1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_DTRACE_H 28 #define _SYS_DTRACE_H 29 30 #ifdef __cplusplus 31 extern "C" { 32 #endif 33 34 /* 35 * DTrace Dynamic Tracing Software: Kernel Interfaces 36 * 37 * Note: The contents of this file are private to the implementation of the 38 * Solaris system and DTrace subsystem and are subject to change at any time 39 * without notice. Applications and drivers using these interfaces will fail 40 * to run on future releases. These interfaces should not be used for any 41 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 42 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 43 */ 44 45 #ifndef _ASM 46 47 #include <sys/types.h> 48 #include <sys/modctl.h> 49 #include <sys/processor.h> 50 #include <sys/systm.h> 51 #include <sys/ctf_api.h> 52 #include <sys/cyclic.h> 53 #include <sys/int_limits.h> 54 55 /* 56 * DTrace Universal Constants and Typedefs 57 */ 58 #define DTRACE_CPUALL -1 /* all CPUs */ 59 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 60 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 61 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 62 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 63 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 64 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 65 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 66 #define DTRACE_ARGNONE -1 /* invalid argument index */ 67 68 #define DTRACE_PROVNAMELEN 64 69 #define DTRACE_MODNAMELEN 64 70 #define DTRACE_FUNCNAMELEN 128 71 #define DTRACE_NAMELEN 64 72 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 73 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 74 #define DTRACE_ARGTYPELEN 128 75 76 typedef uint32_t dtrace_id_t; /* probe identifier */ 77 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 78 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 79 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 80 typedef uint16_t dtrace_actkind_t; /* action kind */ 81 typedef int64_t dtrace_optval_t; /* option value */ 82 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 83 84 typedef enum dtrace_probespec { 85 DTRACE_PROBESPEC_NONE = -1, 86 DTRACE_PROBESPEC_PROVIDER = 0, 87 DTRACE_PROBESPEC_MOD, 88 DTRACE_PROBESPEC_FUNC, 89 DTRACE_PROBESPEC_NAME 90 } dtrace_probespec_t; 91 92 /* 93 * DTrace Intermediate Format (DIF) 94 * 95 * The following definitions describe the DTrace Intermediate Format (DIF), a 96 * a RISC-like instruction set and program encoding used to represent 97 * predicates and actions that can be bound to DTrace probes. The constants 98 * below defining the number of available registers are suggested minimums; the 99 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 100 * registers provided by the current DTrace implementation. 101 */ 102 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 103 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 104 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 105 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 106 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 107 108 #define DIF_OP_OR 1 /* or r1, r2, rd */ 109 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 110 #define DIF_OP_AND 3 /* and r1, r2, rd */ 111 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 112 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 113 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 114 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 115 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 116 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 117 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 118 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 119 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 120 #define DIF_OP_NOT 13 /* not r1, rd */ 121 #define DIF_OP_MOV 14 /* mov r1, rd */ 122 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 123 #define DIF_OP_TST 16 /* tst r1 */ 124 #define DIF_OP_BA 17 /* ba label */ 125 #define DIF_OP_BE 18 /* be label */ 126 #define DIF_OP_BNE 19 /* bne label */ 127 #define DIF_OP_BG 20 /* bg label */ 128 #define DIF_OP_BGU 21 /* bgu label */ 129 #define DIF_OP_BGE 22 /* bge label */ 130 #define DIF_OP_BGEU 23 /* bgeu label */ 131 #define DIF_OP_BL 24 /* bl label */ 132 #define DIF_OP_BLU 25 /* blu label */ 133 #define DIF_OP_BLE 26 /* ble label */ 134 #define DIF_OP_BLEU 27 /* bleu label */ 135 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 136 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 137 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 138 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 139 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 140 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 141 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 142 #define DIF_OP_RET 35 /* ret rd */ 143 #define DIF_OP_NOP 36 /* nop */ 144 #define DIF_OP_SETX 37 /* setx intindex, rd */ 145 #define DIF_OP_SETS 38 /* sets strindex, rd */ 146 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 147 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 148 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 149 #define DIF_OP_STGS 42 /* stgs var, rs */ 150 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 151 #define DIF_OP_LDTS 44 /* ldts var, rd */ 152 #define DIF_OP_STTS 45 /* stts var, rs */ 153 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 154 #define DIF_OP_CALL 47 /* call subr, rd */ 155 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 156 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 157 #define DIF_OP_POPTS 50 /* popts */ 158 #define DIF_OP_FLUSHTS 51 /* flushts */ 159 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 160 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 161 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 162 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 163 #define DIF_OP_LDLS 56 /* ldls var, rd */ 164 #define DIF_OP_STLS 57 /* stls var, rs */ 165 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 166 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 167 #define DIF_OP_STB 60 /* stb r1, [rd] */ 168 #define DIF_OP_STH 61 /* sth r1, [rd] */ 169 #define DIF_OP_STW 62 /* stw r1, [rd] */ 170 #define DIF_OP_STX 63 /* stx r1, [rd] */ 171 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 172 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 173 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 174 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 175 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 176 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 177 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 178 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 179 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 180 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 181 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 182 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 183 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 184 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 185 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 186 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 187 188 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 189 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 190 #define DIF_REGISTER_MAX 0xff /* highest register number */ 191 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 192 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 193 194 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 195 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 196 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 197 198 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 199 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 200 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 201 202 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 203 #define DIF_VAR_REGS 0x0001 /* registers array */ 204 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 205 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 206 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 207 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 208 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 209 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 210 #define DIF_VAR_ID 0x0105 /* probe ID */ 211 #define DIF_VAR_ARG0 0x0106 /* first argument */ 212 #define DIF_VAR_ARG1 0x0107 /* second argument */ 213 #define DIF_VAR_ARG2 0x0108 /* third argument */ 214 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 215 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 216 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 217 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 218 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 219 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 220 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 221 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 222 #define DIF_VAR_CALLER 0x0111 /* caller */ 223 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 224 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 225 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 226 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 227 #define DIF_VAR_PID 0x0116 /* process ID */ 228 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 229 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 230 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 231 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 232 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 233 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 234 #define DIF_VAR_PPID 0x011d /* parent process ID */ 235 #define DIF_VAR_UID 0x011e /* process user ID */ 236 #define DIF_VAR_GID 0x011f /* process group ID */ 237 #define DIF_VAR_ERRNO 0x0120 /* thread errno */ 238 239 #define DIF_SUBR_RAND 0 240 #define DIF_SUBR_MUTEX_OWNED 1 241 #define DIF_SUBR_MUTEX_OWNER 2 242 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 243 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 244 #define DIF_SUBR_RW_READ_HELD 5 245 #define DIF_SUBR_RW_WRITE_HELD 6 246 #define DIF_SUBR_RW_ISWRITER 7 247 #define DIF_SUBR_COPYIN 8 248 #define DIF_SUBR_COPYINSTR 9 249 #define DIF_SUBR_SPECULATION 10 250 #define DIF_SUBR_PROGENYOF 11 251 #define DIF_SUBR_STRLEN 12 252 #define DIF_SUBR_COPYOUT 13 253 #define DIF_SUBR_COPYOUTSTR 14 254 #define DIF_SUBR_ALLOCA 15 255 #define DIF_SUBR_BCOPY 16 256 #define DIF_SUBR_COPYINTO 17 257 #define DIF_SUBR_MSGDSIZE 18 258 #define DIF_SUBR_MSGSIZE 19 259 #define DIF_SUBR_GETMAJOR 20 260 #define DIF_SUBR_GETMINOR 21 261 #define DIF_SUBR_DDI_PATHNAME 22 262 #define DIF_SUBR_STRJOIN 23 263 #define DIF_SUBR_LLTOSTR 24 264 #define DIF_SUBR_BASENAME 25 265 #define DIF_SUBR_DIRNAME 26 266 #define DIF_SUBR_CLEANPATH 27 267 #define DIF_SUBR_STRCHR 28 268 #define DIF_SUBR_STRRCHR 29 269 #define DIF_SUBR_STRSTR 30 270 #define DIF_SUBR_STRTOK 31 271 #define DIF_SUBR_SUBSTR 32 272 #define DIF_SUBR_INDEX 33 273 #define DIF_SUBR_RINDEX 34 274 #define DIF_SUBR_HTONS 35 275 #define DIF_SUBR_HTONL 36 276 #define DIF_SUBR_HTONLL 37 277 #define DIF_SUBR_NTOHS 38 278 #define DIF_SUBR_NTOHL 39 279 #define DIF_SUBR_NTOHLL 40 280 #define DIF_SUBR_INET_NTOP 41 281 #define DIF_SUBR_INET_NTOA 42 282 #define DIF_SUBR_INET_NTOA6 43 283 284 #define DIF_SUBR_MAX 43 /* max subroutine value */ 285 286 typedef uint32_t dif_instr_t; 287 288 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 289 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 290 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 291 #define DIF_INSTR_RD(i) ((i) & 0xff) 292 #define DIF_INSTR_RS(i) ((i) & 0xff) 293 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 294 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 295 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 296 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 297 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 298 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 299 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 300 301 #define DIF_INSTR_FMT(op, r1, r2, d) \ 302 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 303 304 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 305 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 306 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 307 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 308 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 309 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 310 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 311 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 312 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 313 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 314 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 315 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 316 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 317 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 318 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 319 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 320 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 321 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 322 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 323 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 324 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 325 326 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 327 328 /* 329 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 330 * of variables, function and associative array arguments, and the return type 331 * for each DIF object (shown below). It contains a description of the type, 332 * its size in bytes, and a module identifier. 333 */ 334 typedef struct dtrace_diftype { 335 uint8_t dtdt_kind; /* type kind (see below) */ 336 uint8_t dtdt_ckind; /* type kind in CTF */ 337 uint8_t dtdt_flags; /* type flags (see below) */ 338 uint8_t dtdt_pad; /* reserved for future use */ 339 uint32_t dtdt_size; /* type size in bytes (unless string) */ 340 } dtrace_diftype_t; 341 342 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 343 #define DIF_TYPE_STRING 1 /* type is a D string */ 344 345 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 346 347 /* 348 * A DTrace Intermediate Format variable record is used to describe each of the 349 * variables referenced by a given DIF object. It contains an integer variable 350 * identifier along with variable scope and properties, as shown below. The 351 * size of this structure must be sizeof (int) aligned. 352 */ 353 typedef struct dtrace_difv { 354 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 355 uint32_t dtdv_id; /* variable reference identifier */ 356 uint8_t dtdv_kind; /* variable kind (see below) */ 357 uint8_t dtdv_scope; /* variable scope (see below) */ 358 uint16_t dtdv_flags; /* variable flags (see below) */ 359 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 360 } dtrace_difv_t; 361 362 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 363 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 364 365 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 366 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 367 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 368 369 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 370 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 371 372 /* 373 * DTrace Actions 374 * 375 * The upper byte determines the class of the action; the low bytes determines 376 * the specific action within that class. The classes of actions are as 377 * follows: 378 * 379 * [ no class ] <= May record process- or kernel-related data 380 * DTRACEACT_PROC <= Only records process-related data 381 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 382 * DTRACEACT_KERNEL <= Only records kernel-related data 383 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 384 * DTRACEACT_SPECULATIVE <= Speculation-related action 385 * DTRACEACT_AGGREGATION <= Aggregating action 386 */ 387 #define DTRACEACT_NONE 0 /* no action */ 388 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 389 #define DTRACEACT_EXIT 2 /* exit() action */ 390 #define DTRACEACT_PRINTF 3 /* printf() action */ 391 #define DTRACEACT_PRINTA 4 /* printa() action */ 392 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 393 394 #define DTRACEACT_PROC 0x0100 395 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 396 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 397 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 398 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 399 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 400 401 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 402 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 403 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 404 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 405 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 406 407 #define DTRACEACT_PROC_CONTROL 0x0300 408 409 #define DTRACEACT_KERNEL 0x0400 410 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 411 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 412 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 413 414 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 415 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 416 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 417 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 418 419 #define DTRACEACT_SPECULATIVE 0x0600 420 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 421 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 422 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 423 424 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 425 426 #define DTRACEACT_ISDESTRUCTIVE(x) \ 427 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 428 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 429 430 #define DTRACEACT_ISSPECULATIVE(x) \ 431 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 432 433 #define DTRACEACT_ISPRINTFLIKE(x) \ 434 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 435 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 436 437 /* 438 * DTrace Aggregating Actions 439 * 440 * These are functions f(x) for which the following is true: 441 * 442 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 443 * 444 * where x_n is a set of arbitrary data. Aggregating actions are in their own 445 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 446 * for easier processing of the aggregation argument and data payload for a few 447 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 448 */ 449 #define DTRACEACT_AGGREGATION 0x0700 450 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 451 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 452 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 453 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 454 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 455 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 456 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 457 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 458 459 #define DTRACEACT_ISAGG(x) \ 460 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 461 462 #define DTRACE_QUANTIZE_NBUCKETS \ 463 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 464 465 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 466 467 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 468 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 469 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 470 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 471 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 472 473 #define DTRACE_LQUANTIZE_STEPSHIFT 48 474 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 475 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 476 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 477 #define DTRACE_LQUANTIZE_BASESHIFT 0 478 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 479 480 #define DTRACE_LQUANTIZE_STEP(x) \ 481 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 482 DTRACE_LQUANTIZE_STEPSHIFT) 483 484 #define DTRACE_LQUANTIZE_LEVELS(x) \ 485 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 486 DTRACE_LQUANTIZE_LEVELSHIFT) 487 488 #define DTRACE_LQUANTIZE_BASE(x) \ 489 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 490 DTRACE_LQUANTIZE_BASESHIFT) 491 492 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 493 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 494 #define DTRACE_USTACK_ARG(x, y) \ 495 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 496 497 #ifndef _LP64 498 #ifndef _LITTLE_ENDIAN 499 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 500 #else 501 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 502 #endif 503 #else 504 #define DTRACE_PTR(type, name) type *name 505 #endif 506 507 /* 508 * DTrace Object Format (DOF) 509 * 510 * DTrace programs can be persistently encoded in the DOF format so that they 511 * may be embedded in other programs (for example, in an ELF file) or in the 512 * dtrace driver configuration file for use in anonymous tracing. The DOF 513 * format is versioned and extensible so that it can be revised and so that 514 * internal data structures can be modified or extended compatibly. All DOF 515 * structures use fixed-size types, so the 32-bit and 64-bit representations 516 * are identical and consumers can use either data model transparently. 517 * 518 * The file layout is structured as follows: 519 * 520 * +---------------+-------------------+----- ... ----+---- ... ------+ 521 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 522 * | (file header) | (section headers) | section data | section data | 523 * +---------------+-------------------+----- ... ----+---- ... ------+ 524 * |<------------ dof_hdr.dofh_loadsz --------------->| | 525 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 526 * 527 * The file header stores meta-data including a magic number, data model for 528 * the instrumentation, data encoding, and properties of the DIF code within. 529 * The header describes its own size and the size of the section headers. By 530 * convention, an array of section headers follows the file header, and then 531 * the data for all loadable sections and unloadable sections. This permits 532 * consumer code to easily download the headers and all loadable data into the 533 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 534 * 535 * The section headers describe the size, offset, alignment, and section type 536 * for each section. Sections are described using a set of #defines that tell 537 * the consumer what kind of data is expected. Sections can contain links to 538 * other sections by storing a dof_secidx_t, an index into the section header 539 * array, inside of the section data structures. The section header includes 540 * an entry size so that sections with data arrays can grow their structures. 541 * 542 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 543 * are represented themselves as a collection of related DOF sections. This 544 * permits us to change the set of sections associated with a DIFO over time, 545 * and also permits us to encode DIFOs that contain different sets of sections. 546 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 547 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 548 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 549 * 550 * This loose coupling of the file structure (header and sections) to the 551 * structure of the DTrace program itself (ECB descriptions, action 552 * descriptions, and DIFOs) permits activities such as relocation processing 553 * to occur in a single pass without having to understand D program structure. 554 * 555 * Finally, strings are always stored in ELF-style string tables along with a 556 * string table section index and string table offset. Therefore strings in 557 * DOF are always arbitrary-length and not bound to the current implementation. 558 */ 559 560 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 561 562 typedef struct dof_hdr { 563 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 564 uint32_t dofh_flags; /* file attribute flags (if any) */ 565 uint32_t dofh_hdrsize; /* size of file header in bytes */ 566 uint32_t dofh_secsize; /* size of section header in bytes */ 567 uint32_t dofh_secnum; /* number of section headers */ 568 uint64_t dofh_secoff; /* file offset of section headers */ 569 uint64_t dofh_loadsz; /* file size of loadable portion */ 570 uint64_t dofh_filesz; /* file size of entire DOF file */ 571 uint64_t dofh_pad; /* reserved for future use */ 572 } dof_hdr_t; 573 574 #define DOF_ID_MAG0 0 /* first byte of magic number */ 575 #define DOF_ID_MAG1 1 /* second byte of magic number */ 576 #define DOF_ID_MAG2 2 /* third byte of magic number */ 577 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 578 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 579 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 580 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 581 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 582 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 583 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 584 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 585 586 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 587 #define DOF_MAG_MAG1 'D' 588 #define DOF_MAG_MAG2 'O' 589 #define DOF_MAG_MAG3 'F' 590 591 #define DOF_MAG_STRING "\177DOF" 592 #define DOF_MAG_STRLEN 4 593 594 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 595 #define DOF_MODEL_ILP32 1 596 #define DOF_MODEL_LP64 2 597 598 #ifdef _LP64 599 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 600 #else 601 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 602 #endif 603 604 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 605 #define DOF_ENCODE_LSB 1 606 #define DOF_ENCODE_MSB 2 607 608 #ifdef _BIG_ENDIAN 609 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 610 #else 611 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 612 #endif 613 614 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ 615 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ 616 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ 617 618 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 619 620 typedef uint32_t dof_secidx_t; /* section header table index type */ 621 typedef uint32_t dof_stridx_t; /* string table index type */ 622 623 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 624 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 625 626 typedef struct dof_sec { 627 uint32_t dofs_type; /* section type (see below) */ 628 uint32_t dofs_align; /* section data memory alignment */ 629 uint32_t dofs_flags; /* section flags (if any) */ 630 uint32_t dofs_entsize; /* size of section entry (if table) */ 631 uint64_t dofs_offset; /* offset of section data within file */ 632 uint64_t dofs_size; /* size of section data in bytes */ 633 } dof_sec_t; 634 635 #define DOF_SECT_NONE 0 /* null section */ 636 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 637 #define DOF_SECT_SOURCE 2 /* D program source code */ 638 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 639 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 640 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 641 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 642 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 643 #define DOF_SECT_STRTAB 8 /* string table */ 644 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 645 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 646 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 647 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 648 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 649 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 650 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 651 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 652 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 653 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 654 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 655 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 656 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 657 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 658 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 659 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 660 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 661 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ 662 663 #define DOF_SECF_LOAD 1 /* section should be loaded */ 664 665 typedef struct dof_ecbdesc { 666 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 667 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 668 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 669 uint32_t dofe_pad; /* reserved for future use */ 670 uint64_t dofe_uarg; /* user-supplied library argument */ 671 } dof_ecbdesc_t; 672 673 typedef struct dof_probedesc { 674 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 675 dof_stridx_t dofp_provider; /* provider string */ 676 dof_stridx_t dofp_mod; /* module string */ 677 dof_stridx_t dofp_func; /* function string */ 678 dof_stridx_t dofp_name; /* name string */ 679 uint32_t dofp_id; /* probe identifier (or zero) */ 680 } dof_probedesc_t; 681 682 typedef struct dof_actdesc { 683 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 684 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 685 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 686 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 687 uint64_t dofa_arg; /* kind-specific argument */ 688 uint64_t dofa_uarg; /* user-supplied argument */ 689 } dof_actdesc_t; 690 691 typedef struct dof_difohdr { 692 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 693 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 694 } dof_difohdr_t; 695 696 typedef struct dof_relohdr { 697 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 698 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 699 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 700 } dof_relohdr_t; 701 702 typedef struct dof_relodesc { 703 dof_stridx_t dofr_name; /* string name of relocation symbol */ 704 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 705 uint64_t dofr_offset; /* byte offset for relocation */ 706 uint64_t dofr_data; /* additional type-specific data */ 707 } dof_relodesc_t; 708 709 #define DOF_RELO_NONE 0 /* empty relocation entry */ 710 #define DOF_RELO_SETX 1 /* relocate setx value */ 711 712 typedef struct dof_optdesc { 713 uint32_t dofo_option; /* option identifier */ 714 dof_secidx_t dofo_strtab; /* string table, if string option */ 715 uint64_t dofo_value; /* option value or string index */ 716 } dof_optdesc_t; 717 718 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 719 720 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 721 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 722 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 723 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 724 725 typedef struct dof_provider { 726 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 727 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 728 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 729 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 730 dof_stridx_t dofpv_name; /* provider name string */ 731 dof_attr_t dofpv_provattr; /* provider attributes */ 732 dof_attr_t dofpv_modattr; /* module attributes */ 733 dof_attr_t dofpv_funcattr; /* function attributes */ 734 dof_attr_t dofpv_nameattr; /* name attributes */ 735 dof_attr_t dofpv_argsattr; /* args attributes */ 736 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ 737 } dof_provider_t; 738 739 typedef struct dof_probe { 740 uint64_t dofpr_addr; /* probe base address or offset */ 741 dof_stridx_t dofpr_func; /* probe function string */ 742 dof_stridx_t dofpr_name; /* probe name string */ 743 dof_stridx_t dofpr_nargv; /* native argument type strings */ 744 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 745 uint32_t dofpr_argidx; /* index of first argument mapping */ 746 uint32_t dofpr_offidx; /* index of first offset entry */ 747 uint8_t dofpr_nargc; /* native argument count */ 748 uint8_t dofpr_xargc; /* translated argument count */ 749 uint16_t dofpr_noffs; /* number of offset entries for probe */ 750 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ 751 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ 752 uint16_t dofpr_pad1; /* reserved for future use */ 753 uint32_t dofpr_pad2; /* reserved for future use */ 754 } dof_probe_t; 755 756 typedef struct dof_xlator { 757 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 758 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 759 dof_stridx_t dofxl_argv; /* input parameter type strings */ 760 uint32_t dofxl_argc; /* input parameter list length */ 761 dof_stridx_t dofxl_type; /* output type string name */ 762 dof_attr_t dofxl_attr; /* output stability attributes */ 763 } dof_xlator_t; 764 765 typedef struct dof_xlmember { 766 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 767 dof_stridx_t dofxm_name; /* member name */ 768 dtrace_diftype_t dofxm_type; /* member type */ 769 } dof_xlmember_t; 770 771 typedef struct dof_xlref { 772 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 773 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 774 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 775 } dof_xlref_t; 776 777 /* 778 * DTrace Intermediate Format Object (DIFO) 779 * 780 * A DIFO is used to store the compiled DIF for a D expression, its return 781 * type, and its string and variable tables. The string table is a single 782 * buffer of character data into which sets instructions and variable 783 * references can reference strings using a byte offset. The variable table 784 * is an array of dtrace_difv_t structures that describe the name and type of 785 * each variable and the id used in the DIF code. This structure is described 786 * above in the DIF section of this header file. The DIFO is used at both 787 * user-level (in the library) and in the kernel, but the structure is never 788 * passed between the two: the DOF structures form the only interface. As a 789 * result, the definition can change depending on the presence of _KERNEL. 790 */ 791 typedef struct dtrace_difo { 792 dif_instr_t *dtdo_buf; /* instruction buffer */ 793 uint64_t *dtdo_inttab; /* integer table (optional) */ 794 char *dtdo_strtab; /* string table (optional) */ 795 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 796 uint_t dtdo_len; /* length of instruction buffer */ 797 uint_t dtdo_intlen; /* length of integer table */ 798 uint_t dtdo_strlen; /* length of string table */ 799 uint_t dtdo_varlen; /* length of variable table */ 800 dtrace_diftype_t dtdo_rtype; /* return type */ 801 uint_t dtdo_refcnt; /* owner reference count */ 802 uint_t dtdo_destructive; /* invokes destructive subroutines */ 803 #ifndef _KERNEL 804 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 805 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 806 struct dt_node **dtdo_xlmtab; /* translator references */ 807 uint_t dtdo_krelen; /* length of krelo table */ 808 uint_t dtdo_urelen; /* length of urelo table */ 809 uint_t dtdo_xlmlen; /* length of translator table */ 810 #endif 811 } dtrace_difo_t; 812 813 /* 814 * DTrace Enabling Description Structures 815 * 816 * When DTrace is tracking the description of a DTrace enabling entity (probe, 817 * predicate, action, ECB, record, etc.), it does so in a description 818 * structure. These structures all end in "desc", and are used at both 819 * user-level and in the kernel -- but (with the exception of 820 * dtrace_probedesc_t) they are never passed between them. Typically, 821 * user-level will use the description structures when assembling an enabling. 822 * It will then distill those description structures into a DOF object (see 823 * above), and send it into the kernel. The kernel will again use the 824 * description structures to create a description of the enabling as it reads 825 * the DOF. When the description is complete, the enabling will be actually 826 * created -- turning it into the structures that represent the enabling 827 * instead of merely describing it. Not surprisingly, the description 828 * structures bear a strong resemblance to the DOF structures that act as their 829 * conduit. 830 */ 831 struct dtrace_predicate; 832 833 typedef struct dtrace_probedesc { 834 dtrace_id_t dtpd_id; /* probe identifier */ 835 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 836 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 837 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 838 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 839 } dtrace_probedesc_t; 840 841 typedef struct dtrace_repldesc { 842 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 843 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 844 } dtrace_repldesc_t; 845 846 typedef struct dtrace_preddesc { 847 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 848 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 849 } dtrace_preddesc_t; 850 851 typedef struct dtrace_actdesc { 852 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 853 struct dtrace_actdesc *dtad_next; /* next action */ 854 dtrace_actkind_t dtad_kind; /* kind of action */ 855 uint32_t dtad_ntuple; /* number in tuple */ 856 uint64_t dtad_arg; /* action argument */ 857 uint64_t dtad_uarg; /* user argument */ 858 int dtad_refcnt; /* reference count */ 859 } dtrace_actdesc_t; 860 861 typedef struct dtrace_ecbdesc { 862 dtrace_actdesc_t *dted_action; /* action description(s) */ 863 dtrace_preddesc_t dted_pred; /* predicate description */ 864 dtrace_probedesc_t dted_probe; /* probe description */ 865 uint64_t dted_uarg; /* library argument */ 866 int dted_refcnt; /* reference count */ 867 } dtrace_ecbdesc_t; 868 869 /* 870 * DTrace Metadata Description Structures 871 * 872 * DTrace separates the trace data stream from the metadata stream. The only 873 * metadata tokens placed in the data stream are enabled probe identifiers 874 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order 875 * to determine the structure of the data, DTrace consumers pass the token to 876 * the kernel, and receive in return a corresponding description of the enabled 877 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 878 * dtrace_aggdesc structure). Both of these structures are expressed in terms 879 * of record descriptions (via the dtrace_recdesc structure) that describe the 880 * exact structure of the data. Some record descriptions may also contain a 881 * format identifier; this additional bit of metadata can be retrieved from the 882 * kernel, for which a format description is returned via the dtrace_fmtdesc 883 * structure. Note that all four of these structures must be bitness-neutral 884 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 885 */ 886 typedef struct dtrace_recdesc { 887 dtrace_actkind_t dtrd_action; /* kind of action */ 888 uint32_t dtrd_size; /* size of record */ 889 uint32_t dtrd_offset; /* offset in ECB's data */ 890 uint16_t dtrd_alignment; /* required alignment */ 891 uint16_t dtrd_format; /* format, if any */ 892 uint64_t dtrd_arg; /* action argument */ 893 uint64_t dtrd_uarg; /* user argument */ 894 } dtrace_recdesc_t; 895 896 typedef struct dtrace_eprobedesc { 897 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 898 dtrace_id_t dtepd_probeid; /* probe ID */ 899 uint64_t dtepd_uarg; /* library argument */ 900 uint32_t dtepd_size; /* total size */ 901 int dtepd_nrecs; /* number of records */ 902 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 903 } dtrace_eprobedesc_t; 904 905 typedef struct dtrace_aggdesc { 906 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 907 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 908 int dtagd_flags; /* not filled in by kernel */ 909 dtrace_aggid_t dtagd_id; /* aggregation ID */ 910 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 911 uint32_t dtagd_size; /* size in bytes */ 912 int dtagd_nrecs; /* number of records */ 913 uint32_t dtagd_pad; /* explicit padding */ 914 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 915 } dtrace_aggdesc_t; 916 917 typedef struct dtrace_fmtdesc { 918 DTRACE_PTR(char, dtfd_string); /* format string */ 919 int dtfd_length; /* length of format string */ 920 uint16_t dtfd_format; /* format identifier */ 921 } dtrace_fmtdesc_t; 922 923 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 924 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 925 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 926 927 #define DTRACE_SIZEOF_AGGDESC(desc) \ 928 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 929 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 930 931 /* 932 * DTrace Option Interface 933 * 934 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 935 * in a DOF image. The dof_optdesc structure contains an option identifier and 936 * an option value. The valid option identifiers are found below; the mapping 937 * between option identifiers and option identifying strings is maintained at 938 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 939 * following are potentially valid option values: all positive integers, zero 940 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 941 * predefined tokens as their values; these are defined with 942 * DTRACEOPT_{option}_{token}. 943 */ 944 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 945 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 946 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 947 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 948 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 949 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 950 #define DTRACEOPT_STRSIZE 6 /* string size */ 951 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 952 #define DTRACEOPT_CPU 8 /* CPU to trace */ 953 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 954 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 955 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 956 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 957 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 958 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 959 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 960 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 961 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 962 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 963 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 964 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 965 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 966 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 967 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 968 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 969 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 970 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 971 #define DTRACEOPT_MAX 27 /* number of options */ 972 973 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 974 975 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 976 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 977 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 978 979 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 980 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 981 982 /* 983 * DTrace Buffer Interface 984 * 985 * In order to get a snapshot of the principal or aggregation buffer, 986 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 987 * structure. This describes which CPU user-level is interested in, and 988 * where user-level wishes the kernel to snapshot the buffer to (the 989 * dtbd_data field). The kernel uses the same structure to pass back some 990 * information regarding the buffer: the size of data actually copied out, the 991 * number of drops, the number of errors, and the offset of the oldest record. 992 * If the buffer policy is a "switch" policy, taking a snapshot of the 993 * principal buffer has the additional effect of switching the active and 994 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 995 * the additional effect of switching the active and inactive buffers. 996 */ 997 typedef struct dtrace_bufdesc { 998 uint64_t dtbd_size; /* size of buffer */ 999 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 1000 uint32_t dtbd_errors; /* number of errors */ 1001 uint64_t dtbd_drops; /* number of drops */ 1002 DTRACE_PTR(char, dtbd_data); /* data */ 1003 uint64_t dtbd_oldest; /* offset of oldest record */ 1004 } dtrace_bufdesc_t; 1005 1006 /* 1007 * DTrace Status 1008 * 1009 * The status of DTrace is relayed via the dtrace_status structure. This 1010 * structure contains members to count drops other than the capacity drops 1011 * available via the buffer interface (see above). This consists of dynamic 1012 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 1013 * speculative drops (including capacity speculative drops, drops due to busy 1014 * speculative buffers and drops due to unavailable speculative buffers). 1015 * Additionally, the status structure contains a field to indicate the number 1016 * of "fill"-policy buffers have been filled and a boolean field to indicate 1017 * that exit() has been called. If the dtst_exiting field is non-zero, no 1018 * further data will be generated until tracing is stopped (at which time any 1019 * enablings of the END action will be processed); if user-level sees that 1020 * this field is non-zero, tracing should be stopped as soon as possible. 1021 */ 1022 typedef struct dtrace_status { 1023 uint64_t dtst_dyndrops; /* dynamic drops */ 1024 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1025 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1026 uint64_t dtst_specdrops; /* speculative drops */ 1027 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1028 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1029 uint64_t dtst_errors; /* total errors */ 1030 uint64_t dtst_filled; /* number of filled bufs */ 1031 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1032 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1033 char dtst_killed; /* non-zero if killed */ 1034 char dtst_exiting; /* non-zero if exit() called */ 1035 char dtst_pad[6]; /* pad out to 64-bit align */ 1036 } dtrace_status_t; 1037 1038 /* 1039 * DTrace Configuration 1040 * 1041 * User-level may need to understand some elements of the kernel DTrace 1042 * configuration in order to generate correct DIF. This information is 1043 * conveyed via the dtrace_conf structure. 1044 */ 1045 typedef struct dtrace_conf { 1046 uint_t dtc_difversion; /* supported DIF version */ 1047 uint_t dtc_difintregs; /* # of DIF integer registers */ 1048 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1049 uint_t dtc_ctfmodel; /* CTF data model */ 1050 uint_t dtc_pad[8]; /* reserved for future use */ 1051 } dtrace_conf_t; 1052 1053 /* 1054 * DTrace Faults 1055 * 1056 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1057 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1058 * postprocessing at user-level. Probe processing faults induce an ERROR 1059 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1060 * the error condition using thse symbolic labels. 1061 */ 1062 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1063 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1064 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1065 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1066 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1067 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1068 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1069 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1070 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1071 #define DTRACEFLT_BADSTACK 9 /* Bad stack */ 1072 1073 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1074 1075 /* 1076 * DTrace Argument Types 1077 * 1078 * Because it would waste both space and time, argument types do not reside 1079 * with the probe. In order to determine argument types for args[X] 1080 * variables, the D compiler queries for argument types on a probe-by-probe 1081 * basis. (This optimizes for the common case that arguments are either not 1082 * used or used in an untyped fashion.) Typed arguments are specified with a 1083 * string of the type name in the dtragd_native member of the argument 1084 * description structure. Typed arguments may be further translated to types 1085 * of greater stability; the provider indicates such a translated argument by 1086 * filling in the dtargd_xlate member with the string of the translated type. 1087 * Finally, the provider may indicate which argument value a given argument 1088 * maps to by setting the dtargd_mapping member -- allowing a single argument 1089 * to map to multiple args[X] variables. 1090 */ 1091 typedef struct dtrace_argdesc { 1092 dtrace_id_t dtargd_id; /* probe identifier */ 1093 int dtargd_ndx; /* arg number (-1 iff none) */ 1094 int dtargd_mapping; /* value mapping */ 1095 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1096 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1097 } dtrace_argdesc_t; 1098 1099 /* 1100 * DTrace Stability Attributes 1101 * 1102 * Each DTrace provider advertises the name and data stability of each of its 1103 * probe description components, as well as its architectural dependencies. 1104 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1105 * order to compute the properties of an input program and report them. 1106 */ 1107 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1108 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1109 1110 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1111 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1112 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1113 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1114 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1115 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1116 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1117 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1118 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1119 1120 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1121 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1122 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1123 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1124 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1125 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1126 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1127 1128 #define DTRACE_PRIV_NONE 0x0000 1129 #define DTRACE_PRIV_KERNEL 0x0001 1130 #define DTRACE_PRIV_USER 0x0002 1131 #define DTRACE_PRIV_PROC 0x0004 1132 #define DTRACE_PRIV_OWNER 0x0008 1133 #define DTRACE_PRIV_ZONEOWNER 0x0010 1134 1135 #define DTRACE_PRIV_ALL \ 1136 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1137 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1138 1139 typedef struct dtrace_ppriv { 1140 uint32_t dtpp_flags; /* privilege flags */ 1141 uid_t dtpp_uid; /* user ID */ 1142 zoneid_t dtpp_zoneid; /* zone ID */ 1143 } dtrace_ppriv_t; 1144 1145 typedef struct dtrace_attribute { 1146 dtrace_stability_t dtat_name; /* entity name stability */ 1147 dtrace_stability_t dtat_data; /* entity data stability */ 1148 dtrace_class_t dtat_class; /* entity data dependency */ 1149 } dtrace_attribute_t; 1150 1151 typedef struct dtrace_pattr { 1152 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1153 dtrace_attribute_t dtpa_mod; /* module attributes */ 1154 dtrace_attribute_t dtpa_func; /* function attributes */ 1155 dtrace_attribute_t dtpa_name; /* name attributes */ 1156 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1157 } dtrace_pattr_t; 1158 1159 typedef struct dtrace_providerdesc { 1160 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1161 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1162 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1163 } dtrace_providerdesc_t; 1164 1165 /* 1166 * DTrace Pseudodevice Interface 1167 * 1168 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1169 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1170 * DTrace. 1171 */ 1172 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1173 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1174 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1175 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1176 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1177 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1178 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1179 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1180 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1181 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1182 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1183 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1184 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1185 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1186 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1187 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1188 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1189 1190 /* 1191 * DTrace Helpers 1192 * 1193 * In general, DTrace establishes probes in processes and takes actions on 1194 * processes without knowing their specific user-level structures. Instead of 1195 * existing in the framework, process-specific knowledge is contained by the 1196 * enabling D program -- which can apply process-specific knowledge by making 1197 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1198 * operate on user-level data. However, there may exist some specific probes 1199 * of particular semantic relevance that the application developer may wish to 1200 * explicitly export. For example, an application may wish to export a probe 1201 * at the point that it begins and ends certain well-defined transactions. In 1202 * addition to providing probes, programs may wish to offer assistance for 1203 * certain actions. For example, in highly dynamic environments (e.g., Java), 1204 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1205 * names (the translation from instruction addresses to corresponding symbol 1206 * names may only be possible in situ); these environments may wish to define 1207 * a series of actions to be applied in situ to obtain a meaningful stack 1208 * trace. 1209 * 1210 * These two mechanisms -- user-level statically defined tracing and assisting 1211 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1212 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1213 * providers, probes and their arguments. If a helper wishes to provide 1214 * action assistance, probe descriptions and corresponding DIF actions may be 1215 * specified in the helper DOF. For such helper actions, however, the probe 1216 * description describes the specific helper: all DTrace helpers have the 1217 * provider name "dtrace" and the module name "helper", and the name of the 1218 * helper is contained in the function name (for example, the ustack() helper 1219 * is named "ustack"). Any helper-specific name may be contained in the name 1220 * (for example, if a helper were to have a constructor, it might be named 1221 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1222 * action that they are helping is taken. Helper actions may only return DIF 1223 * expressions, and may only call the following subroutines: 1224 * 1225 * alloca() <= Allocates memory out of the consumer's scratch space 1226 * bcopy() <= Copies memory to scratch space 1227 * copyin() <= Copies memory from user-level into consumer's scratch 1228 * copyinto() <= Copies memory into a specific location in scratch 1229 * copyinstr() <= Copies a string into a specific location in scratch 1230 * 1231 * Helper actions may only access the following built-in variables: 1232 * 1233 * curthread <= Current kthread_t pointer 1234 * tid <= Current thread identifier 1235 * pid <= Current process identifier 1236 * ppid <= Parent process identifier 1237 * uid <= Current user ID 1238 * gid <= Current group ID 1239 * execname <= Current executable name 1240 * zonename <= Current zone name 1241 * 1242 * Helper actions may not manipulate or allocate dynamic variables, but they 1243 * may have clause-local and statically-allocated global variables. The 1244 * helper action variable state is specific to the helper action -- variables 1245 * used by the helper action may not be accessed outside of the helper 1246 * action, and the helper action may not access variables that like outside 1247 * of it. Helper actions may not load from kernel memory at-large; they are 1248 * restricting to loading current user state (via copyin() and variants) and 1249 * scratch space. As with probe enablings, helper actions are executed in 1250 * program order. The result of the helper action is the result of the last 1251 * executing helper expression. 1252 * 1253 * Helpers -- composed of either providers/probes or probes/actions (or both) 1254 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1255 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1256 * encapsulates the name and base address of the user-level library or 1257 * executable publishing the helpers and probes as well as the DOF that 1258 * contains the definitions of those helpers and probes. 1259 * 1260 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1261 * helpers and should no longer be used. No other ioctls are valid on the 1262 * helper minor node. 1263 */ 1264 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1265 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1266 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1267 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1268 1269 typedef struct dof_helper { 1270 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1271 uint64_t dofhp_addr; /* base address of object */ 1272 uint64_t dofhp_dof; /* address of helper DOF */ 1273 } dof_helper_t; 1274 1275 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1276 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1277 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1278 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1279 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1280 1281 #ifdef _KERNEL 1282 1283 /* 1284 * DTrace Provider API 1285 * 1286 * The following functions are implemented by the DTrace framework and are 1287 * used to implement separate in-kernel DTrace providers. Common functions 1288 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1289 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1290 * 1291 * The provider API has two halves: the API that the providers consume from 1292 * DTrace, and the API that providers make available to DTrace. 1293 * 1294 * 1 Framework-to-Provider API 1295 * 1296 * 1.1 Overview 1297 * 1298 * The Framework-to-Provider API is represented by the dtrace_pops structure 1299 * that the provider passes to the framework when registering itself. This 1300 * structure consists of the following members: 1301 * 1302 * dtps_provide() <-- Provide all probes, all modules 1303 * dtps_provide_module() <-- Provide all probes in specified module 1304 * dtps_enable() <-- Enable specified probe 1305 * dtps_disable() <-- Disable specified probe 1306 * dtps_suspend() <-- Suspend specified probe 1307 * dtps_resume() <-- Resume specified probe 1308 * dtps_getargdesc() <-- Get the argument description for args[X] 1309 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1310 * dtps_usermode() <-- Find out if the probe was fired in user mode 1311 * dtps_destroy() <-- Destroy all state associated with this probe 1312 * 1313 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1314 * 1315 * 1.2.1 Overview 1316 * 1317 * Called to indicate that the provider should provide all probes. If the 1318 * specified description is non-NULL, dtps_provide() is being called because 1319 * no probe matched a specified probe -- if the provider has the ability to 1320 * create custom probes, it may wish to create a probe that matches the 1321 * specified description. 1322 * 1323 * 1.2.2 Arguments and notes 1324 * 1325 * The first argument is the cookie as passed to dtrace_register(). The 1326 * second argument is a pointer to a probe description that the provider may 1327 * wish to consider when creating custom probes. The provider is expected to 1328 * call back into the DTrace framework via dtrace_probe_create() to create 1329 * any necessary probes. dtps_provide() may be called even if the provider 1330 * has made available all probes; the provider should check the return value 1331 * of dtrace_probe_create() to handle this case. Note that the provider need 1332 * not implement both dtps_provide() and dtps_provide_module(); see 1333 * "Arguments and Notes" for dtrace_register(), below. 1334 * 1335 * 1.2.3 Return value 1336 * 1337 * None. 1338 * 1339 * 1.2.4 Caller's context 1340 * 1341 * dtps_provide() is typically called from open() or ioctl() context, but may 1342 * be called from other contexts as well. The DTrace framework is locked in 1343 * such a way that providers may not register or unregister. This means that 1344 * the provider may not call any DTrace API that affects its registration with 1345 * the framework, including dtrace_register(), dtrace_unregister(), 1346 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1347 * that the provider may (and indeed, is expected to) call probe-related 1348 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1349 * and dtrace_probe_arg(). 1350 * 1351 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) 1352 * 1353 * 1.3.1 Overview 1354 * 1355 * Called to indicate that the provider should provide all probes in the 1356 * specified module. 1357 * 1358 * 1.3.2 Arguments and notes 1359 * 1360 * The first argument is the cookie as passed to dtrace_register(). The 1361 * second argument is a pointer to a modctl structure that indicates the 1362 * module for which probes should be created. 1363 * 1364 * 1.3.3 Return value 1365 * 1366 * None. 1367 * 1368 * 1.3.4 Caller's context 1369 * 1370 * dtps_provide_module() may be called from open() or ioctl() context, but 1371 * may also be called from a module loading context. mod_lock is held, and 1372 * the DTrace framework is locked in such a way that providers may not 1373 * register or unregister. This means that the provider may not call any 1374 * DTrace API that affects its registration with the framework, including 1375 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1376 * dtrace_condense(). However, the context is such that the provider may (and 1377 * indeed, is expected to) call probe-related DTrace routines, including 1378 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1379 * that the provider need not implement both dtps_provide() and 1380 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1381 * below. 1382 * 1383 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg) 1384 * 1385 * 1.4.1 Overview 1386 * 1387 * Called to enable the specified probe. 1388 * 1389 * 1.4.2 Arguments and notes 1390 * 1391 * The first argument is the cookie as passed to dtrace_register(). The 1392 * second argument is the identifier of the probe to be enabled. The third 1393 * argument is the probe argument as passed to dtrace_probe_create(). 1394 * dtps_enable() will be called when a probe transitions from not being 1395 * enabled at all to having one or more ECB. The number of ECBs associated 1396 * with the probe may change without subsequent calls into the provider. 1397 * When the number of ECBs drops to zero, the provider will be explicitly 1398 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1399 * be called for a probe identifier that hasn't been explicitly enabled via 1400 * dtps_enable(). 1401 * 1402 * 1.4.3 Return value 1403 * 1404 * On success, dtps_enable() should return 0. On failure, -1 should be 1405 * returned. 1406 * 1407 * 1.4.4 Caller's context 1408 * 1409 * The DTrace framework is locked in such a way that it may not be called 1410 * back into at all. cpu_lock is held. mod_lock is not held and may not 1411 * be acquired. 1412 * 1413 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1414 * 1415 * 1.5.1 Overview 1416 * 1417 * Called to disable the specified probe. 1418 * 1419 * 1.5.2 Arguments and notes 1420 * 1421 * The first argument is the cookie as passed to dtrace_register(). The 1422 * second argument is the identifier of the probe to be disabled. The third 1423 * argument is the probe argument as passed to dtrace_probe_create(). 1424 * dtps_disable() will be called when a probe transitions from being enabled 1425 * to having zero ECBs. dtrace_probe() should never be called for a probe 1426 * identifier that has been explicitly enabled via dtps_disable(). 1427 * 1428 * 1.5.3 Return value 1429 * 1430 * None. 1431 * 1432 * 1.5.4 Caller's context 1433 * 1434 * The DTrace framework is locked in such a way that it may not be called 1435 * back into at all. cpu_lock is held. mod_lock is not held and may not 1436 * be acquired. 1437 * 1438 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1439 * 1440 * 1.6.1 Overview 1441 * 1442 * Called to suspend the specified enabled probe. This entry point is for 1443 * providers that may need to suspend some or all of their probes when CPUs 1444 * are being powered on or when the boot monitor is being entered for a 1445 * prolonged period of time. 1446 * 1447 * 1.6.2 Arguments and notes 1448 * 1449 * The first argument is the cookie as passed to dtrace_register(). The 1450 * second argument is the identifier of the probe to be suspended. The 1451 * third argument is the probe argument as passed to dtrace_probe_create(). 1452 * dtps_suspend will only be called on an enabled probe. Providers that 1453 * provide a dtps_suspend entry point will want to take roughly the action 1454 * that it takes for dtps_disable. 1455 * 1456 * 1.6.3 Return value 1457 * 1458 * None. 1459 * 1460 * 1.6.4 Caller's context 1461 * 1462 * Interrupts are disabled. The DTrace framework is in a state such that the 1463 * specified probe cannot be disabled or destroyed for the duration of 1464 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1465 * little latitude; the provider is expected to do no more than a store to 1466 * memory. 1467 * 1468 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1469 * 1470 * 1.7.1 Overview 1471 * 1472 * Called to resume the specified enabled probe. This entry point is for 1473 * providers that may need to resume some or all of their probes after the 1474 * completion of an event that induced a call to dtps_suspend(). 1475 * 1476 * 1.7.2 Arguments and notes 1477 * 1478 * The first argument is the cookie as passed to dtrace_register(). The 1479 * second argument is the identifier of the probe to be resumed. The 1480 * third argument is the probe argument as passed to dtrace_probe_create(). 1481 * dtps_resume will only be called on an enabled probe. Providers that 1482 * provide a dtps_resume entry point will want to take roughly the action 1483 * that it takes for dtps_enable. 1484 * 1485 * 1.7.3 Return value 1486 * 1487 * None. 1488 * 1489 * 1.7.4 Caller's context 1490 * 1491 * Interrupts are disabled. The DTrace framework is in a state such that the 1492 * specified probe cannot be disabled or destroyed for the duration of 1493 * dtps_resume(). As interrupts are disabled, the provider is afforded 1494 * little latitude; the provider is expected to do no more than a store to 1495 * memory. 1496 * 1497 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1498 * dtrace_argdesc_t *desc) 1499 * 1500 * 1.8.1 Overview 1501 * 1502 * Called to retrieve the argument description for an args[X] variable. 1503 * 1504 * 1.8.2 Arguments and notes 1505 * 1506 * The first argument is the cookie as passed to dtrace_register(). The 1507 * second argument is the identifier of the current probe. The third 1508 * argument is the probe argument as passed to dtrace_probe_create(). The 1509 * fourth argument is a pointer to the argument description. This 1510 * description is both an input and output parameter: it contains the 1511 * index of the desired argument in the dtargd_ndx field, and expects 1512 * the other fields to be filled in upon return. If there is no argument 1513 * corresponding to the specified index, the dtargd_ndx field should be set 1514 * to DTRACE_ARGNONE. 1515 * 1516 * 1.8.3 Return value 1517 * 1518 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1519 * members of the dtrace_argdesc_t structure are all output values. 1520 * 1521 * 1.8.4 Caller's context 1522 * 1523 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1524 * the DTrace framework is locked in such a way that providers may not 1525 * register or unregister. This means that the provider may not call any 1526 * DTrace API that affects its registration with the framework, including 1527 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1528 * dtrace_condense(). 1529 * 1530 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1531 * int argno, int aframes) 1532 * 1533 * 1.9.1 Overview 1534 * 1535 * Called to retrieve a value for an argX or args[X] variable. 1536 * 1537 * 1.9.2 Arguments and notes 1538 * 1539 * The first argument is the cookie as passed to dtrace_register(). The 1540 * second argument is the identifier of the current probe. The third 1541 * argument is the probe argument as passed to dtrace_probe_create(). The 1542 * fourth argument is the number of the argument (the X in the example in 1543 * 1.9.1). The fifth argument is the number of stack frames that were used 1544 * to get from the actual place in the code that fired the probe to 1545 * dtrace_probe() itself, the so-called artificial frames. This argument may 1546 * be used to descend an appropriate number of frames to find the correct 1547 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1548 * function is used. 1549 * 1550 * 1.9.3 Return value 1551 * 1552 * The value of the argument. 1553 * 1554 * 1.9.4 Caller's context 1555 * 1556 * This is called from within dtrace_probe() meaning that interrupts 1557 * are disabled. No locks should be taken within this entry point. 1558 * 1559 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1560 * 1561 * 1.10.1 Overview 1562 * 1563 * Called to determine if the probe was fired in a user context. 1564 * 1565 * 1.10.2 Arguments and notes 1566 * 1567 * The first argument is the cookie as passed to dtrace_register(). The 1568 * second argument is the identifier of the current probe. The third 1569 * argument is the probe argument as passed to dtrace_probe_create(). This 1570 * entry point must not be left NULL for providers whose probes allow for 1571 * mixed mode tracing, that is to say those probes that can fire during 1572 * kernel- _or_ user-mode execution 1573 * 1574 * 1.10.3 Return value 1575 * 1576 * A boolean value. 1577 * 1578 * 1.10.4 Caller's context 1579 * 1580 * This is called from within dtrace_probe() meaning that interrupts 1581 * are disabled. No locks should be taken within this entry point. 1582 * 1583 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1584 * 1585 * 1.11.1 Overview 1586 * 1587 * Called to destroy the specified probe. 1588 * 1589 * 1.11.2 Arguments and notes 1590 * 1591 * The first argument is the cookie as passed to dtrace_register(). The 1592 * second argument is the identifier of the probe to be destroyed. The third 1593 * argument is the probe argument as passed to dtrace_probe_create(). The 1594 * provider should free all state associated with the probe. The framework 1595 * guarantees that dtps_destroy() is only called for probes that have either 1596 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1597 * Once dtps_disable() has been called for a probe, no further call will be 1598 * made specifying the probe. 1599 * 1600 * 1.11.3 Return value 1601 * 1602 * None. 1603 * 1604 * 1.11.4 Caller's context 1605 * 1606 * The DTrace framework is locked in such a way that it may not be called 1607 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1608 * acquired. 1609 * 1610 * 1611 * 2 Provider-to-Framework API 1612 * 1613 * 2.1 Overview 1614 * 1615 * The Provider-to-Framework API provides the mechanism for the provider to 1616 * register itself with the DTrace framework, to create probes, to lookup 1617 * probes and (most importantly) to fire probes. The Provider-to-Framework 1618 * consists of: 1619 * 1620 * dtrace_register() <-- Register a provider with the DTrace framework 1621 * dtrace_unregister() <-- Remove a provider's DTrace registration 1622 * dtrace_invalidate() <-- Invalidate the specified provider 1623 * dtrace_condense() <-- Remove a provider's unenabled probes 1624 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1625 * dtrace_probe_create() <-- Create a DTrace probe 1626 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1627 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1628 * dtrace_probe() <-- Fire the specified probe 1629 * 1630 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1631 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1632 * dtrace_provider_id_t *idp) 1633 * 1634 * 2.2.1 Overview 1635 * 1636 * dtrace_register() registers the calling provider with the DTrace 1637 * framework. It should generally be called by DTrace providers in their 1638 * attach(9E) entry point. 1639 * 1640 * 2.2.2 Arguments and Notes 1641 * 1642 * The first argument is the name of the provider. The second argument is a 1643 * pointer to the stability attributes for the provider. The third argument 1644 * is the privilege flags for the provider, and must be some combination of: 1645 * 1646 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1647 * 1648 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1649 * enable probes from this provider 1650 * 1651 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1652 * enable probes from this provider 1653 * 1654 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1655 * may enable probes from this provider 1656 * 1657 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1658 * the privilege requirements above. These probes 1659 * require either (a) a user ID matching the user 1660 * ID of the cred passed in the fourth argument 1661 * or (b) the PRIV_PROC_OWNER privilege. 1662 * 1663 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1664 * the privilege requirements above. These probes 1665 * require either (a) a zone ID matching the zone 1666 * ID of the cred passed in the fourth argument 1667 * or (b) the PRIV_PROC_ZONE privilege. 1668 * 1669 * Note that these flags designate the _visibility_ of the probes, not 1670 * the conditions under which they may or may not fire. 1671 * 1672 * The fourth argument is the credential that is associated with the 1673 * provider. This argument should be NULL if the privilege flags don't 1674 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1675 * framework stashes the uid and zoneid represented by this credential 1676 * for use at probe-time, in implicit predicates. These limit visibility 1677 * of the probes to users and/or zones which have sufficient privilege to 1678 * access them. 1679 * 1680 * The fifth argument is a DTrace provider operations vector, which provides 1681 * the implementation for the Framework-to-Provider API. (See Section 1, 1682 * above.) This must be non-NULL, and each member must be non-NULL. The 1683 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1684 * members (if the provider so desires, _one_ of these members may be left 1685 * NULL -- denoting that the provider only implements the other) and (2) 1686 * the dtps_suspend() and dtps_resume() members, which must either both be 1687 * NULL or both be non-NULL. 1688 * 1689 * The sixth argument is a cookie to be specified as the first argument for 1690 * each function in the Framework-to-Provider API. This argument may have 1691 * any value. 1692 * 1693 * The final argument is a pointer to dtrace_provider_id_t. If 1694 * dtrace_register() successfully completes, the provider identifier will be 1695 * stored in the memory pointed to be this argument. This argument must be 1696 * non-NULL. 1697 * 1698 * 2.2.3 Return value 1699 * 1700 * On success, dtrace_register() returns 0 and stores the new provider's 1701 * identifier into the memory pointed to by the idp argument. On failure, 1702 * dtrace_register() returns an errno: 1703 * 1704 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1705 * This may because a parameter that must be non-NULL was NULL, 1706 * because the name was invalid (either empty or an illegal 1707 * provider name) or because the attributes were invalid. 1708 * 1709 * No other failure code is returned. 1710 * 1711 * 2.2.4 Caller's context 1712 * 1713 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1714 * hold no locks across dtrace_register() that may also be acquired by 1715 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1716 * 1717 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1718 * 1719 * 2.3.1 Overview 1720 * 1721 * Unregisters the specified provider from the DTrace framework. It should 1722 * generally be called by DTrace providers in their detach(9E) entry point. 1723 * 1724 * 2.3.2 Arguments and Notes 1725 * 1726 * The only argument is the provider identifier, as returned from a 1727 * successful call to dtrace_register(). As a result of calling 1728 * dtrace_unregister(), the DTrace framework will call back into the provider 1729 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1730 * completes, however, the DTrace framework will no longer make calls through 1731 * the Framework-to-Provider API. 1732 * 1733 * 2.3.3 Return value 1734 * 1735 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1736 * returns an errno: 1737 * 1738 * EBUSY There are currently processes that have the DTrace pseudodevice 1739 * open, or there exists an anonymous enabling that hasn't yet 1740 * been claimed. 1741 * 1742 * No other failure code is returned. 1743 * 1744 * 2.3.4 Caller's context 1745 * 1746 * Because a call to dtrace_unregister() may induce calls through the 1747 * Framework-to-Provider API, the caller may not hold any lock across 1748 * dtrace_register() that is also acquired in any of the Framework-to- 1749 * Provider API functions. Additionally, mod_lock may not be held. 1750 * 1751 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1752 * 1753 * 2.4.1 Overview 1754 * 1755 * Invalidates the specified provider. All subsequent probe lookups for the 1756 * specified provider will fail, but its probes will not be removed. 1757 * 1758 * 2.4.2 Arguments and note 1759 * 1760 * The only argument is the provider identifier, as returned from a 1761 * successful call to dtrace_register(). In general, a provider's probes 1762 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1763 * an entire provider, regardless of whether or not probes are enabled or 1764 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1765 * probes from firing -- it will merely prevent any new enablings of the 1766 * provider's probes. 1767 * 1768 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1769 * 1770 * 2.5.1 Overview 1771 * 1772 * Removes all the unenabled probes for the given provider. This function is 1773 * not unlike dtrace_unregister(), except that it doesn't remove the 1774 * provider just as many of its associated probes as it can. 1775 * 1776 * 2.5.2 Arguments and Notes 1777 * 1778 * As with dtrace_unregister(), the sole argument is the provider identifier 1779 * as returned from a successful call to dtrace_register(). As a result of 1780 * calling dtrace_condense(), the DTrace framework will call back into the 1781 * given provider's dtps_destroy() entry point for each of the provider's 1782 * unenabled probes. 1783 * 1784 * 2.5.3 Return value 1785 * 1786 * Currently, dtrace_condense() always returns 0. However, consumers of this 1787 * function should check the return value as appropriate; its behavior may 1788 * change in the future. 1789 * 1790 * 2.5.4 Caller's context 1791 * 1792 * As with dtrace_unregister(), the caller may not hold any lock across 1793 * dtrace_condense() that is also acquired in the provider's entry points. 1794 * Also, mod_lock may not be held. 1795 * 1796 * 2.6 int dtrace_attached() 1797 * 1798 * 2.6.1 Overview 1799 * 1800 * Indicates whether or not DTrace has attached. 1801 * 1802 * 2.6.2 Arguments and Notes 1803 * 1804 * For most providers, DTrace makes initial contact beyond registration. 1805 * That is, once a provider has registered with DTrace, it waits to hear 1806 * from DTrace to create probes. However, some providers may wish to 1807 * proactively create probes without first being told by DTrace to do so. 1808 * If providers wish to do this, they must first call dtrace_attached() to 1809 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1810 * the provider must not make any other Provider-to-Framework API call. 1811 * 1812 * 2.6.3 Return value 1813 * 1814 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1815 * 1816 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1817 * const char *func, const char *name, int aframes, void *arg) 1818 * 1819 * 2.7.1 Overview 1820 * 1821 * Creates a probe with specified module name, function name, and name. 1822 * 1823 * 2.7.2 Arguments and Notes 1824 * 1825 * The first argument is the provider identifier, as returned from a 1826 * successful call to dtrace_register(). The second, third, and fourth 1827 * arguments are the module name, function name, and probe name, 1828 * respectively. Of these, module name and function name may both be NULL 1829 * (in which case the probe is considered to be unanchored), or they may both 1830 * be non-NULL. The name must be non-NULL, and must point to a non-empty 1831 * string. 1832 * 1833 * The fifth argument is the number of artificial stack frames that will be 1834 * found on the stack when dtrace_probe() is called for the new probe. These 1835 * artificial frames will be automatically be pruned should the stack() or 1836 * stackdepth() functions be called as part of one of the probe's ECBs. If 1837 * the parameter doesn't add an artificial frame, this parameter should be 1838 * zero. 1839 * 1840 * The final argument is a probe argument that will be passed back to the 1841 * provider when a probe-specific operation is called. (e.g., via 1842 * dtps_enable(), dtps_disable(), etc.) 1843 * 1844 * Note that it is up to the provider to be sure that the probe that it 1845 * creates does not already exist -- if the provider is unsure of the probe's 1846 * existence, it should assure its absence with dtrace_probe_lookup() before 1847 * calling dtrace_probe_create(). 1848 * 1849 * 2.7.3 Return value 1850 * 1851 * dtrace_probe_create() always succeeds, and always returns the identifier 1852 * of the newly-created probe. 1853 * 1854 * 2.7.4 Caller's context 1855 * 1856 * While dtrace_probe_create() is generally expected to be called from 1857 * dtps_provide() and/or dtps_provide_module(), it may be called from other 1858 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1859 * 1860 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 1861 * const char *func, const char *name) 1862 * 1863 * 2.8.1 Overview 1864 * 1865 * Looks up a probe based on provdider and one or more of module name, 1866 * function name and probe name. 1867 * 1868 * 2.8.2 Arguments and Notes 1869 * 1870 * The first argument is the provider identifier, as returned from a 1871 * successful call to dtrace_register(). The second, third, and fourth 1872 * arguments are the module name, function name, and probe name, 1873 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 1874 * the identifier of the first probe that is provided by the specified 1875 * provider and matches all of the non-NULL matching criteria. 1876 * dtrace_probe_lookup() is generally used by a provider to be check the 1877 * existence of a probe before creating it with dtrace_probe_create(). 1878 * 1879 * 2.8.3 Return value 1880 * 1881 * If the probe exists, returns its identifier. If the probe does not exist, 1882 * return DTRACE_IDNONE. 1883 * 1884 * 2.8.4 Caller's context 1885 * 1886 * While dtrace_probe_lookup() is generally expected to be called from 1887 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1888 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1889 * 1890 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 1891 * 1892 * 2.9.1 Overview 1893 * 1894 * Returns the probe argument associated with the specified probe. 1895 * 1896 * 2.9.2 Arguments and Notes 1897 * 1898 * The first argument is the provider identifier, as returned from a 1899 * successful call to dtrace_register(). The second argument is a probe 1900 * identifier, as returned from dtrace_probe_lookup() or 1901 * dtrace_probe_create(). This is useful if a probe has multiple 1902 * provider-specific components to it: the provider can create the probe 1903 * once with provider-specific state, and then add to the state by looking 1904 * up the probe based on probe identifier. 1905 * 1906 * 2.9.3 Return value 1907 * 1908 * Returns the argument associated with the specified probe. If the 1909 * specified probe does not exist, or if the specified probe is not provided 1910 * by the specified provider, NULL is returned. 1911 * 1912 * 2.9.4 Caller's context 1913 * 1914 * While dtrace_probe_arg() is generally expected to be called from 1915 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1916 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1917 * 1918 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 1919 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 1920 * 1921 * 2.10.1 Overview 1922 * 1923 * The epicenter of DTrace: fires the specified probes with the specified 1924 * arguments. 1925 * 1926 * 2.10.2 Arguments and Notes 1927 * 1928 * The first argument is a probe identifier as returned by 1929 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 1930 * arguments are the values to which the D variables "arg0" through "arg4" 1931 * will be mapped. 1932 * 1933 * dtrace_probe() should be called whenever the specified probe has fired -- 1934 * however the provider defines it. 1935 * 1936 * 2.10.3 Return value 1937 * 1938 * None. 1939 * 1940 * 2.10.4 Caller's context 1941 * 1942 * dtrace_probe() may be called in virtually any context: kernel, user, 1943 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 1944 * dispatcher locks held, with interrupts disabled, etc. The only latitude 1945 * that must be afforded to DTrace is the ability to make calls within 1946 * itself (and to its in-kernel subroutines) and the ability to access 1947 * arbitrary (but mapped) memory. On some platforms, this constrains 1948 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 1949 * from any context in which TL is greater than zero. dtrace_probe() may 1950 * also not be called from any routine which may be called by dtrace_probe() 1951 * -- which includes functions in the DTrace framework and some in-kernel 1952 * DTrace subroutines. All such functions "dtrace_"; providers that 1953 * instrument the kernel arbitrarily should be sure to not instrument these 1954 * routines. 1955 */ 1956 typedef struct dtrace_pops { 1957 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); 1958 void (*dtps_provide_module)(void *arg, struct modctl *mp); 1959 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 1960 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 1961 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 1962 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 1963 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 1964 dtrace_argdesc_t *desc); 1965 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 1966 int argno, int aframes); 1967 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 1968 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 1969 } dtrace_pops_t; 1970 1971 typedef uintptr_t dtrace_provider_id_t; 1972 1973 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 1974 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 1975 extern int dtrace_unregister(dtrace_provider_id_t); 1976 extern int dtrace_condense(dtrace_provider_id_t); 1977 extern void dtrace_invalidate(dtrace_provider_id_t); 1978 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, 1979 const char *, const char *); 1980 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 1981 const char *, const char *, int, void *); 1982 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 1983 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 1984 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 1985 1986 /* 1987 * DTrace Meta Provider API 1988 * 1989 * The following functions are implemented by the DTrace framework and are 1990 * used to implement meta providers. Meta providers plug into the DTrace 1991 * framework and are used to instantiate new providers on the fly. At 1992 * present, there is only one type of meta provider and only one meta 1993 * provider may be registered with the DTrace framework at a time. The 1994 * sole meta provider type provides user-land static tracing facilities 1995 * by taking meta probe descriptions and adding a corresponding provider 1996 * into the DTrace framework. 1997 * 1998 * 1 Framework-to-Provider 1999 * 2000 * 1.1 Overview 2001 * 2002 * The Framework-to-Provider API is represented by the dtrace_mops structure 2003 * that the meta provider passes to the framework when registering itself as 2004 * a meta provider. This structure consists of the following members: 2005 * 2006 * dtms_create_probe() <-- Add a new probe to a created provider 2007 * dtms_provide_pid() <-- Create a new provider for a given process 2008 * dtms_remove_pid() <-- Remove a previously created provider 2009 * 2010 * 1.2 void dtms_create_probe(void *arg, void *parg, 2011 * dtrace_helper_probedesc_t *probedesc); 2012 * 2013 * 1.2.1 Overview 2014 * 2015 * Called by the DTrace framework to create a new probe in a provider 2016 * created by this meta provider. 2017 * 2018 * 1.2.2 Arguments and notes 2019 * 2020 * The first argument is the cookie as passed to dtrace_meta_register(). 2021 * The second argument is the provider cookie for the associated provider; 2022 * this is obtained from the return value of dtms_provide_pid(). The third 2023 * argument is the helper probe description. 2024 * 2025 * 1.2.3 Return value 2026 * 2027 * None 2028 * 2029 * 1.2.4 Caller's context 2030 * 2031 * dtms_create_probe() is called from either ioctl() or module load context. 2032 * The DTrace framework is locked in such a way that meta providers may not 2033 * register or unregister. This means that the meta provider cannot call 2034 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is 2035 * such that the provider may (and is expected to) call provider-related 2036 * DTrace provider APIs including dtrace_probe_create(). 2037 * 2038 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2039 * pid_t pid) 2040 * 2041 * 1.3.1 Overview 2042 * 2043 * Called by the DTrace framework to instantiate a new provider given the 2044 * description of the provider and probes in the mprov argument. The 2045 * meta provider should call dtrace_register() to insert the new provider 2046 * into the DTrace framework. 2047 * 2048 * 1.3.2 Arguments and notes 2049 * 2050 * The first argument is the cookie as passed to dtrace_meta_register(). 2051 * The second argument is a pointer to a structure describing the new 2052 * helper provider. The third argument is the process identifier for 2053 * process associated with this new provider. Note that the name of the 2054 * provider as passed to dtrace_register() should be the contatenation of 2055 * the dtmpb_provname member of the mprov argument and the processs 2056 * identifier as a string. 2057 * 2058 * 1.3.3 Return value 2059 * 2060 * The cookie for the provider that the meta provider creates. This is 2061 * the same value that it passed to dtrace_register(). 2062 * 2063 * 1.3.4 Caller's context 2064 * 2065 * dtms_provide_pid() is called from either ioctl() or module load context. 2066 * The DTrace framework is locked in such a way that meta providers may not 2067 * register or unregister. This means that the meta provider cannot call 2068 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2069 * is such that the provider may -- and is expected to -- call 2070 * provider-related DTrace provider APIs including dtrace_register(). 2071 * 2072 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2073 * pid_t pid) 2074 * 2075 * 1.4.1 Overview 2076 * 2077 * Called by the DTrace framework to remove a provider that had previously 2078 * been instantiated via the dtms_provide_pid() entry point. The meta 2079 * provider need not remove the provider immediately, but this entry 2080 * point indicates that the provider should be removed as soon as possible 2081 * using the dtrace_unregister() API. 2082 * 2083 * 1.4.2 Arguments and notes 2084 * 2085 * The first argument is the cookie as passed to dtrace_meta_register(). 2086 * The second argument is a pointer to a structure describing the helper 2087 * provider. The third argument is the process identifier for process 2088 * associated with this new provider. 2089 * 2090 * 1.4.3 Return value 2091 * 2092 * None 2093 * 2094 * 1.4.4 Caller's context 2095 * 2096 * dtms_remove_pid() is called from either ioctl() or exit() context. 2097 * The DTrace framework is locked in such a way that meta providers may not 2098 * register or unregister. This means that the meta provider cannot call 2099 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2100 * is such that the provider may -- and is expected to -- call 2101 * provider-related DTrace provider APIs including dtrace_unregister(). 2102 */ 2103 typedef struct dtrace_helper_probedesc { 2104 char *dthpb_mod; /* probe module */ 2105 char *dthpb_func; /* probe function */ 2106 char *dthpb_name; /* probe name */ 2107 uint64_t dthpb_base; /* base address */ 2108 uint32_t *dthpb_offs; /* offsets array */ 2109 uint32_t *dthpb_enoffs; /* is-enabled offsets array */ 2110 uint32_t dthpb_noffs; /* offsets count */ 2111 uint32_t dthpb_nenoffs; /* is-enabled offsets count */ 2112 uint8_t *dthpb_args; /* argument mapping array */ 2113 uint8_t dthpb_xargc; /* translated argument count */ 2114 uint8_t dthpb_nargc; /* native argument count */ 2115 char *dthpb_xtypes; /* translated types strings */ 2116 char *dthpb_ntypes; /* native types strings */ 2117 } dtrace_helper_probedesc_t; 2118 2119 typedef struct dtrace_helper_provdesc { 2120 char *dthpv_provname; /* provider name */ 2121 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2122 } dtrace_helper_provdesc_t; 2123 2124 typedef struct dtrace_mops { 2125 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2126 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2127 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2128 } dtrace_mops_t; 2129 2130 typedef uintptr_t dtrace_meta_provider_id_t; 2131 2132 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2133 dtrace_meta_provider_id_t *); 2134 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2135 2136 /* 2137 * DTrace Kernel Hooks 2138 * 2139 * The following functions are implemented by the base kernel and form a set of 2140 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2141 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2142 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2143 */ 2144 2145 typedef enum dtrace_vtime_state { 2146 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2147 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2148 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2149 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2150 } dtrace_vtime_state_t; 2151 2152 extern dtrace_vtime_state_t dtrace_vtime_active; 2153 extern void dtrace_vtime_switch(kthread_t *next); 2154 extern void dtrace_vtime_enable_tnf(void); 2155 extern void dtrace_vtime_disable_tnf(void); 2156 extern void dtrace_vtime_enable(void); 2157 extern void dtrace_vtime_disable(void); 2158 2159 struct regs; 2160 2161 extern int (*dtrace_pid_probe_ptr)(struct regs *); 2162 extern int (*dtrace_return_probe_ptr)(struct regs *); 2163 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2164 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2165 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2166 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2167 2168 typedef uintptr_t dtrace_icookie_t; 2169 typedef void (*dtrace_xcall_t)(void *); 2170 2171 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2172 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2173 2174 extern void dtrace_membar_producer(void); 2175 extern void dtrace_membar_consumer(void); 2176 2177 extern void (*dtrace_cpu_init)(processorid_t); 2178 extern void (*dtrace_modload)(struct modctl *); 2179 extern void (*dtrace_modunload)(struct modctl *); 2180 extern void (*dtrace_helpers_cleanup)(); 2181 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2182 extern void (*dtrace_cpustart_init)(); 2183 extern void (*dtrace_cpustart_fini)(); 2184 2185 extern void (*dtrace_debugger_init)(); 2186 extern void (*dtrace_debugger_fini)(); 2187 extern dtrace_cacheid_t dtrace_predcache_id; 2188 2189 extern hrtime_t dtrace_gethrtime(void); 2190 extern void dtrace_sync(void); 2191 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2192 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2193 extern void dtrace_vpanic(const char *, __va_list); 2194 extern void dtrace_panic(const char *, ...); 2195 2196 extern int dtrace_safe_defer_signal(void); 2197 extern void dtrace_safe_synchronous_signal(void); 2198 2199 extern int dtrace_mach_aframes(void); 2200 2201 #if defined(__i386) || defined(__amd64) 2202 extern int dtrace_instr_size(uchar_t *instr); 2203 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); 2204 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2205 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2206 extern void dtrace_invop_callsite(void); 2207 #endif 2208 2209 #ifdef __sparc 2210 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2211 extern void dtrace_getfsr(uint64_t *); 2212 #endif 2213 2214 #define DTRACE_CPUFLAG_ISSET(flag) \ 2215 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) 2216 2217 #define DTRACE_CPUFLAG_SET(flag) \ 2218 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) 2219 2220 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2221 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) 2222 2223 #endif /* _KERNEL */ 2224 2225 #endif /* _ASM */ 2226 2227 #if defined(__i386) || defined(__amd64) 2228 2229 #define DTRACE_INVOP_PUSHL_EBP 1 2230 #define DTRACE_INVOP_POPL_EBP 2 2231 #define DTRACE_INVOP_LEAVE 3 2232 #define DTRACE_INVOP_NOP 4 2233 #define DTRACE_INVOP_RET 5 2234 2235 #endif 2236 2237 #ifdef __cplusplus 2238 } 2239 #endif 2240 2241 #endif /* _SYS_DTRACE_H */ 2242