17c478bd9Sstevel@tonic-gate /* 27c478bd9Sstevel@tonic-gate * CDDL HEADER START 37c478bd9Sstevel@tonic-gate * 47c478bd9Sstevel@tonic-gate * The contents of this file are subject to the terms of the 5ad4023c4Sdp * Common Development and Distribution License (the "License"). 6ad4023c4Sdp * You may not use this file except in compliance with the License. 77c478bd9Sstevel@tonic-gate * 87c478bd9Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 97c478bd9Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 107c478bd9Sstevel@tonic-gate * See the License for the specific language governing permissions 117c478bd9Sstevel@tonic-gate * and limitations under the License. 127c478bd9Sstevel@tonic-gate * 137c478bd9Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 147c478bd9Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 157c478bd9Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 167c478bd9Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 177c478bd9Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 187c478bd9Sstevel@tonic-gate * 197c478bd9Sstevel@tonic-gate * CDDL HEADER END 207c478bd9Sstevel@tonic-gate */ 2199fd1a49Sahl 227c478bd9Sstevel@tonic-gate /* 2328406508Ssudheer * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 247c478bd9Sstevel@tonic-gate * Use is subject to license terms. 257c478bd9Sstevel@tonic-gate */ 267c478bd9Sstevel@tonic-gate 27f484800dSBryan Cantrill /* 28f484800dSBryan Cantrill * Copyright (c) 2011, Joyent, Inc. All rights reserved. 29e5803b76SAdam H. Leventhal * Copyright (c) 2012 by Delphix. All rights reserved. 30f484800dSBryan Cantrill */ 31f484800dSBryan Cantrill 327c478bd9Sstevel@tonic-gate #ifndef _SYS_DTRACE_IMPL_H 337c478bd9Sstevel@tonic-gate #define _SYS_DTRACE_IMPL_H 347c478bd9Sstevel@tonic-gate 357c478bd9Sstevel@tonic-gate #ifdef __cplusplus 367c478bd9Sstevel@tonic-gate extern "C" { 377c478bd9Sstevel@tonic-gate #endif 387c478bd9Sstevel@tonic-gate 397c478bd9Sstevel@tonic-gate /* 407c478bd9Sstevel@tonic-gate * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces 417c478bd9Sstevel@tonic-gate * 427c478bd9Sstevel@tonic-gate * Note: The contents of this file are private to the implementation of the 437c478bd9Sstevel@tonic-gate * Solaris system and DTrace subsystem and are subject to change at any time 447c478bd9Sstevel@tonic-gate * without notice. Applications and drivers using these interfaces will fail 457c478bd9Sstevel@tonic-gate * to run on future releases. These interfaces should not be used for any 467c478bd9Sstevel@tonic-gate * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 477c478bd9Sstevel@tonic-gate * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 487c478bd9Sstevel@tonic-gate */ 497c478bd9Sstevel@tonic-gate 507c478bd9Sstevel@tonic-gate #include <sys/dtrace.h> 517c478bd9Sstevel@tonic-gate 527c478bd9Sstevel@tonic-gate /* 537c478bd9Sstevel@tonic-gate * DTrace Implementation Constants and Typedefs 547c478bd9Sstevel@tonic-gate */ 557c478bd9Sstevel@tonic-gate #define DTRACE_MAXPROPLEN 128 567c478bd9Sstevel@tonic-gate #define DTRACE_DYNVAR_CHUNKSIZE 256 577c478bd9Sstevel@tonic-gate 587c478bd9Sstevel@tonic-gate struct dtrace_probe; 597c478bd9Sstevel@tonic-gate struct dtrace_ecb; 607c478bd9Sstevel@tonic-gate struct dtrace_predicate; 617c478bd9Sstevel@tonic-gate struct dtrace_action; 627c478bd9Sstevel@tonic-gate struct dtrace_provider; 637c478bd9Sstevel@tonic-gate struct dtrace_state; 647c478bd9Sstevel@tonic-gate 657c478bd9Sstevel@tonic-gate typedef struct dtrace_probe dtrace_probe_t; 667c478bd9Sstevel@tonic-gate typedef struct dtrace_ecb dtrace_ecb_t; 677c478bd9Sstevel@tonic-gate typedef struct dtrace_predicate dtrace_predicate_t; 687c478bd9Sstevel@tonic-gate typedef struct dtrace_action dtrace_action_t; 697c478bd9Sstevel@tonic-gate typedef struct dtrace_provider dtrace_provider_t; 707c478bd9Sstevel@tonic-gate typedef struct dtrace_meta dtrace_meta_t; 717c478bd9Sstevel@tonic-gate typedef struct dtrace_state dtrace_state_t; 727c478bd9Sstevel@tonic-gate typedef uint32_t dtrace_optid_t; 737c478bd9Sstevel@tonic-gate typedef uint32_t dtrace_specid_t; 747c478bd9Sstevel@tonic-gate typedef uint64_t dtrace_genid_t; 757c478bd9Sstevel@tonic-gate 767c478bd9Sstevel@tonic-gate /* 777c478bd9Sstevel@tonic-gate * DTrace Probes 787c478bd9Sstevel@tonic-gate * 797c478bd9Sstevel@tonic-gate * The probe is the fundamental unit of the DTrace architecture. Probes are 807c478bd9Sstevel@tonic-gate * created by DTrace providers, and managed by the DTrace framework. A probe 817c478bd9Sstevel@tonic-gate * is identified by a unique <provider, module, function, name> tuple, and has 827c478bd9Sstevel@tonic-gate * a unique probe identifier assigned to it. (Some probes are not associated 837c478bd9Sstevel@tonic-gate * with a specific point in text; these are called _unanchored probes_ and have 847c478bd9Sstevel@tonic-gate * no module or function associated with them.) Probes are represented as a 857c478bd9Sstevel@tonic-gate * dtrace_probe structure. To allow quick lookups based on each element of the 867c478bd9Sstevel@tonic-gate * probe tuple, probes are hashed by each of provider, module, function and 877c478bd9Sstevel@tonic-gate * name. (If a lookup is performed based on a regular expression, a 887c478bd9Sstevel@tonic-gate * dtrace_probekey is prepared, and a linear search is performed.) Each probe 897c478bd9Sstevel@tonic-gate * is additionally pointed to by a linear array indexed by its identifier. The 907c478bd9Sstevel@tonic-gate * identifier is the provider's mechanism for indicating to the DTrace 917c478bd9Sstevel@tonic-gate * framework that a probe has fired: the identifier is passed as the first 927c478bd9Sstevel@tonic-gate * argument to dtrace_probe(), where it is then mapped into the corresponding 937c478bd9Sstevel@tonic-gate * dtrace_probe structure. From the dtrace_probe structure, dtrace_probe() can 947c478bd9Sstevel@tonic-gate * iterate over the probe's list of enabling control blocks; see "DTrace 957c478bd9Sstevel@tonic-gate * Enabling Control Blocks", below.) 967c478bd9Sstevel@tonic-gate */ 977c478bd9Sstevel@tonic-gate struct dtrace_probe { 987c478bd9Sstevel@tonic-gate dtrace_id_t dtpr_id; /* probe identifier */ 997c478bd9Sstevel@tonic-gate dtrace_ecb_t *dtpr_ecb; /* ECB list; see below */ 1007c478bd9Sstevel@tonic-gate dtrace_ecb_t *dtpr_ecb_last; /* last ECB in list */ 1017c478bd9Sstevel@tonic-gate void *dtpr_arg; /* provider argument */ 1027c478bd9Sstevel@tonic-gate dtrace_cacheid_t dtpr_predcache; /* predicate cache ID */ 1037c478bd9Sstevel@tonic-gate int dtpr_aframes; /* artificial frames */ 1047c478bd9Sstevel@tonic-gate dtrace_provider_t *dtpr_provider; /* pointer to provider */ 1057c478bd9Sstevel@tonic-gate char *dtpr_mod; /* probe's module name */ 1067c478bd9Sstevel@tonic-gate char *dtpr_func; /* probe's function name */ 1077c478bd9Sstevel@tonic-gate char *dtpr_name; /* probe's name */ 1087c478bd9Sstevel@tonic-gate dtrace_probe_t *dtpr_nextmod; /* next in module hash */ 1097c478bd9Sstevel@tonic-gate dtrace_probe_t *dtpr_prevmod; /* previous in module hash */ 1107c478bd9Sstevel@tonic-gate dtrace_probe_t *dtpr_nextfunc; /* next in function hash */ 1117c478bd9Sstevel@tonic-gate dtrace_probe_t *dtpr_prevfunc; /* previous in function hash */ 1127c478bd9Sstevel@tonic-gate dtrace_probe_t *dtpr_nextname; /* next in name hash */ 1137c478bd9Sstevel@tonic-gate dtrace_probe_t *dtpr_prevname; /* previous in name hash */ 1147c478bd9Sstevel@tonic-gate dtrace_genid_t dtpr_gen; /* probe generation ID */ 1157c478bd9Sstevel@tonic-gate }; 1167c478bd9Sstevel@tonic-gate 1177c478bd9Sstevel@tonic-gate typedef int dtrace_probekey_f(const char *, const char *, int); 1187c478bd9Sstevel@tonic-gate 1197c478bd9Sstevel@tonic-gate typedef struct dtrace_probekey { 1207c478bd9Sstevel@tonic-gate const char *dtpk_prov; /* provider name to match */ 1217c478bd9Sstevel@tonic-gate dtrace_probekey_f *dtpk_pmatch; /* provider matching function */ 1227c478bd9Sstevel@tonic-gate const char *dtpk_mod; /* module name to match */ 1237c478bd9Sstevel@tonic-gate dtrace_probekey_f *dtpk_mmatch; /* module matching function */ 1247c478bd9Sstevel@tonic-gate const char *dtpk_func; /* func name to match */ 1257c478bd9Sstevel@tonic-gate dtrace_probekey_f *dtpk_fmatch; /* func matching function */ 1267c478bd9Sstevel@tonic-gate const char *dtpk_name; /* name to match */ 1277c478bd9Sstevel@tonic-gate dtrace_probekey_f *dtpk_nmatch; /* name matching function */ 1287c478bd9Sstevel@tonic-gate dtrace_id_t dtpk_id; /* identifier to match */ 1297c478bd9Sstevel@tonic-gate } dtrace_probekey_t; 1307c478bd9Sstevel@tonic-gate 1317c478bd9Sstevel@tonic-gate typedef struct dtrace_hashbucket { 1327c478bd9Sstevel@tonic-gate struct dtrace_hashbucket *dthb_next; /* next on hash chain */ 1337c478bd9Sstevel@tonic-gate dtrace_probe_t *dthb_chain; /* chain of probes */ 1347c478bd9Sstevel@tonic-gate int dthb_len; /* number of probes here */ 1357c478bd9Sstevel@tonic-gate } dtrace_hashbucket_t; 1367c478bd9Sstevel@tonic-gate 1377c478bd9Sstevel@tonic-gate typedef struct dtrace_hash { 1387c478bd9Sstevel@tonic-gate dtrace_hashbucket_t **dth_tab; /* hash table */ 1397c478bd9Sstevel@tonic-gate int dth_size; /* size of hash table */ 1407c478bd9Sstevel@tonic-gate int dth_mask; /* mask to index into table */ 1417c478bd9Sstevel@tonic-gate int dth_nbuckets; /* total number of buckets */ 1427c478bd9Sstevel@tonic-gate uintptr_t dth_nextoffs; /* offset of next in probe */ 1437c478bd9Sstevel@tonic-gate uintptr_t dth_prevoffs; /* offset of prev in probe */ 1447c478bd9Sstevel@tonic-gate uintptr_t dth_stroffs; /* offset of str in probe */ 1457c478bd9Sstevel@tonic-gate } dtrace_hash_t; 1467c478bd9Sstevel@tonic-gate 1477c478bd9Sstevel@tonic-gate /* 1487c478bd9Sstevel@tonic-gate * DTrace Enabling Control Blocks 1497c478bd9Sstevel@tonic-gate * 1507c478bd9Sstevel@tonic-gate * When a provider wishes to fire a probe, it calls into dtrace_probe(), 1517c478bd9Sstevel@tonic-gate * passing the probe identifier as the first argument. As described above, 1527c478bd9Sstevel@tonic-gate * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t 1537c478bd9Sstevel@tonic-gate * structure. This structure contains information about the probe, and a 1547c478bd9Sstevel@tonic-gate * pointer to the list of Enabling Control Blocks (ECBs). Each ECB points to 1557c478bd9Sstevel@tonic-gate * DTrace consumer state, and contains an optional predicate, and a list of 1567c478bd9Sstevel@tonic-gate * actions. (Shown schematically below.) The ECB abstraction allows a single 1577c478bd9Sstevel@tonic-gate * probe to be multiplexed across disjoint consumers, or across disjoint 1587c478bd9Sstevel@tonic-gate * enablings of a single probe within one consumer. 1597c478bd9Sstevel@tonic-gate * 1607c478bd9Sstevel@tonic-gate * Enabling Control Block 1617c478bd9Sstevel@tonic-gate * dtrace_ecb_t 1627c478bd9Sstevel@tonic-gate * +------------------------+ 1637c478bd9Sstevel@tonic-gate * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID) 1647c478bd9Sstevel@tonic-gate * | dtrace_state_t * ------+--------------> State associated with this ECB 1657c478bd9Sstevel@tonic-gate * | dtrace_predicate_t * --+---------+ 1667c478bd9Sstevel@tonic-gate * | dtrace_action_t * -----+----+ | 1677c478bd9Sstevel@tonic-gate * | dtrace_ecb_t * ---+ | | | Predicate (if any) 1687c478bd9Sstevel@tonic-gate * +-------------------+----+ | | dtrace_predicate_t 1697c478bd9Sstevel@tonic-gate * | | +---> +--------------------+ 1707c478bd9Sstevel@tonic-gate * | | | dtrace_difo_t * ---+----> DIFO 1717c478bd9Sstevel@tonic-gate * | | +--------------------+ 1727c478bd9Sstevel@tonic-gate * | | 1737c478bd9Sstevel@tonic-gate * Next ECB | | Action 1747c478bd9Sstevel@tonic-gate * (if any) | | dtrace_action_t 1757c478bd9Sstevel@tonic-gate * : +--> +-------------------+ 1767c478bd9Sstevel@tonic-gate * : | dtrace_actkind_t -+------> kind 1777c478bd9Sstevel@tonic-gate * v | dtrace_difo_t * --+------> DIFO (if any) 1787c478bd9Sstevel@tonic-gate * | dtrace_recdesc_t -+------> record descr. 1797c478bd9Sstevel@tonic-gate * | dtrace_action_t * +------+ 1807c478bd9Sstevel@tonic-gate * +-------------------+ | 1817c478bd9Sstevel@tonic-gate * | Next action 1827c478bd9Sstevel@tonic-gate * +-------------------------------+ (if any) 1837c478bd9Sstevel@tonic-gate * | 1847c478bd9Sstevel@tonic-gate * | Action 1857c478bd9Sstevel@tonic-gate * | dtrace_action_t 1867c478bd9Sstevel@tonic-gate * +--> +-------------------+ 1877c478bd9Sstevel@tonic-gate * | dtrace_actkind_t -+------> kind 1887c478bd9Sstevel@tonic-gate * | dtrace_difo_t * --+------> DIFO (if any) 1897c478bd9Sstevel@tonic-gate * | dtrace_action_t * +------+ 1907c478bd9Sstevel@tonic-gate * +-------------------+ | 1917c478bd9Sstevel@tonic-gate * | Next action 1927c478bd9Sstevel@tonic-gate * +-------------------------------+ (if any) 1937c478bd9Sstevel@tonic-gate * | 1947c478bd9Sstevel@tonic-gate * : 1957c478bd9Sstevel@tonic-gate * v 1967c478bd9Sstevel@tonic-gate * 1977c478bd9Sstevel@tonic-gate * 1987c478bd9Sstevel@tonic-gate * dtrace_probe() iterates over the ECB list. If the ECB needs less space 1997c478bd9Sstevel@tonic-gate * than is available in the principal buffer, the ECB is processed: if the 2007c478bd9Sstevel@tonic-gate * predicate is non-NULL, the DIF object is executed. If the result is 2017c478bd9Sstevel@tonic-gate * non-zero, the action list is processed, with each action being executed 2027c478bd9Sstevel@tonic-gate * accordingly. When the action list has been completely executed, processing 203e5803b76SAdam H. Leventhal * advances to the next ECB. The ECB abstraction allows disjoint consumers 204e5803b76SAdam H. Leventhal * to multiplex on single probes. 205e5803b76SAdam H. Leventhal * 206e5803b76SAdam H. Leventhal * Execution of the ECB results in consuming dte_size bytes in the buffer 207e5803b76SAdam H. Leventhal * to record data. During execution, dte_needed bytes must be available in 208e5803b76SAdam H. Leventhal * the buffer. This space is used for both recorded data and tuple data. 2097c478bd9Sstevel@tonic-gate */ 2107c478bd9Sstevel@tonic-gate struct dtrace_ecb { 2117c478bd9Sstevel@tonic-gate dtrace_epid_t dte_epid; /* enabled probe ID */ 2127c478bd9Sstevel@tonic-gate uint32_t dte_alignment; /* required alignment */ 213e5803b76SAdam H. Leventhal size_t dte_needed; /* space needed for execution */ 214e5803b76SAdam H. Leventhal size_t dte_size; /* size of recorded payload */ 2157c478bd9Sstevel@tonic-gate dtrace_predicate_t *dte_predicate; /* predicate, if any */ 2167c478bd9Sstevel@tonic-gate dtrace_action_t *dte_action; /* actions, if any */ 2177c478bd9Sstevel@tonic-gate dtrace_ecb_t *dte_next; /* next ECB on probe */ 2187c478bd9Sstevel@tonic-gate dtrace_state_t *dte_state; /* pointer to state */ 2197c478bd9Sstevel@tonic-gate uint32_t dte_cond; /* security condition */ 2207c478bd9Sstevel@tonic-gate dtrace_probe_t *dte_probe; /* pointer to probe */ 2217c478bd9Sstevel@tonic-gate dtrace_action_t *dte_action_last; /* last action on ECB */ 2227c478bd9Sstevel@tonic-gate uint64_t dte_uarg; /* library argument */ 2237c478bd9Sstevel@tonic-gate }; 2247c478bd9Sstevel@tonic-gate 2257c478bd9Sstevel@tonic-gate struct dtrace_predicate { 2267c478bd9Sstevel@tonic-gate dtrace_difo_t *dtp_difo; /* DIF object */ 2277c478bd9Sstevel@tonic-gate dtrace_cacheid_t dtp_cacheid; /* cache identifier */ 2287c478bd9Sstevel@tonic-gate int dtp_refcnt; /* reference count */ 2297c478bd9Sstevel@tonic-gate }; 2307c478bd9Sstevel@tonic-gate 2317c478bd9Sstevel@tonic-gate struct dtrace_action { 2327c478bd9Sstevel@tonic-gate dtrace_actkind_t dta_kind; /* kind of action */ 2337c478bd9Sstevel@tonic-gate uint16_t dta_intuple; /* boolean: in aggregation */ 2347c478bd9Sstevel@tonic-gate uint32_t dta_refcnt; /* reference count */ 2357c478bd9Sstevel@tonic-gate dtrace_difo_t *dta_difo; /* pointer to DIFO */ 2367c478bd9Sstevel@tonic-gate dtrace_recdesc_t dta_rec; /* record description */ 2377c478bd9Sstevel@tonic-gate dtrace_action_t *dta_prev; /* previous action */ 2387c478bd9Sstevel@tonic-gate dtrace_action_t *dta_next; /* next action */ 2397c478bd9Sstevel@tonic-gate }; 2407c478bd9Sstevel@tonic-gate 2417c478bd9Sstevel@tonic-gate typedef struct dtrace_aggregation { 2427c478bd9Sstevel@tonic-gate dtrace_action_t dtag_action; /* action; must be first */ 2437c478bd9Sstevel@tonic-gate dtrace_aggid_t dtag_id; /* identifier */ 2447c478bd9Sstevel@tonic-gate dtrace_ecb_t *dtag_ecb; /* corresponding ECB */ 2457c478bd9Sstevel@tonic-gate dtrace_action_t *dtag_first; /* first action in tuple */ 2467c478bd9Sstevel@tonic-gate uint32_t dtag_base; /* base of aggregation */ 247a1b5e537Sbmc uint8_t dtag_hasarg; /* boolean: has argument */ 2487c478bd9Sstevel@tonic-gate uint64_t dtag_initial; /* initial value */ 249a1b5e537Sbmc void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t); 2507c478bd9Sstevel@tonic-gate } dtrace_aggregation_t; 2517c478bd9Sstevel@tonic-gate 2527c478bd9Sstevel@tonic-gate /* 2537c478bd9Sstevel@tonic-gate * DTrace Buffers 2547c478bd9Sstevel@tonic-gate * 2557c478bd9Sstevel@tonic-gate * Principal buffers, aggregation buffers, and speculative buffers are all 2567c478bd9Sstevel@tonic-gate * managed with the dtrace_buffer structure. By default, this structure 2577c478bd9Sstevel@tonic-gate * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the 2587c478bd9Sstevel@tonic-gate * active and passive buffers, respectively. For speculative buffers, 2597c478bd9Sstevel@tonic-gate * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point 2607c478bd9Sstevel@tonic-gate * to a scratch buffer. For all buffer types, the dtrace_buffer structure is 2617c478bd9Sstevel@tonic-gate * always allocated on a per-CPU basis; a single dtrace_buffer structure is 2627c478bd9Sstevel@tonic-gate * never shared among CPUs. (That is, there is never true sharing of the 2637c478bd9Sstevel@tonic-gate * dtrace_buffer structure; to prevent false sharing of the structure, it must 2647c478bd9Sstevel@tonic-gate * always be aligned to the coherence granularity -- generally 64 bytes.) 2657c478bd9Sstevel@tonic-gate * 2667c478bd9Sstevel@tonic-gate * One of the critical design decisions of DTrace is that a given ECB always 2677c478bd9Sstevel@tonic-gate * stores the same quantity and type of data. This is done to assure that the 2687c478bd9Sstevel@tonic-gate * only metadata required for an ECB's traced data is the EPID. That is, from 2697c478bd9Sstevel@tonic-gate * the EPID, the consumer can determine the data layout. (The data buffer 2707c478bd9Sstevel@tonic-gate * layout is shown schematically below.) By assuring that one can determine 2717c478bd9Sstevel@tonic-gate * data layout from the EPID, the metadata stream can be separated from the 272e5803b76SAdam H. Leventhal * data stream -- simplifying the data stream enormously. The ECB always 273e5803b76SAdam H. Leventhal * proceeds the recorded data as part of the dtrace_rechdr_t structure that 274e5803b76SAdam H. Leventhal * includes the EPID and a high-resolution timestamp used for output ordering 275e5803b76SAdam H. Leventhal * consistency. 2767c478bd9Sstevel@tonic-gate * 277e5803b76SAdam H. Leventhal * base of data buffer ---> +--------+--------------------+--------+ 278e5803b76SAdam H. Leventhal * | rechdr | data | rechdr | 279e5803b76SAdam H. Leventhal * +--------+------+--------+----+--------+ 280e5803b76SAdam H. Leventhal * | data | rechdr | data | 281e5803b76SAdam H. Leventhal * +---------------+--------+-------------+ 2827c478bd9Sstevel@tonic-gate * | data, cont. | 283e5803b76SAdam H. Leventhal * +--------+--------------------+--------+ 284e5803b76SAdam H. Leventhal * | rechdr | data | | 285e5803b76SAdam H. Leventhal * +--------+--------------------+ | 2867c478bd9Sstevel@tonic-gate * | || | 2877c478bd9Sstevel@tonic-gate * | || | 2887c478bd9Sstevel@tonic-gate * | \/ | 2897c478bd9Sstevel@tonic-gate * : : 2907c478bd9Sstevel@tonic-gate * . . 2917c478bd9Sstevel@tonic-gate * . . 2927c478bd9Sstevel@tonic-gate * . . 2937c478bd9Sstevel@tonic-gate * : : 2947c478bd9Sstevel@tonic-gate * | | 295e5803b76SAdam H. Leventhal * limit of data buffer ---> +--------------------------------------+ 2967c478bd9Sstevel@tonic-gate * 2977c478bd9Sstevel@tonic-gate * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the 2987c478bd9Sstevel@tonic-gate * principal buffer (both scratch and payload) exceed the available space. If 2997c478bd9Sstevel@tonic-gate * the ECB's needs exceed available space (and if the principal buffer policy 3007c478bd9Sstevel@tonic-gate * is the default "switch" policy), the ECB is dropped, the buffer's drop count 3017c478bd9Sstevel@tonic-gate * is incremented, and processing advances to the next ECB. If the ECB's needs 3027c478bd9Sstevel@tonic-gate * can be met with the available space, the ECB is processed, but the offset in 3037c478bd9Sstevel@tonic-gate * the principal buffer is only advanced if the ECB completes processing 3047c478bd9Sstevel@tonic-gate * without error. 3057c478bd9Sstevel@tonic-gate * 3067c478bd9Sstevel@tonic-gate * When a buffer is to be switched (either because the buffer is the principal 3077c478bd9Sstevel@tonic-gate * buffer with a "switch" policy or because it is an aggregation buffer), a 3087c478bd9Sstevel@tonic-gate * cross call is issued to the CPU associated with the buffer. In the cross 3097c478bd9Sstevel@tonic-gate * call context, interrupts are disabled, and the active and the inactive 3107c478bd9Sstevel@tonic-gate * buffers are atomically switched. This involves switching the data pointers, 3117c478bd9Sstevel@tonic-gate * copying the various state fields (offset, drops, errors, etc.) into their 3127c478bd9Sstevel@tonic-gate * inactive equivalents, and clearing the state fields. Because interrupts are 3137c478bd9Sstevel@tonic-gate * disabled during this procedure, the switch is guaranteed to appear atomic to 3147c478bd9Sstevel@tonic-gate * dtrace_probe(). 3157c478bd9Sstevel@tonic-gate * 3167c478bd9Sstevel@tonic-gate * DTrace Ring Buffering 3177c478bd9Sstevel@tonic-gate * 3187c478bd9Sstevel@tonic-gate * To process a ring buffer correctly, one must know the oldest valid record. 3197c478bd9Sstevel@tonic-gate * Processing starts at the oldest record in the buffer and continues until 3207c478bd9Sstevel@tonic-gate * the end of the buffer is reached. Processing then resumes starting with 3217c478bd9Sstevel@tonic-gate * the record stored at offset 0 in the buffer, and continues until the 3227c478bd9Sstevel@tonic-gate * youngest record is processed. If trace records are of a fixed-length, 3237c478bd9Sstevel@tonic-gate * determining the oldest record is trivial: 3247c478bd9Sstevel@tonic-gate * 3257c478bd9Sstevel@tonic-gate * - If the ring buffer has not wrapped, the oldest record is the record 3267c478bd9Sstevel@tonic-gate * stored at offset 0. 3277c478bd9Sstevel@tonic-gate * 3287c478bd9Sstevel@tonic-gate * - If the ring buffer has wrapped, the oldest record is the record stored 3297c478bd9Sstevel@tonic-gate * at the current offset. 3307c478bd9Sstevel@tonic-gate * 3317c478bd9Sstevel@tonic-gate * With variable length records, however, just knowing the current offset 3327c478bd9Sstevel@tonic-gate * doesn't suffice for determining the oldest valid record: assuming that one 3337c478bd9Sstevel@tonic-gate * allows for arbitrary data, one has no way of searching forward from the 3347c478bd9Sstevel@tonic-gate * current offset to find the oldest valid record. (That is, one has no way 3357c478bd9Sstevel@tonic-gate * of separating data from metadata.) It would be possible to simply refuse to 3367c478bd9Sstevel@tonic-gate * process any data in the ring buffer between the current offset and the 3377c478bd9Sstevel@tonic-gate * limit, but this leaves (potentially) an enormous amount of otherwise valid 3387c478bd9Sstevel@tonic-gate * data unprocessed. 3397c478bd9Sstevel@tonic-gate * 3407c478bd9Sstevel@tonic-gate * To effect ring buffering, we track two offsets in the buffer: the current 3417c478bd9Sstevel@tonic-gate * offset and the _wrapped_ offset. If a request is made to reserve some 3427c478bd9Sstevel@tonic-gate * amount of data, and the buffer has wrapped, the wrapped offset is 3437c478bd9Sstevel@tonic-gate * incremented until the wrapped offset minus the current offset is greater 3447c478bd9Sstevel@tonic-gate * than or equal to the reserve request. This is done by repeatedly looking 3457c478bd9Sstevel@tonic-gate * up the ECB corresponding to the EPID at the current wrapped offset, and 3467c478bd9Sstevel@tonic-gate * incrementing the wrapped offset by the size of the data payload 3477c478bd9Sstevel@tonic-gate * corresponding to that ECB. If this offset is greater than or equal to the 3487c478bd9Sstevel@tonic-gate * limit of the data buffer, the wrapped offset is set to 0. Thus, the 3497c478bd9Sstevel@tonic-gate * current offset effectively "chases" the wrapped offset around the buffer. 3507c478bd9Sstevel@tonic-gate * Schematically: 3517c478bd9Sstevel@tonic-gate * 3527c478bd9Sstevel@tonic-gate * base of data buffer ---> +------+--------------------+------+ 3537c478bd9Sstevel@tonic-gate * | EPID | data | EPID | 3547c478bd9Sstevel@tonic-gate * +------+--------+------+----+------+ 3557c478bd9Sstevel@tonic-gate * | data | EPID | data | 3567c478bd9Sstevel@tonic-gate * +---------------+------+-----------+ 3577c478bd9Sstevel@tonic-gate * | data, cont. | 3587c478bd9Sstevel@tonic-gate * +------+---------------------------+ 3597c478bd9Sstevel@tonic-gate * | EPID | data | 3607c478bd9Sstevel@tonic-gate * current offset ---> +------+---------------------------+ 3617c478bd9Sstevel@tonic-gate * | invalid data | 3627c478bd9Sstevel@tonic-gate * wrapped offset ---> +------+--------------------+------+ 3637c478bd9Sstevel@tonic-gate * | EPID | data | EPID | 3647c478bd9Sstevel@tonic-gate * +------+--------+------+----+------+ 3657c478bd9Sstevel@tonic-gate * | data | EPID | data | 3667c478bd9Sstevel@tonic-gate * +---------------+------+-----------+ 3677c478bd9Sstevel@tonic-gate * : : 3687c478bd9Sstevel@tonic-gate * . . 3697c478bd9Sstevel@tonic-gate * . ... valid data ... . 3707c478bd9Sstevel@tonic-gate * . . 3717c478bd9Sstevel@tonic-gate * : : 3727c478bd9Sstevel@tonic-gate * +------+-------------+------+------+ 3737c478bd9Sstevel@tonic-gate * | EPID | data | EPID | data | 3747c478bd9Sstevel@tonic-gate * +------+------------++------+------+ 3757c478bd9Sstevel@tonic-gate * | data, cont. | leftover | 3767c478bd9Sstevel@tonic-gate * limit of data buffer ---> +-------------------+--------------+ 3777c478bd9Sstevel@tonic-gate * 3787c478bd9Sstevel@tonic-gate * If the amount of requested buffer space exceeds the amount of space 3797c478bd9Sstevel@tonic-gate * available between the current offset and the end of the buffer: 3807c478bd9Sstevel@tonic-gate * 3817c478bd9Sstevel@tonic-gate * (1) all words in the data buffer between the current offset and the limit 3827c478bd9Sstevel@tonic-gate * of the data buffer (marked "leftover", above) are set to 3837c478bd9Sstevel@tonic-gate * DTRACE_EPIDNONE 3847c478bd9Sstevel@tonic-gate * 3857c478bd9Sstevel@tonic-gate * (2) the wrapped offset is set to zero 3867c478bd9Sstevel@tonic-gate * 3877c478bd9Sstevel@tonic-gate * (3) the iteration process described above occurs until the wrapped offset 3887c478bd9Sstevel@tonic-gate * is greater than the amount of desired space. 3897c478bd9Sstevel@tonic-gate * 3907c478bd9Sstevel@tonic-gate * The wrapped offset is implemented by (re-)using the inactive offset. 3917c478bd9Sstevel@tonic-gate * In a "switch" buffer policy, the inactive offset stores the offset in 3927c478bd9Sstevel@tonic-gate * the inactive buffer; in a "ring" buffer policy, it stores the wrapped 3937c478bd9Sstevel@tonic-gate * offset. 3947c478bd9Sstevel@tonic-gate * 3957c478bd9Sstevel@tonic-gate * DTrace Scratch Buffering 3967c478bd9Sstevel@tonic-gate * 3977c478bd9Sstevel@tonic-gate * Some ECBs may wish to allocate dynamically-sized temporary scratch memory. 3987c478bd9Sstevel@tonic-gate * To accommodate such requests easily, scratch memory may be allocated in 3997c478bd9Sstevel@tonic-gate * the buffer beyond the current offset plus the needed memory of the current 4007c478bd9Sstevel@tonic-gate * ECB. If there isn't sufficient room in the buffer for the requested amount 4017c478bd9Sstevel@tonic-gate * of scratch space, the allocation fails and an error is generated. Scratch 4027c478bd9Sstevel@tonic-gate * memory is tracked in the dtrace_mstate_t and is automatically freed when 4037c478bd9Sstevel@tonic-gate * the ECB ceases processing. Note that ring buffers cannot allocate their 4047c478bd9Sstevel@tonic-gate * scratch from the principal buffer -- lest they needlessly overwrite older, 4057c478bd9Sstevel@tonic-gate * valid data. Ring buffers therefore have their own dedicated scratch buffer 4067c478bd9Sstevel@tonic-gate * from which scratch is allocated. 4077c478bd9Sstevel@tonic-gate */ 4087c478bd9Sstevel@tonic-gate #define DTRACEBUF_RING 0x0001 /* bufpolicy set to "ring" */ 4097c478bd9Sstevel@tonic-gate #define DTRACEBUF_FILL 0x0002 /* bufpolicy set to "fill" */ 4107c478bd9Sstevel@tonic-gate #define DTRACEBUF_NOSWITCH 0x0004 /* do not switch buffer */ 4117c478bd9Sstevel@tonic-gate #define DTRACEBUF_WRAPPED 0x0008 /* ring buffer has wrapped */ 4127c478bd9Sstevel@tonic-gate #define DTRACEBUF_DROPPED 0x0010 /* drops occurred */ 4137c478bd9Sstevel@tonic-gate #define DTRACEBUF_ERROR 0x0020 /* errors occurred */ 4147c478bd9Sstevel@tonic-gate #define DTRACEBUF_FULL 0x0040 /* "fill" buffer is full */ 4157c478bd9Sstevel@tonic-gate #define DTRACEBUF_CONSUMED 0x0080 /* buffer has been consumed */ 4167c478bd9Sstevel@tonic-gate #define DTRACEBUF_INACTIVE 0x0100 /* buffer is not yet active */ 4177c478bd9Sstevel@tonic-gate 4187c478bd9Sstevel@tonic-gate typedef struct dtrace_buffer { 4197c478bd9Sstevel@tonic-gate uint64_t dtb_offset; /* current offset in buffer */ 4207c478bd9Sstevel@tonic-gate uint64_t dtb_size; /* size of buffer */ 4217c478bd9Sstevel@tonic-gate uint32_t dtb_flags; /* flags */ 4227c478bd9Sstevel@tonic-gate uint32_t dtb_drops; /* number of drops */ 4237c478bd9Sstevel@tonic-gate caddr_t dtb_tomax; /* active buffer */ 4247c478bd9Sstevel@tonic-gate caddr_t dtb_xamot; /* inactive buffer */ 4257c478bd9Sstevel@tonic-gate uint32_t dtb_xamot_flags; /* inactive flags */ 4267c478bd9Sstevel@tonic-gate uint32_t dtb_xamot_drops; /* drops in inactive buffer */ 4277c478bd9Sstevel@tonic-gate uint64_t dtb_xamot_offset; /* offset in inactive buffer */ 4287c478bd9Sstevel@tonic-gate uint32_t dtb_errors; /* number of errors */ 4297c478bd9Sstevel@tonic-gate uint32_t dtb_xamot_errors; /* errors in inactive buffer */ 4307c478bd9Sstevel@tonic-gate #ifndef _LP64 431f484800dSBryan Cantrill uint64_t dtb_pad1; /* pad out to 64 bytes */ 4327c478bd9Sstevel@tonic-gate #endif 433f484800dSBryan Cantrill uint64_t dtb_switched; /* time of last switch */ 434f484800dSBryan Cantrill uint64_t dtb_interval; /* observed switch interval */ 435f484800dSBryan Cantrill uint64_t dtb_pad2[6]; /* pad to avoid false sharing */ 4367c478bd9Sstevel@tonic-gate } dtrace_buffer_t; 4377c478bd9Sstevel@tonic-gate 4387c478bd9Sstevel@tonic-gate /* 4397c478bd9Sstevel@tonic-gate * DTrace Aggregation Buffers 4407c478bd9Sstevel@tonic-gate * 4417c478bd9Sstevel@tonic-gate * Aggregation buffers use much of the same mechanism as described above 4427c478bd9Sstevel@tonic-gate * ("DTrace Buffers"). However, because an aggregation is fundamentally a 4437c478bd9Sstevel@tonic-gate * hash, there exists dynamic metadata associated with an aggregation buffer 4447c478bd9Sstevel@tonic-gate * that is not associated with other kinds of buffers. This aggregation 4457c478bd9Sstevel@tonic-gate * metadata is _only_ relevant for the in-kernel implementation of 4467c478bd9Sstevel@tonic-gate * aggregations; it is not actually relevant to user-level consumers. To do 4477c478bd9Sstevel@tonic-gate * this, we allocate dynamic aggregation data (hash keys and hash buckets) 4487c478bd9Sstevel@tonic-gate * starting below the _limit_ of the buffer, and we allocate data from the 4497c478bd9Sstevel@tonic-gate * _base_ of the buffer. When the aggregation buffer is copied out, _only_ the 4507c478bd9Sstevel@tonic-gate * data is copied out; the metadata is simply discarded. Schematically, 4517c478bd9Sstevel@tonic-gate * aggregation buffers look like: 4527c478bd9Sstevel@tonic-gate * 4537c478bd9Sstevel@tonic-gate * base of data buffer ---> +-------+------+-----------+-------+ 4547c478bd9Sstevel@tonic-gate * | aggid | key | value | aggid | 4557c478bd9Sstevel@tonic-gate * +-------+------+-----------+-------+ 4567c478bd9Sstevel@tonic-gate * | key | 4577c478bd9Sstevel@tonic-gate * +-------+-------+-----+------------+ 4587c478bd9Sstevel@tonic-gate * | value | aggid | key | value | 4597c478bd9Sstevel@tonic-gate * +-------+------++-----+------+-----+ 4607c478bd9Sstevel@tonic-gate * | aggid | key | value | | 4617c478bd9Sstevel@tonic-gate * +-------+------+-------------+ | 4627c478bd9Sstevel@tonic-gate * | || | 4637c478bd9Sstevel@tonic-gate * | || | 4647c478bd9Sstevel@tonic-gate * | \/ | 4657c478bd9Sstevel@tonic-gate * : : 4667c478bd9Sstevel@tonic-gate * . . 4677c478bd9Sstevel@tonic-gate * . . 4687c478bd9Sstevel@tonic-gate * . . 4697c478bd9Sstevel@tonic-gate * : : 4707c478bd9Sstevel@tonic-gate * | /\ | 4717c478bd9Sstevel@tonic-gate * | || +------------+ 4727c478bd9Sstevel@tonic-gate * | || | | 4737c478bd9Sstevel@tonic-gate * +---------------------+ | 4747c478bd9Sstevel@tonic-gate * | hash keys | 4757c478bd9Sstevel@tonic-gate * | (dtrace_aggkey structures) | 4767c478bd9Sstevel@tonic-gate * | | 4777c478bd9Sstevel@tonic-gate * +----------------------------------+ 4787c478bd9Sstevel@tonic-gate * | hash buckets | 4797c478bd9Sstevel@tonic-gate * | (dtrace_aggbuffer structure) | 4807c478bd9Sstevel@tonic-gate * | | 4817c478bd9Sstevel@tonic-gate * limit of data buffer ---> +----------------------------------+ 4827c478bd9Sstevel@tonic-gate * 4837c478bd9Sstevel@tonic-gate * 4847c478bd9Sstevel@tonic-gate * As implied above, just as we assure that ECBs always store a constant 4857c478bd9Sstevel@tonic-gate * amount of data, we assure that a given aggregation -- identified by its 4867c478bd9Sstevel@tonic-gate * aggregation ID -- always stores data of a constant quantity and type. 4877c478bd9Sstevel@tonic-gate * As with EPIDs, this allows the aggregation ID to serve as the metadata for a 4887c478bd9Sstevel@tonic-gate * given record. 4897c478bd9Sstevel@tonic-gate * 4907c478bd9Sstevel@tonic-gate * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t) 4917c478bd9Sstevel@tonic-gate * aligned. (If this the structure changes such that this becomes false, an 4927c478bd9Sstevel@tonic-gate * assertion will fail in dtrace_aggregate().) 4937c478bd9Sstevel@tonic-gate */ 4947c478bd9Sstevel@tonic-gate typedef struct dtrace_aggkey { 4957c478bd9Sstevel@tonic-gate uint32_t dtak_hashval; /* hash value */ 4967c478bd9Sstevel@tonic-gate uint32_t dtak_action:4; /* action -- 4 bits */ 4977c478bd9Sstevel@tonic-gate uint32_t dtak_size:28; /* size -- 28 bits */ 4987c478bd9Sstevel@tonic-gate caddr_t dtak_data; /* data pointer */ 4997c478bd9Sstevel@tonic-gate struct dtrace_aggkey *dtak_next; /* next in hash chain */ 5007c478bd9Sstevel@tonic-gate } dtrace_aggkey_t; 5017c478bd9Sstevel@tonic-gate 5027c478bd9Sstevel@tonic-gate typedef struct dtrace_aggbuffer { 5037c478bd9Sstevel@tonic-gate uintptr_t dtagb_hashsize; /* number of buckets */ 5047c478bd9Sstevel@tonic-gate uintptr_t dtagb_free; /* free list of keys */ 5057c478bd9Sstevel@tonic-gate dtrace_aggkey_t **dtagb_hash; /* hash table */ 5067c478bd9Sstevel@tonic-gate } dtrace_aggbuffer_t; 5077c478bd9Sstevel@tonic-gate 5087c478bd9Sstevel@tonic-gate /* 5097c478bd9Sstevel@tonic-gate * DTrace Speculations 5107c478bd9Sstevel@tonic-gate * 5117c478bd9Sstevel@tonic-gate * Speculations have a per-CPU buffer and a global state. Once a speculation 5127c478bd9Sstevel@tonic-gate * buffer has been comitted or discarded, it cannot be reused until all CPUs 5137c478bd9Sstevel@tonic-gate * have taken the same action (commit or discard) on their respective 5147c478bd9Sstevel@tonic-gate * speculative buffer. However, because DTrace probes may execute in arbitrary 5157c478bd9Sstevel@tonic-gate * context, other CPUs cannot simply be cross-called at probe firing time to 5167c478bd9Sstevel@tonic-gate * perform the necessary commit or discard. The speculation states thus 5177c478bd9Sstevel@tonic-gate * optimize for the case that a speculative buffer is only active on one CPU at 5187c478bd9Sstevel@tonic-gate * the time of a commit() or discard() -- for if this is the case, other CPUs 5197c478bd9Sstevel@tonic-gate * need not take action, and the speculation is immediately available for 5207c478bd9Sstevel@tonic-gate * reuse. If the speculation is active on multiple CPUs, it must be 5217c478bd9Sstevel@tonic-gate * asynchronously cleaned -- potentially leading to a higher rate of dirty 5227c478bd9Sstevel@tonic-gate * speculative drops. The speculation states are as follows: 5237c478bd9Sstevel@tonic-gate * 5247c478bd9Sstevel@tonic-gate * DTRACESPEC_INACTIVE <= Initial state; inactive speculation 5257c478bd9Sstevel@tonic-gate * DTRACESPEC_ACTIVE <= Allocated, but not yet speculatively traced to 5267c478bd9Sstevel@tonic-gate * DTRACESPEC_ACTIVEONE <= Speculatively traced to on one CPU 5277c478bd9Sstevel@tonic-gate * DTRACESPEC_ACTIVEMANY <= Speculatively traced to on more than one CPU 5287c478bd9Sstevel@tonic-gate * DTRACESPEC_COMMITTING <= Currently being commited on one CPU 5297c478bd9Sstevel@tonic-gate * DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs 5307c478bd9Sstevel@tonic-gate * DTRACESPEC_DISCARDING <= Currently being discarded on many CPUs 5317c478bd9Sstevel@tonic-gate * 5327c478bd9Sstevel@tonic-gate * The state transition diagram is as follows: 5337c478bd9Sstevel@tonic-gate * 5347c478bd9Sstevel@tonic-gate * +----------------------------------------------------------+ 5357c478bd9Sstevel@tonic-gate * | | 5367c478bd9Sstevel@tonic-gate * | +------------+ | 5377c478bd9Sstevel@tonic-gate * | +-------------------| COMMITTING |<-----------------+ | 5387c478bd9Sstevel@tonic-gate * | | +------------+ | | 5397c478bd9Sstevel@tonic-gate * | | copied spec. ^ commit() on | | discard() on 5407c478bd9Sstevel@tonic-gate * | | into principal | active CPU | | active CPU 5417c478bd9Sstevel@tonic-gate * | | | commit() | | 5427c478bd9Sstevel@tonic-gate * V V | | | 5437c478bd9Sstevel@tonic-gate * +----------+ +--------+ +-----------+ 5447c478bd9Sstevel@tonic-gate * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE | 5457c478bd9Sstevel@tonic-gate * +----------+ speculation() +--------+ speculate() +-----------+ 5467c478bd9Sstevel@tonic-gate * ^ ^ | | | 5477c478bd9Sstevel@tonic-gate * | | | discard() | | 5487c478bd9Sstevel@tonic-gate * | | asynchronously | discard() on | | speculate() 5497c478bd9Sstevel@tonic-gate * | | cleaned V inactive CPU | | on inactive 5507c478bd9Sstevel@tonic-gate * | | +------------+ | | CPU 5517c478bd9Sstevel@tonic-gate * | +-------------------| DISCARDING |<-----------------+ | 5527c478bd9Sstevel@tonic-gate * | +------------+ | 5537c478bd9Sstevel@tonic-gate * | asynchronously ^ | 5547c478bd9Sstevel@tonic-gate * | copied spec. | discard() | 5557c478bd9Sstevel@tonic-gate * | into principal +------------------------+ | 5567c478bd9Sstevel@tonic-gate * | | V 5577c478bd9Sstevel@tonic-gate * +----------------+ commit() +------------+ 5587c478bd9Sstevel@tonic-gate * | COMMITTINGMANY |<----------------------------------| ACTIVEMANY | 5597c478bd9Sstevel@tonic-gate * +----------------+ +------------+ 5607c478bd9Sstevel@tonic-gate */ 5617c478bd9Sstevel@tonic-gate typedef enum dtrace_speculation_state { 5627c478bd9Sstevel@tonic-gate DTRACESPEC_INACTIVE = 0, 5637c478bd9Sstevel@tonic-gate DTRACESPEC_ACTIVE, 5647c478bd9Sstevel@tonic-gate DTRACESPEC_ACTIVEONE, 5657c478bd9Sstevel@tonic-gate DTRACESPEC_ACTIVEMANY, 5667c478bd9Sstevel@tonic-gate DTRACESPEC_COMMITTING, 5677c478bd9Sstevel@tonic-gate DTRACESPEC_COMMITTINGMANY, 5687c478bd9Sstevel@tonic-gate DTRACESPEC_DISCARDING 5697c478bd9Sstevel@tonic-gate } dtrace_speculation_state_t; 5707c478bd9Sstevel@tonic-gate 5717c478bd9Sstevel@tonic-gate typedef struct dtrace_speculation { 5727c478bd9Sstevel@tonic-gate dtrace_speculation_state_t dtsp_state; /* current speculation state */ 5737c478bd9Sstevel@tonic-gate int dtsp_cleaning; /* non-zero if being cleaned */ 5747c478bd9Sstevel@tonic-gate dtrace_buffer_t *dtsp_buffer; /* speculative buffer */ 5757c478bd9Sstevel@tonic-gate } dtrace_speculation_t; 5767c478bd9Sstevel@tonic-gate 5777c478bd9Sstevel@tonic-gate /* 5787c478bd9Sstevel@tonic-gate * DTrace Dynamic Variables 5797c478bd9Sstevel@tonic-gate * 5807c478bd9Sstevel@tonic-gate * The dynamic variable problem is obviously decomposed into two subproblems: 5817c478bd9Sstevel@tonic-gate * allocating new dynamic storage, and freeing old dynamic storage. The 5827c478bd9Sstevel@tonic-gate * presence of the second problem makes the first much more complicated -- or 5837c478bd9Sstevel@tonic-gate * rather, the absence of the second renders the first trivial. This is the 5847c478bd9Sstevel@tonic-gate * case with aggregations, for which there is effectively no deallocation of 5857c478bd9Sstevel@tonic-gate * dynamic storage. (Or more accurately, all dynamic storage is deallocated 5867c478bd9Sstevel@tonic-gate * when a snapshot is taken of the aggregation.) As DTrace dynamic variables 5877c478bd9Sstevel@tonic-gate * allow for both dynamic allocation and dynamic deallocation, the 5887c478bd9Sstevel@tonic-gate * implementation of dynamic variables is quite a bit more complicated than 5897c478bd9Sstevel@tonic-gate * that of their aggregation kin. 5907c478bd9Sstevel@tonic-gate * 5917c478bd9Sstevel@tonic-gate * We observe that allocating new dynamic storage is tricky only because the 5927c478bd9Sstevel@tonic-gate * size can vary -- the allocation problem is much easier if allocation sizes 5937c478bd9Sstevel@tonic-gate * are uniform. We further observe that in D, the size of dynamic variables is 5947c478bd9Sstevel@tonic-gate * actually _not_ dynamic -- dynamic variable sizes may be determined by static 5957c478bd9Sstevel@tonic-gate * analysis of DIF text. (This is true even of putatively dynamically-sized 5967c478bd9Sstevel@tonic-gate * objects like strings and stacks, the sizes of which are dictated by the 5977c478bd9Sstevel@tonic-gate * "stringsize" and "stackframes" variables, respectively.) We exploit this by 5987c478bd9Sstevel@tonic-gate * performing this analysis on all DIF before enabling any probes. For each 5997c478bd9Sstevel@tonic-gate * dynamic load or store, we calculate the dynamically-allocated size plus the 6007c478bd9Sstevel@tonic-gate * size of the dtrace_dynvar structure plus the storage required to key the 6017c478bd9Sstevel@tonic-gate * data. For all DIF, we take the largest value and dub it the _chunksize_. 6027c478bd9Sstevel@tonic-gate * We then divide dynamic memory into two parts: a hash table that is wide 6037c478bd9Sstevel@tonic-gate * enough to have every chunk in its own bucket, and a larger region of equal 6047c478bd9Sstevel@tonic-gate * chunksize units. Whenever we wish to dynamically allocate a variable, we 6057c478bd9Sstevel@tonic-gate * always allocate a single chunk of memory. Depending on the uniformity of 6067c478bd9Sstevel@tonic-gate * allocation, this will waste some amount of memory -- but it eliminates the 6077c478bd9Sstevel@tonic-gate * non-determinism inherent in traditional heap fragmentation. 6087c478bd9Sstevel@tonic-gate * 6097c478bd9Sstevel@tonic-gate * Dynamic objects are allocated by storing a non-zero value to them; they are 6107c478bd9Sstevel@tonic-gate * deallocated by storing a zero value to them. Dynamic variables are 6117c478bd9Sstevel@tonic-gate * complicated enormously by being shared between CPUs. In particular, 6127c478bd9Sstevel@tonic-gate * consider the following scenario: 6137c478bd9Sstevel@tonic-gate * 6147c478bd9Sstevel@tonic-gate * CPU A CPU B 6157c478bd9Sstevel@tonic-gate * +---------------------------------+ +---------------------------------+ 6167c478bd9Sstevel@tonic-gate * | | | | 6177c478bd9Sstevel@tonic-gate * | allocates dynamic object a[123] | | | 6187c478bd9Sstevel@tonic-gate * | by storing the value 345 to it | | | 6197c478bd9Sstevel@tonic-gate * | ---------> | 6207c478bd9Sstevel@tonic-gate * | | | wishing to load from object | 6217c478bd9Sstevel@tonic-gate * | | | a[123], performs lookup in | 6227c478bd9Sstevel@tonic-gate * | | | dynamic variable space | 6237c478bd9Sstevel@tonic-gate * | <--------- | 6247c478bd9Sstevel@tonic-gate * | deallocates object a[123] by | | | 6257c478bd9Sstevel@tonic-gate * | storing 0 to it | | | 6267c478bd9Sstevel@tonic-gate * | | | | 6277c478bd9Sstevel@tonic-gate * | allocates dynamic object b[567] | | performs load from a[123] | 6287c478bd9Sstevel@tonic-gate * | by storing the value 789 to it | | | 6297c478bd9Sstevel@tonic-gate * : : : : 6307c478bd9Sstevel@tonic-gate * . . . . 6317c478bd9Sstevel@tonic-gate * 6327c478bd9Sstevel@tonic-gate * This is obviously a race in the D program, but there are nonetheless only 6337c478bd9Sstevel@tonic-gate * two valid values for CPU B's load from a[123]: 345 or 0. Most importantly, 6347c478bd9Sstevel@tonic-gate * CPU B may _not_ see the value 789 for a[123]. 6357c478bd9Sstevel@tonic-gate * 6367c478bd9Sstevel@tonic-gate * There are essentially two ways to deal with this: 6377c478bd9Sstevel@tonic-gate * 6387c478bd9Sstevel@tonic-gate * (1) Explicitly spin-lock variables. That is, if CPU B wishes to load 6397c478bd9Sstevel@tonic-gate * from a[123], it needs to lock a[123] and hold the lock for the 6407c478bd9Sstevel@tonic-gate * duration that it wishes to manipulate it. 6417c478bd9Sstevel@tonic-gate * 6427c478bd9Sstevel@tonic-gate * (2) Avoid reusing freed chunks until it is known that no CPU is referring 6437c478bd9Sstevel@tonic-gate * to them. 6447c478bd9Sstevel@tonic-gate * 6457c478bd9Sstevel@tonic-gate * The implementation of (1) is rife with complexity, because it requires the 6467c478bd9Sstevel@tonic-gate * user of a dynamic variable to explicitly decree when they are done using it. 6477c478bd9Sstevel@tonic-gate * Were all variables by value, this perhaps wouldn't be debilitating -- but 6487c478bd9Sstevel@tonic-gate * dynamic variables of non-scalar types are tracked by reference. That is, if 6497c478bd9Sstevel@tonic-gate * a dynamic variable is, say, a string, and that variable is to be traced to, 6507c478bd9Sstevel@tonic-gate * say, the principal buffer, the DIF emulation code returns to the main 6517c478bd9Sstevel@tonic-gate * dtrace_probe() loop a pointer to the underlying storage, not the contents of 6527c478bd9Sstevel@tonic-gate * the storage. Further, code calling on DIF emulation would have to be aware 6537c478bd9Sstevel@tonic-gate * that the DIF emulation has returned a reference to a dynamic variable that 6547c478bd9Sstevel@tonic-gate * has been potentially locked. The variable would have to be unlocked after 6557c478bd9Sstevel@tonic-gate * the main dtrace_probe() loop is finished with the variable, and the main 6567c478bd9Sstevel@tonic-gate * dtrace_probe() loop would have to be careful to not call any further DIF 6577c478bd9Sstevel@tonic-gate * emulation while the variable is locked to avoid deadlock. More generally, 6587c478bd9Sstevel@tonic-gate * if one were to implement (1), DIF emulation code dealing with dynamic 6597c478bd9Sstevel@tonic-gate * variables could only deal with one dynamic variable at a time (lest deadlock 6607c478bd9Sstevel@tonic-gate * result). To sum, (1) exports too much subtlety to the users of dynamic 6617c478bd9Sstevel@tonic-gate * variables -- increasing maintenance burden and imposing serious constraints 6627c478bd9Sstevel@tonic-gate * on future DTrace development. 6637c478bd9Sstevel@tonic-gate * 6647c478bd9Sstevel@tonic-gate * The implementation of (2) is also complex, but the complexity is more 6657c478bd9Sstevel@tonic-gate * manageable. We need to be sure that when a variable is deallocated, it is 6667c478bd9Sstevel@tonic-gate * not placed on a traditional free list, but rather on a _dirty_ list. Once a 6677c478bd9Sstevel@tonic-gate * variable is on a dirty list, it cannot be found by CPUs performing a 6687c478bd9Sstevel@tonic-gate * subsequent lookup of the variable -- but it may still be in use by other 6697c478bd9Sstevel@tonic-gate * CPUs. To assure that all CPUs that may be seeing the old variable have 6707c478bd9Sstevel@tonic-gate * cleared out of probe context, a dtrace_sync() can be issued. Once the 6717c478bd9Sstevel@tonic-gate * dtrace_sync() has completed, it can be known that all CPUs are done 6727c478bd9Sstevel@tonic-gate * manipulating the dynamic variable -- the dirty list can be atomically 6737c478bd9Sstevel@tonic-gate * appended to the free list. Unfortunately, there's a slight hiccup in this 6747c478bd9Sstevel@tonic-gate * mechanism: dtrace_sync() may not be issued from probe context. The 6757c478bd9Sstevel@tonic-gate * dtrace_sync() must be therefore issued asynchronously from non-probe 6767c478bd9Sstevel@tonic-gate * context. For this we rely on the DTrace cleaner, a cyclic that runs at the 6777c478bd9Sstevel@tonic-gate * "cleanrate" frequency. To ease this implementation, we define several chunk 6787c478bd9Sstevel@tonic-gate * lists: 6797c478bd9Sstevel@tonic-gate * 6807c478bd9Sstevel@tonic-gate * - Dirty. Deallocated chunks, not yet cleaned. Not available. 6817c478bd9Sstevel@tonic-gate * 6827c478bd9Sstevel@tonic-gate * - Rinsing. Formerly dirty chunks that are currently being asynchronously 6837c478bd9Sstevel@tonic-gate * cleaned. Not available, but will be shortly. Dynamic variable 6847c478bd9Sstevel@tonic-gate * allocation may not spin or block for availability, however. 6857c478bd9Sstevel@tonic-gate * 6867c478bd9Sstevel@tonic-gate * - Clean. Clean chunks, ready for allocation -- but not on the free list. 6877c478bd9Sstevel@tonic-gate * 6887c478bd9Sstevel@tonic-gate * - Free. Available for allocation. 6897c478bd9Sstevel@tonic-gate * 6907c478bd9Sstevel@tonic-gate * Moreover, to avoid absurd contention, _each_ of these lists is implemented 6917c478bd9Sstevel@tonic-gate * on a per-CPU basis. This is only for performance, not correctness; chunks 6927c478bd9Sstevel@tonic-gate * may be allocated from another CPU's free list. The algorithm for allocation 6937c478bd9Sstevel@tonic-gate * then is this: 6947c478bd9Sstevel@tonic-gate * 6957c478bd9Sstevel@tonic-gate * (1) Attempt to atomically allocate from current CPU's free list. If list 6967c478bd9Sstevel@tonic-gate * is non-empty and allocation is successful, allocation is complete. 6977c478bd9Sstevel@tonic-gate * 6987c478bd9Sstevel@tonic-gate * (2) If the clean list is non-empty, atomically move it to the free list, 6997c478bd9Sstevel@tonic-gate * and reattempt (1). 7007c478bd9Sstevel@tonic-gate * 7017c478bd9Sstevel@tonic-gate * (3) If the dynamic variable space is in the CLEAN state, look for free 7027c478bd9Sstevel@tonic-gate * and clean lists on other CPUs by setting the current CPU to the next 7037c478bd9Sstevel@tonic-gate * CPU, and reattempting (1). If the next CPU is the current CPU (that 7047c478bd9Sstevel@tonic-gate * is, if all CPUs have been checked), atomically switch the state of 7057c478bd9Sstevel@tonic-gate * the dynamic variable space based on the following: 7067c478bd9Sstevel@tonic-gate * 7077c478bd9Sstevel@tonic-gate * - If no free chunks were found and no dirty chunks were found, 7087c478bd9Sstevel@tonic-gate * atomically set the state to EMPTY. 7097c478bd9Sstevel@tonic-gate * 7107c478bd9Sstevel@tonic-gate * - If dirty chunks were found, atomically set the state to DIRTY. 7117c478bd9Sstevel@tonic-gate * 7127c478bd9Sstevel@tonic-gate * - If rinsing chunks were found, atomically set the state to RINSING. 7137c478bd9Sstevel@tonic-gate * 7147c478bd9Sstevel@tonic-gate * (4) Based on state of dynamic variable space state, increment appropriate 7157c478bd9Sstevel@tonic-gate * counter to indicate dynamic drops (if in EMPTY state) vs. dynamic 7167c478bd9Sstevel@tonic-gate * dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in 7177c478bd9Sstevel@tonic-gate * RINSING state). Fail the allocation. 7187c478bd9Sstevel@tonic-gate * 7197c478bd9Sstevel@tonic-gate * The cleaning cyclic operates with the following algorithm: for all CPUs 7207c478bd9Sstevel@tonic-gate * with a non-empty dirty list, atomically move the dirty list to the rinsing 7217c478bd9Sstevel@tonic-gate * list. Perform a dtrace_sync(). For all CPUs with a non-empty rinsing list, 7227c478bd9Sstevel@tonic-gate * atomically move the rinsing list to the clean list. Perform another 7237c478bd9Sstevel@tonic-gate * dtrace_sync(). By this point, all CPUs have seen the new clean list; the 7247c478bd9Sstevel@tonic-gate * state of the dynamic variable space can be restored to CLEAN. 7257c478bd9Sstevel@tonic-gate * 7267c478bd9Sstevel@tonic-gate * There exist two final races that merit explanation. The first is a simple 7277c478bd9Sstevel@tonic-gate * allocation race: 7287c478bd9Sstevel@tonic-gate * 7297c478bd9Sstevel@tonic-gate * CPU A CPU B 7307c478bd9Sstevel@tonic-gate * +---------------------------------+ +---------------------------------+ 7317c478bd9Sstevel@tonic-gate * | | | | 7327c478bd9Sstevel@tonic-gate * | allocates dynamic object a[123] | | allocates dynamic object a[123] | 7337c478bd9Sstevel@tonic-gate * | by storing the value 345 to it | | by storing the value 567 to it | 7347c478bd9Sstevel@tonic-gate * | | | | 7357c478bd9Sstevel@tonic-gate * : : : : 7367c478bd9Sstevel@tonic-gate * . . . . 7377c478bd9Sstevel@tonic-gate * 7387c478bd9Sstevel@tonic-gate * Again, this is a race in the D program. It can be resolved by having a[123] 7397c478bd9Sstevel@tonic-gate * hold the value 345 or a[123] hold the value 567 -- but it must be true that 7407c478bd9Sstevel@tonic-gate * a[123] have only _one_ of these values. (That is, the racing CPUs may not 7417c478bd9Sstevel@tonic-gate * put the same element twice on the same hash chain.) This is resolved 7427c478bd9Sstevel@tonic-gate * simply: before the allocation is undertaken, the start of the new chunk's 7437c478bd9Sstevel@tonic-gate * hash chain is noted. Later, after the allocation is complete, the hash 7447c478bd9Sstevel@tonic-gate * chain is atomically switched to point to the new element. If this fails 7457c478bd9Sstevel@tonic-gate * (because of either concurrent allocations or an allocation concurrent with a 7467c478bd9Sstevel@tonic-gate * deletion), the newly allocated chunk is deallocated to the dirty list, and 7477c478bd9Sstevel@tonic-gate * the whole process of looking up (and potentially allocating) the dynamic 7487c478bd9Sstevel@tonic-gate * variable is reattempted. 7497c478bd9Sstevel@tonic-gate * 7507c478bd9Sstevel@tonic-gate * The final race is a simple deallocation race: 7517c478bd9Sstevel@tonic-gate * 7527c478bd9Sstevel@tonic-gate * CPU A CPU B 7537c478bd9Sstevel@tonic-gate * +---------------------------------+ +---------------------------------+ 7547c478bd9Sstevel@tonic-gate * | | | | 7557c478bd9Sstevel@tonic-gate * | deallocates dynamic object | | deallocates dynamic object | 7567c478bd9Sstevel@tonic-gate * | a[123] by storing the value 0 | | a[123] by storing the value 0 | 7577c478bd9Sstevel@tonic-gate * | to it | | to it | 7587c478bd9Sstevel@tonic-gate * | | | | 7597c478bd9Sstevel@tonic-gate * : : : : 7607c478bd9Sstevel@tonic-gate * . . . . 7617c478bd9Sstevel@tonic-gate * 7627c478bd9Sstevel@tonic-gate * Once again, this is a race in the D program, but it is one that we must 7637c478bd9Sstevel@tonic-gate * handle without corrupting the underlying data structures. Because 7647c478bd9Sstevel@tonic-gate * deallocations require the deletion of a chunk from the middle of a hash 7657c478bd9Sstevel@tonic-gate * chain, we cannot use a single-word atomic operation to remove it. For this, 7667c478bd9Sstevel@tonic-gate * we add a spin lock to the hash buckets that is _only_ used for deallocations 7677c478bd9Sstevel@tonic-gate * (allocation races are handled as above). Further, this spin lock is _only_ 7687c478bd9Sstevel@tonic-gate * held for the duration of the delete; before control is returned to the DIF 7697c478bd9Sstevel@tonic-gate * emulation code, the hash bucket is unlocked. 7707c478bd9Sstevel@tonic-gate */ 7717c478bd9Sstevel@tonic-gate typedef struct dtrace_key { 7727c478bd9Sstevel@tonic-gate uint64_t dttk_value; /* data value or data pointer */ 7737c478bd9Sstevel@tonic-gate uint64_t dttk_size; /* 0 if by-val, >0 if by-ref */ 7747c478bd9Sstevel@tonic-gate } dtrace_key_t; 7757c478bd9Sstevel@tonic-gate 7767c478bd9Sstevel@tonic-gate typedef struct dtrace_tuple { 7777c478bd9Sstevel@tonic-gate uint32_t dtt_nkeys; /* number of keys in tuple */ 7787c478bd9Sstevel@tonic-gate uint32_t dtt_pad; /* padding */ 7797c478bd9Sstevel@tonic-gate dtrace_key_t dtt_key[1]; /* array of tuple keys */ 7807c478bd9Sstevel@tonic-gate } dtrace_tuple_t; 7817c478bd9Sstevel@tonic-gate 7827c478bd9Sstevel@tonic-gate typedef struct dtrace_dynvar { 7837c478bd9Sstevel@tonic-gate uint64_t dtdv_hashval; /* hash value -- 0 if free */ 7847c478bd9Sstevel@tonic-gate struct dtrace_dynvar *dtdv_next; /* next on list or hash chain */ 7857c478bd9Sstevel@tonic-gate void *dtdv_data; /* pointer to data */ 7867c478bd9Sstevel@tonic-gate dtrace_tuple_t dtdv_tuple; /* tuple key */ 7877c478bd9Sstevel@tonic-gate } dtrace_dynvar_t; 7887c478bd9Sstevel@tonic-gate 7897c478bd9Sstevel@tonic-gate typedef enum dtrace_dynvar_op { 7907c478bd9Sstevel@tonic-gate DTRACE_DYNVAR_ALLOC, 7917c478bd9Sstevel@tonic-gate DTRACE_DYNVAR_NOALLOC, 7927c478bd9Sstevel@tonic-gate DTRACE_DYNVAR_DEALLOC 7937c478bd9Sstevel@tonic-gate } dtrace_dynvar_op_t; 7947c478bd9Sstevel@tonic-gate 7957c478bd9Sstevel@tonic-gate typedef struct dtrace_dynhash { 7967c478bd9Sstevel@tonic-gate dtrace_dynvar_t *dtdh_chain; /* hash chain for this bucket */ 7977c478bd9Sstevel@tonic-gate uintptr_t dtdh_lock; /* deallocation lock */ 7987c478bd9Sstevel@tonic-gate #ifdef _LP64 7997c478bd9Sstevel@tonic-gate uintptr_t dtdh_pad[6]; /* pad to avoid false sharing */ 8007c478bd9Sstevel@tonic-gate #else 8017c478bd9Sstevel@tonic-gate uintptr_t dtdh_pad[14]; /* pad to avoid false sharing */ 8027c478bd9Sstevel@tonic-gate #endif 8037c478bd9Sstevel@tonic-gate } dtrace_dynhash_t; 8047c478bd9Sstevel@tonic-gate 8057c478bd9Sstevel@tonic-gate typedef struct dtrace_dstate_percpu { 8067c478bd9Sstevel@tonic-gate dtrace_dynvar_t *dtdsc_free; /* free list for this CPU */ 8077c478bd9Sstevel@tonic-gate dtrace_dynvar_t *dtdsc_dirty; /* dirty list for this CPU */ 8087c478bd9Sstevel@tonic-gate dtrace_dynvar_t *dtdsc_rinsing; /* rinsing list for this CPU */ 8097c478bd9Sstevel@tonic-gate dtrace_dynvar_t *dtdsc_clean; /* clean list for this CPU */ 8107c478bd9Sstevel@tonic-gate uint64_t dtdsc_drops; /* number of capacity drops */ 8117c478bd9Sstevel@tonic-gate uint64_t dtdsc_dirty_drops; /* number of dirty drops */ 8127c478bd9Sstevel@tonic-gate uint64_t dtdsc_rinsing_drops; /* number of rinsing drops */ 8137c478bd9Sstevel@tonic-gate #ifdef _LP64 8147c478bd9Sstevel@tonic-gate uint64_t dtdsc_pad; /* pad to avoid false sharing */ 8157c478bd9Sstevel@tonic-gate #else 8167c478bd9Sstevel@tonic-gate uint64_t dtdsc_pad[2]; /* pad to avoid false sharing */ 8177c478bd9Sstevel@tonic-gate #endif 8187c478bd9Sstevel@tonic-gate } dtrace_dstate_percpu_t; 8197c478bd9Sstevel@tonic-gate 8207c478bd9Sstevel@tonic-gate typedef enum dtrace_dstate_state { 8217c478bd9Sstevel@tonic-gate DTRACE_DSTATE_CLEAN = 0, 8227c478bd9Sstevel@tonic-gate DTRACE_DSTATE_EMPTY, 8237c478bd9Sstevel@tonic-gate DTRACE_DSTATE_DIRTY, 8247c478bd9Sstevel@tonic-gate DTRACE_DSTATE_RINSING 8257c478bd9Sstevel@tonic-gate } dtrace_dstate_state_t; 8267c478bd9Sstevel@tonic-gate 8277c478bd9Sstevel@tonic-gate typedef struct dtrace_dstate { 8287c478bd9Sstevel@tonic-gate void *dtds_base; /* base of dynamic var. space */ 8297c478bd9Sstevel@tonic-gate size_t dtds_size; /* size of dynamic var. space */ 8307c478bd9Sstevel@tonic-gate size_t dtds_hashsize; /* number of buckets in hash */ 8317c478bd9Sstevel@tonic-gate size_t dtds_chunksize; /* size of each chunk */ 8327c478bd9Sstevel@tonic-gate dtrace_dynhash_t *dtds_hash; /* pointer to hash table */ 8337c478bd9Sstevel@tonic-gate dtrace_dstate_state_t dtds_state; /* current dynamic var. state */ 8347c478bd9Sstevel@tonic-gate dtrace_dstate_percpu_t *dtds_percpu; /* per-CPU dyn. var. state */ 8357c478bd9Sstevel@tonic-gate } dtrace_dstate_t; 8367c478bd9Sstevel@tonic-gate 8377c478bd9Sstevel@tonic-gate /* 8387c478bd9Sstevel@tonic-gate * DTrace Variable State 8397c478bd9Sstevel@tonic-gate * 8407c478bd9Sstevel@tonic-gate * The DTrace variable state tracks user-defined variables in its dtrace_vstate 8417c478bd9Sstevel@tonic-gate * structure. Each DTrace consumer has exactly one dtrace_vstate structure, 8427c478bd9Sstevel@tonic-gate * but some dtrace_vstate structures may exist without a corresponding DTrace 8437c478bd9Sstevel@tonic-gate * consumer (see "DTrace Helpers", below). As described in <sys/dtrace.h>, 8447c478bd9Sstevel@tonic-gate * user-defined variables can have one of three scopes: 8457c478bd9Sstevel@tonic-gate * 8467c478bd9Sstevel@tonic-gate * DIFV_SCOPE_GLOBAL => global scope 8477c478bd9Sstevel@tonic-gate * DIFV_SCOPE_THREAD => thread-local scope (i.e. "self->" variables) 8487c478bd9Sstevel@tonic-gate * DIFV_SCOPE_LOCAL => clause-local scope (i.e. "this->" variables) 8497c478bd9Sstevel@tonic-gate * 8507c478bd9Sstevel@tonic-gate * The variable state tracks variables by both their scope and their allocation 8517c478bd9Sstevel@tonic-gate * type: 8527c478bd9Sstevel@tonic-gate * 8537c478bd9Sstevel@tonic-gate * - The dtvs_globals and dtvs_locals members each point to an array of 8547c478bd9Sstevel@tonic-gate * dtrace_statvar structures. These structures contain both the variable 8557c478bd9Sstevel@tonic-gate * metadata (dtrace_difv structures) and the underlying storage for all 8567c478bd9Sstevel@tonic-gate * statically allocated variables, including statically allocated 8577c478bd9Sstevel@tonic-gate * DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables. 8587c478bd9Sstevel@tonic-gate * 8597c478bd9Sstevel@tonic-gate * - The dtvs_tlocals member points to an array of dtrace_difv structures for 8607c478bd9Sstevel@tonic-gate * DIFV_SCOPE_THREAD variables. As such, this array tracks _only_ the 8617c478bd9Sstevel@tonic-gate * variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage 8627c478bd9Sstevel@tonic-gate * is allocated out of the dynamic variable space. 8637c478bd9Sstevel@tonic-gate * 8647c478bd9Sstevel@tonic-gate * - The dtvs_dynvars member is the dynamic variable state associated with the 8657c478bd9Sstevel@tonic-gate * variable state. The dynamic variable state (described in "DTrace Dynamic 8667c478bd9Sstevel@tonic-gate * Variables", above) tracks all DIFV_SCOPE_THREAD variables and all 8677c478bd9Sstevel@tonic-gate * dynamically-allocated DIFV_SCOPE_GLOBAL variables. 8687c478bd9Sstevel@tonic-gate */ 8697c478bd9Sstevel@tonic-gate typedef struct dtrace_statvar { 8707c478bd9Sstevel@tonic-gate uint64_t dtsv_data; /* data or pointer to it */ 8717c478bd9Sstevel@tonic-gate size_t dtsv_size; /* size of pointed-to data */ 8727c478bd9Sstevel@tonic-gate int dtsv_refcnt; /* reference count */ 8737c478bd9Sstevel@tonic-gate dtrace_difv_t dtsv_var; /* variable metadata */ 8747c478bd9Sstevel@tonic-gate } dtrace_statvar_t; 8757c478bd9Sstevel@tonic-gate 8767c478bd9Sstevel@tonic-gate typedef struct dtrace_vstate { 8777c478bd9Sstevel@tonic-gate dtrace_state_t *dtvs_state; /* back pointer to state */ 8787c478bd9Sstevel@tonic-gate dtrace_statvar_t **dtvs_globals; /* statically-allocated glbls */ 8797c478bd9Sstevel@tonic-gate int dtvs_nglobals; /* number of globals */ 8807c478bd9Sstevel@tonic-gate dtrace_difv_t *dtvs_tlocals; /* thread-local metadata */ 8817c478bd9Sstevel@tonic-gate int dtvs_ntlocals; /* number of thread-locals */ 8827c478bd9Sstevel@tonic-gate dtrace_statvar_t **dtvs_locals; /* clause-local data */ 8837c478bd9Sstevel@tonic-gate int dtvs_nlocals; /* number of clause-locals */ 8847c478bd9Sstevel@tonic-gate dtrace_dstate_t dtvs_dynvars; /* dynamic variable state */ 8857c478bd9Sstevel@tonic-gate } dtrace_vstate_t; 8867c478bd9Sstevel@tonic-gate 8877c478bd9Sstevel@tonic-gate /* 8887c478bd9Sstevel@tonic-gate * DTrace Machine State 8897c478bd9Sstevel@tonic-gate * 8907c478bd9Sstevel@tonic-gate * In the process of processing a fired probe, DTrace needs to track and/or 8917c478bd9Sstevel@tonic-gate * cache some per-CPU state associated with that particular firing. This is 8927c478bd9Sstevel@tonic-gate * state that is always discarded after the probe firing has completed, and 8937c478bd9Sstevel@tonic-gate * much of it is not specific to any DTrace consumer, remaining valid across 8947c478bd9Sstevel@tonic-gate * all ECBs. This state is tracked in the dtrace_mstate structure. 8957c478bd9Sstevel@tonic-gate */ 8967c478bd9Sstevel@tonic-gate #define DTRACE_MSTATE_ARGS 0x00000001 8977c478bd9Sstevel@tonic-gate #define DTRACE_MSTATE_PROBE 0x00000002 8987c478bd9Sstevel@tonic-gate #define DTRACE_MSTATE_EPID 0x00000004 8997c478bd9Sstevel@tonic-gate #define DTRACE_MSTATE_TIMESTAMP 0x00000008 9007c478bd9Sstevel@tonic-gate #define DTRACE_MSTATE_STACKDEPTH 0x00000010 9017c478bd9Sstevel@tonic-gate #define DTRACE_MSTATE_CALLER 0x00000020 9027c478bd9Sstevel@tonic-gate #define DTRACE_MSTATE_IPL 0x00000040 9037c478bd9Sstevel@tonic-gate #define DTRACE_MSTATE_FLTOFFS 0x00000080 9047c478bd9Sstevel@tonic-gate #define DTRACE_MSTATE_WALLTIMESTAMP 0x00000100 9050b38a8bdSahl #define DTRACE_MSTATE_USTACKDEPTH 0x00000200 906a1b5e537Sbmc #define DTRACE_MSTATE_UCALLER 0x00000400 9077c478bd9Sstevel@tonic-gate 9087c478bd9Sstevel@tonic-gate typedef struct dtrace_mstate { 9097c478bd9Sstevel@tonic-gate uintptr_t dtms_scratch_base; /* base of scratch space */ 9107c478bd9Sstevel@tonic-gate uintptr_t dtms_scratch_ptr; /* current scratch pointer */ 9117c478bd9Sstevel@tonic-gate size_t dtms_scratch_size; /* scratch size */ 9127c478bd9Sstevel@tonic-gate uint32_t dtms_present; /* variables that are present */ 9137c478bd9Sstevel@tonic-gate uint64_t dtms_arg[5]; /* cached arguments */ 9147c478bd9Sstevel@tonic-gate dtrace_epid_t dtms_epid; /* current EPID */ 9157c478bd9Sstevel@tonic-gate uint64_t dtms_timestamp; /* cached timestamp */ 9167c478bd9Sstevel@tonic-gate hrtime_t dtms_walltimestamp; /* cached wall timestamp */ 9177c478bd9Sstevel@tonic-gate int dtms_stackdepth; /* cached stackdepth */ 9180b38a8bdSahl int dtms_ustackdepth; /* cached ustackdepth */ 9197c478bd9Sstevel@tonic-gate struct dtrace_probe *dtms_probe; /* current probe */ 9207c478bd9Sstevel@tonic-gate uintptr_t dtms_caller; /* cached caller */ 921a1b5e537Sbmc uint64_t dtms_ucaller; /* cached user-level caller */ 9227c478bd9Sstevel@tonic-gate int dtms_ipl; /* cached interrupt pri lev */ 9237c478bd9Sstevel@tonic-gate int dtms_fltoffs; /* faulting DIFO offset */ 9247c478bd9Sstevel@tonic-gate uintptr_t dtms_strtok; /* saved strtok() pointer */ 925e0aad1e0Sdp uint32_t dtms_access; /* memory access rights */ 926e0aad1e0Sdp dtrace_difo_t *dtms_difo; /* current dif object */ 927*cf7f7f0fSBryan Cantrill file_t *dtms_getf; /* cached rval of getf() */ 9287c478bd9Sstevel@tonic-gate } dtrace_mstate_t; 9297c478bd9Sstevel@tonic-gate 9307c478bd9Sstevel@tonic-gate #define DTRACE_COND_OWNER 0x1 9317c478bd9Sstevel@tonic-gate #define DTRACE_COND_USERMODE 0x2 932ad4023c4Sdp #define DTRACE_COND_ZONEOWNER 0x4 9337c478bd9Sstevel@tonic-gate 9347c478bd9Sstevel@tonic-gate #define DTRACE_PROBEKEY_MAXDEPTH 8 /* max glob recursion depth */ 9357c478bd9Sstevel@tonic-gate 9367c478bd9Sstevel@tonic-gate /* 937e0aad1e0Sdp * Access flag used by dtrace_mstate.dtms_access. 938e0aad1e0Sdp */ 939e0aad1e0Sdp #define DTRACE_ACCESS_KERNEL 0x1 /* the priv to read kmem */ 9407d5c9b5fSBryan Cantrill #define DTRACE_ACCESS_PROC 0x2 /* the priv for proc state */ 9417d5c9b5fSBryan Cantrill #define DTRACE_ACCESS_ARGS 0x4 /* the priv to examine args */ 942e0aad1e0Sdp 943e0aad1e0Sdp /* 9447c478bd9Sstevel@tonic-gate * DTrace Activity 9457c478bd9Sstevel@tonic-gate * 9467c478bd9Sstevel@tonic-gate * Each DTrace consumer is in one of several states, which (for purposes of 9477c478bd9Sstevel@tonic-gate * avoiding yet-another overloading of the noun "state") we call the current 9487c478bd9Sstevel@tonic-gate * _activity_. The activity transitions on dtrace_go() (from DTRACIOCGO), on 9497c478bd9Sstevel@tonic-gate * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action. Activities may 9507c478bd9Sstevel@tonic-gate * only transition in one direction; the activity transition diagram is a 9517c478bd9Sstevel@tonic-gate * directed acyclic graph. The activity transition diagram is as follows: 9527c478bd9Sstevel@tonic-gate * 9537c478bd9Sstevel@tonic-gate * 9547c478bd9Sstevel@tonic-gate * +----------+ +--------+ +--------+ 9557c478bd9Sstevel@tonic-gate * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE | 9567c478bd9Sstevel@tonic-gate * +----------+ dtrace_go(), +--------+ dtrace_go(), +--------+ 9577c478bd9Sstevel@tonic-gate * before BEGIN | after BEGIN | | | 9587c478bd9Sstevel@tonic-gate * | | | | 9597c478bd9Sstevel@tonic-gate * exit() action | | | | 9607c478bd9Sstevel@tonic-gate * from BEGIN ECB | | | | 9617c478bd9Sstevel@tonic-gate * | | | | 9627c478bd9Sstevel@tonic-gate * v | | | 9637c478bd9Sstevel@tonic-gate * +----------+ exit() action | | | 964586d07d0Sbmc * +-----------------------------| DRAINING |<-------------------+ | | 965586d07d0Sbmc * | +----------+ | | 966586d07d0Sbmc * | | | | 967586d07d0Sbmc * | dtrace_stop(), | | | 968586d07d0Sbmc * | before END | | | 969586d07d0Sbmc * | | | | 970586d07d0Sbmc * | v | | 971586d07d0Sbmc * | +---------+ +----------+ | | 972586d07d0Sbmc * | | STOPPED |<----------------| COOLDOWN |<----------------------+ | 973586d07d0Sbmc * | +---------+ dtrace_stop(), +----------+ dtrace_stop(), | 974586d07d0Sbmc * | after END before END | 975586d07d0Sbmc * | | 976586d07d0Sbmc * | +--------+ | 977586d07d0Sbmc * +----------------------------->| KILLED |<--------------------------+ 978586d07d0Sbmc * deadman timeout or +--------+ deadman timeout or 979586d07d0Sbmc * killed consumer killed consumer 9807c478bd9Sstevel@tonic-gate * 9817c478bd9Sstevel@tonic-gate * Note that once a DTrace consumer has stopped tracing, there is no way to 9827c478bd9Sstevel@tonic-gate * restart it; if a DTrace consumer wishes to restart tracing, it must reopen 9837c478bd9Sstevel@tonic-gate * the DTrace pseudodevice. 9847c478bd9Sstevel@tonic-gate */ 9857c478bd9Sstevel@tonic-gate typedef enum dtrace_activity { 9867c478bd9Sstevel@tonic-gate DTRACE_ACTIVITY_INACTIVE = 0, /* not yet running */ 9877c478bd9Sstevel@tonic-gate DTRACE_ACTIVITY_WARMUP, /* while starting */ 9887c478bd9Sstevel@tonic-gate DTRACE_ACTIVITY_ACTIVE, /* running */ 9897c478bd9Sstevel@tonic-gate DTRACE_ACTIVITY_DRAINING, /* before stopping */ 9907c478bd9Sstevel@tonic-gate DTRACE_ACTIVITY_COOLDOWN, /* while stopping */ 9917c478bd9Sstevel@tonic-gate DTRACE_ACTIVITY_STOPPED, /* after stopping */ 992586d07d0Sbmc DTRACE_ACTIVITY_KILLED /* killed */ 9937c478bd9Sstevel@tonic-gate } dtrace_activity_t; 9947c478bd9Sstevel@tonic-gate 9957c478bd9Sstevel@tonic-gate /* 9967c478bd9Sstevel@tonic-gate * DTrace Helper Implementation 9977c478bd9Sstevel@tonic-gate * 9987c478bd9Sstevel@tonic-gate * A description of the helper architecture may be found in <sys/dtrace.h>. 9997c478bd9Sstevel@tonic-gate * Each process contains a pointer to its helpers in its p_dtrace_helpers 10007c478bd9Sstevel@tonic-gate * member. This is a pointer to a dtrace_helpers structure, which contains an 10017c478bd9Sstevel@tonic-gate * array of pointers to dtrace_helper structures, helper variable state (shared 10027c478bd9Sstevel@tonic-gate * among a process's helpers) and a generation count. (The generation count is 10037c478bd9Sstevel@tonic-gate * used to provide an identifier when a helper is added so that it may be 10047c478bd9Sstevel@tonic-gate * subsequently removed.) The dtrace_helper structure is self-explanatory, 10057c478bd9Sstevel@tonic-gate * containing pointers to the objects needed to execute the helper. Note that 10067c478bd9Sstevel@tonic-gate * helpers are _duplicated_ across fork(2), and destroyed on exec(2). No more 10077c478bd9Sstevel@tonic-gate * than dtrace_helpers_max are allowed per-process. 10087c478bd9Sstevel@tonic-gate */ 10097c478bd9Sstevel@tonic-gate #define DTRACE_HELPER_ACTION_USTACK 0 10107c478bd9Sstevel@tonic-gate #define DTRACE_NHELPER_ACTIONS 1 10117c478bd9Sstevel@tonic-gate 10127c478bd9Sstevel@tonic-gate typedef struct dtrace_helper_action { 101399fd1a49Sahl int dtha_generation; /* helper action generation */ 101499fd1a49Sahl int dtha_nactions; /* number of actions */ 101599fd1a49Sahl dtrace_difo_t *dtha_predicate; /* helper action predicate */ 101699fd1a49Sahl dtrace_difo_t **dtha_actions; /* array of actions */ 101799fd1a49Sahl struct dtrace_helper_action *dtha_next; /* next helper action */ 10187c478bd9Sstevel@tonic-gate } dtrace_helper_action_t; 10197c478bd9Sstevel@tonic-gate 10207c478bd9Sstevel@tonic-gate typedef struct dtrace_helper_provider { 102199fd1a49Sahl int dthp_generation; /* helper provider generation */ 10227c478bd9Sstevel@tonic-gate uint32_t dthp_ref; /* reference count */ 102399fd1a49Sahl dof_helper_t dthp_prov; /* DOF w/ provider and probes */ 10247c478bd9Sstevel@tonic-gate } dtrace_helper_provider_t; 10257c478bd9Sstevel@tonic-gate 10267c478bd9Sstevel@tonic-gate typedef struct dtrace_helpers { 10277c478bd9Sstevel@tonic-gate dtrace_helper_action_t **dthps_actions; /* array of helper actions */ 10287c478bd9Sstevel@tonic-gate dtrace_vstate_t dthps_vstate; /* helper action var. state */ 10297c478bd9Sstevel@tonic-gate dtrace_helper_provider_t **dthps_provs; /* array of providers */ 10307c478bd9Sstevel@tonic-gate uint_t dthps_nprovs; /* count of providers */ 103199fd1a49Sahl uint_t dthps_maxprovs; /* provider array size */ 10327c478bd9Sstevel@tonic-gate int dthps_generation; /* current generation */ 10337c478bd9Sstevel@tonic-gate pid_t dthps_pid; /* pid of associated proc */ 1034dafb5540Sahl int dthps_deferred; /* helper in deferred list */ 10357c478bd9Sstevel@tonic-gate struct dtrace_helpers *dthps_next; /* next pointer */ 10367c478bd9Sstevel@tonic-gate struct dtrace_helpers *dthps_prev; /* prev pointer */ 10377c478bd9Sstevel@tonic-gate } dtrace_helpers_t; 10387c478bd9Sstevel@tonic-gate 10397c478bd9Sstevel@tonic-gate /* 10407c478bd9Sstevel@tonic-gate * DTrace Helper Action Tracing 10417c478bd9Sstevel@tonic-gate * 10427c478bd9Sstevel@tonic-gate * Debugging helper actions can be arduous. To ease the development and 10437c478bd9Sstevel@tonic-gate * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing- 10447c478bd9Sstevel@tonic-gate * framework: helper tracing. If dtrace_helptrace_enabled is non-zero (which 10457c478bd9Sstevel@tonic-gate * it is by default on DEBUG kernels), all helper activity will be traced to a 10467c478bd9Sstevel@tonic-gate * global, in-kernel ring buffer. Each entry includes a pointer to the specific 10477c478bd9Sstevel@tonic-gate * helper, the location within the helper, and a trace of all local variables. 10487c478bd9Sstevel@tonic-gate * The ring buffer may be displayed in a human-readable format with the 10497c478bd9Sstevel@tonic-gate * ::dtrace_helptrace mdb(1) dcmd. 10507c478bd9Sstevel@tonic-gate */ 10517c478bd9Sstevel@tonic-gate #define DTRACE_HELPTRACE_NEXT (-1) 10527c478bd9Sstevel@tonic-gate #define DTRACE_HELPTRACE_DONE (-2) 10537c478bd9Sstevel@tonic-gate #define DTRACE_HELPTRACE_ERR (-3) 10547c478bd9Sstevel@tonic-gate 10557c478bd9Sstevel@tonic-gate typedef struct dtrace_helptrace { 10567c478bd9Sstevel@tonic-gate dtrace_helper_action_t *dtht_helper; /* helper action */ 10577c478bd9Sstevel@tonic-gate int dtht_where; /* where in helper action */ 10587c478bd9Sstevel@tonic-gate int dtht_nlocals; /* number of locals */ 1059187eccf8Sbmc int dtht_fault; /* type of fault (if any) */ 1060187eccf8Sbmc int dtht_fltoffs; /* DIF offset */ 1061187eccf8Sbmc uint64_t dtht_illval; /* faulting value */ 10627c478bd9Sstevel@tonic-gate uint64_t dtht_locals[1]; /* local variables */ 10637c478bd9Sstevel@tonic-gate } dtrace_helptrace_t; 10647c478bd9Sstevel@tonic-gate 10657c478bd9Sstevel@tonic-gate /* 10667c478bd9Sstevel@tonic-gate * DTrace Credentials 10677c478bd9Sstevel@tonic-gate * 1068ad4023c4Sdp * In probe context, we have limited flexibility to examine the credentials 1069ad4023c4Sdp * of the DTrace consumer that created a particular enabling. We use 1070ad4023c4Sdp * the Least Privilege interfaces to cache the consumer's cred pointer and 1071ad4023c4Sdp * some facts about that credential in a dtrace_cred_t structure. These 1072ad4023c4Sdp * can limit the consumer's breadth of visibility and what actions the 1073ad4023c4Sdp * consumer may take. 10747c478bd9Sstevel@tonic-gate */ 10757c478bd9Sstevel@tonic-gate #define DTRACE_CRV_ALLPROC 0x01 10767c478bd9Sstevel@tonic-gate #define DTRACE_CRV_KERNEL 0x02 1077ad4023c4Sdp #define DTRACE_CRV_ALLZONE 0x04 10787c478bd9Sstevel@tonic-gate 1079ad4023c4Sdp #define DTRACE_CRV_ALL (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \ 1080ad4023c4Sdp DTRACE_CRV_ALLZONE) 10817c478bd9Sstevel@tonic-gate 10827c478bd9Sstevel@tonic-gate #define DTRACE_CRA_PROC 0x0001 1083ad4023c4Sdp #define DTRACE_CRA_PROC_CONTROL 0x0002 1084ad4023c4Sdp #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER 0x0004 1085ad4023c4Sdp #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE 0x0008 1086ad4023c4Sdp #define DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG 0x0010 1087ad4023c4Sdp #define DTRACE_CRA_KERNEL 0x0020 1088ad4023c4Sdp #define DTRACE_CRA_KERNEL_DESTRUCTIVE 0x0040 10897c478bd9Sstevel@tonic-gate 10907c478bd9Sstevel@tonic-gate #define DTRACE_CRA_ALL (DTRACE_CRA_PROC | \ 1091ad4023c4Sdp DTRACE_CRA_PROC_CONTROL | \ 1092ad4023c4Sdp DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \ 1093ad4023c4Sdp DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \ 1094ad4023c4Sdp DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \ 1095ad4023c4Sdp DTRACE_CRA_KERNEL | \ 1096ad4023c4Sdp DTRACE_CRA_KERNEL_DESTRUCTIVE) 10977c478bd9Sstevel@tonic-gate 10987c478bd9Sstevel@tonic-gate typedef struct dtrace_cred { 1099ad4023c4Sdp cred_t *dcr_cred; 11007c478bd9Sstevel@tonic-gate uint8_t dcr_destructive; 11017c478bd9Sstevel@tonic-gate uint8_t dcr_visible; 11027c478bd9Sstevel@tonic-gate uint16_t dcr_action; 11037c478bd9Sstevel@tonic-gate } dtrace_cred_t; 11047c478bd9Sstevel@tonic-gate 11057c478bd9Sstevel@tonic-gate /* 11067c478bd9Sstevel@tonic-gate * DTrace Consumer State 11077c478bd9Sstevel@tonic-gate * 11087c478bd9Sstevel@tonic-gate * Each DTrace consumer has an associated dtrace_state structure that contains 11097c478bd9Sstevel@tonic-gate * its in-kernel DTrace state -- including options, credentials, statistics and 11107c478bd9Sstevel@tonic-gate * pointers to ECBs, buffers, speculations and formats. A dtrace_state 11117c478bd9Sstevel@tonic-gate * structure is also allocated for anonymous enablings. When anonymous state 11127c478bd9Sstevel@tonic-gate * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed 11137c478bd9Sstevel@tonic-gate * dtrace_state structure. 11147c478bd9Sstevel@tonic-gate */ 11157c478bd9Sstevel@tonic-gate struct dtrace_state { 11167c478bd9Sstevel@tonic-gate dev_t dts_dev; /* device */ 11177c478bd9Sstevel@tonic-gate int dts_necbs; /* total number of ECBs */ 11187c478bd9Sstevel@tonic-gate dtrace_ecb_t **dts_ecbs; /* array of ECBs */ 11197c478bd9Sstevel@tonic-gate dtrace_epid_t dts_epid; /* next EPID to allocate */ 11207c478bd9Sstevel@tonic-gate size_t dts_needed; /* greatest needed space */ 11217c478bd9Sstevel@tonic-gate struct dtrace_state *dts_anon; /* anon. state, if grabbed */ 11227c478bd9Sstevel@tonic-gate dtrace_activity_t dts_activity; /* current activity */ 11237c478bd9Sstevel@tonic-gate dtrace_vstate_t dts_vstate; /* variable state */ 11247c478bd9Sstevel@tonic-gate dtrace_buffer_t *dts_buffer; /* principal buffer */ 11257c478bd9Sstevel@tonic-gate dtrace_buffer_t *dts_aggbuffer; /* aggregation buffer */ 11267c478bd9Sstevel@tonic-gate dtrace_speculation_t *dts_speculations; /* speculation array */ 11277c478bd9Sstevel@tonic-gate int dts_nspeculations; /* number of speculations */ 11287c478bd9Sstevel@tonic-gate int dts_naggregations; /* number of aggregations */ 11297c478bd9Sstevel@tonic-gate dtrace_aggregation_t **dts_aggregations; /* aggregation array */ 11307c478bd9Sstevel@tonic-gate vmem_t *dts_aggid_arena; /* arena for aggregation IDs */ 1131a1b5e537Sbmc uint64_t dts_errors; /* total number of errors */ 11327c478bd9Sstevel@tonic-gate uint32_t dts_speculations_busy; /* number of spec. busy */ 11337c478bd9Sstevel@tonic-gate uint32_t dts_speculations_unavail; /* number of spec unavail */ 1134a1b5e537Sbmc uint32_t dts_stkstroverflows; /* stack string tab overflows */ 1135a1b5e537Sbmc uint32_t dts_dblerrors; /* errors in ERROR probes */ 11367c478bd9Sstevel@tonic-gate uint32_t dts_reserve; /* space reserved for END */ 11377c478bd9Sstevel@tonic-gate hrtime_t dts_laststatus; /* time of last status */ 11387c478bd9Sstevel@tonic-gate cyclic_id_t dts_cleaner; /* cleaning cyclic */ 11397c478bd9Sstevel@tonic-gate cyclic_id_t dts_deadman; /* deadman cyclic */ 11407c478bd9Sstevel@tonic-gate hrtime_t dts_alive; /* time last alive */ 11417c478bd9Sstevel@tonic-gate char dts_speculates; /* boolean: has speculations */ 11427c478bd9Sstevel@tonic-gate char dts_destructive; /* boolean: has dest. actions */ 11437c478bd9Sstevel@tonic-gate int dts_nformats; /* number of formats */ 11447c478bd9Sstevel@tonic-gate char **dts_formats; /* format string array */ 11457c478bd9Sstevel@tonic-gate dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */ 11467c478bd9Sstevel@tonic-gate dtrace_cred_t dts_cred; /* credentials */ 11477c478bd9Sstevel@tonic-gate size_t dts_nretained; /* number of retained enabs */ 1148*cf7f7f0fSBryan Cantrill int dts_getf; /* number of getf() calls */ 11497c478bd9Sstevel@tonic-gate }; 11507c478bd9Sstevel@tonic-gate 11517c478bd9Sstevel@tonic-gate struct dtrace_provider { 11527c478bd9Sstevel@tonic-gate dtrace_pattr_t dtpv_attr; /* provider attributes */ 11537c478bd9Sstevel@tonic-gate dtrace_ppriv_t dtpv_priv; /* provider privileges */ 11547c478bd9Sstevel@tonic-gate dtrace_pops_t dtpv_pops; /* provider operations */ 11557c478bd9Sstevel@tonic-gate char *dtpv_name; /* provider name */ 11567c478bd9Sstevel@tonic-gate void *dtpv_arg; /* provider argument */ 1157f484800dSBryan Cantrill hrtime_t dtpv_defunct; /* when made defunct */ 11587c478bd9Sstevel@tonic-gate struct dtrace_provider *dtpv_next; /* next provider */ 11597c478bd9Sstevel@tonic-gate }; 11607c478bd9Sstevel@tonic-gate 11617c478bd9Sstevel@tonic-gate struct dtrace_meta { 11627c478bd9Sstevel@tonic-gate dtrace_mops_t dtm_mops; /* meta provider operations */ 11637c478bd9Sstevel@tonic-gate char *dtm_name; /* meta provider name */ 11647c478bd9Sstevel@tonic-gate void *dtm_arg; /* meta provider user arg */ 11657c478bd9Sstevel@tonic-gate uint64_t dtm_count; /* no. of associated provs. */ 11667c478bd9Sstevel@tonic-gate }; 11677c478bd9Sstevel@tonic-gate 11687c478bd9Sstevel@tonic-gate /* 11697c478bd9Sstevel@tonic-gate * DTrace Enablings 11707c478bd9Sstevel@tonic-gate * 11717c478bd9Sstevel@tonic-gate * A dtrace_enabling structure is used to track a collection of ECB 11727c478bd9Sstevel@tonic-gate * descriptions -- before they have been turned into actual ECBs. This is 11737c478bd9Sstevel@tonic-gate * created as a result of DOF processing, and is generally used to generate 11747c478bd9Sstevel@tonic-gate * ECBs immediately thereafter. However, enablings are also generally 11757c478bd9Sstevel@tonic-gate * retained should the probes they describe be created at a later time; as 11767c478bd9Sstevel@tonic-gate * each new module or provider registers with the framework, the retained 11777c478bd9Sstevel@tonic-gate * enablings are reevaluated, with any new match resulting in new ECBs. To 11787c478bd9Sstevel@tonic-gate * prevent probes from being matched more than once, the enabling tracks the 11797c478bd9Sstevel@tonic-gate * last probe generation matched, and only matches probes from subsequent 11807c478bd9Sstevel@tonic-gate * generations. 11817c478bd9Sstevel@tonic-gate */ 11827c478bd9Sstevel@tonic-gate typedef struct dtrace_enabling { 11837c478bd9Sstevel@tonic-gate dtrace_ecbdesc_t **dten_desc; /* all ECB descriptions */ 11847c478bd9Sstevel@tonic-gate int dten_ndesc; /* number of ECB descriptions */ 11857c478bd9Sstevel@tonic-gate int dten_maxdesc; /* size of ECB array */ 11867c478bd9Sstevel@tonic-gate dtrace_vstate_t *dten_vstate; /* associated variable state */ 11877c478bd9Sstevel@tonic-gate dtrace_genid_t dten_probegen; /* matched probe generation */ 11887c478bd9Sstevel@tonic-gate dtrace_ecbdesc_t *dten_current; /* current ECB description */ 11897c478bd9Sstevel@tonic-gate int dten_error; /* current error value */ 11907c478bd9Sstevel@tonic-gate int dten_primed; /* boolean: set if primed */ 11917c478bd9Sstevel@tonic-gate struct dtrace_enabling *dten_prev; /* previous enabling */ 11927c478bd9Sstevel@tonic-gate struct dtrace_enabling *dten_next; /* next enabling */ 11937c478bd9Sstevel@tonic-gate } dtrace_enabling_t; 11947c478bd9Sstevel@tonic-gate 11957c478bd9Sstevel@tonic-gate /* 11967c478bd9Sstevel@tonic-gate * DTrace Anonymous Enablings 11977c478bd9Sstevel@tonic-gate * 11987c478bd9Sstevel@tonic-gate * Anonymous enablings are DTrace enablings that are not associated with a 11997c478bd9Sstevel@tonic-gate * controlling process, but rather derive their enabling from DOF stored as 12007c478bd9Sstevel@tonic-gate * properties in the dtrace.conf file. If there is an anonymous enabling, a 12017c478bd9Sstevel@tonic-gate * DTrace consumer state and enabling are created on attach. The state may be 12027c478bd9Sstevel@tonic-gate * subsequently grabbed by the first consumer specifying the "grabanon" 12037c478bd9Sstevel@tonic-gate * option. As long as an anonymous DTrace enabling exists, dtrace(7D) will 12047c478bd9Sstevel@tonic-gate * refuse to unload. 12057c478bd9Sstevel@tonic-gate */ 12067c478bd9Sstevel@tonic-gate typedef struct dtrace_anon { 12077c478bd9Sstevel@tonic-gate dtrace_state_t *dta_state; /* DTrace consumer state */ 12087c478bd9Sstevel@tonic-gate dtrace_enabling_t *dta_enabling; /* pointer to enabling */ 12097c478bd9Sstevel@tonic-gate processorid_t dta_beganon; /* which CPU BEGIN ran on */ 12107c478bd9Sstevel@tonic-gate } dtrace_anon_t; 12117c478bd9Sstevel@tonic-gate 12127c478bd9Sstevel@tonic-gate /* 12137c478bd9Sstevel@tonic-gate * DTrace Error Debugging 12147c478bd9Sstevel@tonic-gate */ 12157c478bd9Sstevel@tonic-gate #ifdef DEBUG 12167c478bd9Sstevel@tonic-gate #define DTRACE_ERRDEBUG 12177c478bd9Sstevel@tonic-gate #endif 12187c478bd9Sstevel@tonic-gate 12197c478bd9Sstevel@tonic-gate #ifdef DTRACE_ERRDEBUG 12207c478bd9Sstevel@tonic-gate 12217c478bd9Sstevel@tonic-gate typedef struct dtrace_errhash { 12227c478bd9Sstevel@tonic-gate const char *dter_msg; /* error message */ 12237c478bd9Sstevel@tonic-gate int dter_count; /* number of times seen */ 12247c478bd9Sstevel@tonic-gate } dtrace_errhash_t; 12257c478bd9Sstevel@tonic-gate 12267c478bd9Sstevel@tonic-gate #define DTRACE_ERRHASHSZ 256 /* must be > number of err msgs */ 12277c478bd9Sstevel@tonic-gate 12287c478bd9Sstevel@tonic-gate #endif /* DTRACE_ERRDEBUG */ 12297c478bd9Sstevel@tonic-gate 12307c478bd9Sstevel@tonic-gate /* 12317c478bd9Sstevel@tonic-gate * DTrace Toxic Ranges 12327c478bd9Sstevel@tonic-gate * 12337c478bd9Sstevel@tonic-gate * DTrace supports safe loads from probe context; if the address turns out to 12347c478bd9Sstevel@tonic-gate * be invalid, a bit will be set by the kernel indicating that DTrace 12357c478bd9Sstevel@tonic-gate * encountered a memory error, and DTrace will propagate the error to the user 12367c478bd9Sstevel@tonic-gate * accordingly. However, there may exist some regions of memory in which an 12377c478bd9Sstevel@tonic-gate * arbitrary load can change system state, and from which it is impossible to 12387c478bd9Sstevel@tonic-gate * recover from such a load after it has been attempted. Examples of this may 12397c478bd9Sstevel@tonic-gate * include memory in which programmable I/O registers are mapped (for which a 12407c478bd9Sstevel@tonic-gate * read may have some implications for the device) or (in the specific case of 12417c478bd9Sstevel@tonic-gate * UltraSPARC-I and -II) the virtual address hole. The platform is required 12427c478bd9Sstevel@tonic-gate * to make DTrace aware of these toxic ranges; DTrace will then check that 12437c478bd9Sstevel@tonic-gate * target addresses are not in a toxic range before attempting to issue a 12447c478bd9Sstevel@tonic-gate * safe load. 12457c478bd9Sstevel@tonic-gate */ 12467c478bd9Sstevel@tonic-gate typedef struct dtrace_toxrange { 12477c478bd9Sstevel@tonic-gate uintptr_t dtt_base; /* base of toxic range */ 12487c478bd9Sstevel@tonic-gate uintptr_t dtt_limit; /* limit of toxic range */ 12497c478bd9Sstevel@tonic-gate } dtrace_toxrange_t; 12507c478bd9Sstevel@tonic-gate 12517c478bd9Sstevel@tonic-gate extern uint64_t dtrace_getarg(int, int); 12527c478bd9Sstevel@tonic-gate extern greg_t dtrace_getfp(void); 12537c478bd9Sstevel@tonic-gate extern int dtrace_getipl(void); 12547c478bd9Sstevel@tonic-gate extern uintptr_t dtrace_caller(int); 12557c478bd9Sstevel@tonic-gate extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t); 12567c478bd9Sstevel@tonic-gate extern void *dtrace_casptr(void *, void *, void *); 125728406508Ssudheer extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *); 125828406508Ssudheer extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *); 125928406508Ssudheer extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *); 126028406508Ssudheer extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t, 126128406508Ssudheer volatile uint16_t *); 12627c478bd9Sstevel@tonic-gate extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *); 12637c478bd9Sstevel@tonic-gate extern ulong_t dtrace_getreg(struct regs *, uint_t); 12647aa76ffcSBryan Cantrill extern uint64_t dtrace_getvmreg(uint_t, volatile uint16_t *); 12657c478bd9Sstevel@tonic-gate extern int dtrace_getstackdepth(int); 12667c478bd9Sstevel@tonic-gate extern void dtrace_getupcstack(uint64_t *, int); 12677c478bd9Sstevel@tonic-gate extern void dtrace_getufpstack(uint64_t *, uint64_t *, int); 12680b38a8bdSahl extern int dtrace_getustackdepth(void); 12697c478bd9Sstevel@tonic-gate extern uintptr_t dtrace_fulword(void *); 12707c478bd9Sstevel@tonic-gate extern uint8_t dtrace_fuword8(void *); 12717c478bd9Sstevel@tonic-gate extern uint16_t dtrace_fuword16(void *); 12727c478bd9Sstevel@tonic-gate extern uint32_t dtrace_fuword32(void *); 12737c478bd9Sstevel@tonic-gate extern uint64_t dtrace_fuword64(void *); 12747c478bd9Sstevel@tonic-gate extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int, 12757c478bd9Sstevel@tonic-gate int, uintptr_t); 12767c478bd9Sstevel@tonic-gate extern int dtrace_assfail(const char *, const char *, int); 12777c478bd9Sstevel@tonic-gate extern int dtrace_attached(void); 12787c478bd9Sstevel@tonic-gate extern hrtime_t dtrace_gethrestime(); 12797c478bd9Sstevel@tonic-gate 12807c478bd9Sstevel@tonic-gate #ifdef __sparc 12817c478bd9Sstevel@tonic-gate extern void dtrace_flush_windows(void); 12827c478bd9Sstevel@tonic-gate extern void dtrace_flush_user_windows(void); 12837c478bd9Sstevel@tonic-gate extern uint_t dtrace_getotherwin(void); 12847c478bd9Sstevel@tonic-gate extern uint_t dtrace_getfprs(void); 12857c478bd9Sstevel@tonic-gate #else 12867c478bd9Sstevel@tonic-gate extern void dtrace_copy(uintptr_t, uintptr_t, size_t); 128728406508Ssudheer extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *); 12887c478bd9Sstevel@tonic-gate #endif 12897c478bd9Sstevel@tonic-gate 12907c478bd9Sstevel@tonic-gate /* 12917c478bd9Sstevel@tonic-gate * DTrace Assertions 12927c478bd9Sstevel@tonic-gate * 12937c478bd9Sstevel@tonic-gate * DTrace calls ASSERT from probe context. To assure that a failed ASSERT 12947c478bd9Sstevel@tonic-gate * does not induce a markedly more catastrophic failure (e.g., one from which 12957c478bd9Sstevel@tonic-gate * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that 12967c478bd9Sstevel@tonic-gate * may safely be called from probe context. This header file must thus be 12977c478bd9Sstevel@tonic-gate * included by any DTrace component that calls ASSERT from probe context, and 12987c478bd9Sstevel@tonic-gate * _only_ by those components. (The only exception to this is kernel 12997c478bd9Sstevel@tonic-gate * debugging infrastructure at user-level that doesn't depend on calling 13007c478bd9Sstevel@tonic-gate * ASSERT.) 13017c478bd9Sstevel@tonic-gate */ 13027c478bd9Sstevel@tonic-gate #undef ASSERT 13037c478bd9Sstevel@tonic-gate #ifdef DEBUG 13047c478bd9Sstevel@tonic-gate #define ASSERT(EX) ((void)((EX) || \ 13057c478bd9Sstevel@tonic-gate dtrace_assfail(#EX, __FILE__, __LINE__))) 13067c478bd9Sstevel@tonic-gate #else 13077c478bd9Sstevel@tonic-gate #define ASSERT(X) ((void)0) 13087c478bd9Sstevel@tonic-gate #endif 13097c478bd9Sstevel@tonic-gate 13107c478bd9Sstevel@tonic-gate #ifdef __cplusplus 13117c478bd9Sstevel@tonic-gate } 13127c478bd9Sstevel@tonic-gate #endif 13137c478bd9Sstevel@tonic-gate 13147c478bd9Sstevel@tonic-gate #endif /* _SYS_DTRACE_IMPL_H */ 1315