1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * Portions of this source code were derived from Berkeley 4.3 BSD 32 * under license from the Regents of the University of California. 33 */ 34 35 #pragma ident "%Z%%M% %I% %E% SMI" 36 37 /* 38 * svc_cots.c 39 * Server side for connection-oriented RPC in the kernel. 40 * 41 */ 42 43 #include <sys/param.h> 44 #include <sys/types.h> 45 #include <sys/sysmacros.h> 46 #include <sys/file.h> 47 #include <sys/stream.h> 48 #include <sys/strsubr.h> 49 #include <sys/strsun.h> 50 #include <sys/stropts.h> 51 #include <sys/tiuser.h> 52 #include <sys/timod.h> 53 #include <sys/tihdr.h> 54 #include <sys/fcntl.h> 55 #include <sys/errno.h> 56 #include <sys/kmem.h> 57 #include <sys/systm.h> 58 #include <sys/debug.h> 59 #include <sys/cmn_err.h> 60 #include <sys/kstat.h> 61 #include <sys/vtrace.h> 62 63 #include <rpc/types.h> 64 #include <rpc/xdr.h> 65 #include <rpc/auth.h> 66 #include <rpc/rpc_msg.h> 67 #include <rpc/svc.h> 68 69 #define COTS_MAX_ALLOCSIZE 2048 70 #define MSG_OFFSET 128 /* offset of call into the mblk */ 71 #define RM_HDR_SIZE 4 /* record mark header size */ 72 73 /* 74 * Routines exported through ops vector. 75 */ 76 static bool_t svc_cots_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *); 77 static bool_t svc_cots_ksend(SVCXPRT *, struct rpc_msg *); 78 static bool_t svc_cots_kgetargs(SVCXPRT *, xdrproc_t, caddr_t); 79 static bool_t svc_cots_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t); 80 static void svc_cots_kdestroy(SVCMASTERXPRT *); 81 static int svc_cots_kdup(struct svc_req *, caddr_t, int, 82 struct dupreq **, bool_t *); 83 static void svc_cots_kdupdone(struct dupreq *, caddr_t, 84 void (*)(), int, int); 85 static int32_t *svc_cots_kgetres(SVCXPRT *, int); 86 static void svc_cots_kfreeres(SVCXPRT *); 87 static void svc_cots_kclone_destroy(SVCXPRT *); 88 static void svc_cots_kstart(SVCMASTERXPRT *); 89 90 /* 91 * Server transport operations vector. 92 */ 93 struct svc_ops svc_cots_op = { 94 svc_cots_krecv, /* Get requests */ 95 svc_cots_kgetargs, /* Deserialize arguments */ 96 svc_cots_ksend, /* Send reply */ 97 svc_cots_kfreeargs, /* Free argument data space */ 98 svc_cots_kdestroy, /* Destroy transport handle */ 99 svc_cots_kdup, /* Check entry in dup req cache */ 100 svc_cots_kdupdone, /* Mark entry in dup req cache as done */ 101 svc_cots_kgetres, /* Get pointer to response buffer */ 102 svc_cots_kfreeres, /* Destroy pre-serialized response header */ 103 svc_cots_kclone_destroy, /* Destroy a clone xprt */ 104 svc_cots_kstart /* Tell `ready-to-receive' to rpcmod */ 105 }; 106 107 /* 108 * Master transport private data. 109 * Kept in xprt->xp_p2. 110 */ 111 struct cots_master_data { 112 char *cmd_src_addr; /* client's address */ 113 int cmd_xprt_started; /* flag for clone routine to call */ 114 /* rpcmod's start routine. */ 115 struct rpc_cots_server *cmd_stats; /* stats for zone */ 116 }; 117 118 /* 119 * Transport private data. 120 * Kept in clone_xprt->xp_p2buf. 121 */ 122 typedef struct cots_data { 123 mblk_t *cd_mp; /* pre-allocated reply message */ 124 mblk_t *cd_req_mp; /* request message */ 125 } cots_data_t; 126 127 /* 128 * Server statistics 129 * NOTE: This structure type is duplicated in the NFS fast path. 130 */ 131 static const struct rpc_cots_server { 132 kstat_named_t rscalls; 133 kstat_named_t rsbadcalls; 134 kstat_named_t rsnullrecv; 135 kstat_named_t rsbadlen; 136 kstat_named_t rsxdrcall; 137 kstat_named_t rsdupchecks; 138 kstat_named_t rsdupreqs; 139 } cots_rsstat_tmpl = { 140 { "calls", KSTAT_DATA_UINT64 }, 141 { "badcalls", KSTAT_DATA_UINT64 }, 142 { "nullrecv", KSTAT_DATA_UINT64 }, 143 { "badlen", KSTAT_DATA_UINT64 }, 144 { "xdrcall", KSTAT_DATA_UINT64 }, 145 { "dupchecks", KSTAT_DATA_UINT64 }, 146 { "dupreqs", KSTAT_DATA_UINT64 } 147 }; 148 149 #define CLONE2STATS(clone_xprt) \ 150 ((struct cots_master_data *)(clone_xprt)->xp_master->xp_p2)->cmd_stats 151 #define RSSTAT_INCR(s, x) \ 152 atomic_add_64(&(s)->x.value.ui64, 1) 153 154 /* 155 * Pointer to a transport specific `ready to receive' function in rpcmod 156 * (set from rpcmod). 157 */ 158 void (*mir_start)(queue_t *); 159 uint_t *svc_max_msg_sizep; 160 161 /* 162 * the address size of the underlying transport can sometimes be 163 * unknown (tinfo->ADDR_size == -1). For this case, it is 164 * necessary to figure out what the size is so the correct amount 165 * of data is allocated. This is an itterative process: 166 * 1. take a good guess (use T_MINADDRSIZE) 167 * 2. try it. 168 * 3. if it works then everything is ok 169 * 4. if the error is ENAMETOLONG, double the guess 170 * 5. go back to step 2. 171 */ 172 #define T_UNKNOWNADDRSIZE (-1) 173 #define T_MINADDRSIZE 32 174 175 /* 176 * Create a transport record. 177 * The transport record, output buffer, and private data structure 178 * are allocated. The output buffer is serialized into using xdrmem. 179 * There is one transport record per user process which implements a 180 * set of services. 181 */ 182 static kmutex_t cots_kcreate_lock; 183 184 int 185 svc_cots_kcreate(file_t *fp, uint_t max_msgsize, struct T_info_ack *tinfo, 186 SVCMASTERXPRT **nxprt) 187 { 188 struct cots_master_data *cmd; 189 int err; 190 int retval; 191 SVCMASTERXPRT *xprt; 192 int addr_size; 193 struct rpcstat *rpcstat; 194 195 if (nxprt == NULL) 196 return (EINVAL); 197 198 rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone); 199 ASSERT(rpcstat != NULL); 200 201 addr_size = tinfo->ADDR_size; 202 if (addr_size == T_UNKNOWNADDRSIZE) { 203 addr_size = T_MINADDRSIZE; 204 } 205 206 allocate_space: 207 208 xprt = kmem_zalloc(sizeof (SVCMASTERXPRT), KM_SLEEP); 209 cmd = kmem_zalloc(sizeof (*cmd) + addr_size, KM_SLEEP); 210 211 /* cd_src_addr is set to the end of cots_data_t struct */ 212 cmd->cmd_src_addr = (char *)&cmd[1]; 213 214 if ((tinfo->TIDU_size > COTS_MAX_ALLOCSIZE) || 215 (tinfo->TIDU_size <= 0)) 216 xprt->xp_msg_size = COTS_MAX_ALLOCSIZE; 217 else { 218 xprt->xp_msg_size = tinfo->TIDU_size - 219 (tinfo->TIDU_size % BYTES_PER_XDR_UNIT); 220 } 221 222 xprt->xp_ops = &svc_cots_op; 223 xprt->xp_p2 = (caddr_t)cmd; 224 cmd->cmd_xprt_started = 0; 225 cmd->cmd_stats = rpcstat->rpc_cots_server; 226 227 xprt->xp_rtaddr.maxlen = addr_size; 228 xprt->xp_rtaddr.len = 0; 229 xprt->xp_rtaddr.buf = cmd->cmd_src_addr; 230 231 /* 232 * Get the address of the client for duplicate request 233 * cache processing. Note that the TI_GETPEERNAME ioctl should 234 * be replaced with a T_ADDR_REQ/T_ADDR_ACK handshake when 235 * TCP supports these standard TPI primitives. 236 */ 237 retval = 0; 238 err = strioctl(fp->f_vnode, TI_GETPEERNAME, 239 (intptr_t)&xprt->xp_rtaddr, 0, K_TO_K, CRED(), &retval); 240 if (err) { 241 kmem_free(xprt, sizeof (SVCMASTERXPRT)); 242 kmem_free(cmd, sizeof (*cmd) + addr_size); 243 if ((err == ENAMETOOLONG) && 244 (tinfo->ADDR_size == T_UNKNOWNADDRSIZE)) { 245 addr_size *= 2; 246 goto allocate_space; 247 } 248 return (err); 249 } 250 251 /* 252 * If the current sanity check size in rpcmod is smaller 253 * than the size needed for this xprt, then increase 254 * the sanity check. 255 */ 256 if (max_msgsize != 0 && svc_max_msg_sizep && 257 max_msgsize > *svc_max_msg_sizep) { 258 259 /* This check needs a lock */ 260 mutex_enter(&cots_kcreate_lock); 261 if (svc_max_msg_sizep && max_msgsize > *svc_max_msg_sizep) 262 *svc_max_msg_sizep = max_msgsize; 263 mutex_exit(&cots_kcreate_lock); 264 } 265 266 *nxprt = xprt; 267 return (0); 268 } 269 270 /* 271 * Destroy a master transport record. 272 * Frees the space allocated for a transport record. 273 */ 274 static void 275 svc_cots_kdestroy(SVCMASTERXPRT *xprt) 276 { 277 struct cots_master_data *cmd = (struct cots_master_data *)xprt->xp_p2; 278 279 ASSERT(cmd); 280 281 if (xprt->xp_netid) 282 kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1); 283 if (xprt->xp_addrmask.maxlen) 284 kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen); 285 286 mutex_destroy(&xprt->xp_req_lock); 287 mutex_destroy(&xprt->xp_thread_lock); 288 289 kmem_free(cmd, sizeof (*cmd) + xprt->xp_rtaddr.maxlen); 290 kmem_free(xprt, sizeof (SVCMASTERXPRT)); 291 } 292 293 /* 294 * svc_tli_kcreate() calls this function at the end to tell 295 * rpcmod that the transport is ready to receive requests. 296 */ 297 static void 298 svc_cots_kstart(SVCMASTERXPRT *xprt) 299 { 300 struct cots_master_data *cmd = (struct cots_master_data *)xprt->xp_p2; 301 302 if (cmd->cmd_xprt_started == 0) { 303 /* 304 * Acquire the xp_req_lock in order to use xp_wq 305 * safely (we don't want to qenable a queue that has 306 * already been closed). 307 */ 308 mutex_enter(&xprt->xp_req_lock); 309 if (cmd->cmd_xprt_started == 0 && 310 xprt->xp_wq != NULL) { 311 (*mir_start)(xprt->xp_wq); 312 cmd->cmd_xprt_started = 1; 313 } 314 mutex_exit(&xprt->xp_req_lock); 315 } 316 } 317 318 /* 319 * Transport-type specific part of svc_xprt_cleanup(). 320 */ 321 static void 322 svc_cots_kclone_destroy(SVCXPRT *clone_xprt) 323 { 324 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf; 325 326 if (cd->cd_req_mp) { 327 freemsg(cd->cd_req_mp); 328 cd->cd_req_mp = (mblk_t *)0; 329 } 330 ASSERT(cd->cd_mp == NULL); 331 } 332 333 /* 334 * Receive rpc requests. 335 * Checks if the message is intact, and deserializes the call packet. 336 */ 337 static bool_t 338 svc_cots_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg) 339 { 340 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf; 341 XDR *xdrs = &clone_xprt->xp_xdrin; 342 struct rpc_cots_server *stats = CLONE2STATS(clone_xprt); 343 344 TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KRECV_START, 345 "svc_cots_krecv_start:"); 346 RPCLOG(4, "svc_cots_krecv_start clone_xprt = %p:\n", 347 (void *)clone_xprt); 348 349 RSSTAT_INCR(stats, rscalls); 350 351 if (mp->b_datap->db_type != M_DATA) { 352 RPCLOG(16, "svc_cots_krecv bad db_type %d\n", 353 mp->b_datap->db_type); 354 goto bad; 355 } 356 357 xdrmblk_init(xdrs, mp, XDR_DECODE, 0); 358 359 TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START, 360 "xdr_callmsg_start:"); 361 RPCLOG0(4, "xdr_callmsg_start:\n"); 362 if (!xdr_callmsg(xdrs, msg)) { 363 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, 364 "xdr_callmsg_end:(%S)", "bad"); 365 RPCLOG0(1, "svc_cots_krecv xdr_callmsg failure\n"); 366 RSSTAT_INCR(stats, rsxdrcall); 367 goto bad; 368 } 369 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, 370 "xdr_callmsg_end:(%S)", "good"); 371 372 clone_xprt->xp_xid = msg->rm_xid; 373 cd->cd_req_mp = mp; 374 375 TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KRECV_END, 376 "svc_cots_krecv_end:(%S)", "good"); 377 RPCLOG0(4, "svc_cots_krecv_end:good\n"); 378 return (TRUE); 379 380 bad: 381 if (mp) 382 freemsg(mp); 383 384 RSSTAT_INCR(stats, rsbadcalls); 385 TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KRECV_END, 386 "svc_cots_krecv_end:(%S)", "bad"); 387 return (FALSE); 388 } 389 390 /* 391 * Send rpc reply. 392 */ 393 static bool_t 394 svc_cots_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg) 395 { 396 /* LINTED pointer alignment */ 397 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf; 398 XDR *xdrs = &(clone_xprt->xp_xdrout); 399 int retval = FALSE; 400 mblk_t *mp; 401 xdrproc_t xdr_results; 402 caddr_t xdr_location; 403 bool_t has_args; 404 405 TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KSEND_START, 406 "svc_cots_ksend_start:"); 407 408 /* 409 * If there is a result procedure specified in the reply message, 410 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP. 411 * We need to make sure it won't be processed twice, so we null 412 * it for xdr_replymsg here. 413 */ 414 has_args = FALSE; 415 if (msg->rm_reply.rp_stat == MSG_ACCEPTED && 416 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { 417 if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) { 418 has_args = TRUE; 419 xdr_location = msg->acpted_rply.ar_results.where; 420 msg->acpted_rply.ar_results.proc = xdr_void; 421 msg->acpted_rply.ar_results.where = NULL; 422 } 423 } 424 425 mp = cd->cd_mp; 426 if (mp) { 427 /* 428 * The program above pre-allocated an mblk and put 429 * the data in place. 430 */ 431 cd->cd_mp = (mblk_t *)NULL; 432 if (!(xdr_replymsg_body(xdrs, msg) && 433 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, 434 xdr_results, xdr_location)))) { 435 RPCLOG0(1, "svc_cots_ksend: " 436 "xdr_replymsg_body/SVCAUTH_WRAP failed\n"); 437 freemsg(mp); 438 goto out; 439 } 440 } else { 441 int len; 442 int mpsize; 443 444 /* 445 * Leave space for protocol headers. 446 */ 447 len = MSG_OFFSET + clone_xprt->xp_msg_size; 448 449 /* 450 * Allocate an initial mblk for the response data. 451 */ 452 while (!(mp = allocb(len, BPRI_LO))) { 453 RPCLOG0(16, "svc_cots_ksend: allocb failed failed\n"); 454 if (strwaitbuf(len, BPRI_LO)) { 455 TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KSEND_END, 456 "svc_cots_ksend_end:(%S)", "strwaitbuf"); 457 RPCLOG0(1, 458 "svc_cots_ksend: strwaitbuf failed\n"); 459 goto out; 460 } 461 } 462 463 /* 464 * Initialize the XDR decode stream. Additional mblks 465 * will be allocated if necessary. They will be TIDU 466 * sized. 467 */ 468 xdrmblk_init(xdrs, mp, XDR_ENCODE, clone_xprt->xp_msg_size); 469 mpsize = MBLKSIZE(mp); 470 ASSERT(mpsize >= len); 471 ASSERT(mp->b_rptr == mp->b_datap->db_base); 472 473 /* 474 * If the size of mblk is not appreciably larger than what we 475 * asked, then resize the mblk to exactly len bytes. Reason for 476 * this: suppose len is 1600 bytes, the tidu is 1460 bytes 477 * (from TCP over ethernet), and the arguments to RPC require 478 * 2800 bytes. Ideally we want the protocol to render two 479 * ~1400 byte segments over the wire. If allocb() gives us a 2k 480 * mblk, and we allocate a second mblk for the rest, the 481 * protocol module may generate 3 segments over the wire: 482 * 1460 bytes for the first, 448 (2048 - 1600) for the 2nd, and 483 * 892 for the 3rd. If we "waste" 448 bytes in the first mblk, 484 * the XDR encoding will generate two ~1400 byte mblks, and the 485 * protocol module is more likely to produce properly sized 486 * segments. 487 */ 488 if ((mpsize >> 1) <= len) { 489 mp->b_rptr += (mpsize - len); 490 } 491 492 /* 493 * Adjust b_rptr to reserve space for the non-data protocol 494 * headers that any downstream modules might like to add, and 495 * for the record marking header. 496 */ 497 mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE); 498 499 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base)); 500 ASSERT(mp->b_wptr == mp->b_rptr); 501 502 msg->rm_xid = clone_xprt->xp_xid; 503 504 TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START, 505 "xdr_replymsg_start:"); 506 if (!(xdr_replymsg(xdrs, msg) && 507 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, 508 xdr_results, xdr_location)))) { 509 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, 510 "xdr_replymsg_end:(%S)", "bad"); 511 freemsg(mp); 512 RPCLOG0(1, "svc_cots_ksend: xdr_replymsg/SVCAUTH_WRAP " 513 "failed\n"); 514 goto out; 515 } 516 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, 517 "xdr_replymsg_end:(%S)", "good"); 518 } 519 520 put(clone_xprt->xp_wq, mp); 521 retval = TRUE; 522 523 out: 524 /* 525 * This is completely disgusting. If public is set it is 526 * a pointer to a structure whose first field is the address 527 * of the function to free that structure and any related 528 * stuff. (see rrokfree in nfs_xdr.c). 529 */ 530 if (xdrs->x_public) { 531 /* LINTED pointer alignment */ 532 (**((int (**)())xdrs->x_public))(xdrs->x_public); 533 } 534 535 TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KSEND_END, 536 "svc_cots_ksend_end:(%S)", "done"); 537 return (retval); 538 } 539 540 /* 541 * Deserialize arguments. 542 */ 543 static bool_t 544 svc_cots_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, 545 caddr_t args_ptr) 546 { 547 return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin, 548 xdr_args, args_ptr)); 549 } 550 551 static bool_t 552 svc_cots_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, 553 caddr_t args_ptr) 554 { 555 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf; 556 mblk_t *mp; 557 bool_t retval; 558 559 /* 560 * It is important to call the XDR routine before 561 * freeing the request mblk. Structures in the 562 * XDR data may point into the mblk and require that 563 * the memory be intact during the free routine. 564 */ 565 if (args_ptr) { 566 /* LINTED pointer alignment */ 567 XDR *xdrs = &clone_xprt->xp_xdrin; 568 569 xdrs->x_op = XDR_FREE; 570 retval = (*xdr_args)(xdrs, args_ptr); 571 } else 572 retval = TRUE; 573 574 if ((mp = cd->cd_req_mp) != NULL) { 575 cd->cd_req_mp = (mblk_t *)0; 576 freemsg(mp); 577 } 578 579 return (retval); 580 } 581 582 static int32_t * 583 svc_cots_kgetres(SVCXPRT *clone_xprt, int size) 584 { 585 /* LINTED pointer alignment */ 586 cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf; 587 XDR *xdrs = &clone_xprt->xp_xdrout; 588 mblk_t *mp; 589 int32_t *buf; 590 struct rpc_msg rply; 591 int len; 592 int mpsize; 593 594 /* 595 * Leave space for protocol headers. 596 */ 597 len = MSG_OFFSET + clone_xprt->xp_msg_size; 598 599 /* 600 * Allocate an initial mblk for the response data. 601 */ 602 while ((mp = allocb(len, BPRI_LO)) == NULL) { 603 if (strwaitbuf(len, BPRI_LO)) 604 return (FALSE); 605 } 606 607 /* 608 * Initialize the XDR decode stream. Additional mblks 609 * will be allocated if necessary. They will be TIDU 610 * sized. 611 */ 612 xdrmblk_init(xdrs, mp, XDR_ENCODE, clone_xprt->xp_msg_size); 613 mpsize = MBLKSIZE(mp); 614 ASSERT(mpsize >= len); 615 ASSERT(mp->b_rptr == mp->b_datap->db_base); 616 617 /* 618 * If the size of mblk is not appreciably larger than what we 619 * asked, then resize the mblk to exactly len bytes. Reason for 620 * this: suppose len is 1600 bytes, the tidu is 1460 bytes 621 * (from TCP over ethernet), and the arguments to RPC require 622 * 2800 bytes. Ideally we want the protocol to render two 623 * ~1400 byte segments over the wire. If allocb() gives us a 2k 624 * mblk, and we allocate a second mblk for the rest, the 625 * protocol module may generate 3 segments over the wire: 626 * 1460 bytes for the first, 448 (2048 - 1600) for the 2nd, and 627 * 892 for the 3rd. If we "waste" 448 bytes in the first mblk, 628 * the XDR encoding will generate two ~1400 byte mblks, and the 629 * protocol module is more likely to produce properly sized 630 * segments. 631 */ 632 if ((mpsize >> 1) <= len) { 633 mp->b_rptr += (mpsize - len); 634 } 635 636 /* 637 * Adjust b_rptr to reserve space for the non-data protocol 638 * headers that any downstream modules might like to add, and 639 * for the record marking header. 640 */ 641 mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE); 642 643 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base)); 644 ASSERT(mp->b_wptr == mp->b_rptr); 645 646 /* 647 * Assume a successful RPC since most of them are. 648 */ 649 rply.rm_xid = clone_xprt->xp_xid; 650 rply.rm_direction = REPLY; 651 rply.rm_reply.rp_stat = MSG_ACCEPTED; 652 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 653 rply.acpted_rply.ar_stat = SUCCESS; 654 655 if (!xdr_replymsg_hdr(xdrs, &rply)) { 656 freeb(mp); 657 return (NULL); 658 } 659 660 661 buf = XDR_INLINE(xdrs, size); 662 if (buf == NULL) { 663 ASSERT(cd->cd_mp == NULL); 664 freemsg(mp); 665 } else { 666 cd->cd_mp = mp; 667 } 668 return (buf); 669 } 670 671 static void 672 svc_cots_kfreeres(SVCXPRT *clone_xprt) 673 { 674 cots_data_t *cd; 675 mblk_t *mp; 676 677 cd = (cots_data_t *)clone_xprt->xp_p2buf; 678 if ((mp = cd->cd_mp) != NULL) { 679 cd->cd_mp = (mblk_t *)NULL; 680 freemsg(mp); 681 } 682 } 683 684 /* 685 * the dup cacheing routines below provide a cache of non-failure 686 * transaction id's. rpc service routines can use this to detect 687 * retransmissions and re-send a non-failure response. 688 */ 689 690 /* 691 * MAXDUPREQS is the number of cached items. It should be adjusted 692 * to the service load so that there is likely to be a response entry 693 * when the first retransmission comes in. 694 */ 695 #define MAXDUPREQS 1024 696 697 /* 698 * This should be appropriately scaled to MAXDUPREQS. 699 */ 700 #define DRHASHSZ 257 701 702 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0) 703 #define XIDHASH(xid) ((xid) & (DRHASHSZ - 1)) 704 #else 705 #define XIDHASH(xid) ((xid) % DRHASHSZ) 706 #endif 707 #define DRHASH(dr) XIDHASH((dr)->dr_xid) 708 #define REQTOXID(req) ((req)->rq_xprt->xp_xid) 709 710 static int cotsndupreqs = 0; 711 static int cotsmaxdupreqs = MAXDUPREQS; 712 static kmutex_t cotsdupreq_lock; 713 static struct dupreq *cotsdrhashtbl[DRHASHSZ]; 714 static int cotsdrhashstat[DRHASHSZ]; 715 716 static void unhash(struct dupreq *); 717 718 /* 719 * cotsdrmru points to the head of a circular linked list in lru order. 720 * cotsdrmru->dr_next == drlru 721 */ 722 struct dupreq *cotsdrmru; 723 724 /* 725 * PSARC 2003/523 Contract Private Interface 726 * svc_cots_kdup 727 * Changes must be reviewed by Solaris File Sharing 728 * Changes must be communicated to contract-2003-523@sun.com 729 * 730 * svc_cots_kdup searches the request cache and returns 0 if the 731 * request is not found in the cache. If it is found, then it 732 * returns the state of the request (in progress or done) and 733 * the status or attributes that were part of the original reply. 734 * 735 * If DUP_DONE (there is a duplicate) svc_cots_kdup copies over the 736 * value of the response. In that case, also return in *dupcachedp 737 * whether the response free routine is cached in the dupreq - in which case 738 * the caller should not be freeing it, because it will be done later 739 * in the svc_cots_kdup code when the dupreq is reused. 740 */ 741 static int 742 svc_cots_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp, 743 bool_t *dupcachedp) 744 { 745 struct rpc_cots_server *stats = CLONE2STATS(req->rq_xprt); 746 struct dupreq *dr; 747 uint32_t xid; 748 uint32_t drhash; 749 int status; 750 751 xid = REQTOXID(req); 752 mutex_enter(&cotsdupreq_lock); 753 RSSTAT_INCR(stats, rsdupchecks); 754 /* 755 * Check to see whether an entry already exists in the cache. 756 */ 757 dr = cotsdrhashtbl[XIDHASH(xid)]; 758 while (dr != NULL) { 759 if (dr->dr_xid == xid && 760 dr->dr_proc == req->rq_proc && 761 dr->dr_prog == req->rq_prog && 762 dr->dr_vers == req->rq_vers && 763 dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len && 764 bcmp((caddr_t)dr->dr_addr.buf, 765 (caddr_t)req->rq_xprt->xp_rtaddr.buf, 766 dr->dr_addr.len) == 0) { 767 status = dr->dr_status; 768 if (status == DUP_DONE) { 769 bcopy(dr->dr_resp.buf, res, size); 770 if (dupcachedp != NULL) 771 *dupcachedp = (dr->dr_resfree != NULL); 772 TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KDUP_DONE, 773 "svc_cots_kdup: DUP_DONE"); 774 } else { 775 dr->dr_status = DUP_INPROGRESS; 776 *drpp = dr; 777 TRACE_0(TR_FAC_KRPC, 778 TR_SVC_COTS_KDUP_INPROGRESS, 779 "svc_cots_kdup: DUP_INPROGRESS"); 780 } 781 RSSTAT_INCR(stats, rsdupreqs); 782 mutex_exit(&cotsdupreq_lock); 783 return (status); 784 } 785 dr = dr->dr_chain; 786 } 787 788 /* 789 * There wasn't an entry, either allocate a new one or recycle 790 * an old one. 791 */ 792 if (cotsndupreqs < cotsmaxdupreqs) { 793 dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP); 794 if (dr == NULL) { 795 mutex_exit(&cotsdupreq_lock); 796 return (DUP_ERROR); 797 } 798 dr->dr_resp.buf = NULL; 799 dr->dr_resp.maxlen = 0; 800 dr->dr_addr.buf = NULL; 801 dr->dr_addr.maxlen = 0; 802 if (cotsdrmru) { 803 dr->dr_next = cotsdrmru->dr_next; 804 cotsdrmru->dr_next = dr; 805 } else { 806 dr->dr_next = dr; 807 } 808 cotsndupreqs++; 809 } else { 810 dr = cotsdrmru->dr_next; 811 while (dr->dr_status == DUP_INPROGRESS) { 812 dr = dr->dr_next; 813 if (dr == cotsdrmru->dr_next) { 814 cmn_err(CE_WARN, "svc_cots_kdup no slots free"); 815 mutex_exit(&cotsdupreq_lock); 816 return (DUP_ERROR); 817 } 818 } 819 unhash(dr); 820 if (dr->dr_resfree) { 821 (*dr->dr_resfree)(dr->dr_resp.buf); 822 } 823 } 824 dr->dr_resfree = NULL; 825 cotsdrmru = dr; 826 827 dr->dr_xid = REQTOXID(req); 828 dr->dr_prog = req->rq_prog; 829 dr->dr_vers = req->rq_vers; 830 dr->dr_proc = req->rq_proc; 831 if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) { 832 if (dr->dr_addr.buf != NULL) 833 kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen); 834 dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len; 835 dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, KM_NOSLEEP); 836 if (dr->dr_addr.buf == NULL) { 837 dr->dr_addr.maxlen = 0; 838 dr->dr_status = DUP_DROP; 839 mutex_exit(&cotsdupreq_lock); 840 return (DUP_ERROR); 841 } 842 } 843 dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len; 844 bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len); 845 if (dr->dr_resp.maxlen < size) { 846 if (dr->dr_resp.buf != NULL) 847 kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen); 848 dr->dr_resp.maxlen = (unsigned int)size; 849 dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP); 850 if (dr->dr_resp.buf == NULL) { 851 dr->dr_resp.maxlen = 0; 852 dr->dr_status = DUP_DROP; 853 mutex_exit(&cotsdupreq_lock); 854 return (DUP_ERROR); 855 } 856 } 857 dr->dr_status = DUP_INPROGRESS; 858 859 drhash = (uint32_t)DRHASH(dr); 860 dr->dr_chain = cotsdrhashtbl[drhash]; 861 cotsdrhashtbl[drhash] = dr; 862 cotsdrhashstat[drhash]++; 863 mutex_exit(&cotsdupreq_lock); 864 *drpp = dr; 865 return (DUP_NEW); 866 } 867 868 /* 869 * PSARC 2003/523 Contract Private Interface 870 * svc_cots_kdupdone 871 * Changes must be reviewed by Solaris File Sharing 872 * Changes must be communicated to contract-2003-523@sun.com 873 * 874 * svc_cots_kdupdone marks the request done (DUP_DONE or DUP_DROP) 875 * and stores the response. 876 */ 877 static void 878 svc_cots_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(), 879 int size, int status) 880 { 881 ASSERT(dr->dr_resfree == NULL); 882 if (status == DUP_DONE) { 883 bcopy(res, dr->dr_resp.buf, size); 884 dr->dr_resfree = dis_resfree; 885 } 886 dr->dr_status = status; 887 } 888 889 /* 890 * This routine expects that the mutex, cotsdupreq_lock, is already held. 891 */ 892 static void 893 unhash(struct dupreq *dr) 894 { 895 struct dupreq *drt; 896 struct dupreq *drtprev = NULL; 897 uint32_t drhash; 898 899 ASSERT(MUTEX_HELD(&cotsdupreq_lock)); 900 901 drhash = (uint32_t)DRHASH(dr); 902 drt = cotsdrhashtbl[drhash]; 903 while (drt != NULL) { 904 if (drt == dr) { 905 cotsdrhashstat[drhash]--; 906 if (drtprev == NULL) { 907 cotsdrhashtbl[drhash] = drt->dr_chain; 908 } else { 909 drtprev->dr_chain = drt->dr_chain; 910 } 911 return; 912 } 913 drtprev = drt; 914 drt = drt->dr_chain; 915 } 916 } 917 918 void 919 svc_cots_stats_init(zoneid_t zoneid, struct rpc_cots_server **statsp) 920 { 921 *statsp = (struct rpc_cots_server *)rpcstat_zone_init_common(zoneid, 922 "unix", "rpc_cots_server", (const kstat_named_t *)&cots_rsstat_tmpl, 923 sizeof (cots_rsstat_tmpl)); 924 } 925 926 void 927 svc_cots_stats_fini(zoneid_t zoneid, struct rpc_cots_server **statsp) 928 { 929 rpcstat_zone_fini_common(zoneid, "unix", "rpc_cots_server"); 930 kmem_free(*statsp, sizeof (cots_rsstat_tmpl)); 931 } 932 933 void 934 svc_cots_init(void) 935 { 936 /* 937 * Check to make sure that the cots private data will fit into 938 * the stack buffer allocated by svc_run. The ASSERT is a safety 939 * net if the cots_data_t structure ever changes. 940 */ 941 /*CONSTANTCONDITION*/ 942 ASSERT(sizeof (cots_data_t) <= SVC_P2LEN); 943 944 mutex_init(&cots_kcreate_lock, NULL, MUTEX_DEFAULT, NULL); 945 mutex_init(&cotsdupreq_lock, NULL, MUTEX_DEFAULT, NULL); 946 } 947