1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _SYS_DDI_IMPLDEFS_H 27 #define _SYS_DDI_IMPLDEFS_H 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/t_lock.h> 32 #include <sys/ddipropdefs.h> 33 #include <sys/devops.h> 34 #include <sys/autoconf.h> 35 #include <sys/mutex.h> 36 #include <vm/page.h> 37 #include <sys/dacf_impl.h> 38 #include <sys/ndifm.h> 39 #include <sys/epm.h> 40 #include <sys/ddidmareq.h> 41 #include <sys/ddi_intr.h> 42 #include <sys/ddi_isa.h> 43 44 #ifdef __cplusplus 45 extern "C" { 46 #endif 47 48 /* 49 * The device id implementation has been switched to be based on properties. 50 * For compatibility with di_devid libdevinfo interface the following 51 * must be defined: 52 */ 53 #define DEVID_COMPATIBILITY ((ddi_devid_t)-1) 54 55 /* 56 * Definitions for node class. 57 * DDI_NC_PROM: a node with a nodeid that may be used in a promif call. 58 * DDI_NC_PSEUDO: a software created node with a software assigned nodeid. 59 */ 60 typedef enum { 61 DDI_NC_PROM = 0, 62 DDI_NC_PSEUDO 63 } ddi_node_class_t; 64 65 /* 66 * Definitions for generic callback mechanism. 67 */ 68 typedef enum { 69 DDI_CB_INTR_ADD, 70 DDI_CB_INTR_REMOVE 71 } ddi_cb_action_t; 72 73 typedef enum { 74 DDI_CB_FLAG_INTR = 0x1 75 } ddi_cb_flags_t; 76 77 #define DDI_CB_FLAG_VALID(f) ((f) & DDI_CB_FLAG_INTR) 78 79 typedef int (*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action, 80 void *cbarg, void *arg1, void *arg2); 81 82 typedef struct ddi_cb { 83 uint64_t cb_flags; 84 dev_info_t *cb_dip; 85 ddi_cb_func_t cb_func; 86 void *cb_arg1; 87 void *cb_arg2; 88 } ddi_cb_t; 89 90 /* 91 * dev_info: The main device information structure this is intended to be 92 * opaque to drivers and drivers should use ddi functions to 93 * access *all* driver accessible fields. 94 * 95 * devi_parent_data includes property lists (interrupts, registers, etc.) 96 * devi_driver_data includes whatever the driver wants to place there. 97 */ 98 struct devinfo_audit; 99 100 typedef struct devi_port { 101 union { 102 struct { 103 uint32_t type; 104 uint32_t pad; 105 } port; 106 uint64_t type64; 107 } info; 108 void *priv_p; 109 } devi_port_t; 110 111 typedef struct devi_bus_priv { 112 devi_port_t port_up; 113 devi_port_t port_down; 114 } devi_bus_priv_t; 115 116 struct iommulib_unit; 117 typedef struct iommulib_unit *iommulib_handle_t; 118 119 struct dev_info { 120 121 struct dev_info *devi_parent; /* my parent node in tree */ 122 struct dev_info *devi_child; /* my child list head */ 123 struct dev_info *devi_sibling; /* next element on my level */ 124 125 char *devi_binding_name; /* name used to bind driver: */ 126 /* shared storage, points to */ 127 /* devi_node_name, devi_compat_names */ 128 /* or devi_rebinding_name */ 129 130 char *devi_addr; /* address part of name */ 131 132 int devi_nodeid; /* device nodeid */ 133 int devi_instance; /* device instance number */ 134 135 struct dev_ops *devi_ops; /* driver operations */ 136 137 void *devi_parent_data; /* parent private data */ 138 void *devi_driver_data; /* driver private data */ 139 140 ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */ 141 ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */ 142 143 struct ddi_minor_data *devi_minor; /* head of minor list */ 144 struct dev_info *devi_next; /* Next instance of this device */ 145 kmutex_t devi_lock; /* Protects per-devinfo data */ 146 147 /* logical parents for busop primitives */ 148 149 struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */ 150 struct dev_info *devi_bus_dma_map; /* bus_dma_map parent */ 151 struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */ 152 struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */ 153 struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */ 154 struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */ 155 struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */ 156 struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */ 157 struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */ 158 struct dev_info *devi_bus_ctl; /* bus_ctl parent */ 159 160 ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */ 161 162 char *devi_node_name; /* The 'name' of the node */ 163 char *devi_compat_names; /* A list of driver names */ 164 size_t devi_compat_length; /* Size of compat_names */ 165 166 int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *, 167 ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *, 168 uint_t *); 169 int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *, 170 ddi_dma_handle_t); 171 172 char *devi_devid_str; /* registered device id */ 173 174 /* 175 * power management entries 176 * components exist even if the device is not currently power managed 177 */ 178 struct pm_info *devi_pm_info; /* 0 => dev not power managed */ 179 uint_t devi_pm_flags; /* pm flags */ 180 int devi_pm_num_components; /* number of components */ 181 size_t devi_pm_comp_size; /* size of devi_components */ 182 struct pm_component *devi_pm_components; /* array of pm components */ 183 struct dev_info *devi_pm_ppm; /* ppm attached to this one */ 184 void *devi_pm_ppm_private; /* for use by ppm driver */ 185 int devi_pm_dev_thresh; /* "device" threshold */ 186 uint_t devi_pm_kidsupcnt; /* # of kids powered up */ 187 struct pm_scan *devi_pm_scan; /* pm scan info */ 188 uint_t devi_pm_noinvolpm; /* # of descendents no-invol */ 189 uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */ 190 kmutex_t devi_pm_lock; /* pm lock for state */ 191 kmutex_t devi_pm_busy_lock; /* for component busy count */ 192 193 uint_t devi_state; /* device/bus state flags */ 194 /* see below for definitions */ 195 kcondvar_t devi_cv; /* cv */ 196 int devi_ref; /* reference count */ 197 198 dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */ 199 200 ddi_node_class_t devi_node_class; /* Node class */ 201 int devi_node_attributes; /* Node attributes: See below */ 202 203 char *devi_device_class; 204 205 /* 206 * New mpxio kernel hooks entries 207 */ 208 int devi_mdi_component; /* mpxio component type */ 209 void *devi_mdi_client; /* mpxio client information */ 210 void *devi_mdi_xhci; /* vhci/phci info */ 211 212 ddi_prop_list_t *devi_global_prop_list; /* driver global properties */ 213 major_t devi_major; /* driver major number */ 214 ddi_node_state_t devi_node_state; /* state of node */ 215 uint_t devi_flags; /* configuration flags */ 216 int devi_circular; /* for recursive operations */ 217 void *devi_busy_thread; /* thread operating on node */ 218 void *devi_taskq; /* hotplug taskq */ 219 220 /* device driver statistical and audit info */ 221 struct devinfo_audit *devi_audit; /* last state change */ 222 223 /* 224 * FMA support for resource caches and error handlers 225 */ 226 struct i_ddi_fmhdl *devi_fmhdl; 227 228 uint_t devi_cpr_flags; 229 230 /* For interrupt support */ 231 devinfo_intr_t *devi_intr_p; 232 233 void *devi_nex_pm; /* nexus PM private */ 234 235 char *devi_addr_buf; /* buffer for devi_addr */ 236 237 char *devi_rebinding_name; /* binding_name of rebind */ 238 239 /* For device contracts that have this dip's minor node as resource */ 240 kmutex_t devi_ct_lock; /* contract lock */ 241 kcondvar_t devi_ct_cv; /* contract cv */ 242 int devi_ct_count; /* # of outstanding responses */ 243 int devi_ct_neg; /* neg. occurred on dip */ 244 list_t devi_ct; 245 246 /* owned by bus framework */ 247 devi_bus_priv_t devi_bus; /* bus private data */ 248 249 /* Declarations of the pure dynamic properties to snapshot */ 250 struct i_ddi_prop_dyn *devi_prop_dyn_driver; /* prop_op */ 251 struct i_ddi_prop_dyn *devi_prop_dyn_parent; /* bus_prop_op */ 252 253 /* For intel iommu support */ 254 void *devi_iommu_private; 255 256 /* IOMMU handle */ 257 iommulib_handle_t devi_iommulib_handle; 258 259 /* Generic callback mechanism */ 260 ddi_cb_t *devi_cb_p; 261 }; 262 263 #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type)) 264 265 /* 266 * NB: The 'name' field, for compatibility with old code (both existing 267 * device drivers and userland code), is now defined as the name used 268 * to bind the node to a device driver, and not the device node name. 269 * If the device node name does not define a binding to a device driver, 270 * and the framework uses a different algorithm to create the binding to 271 * the driver, the node name and binding name will be different. 272 * 273 * Note that this implies that the node name plus instance number does 274 * NOT create a unique driver id; only the binding name plus instance 275 * number creates a unique driver id. 276 * 277 * New code should not use 'devi_name'; use 'devi_binding_name' or 278 * 'devi_node_name' and/or the routines that access those fields. 279 */ 280 281 #define devi_name devi_binding_name 282 283 /* 284 * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept 285 * around to allow legacy drivers to to compile. 286 */ 287 #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL) 288 #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL) 289 #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops) 290 291 /* 292 * The device state flags (devi_state) contains information regarding 293 * the state of the device (Online/Offline/Down). For bus nexus 294 * devices, the device state also contains state information regarding 295 * the state of the bus represented by this nexus node. 296 * 297 * Device state information is stored in bits [0-7], bus state in bits 298 * [8-15]. 299 * 300 * NOTE: all devi_state updates should be protected by devi_lock. 301 */ 302 #define DEVI_DEVICE_OFFLINE 0x00000001 303 #define DEVI_DEVICE_DOWN 0x00000002 304 #define DEVI_DEVICE_DEGRADED 0x00000004 305 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */ 306 307 #define DEVI_BUS_QUIESCED 0x00000100 308 #define DEVI_BUS_DOWN 0x00000200 309 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */ 310 311 #define DEVI_S_ATTACHING 0x00010000 312 #define DEVI_S_DETACHING 0x00020000 313 #define DEVI_S_ONLINING 0x00040000 314 #define DEVI_S_OFFLINING 0x00080000 315 316 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */ 317 318 #define DEVI_S_UNBOUND 0x00200000 319 #define DEVI_S_REPORT 0x08000000 /* report status change */ 320 321 #define DEVI_S_EVADD 0x10000000 /* state of devfs event */ 322 #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */ 323 #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */ 324 325 /* 326 * Device state macros. 327 * o All SET/CLR/DONE users must protect context with devi_lock. 328 * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT. 329 * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE. 330 * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED. 331 */ 332 #define DEVI_IS_DEVICE_OFFLINE(dip) \ 333 ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE) 334 335 #define DEVI_SET_DEVICE_ONLINE(dip) { \ 336 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 337 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 338 mutex_exit(&DEVI(dip)->devi_lock); \ 339 e_ddi_undegrade_finalize(dip); \ 340 mutex_enter(&DEVI(dip)->devi_lock); \ 341 } \ 342 /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \ 343 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \ 344 DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \ 345 } 346 347 #define DEVI_SET_DEVICE_OFFLINE(dip) { \ 348 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 349 DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \ 350 } 351 352 #define DEVI_IS_DEVICE_DOWN(dip) \ 353 ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN) 354 355 #define DEVI_SET_DEVICE_DOWN(dip) { \ 356 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 357 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 358 DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \ 359 } 360 361 #define DEVI_IS_DEVICE_DEGRADED(dip) \ 362 ((DEVI(dip)->devi_state & \ 363 (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED) 364 365 #define DEVI_SET_DEVICE_DEGRADED(dip) { \ 366 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 367 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 368 mutex_exit(&DEVI(dip)->devi_lock); \ 369 e_ddi_degrade_finalize(dip); \ 370 mutex_enter(&DEVI(dip)->devi_lock); \ 371 DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \ 372 } 373 374 #define DEVI_SET_DEVICE_UP(dip) { \ 375 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 376 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 377 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 378 mutex_exit(&DEVI(dip)->devi_lock); \ 379 e_ddi_undegrade_finalize(dip); \ 380 mutex_enter(&DEVI(dip)->devi_lock); \ 381 } \ 382 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \ 383 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 384 } 385 386 /* Device removal and insertion */ 387 #define DEVI_IS_DEVICE_REMOVED(dip) \ 388 ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED) 389 390 #define DEVI_SET_DEVICE_REMOVED(dip) { \ 391 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 392 DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED; \ 393 } 394 395 #define DEVI_SET_DEVICE_REINSERTED(dip) { \ 396 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 397 DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \ 398 } 399 400 /* Bus state change macros */ 401 #define DEVI_IS_BUS_QUIESCED(dip) \ 402 ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED) 403 404 #define DEVI_SET_BUS_ACTIVE(dip) { \ 405 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 406 DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \ 407 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 408 } 409 410 #define DEVI_SET_BUS_QUIESCE(dip) { \ 411 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 412 DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \ 413 } 414 415 #define DEVI_IS_BUS_DOWN(dip) \ 416 ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN) 417 418 #define DEVI_SET_BUS_UP(dip) { \ 419 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 420 DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \ 421 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 422 } 423 424 #define DEVI_SET_BUS_DOWN(dip) { \ 425 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 426 DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \ 427 } 428 429 /* Status change report needed */ 430 #define DEVI_NEED_REPORT(dip) \ 431 ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT) 432 433 #define DEVI_SET_REPORT(dip) { \ 434 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 435 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 436 } 437 438 #define DEVI_REPORT_DONE(dip) { \ 439 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 440 DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \ 441 } 442 443 /* Do an NDI_CONFIG for its children */ 444 #define DEVI_NEED_NDI_CONFIG(dip) \ 445 ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG) 446 447 #define DEVI_SET_NDI_CONFIG(dip) { \ 448 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 449 DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \ 450 } 451 452 #define DEVI_CLR_NDI_CONFIG(dip) { \ 453 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 454 DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \ 455 } 456 457 /* Attaching or detaching state */ 458 #define DEVI_IS_ATTACHING(dip) \ 459 ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING) 460 461 #define DEVI_SET_ATTACHING(dip) { \ 462 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 463 DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \ 464 } 465 466 #define DEVI_CLR_ATTACHING(dip) { \ 467 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 468 DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \ 469 } 470 471 #define DEVI_IS_DETACHING(dip) \ 472 ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING) 473 474 #define DEVI_SET_DETACHING(dip) { \ 475 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 476 DEVI(dip)->devi_state |= DEVI_S_DETACHING; \ 477 } 478 479 #define DEVI_CLR_DETACHING(dip) { \ 480 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 481 DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \ 482 } 483 484 /* Onlining or offlining state */ 485 #define DEVI_IS_ONLINING(dip) \ 486 ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING) 487 488 #define DEVI_SET_ONLINING(dip) { \ 489 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 490 DEVI(dip)->devi_state |= DEVI_S_ONLINING; \ 491 } 492 493 #define DEVI_CLR_ONLINING(dip) { \ 494 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 495 DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \ 496 } 497 498 #define DEVI_IS_OFFLINING(dip) \ 499 ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING) 500 501 #define DEVI_SET_OFFLINING(dip) { \ 502 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 503 DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \ 504 } 505 506 #define DEVI_CLR_OFFLINING(dip) { \ 507 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 508 DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \ 509 } 510 511 #define DEVI_IS_IN_RECONFIG(dip) \ 512 (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING)) 513 514 /* Busy invoking a dacf task against this node */ 515 #define DEVI_IS_INVOKING_DACF(dip) \ 516 ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF) 517 518 #define DEVI_SET_INVOKING_DACF(dip) { \ 519 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 520 DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \ 521 } 522 523 #define DEVI_CLR_INVOKING_DACF(dip) { \ 524 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 525 DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \ 526 } 527 528 /* Events for add/remove */ 529 #define DEVI_EVADD(dip) \ 530 ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD) 531 532 #define DEVI_SET_EVADD(dip) { \ 533 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 534 DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \ 535 DEVI(dip)->devi_state |= DEVI_S_EVADD; \ 536 } 537 538 #define DEVI_EVREMOVE(dip) \ 539 ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE) 540 541 #define DEVI_SET_EVREMOVE(dip) { \ 542 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 543 DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \ 544 DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \ 545 } 546 547 #define DEVI_SET_EVUNINIT(dip) { \ 548 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 549 DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \ 550 } 551 552 /* Need to call the devo_reset entry point for this device at shutdown */ 553 #define DEVI_NEED_RESET(dip) \ 554 ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET) 555 556 #define DEVI_SET_NEED_RESET(dip) { \ 557 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 558 DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \ 559 } 560 561 #define DEVI_CLR_NEED_RESET(dip) { \ 562 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 563 DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \ 564 } 565 566 /* 567 * devi_flags bits 568 * 569 * NOTE: all devi_state updates should be protected by devi_lock. 570 */ 571 #define DEVI_BUSY 0x00000001 /* busy configuring children */ 572 #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */ 573 #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */ 574 #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */ 575 #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */ 576 #define DEVI_REGISTERED_DEVID 0x00000020 /* device registered a devid */ 577 #define DEVI_PHCI_SIGNALS_VHCI 0x00000040 /* pHCI ndi_devi_exit signals vHCI */ 578 #define DEVI_REBIND 0x00000080 /* post initchild driver rebind */ 579 #define DEVI_RETIRED 0x00000100 /* device is retired */ 580 #define DEVI_RETIRING 0x00000200 /* being evaluated for retire */ 581 #define DEVI_R_CONSTRAINT 0x00000400 /* constraints have been applied */ 582 #define DEVI_R_BLOCKED 0x00000800 /* constraints block retire */ 583 #define DEVI_CT_NOP 0x00001000 /* NOP contract event occurred */ 584 585 #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY) 586 #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \ 587 ((DEVI(dip))->devi_busy_thread == curthread)) 588 589 char *i_ddi_devi_class(dev_info_t *); 590 int i_ddi_set_devi_class(dev_info_t *, char *, int); 591 592 /* 593 * This structure represents one piece of bus space occupied by a given 594 * device. It is used in an array for devices with multiple address windows. 595 */ 596 struct regspec { 597 uint_t regspec_bustype; /* cookie for bus type it's on */ 598 uint_t regspec_addr; /* address of reg relative to bus */ 599 uint_t regspec_size; /* size of this register set */ 600 }; 601 602 /* 603 * This structure represents one piece of nexus bus space. 604 * It is used in an array for nexi with multiple bus spaces 605 * to define the childs offsets in the parents bus space. 606 */ 607 struct rangespec { 608 uint_t rng_cbustype; /* Child's address, hi order */ 609 uint_t rng_coffset; /* Child's address, lo order */ 610 uint_t rng_bustype; /* Parent's address, hi order */ 611 uint_t rng_offset; /* Parent's address, lo order */ 612 uint_t rng_size; /* size of space for this entry */ 613 }; 614 615 #ifdef _KERNEL 616 617 typedef enum { 618 DDI_PRE = 0, 619 DDI_POST = 1 620 } ddi_pre_post_t; 621 622 /* 623 * This structure represents notification of a child attach event 624 * These could both be the same if attach/detach commands were in the 625 * same name space. 626 * Note that the target dip is passed as an arg already. 627 */ 628 struct attachspec { 629 ddi_attach_cmd_t cmd; /* type of event */ 630 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 631 dev_info_t *pdip; /* parent of attaching node */ 632 int result; /* result of attach op (post command only) */ 633 }; 634 635 /* 636 * This structure represents notification of a child detach event 637 * Note that the target dip is passed as an arg already. 638 */ 639 struct detachspec { 640 ddi_detach_cmd_t cmd; /* type of event */ 641 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 642 dev_info_t *pdip; /* parent of detaching node */ 643 int result; /* result of detach op (post command only) */ 644 }; 645 646 #endif /* _KERNEL */ 647 648 typedef enum { 649 DDM_MINOR = 0, 650 DDM_ALIAS, 651 DDM_DEFAULT, 652 DDM_INTERNAL_PATH 653 } ddi_minor_type; 654 655 /* implementation flags for driver specified device access control */ 656 #define DM_NO_FSPERM 0x1 657 658 struct devplcy; 659 660 struct ddi_minor { 661 char *name; /* name of node */ 662 dev_t dev; /* device number */ 663 int spec_type; /* block or char */ 664 int flags; /* access flags */ 665 char *node_type; /* block, byte, serial, network */ 666 struct devplcy *node_priv; /* privilege for this minor */ 667 mode_t priv_mode; /* default apparent privilege mode */ 668 }; 669 670 /* 671 * devi_node_attributes contains node attributes private to the 672 * ddi implementation. As a consumer, do not use these bit definitions 673 * directly, use the ndi functions that check for the existence of the 674 * specific node attributes. 675 * 676 * DDI_PERSISTENT indicates a 'persistent' node; one that is not 677 * automatically freed by the framework if the driver is unloaded 678 * or the driver fails to attach to this node. 679 * 680 * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned 681 * by the framework and should be auto-freed if the node is removed. 682 * 683 * DDI_VHCI_NODE indicates that the node type is VHCI. This flag 684 * must be set by ndi_devi_config_vhci() routine only. 685 */ 686 #define DDI_PERSISTENT 0x01 687 #define DDI_AUTO_ASSIGNED_NODEID 0x02 688 #define DDI_VHCI_NODE 0x04 689 690 #define DEVI_VHCI_NODE(dip) \ 691 (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE) 692 693 /* 694 * The ddi_minor_data structure gets filled in by ddi_create_minor_node. 695 * It then gets attached to the devinfo node as a property. 696 */ 697 struct ddi_minor_data { 698 struct ddi_minor_data *next; /* next one in the chain */ 699 dev_info_t *dip; /* pointer to devinfo node */ 700 ddi_minor_type type; /* Following data type */ 701 struct ddi_minor d_minor; /* Actual minor node data */ 702 }; 703 704 #define ddm_name d_minor.name 705 #define ddm_dev d_minor.dev 706 #define ddm_flags d_minor.flags 707 #define ddm_spec_type d_minor.spec_type 708 #define ddm_node_type d_minor.node_type 709 #define ddm_node_priv d_minor.node_priv 710 #define ddm_priv_mode d_minor.priv_mode 711 712 /* 713 * parent private data structure contains register, interrupt, property 714 * and range information. 715 */ 716 struct ddi_parent_private_data { 717 int par_nreg; /* number of regs */ 718 struct regspec *par_reg; /* array of regs */ 719 int par_nintr; /* number of interrupts */ 720 struct intrspec *par_intr; /* array of possible interrupts */ 721 int par_nrng; /* number of ranges */ 722 struct rangespec *par_rng; /* array of ranges */ 723 }; 724 #define DEVI_PD(d) \ 725 ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data) 726 727 #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg) 728 #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr) 729 #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng) 730 #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)]) 731 #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)]) 732 #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)]) 733 734 /* 735 * This data structure is entirely private to the soft state allocator. 736 */ 737 struct i_ddi_soft_state { 738 void **array; /* the array of pointers */ 739 kmutex_t lock; /* serialize access to this struct */ 740 size_t size; /* how many bytes per state struct */ 741 size_t n_items; /* how many structs herein */ 742 struct i_ddi_soft_state *next; /* 'dirty' elements */ 743 }; 744 745 /* 746 * Solaris DDI DMA implementation structure and function definitions. 747 * 748 * Note: no callers of DDI functions must depend upon data structures 749 * declared below. They are not guaranteed to remain constant. 750 */ 751 752 /* 753 * Implementation DMA mapping structure. 754 * 755 * The publicly visible ddi_dma_req structure is filled 756 * in by a caller that wishes to map a memory object 757 * for DMA. Internal to this implementation of the public 758 * DDI DMA functions this request structure is put together 759 * with bus nexus specific functions that have additional 760 * information and constraints as to how to go about doing 761 * the requested mapping function 762 * 763 * In this implementation, some of the information from the 764 * original requester is retained throughout the lifetime 765 * of the I/O mapping being active. 766 */ 767 768 /* 769 * This is the implementation specific description 770 * of how we've mapped an object for DMA. 771 */ 772 #if defined(__sparc) 773 typedef struct ddi_dma_impl { 774 /* 775 * DMA mapping information 776 */ 777 ulong_t dmai_mapping; /* mapping cookie */ 778 779 /* 780 * Size of the current mapping, in bytes. 781 * 782 * Note that this is distinct from the size of the object being mapped 783 * for DVMA. We might have only a portion of the object mapped at any 784 * given point in time. 785 */ 786 uint_t dmai_size; 787 788 /* 789 * Offset, in bytes, into object that is currently mapped. 790 */ 791 off_t dmai_offset; 792 793 /* 794 * Information gathered from the original DMA mapping 795 * request and saved for the lifetime of the mapping. 796 */ 797 uint_t dmai_minxfer; 798 uint_t dmai_burstsizes; 799 uint_t dmai_ndvmapages; 800 uint_t dmai_pool; /* cached DVMA space */ 801 uint_t dmai_rflags; /* requester's flags + ours */ 802 uint_t dmai_inuse; /* active handle? */ 803 uint_t dmai_nwin; 804 uint_t dmai_winsize; 805 caddr_t dmai_nexus_private; 806 void *dmai_iopte; 807 uint_t *dmai_sbi; 808 void *dmai_minfo; /* random mapping information */ 809 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 810 ddi_dma_obj_t dmai_object; /* requester's object */ 811 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 812 ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */ 813 814 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 815 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 816 int dmai_fault; 817 ndi_err_t dmai_error; 818 819 } ddi_dma_impl_t; 820 821 #elif defined(__x86) 822 823 /* 824 * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex 825 * implementation specific state is in dmai_private. 826 */ 827 typedef struct ddi_dma_impl { 828 ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */ 829 void *dmai_private; 830 831 /* 832 * Information gathered from the original dma mapping 833 * request and saved for the lifetime of the mapping. 834 */ 835 uint_t dmai_minxfer; 836 uint_t dmai_burstsizes; 837 uint_t dmai_rflags; /* requester's flags + ours */ 838 int dmai_nwin; 839 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 840 841 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 842 843 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 844 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 845 int dmai_fault; 846 ndi_err_t dmai_error; 847 } ddi_dma_impl_t; 848 849 #else 850 #error "struct ddi_dma_impl not defined for this architecture" 851 #endif /* defined(__sparc) */ 852 853 /* 854 * For now DMA segments share state with the DMA handle 855 */ 856 typedef ddi_dma_impl_t ddi_dma_seg_impl_t; 857 858 /* 859 * These flags use reserved bits from the dma request flags. 860 * 861 * A note about the DMP_NOSYNC flags: the root nexus will 862 * set these as it sees best. If an intermediate nexus 863 * actually needs these operations, then during the unwind 864 * from the call to ddi_dma_bind, the nexus driver *must* 865 * clear the appropriate flag(s). This is because, as an 866 * optimization, ddi_dma_sync(9F) looks at these flags before 867 * deciding to spend the time going back up the tree. 868 */ 869 870 #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL 871 #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ 872 #define DMP_DDIFLAGS (_DMCM1|_DMCM2) 873 #define DMP_SHADOW 0x20 874 #define DMP_LKIOPB 0x40 875 #define DMP_LKSYSV 0x80 876 #define DMP_IOCACHE 0x100 877 #define DMP_USEHAT 0x200 878 #define DMP_PHYSADDR 0x400 879 #define DMP_INVALID 0x800 880 #define DMP_NOLIMIT 0x1000 881 #define DMP_VMEREQ 0x10000000 882 #define DMP_BYPASSNEXUS 0x20000000 883 #define DMP_NODEVSYNC 0x40000000 884 #define DMP_NOCPUSYNC 0x80000000 885 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC) 886 887 /* 888 * In order to complete a device to device mapping that 889 * has percolated as high as an IU nexus (gone that high 890 * because the DMA request is a VADDR type), we define 891 * structure to use with the DDI_CTLOPS_DMAPMAPC request 892 * that re-traverses the request tree to finish the 893 * DMA 'mapping' for a device. 894 */ 895 struct dma_phys_mapc { 896 struct ddi_dma_req *dma_req; /* original request */ 897 ddi_dma_impl_t *mp; /* current handle, or none */ 898 int nptes; /* number of ptes */ 899 void *ptes; /* ptes already read */ 900 }; 901 902 #define MAXCALLBACK 20 903 904 /* 905 * Callback definitions 906 */ 907 struct ddi_callback { 908 struct ddi_callback *c_nfree; 909 struct ddi_callback *c_nlist; 910 int (*c_call)(); 911 int c_count; 912 caddr_t c_arg; 913 size_t c_size; 914 }; 915 916 /* 917 * Pure dynamic property declaration. A pure dynamic property is a property 918 * for which a driver's prop_op(9E) implementation will return a value on 919 * demand, but the property name does not exist on a property list (global, 920 * driver, system, or hardware) - the person asking for the value must know 921 * the name and type information. 922 * 923 * For a pure dynamic property to show up in a di_init() devinfo shapshot, the 924 * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism 925 * allows a driver to define an array of the name/type information of its 926 * dynamic properties. When a driver declares its dynamic properties in a 927 * i_ddi_prop_dyn_t array, and registers that array using 928 * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information 929 * to represent the properties in a snapshot - calling the driver's 930 * prop_op(9E) to obtain values. 931 * 932 * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value. 933 * 934 * A pure dynamic property name associated with a minor_node/dev_t should be 935 * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate. The 936 * driver's prop_op(9E) entry point will be called for all 937 * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver 938 * where not all minor_node/dev_t combinations support the same named 939 * properties, it is the responsibility of the prop_op(9E) implementation to 940 * sort out what combinations are appropriate. 941 * 942 * A pure dynamic property of a devinfo node should be defined with a 943 * dp_spec_type of 0. 944 * 945 * NB: Public DDI property interfaces no longer support pure dynamic 946 * properties, but they are still still used. A prime example is the cmlb 947 * implementation of size(9P) properties. Using pure dynamic properties 948 * reduces the space required to maintain per-partition information. Since 949 * there are no public interfaces to create pure dynamic properties, 950 * the i_ddi_prop_dyn_t mechanism should remain private. 951 */ 952 typedef struct i_ddi_prop_dyn { 953 char *dp_name; /* name of dynamic property */ 954 int dp_type; /* DDI_PROP_TYPE_ of property */ 955 int dp_spec_type; /* 0, S_IFCHR, S_IFBLK */ 956 } i_ddi_prop_dyn_t; 957 void i_ddi_prop_dyn_driver_set(dev_info_t *, 958 i_ddi_prop_dyn_t *); 959 i_ddi_prop_dyn_t *i_ddi_prop_dyn_driver_get(dev_info_t *); 960 void i_ddi_prop_dyn_parent_set(dev_info_t *, 961 i_ddi_prop_dyn_t *); 962 i_ddi_prop_dyn_t *i_ddi_prop_dyn_parent_get(dev_info_t *); 963 void i_ddi_prop_dyn_cache_invalidate(dev_info_t *, 964 i_ddi_prop_dyn_t *); 965 966 /* 967 * Device id - Internal definition. 968 */ 969 #define DEVID_MAGIC_MSB 0x69 970 #define DEVID_MAGIC_LSB 0x64 971 #define DEVID_REV_MSB 0x00 972 #define DEVID_REV_LSB 0x01 973 #define DEVID_HINT_SIZE 4 974 975 typedef struct impl_devid { 976 uchar_t did_magic_hi; /* device id magic # (msb) */ 977 uchar_t did_magic_lo; /* device id magic # (lsb) */ 978 uchar_t did_rev_hi; /* device id revision # (msb) */ 979 uchar_t did_rev_lo; /* device id revision # (lsb) */ 980 uchar_t did_type_hi; /* device id type (msb) */ 981 uchar_t did_type_lo; /* device id type (lsb) */ 982 uchar_t did_len_hi; /* length of devid data (msb) */ 983 uchar_t did_len_lo; /* length of devid data (lsb) */ 984 char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */ 985 char did_id[1]; /* start of device id data */ 986 } impl_devid_t; 987 988 #define DEVID_GETTYPE(devid) ((ushort_t) \ 989 (((devid)->did_type_hi << NBBY) + \ 990 (devid)->did_type_lo)) 991 992 #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \ 993 (devid)->did_type_lo = lobyte((type)); 994 995 #define DEVID_GETLEN(devid) ((ushort_t) \ 996 (((devid)->did_len_hi << NBBY) + \ 997 (devid)->did_len_lo)) 998 999 #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \ 1000 (devid)->did_len_lo = lobyte((len)); 1001 1002 /* 1003 * Per PSARC/1995/352, a binary devid contains fields for <magic number>, 1004 * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself. 1005 * This proposal would encode the binary devid into a string consisting 1006 * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below 1007 * (<id_length> is rederived from the length of the string 1008 * representation of the <id>): 1009 * 1010 * <magic> ->"id" 1011 * 1012 * <rev> ->"%d" // "0" -> type of DEVID_NONE "id0" 1013 * // NOTE: PSARC/1995/352 <revision> is "1". 1014 * // NOTE: support limited to 10 revisions 1015 * // in current implementation 1016 * 1017 * <driver_hint> ->"%s" // "sd"/"ssd" 1018 * // NOTE: driver names limited to 4 1019 * // characters for <revision> "1" 1020 * 1021 * <type> ->'w' | // DEVID_SCSI3_WWN <hex_id> 1022 * 'W' | // DEVID_SCSI3_WWN <ascii_id> 1023 * 't' | // DEVID_SCSI3_VPD_T10 <hex_id> 1024 * 'T' | // DEVID_SCSI3_VPD_T10 <ascii_id> 1025 * 'x' | // DEVID_SCSI3_VPD_EUI <hex_id> 1026 * 'X' | // DEVID_SCSI3_VPD_EUI <ascii_id> 1027 * 'n' | // DEVID_SCSI3_VPD_NAA <hex_id> 1028 * 'N' | // DEVID_SCSI3_VPD_NAA <ascii_id> 1029 * 's' | // DEVID_SCSI_SERIAL <hex_id> 1030 * 'S' | // DEVID_SCSI_SERIAL <ascii_id> 1031 * 'f' | // DEVID_FAB <hex_id> 1032 * 'F' | // DEVID_FAB <ascii_id> 1033 * 'e' | // DEVID_ENCAP <hex_id> 1034 * 'E' | // DEVID_ENCAP <ascii_id> 1035 * 'a' | // DEVID_ATA_SERIAL <hex_id> 1036 * 'A' | // DEVID_ATA_SERIAL <ascii_id> 1037 * 'u' | // unknown <hex_id> 1038 * 'U' // unknown <ascii_id> 1039 * // NOTE: lower case -> <hex_id> 1040 * // upper case -> <ascii_id> 1041 * // NOTE: this covers all types currently 1042 * // defined for <revision> 1. 1043 * // NOTE: a <type> can be added 1044 * // without changing the <revision>. 1045 * 1046 * <id> -> <ascii_id> | // <type> is upper case 1047 * <hex_id> // <type> is lower case 1048 * 1049 * <ascii_id> // only if all bytes of binary <id> field 1050 * // are in the set: 1051 * // [A-Z][a-z][0-9]+-.= and space and 0x00 1052 * // the encoded form is: 1053 * // [A-Z][a-z][0-9]+-.= and _ and ~ 1054 * // NOTE: ' ' <=> '_', 0x00 <=> '~' 1055 * // these sets are chosen to avoid shell 1056 * // and conflicts with DDI node names. 1057 * 1058 * <hex_id> // if not <ascii_id>; each byte of binary 1059 * // <id> maps a to 2 digit ascii hex 1060 * // representation in the string. 1061 * 1062 * This encoding provides a meaningful correlation between the /devices 1063 * path and the devid string where possible. 1064 * 1065 * Fibre: 1066 * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw 1067 * id1,ssd@w20000020370bb488:c,raw 1068 * 1069 * Copper: 1070 * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c 1071 * id1,sd@SIBM_____1XY210__________:c 1072 */ 1073 /* determine if a byte of an id meets ASCII representation requirements */ 1074 #define DEVID_IDBYTE_ISASCII(b) ( \ 1075 (((b) >= 'a') && ((b) <= 'z')) || \ 1076 (((b) >= 'A') && ((b) <= 'Z')) || \ 1077 (((b) >= '0') && ((b) <= '9')) || \ 1078 (b == '+') || (b == '-') || (b == '.') || (b == '=') || \ 1079 (b == ' ') || (b == 0x00)) 1080 1081 /* set type to lower case to indicate that the did_id field is ascii */ 1082 #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */ 1083 1084 /* determine from type if did_id field is binary or ascii */ 1085 #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z')) 1086 1087 /* convert type field from binary to ascii */ 1088 #define DEVID_TYPE_BINTOASCII(b) ( \ 1089 ((b) == DEVID_SCSI3_WWN) ? 'w' : \ 1090 ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \ 1091 ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \ 1092 ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \ 1093 ((b) == DEVID_SCSI_SERIAL) ? 's' : \ 1094 ((b) == DEVID_FAB) ? 'f' : \ 1095 ((b) == DEVID_ENCAP) ? 'e' : \ 1096 ((b) == DEVID_ATA_SERIAL) ? 'a' : \ 1097 'u') /* unknown */ 1098 1099 /* convert type field from ascii to binary */ 1100 #define DEVID_TYPE_ASCIITOBIN(c) ( \ 1101 (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \ 1102 (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \ 1103 (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \ 1104 (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \ 1105 (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \ 1106 (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \ 1107 (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \ 1108 (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \ 1109 DEVID_MAXTYPE +1) /* unknown */ 1110 1111 /* determine if the type should be forced to hex encoding (non-ascii) */ 1112 #define DEVID_TYPE_BIN_FORCEHEX(b) ( \ 1113 ((b) == DEVID_SCSI3_WWN) || \ 1114 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1115 ((b) == DEVID_SCSI3_VPD_NAA) || \ 1116 ((b) == DEVID_FAB)) 1117 1118 /* determine if the type is from a scsi3 vpd */ 1119 #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \ 1120 ((b) == DEVID_SCSI3_VPD_T10) || \ 1121 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1122 ((b) == DEVID_SCSI3_VPD_NAA)) 1123 1124 /* convert rev field from binary to ascii (only supports 10 revs) */ 1125 #define DEVID_REV_BINTOASCII(b) (b + '0') 1126 1127 /* convert rev field from ascii to binary (only supports 10 revs) */ 1128 #define DEVID_REV_ASCIITOBIN(c) (c - '0') 1129 1130 /* name of devid property */ 1131 #define DEVID_PROP_NAME "devid" 1132 1133 /* 1134 * prop_name used by pci_{save,restore}_config_regs() 1135 */ 1136 #define SAVED_CONFIG_REGS "pci-config-regs" 1137 #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask" 1138 #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info" 1139 1140 typedef struct pci_config_header_state { 1141 uint16_t chs_command; 1142 uint8_t chs_cache_line_size; 1143 uint8_t chs_latency_timer; 1144 uint8_t chs_header_type; 1145 uint8_t chs_sec_latency_timer; 1146 uint8_t chs_bridge_control; 1147 uint32_t chs_base0; 1148 uint32_t chs_base1; 1149 uint32_t chs_base2; 1150 uint32_t chs_base3; 1151 uint32_t chs_base4; 1152 uint32_t chs_base5; 1153 } pci_config_header_state_t; 1154 1155 #ifdef _KERNEL 1156 1157 typedef struct pci_cap_save_desc { 1158 uint16_t cap_offset; 1159 uint16_t cap_id; 1160 uint32_t cap_nregs; 1161 } pci_cap_save_desc_t; 1162 1163 typedef struct pci_cap_entry { 1164 uint16_t cap_id; 1165 uint32_t cap_ndwords; 1166 uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr, 1167 uint32_t *regbuf, uint32_t ndwords); 1168 } pci_cap_entry_t; 1169 1170 #endif /* _KERNEL */ 1171 1172 #ifdef __cplusplus 1173 } 1174 #endif 1175 1176 #endif /* _SYS_DDI_IMPLDEFS_H */ 1177