1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 #ifndef _SYS_FS_UFS_FS_H 41 #define _SYS_FS_UFS_FS_H 42 43 #pragma ident "%Z%%M% %I% %E% SMI" 44 45 #include <sys/isa_defs.h> 46 #include <sys/types32.h> 47 #include <sys/t_lock.h> /* for kmutex_t */ 48 49 #ifdef __cplusplus 50 extern "C" { 51 #endif 52 53 /* 54 * The following values are minor release values for UFS. 55 * The fs_version field in the superblock will equal one of them. 56 */ 57 58 #define MTB_UFS_VERSION_MIN 1 59 #define MTB_UFS_VERSION_1 1 60 #define UFS_VERSION_MIN 0 61 #define UFS_EFISTYLE4NONEFI_VERSION_2 2 62 63 /* 64 * Each disk drive contains some number of file systems. 65 * A file system consists of a number of cylinder groups. 66 * Each cylinder group has inodes and data. 67 * 68 * A file system is described by its super-block, which in turn 69 * describes the cylinder groups. The super-block is critical 70 * data and is replicated in the first 10 cylinder groups and the 71 * the last 10 cylinder groups to protect against 72 * catastrophic loss. This is done at mkfs time and the critical 73 * super-block data does not change, so the copies need not be 74 * referenced further unless disaster strikes. 75 * 76 * For file system fs, the offsets of the various blocks of interest 77 * are given in the super block as: 78 * [fs->fs_sblkno] Super-block 79 * [fs->fs_cblkno] Cylinder group block 80 * [fs->fs_iblkno] Inode blocks 81 * [fs->fs_dblkno] Data blocks 82 * The beginning of cylinder group cg in fs, is given by 83 * the ``cgbase(fs, cg)'' macro. 84 * 85 * The first boot and super blocks are given in absolute disk addresses. 86 * The byte-offset forms are preferred, as they don't imply a sector size. 87 */ 88 #define BBSIZE 8192 89 #define SBSIZE 8192 90 #define BBOFF ((off_t)(0)) 91 #define SBOFF ((off_t)(BBOFF + BBSIZE)) 92 #define BBLOCK ((daddr32_t)(0)) 93 #define SBLOCK ((daddr32_t)(BBLOCK + BBSIZE / DEV_BSIZE)) 94 95 /* 96 * Addresses stored in inodes are capable of addressing fragments 97 * of `blocks'. File system blocks of at most size MAXBSIZE can 98 * be optionally broken into 2, 4, or 8 pieces, each of which is 99 * addressible; these pieces may be DEV_BSIZE, or some multiple of 100 * a DEV_BSIZE unit. 101 * 102 * Large files consist of exclusively large data blocks. To avoid 103 * undue wasted disk space, the last data block of a small file may be 104 * allocated as only as many fragments of a large block as are 105 * necessary. The file system format retains only a single pointer 106 * to such a fragment, which is a piece of a single large block that 107 * has been divided. The size of such a fragment is determinable from 108 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro. 109 * 110 * The file system records space availability at the fragment level; 111 * to determine block availability, aligned fragments are examined. 112 * 113 * The root inode is the root of the file system. 114 * Inode 0 can't be used for normal purposes and 115 * historically bad blocks were linked to inode 1, 116 * thus the root inode is 2. (inode 1 is no longer used for 117 * this purpose, however numerous dump tapes make this 118 * assumption, so we are stuck with it) 119 * The lost+found directory is given the next available 120 * inode when it is created by ``mkfs''. 121 */ 122 #define UFSROOTINO ((ino_t)2) /* i number of all roots */ 123 #define LOSTFOUNDINO (UFSROOTINO + 1) 124 #ifndef _LONGLONG_TYPE 125 #define UFS_MAXOFFSET_T MAXOFF_T 126 #define UFS_FILESIZE_BITS 32 127 #else 128 #define UFS_MAXOFFSET_T ((1LL << NBBY * sizeof (daddr32_t) + DEV_BSHIFT - 1) \ 129 - 1) 130 #define UFS_FILESIZE_BITS 41 131 #endif /* _LONGLONG_TYPE */ 132 133 /* 134 * MINBSIZE is the smallest allowable block size. 135 * In order to insure that it is possible to create files of size 136 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096. 137 * MINBSIZE must be big enough to hold a cylinder group block, 138 * thus changes to (struct cg) must keep its size within MINBSIZE. 139 * Note that super blocks are always of size SBSIZE, 140 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE. 141 */ 142 #define MINBSIZE 4096 143 144 /* 145 * The path name on which the file system is mounted is maintained 146 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in 147 * the super block for this name. 148 * The limit on the amount of summary information per file system 149 * is defined by MAXCSBUFS. It is currently parameterized for a 150 * maximum of two million cylinders. 151 */ 152 #define MAXMNTLEN 512 153 #define MAXCSBUFS 32 154 155 #define LABEL_TYPE_VTOC 1 156 #define LABEL_TYPE_EFI 2 157 #define LABEL_TYPE_OTHER 3 158 159 /* 160 * The following constant is taken from the ANSI T13 ATA Specification 161 * and defines the maximum size (in sectors) that an ATA disk can be 162 * and still has to provide CHS translation. For a disk above this 163 * size all sectors are to be accessed via their LBA address. This 164 * makes a good cut off value to move from disk provided geometry 165 * to the predefined defaults used in efi label disks. 166 */ 167 #define CHSLIMIT (63 * 256 * 1024) 168 169 /* 170 * Per cylinder group information; summarized in blocks allocated 171 * from first cylinder group data blocks. These blocks have to be 172 * read in from fs_csaddr (size fs_cssize) in addition to the 173 * super block. 174 * 175 * N.B. sizeof (struct csum) must be a power of two in order for 176 * the ``fs_cs'' macro to work (see below). 177 */ 178 struct csum { 179 int32_t cs_ndir; /* number of directories */ 180 int32_t cs_nbfree; /* number of free blocks */ 181 int32_t cs_nifree; /* number of free inodes */ 182 int32_t cs_nffree; /* number of free frags */ 183 }; 184 185 /* 186 * In the 5.0 release, the file system state flag in the superblock (fs_clean) 187 * is now used. The value of fs_clean can be: 188 * FSACTIVE file system may have fsck inconsistencies 189 * FSCLEAN file system has successfully unmounted (implies 190 * everything is ok) 191 * FSSTABLE No fsck inconsistencies, no guarantee on user data 192 * FSBAD file system is mounted from a partition that is 193 * neither FSCLEAN or FSSTABLE 194 * FSSUSPEND Clean flag processing is temporarily disabled 195 * FSLOG Logging file system 196 * Under this scheme, fsck can safely skip file systems that 197 * are FSCLEAN or FSSTABLE. To provide additional safeguard, 198 * fs_clean information could be trusted only if 199 * fs_state == FSOKAY - fs_time, where FSOKAY is a constant 200 * 201 * Note: mount(2) will now return ENOSPC if fs_clean is neither FSCLEAN nor 202 * FSSTABLE, or fs_state is not valid. The exceptions are the root or 203 * the read-only partitions 204 */ 205 206 /* 207 * Super block for a file system. 208 * 209 * Most of the data in the super block is read-only data and needs 210 * no explicit locking to protect it. Exceptions are: 211 * fs_time 212 * fs_optim 213 * fs_cstotal 214 * fs_fmod 215 * fs_cgrotor 216 * fs_flags (largefiles flag - set when a file grows large) 217 * These fields require the use of fs->fs_lock. 218 */ 219 #define FS_MAGIC 0x011954 220 #define MTB_UFS_MAGIC 0xdecade 221 #define FSOKAY (0x7c269d38) 222 /* #define FSOKAY (0x7c269d38 + 3) */ 223 /* 224 * fs_clean values 225 */ 226 #define FSACTIVE ((char)0) 227 #define FSCLEAN ((char)0x1) 228 #define FSSTABLE ((char)0x2) 229 #define FSBAD ((char)0xff) /* mounted !FSCLEAN and !FSSTABLE */ 230 #define FSSUSPEND ((char)0xfe) /* temporarily suspended */ 231 #define FSLOG ((char)0xfd) /* logging fs */ 232 #define FSFIX ((char)0xfc) /* being repaired while mounted */ 233 234 /* 235 * fs_flags values 236 */ 237 #define FSLARGEFILES ((char)0x1) /* largefiles exist on filesystem */ 238 239 struct fs { 240 uint32_t fs_link; /* linked list of file systems */ 241 uint32_t fs_rolled; /* logging only: fs fully rolled */ 242 daddr32_t fs_sblkno; /* addr of super-block in filesys */ 243 daddr32_t fs_cblkno; /* offset of cyl-block in filesys */ 244 daddr32_t fs_iblkno; /* offset of inode-blocks in filesys */ 245 daddr32_t fs_dblkno; /* offset of first data after cg */ 246 int32_t fs_cgoffset; /* cylinder group offset in cylinder */ 247 int32_t fs_cgmask; /* used to calc mod fs_ntrak */ 248 time32_t fs_time; /* last time written */ 249 int32_t fs_size; /* number of blocks in fs */ 250 int32_t fs_dsize; /* number of data blocks in fs */ 251 int32_t fs_ncg; /* number of cylinder groups */ 252 int32_t fs_bsize; /* size of basic blocks in fs */ 253 int32_t fs_fsize; /* size of frag blocks in fs */ 254 int32_t fs_frag; /* number of frags in a block in fs */ 255 /* these are configuration parameters */ 256 int32_t fs_minfree; /* minimum percentage of free blocks */ 257 int32_t fs_rotdelay; /* num of ms for optimal next block */ 258 int32_t fs_rps; /* disk revolutions per second */ 259 /* these fields can be computed from the others */ 260 int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */ 261 int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */ 262 int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */ 263 int32_t fs_fshift; /* ``numfrags'' calc number of frags */ 264 /* these are configuration parameters */ 265 int32_t fs_maxcontig; /* max number of contiguous blks */ 266 int32_t fs_maxbpg; /* max number of blks per cyl group */ 267 /* these fields can be computed from the others */ 268 int32_t fs_fragshift; /* block to frag shift */ 269 int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */ 270 int32_t fs_sbsize; /* actual size of super block */ 271 int32_t fs_csmask; /* csum block offset */ 272 int32_t fs_csshift; /* csum block number */ 273 int32_t fs_nindir; /* value of NINDIR */ 274 int32_t fs_inopb; /* value of INOPB */ 275 int32_t fs_nspf; /* value of NSPF */ 276 /* yet another configuration parameter */ 277 int32_t fs_optim; /* optimization preference, see below */ 278 /* these fields are derived from the hardware */ 279 /* USL SVR4 compatibility */ 280 #ifdef _LITTLE_ENDIAN 281 /* 282 * USL SVR4 compatibility 283 * 284 * There was a significant divergence here between Solaris and 285 * SVR4 for x86. By swapping these two members in the superblock, 286 * we get read-only compatibility of SVR4 filesystems. Otherwise 287 * there would be no compatibility. This change was introduced 288 * during bootstrapping of Solaris on x86. By making this ifdef'ed 289 * on byte order, we provide ongoing compatibility across all 290 * platforms with the same byte order, the highest compatibility 291 * that can be achieved. 292 */ 293 int32_t fs_state; /* file system state time stamp */ 294 #else 295 int32_t fs_npsect; /* # sectors/track including spares */ 296 #endif 297 int32_t fs_si; /* summary info state - lufs only */ 298 int32_t fs_trackskew; /* sector 0 skew, per track */ 299 /* a unique id for this filesystem (currently unused and unmaintained) */ 300 /* In 4.3 Tahoe this space is used by fs_headswitch and fs_trkseek */ 301 /* Neither of those fields is used in the Tahoe code right now but */ 302 /* there could be problems if they are. */ 303 int32_t fs_id[2]; /* file system id */ 304 /* sizes determined by number of cylinder groups and their sizes */ 305 daddr32_t fs_csaddr; /* blk addr of cyl grp summary area */ 306 int32_t fs_cssize; /* size of cyl grp summary area */ 307 int32_t fs_cgsize; /* cylinder group size */ 308 /* these fields are derived from the hardware */ 309 int32_t fs_ntrak; /* tracks per cylinder */ 310 int32_t fs_nsect; /* sectors per track */ 311 int32_t fs_spc; /* sectors per cylinder */ 312 /* this comes from the disk driver partitioning */ 313 int32_t fs_ncyl; /* cylinders in file system */ 314 /* these fields can be computed from the others */ 315 int32_t fs_cpg; /* cylinders per group */ 316 int32_t fs_ipg; /* inodes per group */ 317 int32_t fs_fpg; /* blocks per group * fs_frag */ 318 /* this data must be re-computed after crashes */ 319 struct csum fs_cstotal; /* cylinder summary information */ 320 /* these fields are cleared at mount time */ 321 char fs_fmod; /* super block modified flag */ 322 char fs_clean; /* file system state flag */ 323 char fs_ronly; /* mounted read-only flag */ 324 char fs_flags; /* largefiles flag, etc. */ 325 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */ 326 /* these fields retain the current block allocation info */ 327 int32_t fs_cgrotor; /* last cg searched */ 328 /* 329 * The following used to be fs_csp[MAXCSBUFS]. It was not 330 * used anywhere except in old utilities. We removed this 331 * in 5.6 and expect fs_u.fs_csp to be used instead. 332 * We no longer limit fs_cssize based on MAXCSBUFS. 333 */ 334 union { /* fs_cs (csum) info */ 335 uint32_t fs_csp_pad[MAXCSBUFS]; 336 struct csum *fs_csp; 337 } fs_u; 338 int32_t fs_cpc; /* cyl per cycle in postbl */ 339 short fs_opostbl[16][8]; /* old rotation block list head */ 340 int32_t fs_sparecon[51]; /* reserved for future constants */ 341 int32_t fs_version; /* minor version of ufs */ 342 int32_t fs_logbno; /* block # of embedded log */ 343 int32_t fs_reclaim; /* reclaim open, deleted files */ 344 int32_t fs_sparecon2; /* reserved for future constant */ 345 #ifdef _LITTLE_ENDIAN 346 /* USL SVR4 compatibility */ 347 int32_t fs_npsect; /* # sectors/track including spares */ 348 #else 349 int32_t fs_state; /* file system state time stamp */ 350 #endif 351 quad_t fs_qbmask; /* ~fs_bmask - for use with quad size */ 352 quad_t fs_qfmask; /* ~fs_fmask - for use with quad size */ 353 int32_t fs_postblformat; /* format of positional layout tables */ 354 int32_t fs_nrpos; /* number of rotaional positions */ 355 int32_t fs_postbloff; /* (short) rotation block list head */ 356 int32_t fs_rotbloff; /* (uchar_t) blocks for each rotation */ 357 int32_t fs_magic; /* magic number */ 358 uchar_t fs_space[1]; /* list of blocks for each rotation */ 359 /* actually longer */ 360 }; 361 362 /* 363 * values for fs_reclaim 364 */ 365 #define FS_RECLAIM (0x00000001) /* run the reclaim-files thread */ 366 #define FS_RECLAIMING (0x00000002) /* running the reclaim-files thread */ 367 #define FS_CHECKCLEAN (0x00000004) /* checking for a clean file system */ 368 #define FS_CHECKRECLAIM (0x00000008) /* checking for a reclaimable file */ 369 370 /* 371 * values for fs_rolled 372 */ 373 #define FS_PRE_FLAG 0 /* old system, prior to fs_rolled flag */ 374 #define FS_ALL_ROLLED 1 375 #define FS_NEED_ROLL 2 376 377 /* 378 * values for fs_si, logging only 379 * si is the summary of the summary - a copy of the cylinder group summary 380 * info held in an array for perf. On a mount if this is out of date 381 * (FS_SI_BAD) it can be re-constructed by re-reading the cgs. 382 */ 383 #define FS_SI_OK 0 /* on-disk summary info ok */ 384 #define FS_SI_BAD 1 /* out of date on-disk si */ 385 386 /* 387 * Preference for optimization. 388 */ 389 #define FS_OPTTIME 0 /* minimize allocation time */ 390 #define FS_OPTSPACE 1 /* minimize disk fragmentation */ 391 392 /* 393 * Rotational layout table format types 394 */ 395 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 396 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 397 398 /* 399 * Macros for access to superblock array structures 400 */ 401 #ifdef _KERNEL 402 #define fs_postbl(ufsvfsp, cylno) \ 403 (((ufsvfsp)->vfs_fs->fs_postblformat != FS_DYNAMICPOSTBLFMT) \ 404 ? ((ufsvfsp)->vfs_fs->fs_opostbl[cylno]) \ 405 : ((short *)((char *)(ufsvfsp)->vfs_fs + \ 406 (ufsvfsp)->vfs_fs->fs_postbloff) \ 407 + (cylno) * (ufsvfsp)->vfs_nrpos)) 408 #else 409 #define fs_postbl(fs, cylno) \ 410 (((fs)->fs_postblformat != FS_DYNAMICPOSTBLFMT) \ 411 ? ((fs)->fs_opostbl[cylno]) \ 412 : ((short *)((char *)(fs) + \ 413 (fs)->fs_postbloff) \ 414 + (cylno) * (fs)->fs_nrpos)) 415 #endif 416 417 #define fs_rotbl(fs) \ 418 (((fs)->fs_postblformat != FS_DYNAMICPOSTBLFMT) \ 419 ? ((fs)->fs_space) \ 420 : ((uchar_t *)((char *)(fs) + (fs)->fs_rotbloff))) 421 422 /* 423 * Convert cylinder group to base address of its global summary info. 424 * 425 * N.B. This macro assumes that sizeof (struct csum) is a power of two. 426 * We just index off the first entry into one big array 427 */ 428 429 #define fs_cs(fs, indx) fs_u.fs_csp[(indx)] 430 431 /* 432 * Cylinder group block for a file system. 433 * 434 * Writable fields in the cylinder group are protected by the associated 435 * super block lock fs->fs_lock. 436 */ 437 #define CG_MAGIC 0x090255 438 struct cg { 439 uint32_t cg_link; /* NOT USED linked list of cyl groups */ 440 int32_t cg_magic; /* magic number */ 441 time32_t cg_time; /* time last written */ 442 int32_t cg_cgx; /* we are the cgx'th cylinder group */ 443 short cg_ncyl; /* number of cyl's this cg */ 444 short cg_niblk; /* number of inode blocks this cg */ 445 int32_t cg_ndblk; /* number of data blocks this cg */ 446 struct csum cg_cs; /* cylinder summary information */ 447 int32_t cg_rotor; /* position of last used block */ 448 int32_t cg_frotor; /* position of last used frag */ 449 int32_t cg_irotor; /* position of last used inode */ 450 int32_t cg_frsum[MAXFRAG]; /* counts of available frags */ 451 int32_t cg_btotoff; /* (int32_t)block totals per cylinder */ 452 int32_t cg_boff; /* (short) free block positions */ 453 int32_t cg_iusedoff; /* (char) used inode map */ 454 int32_t cg_freeoff; /* (uchar_t) free block map */ 455 int32_t cg_nextfreeoff; /* (uchar_t) next available space */ 456 int32_t cg_sparecon[16]; /* reserved for future use */ 457 uchar_t cg_space[1]; /* space for cylinder group maps */ 458 /* actually longer */ 459 }; 460 461 /* 462 * Macros for access to cylinder group array structures 463 */ 464 465 #define cg_blktot(cgp) \ 466 (((cgp)->cg_magic != CG_MAGIC) \ 467 ? (((struct ocg *)(cgp))->cg_btot) \ 468 : ((int32_t *)((char *)(cgp) + (cgp)->cg_btotoff))) 469 470 #ifdef _KERNEL 471 #define cg_blks(ufsvfsp, cgp, cylno) \ 472 (((cgp)->cg_magic != CG_MAGIC) \ 473 ? (((struct ocg *)(cgp))->cg_b[cylno]) \ 474 : ((short *)((char *)(cgp) + (cgp)->cg_boff) + \ 475 (cylno) * (ufsvfsp)->vfs_nrpos)) 476 #else 477 #define cg_blks(fs, cgp, cylno) \ 478 (((cgp)->cg_magic != CG_MAGIC) \ 479 ? (((struct ocg *)(cgp))->cg_b[cylno]) \ 480 : ((short *)((char *)(cgp) + (cgp)->cg_boff) + \ 481 (cylno) * (fs)->fs_nrpos)) 482 #endif 483 484 #define cg_inosused(cgp) \ 485 (((cgp)->cg_magic != CG_MAGIC) \ 486 ? (((struct ocg *)(cgp))->cg_iused) \ 487 : ((char *)((char *)(cgp) + (cgp)->cg_iusedoff))) 488 489 #define cg_blksfree(cgp) \ 490 (((cgp)->cg_magic != CG_MAGIC) \ 491 ? (((struct ocg *)(cgp))->cg_free) \ 492 : ((uchar_t *)((char *)(cgp) + (cgp)->cg_freeoff))) 493 494 #define cg_chkmagic(cgp) \ 495 ((cgp)->cg_magic == CG_MAGIC || \ 496 ((struct ocg *)(cgp))->cg_magic == CG_MAGIC) 497 498 /* 499 * The following structure is defined 500 * for compatibility with old file systems. 501 */ 502 struct ocg { 503 uint32_t cg_link; /* NOT USED linked list of cyl groups */ 504 uint32_t cg_rlink; /* NOT USED incore cyl groups */ 505 time32_t cg_time; /* time last written */ 506 int32_t cg_cgx; /* we are the cgx'th cylinder group */ 507 short cg_ncyl; /* number of cyl's this cg */ 508 short cg_niblk; /* number of inode blocks this cg */ 509 int32_t cg_ndblk; /* number of data blocks this cg */ 510 struct csum cg_cs; /* cylinder summary information */ 511 int32_t cg_rotor; /* position of last used block */ 512 int32_t cg_frotor; /* position of last used frag */ 513 int32_t cg_irotor; /* position of last used inode */ 514 int32_t cg_frsum[8]; /* counts of available frags */ 515 int32_t cg_btot[32]; /* block totals per cylinder */ 516 short cg_b[32][8]; /* positions of free blocks */ 517 char cg_iused[256]; /* used inode map */ 518 int32_t cg_magic; /* magic number */ 519 uchar_t cg_free[1]; /* free block map */ 520 /* actually longer */ 521 }; 522 523 /* 524 * Turn frag offsets into disk block addresses. 525 * This maps frags to device size blocks. 526 * (In the names of these macros, "fsb" refers to "frags", not 527 * file system blocks.) 528 */ 529 #ifdef KERNEL 530 #define fsbtodb(fs, b) (((daddr_t)(b)) << (fs)->fs_fsbtodb) 531 #else /* KERNEL */ 532 #define fsbtodb(fs, b) (((diskaddr_t)(b)) << (fs)->fs_fsbtodb) 533 #endif /* KERNEL */ 534 535 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb) 536 537 /* 538 * Get the offset of the log, in either sectors, frags, or file system 539 * blocks. The interpretation of the fs_logbno field depends on whether 540 * this is UFS or MTB UFS. (UFS stores the value as sectors. MTBUFS 541 * stores the value as frags.) 542 */ 543 544 #ifdef KERNEL 545 #define logbtodb(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ 546 (daddr_t)(b) : ((daddr_t)(b) << (fs)->fs_fsbtodb)) 547 #else /* KERNEL */ 548 #define logbtodb(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ 549 (diskaddr_t)(b) : ((diskaddr_t)(b) << (fs)->fs_fsbtodb)) 550 #endif /* KERNEL */ 551 #define logbtofrag(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ 552 (b) >> (fs)->fs_fsbtodb : (b)) 553 #define logbtofsblk(fs, b) ((fs)->fs_magic == FS_MAGIC ? \ 554 (b) >> ((fs)->fs_fsbtodb + (fs)->fs_fragshift) : \ 555 (b) >> (fs)->fs_fragshift) 556 557 /* 558 * Cylinder group macros to locate things in cylinder groups. 559 * They calc file system addresses of cylinder group data structures. 560 */ 561 #define cgbase(fs, c) ((daddr32_t)((fs)->fs_fpg * (c))) 562 563 #define cgstart(fs, c) \ 564 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask))) 565 566 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */ 567 568 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */ 569 570 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */ 571 572 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */ 573 574 /* 575 * Macros for handling inode numbers: 576 * inode number to file system block offset. 577 * inode number to cylinder group number. 578 * inode number to file system block address. 579 */ 580 #define itoo(fs, x) ((x) % (uint32_t)INOPB(fs)) 581 582 #define itog(fs, x) ((x) / (uint32_t)(fs)->fs_ipg) 583 584 #define itod(fs, x) \ 585 ((daddr32_t)(cgimin(fs, itog(fs, x)) + \ 586 (blkstofrags((fs), (((x)%(ulong_t)(fs)->fs_ipg)/(ulong_t)INOPB(fs)))))) 587 588 /* 589 * Give cylinder group number for a file system block. 590 * Give cylinder group block number for a file system block. 591 */ 592 #define dtog(fs, d) ((d) / (fs)->fs_fpg) 593 #define dtogd(fs, d) ((d) % (fs)->fs_fpg) 594 595 /* 596 * Extract the bits for a block from a map. 597 * Compute the cylinder and rotational position of a cyl block addr. 598 */ 599 #define blkmap(fs, map, loc) \ 600 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & \ 601 (0xff >> (NBBY - (fs)->fs_frag))) 602 603 #define cbtocylno(fs, bno) \ 604 ((bno) * NSPF(fs) / (fs)->fs_spc) 605 606 #ifdef _KERNEL 607 #define cbtorpos(ufsvfsp, bno) \ 608 ((((bno) * NSPF((ufsvfsp)->vfs_fs) % (ufsvfsp)->vfs_fs->fs_spc) % \ 609 (ufsvfsp)->vfs_fs->fs_nsect) * \ 610 (ufsvfsp)->vfs_nrpos) / (ufsvfsp)->vfs_fs->fs_nsect 611 #else 612 #define cbtorpos(fs, bno) \ 613 ((((bno) * NSPF(fs) % (fs)->fs_spc) % \ 614 (fs)->fs_nsect) * \ 615 (fs)->fs_nrpos) / (fs)->fs_nsect 616 #endif 617 618 /* 619 * The following macros optimize certain frequently calculated 620 * quantities by using shifts and masks in place of divisions 621 * modulos and multiplications. 622 */ 623 624 /* 625 * This macro works for 40 bit offset support in ufs because 626 * this calculates offset in the block and therefore no loss of 627 * information while casting to int. 628 */ 629 630 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \ 631 ((int)((loc) & ~(fs)->fs_bmask)) 632 633 /* 634 * This macro works for 40 bit offset support similar to blkoff 635 */ 636 637 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \ 638 ((int)((loc) & ~(fs)->fs_fmask)) 639 640 /* 641 * The cast to int32_t does not result in any loss of information because 642 * the number of logical blocks in the file system is limited to 643 * what fits in an int32_t anyway. 644 */ 645 646 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \ 647 ((int32_t)((loc) >> (fs)->fs_bshift)) 648 649 /* 650 * The same argument as above applies here. 651 */ 652 653 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \ 654 ((int32_t)((loc) >> (fs)->fs_fshift)) 655 656 /* 657 * Size can be a 64-bit value and therefore we sign extend fs_bmask 658 * to a 64-bit value too so that the higher 32 bits are masked 659 * properly. Note that the type of fs_bmask has to be signed. Otherwise 660 * compiler will set the higher 32 bits as zero and we don't want 661 * this to happen. 662 */ 663 664 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \ 665 (((size) + (fs)->fs_bsize - 1) & (offset_t)(fs)->fs_bmask) 666 667 /* 668 * Same argument as above. 669 */ 670 671 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \ 672 (((size) + (fs)->fs_fsize - 1) & (offset_t)(fs)->fs_fmask) 673 674 /* 675 * frags cannot exceed 32-bit value since we only support 40bit sizes. 676 */ 677 678 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \ 679 ((frags) >> (fs)->fs_fragshift) 680 681 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \ 682 ((blks) << (fs)->fs_fragshift) 683 684 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \ 685 ((fsb) & ((fs)->fs_frag - 1)) 686 687 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \ 688 ((fsb) &~ ((fs)->fs_frag - 1)) 689 690 /* 691 * Determine the number of available frags given a 692 * percentage to hold in reserve 693 */ 694 #define freespace(fs, ufsvfsp) \ 695 ((blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \ 696 (fs)->fs_cstotal.cs_nffree) - (ufsvfsp)->vfs_minfrags) 697 698 /* 699 * Determining the size of a file block in the file system. 700 */ 701 702 #define blksize(fs, ip, lbn) \ 703 (((lbn) >= NDADDR || \ 704 (ip)->i_size >= (offset_t)((lbn) + 1) << (fs)->fs_bshift) \ 705 ? (fs)->fs_bsize \ 706 : (fragroundup(fs, blkoff(fs, (ip)->i_size)))) 707 708 #define dblksize(fs, dip, lbn) \ 709 (((lbn) >= NDADDR || \ 710 (dip)->di_size >= (offset_t)((lbn) + 1) << (fs)->fs_bshift) \ 711 ? (fs)->fs_bsize \ 712 : (fragroundup(fs, blkoff(fs, (dip)->di_size)))) 713 714 /* 715 * Number of disk sectors per block; assumes DEV_BSIZE byte sector size. 716 */ 717 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift) 718 #define NSPF(fs) ((fs)->fs_nspf) 719 720 /* 721 * INOPB is the number of inodes in a secondary storage block. 722 */ 723 #define INOPB(fs) ((fs)->fs_inopb) 724 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift) 725 726 /* 727 * NINDIR is the number of indirects in a file system block. 728 */ 729 #define NINDIR(fs) ((fs)->fs_nindir) 730 731 /* 732 * bit map related macros 733 */ 734 #define bitloc(a, i) ((a)[(i)/NBBY]) 735 #define setbit(a, i) ((a)[(i)/NBBY] |= 1<<((i)%NBBY)) 736 #define clrbit(a, i) ((a)[(i)/NBBY] &= ~(1<<((i)%NBBY))) 737 #define isset(a, i) ((a)[(i)/NBBY] & (1<<((i)%NBBY))) 738 #define isclr(a, i) (((a)[(i)/NBBY] & (1<<((i)%NBBY))) == 0) 739 740 #define getfs(vfsp) \ 741 ((struct fs *)((struct ufsvfs *)vfsp->vfs_data)->vfs_bufp->b_un.b_addr) 742 743 #ifdef __cplusplus 744 } 745 #endif 746 747 #endif /* _SYS_FS_UFS_FS_H */ 748