *name, caddr_t valuep, int *lengthp, 740 uint64_t size64); 741 742 /* ddi_prop_op_nblocks: for drivers that implement size in DEV_BSIZE blocks */ 743 int 744 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 745 int mod_flags, char *name, caddr_t valuep, int *lengthp, 746 uint64_t nblocks64); 747 748 /* 749 * Variable length props... 750 */ 751 752 /* 753 * ddi_getlongprop: Get variable length property len+val into a buffer 754 * allocated by property provider via kmem_alloc. Requester 755 * is responsible for freeing returned property via kmem_free. 756 * 757 * Arguments: 758 * 759 * dev: Input: dev_t of property. 760 * dip: Input: dev_info_t pointer of child. 761 * flags: Input: Possible flag modifiers are: 762 * DDI_PROP_DONTPASS: Don't pass to parent if prop not found. 763 * DDI_PROP_CANSLEEP: Memory allocation may sleep. 764 * name: Input: name of property. 765 * valuep: Output: Addr of callers buffer pointer. 766 * lengthp:Output: *lengthp will contain prop length on exit. 767 * 768 * Possible Returns: 769 * 770 * DDI_PROP_SUCCESS: Prop found and returned. 771 * DDI_PROP_NOT_FOUND: Prop not found 772 * DDI_PROP_UNDEFINED: Prop explicitly undefined. 773 * DDI_PROP_NO_MEMORY: Prop found, but unable to alloc mem. 774 */ 775 776 int 777 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags, 778 char *name, caddr_t valuep, int *lengthp); 779 780 /* 781 * 782 * ddi_getlongprop_buf: Get long prop into pre-allocated callers 783 * buffer. (no memory allocation by provider). 784 * 785 * dev: Input: dev_t of property. 786 * dip: Input: dev_info_t pointer of child. 787 * flags: Input: DDI_PROP_DONTPASS or NULL 788 * name: Input: name of property 789 * valuep: Input: ptr to callers buffer. 790 * lengthp:I/O: ptr to length of callers buffer on entry, 791 * actual length of property on exit. 792 * 793 * Possible returns: 794 * 795 * DDI_PROP_SUCCESS Prop found and returned 796 * DDI_PROP_NOT_FOUND Prop not found 797 * DDI_PROP_UNDEFINED Prop explicitly undefined. 798 * DDI_PROP_BUF_TOO_SMALL Prop found, callers buf too small, 799 * no value returned, but actual prop 800 * length returned in *lengthp 801 * 802 */ 803 804 int 805 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags, 806 char *name, caddr_t valuep, int *lengthp); 807 808 /* 809 * Integer/boolean sized props. 810 * 811 * Call is value only... returns found boolean or int sized prop value or 812 * defvalue if prop not found or is wrong length or is explicitly undefined. 813 * Only flag is DDI_PROP_DONTPASS... 814 * 815 * By convention, this interface returns boolean (0) sized properties 816 * as value (int)1. 817 */ 818 819 int 820 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue); 821 822 /* 823 * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS 824 * if returns DDI_PROP_SUCCESS, length returned in *lengthp. 825 */ 826 827 int 828 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp); 829 830 831 /* 832 * Interface to create/modify a managed property on child's behalf... 833 * Only flag is DDI_PROP_CANSLEEP to allow memory allocation to sleep 834 * if no memory available for internal prop structure. Long property 835 * (non integer sized) value references are not copied. 836 * 837 * Define property with DDI_DEV_T_NONE dev_t for properties not associated 838 * with any particular dev_t. Use the same dev_t when modifying or undefining 839 * a property. 840 * 841 * No guarantee on order of property search, so don't mix the same 842 * property name with wildcard and non-wildcard dev_t's. 843 */ 844 845 /* 846 * ddi_prop_create: Define a managed property: 847 */ 848 849 int 850 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag, 851 char *name, caddr_t value, int length); 852 853 /* 854 * ddi_prop_modify: Modify a managed property value 855 */ 856 857 int 858 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag, 859 char *name, caddr_t value, int length); 860 861 /* 862 * ddi_prop_remove: Undefine a managed property: 863 */ 864 865 int 866 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name); 867 868 /* 869 * ddi_prop_remove_all: Used before unloading a driver to remove 870 * all properties. (undefines all dev_t's props.) 871 * Also removes `undefined' prop defs. 872 */ 873 874 void 875 ddi_prop_remove_all(dev_info_t *dip); 876 877 878 /* 879 * ddi_prop_undefine: Explicitly undefine a property. Property 880 * searches which match this property return 881 * the error code DDI_PROP_UNDEFINED. 882 * 883 * Use ddi_prop_remove to negate effect of 884 * ddi_prop_undefine 885 */ 886 887 int 888 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name); 889 890 891 /* 892 * The default ddi_bus_prop_op wrapper... 893 */ 894 895 int 896 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip, 897 ddi_prop_op_t prop_op, int mod_flags, 898 char *name, caddr_t valuep, int *lengthp); 899 900 901 /* 902 * Routines to traverse the tree of dev_info nodes. 903 * The general idea of these functions is to provide 904 * various tree traversal utilities. For each node 905 * that the tree traversal function finds, a caller 906 * supplied function is called with arguments of 907 * the current node and a caller supplied argument. 908 * The caller supplied function should return one 909 * of the integer values defined below which will 910 * indicate to the tree traversal function whether 911 * the traversal should be continued, and if so, how, 912 * or whether the traversal should terminate. 913 */ 914 915 /* 916 * This general-purpose routine traverses the tree of dev_info nodes, 917 * starting from the given node, and calls the given function for each 918 * node that it finds with the current node and the pointer arg (which 919 * can point to a structure of information that the function 920 * needs) as arguments. 921 * 922 * It does the walk a layer at a time, not depth-first. 923 * 924 * The given function must return one of the values defined above. 925 * 926 */ 927 928 void 929 ddi_walk_devs(dev_info_t *, int (*)(dev_info_t *, void *), void *); 930 931 /* 932 * Routines to get at elements of the dev_info structure 933 */ 934 935 /* 936 * ddi_node_name gets the device's 'name' from the device node. 937 * 938 * ddi_binding_name gets the string the OS used to bind the node to a driver, 939 * in certain cases, the binding name may be different from the node name, 940 * if the node name does not name a specific device driver. 941 * 942 * ddi_get_name is a synonym for ddi_binding_name(). 943 */ 944 char * 945 ddi_get_name(dev_info_t *dip); 946 947 char * 948 ddi_binding_name(dev_info_t *dip); 949 950 const char * 951 ddi_driver_name(dev_info_t *dip); 952 953 major_t 954 ddi_driver_major(dev_info_t *dip); 955 956 major_t 957 ddi_compatible_driver_major(dev_info_t *dip, char **formp); 958 959 char * 960 ddi_node_name(dev_info_t *dip); 961 962 int 963 ddi_get_nodeid(dev_info_t *dip); 964 965 int 966 ddi_get_instance(dev_info_t *dip); 967 968 struct dev_ops * 969 ddi_get_driver(dev_info_t *dip); 970 971 void 972 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo); 973 974 void 975 ddi_set_driver_private(dev_info_t *dip, void *data); 976 977 void * 978 ddi_get_driver_private(dev_info_t *dip); 979 980 /* 981 * ddi_dev_is_needed tells system that a device is about to use a 982 * component. Returns when component is ready. 983 */ 984 int 985 ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level); 986 987 /* 988 * check if DDI_SUSPEND may result in power being removed from a device. 989 */ 990 int 991 ddi_removing_power(dev_info_t *dip); 992 993 /* 994 * (Obsolete) power entry point 995 */ 996 int 997 ddi_power(dev_info_t *dip, int cmpt, int level); 998 999 /* 1000 * ddi_get_parent requires that the branch of the tree with the 1001 * node be held (ddi_hold_installed_driver) or that the devinfo tree 1002 * lock be held 1003 */ 1004 dev_info_t * 1005 ddi_get_parent(dev_info_t *dip); 1006 1007 /* 1008 * ddi_get_child and ddi_get_next_sibling require that the devinfo 1009 * tree lock be held 1010 */ 1011 dev_info_t * 1012 ddi_get_child(dev_info_t *dip); 1013 1014 dev_info_t * 1015 ddi_get_next_sibling(dev_info_t *dip); 1016 1017 dev_info_t * 1018 ddi_get_next(dev_info_t *dip); 1019 1020 void 1021 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip); 1022 1023 /* 1024 * dev_info manipulation functions 1025 */ 1026 1027 /* 1028 * Add and remove child devices. These are part of the system framework. 1029 * 1030 * ddi_add_child creates a dev_info structure with the passed name, 1031 * nodeid and instance arguments and makes it a child of pdip. Devices 1032 * that are known directly by the hardware have real nodeids; devices 1033 * that are software constructs use the defined DEVI_PSEUDO_NODEID 1034 * for the node id. 1035 * 1036 * ddi_remove_node removes the node from the tree. This fails if this 1037 * child has children. Parent and driver private data should already 1038 * be released (freed) prior to calling this function. If flag is 1039 * non-zero, the child is removed from it's linked list of instances. 1040 */ 1041 dev_info_t * 1042 ddi_add_child(dev_info_t *pdip, char *name, uint_t nodeid, uint_t instance); 1043 1044 int 1045 ddi_remove_child(dev_info_t *dip, int flag); 1046 1047 /* 1048 * Given the major number for a driver, make sure that dev_info nodes 1049 * are created form the driver's hwconf file, the driver for the named 1050 * device is loaded and attached, as well as any drivers for parent devices. 1051 * Return a pointer to the driver's dev_ops struct with the dev_ops held. 1052 * Note - Callers must release the dev_ops with ddi_rele_driver. 1053 * 1054 * When a driver is held, the branch of the devinfo tree from any of the 1055 * drivers devinfos to the root node are automatically held. This only 1056 * applies to tree traversals up (and back down) the tree following the 1057 * parent pointers. 1058 * 1059 * Use of this interface is discouraged, it may be removed in a future release. 1060 */ 1061 struct dev_ops * 1062 ddi_hold_installed_driver(major_t major); 1063 1064 void 1065 ddi_rele_driver(major_t major); 1066 1067 /* 1068 * Attach and hold the specified instance of a driver. The flags argument 1069 * should be zero. 1070 */ 1071 dev_info_t * 1072 ddi_hold_devi_by_instance(major_t major, int instance, int flags); 1073 1074 void 1075 ddi_release_devi(dev_info_t *); 1076 1077 /* 1078 * Associate a streams queue with a devinfo node 1079 */ 1080 void 1081 ddi_assoc_queue_with_devi(queue_t *, dev_info_t *); 1082 1083 /* 1084 * Given the identifier string passed, make sure that dev_info nodes 1085 * are created form the driver's hwconf file, the driver for the named 1086 * device is loaded and attached, as well as any drivers for parent devices. 1087 * 1088 * Note that the driver is not held and is subject to being removed the instant 1089 * this call completes. You probably really want ddi_hold_installed_driver. 1090 */ 1091 int 1092 ddi_install_driver(char *idstring); 1093 1094 /* 1095 * Routines that return specific nodes 1096 */ 1097 1098 dev_info_t * 1099 ddi_root_node(void); 1100 1101 /* 1102 * Given a name and an instance number, find and return the 1103 * dev_info from the current state of the device tree. 1104 * 1105 * If instance number is -1, return the first named instance. 1106 * 1107 * If attached is 1, exclude all nodes that are < DS_ATTACHED 1108 * 1109 * Requires that the devinfo tree be locked. 1110 * If attached is 1, the driver must be held. 1111 */ 1112 dev_info_t * 1113 ddi_find_devinfo(char *name, int instance, int attached); 1114 1115 /* 1116 * DMA Mapping Setup 1117 * 1118 * The basic interface function is ddi_dma_setup(). This function 1119 * is to designed to allow a DMA mapping to be established to a 1120 * memory object. This function returns DDI_DMA_MAPPED if the 1121 * request was successfully filled. If this occurs, then the 1122 * argument handlep is filled in. This value is the DMA handle 1123 * for the mapping, and is used in a variety of other functions. 1124 * The handle is an opaque handle on the mapping, and no further 1125 * information may be inferred from it by the caller. 1126 * 1127 * Specifics of arguments to ddi_dma_setup: 1128 * 1129 * dip - devinfo pointer, which identifies the base device that wishes 1130 * to establish a dma mapping. The device may either be a leaf device, 1131 * or a device which is both a leaf and a nexus (e.g., a device which 1132 * has a dma engine but no children devices). 1133 * 1134 * dmareqp - pointer to a dma request structure. This structure contains 1135 * all the info necessary to establish the mapping (see <sys/ddidmareq.h>). 1136 * This structure may be impermanent, as its information is copied and 1137 * saved, if necessary, by implementation specific functions. The caller 1138 * is responsible for filling in the dmar_flags, dmar_length, dmar_type, 1139 * dmar_addr_un, dmar_fp and dmar_arg fields. Any other elements of the 1140 * ddi_dma_req structure should neither be examined or modified by the 1141 * caller. 1142 * 1143 * handlep - this is a pointer to a ddi_dma_handle_t. It is the callers 1144 * responsibility to hang on to this handle, because it becomes the token 1145 * used in all other DDI dma functions. If the handle pointer is NULL, 1146 * then no mapping is made, and the call is being used by the caller 1147 * to simply determine whether such a mapping *could* be made. 1148 * 1149 * Discussion of DMA resource callback functions: 1150 * 1151 * If a request could not be filled, it was because either there were 1152 * not enough mapping resources available to satisfy the request, and the 1153 * dmar_fp field was not set to DDI_DMA_SLEEP, or the mapping could not 1154 * be established at all (DDI_DMA_NOMAPPING) due to a basic inability of 1155 * available hardware to map the object. Callers should be prepared to deal 1156 * with all possible returns. It is suggested that the appropriate system 1157 * error number for the DDI_DMA_NOMAPPING returns is EFAULT. 1158 * 1159 * If the caller does not care whether a DMA mapping can be set up now, 1160 * the caller should set the field dmar_fp to DDI_DMA_DONTWAIT. This 1161 * implies that the caller will appropriately deal with resource 1162 * exhaustion. 1163 * 1164 * If the caller either cannot or does not wish to sleep awaiting mapping 1165 * resources, the caller may specify, via the field dmar_fp, a function to 1166 * call with the argument specified in dmar_arg, when resources might have 1167 * become available. The callback function will be called from interrupt 1168 * context, but in such a fashion to guarantee that spl blocking (in systems 1169 * that use this method of data protection) by the caller will not be 1170 * bypassed. 1171 * 1172 * 1173 * When function specified via dmar_fp is called, it may attempt to try and get 1174 * the mapping again. If it succeeds in getting the mapping, or does not need 1175 * to get the mapping any more, it must return 1. If it tries to get the 1176 * mapping but fails to do so, and it wants to be called back later, it 1177 * must return 0. 1178 * 1179 * Failure to observe this protocol will have unpredictable results. 1180 * 1181 * The callback function must provide its own data structure integrity 1182 * when it is invoked. 1183 */ 1184 1185 int 1186 ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp, 1187 ddi_dma_handle_t *handlep); 1188 1189 /* 1190 * The following three functions are convenience wrappers for ddi_dma_setup(). 1191 */ 1192 1193 int 1194 ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len, 1195 uint_t flags, int (*waitfp)(), caddr_t arg, 1196 ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep); 1197 1198 int 1199 ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags, 1200 int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits, 1201 ddi_dma_handle_t *handlep); 1202 1203 /* 1204 * Kernel addressability of the DMA object 1205 * 1206 * It might often be very useful to be able to get an IU mapping 1207 * to the object which has DMA active to/from it. In fact, it might 1208 * even really be a requirement. 1209 * 1210 * The cacheability of the object with respect to I/O and I/U caches 1211 * is affected by this function as follows: 1212 * 1213 * If a kernel virtual mapping to the object owned by the handle 1214 * existed already, and is IU cacheable, then the extant mapping 1215 * is locked and returned in kaddrp. By inference, kaddrp will 1216 * be an IU cacheable reference. 1217 * 1218 * If a kernel virtual mapping to the object owned by the handle 1219 * existed already, and is not IU cacheable, then the extant mapping 1220 * is locked and returned in kaddrp. By inference, kaddrp will 1221 * *not* be an IU cacheable reference. 1222 * 1223 * If a kernel virtual mapping to the object owned by the handle 1224 * does not exist already, a mapping will be created that will 1225 * *not* be an IU cacheable reference. 1226 * 1227 * The IO cacheability of the object owned by the handle is ignored 1228 * and unaffected. 1229 * 1230 * This function returns the mapping values as describe above. 1231 * 1232 * When the DMA object owned by handle is freed (by ddi_dma_free()- see 1233 * below), any mappings created by ddi_dma_kvaddrp() cease to be valid. 1234 * This will be the convention that drivers must follow, as it will be 1235 * impossible to enforce this programmatically. 1236 */ 1237 1238 int 1239 ddi_dma_kvaddrp(ddi_dma_handle_t, off_t, size_t, caddr_t *); 1240 1241 1242 /* 1243 * Device addressability of the DMA object 1244 * 1245 * The handle that identifies an object mapped for DMA is an opaque entity. 1246 * When a device driver wishes to load its dma engine with the appropriate 1247 * values for transferring data to the mapped object, it has to get the 1248 * value. Since the exact shape and form of this address is device specific, 1249 * the value returned is a 'cookie' that each device may then interpret 1250 * as it needs to. See <sys/dditypes.h> for the form of what the DMA cookie 1251 * looks like. 1252 * 1253 * Returns DDI_SUCCESS for successful cookie generation, 1254 * or DDI_FAILURE if it cannot generate the DMA cookie. 1255 */ 1256 1257 int 1258 ddi_dma_htoc(ddi_dma_handle_t handle, off_t off, ddi_dma_cookie_t *cookiep); 1259 1260 /* 1261 * Given a DMA cookie, return its offset within the object referred to 1262 * by the DMA handle. This is so at the end of a dma transfer, the device 1263 * may take its specific ending address and find out how far into the 1264 * memory object described by the handle the device got. 1265 */ 1266 1267 int 1268 ddi_dma_coff(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep, off_t *offp); 1269 1270 /* 1271 * DMA mapping manipulation 1272 * 1273 * It may be desirable or convenient for some devices to allow partial 1274 * mapping of an object for dma. This allows the mapping for DMA of 1275 * arbitrarily large objects since only a portion of the object may 1276 * be mapped for DMA at any point in time. 1277 * 1278 * In order to support this as well as other operations, the paradigm 1279 * of a 'mapping window' is defined here. The object to be mapped has 1280 * attributes of location and length. A window can be established upon 1281 * this object. The window has attributes of offset (from the base mapping 1282 * of the object) and length. It is assumed that length and offset are 1283 * positive with respect to the base of the mapped object. 1284 * 1285 * In order to get support for such a window, the flag DDI_DMA_PARTIAL 1286 * must be set in the request flags when the object is mapped for DMA. 1287 * Each implementation may elect whether or not to support such an 1288 * operation. Each implementation may also choose to ignore the request 1289 * for a PARTIAL mapping and either reject the mapping of the object 1290 * for being too big (DDI_DMA_TOOBIG) or may map the entire object. 1291 * The caller who asks the object to be mapped for DMA will know 1292 * whether a partial mapping has been made by receiving the qualified 1293 * return value of DDI_DMA_PARTIAL_MAP instead of DDI_DMA_MAPPED. 1294 * All dma window functions will return DDI_FAILURE if the object 1295 * is not mapped partially. 1296 * 1297 * All other DDI dma functions (except ddi_dma_Free) operate *only* on 1298 * the mapped portion of the object. That is, functions such as ddi_dma_sync, 1299 * ddi_dma_segtocookie, and so on, only operate on the currently mapped 1300 * window. 1301 */ 1302 1303 #if defined(__sparc) 1304 1305 /* 1306 * ddi_dma_movwin - Move window from current offset/length to new 1307 * offset/length. Returns DDI_SUCCESS if able to do so, else returns 1308 * DDI_FAILURE if unable to do so, or the new window would be out of bounds 1309 * or the object isn't set up for windows. If length is (off_t) -1, the 1310 * If the optional cp argument is specified, an implicit ddi_dma_htoc 1311 * is done to fill that in. The new offset and length will be returned 1312 * in the arguments *offp and *lenp (resp). 1313 * 1314 * In this implementation, only fixed width windows are used. It is 1315 * recommended that the windowsize should be retrieved via the function 1316 * ddi_dma_curwin (below) and that used to specify new offsets and lengths 1317 * since the window will be fixed at that size and will only move modulo 1318 * winsize. 1319 * 1320 * The caller must guarantee that their device's dma engine is quiescent 1321 * with respect to the current DMA window. 1322 * 1323 * The implementation will try to be rapid with respect to moving a window, 1324 * but since an appropriate ddi_dma_sync() is likely to be done, there 1325 * will be no guaranteed latency. In practice this should not be too 1326 * horrible, but don't depend upon any particular latency. 1327 */ 1328 1329 int 1330 ddi_dma_movwin(ddi_dma_handle_t, off_t *offp, size_t *lenp, ddi_dma_cookie_t *); 1331 1332 #endif 1333 1334 /* 1335 * ddi_dma_curwin - report the current offset/length of the window. 1336 * 1337 * Returns DDI_SUCCESS if offset and length 1338 * successfully established, else DDI_FAILURE. 1339 */ 1340 1341 int 1342 ddi_dma_curwin(ddi_dma_handle_t handle, off_t *offp, size_t *lenp); 1343 1344 /* 1345 * Get next dma window 1346 * 1347 * ddi_dma_nextwin takes a handle and a window, and fills in a pointer to 1348 * the next window within the object. If win is "NULL", a pointer to the 1349 * first window within the object is filled in. 1350 * 1351 * Returns DDI_SUCCESS if successfully filled in the window pointer, 1352 * DDI_DMA_STALE if win does not refer to the currently active 1353 * window, 1354 * DDI_DMA_DONE else there is no next window. 1355 */ 1356 1357 int 1358 ddi_dma_nextwin(ddi_dma_handle_t, ddi_dma_win_t, ddi_dma_win_t *); 1359 1360 /* 1361 * Get next segment 1362 * 1363 * ddi_dma_nextseg takes a window and a segment and fills in a pointer to 1364 * the next segment within the window. If seg is "NULL", a pointer to the 1365 * first segment within the window is filled in. 1366 * 1367 * Returns DDI_SUCCESS if successfully filled in the segment pointer, 1368 * DDI_DMA_STALE if win does not refer to the currently active 1369 * window. 1370 * DDI_DMA_DONE else there is no next segment. 1371 */ 1372 1373 int 1374 ddi_dma_nextseg(ddi_dma_win_t, ddi_dma_seg_t, ddi_dma_seg_t *); 1375 1376 /* 1377 * Segment to cookie 1378 * 1379 * ddi_dma_segtocookie takes a segment and fills in the cookie pointed 1380 * to by cookiep with the appropriate address, length and bus type to be 1381 * used to program the DMA engine. ddi_dma_segtocookie also fills in the 1382 * range within the object (specified by <off, len>) this particular 1383 * segment is mapping. <off, len> are filled in to give some control 1384 * where in the object the current dma transfer is active. 1385 * 1386 * Returns DDI_SUCCESS if successfully filled in all values, 1387 * else DDI_FAILURE 1388 * 1389 * This function is documented as Obsolete and is replaced by 1390 * ddi_dma_nextcookie(9F) 1391 */ 1392 1393 int 1394 ddi_dma_segtocookie(ddi_dma_seg_t, off_t *, off_t *, ddi_dma_cookie_t *); 1395 1396 /* 1397 * Synchronization of I/O with respect to various 1398 * caches and system write buffers. 1399 * 1400 * Done at varying points during an I/O transfer (including at the 1401 * removal of an I/O mapping). 1402 * 1403 * Due to the support of systems with write buffers which may 1404 * not be able to be turned off, this function *must* used at 1405 * any point in which data consistency might be required. 1406 * 1407 * Generally this means that if a memory object has multiple mappings 1408 * (both for I/O, as described by the handle, and the IU, via, e.g. 1409 * a call to ddi_dma_kvaddrp), and one mapping may have been 1410 * used to modify the memory object, this function must be called 1411 * to ensure that the modification of the memory object is 1412 * complete, as well as possibly to inform other mappings of 1413 * the object that any cached references to the object are 1414 * now stale (and flush or invalidate these stale cache references 1415 * as necessary). 1416 * 1417 * The function ddi_dma_sync() provides the general interface with 1418 * respect to this capability. Generally, ddi_dma_free() (below) may 1419 * be used in preference to ddi_dma_sync() as ddi_dma_free() calls 1420 * ddi_dma_sync(). 1421 * 1422 * Returns 0 if all caches that exist and are specified by cache_flags 1423 * are successfully operated on, else -1. 1424 * 1425 * The argument offset specifies an offset into the mapping of the mapped 1426 * object in which to perform the synchronization. It will be silently 1427 * truncated to the granularity of underlying cache line sizes as 1428 * appropriate. 1429 * 1430 * The argument len specifies a length starting from offset in which to 1431 * perform the synchronization. A value of (uint_t) -1 means that the length 1432 * proceeds from offset to the end of the mapping. The length argument 1433 * will silently rounded up to the granularity of underlying cache line 1434 * sizes as appropriate. 1435 * 1436 * The argument flags specifies what to synchronize (the device's view of 1437 * the object or the cpu's view of the object). 1438 * 1439 * Inquiring minds want to know when ddi_dma_sync should be used: 1440 * 1441 * + When an object is mapped for dma, assume that an 1442 * implicit ddi_dma_sync() is done for you. 1443 * 1444 * + When an object is unmapped (ddi_dma_free()), assume 1445 * that an implicit ddi_dma_sync() is done for you. 1446 * 1447 * + At any time between the two times above that the 1448 * memory object may have been modified by either 1449 * the DMA device or a processor and you wish that 1450 * the change be noticed by the master that didn't 1451 * do the modifying. 1452 * 1453 * Clearly, only the third case above requires the use of ddi_dma_sync. 1454 * 1455 * Inquiring minds also want to know which flag to use: 1456 * 1457 * + If you *modify* with a cpu the object, you use 1458 * ddi_dma_sync(...DDI_DMA_SYNC_FORDEV) (you are making sure 1459 * that the DMA device sees the changes you made). 1460 * 1461 * + If you are checking, with the processor, an area 1462 * of the object that the DMA device *may* have modified, 1463 * you use ddi_dma_sync(....DDI_DMA_SYNC_FORCPU) (you are 1464 * making sure that the processor(s) will see the changes 1465 * that the DMA device may have made). 1466 */ 1467 1468 int 1469 ddi_dma_sync(ddi_dma_handle_t handle, off_t offset, size_t len, uint_t flags); 1470 1471 /* 1472 * DMA mapping de-allocation 1473 * 1474 * When an I/O transfer completes, the resources required to map the 1475 * object for DMA should be completely released. As a side effect, 1476 * various cache synchronization might need to occur (see above). 1477 * 1478 * Returns DDI_SUCCESS if the all underlying caches are successfully 1479 * flushed, else DDI_FAILURE. 1480 * 1481 */ 1482 1483 int 1484 ddi_dma_free(ddi_dma_handle_t handle); 1485 1486 /* 1487 * Device constraint cognizant kernel memory allocation- consistent access. 1488 * 1489 * IOPB allocation and de-allocation 1490 * 1491 * An IOPB allocation allocates some primary memory such that both 1492 * the kernel and the specified DMA device might be able to access it in a 1493 * non-cacheable (otherwise known as byte-consistent or non-streaming mode) 1494 * fashion. The allocation will obey the beginning alignment and padding 1495 * constraints as specified in the initial limits argument and as subsequently 1496 * modified by intervening parents. The limits argument may be NULL, in 1497 * which case the system picks a reasonable beginning limits. 1498 * 1499 * A kernel virtual address to the allocated primary memory is returned, 1500 * but no DMA mapping to the object is established (drivers must use the 1501 * ddi_dma_map() routines for that). 1502 * 1503 * If no iopb space can be allocated, DDI_FAILURE is returned. 1504 */ 1505 1506 int 1507 ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1508 caddr_t *iopbp); 1509 1510 /* 1511 * Deallocate an IOPB kernel virtual mapping. 1512 */ 1513 1514 void 1515 ddi_iopb_free(caddr_t iopb); 1516 1517 /* 1518 * Device constraint cognizant kernel memory allocation- streaming access. 1519 * 1520 * Similar to ddi_iopb_alloc, but for primary memory that is intended 1521 * to be accessed in a streaming fashion. The allocation will obey the 1522 * beginning alignment and padding constraints as specified in the initial 1523 * limits argument and as subsequently modified by intervening parents. 1524 * The limits argument may be NULL, in which case the system picks a 1525 * reasonable beginning limits. 1526 * 1527 * A flags value of 0x1 indicates whether the caller can wait for 1528 * memory to become available. Other bits in the flags argument 1529 * are reserved for future use and must be zero. 1530 * 1531 * Upon return from a successful call, the new real length of 1532 * the allocation is returned (for use in mapping the memory 1533 * later). 1534 */ 1535 1536 int 1537 ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1538 uint_t flags, caddr_t *kaddrp, uint_t *real_length); 1539 1540 /* 1541 * Free the memory allocated via ddi_mem_alloc(). 1542 * 1543 * Note that passing an address not allocated via ddi_mem_alloc() 1544 * will panic the system. 1545 */ 1546 1547 void 1548 ddi_mem_free(caddr_t kaddr); 1549 1550 /* 1551 * Dma alignment, minimum transfers sizes, and burst sizes allowed. 1552 * Some with tears, some without. 1553 */ 1554 1555 /* 1556 * Return a copy of the DMA attributes for the given handle. 1557 */ 1558 1559 int 1560 ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp); 1561 1562 /* 1563 * Return the allowable DMA burst size for the object mapped by handle. 1564 * The burst sizes will returned in an integer that encodes power 1565 * of two burst sizes that are allowed in bit encoded format. For 1566 * example, a transfer that could allow 1, 2, 4, 8 and 32 byte bursts 1567 * would be encoded as 0x2f. A transfer that could be allowed as solely 1568 * a halfword (2 byte) transfers would be returned as 0x2. 1569 */ 1570 1571 int 1572 ddi_dma_burstsizes(ddi_dma_handle_t handle); 1573 1574 /* 1575 * Return the required beginning alignment for a transfer and 1576 * the minimum sized effect a transfer would have. The beginning 1577 * alignment will be some power of two. The minimum sized effect 1578 * indicates, for writes, how much of the mapped object will be 1579 * affected by the minimum access and for reads how much of the 1580 * mapped object will accessed. 1581 */ 1582 1583 int 1584 ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect); 1585 1586 /* 1587 * Like ddi_dma_devalign, but without having to map the object. 1588 * The object is assumed to be primary memory, and it is assumed 1589 * a minimum effective transfer is also the appropriate alignment 1590 * to be using. The streaming flag, if non-zero, indicates that the 1591 * returned value should be modified to account for streaming mode 1592 * accesses (e.g., with I/O caches enabled). The initial value 1593 * is passed by the requester if it has a dma engine that has 1594 * a minimum cycle constraint (or, for streaming mode, the most 1595 * efficient size). 1596 */ 1597 1598 int 1599 ddi_iomin(dev_info_t *dip, int initial, int streaming); 1600 1601 /* 1602 * Given two DMA limit structures, apply the limitations 1603 * of one to the other, following the rules of limits 1604 * and the wishes of the caller. 1605 * 1606 * The rules of dma limit structures are that you cannot 1607 * make things *less* restrictive as you apply one set 1608 * of limits to another. 1609 * 1610 */ 1611 1612 void 1613 ddi_dmalim_merge(ddi_dma_lim_t *limit, ddi_dma_lim_t *modifier); 1614 1615 /* 1616 * Merge DMA attributes 1617 */ 1618 1619 void 1620 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod); 1621 1622 /* 1623 * Allocate a DMA handle 1624 */ 1625 1626 int 1627 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr, 1628 int (*waitfp)(caddr_t), caddr_t arg, 1629 ddi_dma_handle_t *handlep); 1630 1631 /* 1632 * Free DMA handle 1633 */ 1634 1635 void 1636 ddi_dma_free_handle(ddi_dma_handle_t *handlep); 1637 1638 /* 1639 * Allocate memory for DMA transfers 1640 */ 1641 1642 int 1643 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length, 1644 ddi_device_acc_attr_t *accattrp, uint_t xfermodes, 1645 int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp, 1646 size_t *real_length, ddi_acc_handle_t *handlep); 1647 1648 /* 1649 * Free DMA memory 1650 */ 1651 1652 void 1653 ddi_dma_mem_free(ddi_acc_handle_t *hp); 1654 1655 /* 1656 * bind address to a DMA handle 1657 */ 1658 1659 int 1660 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as, 1661 caddr_t addr, size_t len, uint_t flags, 1662 int (*waitfp)(caddr_t), caddr_t arg, 1663 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1664 1665 /* 1666 * bind buffer to DMA handle 1667 */ 1668 1669 int 1670 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp, 1671 uint_t flags, int (*waitfp)(caddr_t), caddr_t arg, 1672 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1673 1674 /* 1675 * unbind mapping object to handle 1676 */ 1677 1678 int 1679 ddi_dma_unbind_handle(ddi_dma_handle_t handle); 1680 1681 /* 1682 * get next DMA cookie 1683 */ 1684 1685 void 1686 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep); 1687 1688 /* 1689 * get number of DMA windows 1690 */ 1691 1692 int 1693 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp); 1694 1695 /* 1696 * get specific DMA window 1697 */ 1698 1699 int 1700 ddi_dma_getwin(ddi_dma_handle_t handle, uint_t win, off_t *offp, 1701 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1702 1703 /* 1704 * activate 64 bit SBus support 1705 */ 1706 1707 int 1708 ddi_dma_set_sbus64(ddi_dma_handle_t handle, ulong_t burstsizes); 1709 1710 /* 1711 * Miscellaneous functions 1712 */ 1713 1714 /* 1715 * ddi_report_dev: Report a successful attach. 1716 */ 1717 1718 void 1719 ddi_report_dev(dev_info_t *dev); 1720 1721 /* 1722 * ddi_dev_regsize 1723 * 1724 * If the device has h/w register(s), report 1725 * the size, in bytes, of the specified one into *resultp. 1726 * 1727 * Returns DDI_FAILURE if there are not registers, 1728 * or the specified register doesn't exist. 1729 */ 1730 1731 int 1732 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *resultp); 1733 1734 /* 1735 * ddi_dev_nregs 1736 * 1737 * If the device has h/w register(s), report 1738 * how many of them that there are into resultp. 1739 * Return DDI_FAILURE if the device has no registers. 1740 */ 1741 1742 int 1743 ddi_dev_nregs(dev_info_t *dev, int *resultp); 1744 1745 /* 1746 * ddi_dev_is_sid 1747 * 1748 * If the device is self-identifying, i.e., 1749 * has already been probed by a smart PROM 1750 * (and thus registers are known to be valid) 1751 * return DDI_SUCCESS, else DDI_FAILURE. 1752 */ 1753 1754 1755 int 1756 ddi_dev_is_sid(dev_info_t *dev); 1757 1758 /* 1759 * ddi_slaveonly 1760 * 1761 * If the device is on a bus that precludes 1762 * the device from being either a dma master or 1763 * a dma slave, return DDI_SUCCESS. 1764 */ 1765 1766 int 1767 ddi_slaveonly(dev_info_t *); 1768 1769 1770 /* 1771 * ddi_dev_affinity 1772 * 1773 * Report, via DDI_SUCCESS, whether there exists 1774 * an 'affinity' between two dev_info_t's. An 1775 * affinity is defined to be either a parent-child, 1776 * or a sibling relationship such that the siblings 1777 * or in the same part of the bus they happen to be 1778 * on. 1779 */ 1780 1781 int 1782 ddi_dev_affinity(dev_info_t *deva, dev_info_t *devb); 1783 1784 1785 /* 1786 * ddi_set_callback 1787 * 1788 * Set a function/arg pair into the callback list identified 1789 * by listid. *listid must always initially start out as zero. 1790 */ 1791 1792 void 1793 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid); 1794 1795 /* 1796 * ddi_run_callback 1797 * 1798 * Run the callback list identified by listid. 1799 */ 1800 1801 void 1802 ddi_run_callback(uintptr_t *listid); 1803 1804 /* 1805 * More miscellaneous 1806 */ 1807 1808 int 1809 nochpoll(dev_t dev, short events, int anyyet, short *reventsp, 1810 struct pollhead **phpp); 1811 1812 dev_info_t * 1813 nodevinfo(dev_t dev, int otyp); 1814 1815 int 1816 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); 1817 1818 int 1819 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd, 1820 void *arg, void **result); 1821 1822 int 1823 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd); 1824 1825 int 1826 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip, 1827 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); 1828 1829 int 1830 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 1831 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); 1832 1833 int 1834 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 1835 ddi_dma_handle_t handle); 1836 1837 int 1838 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 1839 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 1840 ddi_dma_cookie_t *cp, uint_t *ccountp); 1841 1842 int 1843 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 1844 ddi_dma_handle_t handle); 1845 1846 int 1847 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip, 1848 ddi_dma_handle_t handle, off_t off, size_t len, 1849 uint_t cache_flags); 1850 1851 int 1852 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip, 1853 ddi_dma_handle_t handle, uint_t win, off_t *offp, 1854 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1855 1856 int 1857 ddi_no_dma_mctl(register dev_info_t *dip, dev_info_t *rdip, 1858 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 1859 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags); 1860 1861 void 1862 ddivoid(); 1863 1864 cred_t * 1865 ddi_get_cred(void); 1866 1867 clock_t 1868 ddi_get_lbolt(void); 1869 1870 time_t 1871 ddi_get_time(void); 1872 1873 pid_t 1874 ddi_get_pid(void); 1875 1876 kt_did_t 1877 ddi_get_kt_did(void); 1878 1879 boolean_t 1880 ddi_can_receive_sig(void); 1881 1882 void 1883 swab(void *src, void *dst, size_t nbytes); 1884 1885 int 1886 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type, 1887 minor_t minor_num, char *node_type, int flag); 1888 1889 int 1890 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type, 1891 minor_t minor_num, char *node_type, int flag, 1892 const char *rdpriv, const char *wrpriv, mode_t priv_mode); 1893 1894 void 1895 ddi_remove_minor_node(dev_info_t *dip, char *name); 1896 1897 int 1898 ddi_in_panic(void); 1899 1900 int 1901 ddi_streams_driver(dev_info_t *dip); 1902 1903 /* 1904 * DDI wrappers for ffs and fls 1905 */ 1906 int 1907 ddi_ffs(long mask); 1908 1909 int 1910 ddi_fls(long mask); 1911 1912 /* 1913 * The next five routines comprise generic storage management utilities 1914 * for driver soft state structures. 1915 */ 1916 1917 /* 1918 * Allocate a set of pointers to 'n_items' objects of size 'size' 1919 * bytes. Each pointer is initialized to nil. 'n_items' is a hint i.e. 1920 * zero is allowed. 1921 */ 1922 int 1923 ddi_soft_state_init(void **state_p, size_t size, size_t n_items); 1924 1925 /* 1926 * Allocate a state structure of size 'size' to be associated 1927 * with item 'item'. 1928 */ 1929 int 1930 ddi_soft_state_zalloc(void *state, int item); 1931 1932 /* 1933 * Fetch a pointer to the allocated soft state structure 1934 * corresponding to 'item.' 1935 */ 1936 void * 1937 ddi_get_soft_state(void *state, int item); 1938 1939 /* 1940 * Free the state structure corresponding to 'item.' 1941 */ 1942 void 1943 ddi_soft_state_free(void *state, int item); 1944 1945 /* 1946 * Free the handle, and any associated soft state structures. 1947 */ 1948 void 1949 ddi_soft_state_fini(void **state_p); 1950 1951 /* 1952 * Set the addr field of the name in dip to name 1953 */ 1954 void 1955 ddi_set_name_addr(dev_info_t *dip, char *name); 1956 1957 /* 1958 * Get the address part of the name. 1959 */ 1960 char * 1961 ddi_get_name_addr(dev_info_t *dip); 1962 1963 void 1964 ddi_set_parent_data(dev_info_t *dip, void *pd); 1965 1966 void * 1967 ddi_get_parent_data(dev_info_t *dip); 1968 1969 int 1970 ddi_initchild(dev_info_t *parent, dev_info_t *proto); 1971 1972 int 1973 ddi_uninitchild(dev_info_t *dip); 1974 1975 major_t 1976 ddi_name_to_major(char *name); 1977 1978 char * 1979 ddi_major_to_name(major_t major); 1980 1981 char * 1982 ddi_deviname(dev_info_t *dip, char *name); 1983 1984 char * 1985 ddi_pathname(dev_info_t *dip, char *path); 1986 1987 int 1988 ddi_dev_pathname(dev_t devt, int spec_type, char *name); 1989 1990 dev_t 1991 ddi_pathname_to_dev_t(char *pathname); 1992 1993 /* 1994 * High resolution system timer functions. 1995 * 1996 * These functions are already in the kernel (see sys/time.h). 1997 * The ddi supports the notion of a hrtime_t type and the 1998 * functions gethrtime, hrtadd, hrtsub and hrtcmp. 1999 */ 2000 2001 2002 /* 2003 * Nexus wrapper functions 2004 * 2005 * These functions are for entries in a bus nexus driver's bus_ops 2006 * structure for when the driver doesn't have such a function and 2007 * doesn't wish to prohibit such a function from existing. They 2008 * may also be called to start passing a request up the dev_info 2009 * tree. 2010 */ 2011 2012 /* 2013 * bus_ctl wrapper 2014 */ 2015 2016 int 2017 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t o, void *a, void *v); 2018 2019 /* 2020 * bus_dma_map wrapper 2021 */ 2022 2023 int 2024 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip, 2025 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); 2026 2027 int 2028 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 2029 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); 2030 2031 int 2032 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 2033 ddi_dma_handle_t handle); 2034 2035 int 2036 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 2037 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 2038 ddi_dma_cookie_t *cp, uint_t *ccountp); 2039 2040 int 2041 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 2042 ddi_dma_handle_t handle); 2043 2044 int 2045 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip, 2046 ddi_dma_handle_t handle, off_t off, size_t len, 2047 uint_t cache_flags); 2048 2049 int 2050 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip, 2051 ddi_dma_handle_t handle, uint_t win, off_t *offp, 2052 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 2053 2054 /* 2055 * bus_dma_ctl wrapper 2056 */ 2057 2058 int 2059 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 2060 enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, 2061 caddr_t *objp, uint_t flags); 2062 2063 /* 2064 * dvma support for networking drivers 2065 */ 2066 2067 unsigned long 2068 dvma_pagesize(dev_info_t *dip); 2069 2070 int 2071 dvma_reserve(dev_info_t *dip, ddi_dma_lim_t *limp, uint_t pages, 2072 ddi_dma_handle_t *handlep); 2073 2074 void 2075 dvma_release(ddi_dma_handle_t h); 2076 2077 void 2078 dvma_kaddr_load(ddi_dma_handle_t h, caddr_t a, uint_t len, uint_t index, 2079 ddi_dma_cookie_t *cp); 2080 2081 void 2082 dvma_unload(ddi_dma_handle_t h, uint_t objindex, uint_t type); 2083 2084 void 2085 dvma_sync(ddi_dma_handle_t h, uint_t objindex, uint_t type); 2086 2087 /* 2088 * Layered driver support 2089 */ 2090 2091 extern int ddi_copyin(const void *, void *, size_t, int); 2092 extern int ddi_copyout(const void *, void *, size_t, int); 2093 2094 /* 2095 * Send signals to processes 2096 */ 2097 extern void *proc_ref(void); 2098 extern void proc_unref(void *pref); 2099 extern int proc_signal(void *pref, int sig); 2100 2101 /* I/O port access routines */ 2102 extern uint8_t inb(int port); 2103 extern uint16_t inw(int port); 2104 extern uint32_t inl(int port); 2105 extern void repinsb(int port, uint8_t *addr, int count); 2106 extern void repinsw(int port, uint16_t *addr, int count); 2107 extern void repinsd(int port, uint32_t *addr, int count); 2108 extern void outb(int port, uint8_t value); 2109 extern void outw(int port, uint16_t value); 2110 extern void outl(int port, uint32_t value); 2111 extern void repoutsb(int port, uint8_t *addr, int count); 2112 extern void repoutsw(int port, uint16_t *addr, int count); 2113 extern void repoutsd(int port, uint32_t *addr, int count); 2114 2115 /* 2116 * Console bell routines 2117 */ 2118 extern void ddi_ring_console_bell(clock_t duration); 2119 extern void ddi_set_console_bell(void (*bellfunc)(clock_t duration)); 2120 2121 /* 2122 * Fault-related functions 2123 */ 2124 extern int ddi_check_acc_handle(ddi_acc_handle_t); 2125 extern int ddi_check_dma_handle(ddi_dma_handle_t); 2126 extern void ddi_dev_report_fault(dev_info_t *, ddi_fault_impact_t, 2127 ddi_fault_location_t, const char *); 2128 extern ddi_devstate_t ddi_get_devstate(dev_info_t *); 2129 2130 /* 2131 * Miscellaneous redefines 2132 */ 2133 #define uiophysio physio 2134 2135 /* 2136 * utilities - "reg" mapping and all common portable data access functions 2137 */ 2138 2139 /* 2140 * error code from ddi_regs_map_setup 2141 */ 2142 2143 #define DDI_REGS_ACC_CONFLICT (-10) 2144 2145 /* 2146 * Device address advance flags 2147 */ 2148 2149 #define DDI_DEV_NO_AUTOINCR 0x0000 2150 #define DDI_DEV_AUTOINCR 0x0001 2151 2152 int 2153 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp, 2154 offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp, 2155 ddi_acc_handle_t *handle); 2156 2157 void 2158 ddi_regs_map_free(ddi_acc_handle_t *handle); 2159 2160 /* 2161 * these are the prototypes for the common portable data access functions 2162 */ 2163 2164 #ifdef _LP64 2165 2166 uint8_t 2167 ddi_get8(ddi_acc_handle_t handle, uint8_t *addr); 2168 2169 uint16_t 2170 ddi_get16(ddi_acc_handle_t handle, uint16_t *addr); 2171 2172 uint32_t 2173 ddi_get32(ddi_acc_handle_t handle, uint32_t *addr); 2174 2175 uint64_t 2176 ddi_get64(ddi_acc_handle_t handle, uint64_t *addr); 2177 2178 void 2179 ddi_rep_get8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2180 size_t repcount, uint_t flags); 2181 2182 void 2183 ddi_rep_get16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2184 size_t repcount, uint_t flags); 2185 2186 void 2187 ddi_rep_get32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2188 size_t repcount, uint_t flags); 2189 2190 void 2191 ddi_rep_get64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2192 size_t repcount, uint_t flags); 2193 2194 void 2195 ddi_put8(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); 2196 2197 void 2198 ddi_put16(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); 2199 2200 void 2201 ddi_put32(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); 2202 2203 void 2204 ddi_put64(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); 2205 2206 void 2207 ddi_rep_put8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2208 size_t repcount, uint_t flags); 2209 void 2210 ddi_rep_put16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2211 size_t repcount, uint_t flags); 2212 void 2213 ddi_rep_put32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2214 size_t repcount, uint_t flags); 2215 2216 void 2217 ddi_rep_put64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2218 size_t repcount, uint_t flags); 2219 2220 #else /* _ILP32 */ 2221 2222 uint8_t 2223 ddi_getb(ddi_acc_handle_t handle, uint8_t *addr); 2224 #define ddi_get8 ddi_getb 2225 2226 uint16_t 2227 ddi_getw(ddi_acc_handle_t handle, uint16_t *addr); 2228 #define ddi_get16 ddi_getw 2229 2230 uint32_t 2231 ddi_getl(ddi_acc_handle_t handle, uint32_t *addr); 2232 #define ddi_get32 ddi_getl 2233 2234 uint64_t 2235 ddi_getll(ddi_acc_handle_t handle, uint64_t *addr); 2236 #define ddi_get64 ddi_getll 2237 2238 void 2239 ddi_rep_getb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2240 size_t repcount, uint_t flags); 2241 #define ddi_rep_get8 ddi_rep_getb 2242 2243 void 2244 ddi_rep_getw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2245 size_t repcount, uint_t flags); 2246 #define ddi_rep_get16 ddi_rep_getw 2247 2248 void 2249 ddi_rep_getl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2250 size_t repcount, uint_t flags); 2251 #define ddi_rep_get32 ddi_rep_getl 2252 2253 void 2254 ddi_rep_getll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2255 size_t repcount, uint_t flags); 2256 #define ddi_rep_get64 ddi_rep_getll 2257 2258 void 2259 ddi_putb(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); 2260 #define ddi_put8 ddi_putb 2261 2262 void 2263 ddi_putw(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); 2264 #define ddi_put16 ddi_putw 2265 2266 void 2267 ddi_putl(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); 2268 #define ddi_put32 ddi_putl 2269 2270 void 2271 ddi_putll(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); 2272 #define ddi_put64 ddi_putll 2273 2274 void 2275 ddi_rep_putb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2276 size_t repcount, uint_t flags); 2277 #define ddi_rep_put8 ddi_rep_putb 2278 2279 void 2280 ddi_rep_putw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2281 size_t repcount, uint_t flags); 2282 #define ddi_rep_put16 ddi_rep_putw 2283 2284 void 2285 ddi_rep_putl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2286 size_t repcount, uint_t flags); 2287 #define ddi_rep_put32 ddi_rep_putl 2288 2289 void 2290 ddi_rep_putll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2291 size_t repcount, uint_t flags); 2292 #define ddi_rep_put64 ddi_rep_putll 2293 2294 #endif /* _LP64 */ 2295 2296 /* 2297 * these are special device handling functions 2298 */ 2299 int 2300 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, 2301 size_t bytecount, ssize_t dev_advcnt, uint_t dev_datasz); 2302 2303 int 2304 ddi_device_copy( 2305 ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt, 2306 ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt, 2307 size_t bytecount, uint_t dev_datasz); 2308 2309 /* 2310 * these are software byte swapping functions 2311 */ 2312 uint16_t 2313 ddi_swap16(uint16_t value); 2314 2315 uint32_t 2316 ddi_swap32(uint32_t value); 2317 2318 uint64_t 2319 ddi_swap64(uint64_t value); 2320 2321 /* 2322 * these are the prototypes for PCI local bus functions 2323 */ 2324 /* 2325 * PCI power management capabilities reporting in addition to those 2326 * provided by the PCI Power Management Specification. 2327 */ 2328 #define PCI_PM_IDLESPEED 0x1 /* clock for idle dev - cap */ 2329 #define PCI_PM_IDLESPEED_ANY (void *)-1 /* any clock for idle dev */ 2330 #define PCI_PM_IDLESPEED_NONE (void *)-2 /* regular clock for idle dev */ 2331 2332 int 2333 pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle); 2334 2335 void 2336 pci_config_teardown(ddi_acc_handle_t *handle); 2337 2338 #ifdef _LP64 2339 2340 uint8_t 2341 pci_config_get8(ddi_acc_handle_t handle, off_t offset); 2342 2343 uint16_t 2344 pci_config_get16(ddi_acc_handle_t handle, off_t offset); 2345 2346 uint32_t 2347 pci_config_get32(ddi_acc_handle_t handle, off_t offset); 2348 2349 uint64_t 2350 pci_config_get64(ddi_acc_handle_t handle, off_t offset); 2351 2352 void 2353 pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value); 2354 2355 void 2356 pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value); 2357 2358 void 2359 pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value); 2360 2361 void 2362 pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value); 2363 2364 #else /* _ILP32 */ 2365 2366 uint8_t 2367 pci_config_getb(ddi_acc_handle_t handle, off_t offset); 2368 #define pci_config_get8 pci_config_getb 2369 2370 uint16_t 2371 pci_config_getw(ddi_acc_handle_t handle, off_t offset); 2372 #define pci_config_get16 pci_config_getw 2373 2374 uint32_t 2375 pci_config_getl(ddi_acc_handle_t handle, off_t offset); 2376 #define pci_config_get32 pci_config_getl 2377 2378 uint64_t 2379 pci_config_getll(ddi_acc_handle_t handle, off_t offset); 2380 #define pci_config_get64 pci_config_getll 2381 2382 void 2383 pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value); 2384 #define pci_config_put8 pci_config_putb 2385 2386 void 2387 pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value); 2388 #define pci_config_put16 pci_config_putw 2389 2390 void 2391 pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value); 2392 #define pci_config_put32 pci_config_putl 2393 2394 void 2395 pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value); 2396 #define pci_config_put64 pci_config_putll 2397 2398 #endif /* _LP64 */ 2399 2400 int 2401 pci_report_pmcap(dev_info_t *dip, int cap, void *arg); 2402 2403 int 2404 pci_restore_config_regs(dev_info_t *dip); 2405 2406 int 2407 pci_save_config_regs(dev_info_t *dip); 2408 2409 void 2410 pci_ereport_setup(dev_info_t *dip); 2411 2412 void 2413 pci_ereport_teardown(dev_info_t *dip); 2414 2415 void 2416 pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); 2417 2418 void 2419 pci_bdg_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); 2420 2421 int 2422 pci_bdg_check_status(dev_info_t *dip, ddi_fm_error_t *derr, 2423 uint16_t pci_cfg_stat, uint16_t pci_cfg_sec_stat); 2424 2425 /* 2426 * the prototype for the C Language Type Model inquiry. 2427 */ 2428 model_t ddi_mmap_get_model(void); 2429 model_t ddi_model_convert_from(model_t); 2430 2431 /* 2432 * these are the prototypes for device id functions. 2433 */ 2434 int 2435 ddi_devid_valid(ddi_devid_t devid); 2436 2437 int 2438 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid); 2439 2440 void 2441 ddi_devid_unregister(dev_info_t *dip); 2442 2443 int 2444 ddi_devid_init(dev_info_t *dip, ushort_t devid_type, ushort_t nbytes, 2445 void *id, ddi_devid_t *ret_devid); 2446 2447 size_t 2448 ddi_devid_sizeof(ddi_devid_t devid); 2449 2450 void 2451 ddi_devid_free(ddi_devid_t devid); 2452 2453 int 2454 ddi_devid_compare(ddi_devid_t id1, ddi_devid_t id2); 2455 2456 int 2457 ddi_devid_scsi_encode(int version, char *driver_name, 2458 uchar_t *inq, size_t inq_len, uchar_t *inq80, size_t inq80_len, 2459 uchar_t *inq83, size_t inq83_len, ddi_devid_t *ret_devid); 2460 2461 char 2462 *ddi_devid_to_guid(ddi_devid_t devid); 2463 2464 void 2465 ddi_devid_free_guid(char *guid); 2466 2467 int 2468 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid); 2469 2470 int 2471 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name); 2472 2473 int 2474 ddi_lyr_devid_to_devlist(ddi_devid_t devid, char *minor_name, int *retndevs, 2475 dev_t **retdevs); 2476 2477 void 2478 ddi_lyr_free_devlist(dev_t *devlist, int ndevs); 2479 2480 char * 2481 ddi_devid_str_encode(ddi_devid_t devid, char *minor_name); 2482 2483 int 2484 ddi_devid_str_decode(char *devidstr, ddi_devid_t *devidp, char **minor_namep); 2485 2486 void 2487 ddi_devid_str_free(char *devidstr); 2488 2489 int 2490 ddi_devid_str_compare(char *id1_str, char *id2_str); 2491 2492 /* 2493 * Event to post to when a devinfo node is removed. 2494 */ 2495 #define DDI_DEVI_REMOVE_EVENT "DDI:DEVI_REMOVE" 2496 #define DDI_DEVI_INSERT_EVENT "DDI:DEVI_INSERT" 2497 #define DDI_DEVI_BUS_RESET_EVENT "DDI:DEVI_BUS_RESET" 2498 #define DDI_DEVI_DEVICE_RESET_EVENT "DDI:DEVI_DEVICE_RESET" 2499 2500 /* 2501 * Invoke bus nexus driver's implementation of the 2502 * (*bus_remove_eventcall)() interface to remove a registered 2503 * callback handler for "event". 2504 */ 2505 int 2506 ddi_remove_event_handler(ddi_callback_id_t id); 2507 2508 /* 2509 * Invoke bus nexus driver's implementation of the 2510 * (*bus_add_eventcall)() interface to register a callback handler 2511 * for "event". 2512 */ 2513 int 2514 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event, 2515 void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *), 2516 void *arg, ddi_callback_id_t *id); 2517 2518 /* 2519 * Return a handle for event "name" by calling up the device tree 2520 * hierarchy via (*bus_get_eventcookie)() interface until claimed 2521 * by a bus nexus or top of dev_info tree is reached. 2522 */ 2523 int 2524 ddi_get_eventcookie(dev_info_t *dip, char *name, 2525 ddi_eventcookie_t *event_cookiep); 2526 2527 /* 2528 * log a system event 2529 */ 2530 int 2531 ddi_log_sysevent(dev_info_t *dip, char *vendor, char *class_name, 2532 char *subclass_name, nvlist_t *attr_list, sysevent_id_t *eidp, 2533 int sleep_flag); 2534 2535 /* 2536 * ddi_log_sysevent() vendors 2537 */ 2538 #define DDI_VENDOR_SUNW "SUNW" 2539 2540 /* 2541 * Opaque task queue handle. 2542 */ 2543 typedef struct ddi_taskq ddi_taskq_t; 2544 2545 /* 2546 * Use default system priority. 2547 */ 2548 #define TASKQ_DEFAULTPRI -1 2549 2550 /* 2551 * Create a task queue 2552 */ 2553 ddi_taskq_t *ddi_taskq_create(dev_info_t *dip, const char *name, 2554 int nthreads, pri_t pri, uint_t cflags); 2555 2556 /* 2557 * destroy a task queue 2558 */ 2559 void ddi_taskq_destroy(ddi_taskq_t *tq); 2560 2561 /* 2562 * Dispatch a task to a task queue 2563 */ 2564 int ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *), 2565 void *arg, uint_t dflags); 2566 2567 /* 2568 * Wait for all previously scheduled tasks to complete. 2569 */ 2570 void ddi_taskq_wait(ddi_taskq_t *tq); 2571 2572 /* 2573 * Suspend all task execution. 2574 */ 2575 void ddi_taskq_suspend(ddi_taskq_t *tq); 2576 2577 /* 2578 * Resume task execution. 2579 */ 2580 void ddi_taskq_resume(ddi_taskq_t *tq); 2581 2582 /* 2583 * Is task queue suspended? 2584 */ 2585 boolean_t ddi_taskq_suspended(ddi_taskq_t *tq); 2586 2587 /* 2588 * Parse an interface name of the form <alphanumeric>##<numeric> where 2589 * <numeric> is maximal. 2590 */ 2591 int ddi_parse(const char *, char *, uint_t *); 2592 2593 #endif /* _KERNEL */ 2594 2595 #ifdef __cplusplus 2596 } 2597 #endif 2598 2599 #endif /* _SYS_SUNDDI_H */ 2600