1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _SYS_DTRACE_H 27 #define _SYS_DTRACE_H 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 /* 36 * DTrace Dynamic Tracing Software: Kernel Interfaces 37 * 38 * Note: The contents of this file are private to the implementation of the 39 * Solaris system and DTrace subsystem and are subject to change at any time 40 * without notice. Applications and drivers using these interfaces will fail 41 * to run on future releases. These interfaces should not be used for any 42 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 43 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 44 */ 45 46 #ifndef _ASM 47 48 #include <sys/types.h> 49 #include <sys/modctl.h> 50 #include <sys/processor.h> 51 #include <sys/systm.h> 52 #include <sys/ctf_api.h> 53 #include <sys/cyclic.h> 54 #include <sys/int_limits.h> 55 56 /* 57 * DTrace Universal Constants and Typedefs 58 */ 59 #define DTRACE_CPUALL -1 /* all CPUs */ 60 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 61 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 62 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 63 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 64 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 65 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 66 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 67 #define DTRACE_ARGNONE -1 /* invalid argument index */ 68 69 #define DTRACE_PROVNAMELEN 64 70 #define DTRACE_MODNAMELEN 64 71 #define DTRACE_FUNCNAMELEN 128 72 #define DTRACE_NAMELEN 64 73 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 74 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 75 #define DTRACE_ARGTYPELEN 128 76 77 typedef uint32_t dtrace_id_t; /* probe identifier */ 78 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 79 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 80 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 81 typedef uint16_t dtrace_actkind_t; /* action kind */ 82 typedef int64_t dtrace_optval_t; /* option value */ 83 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 84 85 typedef enum dtrace_probespec { 86 DTRACE_PROBESPEC_NONE = -1, 87 DTRACE_PROBESPEC_PROVIDER = 0, 88 DTRACE_PROBESPEC_MOD, 89 DTRACE_PROBESPEC_FUNC, 90 DTRACE_PROBESPEC_NAME 91 } dtrace_probespec_t; 92 93 /* 94 * DTrace Intermediate Format (DIF) 95 * 96 * The following definitions describe the DTrace Intermediate Format (DIF), a 97 * a RISC-like instruction set and program encoding used to represent 98 * predicates and actions that can be bound to DTrace probes. The constants 99 * below defining the number of available registers are suggested minimums; the 100 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 101 * registers provided by the current DTrace implementation. 102 */ 103 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 104 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 105 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 106 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 107 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 108 109 #define DIF_OP_OR 1 /* or r1, r2, rd */ 110 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 111 #define DIF_OP_AND 3 /* and r1, r2, rd */ 112 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 113 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 114 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 115 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 116 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 117 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 118 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 119 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 120 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 121 #define DIF_OP_NOT 13 /* not r1, rd */ 122 #define DIF_OP_MOV 14 /* mov r1, rd */ 123 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 124 #define DIF_OP_TST 16 /* tst r1 */ 125 #define DIF_OP_BA 17 /* ba label */ 126 #define DIF_OP_BE 18 /* be label */ 127 #define DIF_OP_BNE 19 /* bne label */ 128 #define DIF_OP_BG 20 /* bg label */ 129 #define DIF_OP_BGU 21 /* bgu label */ 130 #define DIF_OP_BGE 22 /* bge label */ 131 #define DIF_OP_BGEU 23 /* bgeu label */ 132 #define DIF_OP_BL 24 /* bl label */ 133 #define DIF_OP_BLU 25 /* blu label */ 134 #define DIF_OP_BLE 26 /* ble label */ 135 #define DIF_OP_BLEU 27 /* bleu label */ 136 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 137 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 138 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 139 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 140 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 141 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 142 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 143 #define DIF_OP_RET 35 /* ret rd */ 144 #define DIF_OP_NOP 36 /* nop */ 145 #define DIF_OP_SETX 37 /* setx intindex, rd */ 146 #define DIF_OP_SETS 38 /* sets strindex, rd */ 147 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 148 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 149 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 150 #define DIF_OP_STGS 42 /* stgs var, rs */ 151 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 152 #define DIF_OP_LDTS 44 /* ldts var, rd */ 153 #define DIF_OP_STTS 45 /* stts var, rs */ 154 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 155 #define DIF_OP_CALL 47 /* call subr, rd */ 156 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 157 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 158 #define DIF_OP_POPTS 50 /* popts */ 159 #define DIF_OP_FLUSHTS 51 /* flushts */ 160 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 161 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 162 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 163 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 164 #define DIF_OP_LDLS 56 /* ldls var, rd */ 165 #define DIF_OP_STLS 57 /* stls var, rs */ 166 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 167 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 168 #define DIF_OP_STB 60 /* stb r1, [rd] */ 169 #define DIF_OP_STH 61 /* sth r1, [rd] */ 170 #define DIF_OP_STW 62 /* stw r1, [rd] */ 171 #define DIF_OP_STX 63 /* stx r1, [rd] */ 172 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 173 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 174 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 175 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 176 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 177 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 178 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 179 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 180 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 181 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 182 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 183 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 184 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 185 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 186 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 187 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 188 189 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 190 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 191 #define DIF_REGISTER_MAX 0xff /* highest register number */ 192 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 193 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 194 195 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 196 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 197 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 198 199 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 200 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 201 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 202 203 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 204 #define DIF_VAR_REGS 0x0001 /* registers array */ 205 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 206 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 207 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 208 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 209 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 210 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 211 #define DIF_VAR_ID 0x0105 /* probe ID */ 212 #define DIF_VAR_ARG0 0x0106 /* first argument */ 213 #define DIF_VAR_ARG1 0x0107 /* second argument */ 214 #define DIF_VAR_ARG2 0x0108 /* third argument */ 215 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 216 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 217 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 218 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 219 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 220 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 221 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 222 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 223 #define DIF_VAR_CALLER 0x0111 /* caller */ 224 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 225 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 226 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 227 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 228 #define DIF_VAR_PID 0x0116 /* process ID */ 229 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 230 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 231 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 232 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 233 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 234 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 235 236 #define DIF_SUBR_RAND 0 237 #define DIF_SUBR_MUTEX_OWNED 1 238 #define DIF_SUBR_MUTEX_OWNER 2 239 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 240 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 241 #define DIF_SUBR_RW_READ_HELD 5 242 #define DIF_SUBR_RW_WRITE_HELD 6 243 #define DIF_SUBR_RW_ISWRITER 7 244 #define DIF_SUBR_COPYIN 8 245 #define DIF_SUBR_COPYINSTR 9 246 #define DIF_SUBR_SPECULATION 10 247 #define DIF_SUBR_PROGENYOF 11 248 #define DIF_SUBR_STRLEN 12 249 #define DIF_SUBR_COPYOUT 13 250 #define DIF_SUBR_COPYOUTSTR 14 251 #define DIF_SUBR_ALLOCA 15 252 #define DIF_SUBR_BCOPY 16 253 #define DIF_SUBR_COPYINTO 17 254 #define DIF_SUBR_MSGDSIZE 18 255 #define DIF_SUBR_MSGSIZE 19 256 #define DIF_SUBR_GETMAJOR 20 257 #define DIF_SUBR_GETMINOR 21 258 #define DIF_SUBR_DDI_PATHNAME 22 259 #define DIF_SUBR_STRJOIN 23 260 #define DIF_SUBR_LLTOSTR 24 261 #define DIF_SUBR_BASENAME 25 262 #define DIF_SUBR_DIRNAME 26 263 #define DIF_SUBR_CLEANPATH 27 264 #define DIF_SUBR_STRCHR 28 265 #define DIF_SUBR_STRRCHR 29 266 #define DIF_SUBR_STRSTR 30 267 #define DIF_SUBR_STRTOK 31 268 #define DIF_SUBR_SUBSTR 32 269 #define DIF_SUBR_INDEX 33 270 #define DIF_SUBR_RINDEX 34 271 272 #define DIF_SUBR_MAX 34 /* max subroutine value */ 273 274 typedef uint32_t dif_instr_t; 275 276 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 277 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 278 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 279 #define DIF_INSTR_RD(i) ((i) & 0xff) 280 #define DIF_INSTR_RS(i) ((i) & 0xff) 281 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 282 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 283 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 284 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 285 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 286 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 287 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 288 289 #define DIF_INSTR_FMT(op, r1, r2, d) \ 290 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 291 292 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 293 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 294 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 295 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 296 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 297 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 298 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 299 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 300 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 301 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 302 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 303 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 304 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 305 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 306 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 307 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 308 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 309 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 310 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 311 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 312 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 313 314 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 315 316 /* 317 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 318 * of variables, function and associative array arguments, and the return type 319 * for each DIF object (shown below). It contains a description of the type, 320 * its size in bytes, and a module identifier. 321 */ 322 typedef struct dtrace_diftype { 323 uint8_t dtdt_kind; /* type kind (see below) */ 324 uint8_t dtdt_ckind; /* type kind in CTF */ 325 uint8_t dtdt_flags; /* type flags (see below) */ 326 uint8_t dtdt_pad; /* reserved for future use */ 327 uint32_t dtdt_size; /* type size in bytes (unless string) */ 328 } dtrace_diftype_t; 329 330 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 331 #define DIF_TYPE_STRING 1 /* type is a D string */ 332 333 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 334 335 /* 336 * A DTrace Intermediate Format variable record is used to describe each of the 337 * variables referenced by a given DIF object. It contains an integer variable 338 * identifier along with variable scope and properties, as shown below. The 339 * size of this structure must be sizeof (int) aligned. 340 */ 341 typedef struct dtrace_difv { 342 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 343 uint32_t dtdv_id; /* variable reference identifier */ 344 uint8_t dtdv_kind; /* variable kind (see below) */ 345 uint8_t dtdv_scope; /* variable scope (see below) */ 346 uint16_t dtdv_flags; /* variable flags (see below) */ 347 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 348 } dtrace_difv_t; 349 350 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 351 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 352 353 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 354 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 355 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 356 357 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 358 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 359 360 /* 361 * DTrace Actions 362 * 363 * The upper byte determines the class of the action; the low bytes determines 364 * the specific action within that class. The classes of actions are as 365 * follows: 366 * 367 * [ no class ] <= May record process- or kernel-related data 368 * DTRACEACT_PROC <= Only records process-related data 369 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 370 * DTRACEACT_KERNEL <= Only records kernel-related data 371 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 372 * DTRACEACT_SPECULATIVE <= Speculation-related action 373 * DTRACEACT_AGGREGATION <= Aggregating action 374 */ 375 #define DTRACEACT_NONE 0 /* no action */ 376 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 377 #define DTRACEACT_EXIT 2 /* exit() action */ 378 #define DTRACEACT_PRINTF 3 /* printf() action */ 379 #define DTRACEACT_PRINTA 4 /* printa() action */ 380 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 381 382 #define DTRACEACT_PROC 0x0100 383 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 384 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 385 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 386 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 387 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 388 389 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 390 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 391 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 392 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 393 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 394 395 #define DTRACEACT_PROC_CONTROL 0x0300 396 397 #define DTRACEACT_KERNEL 0x0400 398 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 399 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 400 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 401 402 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 403 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 404 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 405 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 406 407 #define DTRACEACT_SPECULATIVE 0x0600 408 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 409 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 410 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 411 412 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 413 414 #define DTRACEACT_ISDESTRUCTIVE(x) \ 415 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 416 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 417 418 #define DTRACEACT_ISSPECULATIVE(x) \ 419 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 420 421 #define DTRACEACT_ISPRINTFLIKE(x) \ 422 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 423 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 424 425 /* 426 * DTrace Aggregating Actions 427 * 428 * These are functions f(x) for which the following is true: 429 * 430 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 431 * 432 * where x_n is a set of arbitrary data. Aggregating actions are in their own 433 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 434 * for easier processing of the aggregation argument and data payload for a few 435 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 436 */ 437 #define DTRACEACT_AGGREGATION 0x0700 438 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 439 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 440 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 441 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 442 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 443 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 444 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 445 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 446 447 #define DTRACEACT_ISAGG(x) \ 448 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 449 450 #define DTRACE_QUANTIZE_NBUCKETS \ 451 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 452 453 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 454 455 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 456 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 457 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 458 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 459 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 460 461 #define DTRACE_LQUANTIZE_STEPSHIFT 48 462 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 463 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 464 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 465 #define DTRACE_LQUANTIZE_BASESHIFT 0 466 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 467 468 #define DTRACE_LQUANTIZE_STEP(x) \ 469 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 470 DTRACE_LQUANTIZE_STEPSHIFT) 471 472 #define DTRACE_LQUANTIZE_LEVELS(x) \ 473 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 474 DTRACE_LQUANTIZE_LEVELSHIFT) 475 476 #define DTRACE_LQUANTIZE_BASE(x) \ 477 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 478 DTRACE_LQUANTIZE_BASESHIFT) 479 480 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 481 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 482 #define DTRACE_USTACK_ARG(x, y) \ 483 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 484 485 #ifndef _LP64 486 #ifndef _LITTLE_ENDIAN 487 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 488 #else 489 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 490 #endif 491 #else 492 #define DTRACE_PTR(type, name) type *name 493 #endif 494 495 /* 496 * DTrace Object Format (DOF) 497 * 498 * DTrace programs can be persistently encoded in the DOF format so that they 499 * may be embedded in other programs (for example, in an ELF file) or in the 500 * dtrace driver configuration file for use in anonymous tracing. The DOF 501 * format is versioned and extensible so that it can be revised and so that 502 * internal data structures can be modified or extended compatibly. All DOF 503 * structures use fixed-size types, so the 32-bit and 64-bit representations 504 * are identical and consumers can use either data model transparently. 505 * 506 * The file layout is structured as follows: 507 * 508 * +---------------+-------------------+----- ... ----+---- ... ------+ 509 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 510 * | (file header) | (section headers) | section data | section data | 511 * +---------------+-------------------+----- ... ----+---- ... ------+ 512 * |<------------ dof_hdr.dofh_loadsz --------------->| | 513 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 514 * 515 * The file header stores meta-data including a magic number, data model for 516 * the instrumentation, data encoding, and properties of the DIF code within. 517 * The header describes its own size and the size of the section headers. By 518 * convention, an array of section headers follows the file header, and then 519 * the data for all loadable sections and unloadable sections. This permits 520 * consumer code to easily download the headers and all loadable data into the 521 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 522 * 523 * The section headers describe the size, offset, alignment, and section type 524 * for each section. Sections are described using a set of #defines that tell 525 * the consumer what kind of data is expected. Sections can contain links to 526 * other sections by storing a dof_secidx_t, an index into the section header 527 * array, inside of the section data structures. The section header includes 528 * an entry size so that sections with data arrays can grow their structures. 529 * 530 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 531 * are represented themselves as a collection of related DOF sections. This 532 * permits us to change the set of sections associated with a DIFO over time, 533 * and also permits us to encode DIFOs that contain different sets of sections. 534 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 535 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 536 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 537 * 538 * This loose coupling of the file structure (header and sections) to the 539 * structure of the DTrace program itself (ECB descriptions, action 540 * descriptions, and DIFOs) permits activities such as relocation processing 541 * to occur in a single pass without having to understand D program structure. 542 * 543 * Finally, strings are always stored in ELF-style string tables along with a 544 * string table section index and string table offset. Therefore strings in 545 * DOF are always arbitrary-length and not bound to the current implementation. 546 */ 547 548 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 549 550 typedef struct dof_hdr { 551 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 552 uint32_t dofh_flags; /* file attribute flags (if any) */ 553 uint32_t dofh_hdrsize; /* size of file header in bytes */ 554 uint32_t dofh_secsize; /* size of section header in bytes */ 555 uint32_t dofh_secnum; /* number of section headers */ 556 uint64_t dofh_secoff; /* file offset of section headers */ 557 uint64_t dofh_loadsz; /* file size of loadable portion */ 558 uint64_t dofh_filesz; /* file size of entire DOF file */ 559 uint64_t dofh_pad; /* reserved for future use */ 560 } dof_hdr_t; 561 562 #define DOF_ID_MAG0 0 /* first byte of magic number */ 563 #define DOF_ID_MAG1 1 /* second byte of magic number */ 564 #define DOF_ID_MAG2 2 /* third byte of magic number */ 565 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 566 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 567 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 568 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 569 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 570 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 571 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 572 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 573 574 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 575 #define DOF_MAG_MAG1 'D' 576 #define DOF_MAG_MAG2 'O' 577 #define DOF_MAG_MAG3 'F' 578 579 #define DOF_MAG_STRING "\177DOF" 580 #define DOF_MAG_STRLEN 4 581 582 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 583 #define DOF_MODEL_ILP32 1 584 #define DOF_MODEL_LP64 2 585 586 #ifdef _LP64 587 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 588 #else 589 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 590 #endif 591 592 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 593 #define DOF_ENCODE_LSB 1 594 #define DOF_ENCODE_MSB 2 595 596 #ifdef _BIG_ENDIAN 597 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 598 #else 599 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 600 #endif 601 602 #define DOF_VERSION_1 1 /* DOF_ID_VERSION */ 603 #define DOF_VERSION DOF_VERSION_1 604 605 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 606 607 typedef uint32_t dof_secidx_t; /* section header table index type */ 608 typedef uint32_t dof_stridx_t; /* string table index type */ 609 610 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 611 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 612 613 typedef struct dof_sec { 614 uint32_t dofs_type; /* section type (see below) */ 615 uint32_t dofs_align; /* section data memory alignment */ 616 uint32_t dofs_flags; /* section flags (if any) */ 617 uint32_t dofs_entsize; /* size of section entry (if table) */ 618 uint64_t dofs_offset; /* offset of section data within file */ 619 uint64_t dofs_size; /* size of section data in bytes */ 620 } dof_sec_t; 621 622 #define DOF_SECT_NONE 0 /* null section */ 623 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 624 #define DOF_SECT_SOURCE 2 /* D program source code */ 625 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 626 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 627 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 628 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 629 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 630 #define DOF_SECT_STRTAB 8 /* string table */ 631 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 632 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 633 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 634 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 635 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 636 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 637 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 638 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 639 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 640 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 641 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 642 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 643 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 644 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 645 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 646 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 647 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 648 649 #define DOF_SECF_LOAD 1 /* section should be loaded */ 650 651 typedef struct dof_ecbdesc { 652 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 653 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 654 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 655 uint32_t dofe_pad; /* reserved for future use */ 656 uint64_t dofe_uarg; /* user-supplied library argument */ 657 } dof_ecbdesc_t; 658 659 typedef struct dof_probedesc { 660 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 661 dof_stridx_t dofp_provider; /* provider string */ 662 dof_stridx_t dofp_mod; /* module string */ 663 dof_stridx_t dofp_func; /* function string */ 664 dof_stridx_t dofp_name; /* name string */ 665 uint32_t dofp_id; /* probe identifier (or zero) */ 666 } dof_probedesc_t; 667 668 typedef struct dof_actdesc { 669 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 670 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 671 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 672 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 673 uint64_t dofa_arg; /* kind-specific argument */ 674 uint64_t dofa_uarg; /* user-supplied argument */ 675 } dof_actdesc_t; 676 677 typedef struct dof_difohdr { 678 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 679 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 680 } dof_difohdr_t; 681 682 typedef struct dof_relohdr { 683 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 684 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 685 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 686 } dof_relohdr_t; 687 688 typedef struct dof_relodesc { 689 dof_stridx_t dofr_name; /* string name of relocation symbol */ 690 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 691 uint64_t dofr_offset; /* byte offset for relocation */ 692 uint64_t dofr_data; /* additional type-specific data */ 693 } dof_relodesc_t; 694 695 #define DOF_RELO_NONE 0 /* empty relocation entry */ 696 #define DOF_RELO_SETX 1 /* relocate setx value */ 697 698 typedef struct dof_optdesc { 699 uint32_t dofo_option; /* option identifier */ 700 dof_secidx_t dofo_strtab; /* string table, if string option */ 701 uint64_t dofo_value; /* option value or string index */ 702 } dof_optdesc_t; 703 704 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 705 706 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 707 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 708 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 709 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 710 711 typedef struct dof_provider { 712 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 713 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 714 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 715 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 716 dof_stridx_t dofpv_name; /* provider name string */ 717 dof_attr_t dofpv_provattr; /* provider attributes */ 718 dof_attr_t dofpv_modattr; /* module attributes */ 719 dof_attr_t dofpv_funcattr; /* function attributes */ 720 dof_attr_t dofpv_nameattr; /* name attributes */ 721 dof_attr_t dofpv_argsattr; /* args attributes */ 722 } dof_provider_t; 723 724 typedef struct dof_probe { 725 uint64_t dofpr_addr; /* probe base address or offset */ 726 dof_stridx_t dofpr_func; /* probe function string */ 727 dof_stridx_t dofpr_name; /* probe name string */ 728 dof_stridx_t dofpr_nargv; /* native argument type strings */ 729 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 730 uint32_t dofpr_argidx; /* index of first argument mapping */ 731 uint32_t dofpr_offidx; /* index of first offset entry */ 732 uint8_t dofpr_nargc; /* native argument count */ 733 uint8_t dofpr_xargc; /* translated argument count */ 734 uint16_t dofpr_noffs; /* number of offset entries for probe */ 735 uint32_t dofpr_pad; /* reserved for future use */ 736 } dof_probe_t; 737 738 typedef struct dof_xlator { 739 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 740 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 741 dof_stridx_t dofxl_argv; /* input parameter type strings */ 742 uint32_t dofxl_argc; /* input parameter list length */ 743 dof_stridx_t dofxl_type; /* output type string name */ 744 dof_attr_t dofxl_attr; /* output stability attributes */ 745 } dof_xlator_t; 746 747 typedef struct dof_xlmember { 748 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 749 dof_stridx_t dofxm_name; /* member name */ 750 dtrace_diftype_t dofxm_type; /* member type */ 751 } dof_xlmember_t; 752 753 typedef struct dof_xlref { 754 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 755 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 756 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 757 } dof_xlref_t; 758 759 /* 760 * DTrace Intermediate Format Object (DIFO) 761 * 762 * A DIFO is used to store the compiled DIF for a D expression, its return 763 * type, and its string and variable tables. The string table is a single 764 * buffer of character data into which sets instructions and variable 765 * references can reference strings using a byte offset. The variable table 766 * is an array of dtrace_difv_t structures that describe the name and type of 767 * each variable and the id used in the DIF code. This structure is described 768 * above in the DIF section of this header file. The DIFO is used at both 769 * user-level (in the library) and in the kernel, but the structure is never 770 * passed between the two: the DOF structures form the only interface. As a 771 * result, the definition can change depending on the presence of _KERNEL. 772 */ 773 typedef struct dtrace_difo { 774 dif_instr_t *dtdo_buf; /* instruction buffer */ 775 uint64_t *dtdo_inttab; /* integer table (optional) */ 776 char *dtdo_strtab; /* string table (optional) */ 777 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 778 uint_t dtdo_len; /* length of instruction buffer */ 779 uint_t dtdo_intlen; /* length of integer table */ 780 uint_t dtdo_strlen; /* length of string table */ 781 uint_t dtdo_varlen; /* length of variable table */ 782 dtrace_diftype_t dtdo_rtype; /* return type */ 783 uint_t dtdo_refcnt; /* owner reference count */ 784 uint_t dtdo_destructive; /* invokes destructive subroutines */ 785 #ifndef _KERNEL 786 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 787 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 788 struct dt_node **dtdo_xlmtab; /* translator references */ 789 uint_t dtdo_krelen; /* length of krelo table */ 790 uint_t dtdo_urelen; /* length of urelo table */ 791 uint_t dtdo_xlmlen; /* length of translator table */ 792 #endif 793 } dtrace_difo_t; 794 795 /* 796 * DTrace Enabling Description Structures 797 * 798 * When DTrace is tracking the description of a DTrace enabling entity (probe, 799 * predicate, action, ECB, record, etc.), it does so in a description 800 * structure. These structures all end in "desc", and are used at both 801 * user-level and in the kernel -- but (with the exception of 802 * dtrace_probedesc_t) they are never passed between them. Typically, 803 * user-level will use the description structures when assembling an enabling. 804 * It will then distill those description structures into a DOF object (see 805 * above), and send it into the kernel. The kernel will again use the 806 * description structures to create a description of the enabling as it reads 807 * the DOF. When the description is complete, the enabling will be actually 808 * created -- turning it into the structures that represent the enabling 809 * instead of merely describing it. Not surprisingly, the description 810 * structures bear a strong resemblance to the DOF structures that act as their 811 * conduit. 812 */ 813 struct dtrace_predicate; 814 815 typedef struct dtrace_probedesc { 816 dtrace_id_t dtpd_id; /* probe identifier */ 817 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 818 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 819 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 820 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 821 } dtrace_probedesc_t; 822 823 typedef struct dtrace_repldesc { 824 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 825 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 826 } dtrace_repldesc_t; 827 828 typedef struct dtrace_preddesc { 829 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 830 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 831 } dtrace_preddesc_t; 832 833 typedef struct dtrace_actdesc { 834 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 835 struct dtrace_actdesc *dtad_next; /* next action */ 836 dtrace_actkind_t dtad_kind; /* kind of action */ 837 uint32_t dtad_ntuple; /* number in tuple */ 838 uint64_t dtad_arg; /* action argument */ 839 uint64_t dtad_uarg; /* user argument */ 840 int dtad_refcnt; /* reference count */ 841 } dtrace_actdesc_t; 842 843 typedef struct dtrace_ecbdesc { 844 dtrace_actdesc_t *dted_action; /* action description(s) */ 845 dtrace_preddesc_t dted_pred; /* predicate description */ 846 dtrace_probedesc_t dted_probe; /* probe description */ 847 uint64_t dted_uarg; /* library argument */ 848 int dted_refcnt; /* reference count */ 849 } dtrace_ecbdesc_t; 850 851 /* 852 * DTrace Metadata Description Structures 853 * 854 * DTrace separates the trace data stream from the metadata stream. The only 855 * metadata tokens placed in the data stream are enabled probe identifiers 856 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order 857 * to determine the structure of the data, DTrace consumers pass the token to 858 * the kernel, and receive in return a corresponding description of the enabled 859 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 860 * dtrace_aggdesc structure). Both of these structures are expressed in terms 861 * of record descriptions (via the dtrace_recdesc structure) that describe the 862 * exact structure of the data. Some record descriptions may also contain a 863 * format identifier; this additional bit of metadata can be retrieved from the 864 * kernel, for which a format description is returned via the dtrace_fmtdesc 865 * structure. Note that all four of these structures must be bitness-neutral 866 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 867 */ 868 typedef struct dtrace_recdesc { 869 dtrace_actkind_t dtrd_action; /* kind of action */ 870 uint32_t dtrd_size; /* size of record */ 871 uint32_t dtrd_offset; /* offset in ECB's data */ 872 uint16_t dtrd_alignment; /* required alignment */ 873 uint16_t dtrd_format; /* format, if any */ 874 uint64_t dtrd_arg; /* action argument */ 875 uint64_t dtrd_uarg; /* user argument */ 876 } dtrace_recdesc_t; 877 878 typedef struct dtrace_eprobedesc { 879 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 880 dtrace_id_t dtepd_probeid; /* probe ID */ 881 uint64_t dtepd_uarg; /* library argument */ 882 uint32_t dtepd_size; /* total size */ 883 int dtepd_nrecs; /* number of records */ 884 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 885 } dtrace_eprobedesc_t; 886 887 typedef struct dtrace_aggdesc { 888 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 889 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 890 int dtagd_flags; /* not filled in by kernel */ 891 dtrace_aggid_t dtagd_id; /* aggregation ID */ 892 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 893 uint32_t dtagd_size; /* size in bytes */ 894 int dtagd_nrecs; /* number of records */ 895 uint32_t dtagd_pad; /* explicit padding */ 896 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 897 } dtrace_aggdesc_t; 898 899 typedef struct dtrace_fmtdesc { 900 DTRACE_PTR(char, dtfd_string); /* format string */ 901 int dtfd_length; /* length of format string */ 902 uint16_t dtfd_format; /* format identifier */ 903 } dtrace_fmtdesc_t; 904 905 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 906 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 907 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 908 909 #define DTRACE_SIZEOF_AGGDESC(desc) \ 910 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 911 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 912 913 /* 914 * DTrace Option Interface 915 * 916 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 917 * in a DOF image. The dof_optdesc structure contains an option identifier and 918 * an option value. The valid option identifiers are found below; the mapping 919 * between option identifiers and option identifying strings is maintained at 920 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 921 * following are potentially valid option values: all positive integers, zero 922 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 923 * predefined tokens as their values; these are defined with 924 * DTRACEOPT_{option}_{token}. 925 */ 926 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 927 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 928 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 929 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 930 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 931 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 932 #define DTRACEOPT_STRSIZE 6 /* string size */ 933 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 934 #define DTRACEOPT_CPU 8 /* CPU to trace */ 935 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 936 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 937 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 938 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 939 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 940 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 941 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 942 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 943 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 944 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 945 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 946 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 947 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 948 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 949 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 950 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 951 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 952 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 953 #define DTRACEOPT_MAX 27 /* number of options */ 954 955 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 956 957 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 958 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 959 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 960 961 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 962 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 963 964 /* 965 * DTrace Buffer Interface 966 * 967 * In order to get a snapshot of the principal or aggregation buffer, 968 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 969 * structure. This describes which CPU user-level is interested in, and 970 * where user-level wishes the kernel to snapshot the buffer to (the 971 * dtbd_data field). The kernel uses the same structure to pass back some 972 * information regarding the buffer: the size of data actually copied out, the 973 * number of drops, the number of errors, and the offset of the oldest record. 974 * If the buffer policy is a "switch" policy, taking a snapshot of the 975 * principal buffer has the additional effect of switching the active and 976 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 977 * the additional effect of switching the active and inactive buffers. 978 */ 979 typedef struct dtrace_bufdesc { 980 uint64_t dtbd_size; /* size of buffer */ 981 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 982 uint32_t dtbd_errors; /* number of errors */ 983 uint64_t dtbd_drops; /* number of drops */ 984 DTRACE_PTR(char, dtbd_data); /* data */ 985 uint64_t dtbd_oldest; /* offset of oldest record */ 986 } dtrace_bufdesc_t; 987 988 /* 989 * DTrace Status 990 * 991 * The status of DTrace is relayed via the dtrace_status structure. This 992 * structure contains members to count drops other than the capacity drops 993 * available via the buffer interface (see above). This consists of dynamic 994 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 995 * speculative drops (including capacity speculative drops, drops due to busy 996 * speculative buffers and drops due to unavailable speculative buffers). 997 * Additionally, the status structure contains a field to indicate the number 998 * of "fill"-policy buffers have been filled and a boolean field to indicate 999 * that exit() has been called. If the dtst_exiting field is non-zero, no 1000 * further data will be generated until tracing is stopped (at which time any 1001 * enablings of the END action will be processed); if user-level sees that 1002 * this field is non-zero, tracing should be stopped as soon as possible. 1003 */ 1004 typedef struct dtrace_status { 1005 uint64_t dtst_dyndrops; /* dynamic drops */ 1006 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1007 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1008 uint64_t dtst_specdrops; /* speculative drops */ 1009 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1010 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1011 uint64_t dtst_errors; /* total errors */ 1012 uint64_t dtst_filled; /* number of filled bufs */ 1013 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1014 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1015 char dtst_killed; /* non-zero if killed */ 1016 char dtst_exiting; /* non-zero if exit() called */ 1017 char dtst_pad[6]; /* pad out to 64-bit align */ 1018 } dtrace_status_t; 1019 1020 /* 1021 * DTrace Configuration 1022 * 1023 * User-level may need to understand some elements of the kernel DTrace 1024 * configuration in order to generate correct DIF. This information is 1025 * conveyed via the dtrace_conf structure. 1026 */ 1027 typedef struct dtrace_conf { 1028 uint_t dtc_difversion; /* supported DIF version */ 1029 uint_t dtc_difintregs; /* # of DIF integer registers */ 1030 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1031 uint_t dtc_ctfmodel; /* CTF data model */ 1032 uint_t dtc_pad[8]; /* reserved for future use */ 1033 } dtrace_conf_t; 1034 1035 /* 1036 * DTrace Faults 1037 * 1038 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1039 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1040 * postprocessing at user-level. Probe processing faults induce an ERROR 1041 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1042 * the error condition using thse symbolic labels. 1043 */ 1044 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1045 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1046 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1047 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1048 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1049 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1050 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1051 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1052 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1053 1054 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1055 1056 /* 1057 * DTrace Argument Types 1058 * 1059 * Because it would waste both space and time, argument types do not reside 1060 * with the probe. In order to determine argument types for args[X] 1061 * variables, the D compiler queries for argument types on a probe-by-probe 1062 * basis. (This optimizes for the common case that arguments are either not 1063 * used or used in an untyped fashion.) Typed arguments are specified with a 1064 * string of the type name in the dtragd_native member of the argument 1065 * description structure. Typed arguments may be further translated to types 1066 * of greater stability; the provider indicates such a translated argument by 1067 * filling in the dtargd_xlate member with the string of the translated type. 1068 * Finally, the provider may indicate which argument value a given argument 1069 * maps to by setting the dtargd_mapping member -- allowing a single argument 1070 * to map to multiple args[X] variables. 1071 */ 1072 typedef struct dtrace_argdesc { 1073 dtrace_id_t dtargd_id; /* probe identifier */ 1074 int dtargd_ndx; /* arg number (-1 iff none) */ 1075 int dtargd_mapping; /* value mapping */ 1076 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1077 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1078 } dtrace_argdesc_t; 1079 1080 /* 1081 * DTrace Stability Attributes 1082 * 1083 * Each DTrace provider advertises the name and data stability of each of its 1084 * probe description components, as well as its architectural dependencies. 1085 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1086 * order to compute the properties of an input program and report them. 1087 */ 1088 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1089 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1090 1091 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1092 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1093 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1094 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1095 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1096 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1097 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1098 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1099 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1100 1101 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1102 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1103 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1104 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1105 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1106 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1107 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1108 1109 #define DTRACE_PRIV_NONE 0x0000 1110 #define DTRACE_PRIV_KERNEL 0x0001 1111 #define DTRACE_PRIV_USER 0x0002 1112 #define DTRACE_PRIV_PROC 0x0004 1113 #define DTRACE_PRIV_OWNER 0x0008 1114 #define DTRACE_PRIV_ZONEOWNER 0x0010 1115 1116 #define DTRACE_PRIV_ALL \ 1117 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1118 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1119 1120 typedef struct dtrace_ppriv { 1121 uint32_t dtpp_flags; /* privilege flags */ 1122 uid_t dtpp_uid; /* user ID */ 1123 zoneid_t dtpp_zoneid; /* zone ID */ 1124 } dtrace_ppriv_t; 1125 1126 typedef struct dtrace_attribute { 1127 dtrace_stability_t dtat_name; /* entity name stability */ 1128 dtrace_stability_t dtat_data; /* entity data stability */ 1129 dtrace_class_t dtat_class; /* entity data dependency */ 1130 } dtrace_attribute_t; 1131 1132 typedef struct dtrace_pattr { 1133 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1134 dtrace_attribute_t dtpa_mod; /* module attributes */ 1135 dtrace_attribute_t dtpa_func; /* function attributes */ 1136 dtrace_attribute_t dtpa_name; /* name attributes */ 1137 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1138 } dtrace_pattr_t; 1139 1140 typedef struct dtrace_providerdesc { 1141 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1142 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1143 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1144 } dtrace_providerdesc_t; 1145 1146 /* 1147 * DTrace Pseudodevice Interface 1148 * 1149 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1150 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1151 * DTrace. 1152 */ 1153 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1154 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1155 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1156 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1157 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1158 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1159 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1160 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1161 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1162 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1163 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1164 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1165 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1166 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1167 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1168 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1169 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1170 1171 /* 1172 * DTrace Helpers 1173 * 1174 * In general, DTrace establishes probes in processes and takes actions on 1175 * processes without knowing their specific user-level structures. Instead of 1176 * existing in the framework, process-specific knowledge is contained by the 1177 * enabling D program -- which can apply process-specific knowledge by making 1178 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1179 * operate on user-level data. However, there may exist some specific probes 1180 * of particular semantic relevance that the application developer may wish to 1181 * explicitly export. For example, an application may wish to export a probe 1182 * at the point that it begins and ends certain well-defined transactions. In 1183 * addition to providing probes, programs may wish to offer assistance for 1184 * certain actions. For example, in highly dynamic environments (e.g., Java), 1185 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1186 * names (the translation from instruction addresses to corresponding symbol 1187 * names may only be possible in situ); these environments may wish to define 1188 * a series of actions to be applied in situ to obtain a meaningful stack 1189 * trace. 1190 * 1191 * These two mechanisms -- user-level statically defined tracing and assisting 1192 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1193 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1194 * providers, probes and their arguments. If a helper wishes to provide 1195 * action assistance, probe descriptions and corresponding DIF actions may be 1196 * specified in the helper DOF. For such helper actions, however, the probe 1197 * description describes the specific helper: all DTrace helpers have the 1198 * provider name "dtrace" and the module name "helper", and the name of the 1199 * helper is contained in the function name (for example, the ustack() helper 1200 * is named "ustack"). Any helper-specific name may be contained in the name 1201 * (for example, if a helper were to have a constructor, it might be named 1202 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1203 * action that they are helping is taken. Helper actions may only return DIF 1204 * expressions, and may only call the following subroutines: 1205 * 1206 * alloca() <= Allocates memory out of the consumer's scratch space 1207 * bcopy() <= Copies memory to scratch space 1208 * copyin() <= Copies memory from user-level into consumer's scratch 1209 * copyinto() <= Copies memory into a specific location in scratch 1210 * copyinstr() <= Copies a string into a specific location in scratch 1211 * 1212 * Helper actions may only access the following built-in variables: 1213 * 1214 * curthread <= Current kthread_t pointer 1215 * tid <= Current thread identifier 1216 * pid <= Current process identifier 1217 * execname <= Current executable name 1218 * 1219 * Helper actions may not manipulate or allocate dynamic variables, but they 1220 * may have clause-local and statically-allocated global variables. The 1221 * helper action variable state is specific to the helper action -- variables 1222 * used by the helper action may not be accessed outside of the helper 1223 * action, and the helper action may not access variables that like outside 1224 * of it. Helper actions may not load from kernel memory at-large; they are 1225 * restricting to loading current user state (via copyin() and variants) and 1226 * scratch space. As with probe enablings, helper actions are executed in 1227 * program order. The result of the helper action is the result of the last 1228 * executing helper expression. 1229 * 1230 * Helpers -- composed of either providers/probes or probes/actions (or both) 1231 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1232 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1233 * encapsulates the name and base address of the user-level library or 1234 * executable publishing the helpers and probes as well as the DOF that 1235 * contains the definitions of those helpers and probes. 1236 * 1237 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1238 * helpers and should no longer be used. No other ioctls are valid on the 1239 * helper minor node. 1240 */ 1241 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1242 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1243 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1244 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1245 1246 typedef struct dof_helper { 1247 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1248 uint64_t dofhp_addr; /* base address of object */ 1249 uint64_t dofhp_dof; /* address of helper DOF */ 1250 } dof_helper_t; 1251 1252 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1253 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1254 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1255 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1256 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1257 1258 #ifdef _KERNEL 1259 1260 /* 1261 * DTrace Provider API 1262 * 1263 * The following functions are implemented by the DTrace framework and are 1264 * used to implement separate in-kernel DTrace providers. Common functions 1265 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1266 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1267 * 1268 * The provider API has two halves: the API that the providers consume from 1269 * DTrace, and the API that providers make available to DTrace. 1270 * 1271 * 1 Framework-to-Provider API 1272 * 1273 * 1.1 Overview 1274 * 1275 * The Framework-to-Provider API is represented by the dtrace_pops structure 1276 * that the provider passes to the framework when registering itself. This 1277 * structure consists of the following members: 1278 * 1279 * dtps_provide() <-- Provide all probes, all modules 1280 * dtps_provide_module() <-- Provide all probes in specified module 1281 * dtps_enable() <-- Enable specified probe 1282 * dtps_disable() <-- Disable specified probe 1283 * dtps_suspend() <-- Suspend specified probe 1284 * dtps_resume() <-- Resume specified probe 1285 * dtps_getargdesc() <-- Get the argument description for args[X] 1286 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1287 * dtps_usermode() <-- Find out if the probe was fired in user mode 1288 * dtps_destroy() <-- Destroy all state associated with this probe 1289 * 1290 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1291 * 1292 * 1.2.1 Overview 1293 * 1294 * Called to indicate that the provider should provide all probes. If the 1295 * specified description is non-NULL, dtps_provide() is being called because 1296 * no probe matched a specified probe -- if the provider has the ability to 1297 * create custom probes, it may wish to create a probe that matches the 1298 * specified description. 1299 * 1300 * 1.2.2 Arguments and notes 1301 * 1302 * The first argument is the cookie as passed to dtrace_register(). The 1303 * second argument is a pointer to a probe description that the provider may 1304 * wish to consider when creating custom probes. The provider is expected to 1305 * call back into the DTrace framework via dtrace_probe_create() to create 1306 * any necessary probes. dtps_provide() may be called even if the provider 1307 * has made available all probes; the provider should check the return value 1308 * of dtrace_probe_create() to handle this case. Note that the provider need 1309 * not implement both dtps_provide() and dtps_provide_module(); see 1310 * "Arguments and Notes" for dtrace_register(), below. 1311 * 1312 * 1.2.3 Return value 1313 * 1314 * None. 1315 * 1316 * 1.2.4 Caller's context 1317 * 1318 * dtps_provide() is typically called from open() or ioctl() context, but may 1319 * be called from other contexts as well. The DTrace framework is locked in 1320 * such a way that providers may not register or unregister. This means that 1321 * the provider may not call any DTrace API that affects its registration with 1322 * the framework, including dtrace_register(), dtrace_unregister(), 1323 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1324 * that the provider may (and indeed, is expected to) call probe-related 1325 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1326 * and dtrace_probe_arg(). 1327 * 1328 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) 1329 * 1330 * 1.3.1 Overview 1331 * 1332 * Called to indicate that the provider should provide all probes in the 1333 * specified module. 1334 * 1335 * 1.3.2 Arguments and notes 1336 * 1337 * The first argument is the cookie as passed to dtrace_register(). The 1338 * second argument is a pointer to a modctl structure that indicates the 1339 * module for which probes should be created. 1340 * 1341 * 1.3.3 Return value 1342 * 1343 * None. 1344 * 1345 * 1.3.4 Caller's context 1346 * 1347 * dtps_provide_module() may be called from open() or ioctl() context, but 1348 * may also be called from a module loading context. mod_lock is held, and 1349 * the DTrace framework is locked in such a way that providers may not 1350 * register or unregister. This means that the provider may not call any 1351 * DTrace API that affects its registration with the framework, including 1352 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1353 * dtrace_condense(). However, the context is such that the provider may (and 1354 * indeed, is expected to) call probe-related DTrace routines, including 1355 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1356 * that the provider need not implement both dtps_provide() and 1357 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1358 * below. 1359 * 1360 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) 1361 * 1362 * 1.4.1 Overview 1363 * 1364 * Called to enable the specified probe. 1365 * 1366 * 1.4.2 Arguments and notes 1367 * 1368 * The first argument is the cookie as passed to dtrace_register(). The 1369 * second argument is the identifier of the probe to be enabled. The third 1370 * argument is the probe argument as passed to dtrace_probe_create(). 1371 * dtps_enable() will be called when a probe transitions from not being 1372 * enabled at all to having one or more ECB. The number of ECBs associated 1373 * with the probe may change without subsequent calls into the provider. 1374 * When the number of ECBs drops to zero, the provider will be explicitly 1375 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1376 * be called for a probe identifier that hasn't been explicitly enabled via 1377 * dtps_enable(). 1378 * 1379 * 1.4.3 Return value 1380 * 1381 * None. 1382 * 1383 * 1.4.4 Caller's context 1384 * 1385 * The DTrace framework is locked in such a way that it may not be called 1386 * back into at all. cpu_lock is held. mod_lock is not held and may not 1387 * be acquired. 1388 * 1389 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1390 * 1391 * 1.5.1 Overview 1392 * 1393 * Called to disable the specified probe. 1394 * 1395 * 1.5.2 Arguments and notes 1396 * 1397 * The first argument is the cookie as passed to dtrace_register(). The 1398 * second argument is the identifier of the probe to be disabled. The third 1399 * argument is the probe argument as passed to dtrace_probe_create(). 1400 * dtps_disable() will be called when a probe transitions from being enabled 1401 * to having zero ECBs. dtrace_probe() should never be called for a probe 1402 * identifier that has been explicitly enabled via dtps_disable(). 1403 * 1404 * 1.5.3 Return value 1405 * 1406 * None. 1407 * 1408 * 1.5.4 Caller's context 1409 * 1410 * The DTrace framework is locked in such a way that it may not be called 1411 * back into at all. cpu_lock is held. mod_lock is not held and may not 1412 * be acquired. 1413 * 1414 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1415 * 1416 * 1.6.1 Overview 1417 * 1418 * Called to suspend the specified enabled probe. This entry point is for 1419 * providers that may need to suspend some or all of their probes when CPUs 1420 * are being powered on or when the boot monitor is being entered for a 1421 * prolonged period of time. 1422 * 1423 * 1.6.2 Arguments and notes 1424 * 1425 * The first argument is the cookie as passed to dtrace_register(). The 1426 * second argument is the identifier of the probe to be suspended. The 1427 * third argument is the probe argument as passed to dtrace_probe_create(). 1428 * dtps_suspend will only be called on an enabled probe. Providers that 1429 * provide a dtps_suspend entry point will want to take roughly the action 1430 * that it takes for dtps_disable. 1431 * 1432 * 1.6.3 Return value 1433 * 1434 * None. 1435 * 1436 * 1.6.4 Caller's context 1437 * 1438 * Interrupts are disabled. The DTrace framework is in a state such that the 1439 * specified probe cannot be disabled or destroyed for the duration of 1440 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1441 * little latitude; the provider is expected to do no more than a store to 1442 * memory. 1443 * 1444 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1445 * 1446 * 1.7.1 Overview 1447 * 1448 * Called to resume the specified enabled probe. This entry point is for 1449 * providers that may need to resume some or all of their probes after the 1450 * completion of an event that induced a call to dtps_suspend(). 1451 * 1452 * 1.7.2 Arguments and notes 1453 * 1454 * The first argument is the cookie as passed to dtrace_register(). The 1455 * second argument is the identifier of the probe to be resumed. The 1456 * third argument is the probe argument as passed to dtrace_probe_create(). 1457 * dtps_resume will only be called on an enabled probe. Providers that 1458 * provide a dtps_resume entry point will want to take roughly the action 1459 * that it takes for dtps_enable. 1460 * 1461 * 1.7.3 Return value 1462 * 1463 * None. 1464 * 1465 * 1.7.4 Caller's context 1466 * 1467 * Interrupts are disabled. The DTrace framework is in a state such that the 1468 * specified probe cannot be disabled or destroyed for the duration of 1469 * dtps_resume(). As interrupts are disabled, the provider is afforded 1470 * little latitude; the provider is expected to do no more than a store to 1471 * memory. 1472 * 1473 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1474 * dtrace_argdesc_t *desc) 1475 * 1476 * 1.8.1 Overview 1477 * 1478 * Called to retrieve the argument description for an args[X] variable. 1479 * 1480 * 1.8.2 Arguments and notes 1481 * 1482 * The first argument is the cookie as passed to dtrace_register(). The 1483 * second argument is the identifier of the current probe. The third 1484 * argument is the probe argument as passed to dtrace_probe_create(). The 1485 * fourth argument is a pointer to the argument description. This 1486 * description is both an input and output parameter: it contains the 1487 * index of the desired argument in the dtargd_ndx field, and expects 1488 * the other fields to be filled in upon return. If there is no argument 1489 * corresponding to the specified index, the dtargd_ndx field should be set 1490 * to DTRACE_ARGNONE. 1491 * 1492 * 1.8.3 Return value 1493 * 1494 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1495 * members of the dtrace_argdesc_t structure are all output values. 1496 * 1497 * 1.8.4 Caller's context 1498 * 1499 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1500 * the DTrace framework is locked in such a way that providers may not 1501 * register or unregister. This means that the provider may not call any 1502 * DTrace API that affects its registration with the framework, including 1503 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1504 * dtrace_condense(). 1505 * 1506 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1507 * int argno, int aframes) 1508 * 1509 * 1.9.1 Overview 1510 * 1511 * Called to retrieve a value for an argX or args[X] variable. 1512 * 1513 * 1.9.2 Arguments and notes 1514 * 1515 * The first argument is the cookie as passed to dtrace_register(). The 1516 * second argument is the identifier of the current probe. The third 1517 * argument is the probe argument as passed to dtrace_probe_create(). The 1518 * fourth argument is the number of the argument (the X in the example in 1519 * 1.9.1). The fifth argument is the number of stack frames that were used 1520 * to get from the actual place in the code that fired the probe to 1521 * dtrace_probe() itself, the so-called artificial frames. This argument may 1522 * be used to descend an appropriate number of frames to find the correct 1523 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1524 * function is used. 1525 * 1526 * 1.9.3 Return value 1527 * 1528 * The value of the argument. 1529 * 1530 * 1.9.4 Caller's context 1531 * 1532 * This is called from within dtrace_probe() meaning that interrupts 1533 * are disabled. No locks should be taken within this entry point. 1534 * 1535 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1536 * 1537 * 1.10.1 Overview 1538 * 1539 * Called to determine if the probe was fired in a user context. 1540 * 1541 * 1.10.2 Arguments and notes 1542 * 1543 * The first argument is the cookie as passed to dtrace_register(). The 1544 * second argument is the identifier of the current probe. The third 1545 * argument is the probe argument as passed to dtrace_probe_create(). This 1546 * entry point must not be left NULL for providers whose probes allow for 1547 * mixed mode tracing, that is to say those probes that can fire during 1548 * kernel- _or_ user-mode execution 1549 * 1550 * 1.10.3 Return value 1551 * 1552 * A boolean value. 1553 * 1554 * 1.10.4 Caller's context 1555 * 1556 * This is called from within dtrace_probe() meaning that interrupts 1557 * are disabled. No locks should be taken within this entry point. 1558 * 1559 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1560 * 1561 * 1.11.1 Overview 1562 * 1563 * Called to destroy the specified probe. 1564 * 1565 * 1.11.2 Arguments and notes 1566 * 1567 * The first argument is the cookie as passed to dtrace_register(). The 1568 * second argument is the identifier of the probe to be destroyed. The third 1569 * argument is the probe argument as passed to dtrace_probe_create(). The 1570 * provider should free all state associated with the probe. The framework 1571 * guarantees that dtps_destroy() is only called for probes that have either 1572 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1573 * Once dtps_disable() has been called for a probe, no further call will be 1574 * made specifying the probe. 1575 * 1576 * 1.11.3 Return value 1577 * 1578 * None. 1579 * 1580 * 1.11.4 Caller's context 1581 * 1582 * The DTrace framework is locked in such a way that it may not be called 1583 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1584 * acquired. 1585 * 1586 * 1587 * 2 Provider-to-Framework API 1588 * 1589 * 2.1 Overview 1590 * 1591 * The Provider-to-Framework API provides the mechanism for the provider to 1592 * register itself with the DTrace framework, to create probes, to lookup 1593 * probes and (most importantly) to fire probes. The Provider-to-Framework 1594 * consists of: 1595 * 1596 * dtrace_register() <-- Register a provider with the DTrace framework 1597 * dtrace_unregister() <-- Remove a provider's DTrace registration 1598 * dtrace_invalidate() <-- Invalidate the specified provider 1599 * dtrace_condense() <-- Remove a provider's unenabled probes 1600 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1601 * dtrace_probe_create() <-- Create a DTrace probe 1602 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1603 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1604 * dtrace_probe() <-- Fire the specified probe 1605 * 1606 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1607 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1608 * dtrace_provider_id_t *idp) 1609 * 1610 * 2.2.1 Overview 1611 * 1612 * dtrace_register() registers the calling provider with the DTrace 1613 * framework. It should generally be called by DTrace providers in their 1614 * attach(9E) entry point. 1615 * 1616 * 2.2.2 Arguments and Notes 1617 * 1618 * The first argument is the name of the provider. The second argument is a 1619 * pointer to the stability attributes for the provider. The third argument 1620 * is the privilege flags for the provider, and must be some combination of: 1621 * 1622 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1623 * 1624 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1625 * enable probes from this provider 1626 * 1627 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1628 * enable probes from this provider 1629 * 1630 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1631 * may enable probes from this provider 1632 * 1633 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1634 * the privilege requirements above. These probes 1635 * require either (a) a user ID matching the user 1636 * ID of the cred passed in the fourth argument 1637 * or (b) the PRIV_PROC_OWNER privilege. 1638 * 1639 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1640 * the privilege requirements above. These probes 1641 * require either (a) a zone ID matching the zone 1642 * ID of the cred passed in the fourth argument 1643 * or (b) the PRIV_PROC_ZONE privilege. 1644 * 1645 * Note that these flags designate the _visibility_ of the probes, not 1646 * the conditions under which they may or may not fire. 1647 * 1648 * The fourth argument is the credential that is associated with the 1649 * provider. This argument should be NULL if the privilege flags don't 1650 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1651 * framework stashes the uid and zoneid represented by this credential 1652 * for use at probe-time, in implicit predicates. These limit visibility 1653 * of the probes to users and/or zones which have sufficient privilege to 1654 * access them. 1655 * 1656 * The fifth argument is a DTrace provider operations vector, which provides 1657 * the implementation for the Framework-to-Provider API. (See Section 1, 1658 * above.) This must be non-NULL, and each member must be non-NULL. The 1659 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1660 * members (if the provider so desires, _one_ of these members may be left 1661 * NULL -- denoting that the provider only implements the other) and (2) 1662 * the dtps_suspend() and dtps_resume() members, which must either both be 1663 * NULL or both be non-NULL. 1664 * 1665 * The sixth argument is a cookie to be specified as the first argument for 1666 * each function in the Framework-to-Provider API. This argument may have 1667 * any value. 1668 * 1669 * The final argument is a pointer to dtrace_provider_id_t. If 1670 * dtrace_register() successfully completes, the provider identifier will be 1671 * stored in the memory pointed to be this argument. This argument must be 1672 * non-NULL. 1673 * 1674 * 2.2.3 Return value 1675 * 1676 * On success, dtrace_register() returns 0 and stores the new provider's 1677 * identifier into the memory pointed to by the idp argument. On failure, 1678 * dtrace_register() returns an errno: 1679 * 1680 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1681 * This may because a parameter that must be non-NULL was NULL, 1682 * because the name was invalid (either empty or an illegal 1683 * provider name) or because the attributes were invalid. 1684 * 1685 * No other failure code is returned. 1686 * 1687 * 2.2.4 Caller's context 1688 * 1689 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1690 * hold no locks across dtrace_register() that may also be acquired by 1691 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1692 * 1693 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1694 * 1695 * 2.3.1 Overview 1696 * 1697 * Unregisters the specified provider from the DTrace framework. It should 1698 * generally be called by DTrace providers in their detach(9E) entry point. 1699 * 1700 * 2.3.2 Arguments and Notes 1701 * 1702 * The only argument is the provider identifier, as returned from a 1703 * successful call to dtrace_register(). As a result of calling 1704 * dtrace_unregister(), the DTrace framework will call back into the provider 1705 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1706 * completes, however, the DTrace framework will no longer make calls through 1707 * the Framework-to-Provider API. 1708 * 1709 * 2.3.3 Return value 1710 * 1711 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1712 * returns an errno: 1713 * 1714 * EBUSY There are currently processes that have the DTrace pseudodevice 1715 * open, or there exists an anonymous enabling that hasn't yet 1716 * been claimed. 1717 * 1718 * No other failure code is returned. 1719 * 1720 * 2.3.4 Caller's context 1721 * 1722 * Because a call to dtrace_unregister() may induce calls through the 1723 * Framework-to-Provider API, the caller may not hold any lock across 1724 * dtrace_register() that is also acquired in any of the Framework-to- 1725 * Provider API functions. Additionally, mod_lock may not be held. 1726 * 1727 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1728 * 1729 * 2.4.1 Overview 1730 * 1731 * Invalidates the specified provider. All subsequent probe lookups for the 1732 * specified provider will fail, but its probes will not be removed. 1733 * 1734 * 2.4.2 Arguments and note 1735 * 1736 * The only argument is the provider identifier, as returned from a 1737 * successful call to dtrace_register(). In general, a provider's probes 1738 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1739 * an entire provider, regardless of whether or not probes are enabled or 1740 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1741 * probes from firing -- it will merely prevent any new enablings of the 1742 * provider's probes. 1743 * 1744 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1745 * 1746 * 2.5.1 Overview 1747 * 1748 * Removes all the unenabled probes for the given provider. This function is 1749 * not unlike dtrace_unregister(), except that it doesn't remove the 1750 * provider just as many of its associated probes as it can. 1751 * 1752 * 2.5.2 Arguments and Notes 1753 * 1754 * As with dtrace_unregister(), the sole argument is the provider identifier 1755 * as returned from a successful call to dtrace_register(). As a result of 1756 * calling dtrace_condense(), the DTrace framework will call back into the 1757 * given provider's dtps_destroy() entry point for each of the provider's 1758 * unenabled probes. 1759 * 1760 * 2.5.3 Return value 1761 * 1762 * Currently, dtrace_condense() always returns 0. However, consumers of this 1763 * function should check the return value as appropriate; its behavior may 1764 * change in the future. 1765 * 1766 * 2.5.4 Caller's context 1767 * 1768 * As with dtrace_unregister(), the caller may not hold any lock across 1769 * dtrace_condense() that is also acquired in the provider's entry points. 1770 * Also, mod_lock may not be held. 1771 * 1772 * 2.6 int dtrace_attached() 1773 * 1774 * 2.6.1 Overview 1775 * 1776 * Indicates whether or not DTrace has attached. 1777 * 1778 * 2.6.2 Arguments and Notes 1779 * 1780 * For most providers, DTrace makes initial contact beyond registration. 1781 * That is, once a provider has registered with DTrace, it waits to hear 1782 * from DTrace to create probes. However, some providers may wish to 1783 * proactively create probes without first being told by DTrace to do so. 1784 * If providers wish to do this, they must first call dtrace_attached() to 1785 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1786 * the provider must not make any other Provider-to-Framework API call. 1787 * 1788 * 2.6.3 Return value 1789 * 1790 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1791 * 1792 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1793 * const char *func, const char *name, int aframes, void *arg) 1794 * 1795 * 2.7.1 Overview 1796 * 1797 * Creates a probe with specified module name, function name, and name. 1798 * 1799 * 2.7.2 Arguments and Notes 1800 * 1801 * The first argument is the provider identifier, as returned from a 1802 * successful call to dtrace_register(). The second, third, and fourth 1803 * arguments are the module name, function name, and probe name, 1804 * respectively. Of these, module name and function name may both be NULL 1805 * (in which case the probe is considered to be unanchored), or they may both 1806 * be non-NULL. The name must be non-NULL, and must point to a non-empty 1807 * string. 1808 * 1809 * The fifth argument is the number of artificial stack frames that will be 1810 * found on the stack when dtrace_probe() is called for the new probe. These 1811 * artificial frames will be automatically be pruned should the stack() or 1812 * stackdepth() functions be called as part of one of the probe's ECBs. If 1813 * the parameter doesn't add an artificial frame, this parameter should be 1814 * zero. 1815 * 1816 * The final argument is a probe argument that will be passed back to the 1817 * provider when a probe-specific operation is called. (e.g., via 1818 * dtps_enable(), dtps_disable(), etc.) 1819 * 1820 * Note that it is up to the provider to be sure that the probe that it 1821 * creates does not already exist -- if the provider is unsure of the probe's 1822 * existence, it should assure its absence with dtrace_probe_lookup() before 1823 * calling dtrace_probe_create(). 1824 * 1825 * 2.7.3 Return value 1826 * 1827 * dtrace_probe_create() always succeeds, and always returns the identifier 1828 * of the newly-created probe. 1829 * 1830 * 2.7.4 Caller's context 1831 * 1832 * While dtrace_probe_create() is generally expected to be called from 1833 * dtps_provide() and/or dtps_provide_module(), it may be called from other 1834 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1835 * 1836 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 1837 * const char *func, const char *name) 1838 * 1839 * 2.8.1 Overview 1840 * 1841 * Looks up a probe based on provdider and one or more of module name, 1842 * function name and probe name. 1843 * 1844 * 2.8.2 Arguments and Notes 1845 * 1846 * The first argument is the provider identifier, as returned from a 1847 * successful call to dtrace_register(). The second, third, and fourth 1848 * arguments are the module name, function name, and probe name, 1849 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 1850 * the identifier of the first probe that is provided by the specified 1851 * provider and matches all of the non-NULL matching criteria. 1852 * dtrace_probe_lookup() is generally used by a provider to be check the 1853 * existence of a probe before creating it with dtrace_probe_create(). 1854 * 1855 * 2.8.3 Return value 1856 * 1857 * If the probe exists, returns its identifier. If the probe does not exist, 1858 * return DTRACE_IDNONE. 1859 * 1860 * 2.8.4 Caller's context 1861 * 1862 * While dtrace_probe_lookup() is generally expected to be called from 1863 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1864 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1865 * 1866 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 1867 * 1868 * 2.9.1 Overview 1869 * 1870 * Returns the probe argument associated with the specified probe. 1871 * 1872 * 2.9.2 Arguments and Notes 1873 * 1874 * The first argument is the provider identifier, as returned from a 1875 * successful call to dtrace_register(). The second argument is a probe 1876 * identifier, as returned from dtrace_probe_lookup() or 1877 * dtrace_probe_create(). This is useful if a probe has multiple 1878 * provider-specific components to it: the provider can create the probe 1879 * once with provider-specific state, and then add to the state by looking 1880 * up the probe based on probe identifier. 1881 * 1882 * 2.9.3 Return value 1883 * 1884 * Returns the argument associated with the specified probe. If the 1885 * specified probe does not exist, or if the specified probe is not provided 1886 * by the specified provider, NULL is returned. 1887 * 1888 * 2.9.4 Caller's context 1889 * 1890 * While dtrace_probe_arg() is generally expected to be called from 1891 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1892 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1893 * 1894 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 1895 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 1896 * 1897 * 2.10.1 Overview 1898 * 1899 * The epicenter of DTrace: fires the specified probes with the specified 1900 * arguments. 1901 * 1902 * 2.10.2 Arguments and Notes 1903 * 1904 * The first argument is a probe identifier as returned by 1905 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 1906 * arguments are the values to which the D variables "arg0" through "arg4" 1907 * will be mapped. 1908 * 1909 * dtrace_probe() should be called whenever the specified probe has fired -- 1910 * however the provider defines it. 1911 * 1912 * 2.10.3 Return value 1913 * 1914 * None. 1915 * 1916 * 2.10.4 Caller's context 1917 * 1918 * dtrace_probe() may be called in virtually any context: kernel, user, 1919 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 1920 * dispatcher locks held, with interrupts disabled, etc. The only latitude 1921 * that must be afforded to DTrace is the ability to make calls within 1922 * itself (and to its in-kernel subroutines) and the ability to access 1923 * arbitrary (but mapped) memory. On some platforms, this constrains 1924 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 1925 * from any context in which TL is greater than zero. dtrace_probe() may 1926 * also not be called from any routine which may be called by dtrace_probe() 1927 * -- which includes functions in the DTrace framework and some in-kernel 1928 * DTrace subroutines. All such functions "dtrace_"; providers that 1929 * instrument the kernel arbitrarily should be sure to not instrument these 1930 * routines. 1931 */ 1932 typedef struct dtrace_pops { 1933 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); 1934 void (*dtps_provide_module)(void *arg, struct modctl *mp); 1935 void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 1936 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 1937 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 1938 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 1939 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 1940 dtrace_argdesc_t *desc); 1941 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 1942 int argno, int aframes); 1943 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 1944 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 1945 } dtrace_pops_t; 1946 1947 typedef uintptr_t dtrace_provider_id_t; 1948 1949 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 1950 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 1951 extern int dtrace_unregister(dtrace_provider_id_t); 1952 extern int dtrace_condense(dtrace_provider_id_t); 1953 extern void dtrace_invalidate(dtrace_provider_id_t); 1954 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, 1955 const char *, const char *); 1956 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 1957 const char *, const char *, int, void *); 1958 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 1959 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 1960 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 1961 1962 /* 1963 * DTrace Meta Provider API 1964 * 1965 * The following functions are implemented by the DTrace framework and are 1966 * used to implement meta providers. Meta providers plug into the DTrace 1967 * framework and are used to instantiate new providers on the fly. At 1968 * present, there is only one type of meta provider and only one meta 1969 * provider may be registered with the DTrace framework at a time. The 1970 * sole meta provider type provides user-land static tracing facilities 1971 * by taking meta probe descriptions and adding a corresponding provider 1972 * into the DTrace framework. 1973 * 1974 * 1 Framework-to-Provider 1975 * 1976 * 1.1 Overview 1977 * 1978 * The Framework-to-Provider API is represented by the dtrace_mops structure 1979 * that the meta provider passes to the framework when registering itself as 1980 * a meta provider. This structure consists of the following members: 1981 * 1982 * dtms_create_probe() <-- Add a new probe to a created provider 1983 * dtms_provide_pid() <-- Create a new provider for a given process 1984 * dtms_remove_pid() <-- Remove a previously created provider 1985 * 1986 * 1.2 void dtms_create_probe(void *arg, void *parg, 1987 * dtrace_helper_probedesc_t *probedesc); 1988 * 1989 * 1.2.1 Overview 1990 * 1991 * Called by the DTrace framework to create a new probe in a provider 1992 * created by this meta provider. 1993 * 1994 * 1.2.2 Arguments and notes 1995 * 1996 * The first argument is the cookie as passed to dtrace_meta_register(). 1997 * The second argument is the provider cookie for the associated provider; 1998 * this is obtained from the return value of dtms_provide_pid(). The third 1999 * argument is the helper probe description. 2000 * 2001 * 1.2.3 Return value 2002 * 2003 * None 2004 * 2005 * 1.2.4 Caller's context 2006 * 2007 * dtms_create_probe() is called from either ioctl() or module load context. 2008 * The DTrace framework is locked in such a way that meta providers may not 2009 * register or unregister. This means that the meta provider cannot call 2010 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is 2011 * such that the provider may (and is expected to) call provider-related 2012 * DTrace provider APIs including dtrace_probe_create(). 2013 * 2014 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2015 * pid_t pid) 2016 * 2017 * 1.3.1 Overview 2018 * 2019 * Called by the DTrace framework to instantiate a new provider given the 2020 * description of the provider and probes in the mprov argument. The 2021 * meta provider should call dtrace_register() to insert the new provider 2022 * into the DTrace framework. 2023 * 2024 * 1.3.2 Arguments and notes 2025 * 2026 * The first argument is the cookie as passed to dtrace_meta_register(). 2027 * The second argument is a pointer to a structure describing the new 2028 * helper provider. The third argument is the process identifier for 2029 * process associated with this new provider. Note that the name of the 2030 * provider as passed to dtrace_register() should be the contatenation of 2031 * the dtmpb_provname member of the mprov argument and the processs 2032 * identifier as a string. 2033 * 2034 * 1.3.3 Return value 2035 * 2036 * The cookie for the provider that the meta provider creates. This is 2037 * the same value that it passed to dtrace_register(). 2038 * 2039 * 1.3.4 Caller's context 2040 * 2041 * dtms_provide_pid() is called from either ioctl() or module load context. 2042 * The DTrace framework is locked in such a way that meta providers may not 2043 * register or unregister. This means that the meta provider cannot call 2044 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2045 * is such that the provider may -- and is expected to -- call 2046 * provider-related DTrace provider APIs including dtrace_register(). 2047 * 2048 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2049 * pid_t pid) 2050 * 2051 * 1.4.1 Overview 2052 * 2053 * Called by the DTrace framework to remove a provider that had previously 2054 * been instantiated via the dtms_provide_pid() entry point. The meta 2055 * provider need not remove the provider immediately, but this entry 2056 * point indicates that the provider should be removed as soon as possible 2057 * using the dtrace_unregister() API. 2058 * 2059 * 1.4.2 Arguments and notes 2060 * 2061 * The first argument is the cookie as passed to dtrace_meta_register(). 2062 * The second argument is a pointer to a structure describing the helper 2063 * provider. The third argument is the process identifier for process 2064 * associated with this new provider. 2065 * 2066 * 1.4.3 Return value 2067 * 2068 * None 2069 * 2070 * 1.4.4 Caller's context 2071 * 2072 * dtms_remove_pid() is called from either ioctl() or exit() context. 2073 * The DTrace framework is locked in such a way that meta providers may not 2074 * register or unregister. This means that the meta provider cannot call 2075 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2076 * is such that the provider may -- and is expected to -- call 2077 * provider-related DTrace provider APIs including dtrace_unregister(). 2078 */ 2079 typedef struct dtrace_helper_probedesc { 2080 char *dthpb_mod; /* probe module */ 2081 char *dthpb_func; /* probe function */ 2082 char *dthpb_name; /* probe name */ 2083 uint64_t dthpb_base; /* base address */ 2084 uint32_t *dthpb_offs; /* offsets array */ 2085 uint32_t dthpb_noffs; /* offsets count */ 2086 uint8_t *dthpb_args; /* argument mapping array */ 2087 uint8_t dthpb_xargc; /* translated argument count */ 2088 uint8_t dthpb_nargc; /* native argument count */ 2089 char *dthpb_xtypes; /* translated types strings */ 2090 char *dthpb_ntypes; /* native types strings */ 2091 } dtrace_helper_probedesc_t; 2092 2093 typedef struct dtrace_helper_provdesc { 2094 char *dthpv_provname; /* provider name */ 2095 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2096 } dtrace_helper_provdesc_t; 2097 2098 typedef struct dtrace_mops { 2099 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2100 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2101 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2102 } dtrace_mops_t; 2103 2104 typedef uintptr_t dtrace_meta_provider_id_t; 2105 2106 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2107 dtrace_meta_provider_id_t *); 2108 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2109 2110 /* 2111 * DTrace Kernel Hooks 2112 * 2113 * The following functions are implemented by the base kernel and form a set of 2114 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2115 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2116 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2117 */ 2118 2119 typedef enum dtrace_vtime_state { 2120 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2121 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2122 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2123 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2124 } dtrace_vtime_state_t; 2125 2126 extern dtrace_vtime_state_t dtrace_vtime_active; 2127 extern void dtrace_vtime_switch(kthread_t *next); 2128 extern void dtrace_vtime_enable_tnf(void); 2129 extern void dtrace_vtime_disable_tnf(void); 2130 extern void dtrace_vtime_enable(void); 2131 extern void dtrace_vtime_disable(void); 2132 2133 struct regs; 2134 2135 extern int (*dtrace_pid_probe_ptr)(struct regs *); 2136 extern int (*dtrace_fasttrap_probe_ptr)(struct regs *); 2137 extern int (*dtrace_return_probe_ptr)(struct regs *); 2138 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2139 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2140 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2141 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2142 2143 typedef uintptr_t dtrace_icookie_t; 2144 typedef void (*dtrace_xcall_t)(void *); 2145 2146 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2147 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2148 2149 extern void dtrace_membar_producer(void); 2150 extern void dtrace_membar_consumer(void); 2151 2152 extern void (*dtrace_cpu_init)(processorid_t); 2153 extern void (*dtrace_modload)(struct modctl *); 2154 extern void (*dtrace_modunload)(struct modctl *); 2155 extern void (*dtrace_helpers_cleanup)(); 2156 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2157 extern void (*dtrace_cpustart_init)(); 2158 extern void (*dtrace_cpustart_fini)(); 2159 2160 extern void (*dtrace_kreloc_init)(); 2161 extern void (*dtrace_kreloc_fini)(); 2162 2163 extern void (*dtrace_debugger_init)(); 2164 extern void (*dtrace_debugger_fini)(); 2165 extern dtrace_cacheid_t dtrace_predcache_id; 2166 2167 extern hrtime_t dtrace_gethrtime(void); 2168 extern void dtrace_sync(void); 2169 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2170 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2171 extern void dtrace_vpanic(const char *, __va_list); 2172 extern void dtrace_panic(const char *, ...); 2173 2174 extern int dtrace_safe_defer_signal(void); 2175 extern void dtrace_safe_synchronous_signal(void); 2176 2177 #if defined(__i386) || defined(__amd64) 2178 extern int dtrace_instr_size(uchar_t *instr); 2179 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); 2180 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2181 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2182 extern void dtrace_invop_callsite(void); 2183 #endif 2184 2185 #ifdef __sparc 2186 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2187 extern void dtrace_getfsr(uint64_t *); 2188 #endif 2189 2190 #define DTRACE_CPUFLAG_ISSET(flag) \ 2191 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) 2192 2193 #define DTRACE_CPUFLAG_SET(flag) \ 2194 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) 2195 2196 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2197 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) 2198 2199 #endif /* _KERNEL */ 2200 2201 #endif /* _ASM */ 2202 2203 #if defined(__i386) || defined(__amd64) 2204 2205 #define DTRACE_INVOP_PUSHL_EBP 1 2206 #define DTRACE_INVOP_POPL_EBP 2 2207 #define DTRACE_INVOP_LEAVE 3 2208 #define DTRACE_INVOP_NOP 4 2209 #define DTRACE_INVOP_RET 5 2210 2211 #endif 2212 2213 #ifdef __cplusplus 2214 } 2215 #endif 2216 2217 #endif /* _SYS_DTRACE_H */ 2218