1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _SYS_DDI_IMPLDEFS_H 27 #define _SYS_DDI_IMPLDEFS_H 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/t_lock.h> 34 #include <sys/ddipropdefs.h> 35 #include <sys/devops.h> 36 #include <sys/autoconf.h> 37 #include <sys/mutex.h> 38 #include <vm/page.h> 39 #include <sys/dacf_impl.h> 40 #include <sys/ndifm.h> 41 #include <sys/epm.h> 42 #include <sys/ddidmareq.h> 43 #include <sys/ddi_intr.h> 44 #include <sys/ddi_isa.h> 45 46 #ifdef __cplusplus 47 extern "C" { 48 #endif 49 50 /* 51 * The device id implementation has been switched to be based on properties. 52 * For compatibility with di_devid libdevinfo interface the following 53 * must be defined: 54 */ 55 #define DEVID_COMPATIBILITY ((ddi_devid_t)-1) 56 57 /* 58 * Definitions for node class. 59 * DDI_NC_PROM: a node with a nodeid that may be used in a promif call. 60 * DDI_NC_PSEUDO: a software created node with a software assigned nodeid. 61 */ 62 typedef enum { 63 DDI_NC_PROM = 0, 64 DDI_NC_PSEUDO 65 } ddi_node_class_t; 66 67 /* 68 * dev_info: The main device information structure this is intended to be 69 * opaque to drivers and drivers should use ddi functions to 70 * access *all* driver accessible fields. 71 * 72 * devi_parent_data includes property lists (interrupts, registers, etc.) 73 * devi_driver_data includes whatever the driver wants to place there. 74 */ 75 struct devinfo_audit; 76 77 typedef struct devi_port { 78 union { 79 struct { 80 uint32_t type; 81 uint32_t pad; 82 } port; 83 uint64_t type64; 84 } info; 85 void *priv_p; 86 } devi_port_t; 87 88 typedef struct devi_bus_priv { 89 devi_port_t port_up; 90 devi_port_t port_down; 91 } devi_bus_priv_t; 92 93 struct dev_info { 94 95 struct dev_info *devi_parent; /* my parent node in tree */ 96 struct dev_info *devi_child; /* my child list head */ 97 struct dev_info *devi_sibling; /* next element on my level */ 98 99 char *devi_binding_name; /* name used to bind driver: */ 100 /* shared storage, points to */ 101 /* devi_node_name, devi_compat_names */ 102 /* or devi_rebinding_name */ 103 104 char *devi_addr; /* address part of name */ 105 106 int devi_nodeid; /* device nodeid */ 107 int devi_instance; /* device instance number */ 108 109 struct dev_ops *devi_ops; /* driver operations */ 110 111 void *devi_parent_data; /* parent private data */ 112 void *devi_driver_data; /* driver private data */ 113 114 ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */ 115 ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */ 116 117 struct ddi_minor_data *devi_minor; /* head of minor list */ 118 struct dev_info *devi_next; /* Next instance of this device */ 119 kmutex_t devi_lock; /* Protects per-devinfo data */ 120 121 /* logical parents for busop primitives */ 122 123 struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */ 124 struct dev_info *devi_bus_dma_map; /* bus_dma_map parent */ 125 struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */ 126 struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */ 127 struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */ 128 struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */ 129 struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */ 130 struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */ 131 struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */ 132 struct dev_info *devi_bus_ctl; /* bus_ctl parent */ 133 134 ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */ 135 136 char *devi_node_name; /* The 'name' of the node */ 137 char *devi_compat_names; /* A list of driver names */ 138 size_t devi_compat_length; /* Size of compat_names */ 139 140 int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *, 141 ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *, 142 uint_t *); 143 int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *, 144 ddi_dma_handle_t); 145 146 char *devi_devid_str; /* registered device id */ 147 148 /* 149 * power management entries 150 * components exist even if the device is not currently power managed 151 */ 152 struct pm_info *devi_pm_info; /* 0 => dev not power managed */ 153 uint_t devi_pm_flags; /* pm flags */ 154 int devi_pm_num_components; /* number of components */ 155 size_t devi_pm_comp_size; /* size of devi_components */ 156 struct pm_component *devi_pm_components; /* array of pm components */ 157 struct dev_info *devi_pm_ppm; /* ppm attached to this one */ 158 void *devi_pm_ppm_private; /* for use by ppm driver */ 159 int devi_pm_dev_thresh; /* "device" threshold */ 160 uint_t devi_pm_kidsupcnt; /* # of kids powered up */ 161 struct pm_scan *devi_pm_scan; /* pm scan info */ 162 uint_t devi_pm_noinvolpm; /* # of descendents no-invol */ 163 uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */ 164 kmutex_t devi_pm_lock; /* pm lock for state */ 165 kmutex_t devi_pm_busy_lock; /* for component busy count */ 166 167 uint_t devi_state; /* device/bus state flags */ 168 /* see below for definitions */ 169 kcondvar_t devi_cv; /* cv */ 170 int devi_ref; /* reference count */ 171 172 dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */ 173 174 ddi_node_class_t devi_node_class; /* Node class */ 175 int devi_node_attributes; /* Node attributes: See below */ 176 177 char *devi_device_class; 178 179 /* 180 * New mpxio kernel hooks entries 181 */ 182 int devi_mdi_component; /* mpxio component type */ 183 void *devi_mdi_client; /* mpxio client information */ 184 void *devi_mdi_xhci; /* vhci/phci info */ 185 186 ddi_prop_list_t *devi_global_prop_list; /* driver global properties */ 187 major_t devi_major; /* driver major number */ 188 ddi_node_state_t devi_node_state; /* state of node */ 189 uint_t devi_flags; /* configuration flags */ 190 int devi_circular; /* for recursive operations */ 191 void *devi_busy_thread; /* thread operating on node */ 192 void *devi_taskq; /* hotplug taskq */ 193 194 /* device driver statistical and audit info */ 195 struct devinfo_audit *devi_audit; /* last state change */ 196 197 /* 198 * FMA support for resource caches and error handlers 199 */ 200 struct i_ddi_fmhdl *devi_fmhdl; 201 202 uint_t devi_cpr_flags; 203 204 /* For interrupt support */ 205 devinfo_intr_t *devi_intr_p; 206 207 void *devi_nex_pm; /* nexus PM private */ 208 209 char *devi_addr_buf; /* buffer for devi_addr */ 210 211 char *devi_rebinding_name; /* binding_name of rebind */ 212 213 /* For device contracts that have this dip's minor node as resource */ 214 kmutex_t devi_ct_lock; /* contract lock */ 215 kcondvar_t devi_ct_cv; /* contract cv */ 216 int devi_ct_count; /* # of outstanding responses */ 217 int devi_ct_neg; /* neg. occurred on dip */ 218 list_t devi_ct; 219 220 /* owned by bus framework */ 221 devi_bus_priv_t devi_bus; /* bus private data */ 222 223 /* Declarations of the pure dynamic properties to snapshot */ 224 struct i_ddi_prop_dyn *devi_prop_dyn_driver; /* prop_op */ 225 struct i_ddi_prop_dyn *devi_prop_dyn_parent; /* bus_prop_op */ 226 }; 227 228 #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type)) 229 230 /* 231 * NB: The 'name' field, for compatibility with old code (both existing 232 * device drivers and userland code), is now defined as the name used 233 * to bind the node to a device driver, and not the device node name. 234 * If the device node name does not define a binding to a device driver, 235 * and the framework uses a different algorithm to create the binding to 236 * the driver, the node name and binding name will be different. 237 * 238 * Note that this implies that the node name plus instance number does 239 * NOT create a unique driver id; only the binding name plus instance 240 * number creates a unique driver id. 241 * 242 * New code should not use 'devi_name'; use 'devi_binding_name' or 243 * 'devi_node_name' and/or the routines that access those fields. 244 */ 245 246 #define devi_name devi_binding_name 247 248 /* 249 * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept 250 * around to allow legacy drivers to to compile. 251 */ 252 #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL) 253 #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL) 254 #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops) 255 256 /* 257 * The device state flags (devi_state) contains information regarding 258 * the state of the device (Online/Offline/Down). For bus nexus 259 * devices, the device state also contains state information regarding 260 * the state of the bus represented by this nexus node. 261 * 262 * Device state information is stored in bits [0-7], bus state in bits 263 * [8-15]. 264 * 265 * NOTE: all devi_state updates should be protected by devi_lock. 266 */ 267 #define DEVI_DEVICE_OFFLINE 0x00000001 268 #define DEVI_DEVICE_DOWN 0x00000002 269 #define DEVI_DEVICE_DEGRADED 0x00000004 270 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */ 271 272 #define DEVI_BUS_QUIESCED 0x00000100 273 #define DEVI_BUS_DOWN 0x00000200 274 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */ 275 276 #define DEVI_S_ATTACHING 0x00010000 277 #define DEVI_S_DETACHING 0x00020000 278 #define DEVI_S_ONLINING 0x00040000 279 #define DEVI_S_OFFLINING 0x00080000 280 281 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */ 282 283 #define DEVI_S_UNBOUND 0x00200000 284 #define DEVI_S_REPORT 0x08000000 /* report status change */ 285 286 #define DEVI_S_EVADD 0x10000000 /* state of devfs event */ 287 #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */ 288 #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */ 289 290 /* 291 * Device state macros. 292 * o All SET/CLR/DONE users must protect context with devi_lock. 293 * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT. 294 * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE. 295 * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED. 296 */ 297 #define DEVI_IS_DEVICE_OFFLINE(dip) \ 298 ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE) 299 300 #define DEVI_SET_DEVICE_ONLINE(dip) { \ 301 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 302 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 303 mutex_exit(&DEVI(dip)->devi_lock); \ 304 e_ddi_undegrade_finalize(dip); \ 305 mutex_enter(&DEVI(dip)->devi_lock); \ 306 } \ 307 /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \ 308 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \ 309 DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \ 310 } 311 312 #define DEVI_SET_DEVICE_OFFLINE(dip) { \ 313 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 314 DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \ 315 } 316 317 #define DEVI_IS_DEVICE_DOWN(dip) \ 318 ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN) 319 320 #define DEVI_SET_DEVICE_DOWN(dip) { \ 321 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 322 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 323 DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \ 324 } 325 326 #define DEVI_IS_DEVICE_DEGRADED(dip) \ 327 ((DEVI(dip)->devi_state & \ 328 (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED) 329 330 #define DEVI_SET_DEVICE_DEGRADED(dip) { \ 331 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 332 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 333 mutex_exit(&DEVI(dip)->devi_lock); \ 334 e_ddi_degrade_finalize(dip); \ 335 mutex_enter(&DEVI(dip)->devi_lock); \ 336 DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \ 337 } 338 339 #define DEVI_SET_DEVICE_UP(dip) { \ 340 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 341 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 342 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 343 mutex_exit(&DEVI(dip)->devi_lock); \ 344 e_ddi_undegrade_finalize(dip); \ 345 mutex_enter(&DEVI(dip)->devi_lock); \ 346 } \ 347 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \ 348 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 349 } 350 351 /* Device removal and insertion */ 352 #define DEVI_IS_DEVICE_REMOVED(dip) \ 353 ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED) 354 355 #define DEVI_SET_DEVICE_REMOVED(dip) { \ 356 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 357 DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED; \ 358 } 359 360 #define DEVI_SET_DEVICE_REINSERTED(dip) { \ 361 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 362 DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \ 363 } 364 365 /* Bus state change macros */ 366 #define DEVI_IS_BUS_QUIESCED(dip) \ 367 ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED) 368 369 #define DEVI_SET_BUS_ACTIVE(dip) { \ 370 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 371 DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \ 372 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 373 } 374 375 #define DEVI_SET_BUS_QUIESCE(dip) { \ 376 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 377 DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \ 378 } 379 380 #define DEVI_IS_BUS_DOWN(dip) \ 381 ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN) 382 383 #define DEVI_SET_BUS_UP(dip) { \ 384 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 385 DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \ 386 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 387 } 388 389 #define DEVI_SET_BUS_DOWN(dip) { \ 390 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 391 DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \ 392 } 393 394 /* Status change report needed */ 395 #define DEVI_NEED_REPORT(dip) \ 396 ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT) 397 398 #define DEVI_SET_REPORT(dip) { \ 399 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 400 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 401 } 402 403 #define DEVI_REPORT_DONE(dip) { \ 404 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 405 DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \ 406 } 407 408 /* Do an NDI_CONFIG for its children */ 409 #define DEVI_NEED_NDI_CONFIG(dip) \ 410 ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG) 411 412 #define DEVI_SET_NDI_CONFIG(dip) { \ 413 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 414 DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \ 415 } 416 417 #define DEVI_CLR_NDI_CONFIG(dip) { \ 418 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 419 DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \ 420 } 421 422 /* Attaching or detaching state */ 423 #define DEVI_IS_ATTACHING(dip) \ 424 ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING) 425 426 #define DEVI_SET_ATTACHING(dip) { \ 427 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 428 DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \ 429 } 430 431 #define DEVI_CLR_ATTACHING(dip) { \ 432 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 433 DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \ 434 } 435 436 #define DEVI_IS_DETACHING(dip) \ 437 ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING) 438 439 #define DEVI_SET_DETACHING(dip) { \ 440 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 441 DEVI(dip)->devi_state |= DEVI_S_DETACHING; \ 442 } 443 444 #define DEVI_CLR_DETACHING(dip) { \ 445 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 446 DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \ 447 } 448 449 /* Onlining or offlining state */ 450 #define DEVI_IS_ONLINING(dip) \ 451 ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING) 452 453 #define DEVI_SET_ONLINING(dip) { \ 454 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 455 DEVI(dip)->devi_state |= DEVI_S_ONLINING; \ 456 } 457 458 #define DEVI_CLR_ONLINING(dip) { \ 459 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 460 DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \ 461 } 462 463 #define DEVI_IS_OFFLINING(dip) \ 464 ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING) 465 466 #define DEVI_SET_OFFLINING(dip) { \ 467 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 468 DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \ 469 } 470 471 #define DEVI_CLR_OFFLINING(dip) { \ 472 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 473 DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \ 474 } 475 476 #define DEVI_IS_IN_RECONFIG(dip) \ 477 (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING)) 478 479 /* Busy invoking a dacf task against this node */ 480 #define DEVI_IS_INVOKING_DACF(dip) \ 481 ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF) 482 483 #define DEVI_SET_INVOKING_DACF(dip) { \ 484 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 485 DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \ 486 } 487 488 #define DEVI_CLR_INVOKING_DACF(dip) { \ 489 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 490 DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \ 491 } 492 493 /* Events for add/remove */ 494 #define DEVI_EVADD(dip) \ 495 ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD) 496 497 #define DEVI_SET_EVADD(dip) { \ 498 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 499 DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \ 500 DEVI(dip)->devi_state |= DEVI_S_EVADD; \ 501 } 502 503 #define DEVI_EVREMOVE(dip) \ 504 ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE) 505 506 #define DEVI_SET_EVREMOVE(dip) { \ 507 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 508 DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \ 509 DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \ 510 } 511 512 #define DEVI_SET_EVUNINIT(dip) { \ 513 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 514 DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \ 515 } 516 517 /* Need to call the devo_reset entry point for this device at shutdown */ 518 #define DEVI_NEED_RESET(dip) \ 519 ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET) 520 521 #define DEVI_SET_NEED_RESET(dip) { \ 522 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 523 DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \ 524 } 525 526 #define DEVI_CLR_NEED_RESET(dip) { \ 527 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 528 DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \ 529 } 530 531 /* 532 * devi_flags bits 533 * 534 * NOTE: all devi_state updates should be protected by devi_lock. 535 */ 536 #define DEVI_BUSY 0x00000001 /* busy configuring children */ 537 #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */ 538 #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */ 539 #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */ 540 #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */ 541 #define DEVI_REGISTERED_DEVID 0x00000020 /* device registered a devid */ 542 #define DEVI_PHCI_SIGNALS_VHCI 0x00000040 /* pHCI ndi_devi_exit signals vHCI */ 543 #define DEVI_REBIND 0x00000080 /* post initchild driver rebind */ 544 #define DEVI_RETIRED 0x00000100 /* device is retired */ 545 #define DEVI_RETIRING 0x00000200 /* being evaluated for retire */ 546 #define DEVI_R_CONSTRAINT 0x00000400 /* constraints have been applied */ 547 #define DEVI_R_BLOCKED 0x00000800 /* constraints block retire */ 548 #define DEVI_CT_NOP 0x00001000 /* NOP contract event occurred */ 549 550 #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY) 551 #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \ 552 ((DEVI(dip))->devi_busy_thread == curthread)) 553 554 char *i_ddi_devi_class(dev_info_t *); 555 int i_ddi_set_devi_class(dev_info_t *, char *, int); 556 557 /* 558 * This structure represents one piece of bus space occupied by a given 559 * device. It is used in an array for devices with multiple address windows. 560 */ 561 struct regspec { 562 uint_t regspec_bustype; /* cookie for bus type it's on */ 563 uint_t regspec_addr; /* address of reg relative to bus */ 564 uint_t regspec_size; /* size of this register set */ 565 }; 566 567 /* 568 * This structure represents one piece of nexus bus space. 569 * It is used in an array for nexi with multiple bus spaces 570 * to define the childs offsets in the parents bus space. 571 */ 572 struct rangespec { 573 uint_t rng_cbustype; /* Child's address, hi order */ 574 uint_t rng_coffset; /* Child's address, lo order */ 575 uint_t rng_bustype; /* Parent's address, hi order */ 576 uint_t rng_offset; /* Parent's address, lo order */ 577 uint_t rng_size; /* size of space for this entry */ 578 }; 579 580 #ifdef _KERNEL 581 582 typedef enum { 583 DDI_PRE = 0, 584 DDI_POST = 1 585 } ddi_pre_post_t; 586 587 /* 588 * This structure represents notification of a child attach event 589 * These could both be the same if attach/detach commands were in the 590 * same name space. 591 * Note that the target dip is passed as an arg already. 592 */ 593 struct attachspec { 594 ddi_attach_cmd_t cmd; /* type of event */ 595 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 596 dev_info_t *pdip; /* parent of attaching node */ 597 int result; /* result of attach op (post command only) */ 598 }; 599 600 /* 601 * This structure represents notification of a child detach event 602 * Note that the target dip is passed as an arg already. 603 */ 604 struct detachspec { 605 ddi_detach_cmd_t cmd; /* type of event */ 606 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 607 dev_info_t *pdip; /* parent of detaching node */ 608 int result; /* result of detach op (post command only) */ 609 }; 610 611 #endif /* _KERNEL */ 612 613 typedef enum { 614 DDM_MINOR = 0, 615 DDM_ALIAS, 616 DDM_DEFAULT, 617 DDM_INTERNAL_PATH 618 } ddi_minor_type; 619 620 /* implementation flags for driver specified device access control */ 621 #define DM_NO_FSPERM 0x1 622 623 struct devplcy; 624 625 struct ddi_minor { 626 char *name; /* name of node */ 627 dev_t dev; /* device number */ 628 int spec_type; /* block or char */ 629 int flags; /* access flags */ 630 char *node_type; /* block, byte, serial, network */ 631 struct devplcy *node_priv; /* privilege for this minor */ 632 mode_t priv_mode; /* default apparent privilege mode */ 633 }; 634 635 /* 636 * devi_node_attributes contains node attributes private to the 637 * ddi implementation. As a consumer, do not use these bit definitions 638 * directly, use the ndi functions that check for the existence of the 639 * specific node attributes. 640 * 641 * DDI_PERSISTENT indicates a 'persistent' node; one that is not 642 * automatically freed by the framework if the driver is unloaded 643 * or the driver fails to attach to this node. 644 * 645 * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned 646 * by the framework and should be auto-freed if the node is removed. 647 * 648 * DDI_VHCI_NODE indicates that the node type is VHCI. This flag 649 * must be set by ndi_devi_config_vhci() routine only. 650 */ 651 #define DDI_PERSISTENT 0x01 652 #define DDI_AUTO_ASSIGNED_NODEID 0x02 653 #define DDI_VHCI_NODE 0x04 654 655 #define DEVI_VHCI_NODE(dip) \ 656 (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE) 657 658 /* 659 * The ddi_minor_data structure gets filled in by ddi_create_minor_node. 660 * It then gets attached to the devinfo node as a property. 661 */ 662 struct ddi_minor_data { 663 struct ddi_minor_data *next; /* next one in the chain */ 664 dev_info_t *dip; /* pointer to devinfo node */ 665 ddi_minor_type type; /* Following data type */ 666 struct ddi_minor d_minor; /* Actual minor node data */ 667 }; 668 669 #define ddm_name d_minor.name 670 #define ddm_dev d_minor.dev 671 #define ddm_flags d_minor.flags 672 #define ddm_spec_type d_minor.spec_type 673 #define ddm_node_type d_minor.node_type 674 #define ddm_node_priv d_minor.node_priv 675 #define ddm_priv_mode d_minor.priv_mode 676 677 /* 678 * parent private data structure contains register, interrupt, property 679 * and range information. 680 */ 681 struct ddi_parent_private_data { 682 int par_nreg; /* number of regs */ 683 struct regspec *par_reg; /* array of regs */ 684 int par_nintr; /* number of interrupts */ 685 struct intrspec *par_intr; /* array of possible interrupts */ 686 int par_nrng; /* number of ranges */ 687 struct rangespec *par_rng; /* array of ranges */ 688 }; 689 #define DEVI_PD(d) \ 690 ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data) 691 692 #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg) 693 #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr) 694 #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng) 695 #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)]) 696 #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)]) 697 #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)]) 698 699 /* 700 * This data structure is entirely private to the soft state allocator. 701 */ 702 struct i_ddi_soft_state { 703 void **array; /* the array of pointers */ 704 kmutex_t lock; /* serialize access to this struct */ 705 size_t size; /* how many bytes per state struct */ 706 size_t n_items; /* how many structs herein */ 707 struct i_ddi_soft_state *next; /* 'dirty' elements */ 708 }; 709 710 /* 711 * Solaris DDI DMA implementation structure and function definitions. 712 * 713 * Note: no callers of DDI functions must depend upon data structures 714 * declared below. They are not guaranteed to remain constant. 715 */ 716 717 /* 718 * Implementation DMA mapping structure. 719 * 720 * The publicly visible ddi_dma_req structure is filled 721 * in by a caller that wishes to map a memory object 722 * for DMA. Internal to this implementation of the public 723 * DDI DMA functions this request structure is put together 724 * with bus nexus specific functions that have additional 725 * information and constraints as to how to go about doing 726 * the requested mapping function 727 * 728 * In this implementation, some of the information from the 729 * original requester is retained throughout the lifetime 730 * of the I/O mapping being active. 731 */ 732 733 /* 734 * This is the implementation specific description 735 * of how we've mapped an object for DMA. 736 */ 737 #if defined(__sparc) 738 typedef struct ddi_dma_impl { 739 /* 740 * DMA mapping information 741 */ 742 ulong_t dmai_mapping; /* mapping cookie */ 743 744 /* 745 * Size of the current mapping, in bytes. 746 * 747 * Note that this is distinct from the size of the object being mapped 748 * for DVMA. We might have only a portion of the object mapped at any 749 * given point in time. 750 */ 751 uint_t dmai_size; 752 753 /* 754 * Offset, in bytes, into object that is currently mapped. 755 */ 756 off_t dmai_offset; 757 758 /* 759 * Information gathered from the original DMA mapping 760 * request and saved for the lifetime of the mapping. 761 */ 762 uint_t dmai_minxfer; 763 uint_t dmai_burstsizes; 764 uint_t dmai_ndvmapages; 765 uint_t dmai_pool; /* cached DVMA space */ 766 uint_t dmai_rflags; /* requester's flags + ours */ 767 uint_t dmai_inuse; /* active handle? */ 768 uint_t dmai_nwin; 769 uint_t dmai_winsize; 770 caddr_t dmai_nexus_private; 771 void *dmai_iopte; 772 uint_t *dmai_sbi; 773 void *dmai_minfo; /* random mapping information */ 774 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 775 ddi_dma_obj_t dmai_object; /* requester's object */ 776 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 777 ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */ 778 779 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 780 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 781 int dmai_fault; 782 ndi_err_t dmai_error; 783 784 } ddi_dma_impl_t; 785 786 #elif defined(__x86) 787 788 /* 789 * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex 790 * implementation specific state is in dmai_private. 791 */ 792 typedef struct ddi_dma_impl { 793 ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */ 794 void *dmai_private; 795 796 /* 797 * Information gathered from the original dma mapping 798 * request and saved for the lifetime of the mapping. 799 */ 800 uint_t dmai_minxfer; 801 uint_t dmai_burstsizes; 802 uint_t dmai_rflags; /* requester's flags + ours */ 803 int dmai_nwin; 804 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 805 806 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 807 808 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 809 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 810 int dmai_fault; 811 ndi_err_t dmai_error; 812 } ddi_dma_impl_t; 813 814 #else 815 #error "struct ddi_dma_impl not defined for this architecture" 816 #endif /* defined(__sparc) */ 817 818 /* 819 * For now DMA segments share state with the DMA handle 820 */ 821 typedef ddi_dma_impl_t ddi_dma_seg_impl_t; 822 823 /* 824 * These flags use reserved bits from the dma request flags. 825 * 826 * A note about the DMP_NOSYNC flags: the root nexus will 827 * set these as it sees best. If an intermediate nexus 828 * actually needs these operations, then during the unwind 829 * from the call to ddi_dma_bind, the nexus driver *must* 830 * clear the appropriate flag(s). This is because, as an 831 * optimization, ddi_dma_sync(9F) looks at these flags before 832 * deciding to spend the time going back up the tree. 833 */ 834 835 #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL 836 #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ 837 #define DMP_DDIFLAGS (_DMCM1|_DMCM2) 838 #define DMP_SHADOW 0x20 839 #define DMP_LKIOPB 0x40 840 #define DMP_LKSYSV 0x80 841 #define DMP_IOCACHE 0x100 842 #define DMP_USEHAT 0x200 843 #define DMP_PHYSADDR 0x400 844 #define DMP_INVALID 0x800 845 #define DMP_NOLIMIT 0x1000 846 #define DMP_VMEREQ 0x10000000 847 #define DMP_BYPASSNEXUS 0x20000000 848 #define DMP_NODEVSYNC 0x40000000 849 #define DMP_NOCPUSYNC 0x80000000 850 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC) 851 852 /* 853 * In order to complete a device to device mapping that 854 * has percolated as high as an IU nexus (gone that high 855 * because the DMA request is a VADDR type), we define 856 * structure to use with the DDI_CTLOPS_DMAPMAPC request 857 * that re-traverses the request tree to finish the 858 * DMA 'mapping' for a device. 859 */ 860 struct dma_phys_mapc { 861 struct ddi_dma_req *dma_req; /* original request */ 862 ddi_dma_impl_t *mp; /* current handle, or none */ 863 int nptes; /* number of ptes */ 864 void *ptes; /* ptes already read */ 865 }; 866 867 #define MAXCALLBACK 20 868 869 /* 870 * Callback definitions 871 */ 872 struct ddi_callback { 873 struct ddi_callback *c_nfree; 874 struct ddi_callback *c_nlist; 875 int (*c_call)(); 876 int c_count; 877 caddr_t c_arg; 878 size_t c_size; 879 }; 880 881 /* 882 * Pure dynamic property declaration. A pure dynamic property is a property 883 * for which a driver's prop_op(9E) implementation will return a value on 884 * demand, but the property name does not exist on a property list (global, 885 * driver, system, or hardware) - the person asking for the value must know 886 * the name and type information. 887 * 888 * For a pure dynamic property to show up in a di_init() devinfo shapshot, the 889 * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism 890 * allows a driver to define an array of the name/type information of its 891 * dynamic properties. When a driver declares its dynamic properties in a 892 * i_ddi_prop_dyn_t array, and registers that array using 893 * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information 894 * to represent the properties in a snapshot - calling the driver's 895 * prop_op(9E) to obtain values. 896 * 897 * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value. 898 * 899 * A pure dynamic property name associated with a minor_node/dev_t should be 900 * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate. The 901 * driver's prop_op(9E) entry point will be called for all 902 * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver 903 * where not all minor_node/dev_t combinations support the same named 904 * properties, it is the responsibility of the prop_op(9E) implementation to 905 * sort out what combinations are appropriate. 906 * 907 * A pure dynamic property of a devinfo node should be defined with a 908 * dp_spec_type of 0. 909 * 910 * NB: Public DDI property interfaces no longer support pure dynamic 911 * properties, but they are still still used. A prime example is the cmlb 912 * implementation of size(9P) properties. Using pure dynamic properties 913 * reduces the space required to maintain per-partition information. Since 914 * there are no public interfaces to create pure dynamic properties, 915 * the i_ddi_prop_dyn_t mechanism should remain private. 916 */ 917 typedef struct i_ddi_prop_dyn { 918 char *dp_name; /* name of dynamic property */ 919 int dp_type; /* DDI_PROP_TYPE_ of property */ 920 int dp_spec_type; /* 0, S_IFCHR, S_IFBLK */ 921 } i_ddi_prop_dyn_t; 922 void i_ddi_prop_dyn_driver_set(dev_info_t *, 923 i_ddi_prop_dyn_t *); 924 i_ddi_prop_dyn_t *i_ddi_prop_dyn_driver_get(dev_info_t *); 925 void i_ddi_prop_dyn_parent_set(dev_info_t *, 926 i_ddi_prop_dyn_t *); 927 i_ddi_prop_dyn_t *i_ddi_prop_dyn_parent_get(dev_info_t *); 928 void i_ddi_prop_dyn_cache_invalidate(dev_info_t *, 929 i_ddi_prop_dyn_t *); 930 931 /* 932 * Device id - Internal definition. 933 */ 934 #define DEVID_MAGIC_MSB 0x69 935 #define DEVID_MAGIC_LSB 0x64 936 #define DEVID_REV_MSB 0x00 937 #define DEVID_REV_LSB 0x01 938 #define DEVID_HINT_SIZE 4 939 940 typedef struct impl_devid { 941 uchar_t did_magic_hi; /* device id magic # (msb) */ 942 uchar_t did_magic_lo; /* device id magic # (lsb) */ 943 uchar_t did_rev_hi; /* device id revision # (msb) */ 944 uchar_t did_rev_lo; /* device id revision # (lsb) */ 945 uchar_t did_type_hi; /* device id type (msb) */ 946 uchar_t did_type_lo; /* device id type (lsb) */ 947 uchar_t did_len_hi; /* length of devid data (msb) */ 948 uchar_t did_len_lo; /* length of devid data (lsb) */ 949 char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */ 950 char did_id[1]; /* start of device id data */ 951 } impl_devid_t; 952 953 #define DEVID_GETTYPE(devid) ((ushort_t) \ 954 (((devid)->did_type_hi << NBBY) + \ 955 (devid)->did_type_lo)) 956 957 #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \ 958 (devid)->did_type_lo = lobyte((type)); 959 960 #define DEVID_GETLEN(devid) ((ushort_t) \ 961 (((devid)->did_len_hi << NBBY) + \ 962 (devid)->did_len_lo)) 963 964 #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \ 965 (devid)->did_len_lo = lobyte((len)); 966 967 /* 968 * Per PSARC/1995/352, a binary devid contains fields for <magic number>, 969 * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself. 970 * This proposal would encode the binary devid into a string consisting 971 * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below 972 * (<id_length> is rederived from the length of the string 973 * representation of the <id>): 974 * 975 * <magic> ->"id" 976 * 977 * <rev> ->"%d" // "0" -> type of DEVID_NONE "id0" 978 * // NOTE: PSARC/1995/352 <revision> is "1". 979 * // NOTE: support limited to 10 revisions 980 * // in current implementation 981 * 982 * <driver_hint> ->"%s" // "sd"/"ssd" 983 * // NOTE: driver names limited to 4 984 * // characters for <revision> "1" 985 * 986 * <type> ->'w' | // DEVID_SCSI3_WWN <hex_id> 987 * 'W' | // DEVID_SCSI3_WWN <ascii_id> 988 * 't' | // DEVID_SCSI3_VPD_T10 <hex_id> 989 * 'T' | // DEVID_SCSI3_VPD_T10 <ascii_id> 990 * 'x' | // DEVID_SCSI3_VPD_EUI <hex_id> 991 * 'X' | // DEVID_SCSI3_VPD_EUI <ascii_id> 992 * 'n' | // DEVID_SCSI3_VPD_NAA <hex_id> 993 * 'N' | // DEVID_SCSI3_VPD_NAA <ascii_id> 994 * 's' | // DEVID_SCSI_SERIAL <hex_id> 995 * 'S' | // DEVID_SCSI_SERIAL <ascii_id> 996 * 'f' | // DEVID_FAB <hex_id> 997 * 'F' | // DEVID_FAB <ascii_id> 998 * 'e' | // DEVID_ENCAP <hex_id> 999 * 'E' | // DEVID_ENCAP <ascii_id> 1000 * 'a' | // DEVID_ATA_SERIAL <hex_id> 1001 * 'A' | // DEVID_ATA_SERIAL <ascii_id> 1002 * 'u' | // unknown <hex_id> 1003 * 'U' // unknown <ascii_id> 1004 * // NOTE: lower case -> <hex_id> 1005 * // upper case -> <ascii_id> 1006 * // NOTE: this covers all types currently 1007 * // defined for <revision> 1. 1008 * // NOTE: a <type> can be added 1009 * // without changing the <revision>. 1010 * 1011 * <id> -> <ascii_id> | // <type> is upper case 1012 * <hex_id> // <type> is lower case 1013 * 1014 * <ascii_id> // only if all bytes of binary <id> field 1015 * // are in the set: 1016 * // [A-Z][a-z][0-9]+-.= and space and 0x00 1017 * // the encoded form is: 1018 * // [A-Z][a-z][0-9]+-.= and _ and ~ 1019 * // NOTE: ' ' <=> '_', 0x00 <=> '~' 1020 * // these sets are chosen to avoid shell 1021 * // and conflicts with DDI node names. 1022 * 1023 * <hex_id> // if not <ascii_id>; each byte of binary 1024 * // <id> maps a to 2 digit ascii hex 1025 * // representation in the string. 1026 * 1027 * This encoding provides a meaningful correlation between the /devices 1028 * path and the devid string where possible. 1029 * 1030 * Fibre: 1031 * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw 1032 * id1,ssd@w20000020370bb488:c,raw 1033 * 1034 * Copper: 1035 * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c 1036 * id1,sd@SIBM_____1XY210__________:c 1037 */ 1038 /* determine if a byte of an id meets ASCII representation requirements */ 1039 #define DEVID_IDBYTE_ISASCII(b) ( \ 1040 (((b) >= 'a') && ((b) <= 'z')) || \ 1041 (((b) >= 'A') && ((b) <= 'Z')) || \ 1042 (((b) >= '0') && ((b) <= '9')) || \ 1043 (b == '+') || (b == '-') || (b == '.') || (b == '=') || \ 1044 (b == ' ') || (b == 0x00)) 1045 1046 /* set type to lower case to indicate that the did_id field is ascii */ 1047 #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */ 1048 1049 /* determine from type if did_id field is binary or ascii */ 1050 #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z')) 1051 1052 /* convert type field from binary to ascii */ 1053 #define DEVID_TYPE_BINTOASCII(b) ( \ 1054 ((b) == DEVID_SCSI3_WWN) ? 'w' : \ 1055 ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \ 1056 ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \ 1057 ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \ 1058 ((b) == DEVID_SCSI_SERIAL) ? 's' : \ 1059 ((b) == DEVID_FAB) ? 'f' : \ 1060 ((b) == DEVID_ENCAP) ? 'e' : \ 1061 ((b) == DEVID_ATA_SERIAL) ? 'a' : \ 1062 'u') /* unknown */ 1063 1064 /* convert type field from ascii to binary */ 1065 #define DEVID_TYPE_ASCIITOBIN(c) ( \ 1066 (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \ 1067 (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \ 1068 (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \ 1069 (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \ 1070 (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \ 1071 (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \ 1072 (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \ 1073 (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \ 1074 DEVID_MAXTYPE +1) /* unknown */ 1075 1076 /* determine if the type should be forced to hex encoding (non-ascii) */ 1077 #define DEVID_TYPE_BIN_FORCEHEX(b) ( \ 1078 ((b) == DEVID_SCSI3_WWN) || \ 1079 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1080 ((b) == DEVID_SCSI3_VPD_NAA) || \ 1081 ((b) == DEVID_FAB)) 1082 1083 /* determine if the type is from a scsi3 vpd */ 1084 #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \ 1085 ((b) == DEVID_SCSI3_VPD_T10) || \ 1086 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1087 ((b) == DEVID_SCSI3_VPD_NAA)) 1088 1089 /* convert rev field from binary to ascii (only supports 10 revs) */ 1090 #define DEVID_REV_BINTOASCII(b) (b + '0') 1091 1092 /* convert rev field from ascii to binary (only supports 10 revs) */ 1093 #define DEVID_REV_ASCIITOBIN(c) (c - '0') 1094 1095 /* name of devid property */ 1096 #define DEVID_PROP_NAME "devid" 1097 1098 /* 1099 * prop_name used by pci_{save,restore}_config_regs() 1100 */ 1101 #define SAVED_CONFIG_REGS "pci-config-regs" 1102 #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask" 1103 #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info" 1104 1105 typedef struct pci_config_header_state { 1106 uint16_t chs_command; 1107 uint8_t chs_cache_line_size; 1108 uint8_t chs_latency_timer; 1109 uint8_t chs_header_type; 1110 uint8_t chs_sec_latency_timer; 1111 uint8_t chs_bridge_control; 1112 uint32_t chs_base0; 1113 uint32_t chs_base1; 1114 uint32_t chs_base2; 1115 uint32_t chs_base3; 1116 uint32_t chs_base4; 1117 uint32_t chs_base5; 1118 } pci_config_header_state_t; 1119 1120 #ifdef _KERNEL 1121 1122 typedef struct pci_cap_save_desc { 1123 uint16_t cap_offset; 1124 uint16_t cap_id; 1125 uint32_t cap_nregs; 1126 } pci_cap_save_desc_t; 1127 1128 typedef struct pci_cap_entry { 1129 uint16_t cap_id; 1130 uint32_t cap_ndwords; 1131 uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr, 1132 uint32_t *regbuf, uint32_t ndwords); 1133 } pci_cap_entry_t; 1134 1135 #endif /* _KERNEL */ 1136 1137 #ifdef __cplusplus 1138 } 1139 #endif 1140 1141 #endif /* _SYS_DDI_IMPLDEFS_H */ 1142