1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _SYS_CRYPTO_SCHED_IMPL_H 27 #define _SYS_CRYPTO_SCHED_IMPL_H 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Scheduler internal structures. 33 */ 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 #include <sys/types.h> 40 #include <sys/mutex.h> 41 #include <sys/condvar.h> 42 #include <sys/door.h> 43 #include <sys/crypto/api.h> 44 #include <sys/crypto/spi.h> 45 #include <sys/crypto/impl.h> 46 #include <sys/crypto/common.h> 47 #include <sys/crypto/ops_impl.h> 48 49 typedef void (kcf_func_t)(void *, int); 50 51 typedef enum kcf_req_status { 52 REQ_ALLOCATED = 1, 53 REQ_WAITING, /* At the framework level */ 54 REQ_INPROGRESS, /* At the provider level */ 55 REQ_DONE, 56 REQ_CANCELED 57 } kcf_req_status_t; 58 59 typedef enum kcf_call_type { 60 CRYPTO_SYNCH = 1, 61 CRYPTO_ASYNCH 62 } kcf_call_type_t; 63 64 #define CHECK_RESTRICT(crq) (crq != NULL && \ 65 ((crq)->cr_flag & CRYPTO_RESTRICTED)) 66 67 #define CHECK_RESTRICT_FALSE B_FALSE 68 69 #define CHECK_FASTPATH(crq, pd) ((crq) == NULL || \ 70 !((crq)->cr_flag & CRYPTO_ALWAYS_QUEUE)) && \ 71 (pd)->pd_prov_type == CRYPTO_SW_PROVIDER 72 73 #define KCF_KMFLAG(crq) (((crq) == NULL) ? KM_SLEEP : KM_NOSLEEP) 74 75 /* 76 * The framework keeps an internal handle to use in the adaptive 77 * asynchronous case. This is the case when a client has the 78 * CRYPTO_ALWAYS_QUEUE bit clear and a software provider is used for 79 * the request. The request is completed in the context of the calling 80 * thread and kernel memory must be allocated with KM_NOSLEEP. 81 * 82 * The framework passes a pointer to the handle in crypto_req_handle_t 83 * argument when it calls the SPI of the software provider. The macros 84 * KCF_RHNDL() and KCF_SWFP_RHNDL() are used to do this. 85 * 86 * When a provider asks the framework for kmflag value via 87 * crypto_kmflag(9S) we use REQHNDL2_KMFLAG() macro. 88 */ 89 extern ulong_t kcf_swprov_hndl; 90 #define KCF_RHNDL(kmflag) (((kmflag) == KM_SLEEP) ? NULL : &kcf_swprov_hndl) 91 #define KCF_SWFP_RHNDL(crq) (((crq) == NULL) ? NULL : &kcf_swprov_hndl) 92 #define REQHNDL2_KMFLAG(rhndl) \ 93 ((rhndl == &kcf_swprov_hndl) ? KM_NOSLEEP : KM_SLEEP) 94 95 /* Internal call_req flags. They start after the public ones in api.h */ 96 97 #define CRYPTO_SETDUAL 0x00001000 /* Set the 'cont' boolean before */ 98 /* submitting the request */ 99 #define KCF_ISDUALREQ(crq) \ 100 (((crq) == NULL) ? B_FALSE : (crq->cr_flag & CRYPTO_SETDUAL)) 101 102 typedef struct kcf_prov_tried { 103 kcf_provider_desc_t *pt_pd; 104 struct kcf_prov_tried *pt_next; 105 } kcf_prov_tried_t; 106 107 #define IS_FG_SUPPORTED(mdesc, fg) \ 108 (((mdesc)->pm_mech_info.cm_func_group_mask & (fg)) != 0) 109 110 #define IS_PROVIDER_TRIED(pd, tlist) \ 111 (tlist != NULL && is_in_triedlist(pd, tlist)) 112 113 #define IS_RECOVERABLE(error) \ 114 (error == CRYPTO_BUFFER_TOO_BIG || \ 115 error == CRYPTO_BUSY || \ 116 error == CRYPTO_DEVICE_ERROR || \ 117 error == CRYPTO_DEVICE_MEMORY || \ 118 error == CRYPTO_KEY_SIZE_RANGE || \ 119 error == CRYPTO_NO_PERMISSION) 120 121 #define KCF_ATOMIC_INCR(x) atomic_add_32(&(x), 1) 122 #define KCF_ATOMIC_DECR(x) atomic_add_32(&(x), -1) 123 124 /* 125 * Node structure for synchronous requests. 126 */ 127 typedef struct kcf_sreq_node { 128 /* Should always be the first field in this structure */ 129 kcf_call_type_t sn_type; 130 /* 131 * sn_cv and sr_lock are used to wait for the 132 * operation to complete. sn_lock also protects 133 * the sn_state field. 134 */ 135 kcondvar_t sn_cv; 136 kmutex_t sn_lock; 137 kcf_req_status_t sn_state; 138 139 /* 140 * Return value from the operation. This will be 141 * one of the CRYPTO_* errors defined in common.h. 142 */ 143 int sn_rv; 144 145 /* 146 * parameters to call the SPI with. This can be 147 * a pointer as we know the caller context/stack stays. 148 */ 149 struct kcf_req_params *sn_params; 150 151 /* Internal context for this request */ 152 struct kcf_context *sn_context; 153 154 /* Provider handling this request */ 155 kcf_provider_desc_t *sn_provider; 156 } kcf_sreq_node_t; 157 158 /* 159 * Node structure for asynchronous requests. A node can be on 160 * on a chain of requests hanging of the internal context 161 * structure and can be in the global software provider queue. 162 */ 163 typedef struct kcf_areq_node { 164 /* Should always be the first field in this structure */ 165 kcf_call_type_t an_type; 166 167 /* an_lock protects the field an_state */ 168 kmutex_t an_lock; 169 kcf_req_status_t an_state; 170 crypto_call_req_t an_reqarg; 171 172 /* 173 * parameters to call the SPI with. We need to 174 * save the params since the caller stack can go away. 175 */ 176 struct kcf_req_params an_params; 177 178 /* 179 * The next two fields should be NULL for operations that 180 * don't need a context. 181 */ 182 /* Internal context for this request */ 183 struct kcf_context *an_context; 184 185 /* next in chain of requests for context */ 186 struct kcf_areq_node *an_ctxchain_next; 187 188 boolean_t an_is_my_turn; 189 boolean_t an_isdual; /* for internal reuse */ 190 191 /* 192 * Next and previous nodes in the global software 193 * queue. These fields are NULL for a hardware 194 * provider since we use a taskq there. 195 */ 196 struct kcf_areq_node *an_next; 197 struct kcf_areq_node *an_prev; 198 199 /* Provider handling this request */ 200 kcf_provider_desc_t *an_provider; 201 kcf_prov_tried_t *an_tried_plist; 202 203 struct kcf_areq_node *an_idnext; /* Next in ID hash */ 204 struct kcf_areq_node *an_idprev; /* Prev in ID hash */ 205 kcondvar_t an_done; /* Signal request completion */ 206 uint_t an_refcnt; 207 } kcf_areq_node_t; 208 209 #define KCF_AREQ_REFHOLD(areq) { \ 210 atomic_add_32(&(areq)->an_refcnt, 1); \ 211 ASSERT((areq)->an_refcnt != 0); \ 212 } 213 214 #define KCF_AREQ_REFRELE(areq) { \ 215 ASSERT((areq)->an_refcnt != 0); \ 216 membar_exit(); \ 217 if (atomic_add_32_nv(&(areq)->an_refcnt, -1) == 0) \ 218 kcf_free_req(areq); \ 219 } 220 221 #define GET_REQ_TYPE(arg) *((kcf_call_type_t *)(arg)) 222 223 #define NOTIFY_CLIENT(areq, err) (*(areq)->an_reqarg.cr_callback_func)(\ 224 (areq)->an_reqarg.cr_callback_arg, err); 225 226 /* For internally generated call requests for dual operations */ 227 typedef struct kcf_call_req { 228 crypto_call_req_t kr_callreq; /* external client call req */ 229 kcf_req_params_t kr_params; /* Params saved for next call */ 230 kcf_areq_node_t *kr_areq; /* Use this areq */ 231 off_t kr_saveoffset; 232 size_t kr_savelen; 233 } kcf_dual_req_t; 234 235 /* 236 * The following are some what similar to macros in callo.h, which implement 237 * callout tables. 238 * 239 * The lower four bits of the ID are used to encode the table ID to 240 * index in to. The REQID_COUNTER_HIGH bit is used to avoid any check for 241 * wrap around when generating ID. We assume that there won't be a request 242 * which takes more time than 2^^(sizeof (long) - 5) other requests submitted 243 * after it. This ensures there won't be any ID collision. 244 */ 245 #define REQID_COUNTER_HIGH (1UL << (8 * sizeof (long) - 1)) 246 #define REQID_COUNTER_SHIFT 4 247 #define REQID_COUNTER_LOW (1 << REQID_COUNTER_SHIFT) 248 #define REQID_TABLES 16 249 #define REQID_TABLE_MASK (REQID_TABLES - 1) 250 251 #define REQID_BUCKETS 512 252 #define REQID_BUCKET_MASK (REQID_BUCKETS - 1) 253 #define REQID_HASH(id) (((id) >> REQID_COUNTER_SHIFT) & REQID_BUCKET_MASK) 254 255 #define GET_REQID(areq) (areq)->an_reqarg.cr_reqid 256 #define SET_REQID(areq, val) GET_REQID(areq) = val 257 258 /* 259 * Hash table for async requests. 260 */ 261 typedef struct kcf_reqid_table { 262 kmutex_t rt_lock; 263 crypto_req_id_t rt_curid; 264 kcf_areq_node_t *rt_idhash[REQID_BUCKETS]; 265 } kcf_reqid_table_t; 266 267 /* 268 * Global software provider queue structure. Requests to be 269 * handled by a SW provider and have the ALWAYS_QUEUE flag set 270 * get queued here. 271 */ 272 typedef struct kcf_global_swq { 273 /* 274 * gs_cv and gs_lock are used to wait for new requests. 275 * gs_lock protects the changes to the queue. 276 */ 277 kcondvar_t gs_cv; 278 kmutex_t gs_lock; 279 uint_t gs_njobs; 280 uint_t gs_maxjobs; 281 kcf_areq_node_t *gs_first; 282 kcf_areq_node_t *gs_last; 283 } kcf_global_swq_t; 284 285 286 /* 287 * Internal representation of a canonical context. We contain crypto_ctx_t 288 * structure in order to have just one memory allocation. The SPI 289 * ((crypto_ctx_t *)ctx)->cc_framework_private maps to this structure. 290 */ 291 typedef struct kcf_context { 292 crypto_ctx_t kc_glbl_ctx; 293 uint_t kc_refcnt; 294 kcondvar_t kc_in_use_cv; 295 kmutex_t kc_in_use_lock; 296 /* 297 * kc_req_chain_first and kc_req_chain_last are used to chain 298 * multiple async requests using the same context. They should be 299 * NULL for sync requests. 300 */ 301 kcf_areq_node_t *kc_req_chain_first; 302 kcf_areq_node_t *kc_req_chain_last; 303 boolean_t kc_need_signal; /* Initialized to B_FALSE */ 304 kcf_provider_desc_t *kc_prov_desc; /* Prov. descriptor */ 305 struct kcf_context *kc_secondctx; /* for dual contexts */ 306 } kcf_context_t; 307 308 /* 309 * Bump up the reference count on the framework private context. A 310 * global context or a request that references this structure should 311 * do a hold. 312 */ 313 #define KCF_CONTEXT_REFHOLD(ictx) { \ 314 atomic_add_32(&(ictx)->kc_refcnt, 1); \ 315 ASSERT((ictx)->kc_refcnt != 0); \ 316 } 317 318 /* 319 * Decrement the reference count on the framework private context. 320 * When the last reference is released, the framework private 321 * context structure is freed along with the global context. 322 */ 323 #define KCF_CONTEXT_REFRELE(ictx) { \ 324 ASSERT((ictx)->kc_refcnt != 0); \ 325 membar_exit(); \ 326 if (atomic_add_32_nv(&(ictx)->kc_refcnt, -1) == 0) \ 327 kcf_free_context(ictx); \ 328 } 329 330 /* 331 * Check if we can release the context now. In case of CRYPTO_QUEUED 332 * we do not release it as we can do it only after the provider notified 333 * us. In case of CRYPTO_BUSY, the client can retry the request using 334 * the context, so we do not release the context. 335 * 336 * This macro should be called only from the final routine in 337 * an init/update/final sequence. We do not release the context in case 338 * of update operations. We require the consumer to free it 339 * explicitly, in case it wants to abandon the operation. This is done 340 * as there may be mechanisms in ECB mode that can continue even if 341 * an operation on a block fails. 342 */ 343 #define KCF_CONTEXT_COND_RELEASE(rv, kcf_ctx) { \ 344 if (KCF_CONTEXT_DONE(rv)) \ 345 KCF_CONTEXT_REFRELE(kcf_ctx); \ 346 } 347 348 /* 349 * This macro determines whether we're done with a context. 350 */ 351 #define KCF_CONTEXT_DONE(rv) \ 352 ((rv) != CRYPTO_QUEUED && (rv) != CRYPTO_BUSY && \ 353 (rv) != CRYPTO_BUFFER_TOO_SMALL) 354 355 /* 356 * A crypto_ctx_template_t is internally a pointer to this struct 357 */ 358 typedef struct kcf_ctx_template { 359 crypto_kcf_provider_handle_t ct_prov_handle; /* provider handle */ 360 uint_t ct_generation; /* generation # */ 361 size_t ct_size; /* for freeing */ 362 crypto_spi_ctx_template_t ct_prov_tmpl; /* context template */ 363 /* from the SW prov */ 364 } kcf_ctx_template_t; 365 366 /* 367 * Structure for pool of threads working on global software queue. 368 */ 369 typedef struct kcf_pool { 370 uint32_t kp_threads; /* Number of threads in pool */ 371 uint32_t kp_idlethreads; /* Idle threads in pool */ 372 uint32_t kp_blockedthreads; /* Blocked threads in pool */ 373 374 /* 375 * cv & lock to monitor the condition when no threads 376 * are around. In this case the failover thread kicks in. 377 */ 378 kcondvar_t kp_nothr_cv; 379 kmutex_t kp_thread_lock; 380 381 /* Userspace thread creator variables. */ 382 boolean_t kp_signal_create_thread; /* Create requested flag */ 383 int kp_nthrs; /* # of threads to create */ 384 boolean_t kp_user_waiting; /* Thread waiting for work */ 385 386 /* 387 * cv & lock for the condition where more threads need to be 388 * created. kp_user_lock also protects the three fileds above. 389 */ 390 kcondvar_t kp_user_cv; /* Creator cond. variable */ 391 kmutex_t kp_user_lock; /* Creator lock */ 392 } kcf_pool_t; 393 394 395 /* 396 * State of a crypto bufcall element. 397 */ 398 typedef enum cbuf_state { 399 CBUF_FREE = 1, 400 CBUF_WAITING, 401 CBUF_RUNNING 402 } cbuf_state_t; 403 404 /* 405 * Structure of a crypto bufcall element. 406 */ 407 typedef struct kcf_cbuf_elem { 408 /* 409 * lock and cv to wait for CBUF_RUNNING to be done 410 * kc_lock also protects kc_state. 411 */ 412 kmutex_t kc_lock; 413 kcondvar_t kc_cv; 414 cbuf_state_t kc_state; 415 416 struct kcf_cbuf_elem *kc_next; 417 struct kcf_cbuf_elem *kc_prev; 418 419 void (*kc_func)(void *arg); 420 void *kc_arg; 421 } kcf_cbuf_elem_t; 422 423 /* 424 * State of a notify element. 425 */ 426 typedef enum ntfy_elem_state { 427 NTFY_WAITING = 1, 428 NTFY_RUNNING 429 } ntfy_elem_state_t; 430 431 /* 432 * Structure of a notify list element. 433 */ 434 typedef struct kcf_ntfy_elem { 435 /* 436 * lock and cv to wait for NTFY_RUNNING to be done. 437 * kn_lock also protects kn_state. 438 */ 439 kmutex_t kn_lock; 440 kcondvar_t kn_cv; 441 ntfy_elem_state_t kn_state; 442 443 struct kcf_ntfy_elem *kn_next; 444 struct kcf_ntfy_elem *kn_prev; 445 446 crypto_notify_callback_t kn_func; 447 uint32_t kn_event_mask; 448 } kcf_ntfy_elem_t; 449 450 451 /* 452 * The following values are based on the assumption that it would 453 * take around eight cpus to load a hardware provider (This is true for 454 * at least one product) and a kernel client may come from different 455 * low-priority interrupt levels. We will have CYRPTO_TASKQ_MIN number 456 * of cached taskq entries. These are just reasonable estimates and 457 * might need to change in future. 458 */ 459 #define CYRPTO_TASKQ_MIN 64 460 #define CRYPTO_TASKQ_MAX 1024 461 462 extern int crypto_taskq_minalloc; 463 extern int crypto_taskq_maxalloc; 464 extern kcf_global_swq_t *gswq; 465 extern int kcf_maxthreads; 466 extern int kcf_minthreads; 467 468 /* Door handle for talking to kcfd */ 469 extern door_handle_t kcf_dh; 470 extern kmutex_t kcf_dh_lock; 471 472 /* 473 * All pending crypto bufcalls are put on a list. cbuf_list_lock 474 * protects changes to this list. 475 */ 476 extern kmutex_t cbuf_list_lock; 477 extern kcondvar_t cbuf_list_cv; 478 479 /* 480 * All event subscribers are put on a list. kcf_notify_list_lock 481 * protects changes to this list. 482 */ 483 extern kmutex_t ntfy_list_lock; 484 extern kcondvar_t ntfy_list_cv; 485 486 boolean_t kcf_get_next_logical_provider_member(kcf_provider_desc_t *, 487 kcf_provider_desc_t *, kcf_provider_desc_t **); 488 extern int kcf_get_hardware_provider(crypto_mech_type_t, crypto_mech_type_t, 489 boolean_t, kcf_provider_desc_t *, kcf_provider_desc_t **, 490 crypto_func_group_t); 491 extern int kcf_get_hardware_provider_nomech(offset_t, offset_t, 492 boolean_t, kcf_provider_desc_t *, kcf_provider_desc_t **); 493 extern void kcf_free_triedlist(kcf_prov_tried_t *); 494 extern kcf_prov_tried_t *kcf_insert_triedlist(kcf_prov_tried_t **, 495 kcf_provider_desc_t *, int); 496 extern kcf_provider_desc_t *kcf_get_mech_provider(crypto_mech_type_t, 497 kcf_mech_entry_t **, int *, kcf_prov_tried_t *, crypto_func_group_t, 498 boolean_t, size_t); 499 extern kcf_provider_desc_t *kcf_get_dual_provider(crypto_mechanism_t *, 500 crypto_mechanism_t *, kcf_mech_entry_t **, crypto_mech_type_t *, 501 crypto_mech_type_t *, int *, kcf_prov_tried_t *, 502 crypto_func_group_t, crypto_func_group_t, boolean_t, size_t); 503 extern crypto_ctx_t *kcf_new_ctx(crypto_call_req_t *, kcf_provider_desc_t *, 504 crypto_session_id_t); 505 extern int kcf_submit_request(kcf_provider_desc_t *, crypto_ctx_t *, 506 crypto_call_req_t *, kcf_req_params_t *, boolean_t); 507 extern void kcf_sched_init(void); 508 extern void kcf_sched_start(void); 509 extern void kcf_sop_done(kcf_sreq_node_t *, int); 510 extern void kcf_aop_done(kcf_areq_node_t *, int); 511 extern int common_submit_request(kcf_provider_desc_t *, 512 crypto_ctx_t *, kcf_req_params_t *, crypto_req_handle_t); 513 extern void kcf_free_context(kcf_context_t *); 514 515 extern int kcf_svc_wait(int *); 516 extern int kcf_svc_do_run(void); 517 extern int kcf_verify_signature(kcf_provider_desc_t *); 518 extern struct modctl *kcf_get_modctl(crypto_provider_info_t *); 519 extern void verify_unverified_providers(); 520 extern void kcf_free_req(kcf_areq_node_t *areq); 521 extern void crypto_bufcall_service(void); 522 523 extern void kcf_walk_ntfylist(uint32_t, void *); 524 525 extern kcf_dual_req_t *kcf_alloc_req(crypto_call_req_t *); 526 extern void kcf_next_req(void *, int); 527 extern void kcf_last_req(void *, int); 528 529 #ifdef __cplusplus 530 } 531 #endif 532 533 #endif /* _SYS_CRYPTO_SCHED_IMPL_H */ 534