1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 /* 29 * Portions of this source code were derived from Berkeley 4.3 BSD 30 * under license from the Regents of the University of California. 31 */ 32 33 /* 34 * svc_clts.c 35 * Server side for RPC in the kernel. 36 * 37 */ 38 39 #include <sys/param.h> 40 #include <sys/types.h> 41 #include <sys/sysmacros.h> 42 #include <sys/file.h> 43 #include <sys/stream.h> 44 #include <sys/strsun.h> 45 #include <sys/strsubr.h> 46 #include <sys/tihdr.h> 47 #include <sys/tiuser.h> 48 #include <sys/t_kuser.h> 49 #include <sys/fcntl.h> 50 #include <sys/errno.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/cmn_err.h> 54 #include <sys/kstat.h> 55 #include <sys/vtrace.h> 56 #include <sys/debug.h> 57 58 #include <rpc/types.h> 59 #include <rpc/xdr.h> 60 #include <rpc/auth.h> 61 #include <rpc/clnt.h> 62 #include <rpc/rpc_msg.h> 63 #include <rpc/svc.h> 64 #include <inet/ip.h> 65 66 /* 67 * Routines exported through ops vector. 68 */ 69 static bool_t svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *); 70 static bool_t svc_clts_ksend(SVCXPRT *, struct rpc_msg *); 71 static bool_t svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t); 72 static bool_t svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t); 73 static void svc_clts_kdestroy(SVCMASTERXPRT *); 74 static int svc_clts_kdup(struct svc_req *, caddr_t, int, 75 struct dupreq **, bool_t *); 76 static void svc_clts_kdupdone(struct dupreq *, caddr_t, 77 void (*)(), int, int); 78 static int32_t *svc_clts_kgetres(SVCXPRT *, int); 79 static void svc_clts_kclone_destroy(SVCXPRT *); 80 static void svc_clts_kfreeres(SVCXPRT *); 81 static void svc_clts_kstart(SVCMASTERXPRT *); 82 static void svc_clts_kclone_xprt(SVCXPRT *, SVCXPRT *); 83 static void svc_clts_ktattrs(SVCXPRT *, int, void **); 84 85 /* 86 * Server transport operations vector. 87 */ 88 struct svc_ops svc_clts_op = { 89 svc_clts_krecv, /* Get requests */ 90 svc_clts_kgetargs, /* Deserialize arguments */ 91 svc_clts_ksend, /* Send reply */ 92 svc_clts_kfreeargs, /* Free argument data space */ 93 svc_clts_kdestroy, /* Destroy transport handle */ 94 svc_clts_kdup, /* Check entry in dup req cache */ 95 svc_clts_kdupdone, /* Mark entry in dup req cache as done */ 96 svc_clts_kgetres, /* Get pointer to response buffer */ 97 svc_clts_kfreeres, /* Destroy pre-serialized response header */ 98 svc_clts_kclone_destroy, /* Destroy a clone xprt */ 99 svc_clts_kstart, /* Tell `ready-to-receive' to rpcmod */ 100 svc_clts_kclone_xprt, /* transport specific clone xprt function */ 101 svc_clts_ktattrs /* Transport specific attributes. */ 102 }; 103 104 /* 105 * Transport private data. 106 * Kept in xprt->xp_p2buf. 107 */ 108 struct udp_data { 109 mblk_t *ud_resp; /* buffer for response */ 110 mblk_t *ud_inmp; /* mblk chain of request */ 111 }; 112 113 #define UD_MAXSIZE 8800 114 #define UD_INITSIZE 2048 115 116 /* 117 * Connectionless server statistics 118 */ 119 static const struct rpc_clts_server { 120 kstat_named_t rscalls; 121 kstat_named_t rsbadcalls; 122 kstat_named_t rsnullrecv; 123 kstat_named_t rsbadlen; 124 kstat_named_t rsxdrcall; 125 kstat_named_t rsdupchecks; 126 kstat_named_t rsdupreqs; 127 } clts_rsstat_tmpl = { 128 { "calls", KSTAT_DATA_UINT64 }, 129 { "badcalls", KSTAT_DATA_UINT64 }, 130 { "nullrecv", KSTAT_DATA_UINT64 }, 131 { "badlen", KSTAT_DATA_UINT64 }, 132 { "xdrcall", KSTAT_DATA_UINT64 }, 133 { "dupchecks", KSTAT_DATA_UINT64 }, 134 { "dupreqs", KSTAT_DATA_UINT64 } 135 }; 136 137 static uint_t clts_rsstat_ndata = 138 sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t); 139 140 #define CLONE2STATS(clone_xprt) \ 141 (struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2 142 143 #define RSSTAT_INCR(stats, x) \ 144 atomic_add_64(&(stats)->x.value.ui64, 1) 145 146 /* 147 * Create a transport record. 148 * The transport record, output buffer, and private data structure 149 * are allocated. The output buffer is serialized into using xdrmem. 150 * There is one transport record per user process which implements a 151 * set of services. 152 */ 153 /* ARGSUSED */ 154 int 155 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo, 156 SVCMASTERXPRT **nxprt) 157 { 158 SVCMASTERXPRT *xprt; 159 struct rpcstat *rpcstat; 160 161 if (nxprt == NULL) 162 return (EINVAL); 163 164 rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone); 165 ASSERT(rpcstat != NULL); 166 167 xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP); 168 xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP); 169 xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server; 170 xprt->xp_ops = &svc_clts_op; 171 xprt->xp_msg_size = tinfo->TSDU_size; 172 173 xprt->xp_rtaddr.buf = NULL; 174 xprt->xp_rtaddr.maxlen = tinfo->ADDR_size; 175 xprt->xp_rtaddr.len = 0; 176 177 *nxprt = xprt; 178 179 return (0); 180 } 181 182 /* 183 * Destroy a transport record. 184 * Frees the space allocated for a transport record. 185 */ 186 static void 187 svc_clts_kdestroy(SVCMASTERXPRT *xprt) 188 { 189 if (xprt->xp_netid) 190 kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1); 191 if (xprt->xp_addrmask.maxlen) 192 kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen); 193 194 mutex_destroy(&xprt->xp_req_lock); 195 mutex_destroy(&xprt->xp_thread_lock); 196 197 kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t)); 198 kmem_free(xprt, sizeof (SVCMASTERXPRT)); 199 } 200 201 /* 202 * Transport-type specific part of svc_xprt_cleanup(). 203 * Frees the message buffer space allocated for a clone of a transport record 204 */ 205 static void 206 svc_clts_kclone_destroy(SVCXPRT *clone_xprt) 207 { 208 /* LINTED pointer alignment */ 209 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 210 211 if (ud->ud_resp) { 212 /* 213 * There should not be any left over results buffer. 214 */ 215 ASSERT(ud->ud_resp->b_cont == NULL); 216 217 /* 218 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv 219 * saved. 220 */ 221 freeb(ud->ud_resp); 222 } 223 if (ud->ud_inmp) 224 freemsg(ud->ud_inmp); 225 } 226 227 /* 228 * svc_tli_kcreate() calls this function at the end to tell 229 * rpcmod that the transport is ready to receive requests. 230 */ 231 /* ARGSUSED */ 232 static void 233 svc_clts_kstart(SVCMASTERXPRT *xprt) 234 { 235 } 236 237 static void 238 svc_clts_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt) 239 { 240 struct udp_data *ud_src = 241 (struct udp_data *)src_xprt->xp_p2buf; 242 struct udp_data *ud_dst = 243 (struct udp_data *)dst_xprt->xp_p2buf; 244 245 if (ud_src->ud_resp) 246 ud_dst->ud_resp = dupb(ud_src->ud_resp); 247 248 } 249 250 static void 251 svc_clts_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr) 252 { 253 *tattr = NULL; 254 255 switch (attrflag) { 256 case SVC_TATTR_ADDRMASK: 257 *tattr = (void *)&clone_xprt->xp_master->xp_addrmask; 258 } 259 } 260 261 /* 262 * Receive rpc requests. 263 * Pulls a request in off the socket, checks if the packet is intact, 264 * and deserializes the call packet. 265 */ 266 static bool_t 267 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg) 268 { 269 /* LINTED pointer alignment */ 270 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 271 XDR *xdrs = &clone_xprt->xp_xdrin; 272 struct rpc_clts_server *stats = CLONE2STATS(clone_xprt); 273 union T_primitives *pptr; 274 int hdrsz; 275 cred_t *cr; 276 277 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START, 278 "svc_clts_krecv_start:"); 279 280 RSSTAT_INCR(stats, rscalls); 281 282 /* 283 * The incoming request should start with an M_PROTO message. 284 */ 285 if (mp->b_datap->db_type != M_PROTO) { 286 goto bad; 287 } 288 289 /* 290 * The incoming request should be an T_UNITDTA_IND. There 291 * might be other messages coming up the stream, but we can 292 * ignore them. 293 */ 294 pptr = (union T_primitives *)mp->b_rptr; 295 if (pptr->type != T_UNITDATA_IND) { 296 goto bad; 297 } 298 /* 299 * Do some checking to make sure that the header at least looks okay. 300 */ 301 hdrsz = (int)(mp->b_wptr - mp->b_rptr); 302 if (hdrsz < TUNITDATAINDSZ || 303 hdrsz < (pptr->unitdata_ind.OPT_offset + 304 pptr->unitdata_ind.OPT_length) || 305 hdrsz < (pptr->unitdata_ind.SRC_offset + 306 pptr->unitdata_ind.SRC_length)) { 307 goto bad; 308 } 309 310 /* 311 * Make sure that the transport provided a usable address. 312 */ 313 if (pptr->unitdata_ind.SRC_length <= 0) { 314 goto bad; 315 } 316 /* 317 * Point the remote transport address in the service_transport 318 * handle at the address in the request. 319 */ 320 clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr + 321 pptr->unitdata_ind.SRC_offset; 322 clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length; 323 324 /* 325 * Copy the local transport address in the service_transport 326 * handle at the address in the request. We will have only 327 * the local IP address in options. 328 */ 329 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_UNSPEC; 330 if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) { 331 char *dstopt = (char *)mp->b_rptr + 332 pptr->unitdata_ind.OPT_offset; 333 struct T_opthdr *toh = (struct T_opthdr *)dstopt; 334 335 if (toh->level == IPPROTO_IPV6 && toh->status == 0 && 336 toh->name == IPV6_PKTINFO) { 337 struct in6_pktinfo *pkti; 338 339 dstopt += sizeof (struct T_opthdr); 340 pkti = (struct in6_pktinfo *)dstopt; 341 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr 342 = pkti->ipi6_addr; 343 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_family 344 = AF_INET6; 345 } else if (toh->level == IPPROTO_IP && toh->status == 0 && 346 toh->name == IP_RECVDSTADDR) { 347 dstopt += sizeof (struct T_opthdr); 348 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr 349 = *(struct in_addr *)dstopt; 350 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family 351 = AF_INET; 352 } 353 } 354 355 /* 356 * Save the first mblk which contains the T_unidata_ind in 357 * ud_resp. It will be used to generate the T_unitdata_req 358 * during the reply. 359 * We reuse any options in the T_unitdata_ind for the T_unitdata_req 360 * since we must pass any SCM_UCRED across in order for TX to 361 * work. We also make sure any cred_t is carried across. 362 */ 363 if (ud->ud_resp) { 364 if (ud->ud_resp->b_cont != NULL) { 365 cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, " 366 "b_cont %p", (void *)ud->ud_resp, 367 (void *)ud->ud_resp->b_cont); 368 } 369 freeb(ud->ud_resp); 370 } 371 /* Move any cred_t to the first mblk in the message */ 372 cr = msg_getcred(mp, NULL); 373 if (cr != NULL) 374 mblk_setcred(mp, cr, NOPID); 375 376 ud->ud_resp = mp; 377 mp = mp->b_cont; 378 ud->ud_resp->b_cont = NULL; 379 380 xdrmblk_init(xdrs, mp, XDR_DECODE, 0); 381 382 TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START, 383 "xdr_callmsg_start:"); 384 if (! xdr_callmsg(xdrs, msg)) { 385 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, 386 "xdr_callmsg_end:(%S)", "bad"); 387 RSSTAT_INCR(stats, rsxdrcall); 388 goto bad; 389 } 390 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, 391 "xdr_callmsg_end:(%S)", "good"); 392 393 clone_xprt->xp_xid = msg->rm_xid; 394 ud->ud_inmp = mp; 395 396 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END, 397 "svc_clts_krecv_end:(%S)", "good"); 398 return (TRUE); 399 400 bad: 401 freemsg(mp); 402 if (ud->ud_resp) { 403 /* 404 * There should not be any left over results buffer. 405 */ 406 ASSERT(ud->ud_resp->b_cont == NULL); 407 freeb(ud->ud_resp); 408 ud->ud_resp = NULL; 409 } 410 411 RSSTAT_INCR(stats, rsbadcalls); 412 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END, 413 "svc_clts_krecv_end:(%S)", "bad"); 414 return (FALSE); 415 } 416 417 /* 418 * Send rpc reply. 419 * Serialize the reply packet into the output buffer then 420 * call t_ksndudata to send it. 421 */ 422 static bool_t 423 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg) 424 { 425 /* LINTED pointer alignment */ 426 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 427 XDR *xdrs = &clone_xprt->xp_xdrout; 428 int stat = FALSE; 429 mblk_t *mp; 430 int msgsz; 431 struct T_unitdata_req *udreq; 432 xdrproc_t xdr_results; 433 caddr_t xdr_location; 434 bool_t has_args; 435 436 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START, 437 "svc_clts_ksend_start:"); 438 439 ASSERT(ud->ud_resp != NULL); 440 441 /* 442 * If there is a result procedure specified in the reply message, 443 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP. 444 * We need to make sure it won't be processed twice, so we null 445 * it for xdr_replymsg here. 446 */ 447 has_args = FALSE; 448 if (msg->rm_reply.rp_stat == MSG_ACCEPTED && 449 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { 450 if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) { 451 has_args = TRUE; 452 xdr_location = msg->acpted_rply.ar_results.where; 453 msg->acpted_rply.ar_results.proc = xdr_void; 454 msg->acpted_rply.ar_results.where = NULL; 455 } 456 } 457 458 if (ud->ud_resp->b_cont == NULL) { 459 /* 460 * Allocate an initial mblk for the response data. 461 */ 462 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) { 463 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) { 464 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END, 465 "svc_clts_ksend_end:(%S)", "strwaitbuf"); 466 return (FALSE); 467 } 468 } 469 470 /* 471 * Initialize the XDR decode stream. Additional mblks 472 * will be allocated if necessary. They will be UD_MAXSIZE 473 * sized. 474 */ 475 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE); 476 477 /* 478 * Leave some space for protocol headers. 479 */ 480 (void) XDR_SETPOS(xdrs, 512); 481 mp->b_rptr += 512; 482 483 msg->rm_xid = clone_xprt->xp_xid; 484 485 ud->ud_resp->b_cont = mp; 486 487 TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START, 488 "xdr_replymsg_start:"); 489 if (!(xdr_replymsg(xdrs, msg) && 490 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, 491 xdr_results, xdr_location)))) { 492 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, 493 "xdr_replymsg_end:(%S)", "bad"); 494 RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n"); 495 goto out; 496 } 497 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, 498 "xdr_replymsg_end:(%S)", "good"); 499 500 } else if (!(xdr_replymsg_body(xdrs, msg) && 501 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, 502 xdr_results, xdr_location)))) { 503 RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n"); 504 goto out; 505 } 506 507 msgsz = (int)xmsgsize(ud->ud_resp->b_cont); 508 509 if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 && 510 msgsz > clone_xprt->xp_msg_size)) { 511 #ifdef DEBUG 512 cmn_err(CE_NOTE, 513 "KRPC: server response message of %d bytes; transport limits are [0, %d]", 514 msgsz, clone_xprt->xp_msg_size); 515 #endif 516 goto out; 517 } 518 519 /* 520 * Construct the T_unitdata_req. We take advantage of the fact that 521 * T_unitdata_ind looks just like T_unitdata_req, except for the 522 * primitive type. Reusing it means we preserve the SCM_UCRED, and 523 * we must preserve it for TX to work. 524 * 525 * This has the side effect that we can also pass certain receive-side 526 * options like IPV6_PKTINFO back down the send side. This implies 527 * that we can not ASSERT on a non-NULL db_credp when we have send-side 528 * options in UDP. 529 */ 530 ASSERT(MBLKL(ud->ud_resp) >= TUNITDATAREQSZ); 531 udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr; 532 ASSERT(udreq->PRIM_type == T_UNITDATA_IND); 533 udreq->PRIM_type = T_UNITDATA_REQ; 534 535 /* 536 * If the local IPv4 transport address is known use it as a source 537 * address for the outgoing UDP packet. 538 */ 539 if (((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family == AF_INET) { 540 struct T_opthdr *opthdr; 541 in_pktinfo_t *pktinfo; 542 size_t size; 543 544 if (udreq->DEST_length == 0) 545 udreq->OPT_offset = _TPI_ALIGN_TOPT(TUNITDATAREQSZ); 546 else 547 udreq->OPT_offset = _TPI_ALIGN_TOPT(udreq->DEST_offset + 548 udreq->DEST_length); 549 550 udreq->OPT_length = sizeof (struct T_opthdr) + 551 sizeof (in_pktinfo_t); 552 553 size = udreq->OPT_length + udreq->OPT_offset; 554 555 /* make sure we have enough space for the option data */ 556 mp = reallocb(ud->ud_resp, size, 1); 557 if (mp == NULL) 558 goto out; 559 ud->ud_resp = mp; 560 udreq = (struct T_unitdata_req *)mp->b_rptr; 561 562 /* set desired option header */ 563 opthdr = (struct T_opthdr *)(mp->b_rptr + udreq->OPT_offset); 564 opthdr->len = udreq->OPT_length; 565 opthdr->level = IPPROTO_IP; 566 opthdr->name = IP_PKTINFO; 567 568 /* 569 * 1. set source IP of outbound packet 570 * 2. value '0' for index means IP layer uses this as source 571 * address 572 */ 573 pktinfo = (in_pktinfo_t *)(opthdr + 1); 574 (void) memset(pktinfo, 0, sizeof (in_pktinfo_t)); 575 pktinfo->ipi_spec_dst.s_addr = 576 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr.s_addr; 577 pktinfo->ipi_ifindex = 0; 578 579 /* adjust the end of active data */ 580 mp->b_wptr = mp->b_rptr + size; 581 } 582 583 put(clone_xprt->xp_wq, ud->ud_resp); 584 stat = TRUE; 585 ud->ud_resp = NULL; 586 587 out: 588 if (stat == FALSE) { 589 freemsg(ud->ud_resp); 590 ud->ud_resp = NULL; 591 } 592 593 /* 594 * This is completely disgusting. If public is set it is 595 * a pointer to a structure whose first field is the address 596 * of the function to free that structure and any related 597 * stuff. (see rrokfree in nfs_xdr.c). 598 */ 599 if (xdrs->x_public) { 600 /* LINTED pointer alignment */ 601 (**((int (**)())xdrs->x_public))(xdrs->x_public); 602 } 603 604 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END, 605 "svc_clts_ksend_end:(%S)", "done"); 606 return (stat); 607 } 608 609 /* 610 * Deserialize arguments. 611 */ 612 static bool_t 613 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, 614 caddr_t args_ptr) 615 { 616 617 /* LINTED pointer alignment */ 618 return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin, 619 xdr_args, args_ptr)); 620 621 } 622 623 static bool_t 624 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, 625 caddr_t args_ptr) 626 { 627 /* LINTED pointer alignment */ 628 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 629 XDR *xdrs = &clone_xprt->xp_xdrin; 630 bool_t retval; 631 632 if (args_ptr) { 633 xdrs->x_op = XDR_FREE; 634 retval = (*xdr_args)(xdrs, args_ptr); 635 } else 636 retval = TRUE; 637 638 if (ud->ud_inmp) { 639 freemsg(ud->ud_inmp); 640 ud->ud_inmp = NULL; 641 } 642 643 return (retval); 644 } 645 646 static int32_t * 647 svc_clts_kgetres(SVCXPRT *clone_xprt, int size) 648 { 649 /* LINTED pointer alignment */ 650 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 651 XDR *xdrs = &clone_xprt->xp_xdrout; 652 mblk_t *mp; 653 int32_t *buf; 654 struct rpc_msg rply; 655 656 /* 657 * Allocate an initial mblk for the response data. 658 */ 659 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) { 660 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) { 661 return (FALSE); 662 } 663 } 664 665 mp->b_cont = NULL; 666 667 /* 668 * Initialize the XDR decode stream. Additional mblks 669 * will be allocated if necessary. They will be UD_MAXSIZE 670 * sized. 671 */ 672 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE); 673 674 /* 675 * Leave some space for protocol headers. 676 */ 677 (void) XDR_SETPOS(xdrs, 512); 678 mp->b_rptr += 512; 679 680 /* 681 * Assume a successful RPC since most of them are. 682 */ 683 rply.rm_xid = clone_xprt->xp_xid; 684 rply.rm_direction = REPLY; 685 rply.rm_reply.rp_stat = MSG_ACCEPTED; 686 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 687 rply.acpted_rply.ar_stat = SUCCESS; 688 689 if (!xdr_replymsg_hdr(xdrs, &rply)) { 690 freeb(mp); 691 return (NULL); 692 } 693 694 buf = XDR_INLINE(xdrs, size); 695 696 if (buf == NULL) 697 freeb(mp); 698 else 699 ud->ud_resp->b_cont = mp; 700 701 return (buf); 702 } 703 704 static void 705 svc_clts_kfreeres(SVCXPRT *clone_xprt) 706 { 707 /* LINTED pointer alignment */ 708 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 709 710 if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL) 711 return; 712 713 /* 714 * SVC_FREERES() is called whenever the server decides not to 715 * send normal reply. Thus, we expect only one mblk to be allocated, 716 * because we have not attempted any XDR encoding. 717 * If we do any XDR encoding and we get an error, then SVC_REPLY() 718 * will freemsg(ud->ud_resp); 719 */ 720 ASSERT(ud->ud_resp->b_cont->b_cont == NULL); 721 freeb(ud->ud_resp->b_cont); 722 ud->ud_resp->b_cont = NULL; 723 } 724 725 /* 726 * the dup cacheing routines below provide a cache of non-failure 727 * transaction id's. rpc service routines can use this to detect 728 * retransmissions and re-send a non-failure response. 729 */ 730 731 /* 732 * MAXDUPREQS is the number of cached items. It should be adjusted 733 * to the service load so that there is likely to be a response entry 734 * when the first retransmission comes in. 735 */ 736 #define MAXDUPREQS 1024 737 738 /* 739 * This should be appropriately scaled to MAXDUPREQS. 740 */ 741 #define DRHASHSZ 257 742 743 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0) 744 #define XIDHASH(xid) ((xid) & (DRHASHSZ - 1)) 745 #else 746 #define XIDHASH(xid) ((xid) % DRHASHSZ) 747 #endif 748 #define DRHASH(dr) XIDHASH((dr)->dr_xid) 749 #define REQTOXID(req) ((req)->rq_xprt->xp_xid) 750 751 static int ndupreqs = 0; 752 int maxdupreqs = MAXDUPREQS; 753 static kmutex_t dupreq_lock; 754 static struct dupreq *drhashtbl[DRHASHSZ]; 755 static int drhashstat[DRHASHSZ]; 756 757 static void unhash(struct dupreq *); 758 759 /* 760 * drmru points to the head of a circular linked list in lru order. 761 * drmru->dr_next == drlru 762 */ 763 struct dupreq *drmru; 764 765 /* 766 * PSARC 2003/523 Contract Private Interface 767 * svc_clts_kdup 768 * Changes must be reviewed by Solaris File Sharing 769 * Changes must be communicated to contract-2003-523@sun.com 770 * 771 * svc_clts_kdup searches the request cache and returns 0 if the 772 * request is not found in the cache. If it is found, then it 773 * returns the state of the request (in progress or done) and 774 * the status or attributes that were part of the original reply. 775 * 776 * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the 777 * value of the response. In that case, also return in *dupcachedp 778 * whether the response free routine is cached in the dupreq - in which case 779 * the caller should not be freeing it, because it will be done later 780 * in the svc_clts_kdup code when the dupreq is reused. 781 */ 782 static int 783 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp, 784 bool_t *dupcachedp) 785 { 786 struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt); 787 struct dupreq *dr; 788 uint32_t xid; 789 uint32_t drhash; 790 int status; 791 792 xid = REQTOXID(req); 793 mutex_enter(&dupreq_lock); 794 RSSTAT_INCR(stats, rsdupchecks); 795 /* 796 * Check to see whether an entry already exists in the cache. 797 */ 798 dr = drhashtbl[XIDHASH(xid)]; 799 while (dr != NULL) { 800 if (dr->dr_xid == xid && 801 dr->dr_proc == req->rq_proc && 802 dr->dr_prog == req->rq_prog && 803 dr->dr_vers == req->rq_vers && 804 dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len && 805 bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf, 806 dr->dr_addr.len) == 0) { 807 status = dr->dr_status; 808 if (status == DUP_DONE) { 809 bcopy(dr->dr_resp.buf, res, size); 810 if (dupcachedp != NULL) 811 *dupcachedp = (dr->dr_resfree != NULL); 812 } else { 813 dr->dr_status = DUP_INPROGRESS; 814 *drpp = dr; 815 } 816 RSSTAT_INCR(stats, rsdupreqs); 817 mutex_exit(&dupreq_lock); 818 return (status); 819 } 820 dr = dr->dr_chain; 821 } 822 823 /* 824 * There wasn't an entry, either allocate a new one or recycle 825 * an old one. 826 */ 827 if (ndupreqs < maxdupreqs) { 828 dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP); 829 if (dr == NULL) { 830 mutex_exit(&dupreq_lock); 831 return (DUP_ERROR); 832 } 833 dr->dr_resp.buf = NULL; 834 dr->dr_resp.maxlen = 0; 835 dr->dr_addr.buf = NULL; 836 dr->dr_addr.maxlen = 0; 837 if (drmru) { 838 dr->dr_next = drmru->dr_next; 839 drmru->dr_next = dr; 840 } else { 841 dr->dr_next = dr; 842 } 843 ndupreqs++; 844 } else { 845 dr = drmru->dr_next; 846 while (dr->dr_status == DUP_INPROGRESS) { 847 dr = dr->dr_next; 848 if (dr == drmru->dr_next) { 849 cmn_err(CE_WARN, "svc_clts_kdup no slots free"); 850 mutex_exit(&dupreq_lock); 851 return (DUP_ERROR); 852 } 853 } 854 unhash(dr); 855 if (dr->dr_resfree) { 856 (*dr->dr_resfree)(dr->dr_resp.buf); 857 } 858 } 859 dr->dr_resfree = NULL; 860 drmru = dr; 861 862 dr->dr_xid = REQTOXID(req); 863 dr->dr_prog = req->rq_prog; 864 dr->dr_vers = req->rq_vers; 865 dr->dr_proc = req->rq_proc; 866 if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) { 867 if (dr->dr_addr.buf != NULL) 868 kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen); 869 dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len; 870 dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, 871 KM_NOSLEEP); 872 if (dr->dr_addr.buf == NULL) { 873 dr->dr_addr.maxlen = 0; 874 dr->dr_status = DUP_DROP; 875 mutex_exit(&dupreq_lock); 876 return (DUP_ERROR); 877 } 878 } 879 dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len; 880 bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len); 881 if (dr->dr_resp.maxlen < size) { 882 if (dr->dr_resp.buf != NULL) 883 kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen); 884 dr->dr_resp.maxlen = (unsigned int)size; 885 dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP); 886 if (dr->dr_resp.buf == NULL) { 887 dr->dr_resp.maxlen = 0; 888 dr->dr_status = DUP_DROP; 889 mutex_exit(&dupreq_lock); 890 return (DUP_ERROR); 891 } 892 } 893 dr->dr_status = DUP_INPROGRESS; 894 895 drhash = (uint32_t)DRHASH(dr); 896 dr->dr_chain = drhashtbl[drhash]; 897 drhashtbl[drhash] = dr; 898 drhashstat[drhash]++; 899 mutex_exit(&dupreq_lock); 900 *drpp = dr; 901 return (DUP_NEW); 902 } 903 904 /* 905 * PSARC 2003/523 Contract Private Interface 906 * svc_clts_kdupdone 907 * Changes must be reviewed by Solaris File Sharing 908 * Changes must be communicated to contract-2003-523@sun.com 909 * 910 * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP) 911 * and stores the response. 912 */ 913 static void 914 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(), 915 int size, int status) 916 { 917 918 ASSERT(dr->dr_resfree == NULL); 919 if (status == DUP_DONE) { 920 bcopy(res, dr->dr_resp.buf, size); 921 dr->dr_resfree = dis_resfree; 922 } 923 dr->dr_status = status; 924 } 925 926 /* 927 * This routine expects that the mutex, dupreq_lock, is already held. 928 */ 929 static void 930 unhash(struct dupreq *dr) 931 { 932 struct dupreq *drt; 933 struct dupreq *drtprev = NULL; 934 uint32_t drhash; 935 936 ASSERT(MUTEX_HELD(&dupreq_lock)); 937 938 drhash = (uint32_t)DRHASH(dr); 939 drt = drhashtbl[drhash]; 940 while (drt != NULL) { 941 if (drt == dr) { 942 drhashstat[drhash]--; 943 if (drtprev == NULL) { 944 drhashtbl[drhash] = drt->dr_chain; 945 } else { 946 drtprev->dr_chain = drt->dr_chain; 947 } 948 return; 949 } 950 drtprev = drt; 951 drt = drt->dr_chain; 952 } 953 } 954 955 void 956 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp) 957 { 958 kstat_t *ksp; 959 kstat_named_t *knp; 960 961 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server", 962 (const kstat_named_t *)&clts_rsstat_tmpl, 963 sizeof (clts_rsstat_tmpl)); 964 /* 965 * Backwards compatibility for old kstat clients 966 */ 967 ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc", 968 KSTAT_TYPE_NAMED, clts_rsstat_ndata, 969 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid); 970 if (ksp) { 971 ksp->ks_data = knp; 972 kstat_install(ksp); 973 } 974 *statsp = (struct rpc_clts_server *)knp; 975 } 976 977 void 978 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp) 979 { 980 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server"); 981 kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid); 982 kmem_free(*statsp, sizeof (clts_rsstat_tmpl)); 983 } 984 985 void 986 svc_clts_init() 987 { 988 /* 989 * Check to make sure that the clts private data will fit into 990 * the stack buffer allocated by svc_run. The compiler should 991 * remove this check, but it's a safety net if the udp_data 992 * structure ever changes. 993 */ 994 /*CONSTANTCONDITION*/ 995 ASSERT(sizeof (struct udp_data) <= SVC_P2LEN); 996 997 mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL); 998 } 999