1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved. 24 */ 25 26 #ifndef _SYS_DDI_IMPLDEFS_H 27 #define _SYS_DDI_IMPLDEFS_H 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/t_lock.h> 32 #include <sys/ddipropdefs.h> 33 #include <sys/devops.h> 34 #include <sys/autoconf.h> 35 #include <sys/mutex.h> 36 #include <vm/page.h> 37 #include <sys/dacf_impl.h> 38 #include <sys/ndifm.h> 39 #include <sys/epm.h> 40 #include <sys/ddidmareq.h> 41 #include <sys/ddi_intr.h> 42 #include <sys/ddi_hp.h> 43 #include <sys/ddi_hp_impl.h> 44 #include <sys/ddi_isa.h> 45 #include <sys/id_space.h> 46 #include <sys/modhash.h> 47 #include <sys/bitset.h> 48 49 #ifdef __cplusplus 50 extern "C" { 51 #endif 52 53 /* 54 * The device id implementation has been switched to be based on properties. 55 * For compatibility with di_devid libdevinfo interface the following 56 * must be defined: 57 */ 58 #define DEVID_COMPATIBILITY ((ddi_devid_t)-1) 59 60 /* 61 * Definitions for node class. 62 * DDI_NC_PROM: a node with a nodeid that may be used in a promif call. 63 * DDI_NC_PSEUDO: a software created node with a software assigned nodeid. 64 */ 65 typedef enum { 66 DDI_NC_PROM = 0, 67 DDI_NC_PSEUDO 68 } ddi_node_class_t; 69 70 /* 71 * Definitions for generic callback mechanism. 72 */ 73 typedef enum { 74 DDI_CB_INTR_ADD, /* More available interrupts */ 75 DDI_CB_INTR_REMOVE /* Fewer available interrupts */ 76 } ddi_cb_action_t; 77 78 typedef enum { 79 DDI_CB_FLAG_INTR = 0x1 /* Driver is IRM aware */ 80 } ddi_cb_flags_t; 81 82 #define DDI_CB_FLAG_VALID(f) ((f) & DDI_CB_FLAG_INTR) 83 84 typedef int (*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action, 85 void *cbarg, void *arg1, void *arg2); 86 87 typedef struct ddi_cb { 88 uint64_t cb_flags; 89 dev_info_t *cb_dip; 90 ddi_cb_func_t cb_func; 91 void *cb_arg1; 92 void *cb_arg2; 93 } ddi_cb_t; 94 95 /* 96 * dev_info: The main device information structure this is intended to be 97 * opaque to drivers and drivers should use ddi functions to 98 * access *all* driver accessible fields. 99 * 100 * devi_parent_data includes property lists (interrupts, registers, etc.) 101 * devi_driver_data includes whatever the driver wants to place there. 102 */ 103 struct devinfo_audit; 104 105 typedef struct devi_port { 106 union { 107 struct { 108 uint32_t type; 109 uint32_t pad; 110 } port; 111 uint64_t type64; 112 } info; 113 void *priv_p; 114 } devi_port_t; 115 116 typedef struct devi_bus_priv { 117 devi_port_t port_up; 118 devi_port_t port_down; 119 } devi_bus_priv_t; 120 121 #if defined(__x86) 122 struct iommulib_unit; 123 typedef struct iommulib_unit *iommulib_handle_t; 124 struct iommulib_nex; 125 typedef struct iommulib_nex *iommulib_nexhandle_t; 126 #endif 127 128 typedef uint8_t ndi_flavor_t; 129 struct ddi_hp_cn_handle; 130 131 struct in_node; 132 133 struct dev_info { 134 135 struct dev_info *devi_parent; /* my parent node in tree */ 136 struct dev_info *devi_child; /* my child list head */ 137 struct dev_info *devi_sibling; /* next element on my level */ 138 139 char *devi_binding_name; /* name used to bind driver: */ 140 /* shared storage, points to */ 141 /* devi_node_name, devi_compat_names */ 142 /* or devi_rebinding_name */ 143 144 char *devi_addr; /* address part of name */ 145 146 int devi_nodeid; /* device nodeid */ 147 int devi_instance; /* device instance number */ 148 149 struct dev_ops *devi_ops; /* driver operations */ 150 151 void *devi_parent_data; /* parent private data */ 152 void *devi_driver_data; /* driver private data */ 153 154 ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */ 155 ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */ 156 157 struct ddi_minor_data *devi_minor; /* head of minor list */ 158 struct dev_info *devi_next; /* Next instance of this device */ 159 kmutex_t devi_lock; /* Protects per-devinfo data */ 160 161 /* logical parents for busop primitives */ 162 163 struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */ 164 void *devi_obsolete; /* obsolete placeholder */ 165 struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */ 166 struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */ 167 struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */ 168 struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */ 169 struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */ 170 struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */ 171 struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */ 172 struct dev_info *devi_bus_ctl; /* bus_ctl parent */ 173 174 ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */ 175 176 char *devi_node_name; /* The 'name' of the node */ 177 char *devi_compat_names; /* A list of driver names */ 178 size_t devi_compat_length; /* Size of compat_names */ 179 180 int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *, 181 ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *, 182 uint_t *); 183 int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *, 184 ddi_dma_handle_t); 185 186 char *devi_devid_str; /* registered device id */ 187 188 /* 189 * power management entries 190 * components exist even if the device is not currently power managed 191 */ 192 struct pm_info *devi_pm_info; /* 0 => dev not power managed */ 193 uint_t devi_pm_flags; /* pm flags */ 194 int devi_pm_num_components; /* number of components */ 195 size_t devi_pm_comp_size; /* size of devi_components */ 196 struct pm_component *devi_pm_components; /* array of pm components */ 197 struct dev_info *devi_pm_ppm; /* ppm attached to this one */ 198 void *devi_pm_ppm_private; /* for use by ppm driver */ 199 int devi_pm_dev_thresh; /* "device" threshold */ 200 uint_t devi_pm_kidsupcnt; /* # of kids powered up */ 201 struct pm_scan *devi_pm_scan; /* pm scan info */ 202 uint_t devi_pm_noinvolpm; /* # of descendents no-invol */ 203 uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */ 204 kmutex_t devi_pm_lock; /* pm lock for state */ 205 kmutex_t devi_pm_busy_lock; /* for component busy count */ 206 207 uint_t devi_state; /* device/bus state flags */ 208 /* see below for definitions */ 209 kcondvar_t devi_cv; /* cv */ 210 int devi_ref; /* reference count */ 211 212 dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */ 213 214 ddi_node_class_t devi_node_class; /* Node class */ 215 int devi_node_attributes; /* Node attributes: See below */ 216 217 char *devi_device_class; 218 219 /* 220 * New mpxio kernel hooks entries 221 */ 222 int devi_mdi_component; /* mpxio component type */ 223 void *devi_mdi_client; /* mpxio client information */ 224 void *devi_mdi_xhci; /* vhci/phci info */ 225 226 ddi_prop_list_t *devi_global_prop_list; /* driver global properties */ 227 major_t devi_major; /* driver major number */ 228 ddi_node_state_t devi_node_state; /* state of node */ 229 uint_t devi_flags; /* configuration flags */ 230 int devi_circular; /* for recursive operations */ 231 void *devi_busy_thread; /* thread operating on node */ 232 void *devi_taskq; /* hotplug taskq */ 233 234 /* device driver statistical and audit info */ 235 struct devinfo_audit *devi_audit; /* last state change */ 236 237 /* 238 * FMA support for resource caches and error handlers 239 */ 240 struct i_ddi_fmhdl *devi_fmhdl; 241 242 uint_t devi_cpr_flags; 243 244 /* Owned by DDI interrupt framework */ 245 devinfo_intr_t *devi_intr_p; 246 247 void *devi_nex_pm; /* nexus PM private */ 248 249 char *devi_addr_buf; /* buffer for devi_addr */ 250 251 char *devi_rebinding_name; /* binding_name of rebind */ 252 253 /* For device contracts that have this dip's minor node as resource */ 254 kmutex_t devi_ct_lock; /* contract lock */ 255 kcondvar_t devi_ct_cv; /* contract cv */ 256 int devi_ct_count; /* # of outstanding responses */ 257 int devi_ct_neg; /* neg. occurred on dip */ 258 list_t devi_ct; 259 260 /* owned by bus framework */ 261 devi_bus_priv_t devi_bus; /* bus private data */ 262 263 /* Declarations of the pure dynamic properties to snapshot */ 264 struct i_ddi_prop_dyn *devi_prop_dyn_driver; /* prop_op */ 265 struct i_ddi_prop_dyn *devi_prop_dyn_parent; /* bus_prop_op */ 266 267 #if defined(__x86) 268 /* For x86 (Intel and AMD) IOMMU support */ 269 void *devi_iommu; 270 iommulib_handle_t devi_iommulib_handle; 271 iommulib_nexhandle_t devi_iommulib_nex_handle; 272 #endif 273 274 /* Generic callback mechanism */ 275 ddi_cb_t *devi_cb_p; 276 277 /* ndi 'flavors' */ 278 ndi_flavor_t devi_flavor; /* flavor assigned by parent */ 279 ndi_flavor_t devi_flavorv_n; /* number of child-flavors */ 280 void **devi_flavorv; /* child-flavor specific data */ 281 282 /* Owned by hotplug framework */ 283 struct ddi_hp_cn_handle *devi_hp_hdlp; /* hotplug handle list */ 284 285 struct in_node *devi_in_node; /* pointer to devinfo node's in_node_t */ 286 287 /* detach event data */ 288 char *devi_ev_path; 289 int devi_ev_instance; 290 }; 291 292 #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type)) 293 294 /* 295 * NB: The 'name' field, for compatibility with old code (both existing 296 * device drivers and userland code), is now defined as the name used 297 * to bind the node to a device driver, and not the device node name. 298 * If the device node name does not define a binding to a device driver, 299 * and the framework uses a different algorithm to create the binding to 300 * the driver, the node name and binding name will be different. 301 * 302 * Note that this implies that the node name plus instance number does 303 * NOT create a unique driver id; only the binding name plus instance 304 * number creates a unique driver id. 305 * 306 * New code should not use 'devi_name'; use 'devi_binding_name' or 307 * 'devi_node_name' and/or the routines that access those fields. 308 */ 309 310 #define devi_name devi_binding_name 311 312 /* 313 * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept 314 * around to allow legacy drivers to to compile. 315 */ 316 #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL) 317 #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL) 318 #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops) 319 320 /* 321 * The device state flags (devi_state) contains information regarding 322 * the state of the device (Online/Offline/Down). For bus nexus 323 * devices, the device state also contains state information regarding 324 * the state of the bus represented by this nexus node. 325 * 326 * Device state information is stored in bits [0-7], bus state in bits 327 * [8-15]. 328 * 329 * NOTE: all devi_state updates should be protected by devi_lock. 330 */ 331 #define DEVI_DEVICE_OFFLINE 0x00000001 332 #define DEVI_DEVICE_DOWN 0x00000002 333 #define DEVI_DEVICE_DEGRADED 0x00000004 334 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */ 335 336 #define DEVI_BUS_QUIESCED 0x00000100 337 #define DEVI_BUS_DOWN 0x00000200 338 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */ 339 340 #define DEVI_S_ATTACHING 0x00010000 341 #define DEVI_S_DETACHING 0x00020000 342 #define DEVI_S_ONLINING 0x00040000 343 #define DEVI_S_OFFLINING 0x00080000 344 345 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */ 346 347 #define DEVI_S_UNBOUND 0x00200000 348 #define DEVI_S_REPORT 0x08000000 /* report status change */ 349 350 #define DEVI_S_EVADD 0x10000000 /* state of devfs event */ 351 #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */ 352 #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */ 353 354 /* 355 * Device state macros. 356 * o All SET/CLR/DONE users must protect context with devi_lock. 357 * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT. 358 * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE. 359 * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED. 360 */ 361 #define DEVI_IS_DEVICE_OFFLINE(dip) \ 362 ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE) 363 364 #define DEVI_SET_DEVICE_ONLINE(dip) { \ 365 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 366 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 367 mutex_exit(&DEVI(dip)->devi_lock); \ 368 e_ddi_undegrade_finalize(dip); \ 369 mutex_enter(&DEVI(dip)->devi_lock); \ 370 } \ 371 /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \ 372 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \ 373 DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \ 374 } 375 376 #define DEVI_SET_DEVICE_OFFLINE(dip) { \ 377 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 378 DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \ 379 } 380 381 #define DEVI_IS_DEVICE_DOWN(dip) \ 382 ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN) 383 384 #define DEVI_SET_DEVICE_DOWN(dip) { \ 385 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 386 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 387 DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \ 388 } 389 390 #define DEVI_IS_DEVICE_DEGRADED(dip) \ 391 ((DEVI(dip)->devi_state & \ 392 (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED) 393 394 #define DEVI_SET_DEVICE_DEGRADED(dip) { \ 395 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 396 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 397 mutex_exit(&DEVI(dip)->devi_lock); \ 398 e_ddi_degrade_finalize(dip); \ 399 mutex_enter(&DEVI(dip)->devi_lock); \ 400 DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \ 401 } 402 403 #define DEVI_SET_DEVICE_UP(dip) { \ 404 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 405 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 406 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 407 mutex_exit(&DEVI(dip)->devi_lock); \ 408 e_ddi_undegrade_finalize(dip); \ 409 mutex_enter(&DEVI(dip)->devi_lock); \ 410 } \ 411 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \ 412 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 413 } 414 415 /* Device removal and insertion */ 416 #define DEVI_IS_DEVICE_REMOVED(dip) \ 417 ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED) 418 419 #define DEVI_SET_DEVICE_REMOVED(dip) { \ 420 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 421 DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED | DEVI_S_REPORT; \ 422 } 423 424 #define DEVI_SET_DEVICE_REINSERTED(dip) { \ 425 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 426 DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \ 427 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 428 } 429 430 /* Bus state change macros */ 431 #define DEVI_IS_BUS_QUIESCED(dip) \ 432 ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED) 433 434 #define DEVI_SET_BUS_ACTIVE(dip) { \ 435 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 436 DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \ 437 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 438 } 439 440 #define DEVI_SET_BUS_QUIESCE(dip) { \ 441 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 442 DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \ 443 } 444 445 #define DEVI_IS_BUS_DOWN(dip) \ 446 ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN) 447 448 #define DEVI_SET_BUS_UP(dip) { \ 449 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 450 DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \ 451 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 452 } 453 454 #define DEVI_SET_BUS_DOWN(dip) { \ 455 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 456 DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \ 457 } 458 459 /* Status change report needed */ 460 #define DEVI_NEED_REPORT(dip) \ 461 ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT) 462 463 #define DEVI_SET_REPORT(dip) { \ 464 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 465 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 466 } 467 468 #define DEVI_REPORT_DONE(dip) { \ 469 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 470 DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \ 471 } 472 473 /* Do an NDI_CONFIG for its children */ 474 #define DEVI_NEED_NDI_CONFIG(dip) \ 475 ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG) 476 477 #define DEVI_SET_NDI_CONFIG(dip) { \ 478 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 479 DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \ 480 } 481 482 #define DEVI_CLR_NDI_CONFIG(dip) { \ 483 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 484 DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \ 485 } 486 487 /* Attaching or detaching state */ 488 #define DEVI_IS_ATTACHING(dip) \ 489 ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING) 490 491 #define DEVI_SET_ATTACHING(dip) { \ 492 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 493 DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \ 494 } 495 496 #define DEVI_CLR_ATTACHING(dip) { \ 497 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 498 DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \ 499 } 500 501 #define DEVI_IS_DETACHING(dip) \ 502 ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING) 503 504 #define DEVI_SET_DETACHING(dip) { \ 505 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 506 DEVI(dip)->devi_state |= DEVI_S_DETACHING; \ 507 } 508 509 #define DEVI_CLR_DETACHING(dip) { \ 510 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 511 DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \ 512 } 513 514 /* Onlining or offlining state */ 515 #define DEVI_IS_ONLINING(dip) \ 516 ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING) 517 518 #define DEVI_SET_ONLINING(dip) { \ 519 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 520 DEVI(dip)->devi_state |= DEVI_S_ONLINING; \ 521 } 522 523 #define DEVI_CLR_ONLINING(dip) { \ 524 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 525 DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \ 526 } 527 528 #define DEVI_IS_OFFLINING(dip) \ 529 ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING) 530 531 #define DEVI_SET_OFFLINING(dip) { \ 532 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 533 DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \ 534 } 535 536 #define DEVI_CLR_OFFLINING(dip) { \ 537 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 538 DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \ 539 } 540 541 #define DEVI_IS_IN_RECONFIG(dip) \ 542 (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING)) 543 544 /* Busy invoking a dacf task against this node */ 545 #define DEVI_IS_INVOKING_DACF(dip) \ 546 ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF) 547 548 #define DEVI_SET_INVOKING_DACF(dip) { \ 549 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 550 DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \ 551 } 552 553 #define DEVI_CLR_INVOKING_DACF(dip) { \ 554 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 555 DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \ 556 } 557 558 /* Events for add/remove */ 559 #define DEVI_EVADD(dip) \ 560 ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD) 561 562 #define DEVI_SET_EVADD(dip) { \ 563 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 564 DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \ 565 DEVI(dip)->devi_state |= DEVI_S_EVADD; \ 566 } 567 568 #define DEVI_EVREMOVE(dip) \ 569 ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE) 570 571 #define DEVI_SET_EVREMOVE(dip) { \ 572 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 573 DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \ 574 DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \ 575 } 576 577 #define DEVI_SET_EVUNINIT(dip) { \ 578 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 579 DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \ 580 } 581 582 /* Need to call the devo_reset entry point for this device at shutdown */ 583 #define DEVI_NEED_RESET(dip) \ 584 ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET) 585 586 #define DEVI_SET_NEED_RESET(dip) { \ 587 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 588 DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \ 589 } 590 591 #define DEVI_CLR_NEED_RESET(dip) { \ 592 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 593 DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \ 594 } 595 596 /* 597 * devi_flags bits 598 * 599 * NOTE: all devi_state updates should be protected by devi_lock. 600 */ 601 #define DEVI_BUSY 0x00000001 /* busy configuring children */ 602 #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */ 603 #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */ 604 #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */ 605 #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */ 606 #define DEVI_CACHED_DEVID 0x00000020 /* devid cached in devid cache */ 607 #define DEVI_PHCI_SIGNALS_VHCI 0x00000040 /* pHCI ndi_devi_exit signals vHCI */ 608 #define DEVI_REBIND 0x00000080 /* post initchild driver rebind */ 609 #define DEVI_RETIRED 0x00000100 /* device is retired */ 610 #define DEVI_RETIRING 0x00000200 /* being evaluated for retire */ 611 #define DEVI_R_CONSTRAINT 0x00000400 /* constraints have been applied */ 612 #define DEVI_R_BLOCKED 0x00000800 /* constraints block retire */ 613 #define DEVI_CT_NOP 0x00001000 /* NOP contract event occurred */ 614 #define DEVI_PCI_DEVICE 0x00002000 /* dip is PCI */ 615 616 #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY) 617 #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \ 618 ((DEVI(dip))->devi_busy_thread == curthread)) 619 620 #define DEVI_IS_PCI(dip) (DEVI(dip)->devi_flags & DEVI_PCI_DEVICE) 621 #define DEVI_SET_PCI(dip) (DEVI(dip)->devi_flags |= (DEVI_PCI_DEVICE)) 622 623 char *i_ddi_devi_class(dev_info_t *); 624 int i_ddi_set_devi_class(dev_info_t *, char *, int); 625 626 /* 627 * This structure represents one piece of bus space occupied by a given 628 * device. It is used in an array for devices with multiple address windows. 629 */ 630 struct regspec { 631 uint_t regspec_bustype; /* cookie for bus type it's on */ 632 uint_t regspec_addr; /* address of reg relative to bus */ 633 uint_t regspec_size; /* size of this register set */ 634 }; 635 636 /* 637 * This structure represents one piece of nexus bus space. 638 * It is used in an array for nexi with multiple bus spaces 639 * to define the childs offsets in the parents bus space. 640 */ 641 struct rangespec { 642 uint_t rng_cbustype; /* Child's address, hi order */ 643 uint_t rng_coffset; /* Child's address, lo order */ 644 uint_t rng_bustype; /* Parent's address, hi order */ 645 uint_t rng_offset; /* Parent's address, lo order */ 646 uint_t rng_size; /* size of space for this entry */ 647 }; 648 649 #ifdef _KERNEL 650 651 typedef enum { 652 DDI_PRE = 0, 653 DDI_POST = 1 654 } ddi_pre_post_t; 655 656 /* 657 * This structure represents notification of a child attach event 658 * These could both be the same if attach/detach commands were in the 659 * same name space. 660 * Note that the target dip is passed as an arg already. 661 */ 662 struct attachspec { 663 ddi_attach_cmd_t cmd; /* type of event */ 664 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 665 dev_info_t *pdip; /* parent of attaching node */ 666 int result; /* result of attach op (post command only) */ 667 }; 668 669 /* 670 * This structure represents notification of a child detach event 671 * Note that the target dip is passed as an arg already. 672 */ 673 struct detachspec { 674 ddi_detach_cmd_t cmd; /* type of event */ 675 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 676 dev_info_t *pdip; /* parent of detaching node */ 677 int result; /* result of detach op (post command only) */ 678 }; 679 680 #endif /* _KERNEL */ 681 682 typedef enum { 683 DDM_MINOR = 0, 684 DDM_ALIAS, 685 DDM_DEFAULT, 686 DDM_INTERNAL_PATH 687 } ddi_minor_type; 688 689 /* implementation flags for driver specified device access control */ 690 #define DM_NO_FSPERM 0x1 691 692 struct devplcy; 693 694 struct ddi_minor { 695 char *name; /* name of node */ 696 dev_t dev; /* device number */ 697 int spec_type; /* block or char */ 698 int flags; /* access flags */ 699 char *node_type; /* block, byte, serial, network */ 700 struct devplcy *node_priv; /* privilege for this minor */ 701 mode_t priv_mode; /* default apparent privilege mode */ 702 }; 703 704 /* 705 * devi_node_attributes contains node attributes private to the 706 * ddi implementation. As a consumer, do not use these bit definitions 707 * directly, use the ndi functions that check for the existence of the 708 * specific node attributes. 709 * 710 * DDI_PERSISTENT indicates a 'persistent' node; one that is not 711 * automatically freed by the framework if the driver is unloaded 712 * or the driver fails to attach to this node. 713 * 714 * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned 715 * by the framework and should be auto-freed if the node is removed. 716 * 717 * DDI_VHCI_NODE indicates that the node type is VHCI. This flag 718 * must be set by ndi_devi_config_vhci() routine only. 719 * 720 * DDI_HIDDEN_NODE indicates that the node should not show up in snapshots 721 * or in /devices. 722 * 723 * DDI_HOTPLUG_NODE indicates that the node created by nexus hotplug. 724 */ 725 #define DDI_PERSISTENT 0x01 726 #define DDI_AUTO_ASSIGNED_NODEID 0x02 727 #define DDI_VHCI_NODE 0x04 728 #define DDI_HIDDEN_NODE 0x08 729 #define DDI_HOTPLUG_NODE 0x10 730 731 #define DEVI_VHCI_NODE(dip) \ 732 (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE) 733 734 /* 735 * The ddi_minor_data structure gets filled in by ddi_create_minor_node. 736 * It then gets attached to the devinfo node as a property. 737 */ 738 struct ddi_minor_data { 739 struct ddi_minor_data *next; /* next one in the chain */ 740 dev_info_t *dip; /* pointer to devinfo node */ 741 ddi_minor_type type; /* Following data type */ 742 struct ddi_minor d_minor; /* Actual minor node data */ 743 }; 744 745 #define ddm_name d_minor.name 746 #define ddm_dev d_minor.dev 747 #define ddm_flags d_minor.flags 748 #define ddm_spec_type d_minor.spec_type 749 #define ddm_node_type d_minor.node_type 750 #define ddm_node_priv d_minor.node_priv 751 #define ddm_priv_mode d_minor.priv_mode 752 753 /* 754 * parent private data structure contains register, interrupt, property 755 * and range information. 756 */ 757 struct ddi_parent_private_data { 758 int par_nreg; /* number of regs */ 759 struct regspec *par_reg; /* array of regs */ 760 int par_nintr; /* number of interrupts */ 761 struct intrspec *par_intr; /* array of possible interrupts */ 762 int par_nrng; /* number of ranges */ 763 struct rangespec *par_rng; /* array of ranges */ 764 }; 765 #define DEVI_PD(d) \ 766 ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data) 767 768 #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg) 769 #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr) 770 #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng) 771 #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)]) 772 #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)]) 773 #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)]) 774 775 #ifdef _KERNEL 776 /* 777 * This data structure is private to the indexed soft state allocator. 778 */ 779 typedef struct i_ddi_soft_state { 780 void **array; /* the array of pointers */ 781 kmutex_t lock; /* serialize access to this struct */ 782 size_t size; /* how many bytes per state struct */ 783 size_t n_items; /* how many structs herein */ 784 struct i_ddi_soft_state *next; /* 'dirty' elements */ 785 } i_ddi_soft_state; 786 787 /* 788 * This data structure is private to the stringhashed soft state allocator. 789 */ 790 typedef struct i_ddi_soft_state_bystr { 791 size_t ss_size; /* how many bytes per state struct */ 792 mod_hash_t *ss_mod_hash; /* hash implementation */ 793 } i_ddi_soft_state_bystr; 794 795 /* 796 * This data structure is private to the ddi_strid_* implementation 797 */ 798 typedef struct i_ddi_strid { 799 size_t strid_chunksz; 800 size_t strid_spacesz; 801 id_space_t *strid_space; 802 mod_hash_t *strid_byid; 803 mod_hash_t *strid_bystr; 804 } i_ddi_strid; 805 #endif /* _KERNEL */ 806 807 /* 808 * Solaris DDI DMA implementation structure and function definitions. 809 * 810 * Note: no callers of DDI functions must depend upon data structures 811 * declared below. They are not guaranteed to remain constant. 812 */ 813 814 /* 815 * Implementation DMA mapping structure. 816 * 817 * The publicly visible ddi_dma_req structure is filled 818 * in by a caller that wishes to map a memory object 819 * for DMA. Internal to this implementation of the public 820 * DDI DMA functions this request structure is put together 821 * with bus nexus specific functions that have additional 822 * information and constraints as to how to go about doing 823 * the requested mapping function 824 * 825 * In this implementation, some of the information from the 826 * original requester is retained throughout the lifetime 827 * of the I/O mapping being active. 828 */ 829 830 /* 831 * This is the implementation specific description 832 * of how we've mapped an object for DMA. 833 */ 834 #if defined(__sparc) 835 typedef struct ddi_dma_impl { 836 /* 837 * DMA mapping information 838 */ 839 ulong_t dmai_mapping; /* mapping cookie */ 840 841 /* 842 * Size of the current mapping, in bytes. 843 * 844 * Note that this is distinct from the size of the object being mapped 845 * for DVMA. We might have only a portion of the object mapped at any 846 * given point in time. 847 */ 848 uint_t dmai_size; 849 850 /* 851 * Offset, in bytes, into object that is currently mapped. 852 */ 853 off_t dmai_offset; 854 855 /* 856 * Information gathered from the original DMA mapping 857 * request and saved for the lifetime of the mapping. 858 */ 859 uint_t dmai_minxfer; 860 uint_t dmai_burstsizes; 861 uint_t dmai_ndvmapages; 862 uint_t dmai_pool; /* cached DVMA space */ 863 uint_t dmai_rflags; /* requester's flags + ours */ 864 uint_t dmai_inuse; /* active handle? */ 865 uint_t dmai_nwin; 866 uint_t dmai_winsize; 867 caddr_t dmai_nexus_private; 868 void *dmai_iopte; 869 uint_t *dmai_sbi; 870 void *dmai_minfo; /* random mapping information */ 871 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 872 ddi_dma_obj_t dmai_object; /* requester's object */ 873 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 874 ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */ 875 876 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 877 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 878 int dmai_fault; 879 ndi_err_t dmai_error; 880 881 } ddi_dma_impl_t; 882 883 #elif defined(__x86) 884 885 /* 886 * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex 887 * implementation specific state is in dmai_private. 888 */ 889 typedef struct ddi_dma_impl { 890 ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */ 891 void *dmai_private; 892 893 /* 894 * Information gathered from the original dma mapping 895 * request and saved for the lifetime of the mapping. 896 */ 897 uint_t dmai_minxfer; 898 uint_t dmai_burstsizes; 899 uint_t dmai_rflags; /* requester's flags + ours */ 900 int dmai_nwin; 901 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 902 903 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 904 905 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 906 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 907 int dmai_fault; 908 ndi_err_t dmai_error; 909 } ddi_dma_impl_t; 910 911 #else 912 #error "struct ddi_dma_impl not defined for this architecture" 913 #endif /* defined(__sparc) */ 914 915 /* 916 * For now DMA segments share state with the DMA handle 917 */ 918 typedef ddi_dma_impl_t ddi_dma_seg_impl_t; 919 920 /* 921 * These flags use reserved bits from the dma request flags. 922 * 923 * A note about the DMP_NOSYNC flags: the root nexus will 924 * set these as it sees best. If an intermediate nexus 925 * actually needs these operations, then during the unwind 926 * from the call to ddi_dma_bind, the nexus driver *must* 927 * clear the appropriate flag(s). This is because, as an 928 * optimization, ddi_dma_sync(9F) looks at these flags before 929 * deciding to spend the time going back up the tree. 930 */ 931 932 #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL 933 #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ 934 #define DMP_DDIFLAGS (_DMCM1|_DMCM2) 935 #define DMP_SHADOW 0x20 936 #define DMP_LKIOPB 0x40 937 #define DMP_LKSYSV 0x80 938 #define DMP_IOCACHE 0x100 939 #define DMP_USEHAT 0x200 940 #define DMP_PHYSADDR 0x400 941 #define DMP_INVALID 0x800 942 #define DMP_NOLIMIT 0x1000 943 #define DMP_VMEREQ 0x10000000 944 #define DMP_BYPASSNEXUS 0x20000000 945 #define DMP_NODEVSYNC 0x40000000 946 #define DMP_NOCPUSYNC 0x80000000 947 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC) 948 949 /* 950 * In order to complete a device to device mapping that 951 * has percolated as high as an IU nexus (gone that high 952 * because the DMA request is a VADDR type), we define 953 * structure to use with the DDI_CTLOPS_DMAPMAPC request 954 * that re-traverses the request tree to finish the 955 * DMA 'mapping' for a device. 956 */ 957 struct dma_phys_mapc { 958 struct ddi_dma_req *dma_req; /* original request */ 959 ddi_dma_impl_t *mp; /* current handle, or none */ 960 int nptes; /* number of ptes */ 961 void *ptes; /* ptes already read */ 962 }; 963 964 #define MAXCALLBACK 20 965 966 /* 967 * Callback definitions 968 */ 969 struct ddi_callback { 970 struct ddi_callback *c_nfree; 971 struct ddi_callback *c_nlist; 972 int (*c_call)(); 973 int c_count; 974 caddr_t c_arg; 975 size_t c_size; 976 }; 977 978 /* 979 * Pure dynamic property declaration. A pure dynamic property is a property 980 * for which a driver's prop_op(9E) implementation will return a value on 981 * demand, but the property name does not exist on a property list (global, 982 * driver, system, or hardware) - the person asking for the value must know 983 * the name and type information. 984 * 985 * For a pure dynamic property to show up in a di_init() devinfo shapshot, the 986 * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism 987 * allows a driver to define an array of the name/type information of its 988 * dynamic properties. When a driver declares its dynamic properties in a 989 * i_ddi_prop_dyn_t array, and registers that array using 990 * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information 991 * to represent the properties in a snapshot - calling the driver's 992 * prop_op(9E) to obtain values. 993 * 994 * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value. 995 * 996 * A pure dynamic property name associated with a minor_node/dev_t should be 997 * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate. The 998 * driver's prop_op(9E) entry point will be called for all 999 * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver 1000 * where not all minor_node/dev_t combinations support the same named 1001 * properties, it is the responsibility of the prop_op(9E) implementation to 1002 * sort out what combinations are appropriate. 1003 * 1004 * A pure dynamic property of a devinfo node should be defined with a 1005 * dp_spec_type of 0. 1006 * 1007 * NB: Public DDI property interfaces no longer support pure dynamic 1008 * properties, but they are still still used. A prime example is the cmlb 1009 * implementation of size(9P) properties. Using pure dynamic properties 1010 * reduces the space required to maintain per-partition information. Since 1011 * there are no public interfaces to create pure dynamic properties, 1012 * the i_ddi_prop_dyn_t mechanism should remain private. 1013 */ 1014 typedef struct i_ddi_prop_dyn { 1015 char *dp_name; /* name of dynamic property */ 1016 int dp_type; /* DDI_PROP_TYPE_ of property */ 1017 int dp_spec_type; /* 0, S_IFCHR, S_IFBLK */ 1018 } i_ddi_prop_dyn_t; 1019 void i_ddi_prop_dyn_driver_set(dev_info_t *, 1020 i_ddi_prop_dyn_t *); 1021 i_ddi_prop_dyn_t *i_ddi_prop_dyn_driver_get(dev_info_t *); 1022 void i_ddi_prop_dyn_parent_set(dev_info_t *, 1023 i_ddi_prop_dyn_t *); 1024 i_ddi_prop_dyn_t *i_ddi_prop_dyn_parent_get(dev_info_t *); 1025 void i_ddi_prop_dyn_cache_invalidate(dev_info_t *, 1026 i_ddi_prop_dyn_t *); 1027 1028 /* 1029 * Device id - Internal definition. 1030 */ 1031 #define DEVID_MAGIC_MSB 0x69 1032 #define DEVID_MAGIC_LSB 0x64 1033 #define DEVID_REV_MSB 0x00 1034 #define DEVID_REV_LSB 0x01 1035 #define DEVID_HINT_SIZE 4 1036 1037 typedef struct impl_devid { 1038 uchar_t did_magic_hi; /* device id magic # (msb) */ 1039 uchar_t did_magic_lo; /* device id magic # (lsb) */ 1040 uchar_t did_rev_hi; /* device id revision # (msb) */ 1041 uchar_t did_rev_lo; /* device id revision # (lsb) */ 1042 uchar_t did_type_hi; /* device id type (msb) */ 1043 uchar_t did_type_lo; /* device id type (lsb) */ 1044 uchar_t did_len_hi; /* length of devid data (msb) */ 1045 uchar_t did_len_lo; /* length of devid data (lsb) */ 1046 char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */ 1047 char did_id[1]; /* start of device id data */ 1048 } impl_devid_t; 1049 1050 #define DEVID_GETTYPE(devid) ((ushort_t) \ 1051 (((devid)->did_type_hi << NBBY) + \ 1052 (devid)->did_type_lo)) 1053 1054 #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \ 1055 (devid)->did_type_lo = lobyte((type)); 1056 1057 #define DEVID_GETLEN(devid) ((ushort_t) \ 1058 (((devid)->did_len_hi << NBBY) + \ 1059 (devid)->did_len_lo)) 1060 1061 #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \ 1062 (devid)->did_len_lo = lobyte((len)); 1063 1064 /* 1065 * Per PSARC/1995/352, a binary devid contains fields for <magic number>, 1066 * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself. 1067 * This proposal would encode the binary devid into a string consisting 1068 * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below 1069 * (<id_length> is rederived from the length of the string 1070 * representation of the <id>): 1071 * 1072 * <magic> ->"id" 1073 * 1074 * <rev> ->"%d" // "0" -> type of DEVID_NONE "id0" 1075 * // NOTE: PSARC/1995/352 <revision> is "1". 1076 * // NOTE: support limited to 10 revisions 1077 * // in current implementation 1078 * 1079 * <driver_hint> ->"%s" // "sd"/"ssd" 1080 * // NOTE: driver names limited to 4 1081 * // characters for <revision> "1" 1082 * 1083 * <type> ->'w' | // DEVID_SCSI3_WWN <hex_id> 1084 * 'W' | // DEVID_SCSI3_WWN <ascii_id> 1085 * 't' | // DEVID_SCSI3_VPD_T10 <hex_id> 1086 * 'T' | // DEVID_SCSI3_VPD_T10 <ascii_id> 1087 * 'x' | // DEVID_SCSI3_VPD_EUI <hex_id> 1088 * 'X' | // DEVID_SCSI3_VPD_EUI <ascii_id> 1089 * 'n' | // DEVID_SCSI3_VPD_NAA <hex_id> 1090 * 'N' | // DEVID_SCSI3_VPD_NAA <ascii_id> 1091 * 's' | // DEVID_SCSI_SERIAL <hex_id> 1092 * 'S' | // DEVID_SCSI_SERIAL <ascii_id> 1093 * 'f' | // DEVID_FAB <hex_id> 1094 * 'F' | // DEVID_FAB <ascii_id> 1095 * 'e' | // DEVID_ENCAP <hex_id> 1096 * 'E' | // DEVID_ENCAP <ascii_id> 1097 * 'a' | // DEVID_ATA_SERIAL <hex_id> 1098 * 'A' | // DEVID_ATA_SERIAL <ascii_id> 1099 * 'u' | // unknown <hex_id> 1100 * 'U' // unknown <ascii_id> 1101 * // NOTE:lower case -> <hex_id> 1102 * // upper case -> <ascii_id> 1103 * // NOTE:this covers all types currently 1104 * // defined for <revision> 1. 1105 * // NOTE:a <type> can be added 1106 * // without changing the <revision>. 1107 * 1108 * <id> -> <ascii_id> | // <type> is upper case 1109 * <hex_id> // <type> is lower case 1110 * 1111 * <ascii_id> // only if all bytes of binary <id> field 1112 * // are in the set: 1113 * // [A-Z][a-z][0-9]+-.= and space and 0x00 1114 * // the encoded form is: 1115 * // [A-Z][a-z][0-9]+-.= and _ and ~ 1116 * // NOTE: ' ' <=> '_', 0x00 <=> '~' 1117 * // these sets are chosen to avoid shell 1118 * // and conflicts with DDI node names. 1119 * 1120 * <hex_id> // if not <ascii_id>; each byte of binary 1121 * // <id> maps a to 2 digit ascii hex 1122 * // representation in the string. 1123 * 1124 * This encoding provides a meaningful correlation between the /devices 1125 * path and the devid string where possible. 1126 * 1127 * Fibre: 1128 * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw 1129 * id1,ssd@w20000020370bb488:c,raw 1130 * 1131 * Copper: 1132 * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c 1133 * id1,sd@SIBM_____1XY210__________:c 1134 */ 1135 /* determine if a byte of an id meets ASCII representation requirements */ 1136 #define DEVID_IDBYTE_ISASCII(b) ( \ 1137 (((b) >= 'a') && ((b) <= 'z')) || \ 1138 (((b) >= 'A') && ((b) <= 'Z')) || \ 1139 (((b) >= '0') && ((b) <= '9')) || \ 1140 (b == '+') || (b == '-') || (b == '.') || (b == '=') || \ 1141 (b == ' ') || (b == 0x00)) 1142 1143 /* set type to lower case to indicate that the did_id field is ascii */ 1144 #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */ 1145 1146 /* determine from type if did_id field is binary or ascii */ 1147 #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z')) 1148 1149 /* convert type field from binary to ascii */ 1150 #define DEVID_TYPE_BINTOASCII(b) ( \ 1151 ((b) == DEVID_SCSI3_WWN) ? 'w' : \ 1152 ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \ 1153 ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \ 1154 ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \ 1155 ((b) == DEVID_SCSI_SERIAL) ? 's' : \ 1156 ((b) == DEVID_FAB) ? 'f' : \ 1157 ((b) == DEVID_ENCAP) ? 'e' : \ 1158 ((b) == DEVID_ATA_SERIAL) ? 'a' : \ 1159 'u') /* unknown */ 1160 1161 /* convert type field from ascii to binary */ 1162 #define DEVID_TYPE_ASCIITOBIN(c) ( \ 1163 (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \ 1164 (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \ 1165 (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \ 1166 (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \ 1167 (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \ 1168 (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \ 1169 (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \ 1170 (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \ 1171 DEVID_MAXTYPE +1) /* unknown */ 1172 1173 /* determine if the type should be forced to hex encoding (non-ascii) */ 1174 #define DEVID_TYPE_BIN_FORCEHEX(b) ( \ 1175 ((b) == DEVID_SCSI3_WWN) || \ 1176 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1177 ((b) == DEVID_SCSI3_VPD_NAA) || \ 1178 ((b) == DEVID_FAB)) 1179 1180 /* determine if the type is from a scsi3 vpd */ 1181 #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \ 1182 ((b) == DEVID_SCSI3_VPD_T10) || \ 1183 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1184 ((b) == DEVID_SCSI3_VPD_NAA)) 1185 1186 /* convert rev field from binary to ascii (only supports 10 revs) */ 1187 #define DEVID_REV_BINTOASCII(b) (b + '0') 1188 1189 /* convert rev field from ascii to binary (only supports 10 revs) */ 1190 #define DEVID_REV_ASCIITOBIN(c) (c - '0') 1191 1192 /* name of devid property */ 1193 #define DEVID_PROP_NAME "devid" 1194 1195 /* 1196 * prop_name used by pci_{save,restore}_config_regs() 1197 */ 1198 #define SAVED_CONFIG_REGS "pci-config-regs" 1199 #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask" 1200 #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info" 1201 1202 typedef struct pci_config_header_state { 1203 uint16_t chs_command; 1204 uint8_t chs_cache_line_size; 1205 uint8_t chs_latency_timer; 1206 uint8_t chs_header_type; 1207 uint8_t chs_sec_latency_timer; 1208 uint8_t chs_bridge_control; 1209 uint32_t chs_base0; 1210 uint32_t chs_base1; 1211 uint32_t chs_base2; 1212 uint32_t chs_base3; 1213 uint32_t chs_base4; 1214 uint32_t chs_base5; 1215 } pci_config_header_state_t; 1216 1217 #ifdef _KERNEL 1218 1219 typedef struct pci_cap_save_desc { 1220 uint16_t cap_offset; 1221 uint16_t cap_id; 1222 uint32_t cap_nregs; 1223 } pci_cap_save_desc_t; 1224 1225 typedef struct pci_cap_entry { 1226 uint16_t cap_id; 1227 uint16_t cap_reg; 1228 uint16_t cap_mask; 1229 uint32_t cap_ndwords; 1230 uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr, 1231 uint32_t *regbuf, uint32_t ndwords); 1232 } pci_cap_entry_t; 1233 1234 #endif /* _KERNEL */ 1235 1236 #ifdef __cplusplus 1237 } 1238 #endif 1239 1240 #endif /* _SYS_DDI_IMPLDEFS_H */ 1241