1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #ifndef _SYS_DDI_IMPLDEFS_H 26 #define _SYS_DDI_IMPLDEFS_H 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/t_lock.h> 31 #include <sys/ddipropdefs.h> 32 #include <sys/devops.h> 33 #include <sys/autoconf.h> 34 #include <sys/mutex.h> 35 #include <vm/page.h> 36 #include <sys/dacf_impl.h> 37 #include <sys/ndifm.h> 38 #include <sys/epm.h> 39 #include <sys/ddidmareq.h> 40 #include <sys/ddi_intr.h> 41 #include <sys/ddi_hp.h> 42 #include <sys/ddi_hp_impl.h> 43 #include <sys/ddi_isa.h> 44 #include <sys/id_space.h> 45 #include <sys/modhash.h> 46 #include <sys/bitset.h> 47 48 #ifdef __cplusplus 49 extern "C" { 50 #endif 51 52 /* 53 * The device id implementation has been switched to be based on properties. 54 * For compatibility with di_devid libdevinfo interface the following 55 * must be defined: 56 */ 57 #define DEVID_COMPATIBILITY ((ddi_devid_t)-1) 58 59 /* 60 * Definitions for node class. 61 * DDI_NC_PROM: a node with a nodeid that may be used in a promif call. 62 * DDI_NC_PSEUDO: a software created node with a software assigned nodeid. 63 */ 64 typedef enum { 65 DDI_NC_PROM = 0, 66 DDI_NC_PSEUDO 67 } ddi_node_class_t; 68 69 /* 70 * Definitions for generic callback mechanism. 71 */ 72 typedef enum { 73 DDI_CB_INTR_ADD, /* More available interrupts */ 74 DDI_CB_INTR_REMOVE /* Fewer available interrupts */ 75 } ddi_cb_action_t; 76 77 typedef enum { 78 DDI_CB_FLAG_INTR = 0x1 /* Driver is IRM aware */ 79 } ddi_cb_flags_t; 80 81 #define DDI_CB_FLAG_VALID(f) ((f) & DDI_CB_FLAG_INTR) 82 83 typedef int (*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action, 84 void *cbarg, void *arg1, void *arg2); 85 86 typedef struct ddi_cb { 87 uint64_t cb_flags; 88 dev_info_t *cb_dip; 89 ddi_cb_func_t cb_func; 90 void *cb_arg1; 91 void *cb_arg2; 92 } ddi_cb_t; 93 94 /* 95 * dev_info: The main device information structure this is intended to be 96 * opaque to drivers and drivers should use ddi functions to 97 * access *all* driver accessible fields. 98 * 99 * devi_parent_data includes property lists (interrupts, registers, etc.) 100 * devi_driver_data includes whatever the driver wants to place there. 101 */ 102 struct devinfo_audit; 103 104 typedef struct devi_port { 105 union { 106 struct { 107 uint32_t type; 108 uint32_t pad; 109 } port; 110 uint64_t type64; 111 } info; 112 void *priv_p; 113 } devi_port_t; 114 115 typedef struct devi_bus_priv { 116 devi_port_t port_up; 117 devi_port_t port_down; 118 } devi_bus_priv_t; 119 120 struct iommulib_unit; 121 typedef struct iommulib_unit *iommulib_handle_t; 122 typedef uint8_t ndi_flavor_t; 123 struct ddi_hp_cn_handle; 124 125 struct in_node; 126 127 struct dev_info { 128 129 struct dev_info *devi_parent; /* my parent node in tree */ 130 struct dev_info *devi_child; /* my child list head */ 131 struct dev_info *devi_sibling; /* next element on my level */ 132 133 char *devi_binding_name; /* name used to bind driver: */ 134 /* shared storage, points to */ 135 /* devi_node_name, devi_compat_names */ 136 /* or devi_rebinding_name */ 137 138 char *devi_addr; /* address part of name */ 139 140 int devi_nodeid; /* device nodeid */ 141 int devi_instance; /* device instance number */ 142 143 struct dev_ops *devi_ops; /* driver operations */ 144 145 void *devi_parent_data; /* parent private data */ 146 void *devi_driver_data; /* driver private data */ 147 148 ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */ 149 ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */ 150 151 struct ddi_minor_data *devi_minor; /* head of minor list */ 152 struct dev_info *devi_next; /* Next instance of this device */ 153 kmutex_t devi_lock; /* Protects per-devinfo data */ 154 155 /* logical parents for busop primitives */ 156 157 struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */ 158 struct dev_info *devi_bus_dma_map; /* bus_dma_map parent */ 159 struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */ 160 struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */ 161 struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */ 162 struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */ 163 struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */ 164 struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */ 165 struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */ 166 struct dev_info *devi_bus_ctl; /* bus_ctl parent */ 167 168 ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */ 169 170 char *devi_node_name; /* The 'name' of the node */ 171 char *devi_compat_names; /* A list of driver names */ 172 size_t devi_compat_length; /* Size of compat_names */ 173 174 int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *, 175 ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *, 176 uint_t *); 177 int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *, 178 ddi_dma_handle_t); 179 180 char *devi_devid_str; /* registered device id */ 181 182 /* 183 * power management entries 184 * components exist even if the device is not currently power managed 185 */ 186 struct pm_info *devi_pm_info; /* 0 => dev not power managed */ 187 uint_t devi_pm_flags; /* pm flags */ 188 int devi_pm_num_components; /* number of components */ 189 size_t devi_pm_comp_size; /* size of devi_components */ 190 struct pm_component *devi_pm_components; /* array of pm components */ 191 struct dev_info *devi_pm_ppm; /* ppm attached to this one */ 192 void *devi_pm_ppm_private; /* for use by ppm driver */ 193 int devi_pm_dev_thresh; /* "device" threshold */ 194 uint_t devi_pm_kidsupcnt; /* # of kids powered up */ 195 struct pm_scan *devi_pm_scan; /* pm scan info */ 196 uint_t devi_pm_noinvolpm; /* # of descendents no-invol */ 197 uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */ 198 kmutex_t devi_pm_lock; /* pm lock for state */ 199 kmutex_t devi_pm_busy_lock; /* for component busy count */ 200 201 uint_t devi_state; /* device/bus state flags */ 202 /* see below for definitions */ 203 kcondvar_t devi_cv; /* cv */ 204 int devi_ref; /* reference count */ 205 206 dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */ 207 208 ddi_node_class_t devi_node_class; /* Node class */ 209 int devi_node_attributes; /* Node attributes: See below */ 210 211 char *devi_device_class; 212 213 /* 214 * New mpxio kernel hooks entries 215 */ 216 int devi_mdi_component; /* mpxio component type */ 217 void *devi_mdi_client; /* mpxio client information */ 218 void *devi_mdi_xhci; /* vhci/phci info */ 219 220 ddi_prop_list_t *devi_global_prop_list; /* driver global properties */ 221 major_t devi_major; /* driver major number */ 222 ddi_node_state_t devi_node_state; /* state of node */ 223 uint_t devi_flags; /* configuration flags */ 224 int devi_circular; /* for recursive operations */ 225 void *devi_busy_thread; /* thread operating on node */ 226 void *devi_taskq; /* hotplug taskq */ 227 228 /* device driver statistical and audit info */ 229 struct devinfo_audit *devi_audit; /* last state change */ 230 231 /* 232 * FMA support for resource caches and error handlers 233 */ 234 struct i_ddi_fmhdl *devi_fmhdl; 235 236 uint_t devi_cpr_flags; 237 238 /* Owned by DDI interrupt framework */ 239 devinfo_intr_t *devi_intr_p; 240 241 void *devi_nex_pm; /* nexus PM private */ 242 243 char *devi_addr_buf; /* buffer for devi_addr */ 244 245 char *devi_rebinding_name; /* binding_name of rebind */ 246 247 /* For device contracts that have this dip's minor node as resource */ 248 kmutex_t devi_ct_lock; /* contract lock */ 249 kcondvar_t devi_ct_cv; /* contract cv */ 250 int devi_ct_count; /* # of outstanding responses */ 251 int devi_ct_neg; /* neg. occurred on dip */ 252 list_t devi_ct; 253 254 /* owned by bus framework */ 255 devi_bus_priv_t devi_bus; /* bus private data */ 256 257 /* Declarations of the pure dynamic properties to snapshot */ 258 struct i_ddi_prop_dyn *devi_prop_dyn_driver; /* prop_op */ 259 struct i_ddi_prop_dyn *devi_prop_dyn_parent; /* bus_prop_op */ 260 261 /* For x86 (Intel and AMD) IOMMU support */ 262 void *devi_iommu; 263 264 /* IOMMU handle */ 265 iommulib_handle_t devi_iommulib_handle; 266 267 /* Generic callback mechanism */ 268 ddi_cb_t *devi_cb_p; 269 270 /* ndi 'flavors' */ 271 ndi_flavor_t devi_flavor; /* flavor assigned by parent */ 272 ndi_flavor_t devi_flavorv_n; /* number of child-flavors */ 273 void **devi_flavorv; /* child-flavor specific data */ 274 275 /* Owned by hotplug framework */ 276 struct ddi_hp_cn_handle *devi_hp_hdlp; /* hotplug handle list */ 277 278 struct in_node *devi_in_node; /* pointer to devinfo node's in_node_t */ 279 }; 280 281 #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type)) 282 283 /* 284 * NB: The 'name' field, for compatibility with old code (both existing 285 * device drivers and userland code), is now defined as the name used 286 * to bind the node to a device driver, and not the device node name. 287 * If the device node name does not define a binding to a device driver, 288 * and the framework uses a different algorithm to create the binding to 289 * the driver, the node name and binding name will be different. 290 * 291 * Note that this implies that the node name plus instance number does 292 * NOT create a unique driver id; only the binding name plus instance 293 * number creates a unique driver id. 294 * 295 * New code should not use 'devi_name'; use 'devi_binding_name' or 296 * 'devi_node_name' and/or the routines that access those fields. 297 */ 298 299 #define devi_name devi_binding_name 300 301 /* 302 * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept 303 * around to allow legacy drivers to to compile. 304 */ 305 #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL) 306 #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL) 307 #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops) 308 309 /* 310 * The device state flags (devi_state) contains information regarding 311 * the state of the device (Online/Offline/Down). For bus nexus 312 * devices, the device state also contains state information regarding 313 * the state of the bus represented by this nexus node. 314 * 315 * Device state information is stored in bits [0-7], bus state in bits 316 * [8-15]. 317 * 318 * NOTE: all devi_state updates should be protected by devi_lock. 319 */ 320 #define DEVI_DEVICE_OFFLINE 0x00000001 321 #define DEVI_DEVICE_DOWN 0x00000002 322 #define DEVI_DEVICE_DEGRADED 0x00000004 323 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */ 324 325 #define DEVI_BUS_QUIESCED 0x00000100 326 #define DEVI_BUS_DOWN 0x00000200 327 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */ 328 329 #define DEVI_S_ATTACHING 0x00010000 330 #define DEVI_S_DETACHING 0x00020000 331 #define DEVI_S_ONLINING 0x00040000 332 #define DEVI_S_OFFLINING 0x00080000 333 334 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */ 335 336 #define DEVI_S_UNBOUND 0x00200000 337 #define DEVI_S_REPORT 0x08000000 /* report status change */ 338 339 #define DEVI_S_EVADD 0x10000000 /* state of devfs event */ 340 #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */ 341 #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */ 342 343 /* 344 * Device state macros. 345 * o All SET/CLR/DONE users must protect context with devi_lock. 346 * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT. 347 * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE. 348 * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED. 349 */ 350 #define DEVI_IS_DEVICE_OFFLINE(dip) \ 351 ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE) 352 353 #define DEVI_SET_DEVICE_ONLINE(dip) { \ 354 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 355 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 356 mutex_exit(&DEVI(dip)->devi_lock); \ 357 e_ddi_undegrade_finalize(dip); \ 358 mutex_enter(&DEVI(dip)->devi_lock); \ 359 } \ 360 /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \ 361 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \ 362 DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \ 363 } 364 365 #define DEVI_SET_DEVICE_OFFLINE(dip) { \ 366 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 367 DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \ 368 } 369 370 #define DEVI_IS_DEVICE_DOWN(dip) \ 371 ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN) 372 373 #define DEVI_SET_DEVICE_DOWN(dip) { \ 374 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 375 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 376 DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \ 377 } 378 379 #define DEVI_IS_DEVICE_DEGRADED(dip) \ 380 ((DEVI(dip)->devi_state & \ 381 (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED) 382 383 #define DEVI_SET_DEVICE_DEGRADED(dip) { \ 384 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 385 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 386 mutex_exit(&DEVI(dip)->devi_lock); \ 387 e_ddi_degrade_finalize(dip); \ 388 mutex_enter(&DEVI(dip)->devi_lock); \ 389 DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \ 390 } 391 392 #define DEVI_SET_DEVICE_UP(dip) { \ 393 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 394 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 395 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 396 mutex_exit(&DEVI(dip)->devi_lock); \ 397 e_ddi_undegrade_finalize(dip); \ 398 mutex_enter(&DEVI(dip)->devi_lock); \ 399 } \ 400 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \ 401 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 402 } 403 404 /* Device removal and insertion */ 405 #define DEVI_IS_DEVICE_REMOVED(dip) \ 406 ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED) 407 408 #define DEVI_SET_DEVICE_REMOVED(dip) { \ 409 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 410 DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED | DEVI_S_REPORT; \ 411 } 412 413 #define DEVI_SET_DEVICE_REINSERTED(dip) { \ 414 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 415 DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \ 416 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 417 } 418 419 /* Bus state change macros */ 420 #define DEVI_IS_BUS_QUIESCED(dip) \ 421 ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED) 422 423 #define DEVI_SET_BUS_ACTIVE(dip) { \ 424 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 425 DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \ 426 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 427 } 428 429 #define DEVI_SET_BUS_QUIESCE(dip) { \ 430 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 431 DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \ 432 } 433 434 #define DEVI_IS_BUS_DOWN(dip) \ 435 ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN) 436 437 #define DEVI_SET_BUS_UP(dip) { \ 438 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 439 DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \ 440 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 441 } 442 443 #define DEVI_SET_BUS_DOWN(dip) { \ 444 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 445 DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \ 446 } 447 448 /* Status change report needed */ 449 #define DEVI_NEED_REPORT(dip) \ 450 ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT) 451 452 #define DEVI_SET_REPORT(dip) { \ 453 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 454 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 455 } 456 457 #define DEVI_REPORT_DONE(dip) { \ 458 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 459 DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \ 460 } 461 462 /* Do an NDI_CONFIG for its children */ 463 #define DEVI_NEED_NDI_CONFIG(dip) \ 464 ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG) 465 466 #define DEVI_SET_NDI_CONFIG(dip) { \ 467 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 468 DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \ 469 } 470 471 #define DEVI_CLR_NDI_CONFIG(dip) { \ 472 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 473 DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \ 474 } 475 476 /* Attaching or detaching state */ 477 #define DEVI_IS_ATTACHING(dip) \ 478 ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING) 479 480 #define DEVI_SET_ATTACHING(dip) { \ 481 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 482 DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \ 483 } 484 485 #define DEVI_CLR_ATTACHING(dip) { \ 486 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 487 DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \ 488 } 489 490 #define DEVI_IS_DETACHING(dip) \ 491 ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING) 492 493 #define DEVI_SET_DETACHING(dip) { \ 494 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 495 DEVI(dip)->devi_state |= DEVI_S_DETACHING; \ 496 } 497 498 #define DEVI_CLR_DETACHING(dip) { \ 499 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 500 DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \ 501 } 502 503 /* Onlining or offlining state */ 504 #define DEVI_IS_ONLINING(dip) \ 505 ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING) 506 507 #define DEVI_SET_ONLINING(dip) { \ 508 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 509 DEVI(dip)->devi_state |= DEVI_S_ONLINING; \ 510 } 511 512 #define DEVI_CLR_ONLINING(dip) { \ 513 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 514 DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \ 515 } 516 517 #define DEVI_IS_OFFLINING(dip) \ 518 ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING) 519 520 #define DEVI_SET_OFFLINING(dip) { \ 521 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 522 DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \ 523 } 524 525 #define DEVI_CLR_OFFLINING(dip) { \ 526 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 527 DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \ 528 } 529 530 #define DEVI_IS_IN_RECONFIG(dip) \ 531 (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING)) 532 533 /* Busy invoking a dacf task against this node */ 534 #define DEVI_IS_INVOKING_DACF(dip) \ 535 ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF) 536 537 #define DEVI_SET_INVOKING_DACF(dip) { \ 538 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 539 DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \ 540 } 541 542 #define DEVI_CLR_INVOKING_DACF(dip) { \ 543 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 544 DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \ 545 } 546 547 /* Events for add/remove */ 548 #define DEVI_EVADD(dip) \ 549 ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD) 550 551 #define DEVI_SET_EVADD(dip) { \ 552 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 553 DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \ 554 DEVI(dip)->devi_state |= DEVI_S_EVADD; \ 555 } 556 557 #define DEVI_EVREMOVE(dip) \ 558 ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE) 559 560 #define DEVI_SET_EVREMOVE(dip) { \ 561 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 562 DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \ 563 DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \ 564 } 565 566 #define DEVI_SET_EVUNINIT(dip) { \ 567 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 568 DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \ 569 } 570 571 /* Need to call the devo_reset entry point for this device at shutdown */ 572 #define DEVI_NEED_RESET(dip) \ 573 ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET) 574 575 #define DEVI_SET_NEED_RESET(dip) { \ 576 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 577 DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \ 578 } 579 580 #define DEVI_CLR_NEED_RESET(dip) { \ 581 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 582 DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \ 583 } 584 585 /* 586 * devi_flags bits 587 * 588 * NOTE: all devi_state updates should be protected by devi_lock. 589 */ 590 #define DEVI_BUSY 0x00000001 /* busy configuring children */ 591 #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */ 592 #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */ 593 #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */ 594 #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */ 595 #define DEVI_REGISTERED_DEVID 0x00000020 /* device registered a devid */ 596 #define DEVI_PHCI_SIGNALS_VHCI 0x00000040 /* pHCI ndi_devi_exit signals vHCI */ 597 #define DEVI_REBIND 0x00000080 /* post initchild driver rebind */ 598 #define DEVI_RETIRED 0x00000100 /* device is retired */ 599 #define DEVI_RETIRING 0x00000200 /* being evaluated for retire */ 600 #define DEVI_R_CONSTRAINT 0x00000400 /* constraints have been applied */ 601 #define DEVI_R_BLOCKED 0x00000800 /* constraints block retire */ 602 #define DEVI_CT_NOP 0x00001000 /* NOP contract event occurred */ 603 #define DEVI_PCI_DEVICE 0x00002000 /* dip is PCI */ 604 605 #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY) 606 #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \ 607 ((DEVI(dip))->devi_busy_thread == curthread)) 608 609 #define DEVI_IS_PCI(dip) (DEVI(dip)->devi_flags & DEVI_PCI_DEVICE) 610 #define DEVI_SET_PCI(dip) (DEVI(dip)->devi_flags |= (DEVI_PCI_DEVICE)) 611 612 char *i_ddi_devi_class(dev_info_t *); 613 int i_ddi_set_devi_class(dev_info_t *, char *, int); 614 615 /* 616 * This structure represents one piece of bus space occupied by a given 617 * device. It is used in an array for devices with multiple address windows. 618 */ 619 struct regspec { 620 uint_t regspec_bustype; /* cookie for bus type it's on */ 621 uint_t regspec_addr; /* address of reg relative to bus */ 622 uint_t regspec_size; /* size of this register set */ 623 }; 624 625 /* 626 * This structure represents one piece of nexus bus space. 627 * It is used in an array for nexi with multiple bus spaces 628 * to define the childs offsets in the parents bus space. 629 */ 630 struct rangespec { 631 uint_t rng_cbustype; /* Child's address, hi order */ 632 uint_t rng_coffset; /* Child's address, lo order */ 633 uint_t rng_bustype; /* Parent's address, hi order */ 634 uint_t rng_offset; /* Parent's address, lo order */ 635 uint_t rng_size; /* size of space for this entry */ 636 }; 637 638 #ifdef _KERNEL 639 640 typedef enum { 641 DDI_PRE = 0, 642 DDI_POST = 1 643 } ddi_pre_post_t; 644 645 /* 646 * This structure represents notification of a child attach event 647 * These could both be the same if attach/detach commands were in the 648 * same name space. 649 * Note that the target dip is passed as an arg already. 650 */ 651 struct attachspec { 652 ddi_attach_cmd_t cmd; /* type of event */ 653 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 654 dev_info_t *pdip; /* parent of attaching node */ 655 int result; /* result of attach op (post command only) */ 656 }; 657 658 /* 659 * This structure represents notification of a child detach event 660 * Note that the target dip is passed as an arg already. 661 */ 662 struct detachspec { 663 ddi_detach_cmd_t cmd; /* type of event */ 664 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 665 dev_info_t *pdip; /* parent of detaching node */ 666 int result; /* result of detach op (post command only) */ 667 }; 668 669 #endif /* _KERNEL */ 670 671 typedef enum { 672 DDM_MINOR = 0, 673 DDM_ALIAS, 674 DDM_DEFAULT, 675 DDM_INTERNAL_PATH 676 } ddi_minor_type; 677 678 /* implementation flags for driver specified device access control */ 679 #define DM_NO_FSPERM 0x1 680 681 struct devplcy; 682 683 struct ddi_minor { 684 char *name; /* name of node */ 685 dev_t dev; /* device number */ 686 int spec_type; /* block or char */ 687 int flags; /* access flags */ 688 char *node_type; /* block, byte, serial, network */ 689 struct devplcy *node_priv; /* privilege for this minor */ 690 mode_t priv_mode; /* default apparent privilege mode */ 691 }; 692 693 /* 694 * devi_node_attributes contains node attributes private to the 695 * ddi implementation. As a consumer, do not use these bit definitions 696 * directly, use the ndi functions that check for the existence of the 697 * specific node attributes. 698 * 699 * DDI_PERSISTENT indicates a 'persistent' node; one that is not 700 * automatically freed by the framework if the driver is unloaded 701 * or the driver fails to attach to this node. 702 * 703 * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned 704 * by the framework and should be auto-freed if the node is removed. 705 * 706 * DDI_VHCI_NODE indicates that the node type is VHCI. This flag 707 * must be set by ndi_devi_config_vhci() routine only. 708 * 709 * DDI_HIDDEN_NODE indicates that the node should not show up in snapshots 710 * or in /devices. 711 * 712 * DDI_HOTPLUG_NODE indicates that the node created by nexus hotplug. 713 */ 714 #define DDI_PERSISTENT 0x01 715 #define DDI_AUTO_ASSIGNED_NODEID 0x02 716 #define DDI_VHCI_NODE 0x04 717 #define DDI_HIDDEN_NODE 0x08 718 #define DDI_HOTPLUG_NODE 0x10 719 720 #define DEVI_VHCI_NODE(dip) \ 721 (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE) 722 723 /* 724 * The ddi_minor_data structure gets filled in by ddi_create_minor_node. 725 * It then gets attached to the devinfo node as a property. 726 */ 727 struct ddi_minor_data { 728 struct ddi_minor_data *next; /* next one in the chain */ 729 dev_info_t *dip; /* pointer to devinfo node */ 730 ddi_minor_type type; /* Following data type */ 731 struct ddi_minor d_minor; /* Actual minor node data */ 732 }; 733 734 #define ddm_name d_minor.name 735 #define ddm_dev d_minor.dev 736 #define ddm_flags d_minor.flags 737 #define ddm_spec_type d_minor.spec_type 738 #define ddm_node_type d_minor.node_type 739 #define ddm_node_priv d_minor.node_priv 740 #define ddm_priv_mode d_minor.priv_mode 741 742 /* 743 * parent private data structure contains register, interrupt, property 744 * and range information. 745 */ 746 struct ddi_parent_private_data { 747 int par_nreg; /* number of regs */ 748 struct regspec *par_reg; /* array of regs */ 749 int par_nintr; /* number of interrupts */ 750 struct intrspec *par_intr; /* array of possible interrupts */ 751 int par_nrng; /* number of ranges */ 752 struct rangespec *par_rng; /* array of ranges */ 753 }; 754 #define DEVI_PD(d) \ 755 ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data) 756 757 #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg) 758 #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr) 759 #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng) 760 #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)]) 761 #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)]) 762 #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)]) 763 764 #ifdef _KERNEL 765 /* 766 * This data structure is private to the indexed soft state allocator. 767 */ 768 typedef struct i_ddi_soft_state { 769 void **array; /* the array of pointers */ 770 kmutex_t lock; /* serialize access to this struct */ 771 size_t size; /* how many bytes per state struct */ 772 size_t n_items; /* how many structs herein */ 773 struct i_ddi_soft_state *next; /* 'dirty' elements */ 774 } i_ddi_soft_state; 775 776 /* 777 * This data structure is private to the stringhashed soft state allocator. 778 */ 779 typedef struct i_ddi_soft_state_bystr { 780 size_t ss_size; /* how many bytes per state struct */ 781 mod_hash_t *ss_mod_hash; /* hash implementation */ 782 } i_ddi_soft_state_bystr; 783 784 /* 785 * This data structure is private to the ddi_strid_* implementation 786 */ 787 typedef struct i_ddi_strid { 788 size_t strid_chunksz; 789 size_t strid_spacesz; 790 id_space_t *strid_space; 791 mod_hash_t *strid_byid; 792 mod_hash_t *strid_bystr; 793 } i_ddi_strid; 794 #endif /* _KERNEL */ 795 796 /* 797 * Solaris DDI DMA implementation structure and function definitions. 798 * 799 * Note: no callers of DDI functions must depend upon data structures 800 * declared below. They are not guaranteed to remain constant. 801 */ 802 803 /* 804 * Implementation DMA mapping structure. 805 * 806 * The publicly visible ddi_dma_req structure is filled 807 * in by a caller that wishes to map a memory object 808 * for DMA. Internal to this implementation of the public 809 * DDI DMA functions this request structure is put together 810 * with bus nexus specific functions that have additional 811 * information and constraints as to how to go about doing 812 * the requested mapping function 813 * 814 * In this implementation, some of the information from the 815 * original requester is retained throughout the lifetime 816 * of the I/O mapping being active. 817 */ 818 819 /* 820 * This is the implementation specific description 821 * of how we've mapped an object for DMA. 822 */ 823 #if defined(__sparc) 824 typedef struct ddi_dma_impl { 825 /* 826 * DMA mapping information 827 */ 828 ulong_t dmai_mapping; /* mapping cookie */ 829 830 /* 831 * Size of the current mapping, in bytes. 832 * 833 * Note that this is distinct from the size of the object being mapped 834 * for DVMA. We might have only a portion of the object mapped at any 835 * given point in time. 836 */ 837 uint_t dmai_size; 838 839 /* 840 * Offset, in bytes, into object that is currently mapped. 841 */ 842 off_t dmai_offset; 843 844 /* 845 * Information gathered from the original DMA mapping 846 * request and saved for the lifetime of the mapping. 847 */ 848 uint_t dmai_minxfer; 849 uint_t dmai_burstsizes; 850 uint_t dmai_ndvmapages; 851 uint_t dmai_pool; /* cached DVMA space */ 852 uint_t dmai_rflags; /* requester's flags + ours */ 853 uint_t dmai_inuse; /* active handle? */ 854 uint_t dmai_nwin; 855 uint_t dmai_winsize; 856 caddr_t dmai_nexus_private; 857 void *dmai_iopte; 858 uint_t *dmai_sbi; 859 void *dmai_minfo; /* random mapping information */ 860 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 861 ddi_dma_obj_t dmai_object; /* requester's object */ 862 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 863 ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */ 864 865 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 866 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 867 int dmai_fault; 868 ndi_err_t dmai_error; 869 870 } ddi_dma_impl_t; 871 872 #elif defined(__x86) 873 874 /* 875 * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex 876 * implementation specific state is in dmai_private. 877 */ 878 typedef struct ddi_dma_impl { 879 ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */ 880 void *dmai_private; 881 882 /* 883 * Information gathered from the original dma mapping 884 * request and saved for the lifetime of the mapping. 885 */ 886 uint_t dmai_minxfer; 887 uint_t dmai_burstsizes; 888 uint_t dmai_rflags; /* requester's flags + ours */ 889 int dmai_nwin; 890 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 891 892 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 893 894 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 895 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 896 int dmai_fault; 897 ndi_err_t dmai_error; 898 } ddi_dma_impl_t; 899 900 #else 901 #error "struct ddi_dma_impl not defined for this architecture" 902 #endif /* defined(__sparc) */ 903 904 /* 905 * For now DMA segments share state with the DMA handle 906 */ 907 typedef ddi_dma_impl_t ddi_dma_seg_impl_t; 908 909 /* 910 * These flags use reserved bits from the dma request flags. 911 * 912 * A note about the DMP_NOSYNC flags: the root nexus will 913 * set these as it sees best. If an intermediate nexus 914 * actually needs these operations, then during the unwind 915 * from the call to ddi_dma_bind, the nexus driver *must* 916 * clear the appropriate flag(s). This is because, as an 917 * optimization, ddi_dma_sync(9F) looks at these flags before 918 * deciding to spend the time going back up the tree. 919 */ 920 921 #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL 922 #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ 923 #define DMP_DDIFLAGS (_DMCM1|_DMCM2) 924 #define DMP_SHADOW 0x20 925 #define DMP_LKIOPB 0x40 926 #define DMP_LKSYSV 0x80 927 #define DMP_IOCACHE 0x100 928 #define DMP_USEHAT 0x200 929 #define DMP_PHYSADDR 0x400 930 #define DMP_INVALID 0x800 931 #define DMP_NOLIMIT 0x1000 932 #define DMP_VMEREQ 0x10000000 933 #define DMP_BYPASSNEXUS 0x20000000 934 #define DMP_NODEVSYNC 0x40000000 935 #define DMP_NOCPUSYNC 0x80000000 936 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC) 937 938 /* 939 * In order to complete a device to device mapping that 940 * has percolated as high as an IU nexus (gone that high 941 * because the DMA request is a VADDR type), we define 942 * structure to use with the DDI_CTLOPS_DMAPMAPC request 943 * that re-traverses the request tree to finish the 944 * DMA 'mapping' for a device. 945 */ 946 struct dma_phys_mapc { 947 struct ddi_dma_req *dma_req; /* original request */ 948 ddi_dma_impl_t *mp; /* current handle, or none */ 949 int nptes; /* number of ptes */ 950 void *ptes; /* ptes already read */ 951 }; 952 953 #define MAXCALLBACK 20 954 955 /* 956 * Callback definitions 957 */ 958 struct ddi_callback { 959 struct ddi_callback *c_nfree; 960 struct ddi_callback *c_nlist; 961 int (*c_call)(); 962 int c_count; 963 caddr_t c_arg; 964 size_t c_size; 965 }; 966 967 /* 968 * Pure dynamic property declaration. A pure dynamic property is a property 969 * for which a driver's prop_op(9E) implementation will return a value on 970 * demand, but the property name does not exist on a property list (global, 971 * driver, system, or hardware) - the person asking for the value must know 972 * the name and type information. 973 * 974 * For a pure dynamic property to show up in a di_init() devinfo shapshot, the 975 * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism 976 * allows a driver to define an array of the name/type information of its 977 * dynamic properties. When a driver declares its dynamic properties in a 978 * i_ddi_prop_dyn_t array, and registers that array using 979 * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information 980 * to represent the properties in a snapshot - calling the driver's 981 * prop_op(9E) to obtain values. 982 * 983 * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value. 984 * 985 * A pure dynamic property name associated with a minor_node/dev_t should be 986 * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate. The 987 * driver's prop_op(9E) entry point will be called for all 988 * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver 989 * where not all minor_node/dev_t combinations support the same named 990 * properties, it is the responsibility of the prop_op(9E) implementation to 991 * sort out what combinations are appropriate. 992 * 993 * A pure dynamic property of a devinfo node should be defined with a 994 * dp_spec_type of 0. 995 * 996 * NB: Public DDI property interfaces no longer support pure dynamic 997 * properties, but they are still still used. A prime example is the cmlb 998 * implementation of size(9P) properties. Using pure dynamic properties 999 * reduces the space required to maintain per-partition information. Since 1000 * there are no public interfaces to create pure dynamic properties, 1001 * the i_ddi_prop_dyn_t mechanism should remain private. 1002 */ 1003 typedef struct i_ddi_prop_dyn { 1004 char *dp_name; /* name of dynamic property */ 1005 int dp_type; /* DDI_PROP_TYPE_ of property */ 1006 int dp_spec_type; /* 0, S_IFCHR, S_IFBLK */ 1007 } i_ddi_prop_dyn_t; 1008 void i_ddi_prop_dyn_driver_set(dev_info_t *, 1009 i_ddi_prop_dyn_t *); 1010 i_ddi_prop_dyn_t *i_ddi_prop_dyn_driver_get(dev_info_t *); 1011 void i_ddi_prop_dyn_parent_set(dev_info_t *, 1012 i_ddi_prop_dyn_t *); 1013 i_ddi_prop_dyn_t *i_ddi_prop_dyn_parent_get(dev_info_t *); 1014 void i_ddi_prop_dyn_cache_invalidate(dev_info_t *, 1015 i_ddi_prop_dyn_t *); 1016 1017 /* 1018 * Device id - Internal definition. 1019 */ 1020 #define DEVID_MAGIC_MSB 0x69 1021 #define DEVID_MAGIC_LSB 0x64 1022 #define DEVID_REV_MSB 0x00 1023 #define DEVID_REV_LSB 0x01 1024 #define DEVID_HINT_SIZE 4 1025 1026 typedef struct impl_devid { 1027 uchar_t did_magic_hi; /* device id magic # (msb) */ 1028 uchar_t did_magic_lo; /* device id magic # (lsb) */ 1029 uchar_t did_rev_hi; /* device id revision # (msb) */ 1030 uchar_t did_rev_lo; /* device id revision # (lsb) */ 1031 uchar_t did_type_hi; /* device id type (msb) */ 1032 uchar_t did_type_lo; /* device id type (lsb) */ 1033 uchar_t did_len_hi; /* length of devid data (msb) */ 1034 uchar_t did_len_lo; /* length of devid data (lsb) */ 1035 char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */ 1036 char did_id[1]; /* start of device id data */ 1037 } impl_devid_t; 1038 1039 #define DEVID_GETTYPE(devid) ((ushort_t) \ 1040 (((devid)->did_type_hi << NBBY) + \ 1041 (devid)->did_type_lo)) 1042 1043 #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \ 1044 (devid)->did_type_lo = lobyte((type)); 1045 1046 #define DEVID_GETLEN(devid) ((ushort_t) \ 1047 (((devid)->did_len_hi << NBBY) + \ 1048 (devid)->did_len_lo)) 1049 1050 #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \ 1051 (devid)->did_len_lo = lobyte((len)); 1052 1053 /* 1054 * Per PSARC/1995/352, a binary devid contains fields for <magic number>, 1055 * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself. 1056 * This proposal would encode the binary devid into a string consisting 1057 * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below 1058 * (<id_length> is rederived from the length of the string 1059 * representation of the <id>): 1060 * 1061 * <magic> ->"id" 1062 * 1063 * <rev> ->"%d" // "0" -> type of DEVID_NONE "id0" 1064 * // NOTE: PSARC/1995/352 <revision> is "1". 1065 * // NOTE: support limited to 10 revisions 1066 * // in current implementation 1067 * 1068 * <driver_hint> ->"%s" // "sd"/"ssd" 1069 * // NOTE: driver names limited to 4 1070 * // characters for <revision> "1" 1071 * 1072 * <type> ->'w' | // DEVID_SCSI3_WWN <hex_id> 1073 * 'W' | // DEVID_SCSI3_WWN <ascii_id> 1074 * 't' | // DEVID_SCSI3_VPD_T10 <hex_id> 1075 * 'T' | // DEVID_SCSI3_VPD_T10 <ascii_id> 1076 * 'x' | // DEVID_SCSI3_VPD_EUI <hex_id> 1077 * 'X' | // DEVID_SCSI3_VPD_EUI <ascii_id> 1078 * 'n' | // DEVID_SCSI3_VPD_NAA <hex_id> 1079 * 'N' | // DEVID_SCSI3_VPD_NAA <ascii_id> 1080 * 's' | // DEVID_SCSI_SERIAL <hex_id> 1081 * 'S' | // DEVID_SCSI_SERIAL <ascii_id> 1082 * 'f' | // DEVID_FAB <hex_id> 1083 * 'F' | // DEVID_FAB <ascii_id> 1084 * 'e' | // DEVID_ENCAP <hex_id> 1085 * 'E' | // DEVID_ENCAP <ascii_id> 1086 * 'a' | // DEVID_ATA_SERIAL <hex_id> 1087 * 'A' | // DEVID_ATA_SERIAL <ascii_id> 1088 * 'u' | // unknown <hex_id> 1089 * 'U' // unknown <ascii_id> 1090 * // NOTE:lower case -> <hex_id> 1091 * // upper case -> <ascii_id> 1092 * // NOTE:this covers all types currently 1093 * // defined for <revision> 1. 1094 * // NOTE:a <type> can be added 1095 * // without changing the <revision>. 1096 * 1097 * <id> -> <ascii_id> | // <type> is upper case 1098 * <hex_id> // <type> is lower case 1099 * 1100 * <ascii_id> // only if all bytes of binary <id> field 1101 * // are in the set: 1102 * // [A-Z][a-z][0-9]+-.= and space and 0x00 1103 * // the encoded form is: 1104 * // [A-Z][a-z][0-9]+-.= and _ and ~ 1105 * // NOTE: ' ' <=> '_', 0x00 <=> '~' 1106 * // these sets are chosen to avoid shell 1107 * // and conflicts with DDI node names. 1108 * 1109 * <hex_id> // if not <ascii_id>; each byte of binary 1110 * // <id> maps a to 2 digit ascii hex 1111 * // representation in the string. 1112 * 1113 * This encoding provides a meaningful correlation between the /devices 1114 * path and the devid string where possible. 1115 * 1116 * Fibre: 1117 * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw 1118 * id1,ssd@w20000020370bb488:c,raw 1119 * 1120 * Copper: 1121 * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c 1122 * id1,sd@SIBM_____1XY210__________:c 1123 */ 1124 /* determine if a byte of an id meets ASCII representation requirements */ 1125 #define DEVID_IDBYTE_ISASCII(b) ( \ 1126 (((b) >= 'a') && ((b) <= 'z')) || \ 1127 (((b) >= 'A') && ((b) <= 'Z')) || \ 1128 (((b) >= '0') && ((b) <= '9')) || \ 1129 (b == '+') || (b == '-') || (b == '.') || (b == '=') || \ 1130 (b == ' ') || (b == 0x00)) 1131 1132 /* set type to lower case to indicate that the did_id field is ascii */ 1133 #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */ 1134 1135 /* determine from type if did_id field is binary or ascii */ 1136 #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z')) 1137 1138 /* convert type field from binary to ascii */ 1139 #define DEVID_TYPE_BINTOASCII(b) ( \ 1140 ((b) == DEVID_SCSI3_WWN) ? 'w' : \ 1141 ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \ 1142 ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \ 1143 ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \ 1144 ((b) == DEVID_SCSI_SERIAL) ? 's' : \ 1145 ((b) == DEVID_FAB) ? 'f' : \ 1146 ((b) == DEVID_ENCAP) ? 'e' : \ 1147 ((b) == DEVID_ATA_SERIAL) ? 'a' : \ 1148 'u') /* unknown */ 1149 1150 /* convert type field from ascii to binary */ 1151 #define DEVID_TYPE_ASCIITOBIN(c) ( \ 1152 (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \ 1153 (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \ 1154 (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \ 1155 (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \ 1156 (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \ 1157 (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \ 1158 (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \ 1159 (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \ 1160 DEVID_MAXTYPE +1) /* unknown */ 1161 1162 /* determine if the type should be forced to hex encoding (non-ascii) */ 1163 #define DEVID_TYPE_BIN_FORCEHEX(b) ( \ 1164 ((b) == DEVID_SCSI3_WWN) || \ 1165 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1166 ((b) == DEVID_SCSI3_VPD_NAA) || \ 1167 ((b) == DEVID_FAB)) 1168 1169 /* determine if the type is from a scsi3 vpd */ 1170 #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \ 1171 ((b) == DEVID_SCSI3_VPD_T10) || \ 1172 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1173 ((b) == DEVID_SCSI3_VPD_NAA)) 1174 1175 /* convert rev field from binary to ascii (only supports 10 revs) */ 1176 #define DEVID_REV_BINTOASCII(b) (b + '0') 1177 1178 /* convert rev field from ascii to binary (only supports 10 revs) */ 1179 #define DEVID_REV_ASCIITOBIN(c) (c - '0') 1180 1181 /* name of devid property */ 1182 #define DEVID_PROP_NAME "devid" 1183 1184 /* 1185 * prop_name used by pci_{save,restore}_config_regs() 1186 */ 1187 #define SAVED_CONFIG_REGS "pci-config-regs" 1188 #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask" 1189 #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info" 1190 1191 typedef struct pci_config_header_state { 1192 uint16_t chs_command; 1193 uint8_t chs_cache_line_size; 1194 uint8_t chs_latency_timer; 1195 uint8_t chs_header_type; 1196 uint8_t chs_sec_latency_timer; 1197 uint8_t chs_bridge_control; 1198 uint32_t chs_base0; 1199 uint32_t chs_base1; 1200 uint32_t chs_base2; 1201 uint32_t chs_base3; 1202 uint32_t chs_base4; 1203 uint32_t chs_base5; 1204 } pci_config_header_state_t; 1205 1206 #ifdef _KERNEL 1207 1208 typedef struct pci_cap_save_desc { 1209 uint16_t cap_offset; 1210 uint16_t cap_id; 1211 uint32_t cap_nregs; 1212 } pci_cap_save_desc_t; 1213 1214 typedef struct pci_cap_entry { 1215 uint16_t cap_id; 1216 uint16_t cap_reg; 1217 uint16_t cap_mask; 1218 uint32_t cap_ndwords; 1219 uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr, 1220 uint32_t *regbuf, uint32_t ndwords); 1221 } pci_cap_entry_t; 1222 1223 #endif /* _KERNEL */ 1224 1225 #ifdef __cplusplus 1226 } 1227 #endif 1228 1229 #endif /* _SYS_DDI_IMPLDEFS_H */ 1230