1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_CRYPTO_SCHED_IMPL_H 28 #define _SYS_CRYPTO_SCHED_IMPL_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Scheduler internal structures. 34 */ 35 36 #ifdef __cplusplus 37 extern "C" { 38 #endif 39 40 #include <sys/types.h> 41 #include <sys/mutex.h> 42 #include <sys/condvar.h> 43 #include <sys/door.h> 44 #include <sys/crypto/api.h> 45 #include <sys/crypto/spi.h> 46 #include <sys/crypto/impl.h> 47 #include <sys/crypto/common.h> 48 #include <sys/crypto/ops_impl.h> 49 50 typedef void (kcf_func_t)(void *, int); 51 52 typedef enum kcf_req_status { 53 REQ_ALLOCATED = 1, 54 REQ_WAITING, /* At the framework level */ 55 REQ_INPROGRESS, /* At the provider level */ 56 REQ_DONE, 57 REQ_CANCELED 58 } kcf_req_status_t; 59 60 typedef enum kcf_call_type { 61 CRYPTO_SYNCH = 1, 62 CRYPTO_ASYNCH 63 } kcf_call_type_t; 64 65 #define CHECK_RESTRICT(crq) (crq != NULL && \ 66 ((crq)->cr_flag & CRYPTO_RESTRICTED)) 67 68 #define CHECK_RESTRICT_FALSE B_FALSE 69 70 #define CHECK_FASTPATH(crq, pd) ((crq) == NULL || \ 71 !((crq)->cr_flag & CRYPTO_ALWAYS_QUEUE)) && \ 72 (pd)->pd_prov_type == CRYPTO_SW_PROVIDER 73 74 #define KCF_KMFLAG(crq) (((crq) == NULL) ? KM_SLEEP : KM_NOSLEEP) 75 76 /* 77 * The framework keeps an internal handle to use in the adaptive 78 * asynchronous case. This is the case when a client has the 79 * CRYPTO_ALWAYS_QUEUE bit clear and a software provider is used for 80 * the request. The request is completed in the context of the calling 81 * thread and kernel memory must be allocated with KM_NOSLEEP. 82 * 83 * The framework passes a pointer to the handle in crypto_req_handle_t 84 * argument when it calls the SPI of the software provider. The macros 85 * KCF_RHNDL() and KCF_SWFP_RHNDL() are used to do this. 86 * 87 * When a provider asks the framework for kmflag value via 88 * crypto_kmflag(9S) we use REQHNDL2_KMFLAG() macro. 89 */ 90 extern ulong_t kcf_swprov_hndl; 91 #define KCF_RHNDL(kmflag) (((kmflag) == KM_SLEEP) ? NULL : &kcf_swprov_hndl) 92 #define KCF_SWFP_RHNDL(crq) (((crq) == NULL) ? NULL : &kcf_swprov_hndl) 93 #define REQHNDL2_KMFLAG(rhndl) \ 94 ((rhndl == &kcf_swprov_hndl) ? KM_NOSLEEP : KM_SLEEP) 95 96 /* Internal call_req flags. They start after the public ones in api.h */ 97 98 #define CRYPTO_SETDUAL 0x00001000 /* Set the 'cont' boolean before */ 99 /* submitting the request */ 100 #define KCF_ISDUALREQ(crq) \ 101 (((crq) == NULL) ? B_FALSE : (crq->cr_flag & CRYPTO_SETDUAL)) 102 103 typedef struct kcf_prov_tried { 104 kcf_provider_desc_t *pt_pd; 105 struct kcf_prov_tried *pt_next; 106 } kcf_prov_tried_t; 107 108 #define IS_FG_SUPPORTED(mdesc, fg) \ 109 (((mdesc)->pm_mech_info.cm_func_group_mask & (fg)) != 0) 110 111 #define IS_PROVIDER_TRIED(pd, tlist) \ 112 (tlist != NULL && is_in_triedlist(pd, tlist)) 113 114 #define IS_RECOVERABLE(error) \ 115 (error == CRYPTO_BUFFER_TOO_BIG || \ 116 error == CRYPTO_BUSY || \ 117 error == CRYPTO_DEVICE_ERROR || \ 118 error == CRYPTO_DEVICE_MEMORY || \ 119 error == CRYPTO_KEY_SIZE_RANGE || \ 120 error == CRYPTO_NO_PERMISSION) 121 122 #define KCF_ATOMIC_INCR(x) atomic_add_32(&(x), 1) 123 #define KCF_ATOMIC_DECR(x) atomic_add_32(&(x), -1) 124 125 /* 126 * Node structure for synchronous requests. 127 */ 128 typedef struct kcf_sreq_node { 129 /* Should always be the first field in this structure */ 130 kcf_call_type_t sn_type; 131 /* 132 * sn_cv and sr_lock are used to wait for the 133 * operation to complete. sn_lock also protects 134 * the sn_state field. 135 */ 136 kcondvar_t sn_cv; 137 kmutex_t sn_lock; 138 kcf_req_status_t sn_state; 139 140 /* 141 * Return value from the operation. This will be 142 * one of the CRYPTO_* errors defined in common.h. 143 */ 144 int sn_rv; 145 146 /* 147 * parameters to call the SPI with. This can be 148 * a pointer as we know the caller context/stack stays. 149 */ 150 struct kcf_req_params *sn_params; 151 152 /* Internal context for this request */ 153 struct kcf_context *sn_context; 154 155 /* Provider handling this request */ 156 kcf_provider_desc_t *sn_provider; 157 } kcf_sreq_node_t; 158 159 /* 160 * Node structure for asynchronous requests. A node can be on 161 * on a chain of requests hanging of the internal context 162 * structure and can be in the global software provider queue. 163 */ 164 typedef struct kcf_areq_node { 165 /* Should always be the first field in this structure */ 166 kcf_call_type_t an_type; 167 168 /* an_lock protects the field an_state */ 169 kmutex_t an_lock; 170 kcf_req_status_t an_state; 171 crypto_call_req_t an_reqarg; 172 173 /* 174 * parameters to call the SPI with. We need to 175 * save the params since the caller stack can go away. 176 */ 177 struct kcf_req_params an_params; 178 179 /* 180 * The next two fields should be NULL for operations that 181 * don't need a context. 182 */ 183 /* Internal context for this request */ 184 struct kcf_context *an_context; 185 186 /* next in chain of requests for context */ 187 struct kcf_areq_node *an_ctxchain_next; 188 189 boolean_t an_is_my_turn; 190 boolean_t an_isdual; /* for internal reuse */ 191 192 /* 193 * Next and previous nodes in the global software 194 * queue. These fields are NULL for a hardware 195 * provider since we use a taskq there. 196 */ 197 struct kcf_areq_node *an_next; 198 struct kcf_areq_node *an_prev; 199 200 /* Provider handling this request */ 201 kcf_provider_desc_t *an_provider; 202 kcf_prov_tried_t *an_tried_plist; 203 204 struct kcf_areq_node *an_idnext; /* Next in ID hash */ 205 struct kcf_areq_node *an_idprev; /* Prev in ID hash */ 206 kcondvar_t an_done; /* Signal request completion */ 207 uint_t an_refcnt; 208 } kcf_areq_node_t; 209 210 #define KCF_AREQ_REFHOLD(areq) { \ 211 atomic_add_32(&(areq)->an_refcnt, 1); \ 212 ASSERT((areq)->an_refcnt != 0); \ 213 } 214 215 #define KCF_AREQ_REFRELE(areq) { \ 216 ASSERT((areq)->an_refcnt != 0); \ 217 membar_exit(); \ 218 if (atomic_add_32_nv(&(areq)->an_refcnt, -1) == 0) \ 219 kcf_free_req(areq); \ 220 } 221 222 #define GET_REQ_TYPE(arg) *((kcf_call_type_t *)(arg)) 223 224 #define NOTIFY_CLIENT(areq, err) (*(areq)->an_reqarg.cr_callback_func)(\ 225 (areq)->an_reqarg.cr_callback_arg, err); 226 227 /* For internally generated call requests for dual operations */ 228 typedef struct kcf_call_req { 229 crypto_call_req_t kr_callreq; /* external client call req */ 230 kcf_req_params_t kr_params; /* Params saved for next call */ 231 kcf_areq_node_t *kr_areq; /* Use this areq */ 232 off_t kr_saveoffset; 233 size_t kr_savelen; 234 } kcf_dual_req_t; 235 236 /* 237 * The following are some what similar to macros in callo.h, which implement 238 * callout tables. 239 * 240 * The lower four bits of the ID are used to encode the table ID to 241 * index in to. The REQID_COUNTER_HIGH bit is used to avoid any check for 242 * wrap around when generating ID. We assume that there won't be a request 243 * which takes more time than 2^^(sizeof (long) - 5) other requests submitted 244 * after it. This ensures there won't be any ID collision. 245 */ 246 #define REQID_COUNTER_HIGH (1UL << (8 * sizeof (long) - 1)) 247 #define REQID_COUNTER_SHIFT 4 248 #define REQID_COUNTER_LOW (1 << REQID_COUNTER_SHIFT) 249 #define REQID_TABLES 16 250 #define REQID_TABLE_MASK (REQID_TABLES - 1) 251 252 #define REQID_BUCKETS 512 253 #define REQID_BUCKET_MASK (REQID_BUCKETS - 1) 254 #define REQID_HASH(id) (((id) >> REQID_COUNTER_SHIFT) & REQID_BUCKET_MASK) 255 256 #define GET_REQID(areq) (areq)->an_reqarg.cr_reqid 257 #define SET_REQID(areq, val) GET_REQID(areq) = val 258 259 /* 260 * Hash table for async requests. 261 */ 262 typedef struct kcf_reqid_table { 263 kmutex_t rt_lock; 264 crypto_req_id_t rt_curid; 265 kcf_areq_node_t *rt_idhash[REQID_BUCKETS]; 266 } kcf_reqid_table_t; 267 268 /* 269 * Global software provider queue structure. Requests to be 270 * handled by a SW provider and have the ALWAYS_QUEUE flag set 271 * get queued here. 272 */ 273 typedef struct kcf_global_swq { 274 /* 275 * gs_cv and gs_lock are used to wait for new requests. 276 * gs_lock protects the changes to the queue. 277 */ 278 kcondvar_t gs_cv; 279 kmutex_t gs_lock; 280 uint_t gs_njobs; 281 uint_t gs_maxjobs; 282 kcf_areq_node_t *gs_first; 283 kcf_areq_node_t *gs_last; 284 } kcf_global_swq_t; 285 286 287 /* 288 * Internal representation of a canonical context. We contain crypto_ctx_t 289 * structure in order to have just one memory allocation. The SPI 290 * ((crypto_ctx_t *)ctx)->cc_framework_private maps to this structure. 291 */ 292 typedef struct kcf_context { 293 crypto_ctx_t kc_glbl_ctx; 294 uint_t kc_refcnt; 295 kcondvar_t kc_in_use_cv; 296 kmutex_t kc_in_use_lock; 297 /* 298 * kc_req_chain_first and kc_req_chain_last are used to chain 299 * multiple async requests using the same context. They should be 300 * NULL for sync requests. 301 */ 302 kcf_areq_node_t *kc_req_chain_first; 303 kcf_areq_node_t *kc_req_chain_last; 304 boolean_t kc_need_signal; /* Initialized to B_FALSE */ 305 kcf_provider_desc_t *kc_prov_desc; /* Prov. descriptor */ 306 struct kcf_context *kc_secondctx; /* for dual contexts */ 307 } kcf_context_t; 308 309 /* 310 * Bump up the reference count on the framework private context. A 311 * global context or a request that references this structure should 312 * do a hold. 313 */ 314 #define KCF_CONTEXT_REFHOLD(ictx) { \ 315 atomic_add_32(&(ictx)->kc_refcnt, 1); \ 316 ASSERT((ictx)->kc_refcnt != 0); \ 317 } 318 319 /* 320 * Decrement the reference count on the framework private context. 321 * When the last reference is released, the framework private 322 * context structure is freed along with the global context. 323 */ 324 #define KCF_CONTEXT_REFRELE(ictx) { \ 325 ASSERT((ictx)->kc_refcnt != 0); \ 326 membar_exit(); \ 327 if (atomic_add_32_nv(&(ictx)->kc_refcnt, -1) == 0) \ 328 kcf_free_context(ictx); \ 329 } 330 331 /* 332 * Check if we can release the context now. In case of CRYPTO_QUEUED 333 * we do not release it as we can do it only after the provider notified 334 * us. In case of CRYPTO_BUSY, the client can retry the request using 335 * the context, so we do not release the context. 336 * 337 * This macro should be called only from the final routine in 338 * an init/update/final sequence. We do not release the context in case 339 * of update operations. We require the consumer to free it 340 * explicitly, in case it wants to abandon the operation. This is done 341 * as there may be mechanisms in ECB mode that can continue even if 342 * an operation on a block fails. 343 */ 344 #define KCF_CONTEXT_COND_RELEASE(rv, kcf_ctx) { \ 345 if (KCF_CONTEXT_DONE(rv)) \ 346 KCF_CONTEXT_REFRELE(kcf_ctx); \ 347 } 348 349 /* 350 * This macro determines whether we're done with a context. 351 */ 352 #define KCF_CONTEXT_DONE(rv) \ 353 ((rv) != CRYPTO_QUEUED && (rv) != CRYPTO_BUSY && \ 354 (rv) != CRYPTO_BUFFER_TOO_SMALL) 355 356 /* 357 * A crypto_ctx_template_t is internally a pointer to this struct 358 */ 359 typedef struct kcf_ctx_template { 360 crypto_kcf_provider_handle_t ct_prov_handle; /* provider handle */ 361 uint_t ct_generation; /* generation # */ 362 size_t ct_size; /* for freeing */ 363 crypto_spi_ctx_template_t ct_prov_tmpl; /* context template */ 364 /* from the SW prov */ 365 } kcf_ctx_template_t; 366 367 /* 368 * Structure for pool of threads working on global software queue. 369 */ 370 typedef struct kcf_pool { 371 uint32_t kp_threads; /* Number of threads in pool */ 372 uint32_t kp_idlethreads; /* Idle threads in pool */ 373 uint32_t kp_blockedthreads; /* Blocked threads in pool */ 374 375 /* 376 * cv & lock to monitor the condition when no threads 377 * are around. In this case the failover thread kicks in. 378 */ 379 kcondvar_t kp_nothr_cv; 380 kmutex_t kp_thread_lock; 381 382 /* Userspace thread creator variables. */ 383 boolean_t kp_signal_create_thread; /* Create requested flag */ 384 int kp_nthrs; /* # of threads to create */ 385 boolean_t kp_user_waiting; /* Thread waiting for work */ 386 387 /* 388 * cv & lock for the condition where more threads need to be 389 * created. kp_user_lock also protects the three fileds above. 390 */ 391 kcondvar_t kp_user_cv; /* Creator cond. variable */ 392 kmutex_t kp_user_lock; /* Creator lock */ 393 } kcf_pool_t; 394 395 396 /* 397 * State of a crypto bufcall element. 398 */ 399 typedef enum cbuf_state { 400 CBUF_FREE = 1, 401 CBUF_WAITING, 402 CBUF_RUNNING 403 } cbuf_state_t; 404 405 /* 406 * Structure of a crypto bufcall element. 407 */ 408 typedef struct kcf_cbuf_elem { 409 /* 410 * lock and cv to wait for CBUF_RUNNING to be done 411 * kc_lock also protects kc_state. 412 */ 413 kmutex_t kc_lock; 414 kcondvar_t kc_cv; 415 cbuf_state_t kc_state; 416 417 struct kcf_cbuf_elem *kc_next; 418 struct kcf_cbuf_elem *kc_prev; 419 420 void (*kc_func)(void *arg); 421 void *kc_arg; 422 } kcf_cbuf_elem_t; 423 424 /* 425 * State of a notify element. 426 */ 427 typedef enum ntfy_elem_state { 428 NTFY_WAITING = 1, 429 NTFY_RUNNING 430 } ntfy_elem_state_t; 431 432 /* 433 * Structure of a notify list element. 434 */ 435 typedef struct kcf_ntfy_elem { 436 /* 437 * lock and cv to wait for NTFY_RUNNING to be done. 438 * kn_lock also protects kn_state. 439 */ 440 kmutex_t kn_lock; 441 kcondvar_t kn_cv; 442 ntfy_elem_state_t kn_state; 443 444 struct kcf_ntfy_elem *kn_next; 445 struct kcf_ntfy_elem *kn_prev; 446 447 crypto_notify_callback_t kn_func; 448 uint32_t kn_event_mask; 449 } kcf_ntfy_elem_t; 450 451 452 /* 453 * The following values are based on the assumption that it would 454 * take around eight cpus to load a hardware provider (This is true for 455 * at least one product) and a kernel client may come from different 456 * low-priority interrupt levels. We will have CYRPTO_TASKQ_MIN number 457 * of cached taskq entries. These are just reasonable estimates and 458 * might need to change in future. 459 */ 460 #define CYRPTO_TASKQ_MIN 64 461 #define CRYPTO_TASKQ_MAX 1024 462 463 extern int crypto_taskq_minalloc; 464 extern int crypto_taskq_maxalloc; 465 extern kcf_global_swq_t *gswq; 466 extern int kcf_maxthreads; 467 extern int kcf_minthreads; 468 469 /* Door handle for talking to kcfd */ 470 extern door_handle_t kcf_dh; 471 extern kmutex_t kcf_dh_lock; 472 473 /* 474 * All pending crypto bufcalls are put on a list. cbuf_list_lock 475 * protects changes to this list. 476 */ 477 extern kmutex_t cbuf_list_lock; 478 extern kcondvar_t cbuf_list_cv; 479 480 /* 481 * All event subscribers are put on a list. kcf_notify_list_lock 482 * protects changes to this list. 483 */ 484 extern kmutex_t ntfy_list_lock; 485 extern kcondvar_t ntfy_list_cv; 486 487 boolean_t kcf_get_next_logical_provider_member(kcf_provider_desc_t *, 488 kcf_provider_desc_t *, kcf_provider_desc_t **); 489 extern int kcf_get_hardware_provider(crypto_mech_type_t, crypto_mech_type_t, 490 offset_t, offset_t, boolean_t, kcf_provider_desc_t *, 491 kcf_provider_desc_t **); 492 extern int kcf_get_hardware_provider_nomech(offset_t, offset_t, 493 boolean_t, kcf_provider_desc_t *, kcf_provider_desc_t **); 494 extern void kcf_free_triedlist(kcf_prov_tried_t *); 495 extern kcf_prov_tried_t *kcf_insert_triedlist(kcf_prov_tried_t **, 496 kcf_provider_desc_t *, int); 497 extern kcf_provider_desc_t *kcf_get_mech_provider(crypto_mech_type_t, 498 kcf_mech_entry_t **, int *, kcf_prov_tried_t *, crypto_func_group_t, 499 boolean_t, size_t); 500 extern kcf_provider_desc_t *kcf_get_dual_provider(crypto_mechanism_t *, 501 crypto_mechanism_t *, kcf_mech_entry_t **, crypto_mech_type_t *, 502 crypto_mech_type_t *, int *, kcf_prov_tried_t *, 503 crypto_func_group_t, crypto_func_group_t, boolean_t, size_t); 504 extern crypto_ctx_t *kcf_new_ctx(crypto_call_req_t *, kcf_provider_desc_t *, 505 crypto_session_id_t); 506 extern int kcf_submit_request(kcf_provider_desc_t *, crypto_ctx_t *, 507 crypto_call_req_t *, kcf_req_params_t *, boolean_t); 508 extern void kcf_sched_init(void); 509 extern void kcf_sched_start(void); 510 extern void kcf_sop_done(kcf_sreq_node_t *, int); 511 extern void kcf_aop_done(kcf_areq_node_t *, int); 512 extern int common_submit_request(kcf_provider_desc_t *, 513 crypto_ctx_t *, kcf_req_params_t *, crypto_req_handle_t); 514 extern void kcf_free_context(kcf_context_t *); 515 516 extern int kcf_svc_wait(int *); 517 extern int kcf_svc_do_run(void); 518 extern int kcf_verify_signature(kcf_provider_desc_t *); 519 extern struct modctl *kcf_get_modctl(crypto_provider_info_t *); 520 extern void verify_unverified_providers(); 521 extern void kcf_free_req(kcf_areq_node_t *areq); 522 extern void crypto_bufcall_service(void); 523 524 extern void kcf_walk_ntfylist(uint32_t, void *); 525 526 extern kcf_dual_req_t *kcf_alloc_req(crypto_call_req_t *); 527 extern void kcf_next_req(void *, int); 528 extern void kcf_last_req(void *, int); 529 530 #ifdef __cplusplus 531 } 532 #endif 533 534 #endif /* _SYS_CRYPTO_SCHED_IMPL_H */ 535