1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2012 Milan Jurik. All rights reserved. 27 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 28 */ 29 /* Copyright (c) 1990 Mentat Inc. */ 30 31 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 32 /* All Rights Reserved */ 33 34 /* 35 * Kernel RPC filtering module 36 */ 37 38 #include <sys/param.h> 39 #include <sys/types.h> 40 #include <sys/stream.h> 41 #include <sys/stropts.h> 42 #include <sys/strsubr.h> 43 #include <sys/tihdr.h> 44 #include <sys/timod.h> 45 #include <sys/tiuser.h> 46 #include <sys/debug.h> 47 #include <sys/signal.h> 48 #include <sys/pcb.h> 49 #include <sys/user.h> 50 #include <sys/errno.h> 51 #include <sys/cred.h> 52 #include <sys/policy.h> 53 #include <sys/inline.h> 54 #include <sys/cmn_err.h> 55 #include <sys/kmem.h> 56 #include <sys/file.h> 57 #include <sys/sysmacros.h> 58 #include <sys/systm.h> 59 #include <sys/t_lock.h> 60 #include <sys/ddi.h> 61 #include <sys/vtrace.h> 62 #include <sys/callb.h> 63 #include <sys/strsun.h> 64 65 #include <sys/strlog.h> 66 #include <rpc/rpc_com.h> 67 #include <inet/common.h> 68 #include <rpc/types.h> 69 #include <sys/time.h> 70 #include <rpc/xdr.h> 71 #include <rpc/auth.h> 72 #include <rpc/clnt.h> 73 #include <rpc/rpc_msg.h> 74 #include <rpc/clnt.h> 75 #include <rpc/svc.h> 76 #include <rpc/rpcsys.h> 77 #include <rpc/rpc_rdma.h> 78 79 /* 80 * This is the loadable module wrapper. 81 */ 82 #include <sys/conf.h> 83 #include <sys/modctl.h> 84 #include <sys/syscall.h> 85 86 extern struct streamtab rpcinfo; 87 88 static struct fmodsw fsw = { 89 "rpcmod", 90 &rpcinfo, 91 D_NEW|D_MP, 92 }; 93 94 /* 95 * Module linkage information for the kernel. 96 */ 97 98 static struct modlstrmod modlstrmod = { 99 &mod_strmodops, "rpc interface str mod", &fsw 100 }; 101 102 /* 103 * For the RPC system call. 104 */ 105 static struct sysent rpcsysent = { 106 2, 107 SE_32RVAL1 | SE_ARGC | SE_NOUNLOAD, 108 rpcsys 109 }; 110 111 static struct modlsys modlsys = { 112 &mod_syscallops, 113 "RPC syscall", 114 &rpcsysent 115 }; 116 117 #ifdef _SYSCALL32_IMPL 118 static struct modlsys modlsys32 = { 119 &mod_syscallops32, 120 "32-bit RPC syscall", 121 &rpcsysent 122 }; 123 #endif /* _SYSCALL32_IMPL */ 124 125 static struct modlinkage modlinkage = { 126 MODREV_1, 127 { 128 &modlsys, 129 #ifdef _SYSCALL32_IMPL 130 &modlsys32, 131 #endif 132 &modlstrmod, 133 NULL 134 } 135 }; 136 137 int 138 _init(void) 139 { 140 int error = 0; 141 callb_id_t cid; 142 int status; 143 144 svc_init(); 145 clnt_init(); 146 cid = callb_add(connmgr_cpr_reset, 0, CB_CL_CPR_RPC, "rpc"); 147 148 if (error = mod_install(&modlinkage)) { 149 /* 150 * Could not install module, cleanup previous 151 * initialization work. 152 */ 153 clnt_fini(); 154 if (cid != NULL) 155 (void) callb_delete(cid); 156 157 return (error); 158 } 159 160 /* 161 * Load up the RDMA plugins and initialize the stats. Even if the 162 * plugins loadup fails, but rpcmod was successfully installed the 163 * counters still get initialized. 164 */ 165 rw_init(&rdma_lock, NULL, RW_DEFAULT, NULL); 166 mutex_init(&rdma_modload_lock, NULL, MUTEX_DEFAULT, NULL); 167 168 cv_init(&rdma_wait.svc_cv, NULL, CV_DEFAULT, NULL); 169 mutex_init(&rdma_wait.svc_lock, NULL, MUTEX_DEFAULT, NULL); 170 171 mt_kstat_init(); 172 173 /* 174 * Get our identification into ldi. This is used for loading 175 * other modules, e.g. rpcib. 176 */ 177 status = ldi_ident_from_mod(&modlinkage, &rpcmod_li); 178 if (status != 0) { 179 cmn_err(CE_WARN, "ldi_ident_from_mod fails with %d", status); 180 rpcmod_li = NULL; 181 } 182 183 return (error); 184 } 185 186 /* 187 * The unload entry point fails, because we advertise entry points into 188 * rpcmod from the rest of kRPC: rpcmod_release(). 189 */ 190 int 191 _fini(void) 192 { 193 return (EBUSY); 194 } 195 196 int 197 _info(struct modinfo *modinfop) 198 { 199 return (mod_info(&modlinkage, modinfop)); 200 } 201 202 extern int nulldev(); 203 204 #define RPCMOD_ID 2049 205 206 int rmm_open(queue_t *, dev_t *, int, int, cred_t *); 207 int rmm_close(queue_t *, int, cred_t *); 208 209 /* 210 * To save instructions, since STREAMS ignores the return value 211 * from these functions, they are defined as void here. Kind of icky, but... 212 */ 213 void rmm_rput(queue_t *, mblk_t *); 214 void rmm_wput(queue_t *, mblk_t *); 215 void rmm_rsrv(queue_t *); 216 void rmm_wsrv(queue_t *); 217 218 int rpcmodopen(queue_t *, dev_t *, int, int, cred_t *); 219 int rpcmodclose(queue_t *, int, cred_t *); 220 void rpcmodrput(queue_t *, mblk_t *); 221 void rpcmodwput(queue_t *, mblk_t *); 222 void rpcmodrsrv(); 223 void rpcmodwsrv(queue_t *); 224 225 static void rpcmodwput_other(queue_t *, mblk_t *); 226 static int mir_close(queue_t *q); 227 static int mir_open(queue_t *q, dev_t *devp, int flag, int sflag, 228 cred_t *credp); 229 static void mir_rput(queue_t *q, mblk_t *mp); 230 static void mir_rsrv(queue_t *q); 231 static void mir_wput(queue_t *q, mblk_t *mp); 232 static void mir_wsrv(queue_t *q); 233 234 static struct module_info rpcmod_info = 235 {RPCMOD_ID, "rpcmod", 0, INFPSZ, 256*1024, 1024}; 236 237 static struct qinit rpcmodrinit = { 238 (int (*)())rmm_rput, 239 (int (*)())rmm_rsrv, 240 rmm_open, 241 rmm_close, 242 nulldev, 243 &rpcmod_info, 244 NULL 245 }; 246 247 /* 248 * The write put procedure is simply putnext to conserve stack space. 249 * The write service procedure is not used to queue data, but instead to 250 * synchronize with flow control. 251 */ 252 static struct qinit rpcmodwinit = { 253 (int (*)())rmm_wput, 254 (int (*)())rmm_wsrv, 255 rmm_open, 256 rmm_close, 257 nulldev, 258 &rpcmod_info, 259 NULL 260 }; 261 struct streamtab rpcinfo = { &rpcmodrinit, &rpcmodwinit, NULL, NULL }; 262 263 struct xprt_style_ops { 264 int (*xo_open)(); 265 int (*xo_close)(); 266 void (*xo_wput)(); 267 void (*xo_wsrv)(); 268 void (*xo_rput)(); 269 void (*xo_rsrv)(); 270 }; 271 272 /* 273 * Read side has no service procedure. 274 */ 275 static struct xprt_style_ops xprt_clts_ops = { 276 rpcmodopen, 277 rpcmodclose, 278 rpcmodwput, 279 rpcmodwsrv, 280 rpcmodrput, 281 NULL 282 }; 283 284 static struct xprt_style_ops xprt_cots_ops = { 285 mir_open, 286 mir_close, 287 mir_wput, 288 mir_wsrv, 289 mir_rput, 290 mir_rsrv 291 }; 292 293 /* 294 * Per rpcmod "slot" data structure. q->q_ptr points to one of these. 295 */ 296 struct rpcm { 297 void *rm_krpc_cell; /* Reserved for use by kRPC */ 298 struct xprt_style_ops *rm_ops; 299 int rm_type; /* Client or server side stream */ 300 #define RM_CLOSING 0x1 /* somebody is trying to close slot */ 301 uint_t rm_state; /* state of the slot. see above */ 302 uint_t rm_ref; /* cnt of external references to slot */ 303 kmutex_t rm_lock; /* mutex protecting above fields */ 304 kcondvar_t rm_cwait; /* condition for closing */ 305 zoneid_t rm_zoneid; /* zone which pushed rpcmod */ 306 }; 307 308 struct temp_slot { 309 void *cell; 310 struct xprt_style_ops *ops; 311 int type; 312 mblk_t *info_ack; 313 kmutex_t lock; 314 kcondvar_t wait; 315 }; 316 317 typedef struct mir_s { 318 void *mir_krpc_cell; /* Reserved for kRPC use. This field */ 319 /* must be first in the structure. */ 320 struct xprt_style_ops *rm_ops; 321 int mir_type; /* Client or server side stream */ 322 323 mblk_t *mir_head_mp; /* RPC msg in progress */ 324 /* 325 * mir_head_mp points the first mblk being collected in 326 * the current RPC message. Record headers are removed 327 * before data is linked into mir_head_mp. 328 */ 329 mblk_t *mir_tail_mp; /* Last mblk in mir_head_mp */ 330 /* 331 * mir_tail_mp points to the last mblk in the message 332 * chain starting at mir_head_mp. It is only valid 333 * if mir_head_mp is non-NULL and is used to add new 334 * data blocks to the end of chain quickly. 335 */ 336 337 int32_t mir_frag_len; /* Bytes seen in the current frag */ 338 /* 339 * mir_frag_len starts at -4 for beginning of each fragment. 340 * When this length is negative, it indicates the number of 341 * bytes that rpcmod needs to complete the record marker 342 * header. When it is positive or zero, it holds the number 343 * of bytes that have arrived for the current fragment and 344 * are held in mir_header_mp. 345 */ 346 347 int32_t mir_frag_header; 348 /* 349 * Fragment header as collected for the current fragment. 350 * It holds the last-fragment indicator and the number 351 * of bytes in the fragment. 352 */ 353 354 unsigned int 355 mir_ordrel_pending : 1, /* Sent T_ORDREL_REQ */ 356 mir_hold_inbound : 1, /* Hold inbound messages on server */ 357 /* side until outbound flow control */ 358 /* is relieved. */ 359 mir_closing : 1, /* The stream is being closed */ 360 mir_inrservice : 1, /* data queued or rd srv proc running */ 361 mir_inwservice : 1, /* data queued or wr srv proc running */ 362 mir_inwflushdata : 1, /* flush M_DATAs when srv runs */ 363 /* 364 * On client streams, mir_clntreq is 0 or 1; it is set 365 * to 1 whenever a new request is sent out (mir_wput) 366 * and cleared when the timer fires (mir_timer). If 367 * the timer fires with this value equal to 0, then the 368 * stream is considered idle and kRPC is notified. 369 */ 370 mir_clntreq : 1, 371 /* 372 * On server streams, stop accepting messages 373 */ 374 mir_svc_no_more_msgs : 1, 375 mir_listen_stream : 1, /* listen end point */ 376 mir_unused : 1, /* no longer used */ 377 mir_timer_call : 1, 378 mir_junk_fill_thru_bit_31 : 21; 379 380 int mir_setup_complete; /* server has initialized everything */ 381 timeout_id_t mir_timer_id; /* Timer for idle checks */ 382 clock_t mir_idle_timeout; /* Allowed idle time before shutdown */ 383 /* 384 * This value is copied from clnt_idle_timeout or 385 * svc_idle_timeout during the appropriate ioctl. 386 * Kept in milliseconds 387 */ 388 clock_t mir_use_timestamp; /* updated on client with each use */ 389 /* 390 * This value is set to lbolt 391 * every time a client stream sends or receives data. 392 * Even if the timer message arrives, we don't shutdown 393 * client unless: 394 * lbolt >= MSEC_TO_TICK(mir_idle_timeout)+mir_use_timestamp. 395 * This value is kept in HZ. 396 */ 397 398 uint_t *mir_max_msg_sizep; /* Reference to sanity check size */ 399 /* 400 * This pointer is set to &clnt_max_msg_size or 401 * &svc_max_msg_size during the appropriate ioctl. 402 */ 403 zoneid_t mir_zoneid; /* zone which pushed rpcmod */ 404 /* Server-side fields. */ 405 int mir_ref_cnt; /* Reference count: server side only */ 406 /* counts the number of references */ 407 /* that a kernel RPC server thread */ 408 /* (see svc_run()) has on this rpcmod */ 409 /* slot. Effectively, it is the */ 410 /* number of unprocessed messages */ 411 /* that have been passed up to the */ 412 /* kRPC layer */ 413 414 mblk_t *mir_svc_pend_mp; /* Pending T_ORDREL_IND or */ 415 /* T_DISCON_IND */ 416 417 /* 418 * these fields are for both client and server, but for debugging, 419 * it is easier to have these last in the structure. 420 */ 421 kmutex_t mir_mutex; /* Mutex and condvar for close */ 422 kcondvar_t mir_condvar; /* synchronization. */ 423 kcondvar_t mir_timer_cv; /* Timer routine sync. */ 424 } mir_t; 425 426 void tmp_rput(queue_t *q, mblk_t *mp); 427 428 struct xprt_style_ops tmpops = { 429 NULL, 430 NULL, 431 putnext, 432 NULL, 433 tmp_rput, 434 NULL 435 }; 436 437 void 438 tmp_rput(queue_t *q, mblk_t *mp) 439 { 440 struct temp_slot *t = (struct temp_slot *)(q->q_ptr); 441 struct T_info_ack *pptr; 442 443 switch (mp->b_datap->db_type) { 444 case M_PCPROTO: 445 pptr = (struct T_info_ack *)mp->b_rptr; 446 switch (pptr->PRIM_type) { 447 case T_INFO_ACK: 448 mutex_enter(&t->lock); 449 t->info_ack = mp; 450 cv_signal(&t->wait); 451 mutex_exit(&t->lock); 452 return; 453 default: 454 break; 455 } 456 default: 457 break; 458 } 459 460 /* 461 * Not an info-ack, so free it. This is ok because we should 462 * not be receiving data until the open finishes: rpcmod 463 * is pushed well before the end-point is bound to an address. 464 */ 465 freemsg(mp); 466 } 467 468 int 469 rmm_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp) 470 { 471 mblk_t *bp; 472 struct temp_slot ts, *t; 473 struct T_info_ack *pptr; 474 int error = 0; 475 476 ASSERT(q != NULL); 477 /* 478 * Check for re-opens. 479 */ 480 if (q->q_ptr) { 481 TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END, 482 "rpcmodopen_end:(%s)", "q->qptr"); 483 return (0); 484 } 485 486 t = &ts; 487 bzero(t, sizeof (*t)); 488 q->q_ptr = (void *)t; 489 WR(q)->q_ptr = (void *)t; 490 491 /* 492 * Allocate the required messages upfront. 493 */ 494 if ((bp = allocb_cred(sizeof (struct T_info_req) + 495 sizeof (struct T_info_ack), crp, curproc->p_pid)) == NULL) { 496 return (ENOBUFS); 497 } 498 499 mutex_init(&t->lock, NULL, MUTEX_DEFAULT, NULL); 500 cv_init(&t->wait, NULL, CV_DEFAULT, NULL); 501 502 t->ops = &tmpops; 503 504 qprocson(q); 505 bp->b_datap->db_type = M_PCPROTO; 506 *(int32_t *)bp->b_wptr = (int32_t)T_INFO_REQ; 507 bp->b_wptr += sizeof (struct T_info_req); 508 putnext(WR(q), bp); 509 510 mutex_enter(&t->lock); 511 while (t->info_ack == NULL) { 512 if (cv_wait_sig(&t->wait, &t->lock) == 0) { 513 error = EINTR; 514 break; 515 } 516 } 517 mutex_exit(&t->lock); 518 519 if (error) 520 goto out; 521 522 pptr = (struct T_info_ack *)t->info_ack->b_rptr; 523 524 if (pptr->SERV_type == T_CLTS) { 525 if ((error = rpcmodopen(q, devp, flag, sflag, crp)) == 0) 526 ((struct rpcm *)q->q_ptr)->rm_ops = &xprt_clts_ops; 527 } else { 528 if ((error = mir_open(q, devp, flag, sflag, crp)) == 0) 529 ((mir_t *)q->q_ptr)->rm_ops = &xprt_cots_ops; 530 } 531 532 out: 533 if (error) 534 qprocsoff(q); 535 536 freemsg(t->info_ack); 537 mutex_destroy(&t->lock); 538 cv_destroy(&t->wait); 539 540 return (error); 541 } 542 543 void 544 rmm_rput(queue_t *q, mblk_t *mp) 545 { 546 (*((struct temp_slot *)q->q_ptr)->ops->xo_rput)(q, mp); 547 } 548 549 void 550 rmm_rsrv(queue_t *q) 551 { 552 (*((struct temp_slot *)q->q_ptr)->ops->xo_rsrv)(q); 553 } 554 555 void 556 rmm_wput(queue_t *q, mblk_t *mp) 557 { 558 (*((struct temp_slot *)q->q_ptr)->ops->xo_wput)(q, mp); 559 } 560 561 void 562 rmm_wsrv(queue_t *q) 563 { 564 (*((struct temp_slot *)q->q_ptr)->ops->xo_wsrv)(q); 565 } 566 567 int 568 rmm_close(queue_t *q, int flag, cred_t *crp) 569 { 570 return ((*((struct temp_slot *)q->q_ptr)->ops->xo_close)(q, flag, crp)); 571 } 572 573 static void rpcmod_release(queue_t *, mblk_t *, bool_t); 574 /* 575 * rpcmodopen - open routine gets called when the module gets pushed 576 * onto the stream. 577 */ 578 /*ARGSUSED*/ 579 int 580 rpcmodopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp) 581 { 582 struct rpcm *rmp; 583 584 extern void (*rpc_rele)(queue_t *, mblk_t *, bool_t); 585 586 TRACE_0(TR_FAC_KRPC, TR_RPCMODOPEN_START, "rpcmodopen_start:"); 587 588 /* 589 * Initialize entry points to release a rpcmod slot (and an input 590 * message if supplied) and to send an output message to the module 591 * below rpcmod. 592 */ 593 if (rpc_rele == NULL) 594 rpc_rele = rpcmod_release; 595 596 /* 597 * Only sufficiently privileged users can use this module, and it 598 * is assumed that they will use this module properly, and NOT send 599 * bulk data from downstream. 600 */ 601 if (secpolicy_rpcmod_open(crp) != 0) 602 return (EPERM); 603 604 /* 605 * Allocate slot data structure. 606 */ 607 rmp = kmem_zalloc(sizeof (*rmp), KM_SLEEP); 608 609 mutex_init(&rmp->rm_lock, NULL, MUTEX_DEFAULT, NULL); 610 cv_init(&rmp->rm_cwait, NULL, CV_DEFAULT, NULL); 611 rmp->rm_zoneid = rpc_zoneid(); 612 /* 613 * slot type will be set by kRPC client and server ioctl's 614 */ 615 rmp->rm_type = 0; 616 617 q->q_ptr = (void *)rmp; 618 WR(q)->q_ptr = (void *)rmp; 619 620 TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END, "rpcmodopen_end:(%s)", "end"); 621 return (0); 622 } 623 624 /* 625 * rpcmodclose - This routine gets called when the module gets popped 626 * off of the stream. 627 */ 628 /*ARGSUSED*/ 629 int 630 rpcmodclose(queue_t *q, int flag, cred_t *crp) 631 { 632 struct rpcm *rmp; 633 634 ASSERT(q != NULL); 635 rmp = (struct rpcm *)q->q_ptr; 636 637 /* 638 * Mark our state as closing. 639 */ 640 mutex_enter(&rmp->rm_lock); 641 rmp->rm_state |= RM_CLOSING; 642 643 /* 644 * Check and see if there are any messages on the queue. If so, send 645 * the messages, regardless whether the downstream module is ready to 646 * accept data. 647 */ 648 if (rmp->rm_type == RPC_SERVER) { 649 flushq(q, FLUSHDATA); 650 651 qenable(WR(q)); 652 653 if (rmp->rm_ref) { 654 mutex_exit(&rmp->rm_lock); 655 /* 656 * call into SVC to clean the queue 657 */ 658 svc_queueclean(q); 659 mutex_enter(&rmp->rm_lock); 660 661 /* 662 * Block while there are kRPC threads with a reference 663 * to this message. 664 */ 665 while (rmp->rm_ref) 666 cv_wait(&rmp->rm_cwait, &rmp->rm_lock); 667 } 668 669 mutex_exit(&rmp->rm_lock); 670 671 /* 672 * It is now safe to remove this queue from the stream. No kRPC 673 * threads have a reference to the stream, and none ever will, 674 * because RM_CLOSING is set. 675 */ 676 qprocsoff(q); 677 678 /* Notify kRPC that this stream is going away. */ 679 svc_queueclose(q); 680 } else { 681 mutex_exit(&rmp->rm_lock); 682 qprocsoff(q); 683 } 684 685 q->q_ptr = NULL; 686 WR(q)->q_ptr = NULL; 687 mutex_destroy(&rmp->rm_lock); 688 cv_destroy(&rmp->rm_cwait); 689 kmem_free(rmp, sizeof (*rmp)); 690 return (0); 691 } 692 693 /* 694 * rpcmodrput - Module read put procedure. This is called from 695 * the module, driver, or stream head downstream. 696 */ 697 void 698 rpcmodrput(queue_t *q, mblk_t *mp) 699 { 700 struct rpcm *rmp; 701 union T_primitives *pptr; 702 int hdrsz; 703 704 TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_START, "rpcmodrput_start:"); 705 706 ASSERT(q != NULL); 707 rmp = (struct rpcm *)q->q_ptr; 708 709 if (rmp->rm_type == 0) { 710 freemsg(mp); 711 return; 712 } 713 714 switch (mp->b_datap->db_type) { 715 default: 716 putnext(q, mp); 717 break; 718 719 case M_PROTO: 720 case M_PCPROTO: 721 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (int32_t)); 722 pptr = (union T_primitives *)mp->b_rptr; 723 724 /* 725 * Forward this message to kRPC if it is data. 726 */ 727 if (pptr->type == T_UNITDATA_IND) { 728 /* 729 * Check if the module is being popped. 730 */ 731 mutex_enter(&rmp->rm_lock); 732 if (rmp->rm_state & RM_CLOSING) { 733 mutex_exit(&rmp->rm_lock); 734 putnext(q, mp); 735 break; 736 } 737 738 switch (rmp->rm_type) { 739 case RPC_CLIENT: 740 mutex_exit(&rmp->rm_lock); 741 hdrsz = mp->b_wptr - mp->b_rptr; 742 743 /* 744 * Make sure the header is sane. 745 */ 746 if (hdrsz < TUNITDATAINDSZ || 747 hdrsz < (pptr->unitdata_ind.OPT_length + 748 pptr->unitdata_ind.OPT_offset) || 749 hdrsz < (pptr->unitdata_ind.SRC_length + 750 pptr->unitdata_ind.SRC_offset)) { 751 freemsg(mp); 752 return; 753 } 754 755 /* 756 * Call clnt_clts_dispatch_notify, so that it 757 * can pass the message to the proper caller. 758 * Don't discard the header just yet since the 759 * client may need the sender's address. 760 */ 761 clnt_clts_dispatch_notify(mp, hdrsz, 762 rmp->rm_zoneid); 763 return; 764 case RPC_SERVER: 765 /* 766 * rm_krpc_cell is exclusively used by the kRPC 767 * CLTS server. Try to submit the message to 768 * kRPC. Since this is an unreliable channel, we 769 * can just free the message in case the kRPC 770 * does not accept new messages. 771 */ 772 if (rmp->rm_krpc_cell && 773 svc_queuereq(q, mp, TRUE)) { 774 /* 775 * Raise the reference count on this 776 * module to prevent it from being 777 * popped before kRPC generates the 778 * reply. 779 */ 780 rmp->rm_ref++; 781 mutex_exit(&rmp->rm_lock); 782 } else { 783 mutex_exit(&rmp->rm_lock); 784 freemsg(mp); 785 } 786 return; 787 default: 788 mutex_exit(&rmp->rm_lock); 789 freemsg(mp); 790 return; 791 } /* end switch(rmp->rm_type) */ 792 } else if (pptr->type == T_UDERROR_IND) { 793 mutex_enter(&rmp->rm_lock); 794 hdrsz = mp->b_wptr - mp->b_rptr; 795 796 /* 797 * Make sure the header is sane 798 */ 799 if (hdrsz < TUDERRORINDSZ || 800 hdrsz < (pptr->uderror_ind.OPT_length + 801 pptr->uderror_ind.OPT_offset) || 802 hdrsz < (pptr->uderror_ind.DEST_length + 803 pptr->uderror_ind.DEST_offset)) { 804 mutex_exit(&rmp->rm_lock); 805 freemsg(mp); 806 return; 807 } 808 809 /* 810 * In the case where a unit data error has been 811 * received, all we need to do is clear the message from 812 * the queue. 813 */ 814 mutex_exit(&rmp->rm_lock); 815 freemsg(mp); 816 RPCLOG(32, "rpcmodrput: unitdata error received at " 817 "%ld\n", gethrestime_sec()); 818 return; 819 } /* end else if (pptr->type == T_UDERROR_IND) */ 820 821 putnext(q, mp); 822 break; 823 } /* end switch (mp->b_datap->db_type) */ 824 825 TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_END, 826 "rpcmodrput_end:"); 827 /* 828 * Return codes are not looked at by the STREAMS framework. 829 */ 830 } 831 832 /* 833 * write put procedure 834 */ 835 void 836 rpcmodwput(queue_t *q, mblk_t *mp) 837 { 838 struct rpcm *rmp; 839 840 ASSERT(q != NULL); 841 842 switch (mp->b_datap->db_type) { 843 case M_PROTO: 844 case M_PCPROTO: 845 break; 846 default: 847 rpcmodwput_other(q, mp); 848 return; 849 } 850 851 /* 852 * Check to see if we can send the message downstream. 853 */ 854 if (canputnext(q)) { 855 putnext(q, mp); 856 return; 857 } 858 859 rmp = (struct rpcm *)q->q_ptr; 860 ASSERT(rmp != NULL); 861 862 /* 863 * The first canputnext failed. Try again except this time with the 864 * lock held, so that we can check the state of the stream to see if 865 * it is closing. If either of these conditions evaluate to true 866 * then send the meesage. 867 */ 868 mutex_enter(&rmp->rm_lock); 869 if (canputnext(q) || (rmp->rm_state & RM_CLOSING)) { 870 mutex_exit(&rmp->rm_lock); 871 putnext(q, mp); 872 } else { 873 /* 874 * canputnext failed again and the stream is not closing. 875 * Place the message on the queue and let the service 876 * procedure handle the message. 877 */ 878 mutex_exit(&rmp->rm_lock); 879 (void) putq(q, mp); 880 } 881 } 882 883 static void 884 rpcmodwput_other(queue_t *q, mblk_t *mp) 885 { 886 struct rpcm *rmp; 887 struct iocblk *iocp; 888 889 rmp = (struct rpcm *)q->q_ptr; 890 ASSERT(rmp != NULL); 891 892 switch (mp->b_datap->db_type) { 893 case M_IOCTL: 894 iocp = (struct iocblk *)mp->b_rptr; 895 ASSERT(iocp != NULL); 896 switch (iocp->ioc_cmd) { 897 case RPC_CLIENT: 898 case RPC_SERVER: 899 mutex_enter(&rmp->rm_lock); 900 rmp->rm_type = iocp->ioc_cmd; 901 mutex_exit(&rmp->rm_lock); 902 mp->b_datap->db_type = M_IOCACK; 903 qreply(q, mp); 904 return; 905 default: 906 /* 907 * pass the ioctl downstream and hope someone 908 * down there knows how to handle it. 909 */ 910 putnext(q, mp); 911 return; 912 } 913 default: 914 break; 915 } 916 /* 917 * This is something we definitely do not know how to handle, just 918 * pass the message downstream 919 */ 920 putnext(q, mp); 921 } 922 923 /* 924 * Module write service procedure. This is called by downstream modules 925 * for back enabling during flow control. 926 */ 927 void 928 rpcmodwsrv(queue_t *q) 929 { 930 struct rpcm *rmp; 931 mblk_t *mp = NULL; 932 933 rmp = (struct rpcm *)q->q_ptr; 934 ASSERT(rmp != NULL); 935 936 /* 937 * Get messages that may be queued and send them down stream 938 */ 939 while ((mp = getq(q)) != NULL) { 940 /* 941 * Optimize the service procedure for the server-side, by 942 * avoiding a call to canputnext(). 943 */ 944 if (rmp->rm_type == RPC_SERVER || canputnext(q)) { 945 putnext(q, mp); 946 continue; 947 } 948 (void) putbq(q, mp); 949 return; 950 } 951 } 952 953 /* ARGSUSED */ 954 static void 955 rpcmod_release(queue_t *q, mblk_t *bp, bool_t enable) 956 { 957 struct rpcm *rmp; 958 959 /* 960 * For now, just free the message. 961 */ 962 if (bp) 963 freemsg(bp); 964 rmp = (struct rpcm *)q->q_ptr; 965 966 mutex_enter(&rmp->rm_lock); 967 rmp->rm_ref--; 968 969 if (rmp->rm_ref == 0 && (rmp->rm_state & RM_CLOSING)) { 970 cv_broadcast(&rmp->rm_cwait); 971 } 972 973 mutex_exit(&rmp->rm_lock); 974 } 975 976 /* 977 * This part of rpcmod is pushed on a connection-oriented transport for use 978 * by RPC. It serves to bypass the Stream head, implements 979 * the record marking protocol, and dispatches incoming RPC messages. 980 */ 981 982 /* Default idle timer values */ 983 #define MIR_CLNT_IDLE_TIMEOUT (5 * (60 * 1000L)) /* 5 minutes */ 984 #define MIR_SVC_IDLE_TIMEOUT (6 * (60 * 1000L)) /* 6 minutes */ 985 #define MIR_SVC_ORDREL_TIMEOUT (10 * (60 * 1000L)) /* 10 minutes */ 986 #define MIR_LASTFRAG 0x80000000 /* Record marker */ 987 988 #define MIR_SVC_QUIESCED(mir) \ 989 (mir->mir_ref_cnt == 0 && mir->mir_inrservice == 0) 990 991 #define MIR_CLEAR_INRSRV(mir_ptr) { \ 992 (mir_ptr)->mir_inrservice = 0; \ 993 if ((mir_ptr)->mir_type == RPC_SERVER && \ 994 (mir_ptr)->mir_closing) \ 995 cv_signal(&(mir_ptr)->mir_condvar); \ 996 } 997 998 /* 999 * Don't block service procedure (and mir_close) if 1000 * we are in the process of closing. 1001 */ 1002 #define MIR_WCANPUTNEXT(mir_ptr, write_q) \ 1003 (canputnext(write_q) || ((mir_ptr)->mir_svc_no_more_msgs == 1)) 1004 1005 static int mir_clnt_dup_request(queue_t *q, mblk_t *mp); 1006 static void mir_rput_proto(queue_t *q, mblk_t *mp); 1007 static int mir_svc_policy_notify(queue_t *q, int event); 1008 static void mir_svc_release(queue_t *wq, mblk_t *mp, bool_t); 1009 static void mir_svc_start(queue_t *wq); 1010 static void mir_svc_idle_start(queue_t *, mir_t *); 1011 static void mir_svc_idle_stop(queue_t *, mir_t *); 1012 static void mir_svc_start_close(queue_t *, mir_t *); 1013 static void mir_clnt_idle_do_stop(queue_t *); 1014 static void mir_clnt_idle_stop(queue_t *, mir_t *); 1015 static void mir_clnt_idle_start(queue_t *, mir_t *); 1016 static void mir_wput(queue_t *q, mblk_t *mp); 1017 static void mir_wput_other(queue_t *q, mblk_t *mp); 1018 static void mir_wsrv(queue_t *q); 1019 static void mir_disconnect(queue_t *, mir_t *ir); 1020 static int mir_check_len(queue_t *, mblk_t *); 1021 static void mir_timer(void *); 1022 1023 extern void (*mir_rele)(queue_t *, mblk_t *, bool_t); 1024 extern void (*mir_start)(queue_t *); 1025 extern void (*clnt_stop_idle)(queue_t *); 1026 1027 clock_t clnt_idle_timeout = MIR_CLNT_IDLE_TIMEOUT; 1028 clock_t svc_idle_timeout = MIR_SVC_IDLE_TIMEOUT; 1029 1030 /* 1031 * Timeout for subsequent notifications of idle connection. This is 1032 * typically used to clean up after a wedged orderly release. 1033 */ 1034 clock_t svc_ordrel_timeout = MIR_SVC_ORDREL_TIMEOUT; /* milliseconds */ 1035 1036 extern uint_t *clnt_max_msg_sizep; 1037 extern uint_t *svc_max_msg_sizep; 1038 uint_t clnt_max_msg_size = RPC_MAXDATASIZE; 1039 uint_t svc_max_msg_size = RPC_MAXDATASIZE; 1040 uint_t mir_krpc_cell_null; 1041 1042 static void 1043 mir_timer_stop(mir_t *mir) 1044 { 1045 timeout_id_t tid; 1046 1047 ASSERT(MUTEX_HELD(&mir->mir_mutex)); 1048 1049 /* 1050 * Since the mir_mutex lock needs to be released to call 1051 * untimeout(), we need to make sure that no other thread 1052 * can start/stop the timer (changing mir_timer_id) during 1053 * that time. The mir_timer_call bit and the mir_timer_cv 1054 * condition variable are used to synchronize this. Setting 1055 * mir_timer_call also tells mir_timer() (refer to the comments 1056 * in mir_timer()) that it does not need to do anything. 1057 */ 1058 while (mir->mir_timer_call) 1059 cv_wait(&mir->mir_timer_cv, &mir->mir_mutex); 1060 mir->mir_timer_call = B_TRUE; 1061 1062 if ((tid = mir->mir_timer_id) != 0) { 1063 mir->mir_timer_id = 0; 1064 mutex_exit(&mir->mir_mutex); 1065 (void) untimeout(tid); 1066 mutex_enter(&mir->mir_mutex); 1067 } 1068 mir->mir_timer_call = B_FALSE; 1069 cv_broadcast(&mir->mir_timer_cv); 1070 } 1071 1072 static void 1073 mir_timer_start(queue_t *q, mir_t *mir, clock_t intrvl) 1074 { 1075 timeout_id_t tid; 1076 1077 ASSERT(MUTEX_HELD(&mir->mir_mutex)); 1078 1079 while (mir->mir_timer_call) 1080 cv_wait(&mir->mir_timer_cv, &mir->mir_mutex); 1081 mir->mir_timer_call = B_TRUE; 1082 1083 if ((tid = mir->mir_timer_id) != 0) { 1084 mutex_exit(&mir->mir_mutex); 1085 (void) untimeout(tid); 1086 mutex_enter(&mir->mir_mutex); 1087 } 1088 /* Only start the timer when it is not closing. */ 1089 if (!mir->mir_closing) { 1090 mir->mir_timer_id = timeout(mir_timer, q, 1091 MSEC_TO_TICK(intrvl)); 1092 } 1093 mir->mir_timer_call = B_FALSE; 1094 cv_broadcast(&mir->mir_timer_cv); 1095 } 1096 1097 static int 1098 mir_clnt_dup_request(queue_t *q, mblk_t *mp) 1099 { 1100 mblk_t *mp1; 1101 uint32_t new_xid; 1102 uint32_t old_xid; 1103 1104 ASSERT(MUTEX_HELD(&((mir_t *)q->q_ptr)->mir_mutex)); 1105 new_xid = BE32_TO_U32(&mp->b_rptr[4]); 1106 /* 1107 * This loop is a bit tacky -- it walks the STREAMS list of 1108 * flow-controlled messages. 1109 */ 1110 if ((mp1 = q->q_first) != NULL) { 1111 do { 1112 old_xid = BE32_TO_U32(&mp1->b_rptr[4]); 1113 if (new_xid == old_xid) 1114 return (1); 1115 } while ((mp1 = mp1->b_next) != NULL); 1116 } 1117 return (0); 1118 } 1119 1120 static int 1121 mir_close(queue_t *q) 1122 { 1123 mir_t *mir = q->q_ptr; 1124 mblk_t *mp; 1125 bool_t queue_cleaned = FALSE; 1126 1127 RPCLOG(32, "rpcmod: mir_close of q 0x%p\n", (void *)q); 1128 ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex)); 1129 mutex_enter(&mir->mir_mutex); 1130 if ((mp = mir->mir_head_mp) != NULL) { 1131 mir->mir_head_mp = NULL; 1132 mir->mir_tail_mp = NULL; 1133 freemsg(mp); 1134 } 1135 /* 1136 * Set mir_closing so we get notified when MIR_SVC_QUIESCED() 1137 * is TRUE. And mir_timer_start() won't start the timer again. 1138 */ 1139 mir->mir_closing = B_TRUE; 1140 mir_timer_stop(mir); 1141 1142 if (mir->mir_type == RPC_SERVER) { 1143 flushq(q, FLUSHDATA); /* Ditch anything waiting on read q */ 1144 1145 /* 1146 * This will prevent more requests from arriving and 1147 * will force rpcmod to ignore flow control. 1148 */ 1149 mir_svc_start_close(WR(q), mir); 1150 1151 while ((!MIR_SVC_QUIESCED(mir)) || mir->mir_inwservice == 1) { 1152 1153 if (mir->mir_ref_cnt && !mir->mir_inrservice && 1154 (queue_cleaned == FALSE)) { 1155 /* 1156 * call into SVC to clean the queue 1157 */ 1158 mutex_exit(&mir->mir_mutex); 1159 svc_queueclean(q); 1160 queue_cleaned = TRUE; 1161 mutex_enter(&mir->mir_mutex); 1162 continue; 1163 } 1164 1165 /* 1166 * Bugid 1253810 - Force the write service 1167 * procedure to send its messages, regardless 1168 * whether the downstream module is ready 1169 * to accept data. 1170 */ 1171 if (mir->mir_inwservice == 1) 1172 qenable(WR(q)); 1173 1174 cv_wait(&mir->mir_condvar, &mir->mir_mutex); 1175 } 1176 1177 mutex_exit(&mir->mir_mutex); 1178 qprocsoff(q); 1179 1180 /* Notify kRPC that this stream is going away. */ 1181 svc_queueclose(q); 1182 } else { 1183 mutex_exit(&mir->mir_mutex); 1184 qprocsoff(q); 1185 } 1186 1187 mutex_destroy(&mir->mir_mutex); 1188 cv_destroy(&mir->mir_condvar); 1189 cv_destroy(&mir->mir_timer_cv); 1190 kmem_free(mir, sizeof (mir_t)); 1191 return (0); 1192 } 1193 1194 /* 1195 * This is server side only (RPC_SERVER). 1196 * 1197 * Exit idle mode. 1198 */ 1199 static void 1200 mir_svc_idle_stop(queue_t *q, mir_t *mir) 1201 { 1202 ASSERT(MUTEX_HELD(&mir->mir_mutex)); 1203 ASSERT((q->q_flag & QREADR) == 0); 1204 ASSERT(mir->mir_type == RPC_SERVER); 1205 RPCLOG(16, "rpcmod: mir_svc_idle_stop of q 0x%p\n", (void *)q); 1206 1207 mir_timer_stop(mir); 1208 } 1209 1210 /* 1211 * This is server side only (RPC_SERVER). 1212 * 1213 * Start idle processing, which will include setting idle timer if the 1214 * stream is not being closed. 1215 */ 1216 static void 1217 mir_svc_idle_start(queue_t *q, mir_t *mir) 1218 { 1219 ASSERT(MUTEX_HELD(&mir->mir_mutex)); 1220 ASSERT((q->q_flag & QREADR) == 0); 1221 ASSERT(mir->mir_type == RPC_SERVER); 1222 RPCLOG(16, "rpcmod: mir_svc_idle_start q 0x%p\n", (void *)q); 1223 1224 /* 1225 * Don't re-start idle timer if we are closing queues. 1226 */ 1227 if (mir->mir_closing) { 1228 RPCLOG(16, "mir_svc_idle_start - closing: 0x%p\n", 1229 (void *)q); 1230 1231 /* 1232 * We will call mir_svc_idle_start() whenever MIR_SVC_QUIESCED() 1233 * is true. When it is true, and we are in the process of 1234 * closing the stream, signal any thread waiting in 1235 * mir_close(). 1236 */ 1237 if (mir->mir_inwservice == 0) 1238 cv_signal(&mir->mir_condvar); 1239 1240 } else { 1241 RPCLOG(16, "mir_svc_idle_start - reset %s timer\n", 1242 mir->mir_ordrel_pending ? "ordrel" : "normal"); 1243 /* 1244 * Normal condition, start the idle timer. If an orderly 1245 * release has been sent, set the timeout to wait for the 1246 * client to close its side of the connection. Otherwise, 1247 * use the normal idle timeout. 1248 */ 1249 mir_timer_start(q, mir, mir->mir_ordrel_pending ? 1250 svc_ordrel_timeout : mir->mir_idle_timeout); 1251 } 1252 } 1253 1254 /* ARGSUSED */ 1255 static int 1256 mir_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 1257 { 1258 mir_t *mir; 1259 1260 RPCLOG(32, "rpcmod: mir_open of q 0x%p\n", (void *)q); 1261 /* Set variables used directly by kRPC. */ 1262 if (!mir_rele) 1263 mir_rele = mir_svc_release; 1264 if (!mir_start) 1265 mir_start = mir_svc_start; 1266 if (!clnt_stop_idle) 1267 clnt_stop_idle = mir_clnt_idle_do_stop; 1268 if (!clnt_max_msg_sizep) 1269 clnt_max_msg_sizep = &clnt_max_msg_size; 1270 if (!svc_max_msg_sizep) 1271 svc_max_msg_sizep = &svc_max_msg_size; 1272 1273 /* Allocate a zero'ed out mir structure for this stream. */ 1274 mir = kmem_zalloc(sizeof (mir_t), KM_SLEEP); 1275 1276 /* 1277 * We set hold inbound here so that incoming messages will 1278 * be held on the read-side queue until the stream is completely 1279 * initialized with a RPC_CLIENT or RPC_SERVER ioctl. During 1280 * the ioctl processing, the flag is cleared and any messages that 1281 * arrived between the open and the ioctl are delivered to kRPC. 1282 * 1283 * Early data should never arrive on a client stream since 1284 * servers only respond to our requests and we do not send any. 1285 * until after the stream is initialized. Early data is 1286 * very common on a server stream where the client will start 1287 * sending data as soon as the connection is made (and this 1288 * is especially true with TCP where the protocol accepts the 1289 * connection before nfsd or kRPC is notified about it). 1290 */ 1291 1292 mir->mir_hold_inbound = 1; 1293 1294 /* 1295 * Start the record marker looking for a 4-byte header. When 1296 * this length is negative, it indicates that rpcmod is looking 1297 * for bytes to consume for the record marker header. When it 1298 * is positive, it holds the number of bytes that have arrived 1299 * for the current fragment and are being held in mir_header_mp. 1300 */ 1301 1302 mir->mir_frag_len = -(int32_t)sizeof (uint32_t); 1303 1304 mir->mir_zoneid = rpc_zoneid(); 1305 mutex_init(&mir->mir_mutex, NULL, MUTEX_DEFAULT, NULL); 1306 cv_init(&mir->mir_condvar, NULL, CV_DRIVER, NULL); 1307 cv_init(&mir->mir_timer_cv, NULL, CV_DRIVER, NULL); 1308 1309 q->q_ptr = (char *)mir; 1310 WR(q)->q_ptr = (char *)mir; 1311 1312 /* 1313 * We noenable the read-side queue because we don't want it 1314 * automatically enabled by putq. We enable it explicitly 1315 * in mir_wsrv when appropriate. (See additional comments on 1316 * flow control at the beginning of mir_rsrv.) 1317 */ 1318 noenable(q); 1319 1320 qprocson(q); 1321 return (0); 1322 } 1323 1324 /* 1325 * Read-side put routine for both the client and server side. Does the 1326 * record marking for incoming RPC messages, and when complete, dispatches 1327 * the message to either the client or server. 1328 */ 1329 static void 1330 mir_rput(queue_t *q, mblk_t *mp) 1331 { 1332 int excess; 1333 int32_t frag_len, frag_header; 1334 mblk_t *cont_mp, *head_mp, *tail_mp, *mp1; 1335 mir_t *mir = q->q_ptr; 1336 boolean_t stop_timer = B_FALSE; 1337 1338 ASSERT(mir != NULL); 1339 1340 /* 1341 * If the stream has not been set up as a RPC_CLIENT or RPC_SERVER 1342 * with the corresponding ioctl, then don't accept 1343 * any inbound data. This should never happen for streams 1344 * created by nfsd or client-side kRPC because they are careful 1345 * to set the mode of the stream before doing anything else. 1346 */ 1347 if (mir->mir_type == 0) { 1348 freemsg(mp); 1349 return; 1350 } 1351 1352 ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex)); 1353 1354 switch (mp->b_datap->db_type) { 1355 case M_DATA: 1356 break; 1357 case M_PROTO: 1358 case M_PCPROTO: 1359 if (MBLKL(mp) < sizeof (t_scalar_t)) { 1360 RPCLOG(1, "mir_rput: runt TPI message (%d bytes)\n", 1361 (int)MBLKL(mp)); 1362 freemsg(mp); 1363 return; 1364 } 1365 if (((union T_primitives *)mp->b_rptr)->type != T_DATA_IND) { 1366 mir_rput_proto(q, mp); 1367 return; 1368 } 1369 1370 /* Throw away the T_DATA_IND block and continue with data. */ 1371 mp1 = mp; 1372 mp = mp->b_cont; 1373 freeb(mp1); 1374 break; 1375 case M_SETOPTS: 1376 /* 1377 * If a module on the stream is trying set the Stream head's 1378 * high water mark, then set our hiwater to the requested 1379 * value. We are the "stream head" for all inbound 1380 * data messages since messages are passed directly to kRPC. 1381 */ 1382 if (MBLKL(mp) >= sizeof (struct stroptions)) { 1383 struct stroptions *stropts; 1384 1385 stropts = (struct stroptions *)mp->b_rptr; 1386 if ((stropts->so_flags & SO_HIWAT) && 1387 !(stropts->so_flags & SO_BAND)) { 1388 (void) strqset(q, QHIWAT, 0, stropts->so_hiwat); 1389 } 1390 } 1391 putnext(q, mp); 1392 return; 1393 case M_FLUSH: 1394 RPCLOG(32, "mir_rput: ignoring M_FLUSH %x ", *mp->b_rptr); 1395 RPCLOG(32, "on q 0x%p\n", (void *)q); 1396 putnext(q, mp); 1397 return; 1398 default: 1399 putnext(q, mp); 1400 return; 1401 } 1402 1403 mutex_enter(&mir->mir_mutex); 1404 1405 /* 1406 * If this connection is closing, don't accept any new messages. 1407 */ 1408 if (mir->mir_svc_no_more_msgs) { 1409 ASSERT(mir->mir_type == RPC_SERVER); 1410 mutex_exit(&mir->mir_mutex); 1411 freemsg(mp); 1412 return; 1413 } 1414 1415 /* Get local copies for quicker access. */ 1416 frag_len = mir->mir_frag_len; 1417 frag_header = mir->mir_frag_header; 1418 head_mp = mir->mir_head_mp; 1419 tail_mp = mir->mir_tail_mp; 1420 1421 /* Loop, processing each message block in the mp chain separately. */ 1422 do { 1423 cont_mp = mp->b_cont; 1424 mp->b_cont = NULL; 1425 1426 /* 1427 * Drop zero-length mblks to prevent unbounded kernel memory 1428 * consumption. 1429 */ 1430 if (MBLKL(mp) == 0) { 1431 freeb(mp); 1432 continue; 1433 } 1434 1435 /* 1436 * If frag_len is negative, we're still in the process of 1437 * building frag_header -- try to complete it with this mblk. 1438 */ 1439 while (frag_len < 0 && mp->b_rptr < mp->b_wptr) { 1440 frag_len++; 1441 frag_header <<= 8; 1442 frag_header += *mp->b_rptr++; 1443 } 1444 1445 if (MBLKL(mp) == 0 && frag_len < 0) { 1446 /* 1447 * We consumed this mblk while trying to complete the 1448 * fragment header. Free it and move on. 1449 */ 1450 freeb(mp); 1451 continue; 1452 } 1453 1454 ASSERT(frag_len >= 0); 1455 1456 /* 1457 * Now frag_header has the number of bytes in this fragment 1458 * and we're just waiting to collect them all. Chain our 1459 * latest mblk onto the list and see if we now have enough 1460 * bytes to complete the fragment. 1461 */ 1462 if (head_mp == NULL) { 1463 ASSERT(tail_mp == NULL); 1464 head_mp = tail_mp = mp; 1465 } else { 1466 tail_mp->b_cont = mp; 1467 tail_mp = mp; 1468 } 1469 1470 frag_len += MBLKL(mp); 1471 excess = frag_len - (frag_header & ~MIR_LASTFRAG); 1472 if (excess < 0) { 1473 /* 1474 * We still haven't received enough data to complete 1475 * the fragment, so continue on to the next mblk. 1476 */ 1477 continue; 1478 } 1479 1480 /* 1481 * We've got a complete fragment. If there are excess bytes, 1482 * then they're part of the next fragment's header (of either 1483 * this RPC message or the next RPC message). Split that part 1484 * into its own mblk so that we can safely freeb() it when 1485 * building frag_header above. 1486 */ 1487 if (excess > 0) { 1488 if ((mp1 = dupb(mp)) == NULL && 1489 (mp1 = copyb(mp)) == NULL) { 1490 freemsg(head_mp); 1491 freemsg(cont_mp); 1492 RPCLOG0(1, "mir_rput: dupb/copyb failed\n"); 1493 mir->mir_frag_header = 0; 1494 mir->mir_frag_len = -(int32_t)sizeof (uint32_t); 1495 mir->mir_head_mp = NULL; 1496 mir->mir_tail_mp = NULL; 1497 mir_disconnect(q, mir); /* drops mir_mutex */ 1498 return; 1499 } 1500 1501 /* 1502 * Relink the message chain so that the next mblk is 1503 * the next fragment header, followed by the rest of 1504 * the message chain. 1505 */ 1506 mp1->b_cont = cont_mp; 1507 cont_mp = mp1; 1508 1509 /* 1510 * Data in the new mblk begins at the next fragment, 1511 * and data in the old mblk ends at the next fragment. 1512 */ 1513 mp1->b_rptr = mp1->b_wptr - excess; 1514 mp->b_wptr -= excess; 1515 } 1516 1517 /* 1518 * Reset frag_len and frag_header for the next fragment. 1519 */ 1520 frag_len = -(int32_t)sizeof (uint32_t); 1521 if (!(frag_header & MIR_LASTFRAG)) { 1522 /* 1523 * The current fragment is complete, but more 1524 * fragments need to be processed before we can 1525 * pass along the RPC message headed at head_mp. 1526 */ 1527 frag_header = 0; 1528 continue; 1529 } 1530 frag_header = 0; 1531 1532 /* 1533 * We've got a complete RPC message; pass it to the 1534 * appropriate consumer. 1535 */ 1536 switch (mir->mir_type) { 1537 case RPC_CLIENT: 1538 if (clnt_dispatch_notify(head_mp, mir->mir_zoneid)) { 1539 /* 1540 * Mark this stream as active. This marker 1541 * is used in mir_timer(). 1542 */ 1543 mir->mir_clntreq = 1; 1544 mir->mir_use_timestamp = ddi_get_lbolt(); 1545 } else { 1546 freemsg(head_mp); 1547 } 1548 break; 1549 1550 case RPC_SERVER: 1551 /* 1552 * Check for flow control before passing the 1553 * message to kRPC. 1554 */ 1555 if (!mir->mir_hold_inbound) { 1556 if (mir->mir_krpc_cell) { 1557 1558 if (mir_check_len(q, head_mp)) 1559 return; 1560 1561 if (q->q_first == NULL && 1562 svc_queuereq(q, head_mp, TRUE)) { 1563 /* 1564 * If the reference count is 0 1565 * (not including this 1566 * request), then the stream is 1567 * transitioning from idle to 1568 * non-idle. In this case, we 1569 * cancel the idle timer. 1570 */ 1571 if (mir->mir_ref_cnt++ == 0) 1572 stop_timer = B_TRUE; 1573 } else { 1574 (void) putq(q, head_mp); 1575 mir->mir_inrservice = B_TRUE; 1576 } 1577 } else { 1578 /* 1579 * Count # of times this happens. Should 1580 * be never, but experience shows 1581 * otherwise. 1582 */ 1583 mir_krpc_cell_null++; 1584 freemsg(head_mp); 1585 } 1586 } else { 1587 /* 1588 * If the outbound side of the stream is 1589 * flow controlled, then hold this message 1590 * until client catches up. mir_hold_inbound 1591 * is set in mir_wput and cleared in mir_wsrv. 1592 */ 1593 (void) putq(q, head_mp); 1594 mir->mir_inrservice = B_TRUE; 1595 } 1596 break; 1597 default: 1598 RPCLOG(1, "mir_rput: unknown mir_type %d\n", 1599 mir->mir_type); 1600 freemsg(head_mp); 1601 break; 1602 } 1603 1604 /* 1605 * Reset the chain since we're starting on a new RPC message. 1606 */ 1607 head_mp = tail_mp = NULL; 1608 } while ((mp = cont_mp) != NULL); 1609 1610 /* 1611 * Sanity check the message length; if it's too large mir_check_len() 1612 * will shutdown the connection, drop mir_mutex, and return non-zero. 1613 */ 1614 if (head_mp != NULL && mir->mir_setup_complete && 1615 mir_check_len(q, head_mp)) 1616 return; 1617 1618 /* Save our local copies back in the mir structure. */ 1619 mir->mir_frag_header = frag_header; 1620 mir->mir_frag_len = frag_len; 1621 mir->mir_head_mp = head_mp; 1622 mir->mir_tail_mp = tail_mp; 1623 1624 /* 1625 * The timer is stopped after the whole message chain is processed. 1626 * The reason is that stopping the timer releases the mir_mutex 1627 * lock temporarily. This means that the request can be serviced 1628 * while we are still processing the message chain. This is not 1629 * good. So we stop the timer here instead. 1630 * 1631 * Note that if the timer fires before we stop it, it will not 1632 * do any harm as MIR_SVC_QUIESCED() is false and mir_timer() 1633 * will just return. 1634 */ 1635 if (stop_timer) { 1636 RPCLOG(16, "mir_rput: stopping idle timer on 0x%p because " 1637 "ref cnt going to non zero\n", (void *)WR(q)); 1638 mir_svc_idle_stop(WR(q), mir); 1639 } 1640 mutex_exit(&mir->mir_mutex); 1641 } 1642 1643 static void 1644 mir_rput_proto(queue_t *q, mblk_t *mp) 1645 { 1646 mir_t *mir = (mir_t *)q->q_ptr; 1647 uint32_t type; 1648 uint32_t reason = 0; 1649 1650 ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex)); 1651 1652 type = ((union T_primitives *)mp->b_rptr)->type; 1653 switch (mir->mir_type) { 1654 case RPC_CLIENT: 1655 switch (type) { 1656 case T_DISCON_IND: 1657 reason = ((struct T_discon_ind *) 1658 (mp->b_rptr))->DISCON_reason; 1659 /*FALLTHROUGH*/ 1660 case T_ORDREL_IND: 1661 mutex_enter(&mir->mir_mutex); 1662 if (mir->mir_head_mp) { 1663 freemsg(mir->mir_head_mp); 1664 mir->mir_head_mp = (mblk_t *)0; 1665 mir->mir_tail_mp = (mblk_t *)0; 1666 } 1667 /* 1668 * We are disconnecting, but not necessarily 1669 * closing. By not closing, we will fail to 1670 * pick up a possibly changed global timeout value, 1671 * unless we store it now. 1672 */ 1673 mir->mir_idle_timeout = clnt_idle_timeout; 1674 mir_clnt_idle_stop(WR(q), mir); 1675 1676 /* 1677 * Even though we are unconnected, we still 1678 * leave the idle timer going on the client. The 1679 * reason for is that if we've disconnected due 1680 * to a server-side disconnect, reset, or connection 1681 * timeout, there is a possibility the client may 1682 * retry the RPC request. This retry needs to done on 1683 * the same bound address for the server to interpret 1684 * it as such. However, we don't want 1685 * to wait forever for that possibility. If the 1686 * end-point stays unconnected for mir_idle_timeout 1687 * units of time, then that is a signal to the 1688 * connection manager to give up waiting for the 1689 * application (eg. NFS) to send a retry. 1690 */ 1691 mir_clnt_idle_start(WR(q), mir); 1692 mutex_exit(&mir->mir_mutex); 1693 clnt_dispatch_notifyall(WR(q), type, reason); 1694 freemsg(mp); 1695 return; 1696 case T_ERROR_ACK: 1697 { 1698 struct T_error_ack *terror; 1699 1700 terror = (struct T_error_ack *)mp->b_rptr; 1701 RPCLOG(1, "mir_rput_proto T_ERROR_ACK for queue 0x%p", 1702 (void *)q); 1703 RPCLOG(1, " ERROR_prim: %s,", 1704 rpc_tpiprim2name(terror->ERROR_prim)); 1705 RPCLOG(1, " TLI_error: %s,", 1706 rpc_tpierr2name(terror->TLI_error)); 1707 RPCLOG(1, " UNIX_error: %d\n", terror->UNIX_error); 1708 if (terror->ERROR_prim == T_DISCON_REQ) { 1709 clnt_dispatch_notifyall(WR(q), type, reason); 1710 freemsg(mp); 1711 return; 1712 } else { 1713 if (clnt_dispatch_notifyconn(WR(q), mp)) 1714 return; 1715 } 1716 break; 1717 } 1718 case T_OK_ACK: 1719 { 1720 struct T_ok_ack *tok = (struct T_ok_ack *)mp->b_rptr; 1721 1722 if (tok->CORRECT_prim == T_DISCON_REQ) { 1723 clnt_dispatch_notifyall(WR(q), type, reason); 1724 freemsg(mp); 1725 return; 1726 } else { 1727 if (clnt_dispatch_notifyconn(WR(q), mp)) 1728 return; 1729 } 1730 break; 1731 } 1732 case T_CONN_CON: 1733 case T_INFO_ACK: 1734 case T_OPTMGMT_ACK: 1735 if (clnt_dispatch_notifyconn(WR(q), mp)) 1736 return; 1737 break; 1738 case T_BIND_ACK: 1739 break; 1740 default: 1741 RPCLOG(1, "mir_rput: unexpected message %d " 1742 "for kRPC client\n", 1743 ((union T_primitives *)mp->b_rptr)->type); 1744 break; 1745 } 1746 break; 1747 1748 case RPC_SERVER: 1749 switch (type) { 1750 case T_BIND_ACK: 1751 { 1752 struct T_bind_ack *tbind; 1753 1754 /* 1755 * If this is a listening stream, then shut 1756 * off the idle timer. 1757 */ 1758 tbind = (struct T_bind_ack *)mp->b_rptr; 1759 if (tbind->CONIND_number > 0) { 1760 mutex_enter(&mir->mir_mutex); 1761 mir_svc_idle_stop(WR(q), mir); 1762 1763 /* 1764 * mark this as a listen endpoint 1765 * for special handling. 1766 */ 1767 1768 mir->mir_listen_stream = 1; 1769 mutex_exit(&mir->mir_mutex); 1770 } 1771 break; 1772 } 1773 case T_DISCON_IND: 1774 case T_ORDREL_IND: 1775 RPCLOG(16, "mir_rput_proto: got %s indication\n", 1776 type == T_DISCON_IND ? "disconnect" 1777 : "orderly release"); 1778 1779 /* 1780 * For listen endpoint just pass 1781 * on the message. 1782 */ 1783 1784 if (mir->mir_listen_stream) 1785 break; 1786 1787 mutex_enter(&mir->mir_mutex); 1788 1789 /* 1790 * If client wants to break off connection, record 1791 * that fact. 1792 */ 1793 mir_svc_start_close(WR(q), mir); 1794 1795 /* 1796 * If we are idle, then send the orderly release 1797 * or disconnect indication to nfsd. 1798 */ 1799 if (MIR_SVC_QUIESCED(mir)) { 1800 mutex_exit(&mir->mir_mutex); 1801 break; 1802 } 1803 1804 RPCLOG(16, "mir_rput_proto: not idle, so " 1805 "disconnect/ord rel indication not passed " 1806 "upstream on 0x%p\n", (void *)q); 1807 1808 /* 1809 * Hold the indication until we get idle 1810 * If there already is an indication stored, 1811 * replace it if the new one is a disconnect. The 1812 * reasoning is that disconnection takes less time 1813 * to process, and once a client decides to 1814 * disconnect, we should do that. 1815 */ 1816 if (mir->mir_svc_pend_mp) { 1817 if (type == T_DISCON_IND) { 1818 RPCLOG(16, "mir_rput_proto: replacing" 1819 " held disconnect/ord rel" 1820 " indication with disconnect on" 1821 " 0x%p\n", (void *)q); 1822 1823 freemsg(mir->mir_svc_pend_mp); 1824 mir->mir_svc_pend_mp = mp; 1825 } else { 1826 RPCLOG(16, "mir_rput_proto: already " 1827 "held a disconnect/ord rel " 1828 "indication. freeing ord rel " 1829 "ind on 0x%p\n", (void *)q); 1830 freemsg(mp); 1831 } 1832 } else 1833 mir->mir_svc_pend_mp = mp; 1834 1835 mutex_exit(&mir->mir_mutex); 1836 return; 1837 1838 default: 1839 /* nfsd handles server-side non-data messages. */ 1840 break; 1841 } 1842 break; 1843 1844 default: 1845 break; 1846 } 1847 1848 putnext(q, mp); 1849 } 1850 1851 /* 1852 * The server-side read queues are used to hold inbound messages while 1853 * outbound flow control is exerted. When outbound flow control is 1854 * relieved, mir_wsrv qenables the read-side queue. Read-side queues 1855 * are not enabled by STREAMS and are explicitly noenable'ed in mir_open. 1856 */ 1857 static void 1858 mir_rsrv(queue_t *q) 1859 { 1860 mir_t *mir; 1861 mblk_t *mp; 1862 boolean_t stop_timer = B_FALSE; 1863 1864 mir = (mir_t *)q->q_ptr; 1865 mutex_enter(&mir->mir_mutex); 1866 1867 mp = NULL; 1868 switch (mir->mir_type) { 1869 case RPC_SERVER: 1870 if (mir->mir_ref_cnt == 0) 1871 mir->mir_hold_inbound = 0; 1872 if (mir->mir_hold_inbound) 1873 break; 1874 1875 while (mp = getq(q)) { 1876 if (mir->mir_krpc_cell && 1877 (mir->mir_svc_no_more_msgs == 0)) { 1878 1879 if (mir_check_len(q, mp)) 1880 return; 1881 1882 if (svc_queuereq(q, mp, TRUE)) { 1883 /* 1884 * If we were idle, turn off idle timer 1885 * since we aren't idle any more. 1886 */ 1887 if (mir->mir_ref_cnt++ == 0) 1888 stop_timer = B_TRUE; 1889 } else { 1890 (void) putbq(q, mp); 1891 break; 1892 } 1893 } else { 1894 /* 1895 * Count # of times this happens. Should be 1896 * never, but experience shows otherwise. 1897 */ 1898 if (mir->mir_krpc_cell == NULL) 1899 mir_krpc_cell_null++; 1900 freemsg(mp); 1901 } 1902 } 1903 break; 1904 case RPC_CLIENT: 1905 break; 1906 default: 1907 RPCLOG(1, "mir_rsrv: unexpected mir_type %d\n", mir->mir_type); 1908 1909 if (q->q_first == NULL) 1910 MIR_CLEAR_INRSRV(mir); 1911 1912 mutex_exit(&mir->mir_mutex); 1913 1914 return; 1915 } 1916 1917 /* 1918 * The timer is stopped after all the messages are processed. 1919 * The reason is that stopping the timer releases the mir_mutex 1920 * lock temporarily. This means that the request can be serviced 1921 * while we are still processing the message queue. This is not 1922 * good. So we stop the timer here instead. 1923 */ 1924 if (stop_timer) { 1925 RPCLOG(16, "mir_rsrv stopping idle timer on 0x%p because ref " 1926 "cnt going to non zero\n", (void *)WR(q)); 1927 mir_svc_idle_stop(WR(q), mir); 1928 } 1929 1930 if (q->q_first == NULL) { 1931 mblk_t *cmp = NULL; 1932 1933 MIR_CLEAR_INRSRV(mir); 1934 1935 if (mir->mir_type == RPC_SERVER && MIR_SVC_QUIESCED(mir)) { 1936 cmp = mir->mir_svc_pend_mp; 1937 mir->mir_svc_pend_mp = NULL; 1938 } 1939 1940 mutex_exit(&mir->mir_mutex); 1941 1942 if (cmp != NULL) { 1943 RPCLOG(16, "mir_rsrv: line %d: sending a held " 1944 "disconnect/ord rel indication upstream\n", 1945 __LINE__); 1946 putnext(q, cmp); 1947 } 1948 1949 return; 1950 } 1951 mutex_exit(&mir->mir_mutex); 1952 } 1953 1954 static int mir_svc_policy_fails; 1955 1956 /* 1957 * Called to send an event code to nfsd/lockd so that it initiates 1958 * connection close. 1959 */ 1960 static int 1961 mir_svc_policy_notify(queue_t *q, int event) 1962 { 1963 mblk_t *mp; 1964 #ifdef DEBUG 1965 mir_t *mir = (mir_t *)q->q_ptr; 1966 ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex)); 1967 #endif 1968 ASSERT(q->q_flag & QREADR); 1969 1970 /* 1971 * Create an M_DATA message with the event code and pass it to the 1972 * Stream head (nfsd or whoever created the stream will consume it). 1973 */ 1974 mp = allocb(sizeof (int), BPRI_HI); 1975 1976 if (!mp) { 1977 1978 mir_svc_policy_fails++; 1979 RPCLOG(16, "mir_svc_policy_notify: could not allocate event " 1980 "%d\n", event); 1981 return (ENOMEM); 1982 } 1983 1984 U32_TO_BE32(event, mp->b_rptr); 1985 mp->b_wptr = mp->b_rptr + sizeof (int); 1986 putnext(q, mp); 1987 return (0); 1988 } 1989 1990 /* 1991 * Server side: start the close phase. We want to get this rpcmod slot in an 1992 * idle state before mir_close() is called. 1993 */ 1994 static void 1995 mir_svc_start_close(queue_t *wq, mir_t *mir) 1996 { 1997 ASSERT(MUTEX_HELD(&mir->mir_mutex)); 1998 ASSERT((wq->q_flag & QREADR) == 0); 1999 ASSERT(mir->mir_type == RPC_SERVER); 2000 2001 /* 2002 * Do not accept any more messages. 2003 */ 2004 mir->mir_svc_no_more_msgs = 1; 2005 2006 /* 2007 * Next two statements will make the read service procedure 2008 * free everything stuck in the streams read queue. 2009 * It's not necessary because enabling the write queue will 2010 * have the same effect, but why not speed the process along? 2011 */ 2012 mir->mir_hold_inbound = 0; 2013 qenable(RD(wq)); 2014 2015 /* 2016 * Meanwhile force the write service procedure to send the 2017 * responses downstream, regardless of flow control. 2018 */ 2019 qenable(wq); 2020 } 2021 2022 /* 2023 * This routine is called directly by kRPC after a request is completed, 2024 * whether a reply was sent or the request was dropped. 2025 */ 2026 static void 2027 mir_svc_release(queue_t *wq, mblk_t *mp, bool_t enable) 2028 { 2029 mir_t *mir = (mir_t *)wq->q_ptr; 2030 mblk_t *cmp = NULL; 2031 2032 ASSERT((wq->q_flag & QREADR) == 0); 2033 if (mp) 2034 freemsg(mp); 2035 2036 if (enable) 2037 qenable(RD(wq)); 2038 2039 mutex_enter(&mir->mir_mutex); 2040 2041 /* 2042 * Start idle processing if this is the last reference. 2043 */ 2044 if ((mir->mir_ref_cnt == 1) && (mir->mir_inrservice == 0)) { 2045 cmp = mir->mir_svc_pend_mp; 2046 mir->mir_svc_pend_mp = NULL; 2047 } 2048 2049 if (cmp) { 2050 RPCLOG(16, "mir_svc_release: sending a held " 2051 "disconnect/ord rel indication upstream on queue 0x%p\n", 2052 (void *)RD(wq)); 2053 2054 mutex_exit(&mir->mir_mutex); 2055 2056 putnext(RD(wq), cmp); 2057 2058 mutex_enter(&mir->mir_mutex); 2059 } 2060 2061 /* 2062 * Start idle processing if this is the last reference. 2063 */ 2064 if (mir->mir_ref_cnt == 1 && mir->mir_inrservice == 0) { 2065 2066 RPCLOG(16, "mir_svc_release starting idle timer on 0x%p " 2067 "because ref cnt is zero\n", (void *) wq); 2068 2069 mir_svc_idle_start(wq, mir); 2070 } 2071 2072 mir->mir_ref_cnt--; 2073 ASSERT(mir->mir_ref_cnt >= 0); 2074 2075 /* 2076 * Wake up the thread waiting to close. 2077 */ 2078 2079 if ((mir->mir_ref_cnt == 0) && mir->mir_closing) 2080 cv_signal(&mir->mir_condvar); 2081 2082 mutex_exit(&mir->mir_mutex); 2083 } 2084 2085 /* 2086 * This routine is called by server-side kRPC when it is ready to 2087 * handle inbound messages on the stream. 2088 */ 2089 static void 2090 mir_svc_start(queue_t *wq) 2091 { 2092 mir_t *mir = (mir_t *)wq->q_ptr; 2093 2094 /* 2095 * no longer need to take the mir_mutex because the 2096 * mir_setup_complete field has been moved out of 2097 * the binary field protected by the mir_mutex. 2098 */ 2099 2100 mir->mir_setup_complete = 1; 2101 qenable(RD(wq)); 2102 } 2103 2104 /* 2105 * client side wrapper for stopping timer with normal idle timeout. 2106 */ 2107 static void 2108 mir_clnt_idle_stop(queue_t *wq, mir_t *mir) 2109 { 2110 ASSERT(MUTEX_HELD(&mir->mir_mutex)); 2111 ASSERT((wq->q_flag & QREADR) == 0); 2112 ASSERT(mir->mir_type == RPC_CLIENT); 2113 2114 mir_timer_stop(mir); 2115 } 2116 2117 /* 2118 * client side wrapper for stopping timer with normal idle timeout. 2119 */ 2120 static void 2121 mir_clnt_idle_start(queue_t *wq, mir_t *mir) 2122 { 2123 ASSERT(MUTEX_HELD(&mir->mir_mutex)); 2124 ASSERT((wq->q_flag & QREADR) == 0); 2125 ASSERT(mir->mir_type == RPC_CLIENT); 2126 2127 mir_timer_start(wq, mir, mir->mir_idle_timeout); 2128 } 2129 2130 /* 2131 * client side only. Forces rpcmod to stop sending T_ORDREL_REQs on 2132 * end-points that aren't connected. 2133 */ 2134 static void 2135 mir_clnt_idle_do_stop(queue_t *wq) 2136 { 2137 mir_t *mir = (mir_t *)wq->q_ptr; 2138 2139 RPCLOG(1, "mir_clnt_idle_do_stop: wq 0x%p\n", (void *)wq); 2140 ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex)); 2141 mutex_enter(&mir->mir_mutex); 2142 mir_clnt_idle_stop(wq, mir); 2143 mutex_exit(&mir->mir_mutex); 2144 } 2145 2146 /* 2147 * Timer handler. It handles idle timeout and memory shortage problem. 2148 */ 2149 static void 2150 mir_timer(void *arg) 2151 { 2152 queue_t *wq = (queue_t *)arg; 2153 mir_t *mir = (mir_t *)wq->q_ptr; 2154 boolean_t notify; 2155 clock_t now; 2156 2157 mutex_enter(&mir->mir_mutex); 2158 2159 /* 2160 * mir_timer_call is set only when either mir_timer_[start|stop] 2161 * is progressing. And mir_timer() can only be run while they 2162 * are progressing if the timer is being stopped. So just 2163 * return. 2164 */ 2165 if (mir->mir_timer_call) { 2166 mutex_exit(&mir->mir_mutex); 2167 return; 2168 } 2169 mir->mir_timer_id = 0; 2170 2171 switch (mir->mir_type) { 2172 case RPC_CLIENT: 2173 2174 /* 2175 * For clients, the timer fires at clnt_idle_timeout 2176 * intervals. If the activity marker (mir_clntreq) is 2177 * zero, then the stream has been idle since the last 2178 * timer event and we notify kRPC. If mir_clntreq is 2179 * non-zero, then the stream is active and we just 2180 * restart the timer for another interval. mir_clntreq 2181 * is set to 1 in mir_wput for every request passed 2182 * downstream. 2183 * 2184 * If this was a memory shortage timer reset the idle 2185 * timeout regardless; the mir_clntreq will not be a 2186 * valid indicator. 2187 * 2188 * The timer is initially started in mir_wput during 2189 * RPC_CLIENT ioctl processing. 2190 * 2191 * The timer interval can be changed for individual 2192 * streams with the ND variable "mir_idle_timeout". 2193 */ 2194 now = ddi_get_lbolt(); 2195 if (mir->mir_clntreq > 0 && mir->mir_use_timestamp + 2196 MSEC_TO_TICK(mir->mir_idle_timeout) - now >= 0) { 2197 clock_t tout; 2198 2199 tout = mir->mir_idle_timeout - 2200 TICK_TO_MSEC(now - mir->mir_use_timestamp); 2201 if (tout < 0) 2202 tout = 1000; 2203 #if 0 2204 printf("mir_timer[%d < %d + %d]: reset client timer " 2205 "to %d (ms)\n", TICK_TO_MSEC(now), 2206 TICK_TO_MSEC(mir->mir_use_timestamp), 2207 mir->mir_idle_timeout, tout); 2208 #endif 2209 mir->mir_clntreq = 0; 2210 mir_timer_start(wq, mir, tout); 2211 mutex_exit(&mir->mir_mutex); 2212 return; 2213 } 2214 #if 0 2215 printf("mir_timer[%d]: doing client timeout\n", now / hz); 2216 #endif 2217 /* 2218 * We are disconnecting, but not necessarily 2219 * closing. By not closing, we will fail to 2220 * pick up a possibly changed global timeout value, 2221 * unless we store it now. 2222 */ 2223 mir->mir_idle_timeout = clnt_idle_timeout; 2224 mir_clnt_idle_start(wq, mir); 2225 2226 mutex_exit(&mir->mir_mutex); 2227 /* 2228 * We pass T_ORDREL_REQ as an integer value 2229 * to kRPC as the indication that the stream 2230 * is idle. This is not a T_ORDREL_REQ message, 2231 * it is just a convenient value since we call 2232 * the same kRPC routine for T_ORDREL_INDs and 2233 * T_DISCON_INDs. 2234 */ 2235 clnt_dispatch_notifyall(wq, T_ORDREL_REQ, 0); 2236 return; 2237 2238 case RPC_SERVER: 2239 2240 /* 2241 * For servers, the timer is only running when the stream 2242 * is really idle or memory is short. The timer is started 2243 * by mir_wput when mir_type is set to RPC_SERVER and 2244 * by mir_svc_idle_start whenever the stream goes idle 2245 * (mir_ref_cnt == 0). The timer is cancelled in 2246 * mir_rput whenever a new inbound request is passed to kRPC 2247 * and the stream was previously idle. 2248 * 2249 * The timer interval can be changed for individual 2250 * streams with the ND variable "mir_idle_timeout". 2251 * 2252 * If the stream is not idle do nothing. 2253 */ 2254 if (!MIR_SVC_QUIESCED(mir)) { 2255 mutex_exit(&mir->mir_mutex); 2256 return; 2257 } 2258 2259 notify = !mir->mir_inrservice; 2260 mutex_exit(&mir->mir_mutex); 2261 2262 /* 2263 * If there is no packet queued up in read queue, the stream 2264 * is really idle so notify nfsd to close it. 2265 */ 2266 if (notify) { 2267 RPCLOG(16, "mir_timer: telling stream head listener " 2268 "to close stream (0x%p)\n", (void *) RD(wq)); 2269 (void) mir_svc_policy_notify(RD(wq), 1); 2270 } 2271 return; 2272 default: 2273 RPCLOG(1, "mir_timer: unexpected mir_type %d\n", 2274 mir->mir_type); 2275 mutex_exit(&mir->mir_mutex); 2276 return; 2277 } 2278 } 2279 2280 /* 2281 * Called by the RPC package to send either a call or a return, or a 2282 * transport connection request. Adds the record marking header. 2283 */ 2284 static void 2285 mir_wput(queue_t *q, mblk_t *mp) 2286 { 2287 uint_t frag_header; 2288 mir_t *mir = (mir_t *)q->q_ptr; 2289 uchar_t *rptr = mp->b_rptr; 2290 2291 if (!mir) { 2292 freemsg(mp); 2293 return; 2294 } 2295 2296 if (mp->b_datap->db_type != M_DATA) { 2297 mir_wput_other(q, mp); 2298 return; 2299 } 2300 2301 if (mir->mir_ordrel_pending == 1) { 2302 freemsg(mp); 2303 RPCLOG(16, "mir_wput wq 0x%p: got data after T_ORDREL_REQ\n", 2304 (void *)q); 2305 return; 2306 } 2307 2308 frag_header = (uint_t)DLEN(mp); 2309 frag_header |= MIR_LASTFRAG; 2310 2311 /* Stick in the 4 byte record marking header. */ 2312 if ((rptr - mp->b_datap->db_base) < sizeof (uint32_t) || 2313 !IS_P2ALIGNED(mp->b_rptr, sizeof (uint32_t))) { 2314 /* 2315 * Since we know that M_DATA messages are created exclusively 2316 * by kRPC, we expect that kRPC will leave room for our header 2317 * and 4 byte align which is normal for XDR. 2318 * If kRPC (or someone else) does not cooperate, then we 2319 * just throw away the message. 2320 */ 2321 RPCLOG(1, "mir_wput: kRPC did not leave space for record " 2322 "fragment header (%d bytes left)\n", 2323 (int)(rptr - mp->b_datap->db_base)); 2324 freemsg(mp); 2325 return; 2326 } 2327 rptr -= sizeof (uint32_t); 2328 *(uint32_t *)rptr = htonl(frag_header); 2329 mp->b_rptr = rptr; 2330 2331 mutex_enter(&mir->mir_mutex); 2332 if (mir->mir_type == RPC_CLIENT) { 2333 /* 2334 * For the client, set mir_clntreq to indicate that the 2335 * connection is active. 2336 */ 2337 mir->mir_clntreq = 1; 2338 mir->mir_use_timestamp = ddi_get_lbolt(); 2339 } 2340 2341 /* 2342 * If we haven't already queued some data and the downstream module 2343 * can accept more data, send it on, otherwise we queue the message 2344 * and take other actions depending on mir_type. 2345 */ 2346 if (!mir->mir_inwservice && MIR_WCANPUTNEXT(mir, q)) { 2347 mutex_exit(&mir->mir_mutex); 2348 2349 /* 2350 * Now we pass the RPC message downstream. 2351 */ 2352 putnext(q, mp); 2353 return; 2354 } 2355 2356 switch (mir->mir_type) { 2357 case RPC_CLIENT: 2358 /* 2359 * Check for a previous duplicate request on the 2360 * queue. If there is one, then we throw away 2361 * the current message and let the previous one 2362 * go through. If we can't find a duplicate, then 2363 * send this one. This tap dance is an effort 2364 * to reduce traffic and processing requirements 2365 * under load conditions. 2366 */ 2367 if (mir_clnt_dup_request(q, mp)) { 2368 mutex_exit(&mir->mir_mutex); 2369 freemsg(mp); 2370 return; 2371 } 2372 break; 2373 case RPC_SERVER: 2374 /* 2375 * Set mir_hold_inbound so that new inbound RPC 2376 * messages will be held until the client catches 2377 * up on the earlier replies. This flag is cleared 2378 * in mir_wsrv after flow control is relieved; 2379 * the read-side queue is also enabled at that time. 2380 */ 2381 mir->mir_hold_inbound = 1; 2382 break; 2383 default: 2384 RPCLOG(1, "mir_wput: unexpected mir_type %d\n", mir->mir_type); 2385 break; 2386 } 2387 mir->mir_inwservice = 1; 2388 (void) putq(q, mp); 2389 mutex_exit(&mir->mir_mutex); 2390 } 2391 2392 static void 2393 mir_wput_other(queue_t *q, mblk_t *mp) 2394 { 2395 mir_t *mir = (mir_t *)q->q_ptr; 2396 struct iocblk *iocp; 2397 uchar_t *rptr = mp->b_rptr; 2398 bool_t flush_in_svc = FALSE; 2399 2400 ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex)); 2401 switch (mp->b_datap->db_type) { 2402 case M_IOCTL: 2403 iocp = (struct iocblk *)rptr; 2404 switch (iocp->ioc_cmd) { 2405 case RPC_CLIENT: 2406 mutex_enter(&mir->mir_mutex); 2407 if (mir->mir_type != 0 && 2408 mir->mir_type != iocp->ioc_cmd) { 2409 ioc_eperm: 2410 mutex_exit(&mir->mir_mutex); 2411 iocp->ioc_error = EPERM; 2412 iocp->ioc_count = 0; 2413 mp->b_datap->db_type = M_IOCACK; 2414 qreply(q, mp); 2415 return; 2416 } 2417 2418 mir->mir_type = iocp->ioc_cmd; 2419 2420 /* 2421 * Clear mir_hold_inbound which was set to 1 by 2422 * mir_open. This flag is not used on client 2423 * streams. 2424 */ 2425 mir->mir_hold_inbound = 0; 2426 mir->mir_max_msg_sizep = &clnt_max_msg_size; 2427 2428 /* 2429 * Start the idle timer. See mir_timer() for more 2430 * information on how client timers work. 2431 */ 2432 mir->mir_idle_timeout = clnt_idle_timeout; 2433 mir_clnt_idle_start(q, mir); 2434 mutex_exit(&mir->mir_mutex); 2435 2436 mp->b_datap->db_type = M_IOCACK; 2437 qreply(q, mp); 2438 return; 2439 case RPC_SERVER: 2440 mutex_enter(&mir->mir_mutex); 2441 if (mir->mir_type != 0 && 2442 mir->mir_type != iocp->ioc_cmd) 2443 goto ioc_eperm; 2444 2445 /* 2446 * We don't clear mir_hold_inbound here because 2447 * mir_hold_inbound is used in the flow control 2448 * model. If we cleared it here, then we'd commit 2449 * a small violation to the model where the transport 2450 * might immediately block downstream flow. 2451 */ 2452 2453 mir->mir_type = iocp->ioc_cmd; 2454 mir->mir_max_msg_sizep = &svc_max_msg_size; 2455 2456 /* 2457 * Start the idle timer. See mir_timer() for more 2458 * information on how server timers work. 2459 * 2460 * Note that it is important to start the idle timer 2461 * here so that connections time out even if we 2462 * never receive any data on them. 2463 */ 2464 mir->mir_idle_timeout = svc_idle_timeout; 2465 RPCLOG(16, "mir_wput_other starting idle timer on 0x%p " 2466 "because we got RPC_SERVER ioctl\n", (void *)q); 2467 mir_svc_idle_start(q, mir); 2468 mutex_exit(&mir->mir_mutex); 2469 2470 mp->b_datap->db_type = M_IOCACK; 2471 qreply(q, mp); 2472 return; 2473 default: 2474 break; 2475 } 2476 break; 2477 2478 case M_PROTO: 2479 if (mir->mir_type == RPC_CLIENT) { 2480 /* 2481 * We are likely being called from the context of a 2482 * service procedure. So we need to enqueue. However 2483 * enqueing may put our message behind data messages. 2484 * So flush the data first. 2485 */ 2486 flush_in_svc = TRUE; 2487 } 2488 if ((mp->b_wptr - rptr) < sizeof (uint32_t) || 2489 !IS_P2ALIGNED(rptr, sizeof (uint32_t))) 2490 break; 2491 2492 switch (((union T_primitives *)rptr)->type) { 2493 case T_DATA_REQ: 2494 /* Don't pass T_DATA_REQ messages downstream. */ 2495 freemsg(mp); 2496 return; 2497 case T_ORDREL_REQ: 2498 RPCLOG(8, "mir_wput_other wq 0x%p: got T_ORDREL_REQ\n", 2499 (void *)q); 2500 mutex_enter(&mir->mir_mutex); 2501 if (mir->mir_type != RPC_SERVER) { 2502 /* 2503 * We are likely being called from 2504 * clnt_dispatch_notifyall(). Sending 2505 * a T_ORDREL_REQ will result in 2506 * a some kind of _IND message being sent, 2507 * will be another call to 2508 * clnt_dispatch_notifyall(). To keep the stack 2509 * lean, queue this message. 2510 */ 2511 mir->mir_inwservice = 1; 2512 (void) putq(q, mp); 2513 mutex_exit(&mir->mir_mutex); 2514 return; 2515 } 2516 2517 /* 2518 * Mark the structure such that we don't accept any 2519 * more requests from client. We could defer this 2520 * until we actually send the orderly release 2521 * request downstream, but all that does is delay 2522 * the closing of this stream. 2523 */ 2524 RPCLOG(16, "mir_wput_other wq 0x%p: got T_ORDREL_REQ " 2525 " so calling mir_svc_start_close\n", (void *)q); 2526 2527 mir_svc_start_close(q, mir); 2528 2529 /* 2530 * If we have sent down a T_ORDREL_REQ, don't send 2531 * any more. 2532 */ 2533 if (mir->mir_ordrel_pending) { 2534 freemsg(mp); 2535 mutex_exit(&mir->mir_mutex); 2536 return; 2537 } 2538 2539 /* 2540 * If the stream is not idle, then we hold the 2541 * orderly release until it becomes idle. This 2542 * ensures that kRPC will be able to reply to 2543 * all requests that we have passed to it. 2544 * 2545 * We also queue the request if there is data already 2546 * queued, because we cannot allow the T_ORDREL_REQ 2547 * to go before data. When we had a separate reply 2548 * count, this was not a problem, because the 2549 * reply count was reconciled when mir_wsrv() 2550 * completed. 2551 */ 2552 if (!MIR_SVC_QUIESCED(mir) || 2553 mir->mir_inwservice == 1) { 2554 mir->mir_inwservice = 1; 2555 (void) putq(q, mp); 2556 2557 RPCLOG(16, "mir_wput_other: queuing " 2558 "T_ORDREL_REQ on 0x%p\n", (void *)q); 2559 2560 mutex_exit(&mir->mir_mutex); 2561 return; 2562 } 2563 2564 /* 2565 * Mark the structure so that we know we sent 2566 * an orderly release request, and reset the idle timer. 2567 */ 2568 mir->mir_ordrel_pending = 1; 2569 2570 RPCLOG(16, "mir_wput_other: calling mir_svc_idle_start" 2571 " on 0x%p because we got T_ORDREL_REQ\n", 2572 (void *)q); 2573 2574 mir_svc_idle_start(q, mir); 2575 mutex_exit(&mir->mir_mutex); 2576 2577 /* 2578 * When we break, we will putnext the T_ORDREL_REQ. 2579 */ 2580 break; 2581 2582 case T_CONN_REQ: 2583 mutex_enter(&mir->mir_mutex); 2584 if (mir->mir_head_mp != NULL) { 2585 freemsg(mir->mir_head_mp); 2586 mir->mir_head_mp = NULL; 2587 mir->mir_tail_mp = NULL; 2588 } 2589 mir->mir_frag_len = -(int32_t)sizeof (uint32_t); 2590 /* 2591 * Restart timer in case mir_clnt_idle_do_stop() was 2592 * called. 2593 */ 2594 mir->mir_idle_timeout = clnt_idle_timeout; 2595 mir_clnt_idle_stop(q, mir); 2596 mir_clnt_idle_start(q, mir); 2597 mutex_exit(&mir->mir_mutex); 2598 break; 2599 2600 default: 2601 /* 2602 * T_DISCON_REQ is one of the interesting default 2603 * cases here. Ideally, an M_FLUSH is done before 2604 * T_DISCON_REQ is done. However, that is somewhat 2605 * cumbersome for clnt_cots.c to do. So we queue 2606 * T_DISCON_REQ, and let the service procedure 2607 * flush all M_DATA. 2608 */ 2609 break; 2610 } 2611 /* fallthru */; 2612 default: 2613 if (mp->b_datap->db_type >= QPCTL) { 2614 if (mp->b_datap->db_type == M_FLUSH) { 2615 if (mir->mir_type == RPC_CLIENT && 2616 *mp->b_rptr & FLUSHW) { 2617 RPCLOG(32, "mir_wput_other: flushing " 2618 "wq 0x%p\n", (void *)q); 2619 if (*mp->b_rptr & FLUSHBAND) { 2620 flushband(q, *(mp->b_rptr + 1), 2621 FLUSHDATA); 2622 } else { 2623 flushq(q, FLUSHDATA); 2624 } 2625 } else { 2626 RPCLOG(32, "mir_wput_other: ignoring " 2627 "M_FLUSH on wq 0x%p\n", (void *)q); 2628 } 2629 } 2630 break; 2631 } 2632 2633 mutex_enter(&mir->mir_mutex); 2634 if (mir->mir_inwservice == 0 && MIR_WCANPUTNEXT(mir, q)) { 2635 mutex_exit(&mir->mir_mutex); 2636 break; 2637 } 2638 mir->mir_inwservice = 1; 2639 mir->mir_inwflushdata = flush_in_svc; 2640 (void) putq(q, mp); 2641 mutex_exit(&mir->mir_mutex); 2642 qenable(q); 2643 2644 return; 2645 } 2646 putnext(q, mp); 2647 } 2648 2649 static void 2650 mir_wsrv(queue_t *q) 2651 { 2652 mblk_t *mp; 2653 mir_t *mir; 2654 bool_t flushdata; 2655 2656 mir = (mir_t *)q->q_ptr; 2657 mutex_enter(&mir->mir_mutex); 2658 2659 flushdata = mir->mir_inwflushdata; 2660 mir->mir_inwflushdata = 0; 2661 2662 while (mp = getq(q)) { 2663 if (mp->b_datap->db_type == M_DATA) { 2664 /* 2665 * Do not send any more data if we have sent 2666 * a T_ORDREL_REQ. 2667 */ 2668 if (flushdata || mir->mir_ordrel_pending == 1) { 2669 freemsg(mp); 2670 continue; 2671 } 2672 2673 /* 2674 * Make sure that the stream can really handle more 2675 * data. 2676 */ 2677 if (!MIR_WCANPUTNEXT(mir, q)) { 2678 (void) putbq(q, mp); 2679 mutex_exit(&mir->mir_mutex); 2680 return; 2681 } 2682 2683 /* 2684 * Now we pass the RPC message downstream. 2685 */ 2686 mutex_exit(&mir->mir_mutex); 2687 putnext(q, mp); 2688 mutex_enter(&mir->mir_mutex); 2689 continue; 2690 } 2691 2692 /* 2693 * This is not an RPC message, pass it downstream 2694 * (ignoring flow control) if the server side is not sending a 2695 * T_ORDREL_REQ downstream. 2696 */ 2697 if (mir->mir_type != RPC_SERVER || 2698 ((union T_primitives *)mp->b_rptr)->type != 2699 T_ORDREL_REQ) { 2700 mutex_exit(&mir->mir_mutex); 2701 putnext(q, mp); 2702 mutex_enter(&mir->mir_mutex); 2703 continue; 2704 } 2705 2706 if (mir->mir_ordrel_pending == 1) { 2707 /* 2708 * Don't send two T_ORDRELs 2709 */ 2710 freemsg(mp); 2711 continue; 2712 } 2713 2714 /* 2715 * Mark the structure so that we know we sent an orderly 2716 * release request. We will check to see slot is idle at the 2717 * end of this routine, and if so, reset the idle timer to 2718 * handle orderly release timeouts. 2719 */ 2720 mir->mir_ordrel_pending = 1; 2721 RPCLOG(16, "mir_wsrv: sending ordrel req on q 0x%p\n", 2722 (void *)q); 2723 /* 2724 * Send the orderly release downstream. If there are other 2725 * pending replies we won't be able to send them. However, 2726 * the only reason we should send the orderly release is if 2727 * we were idle, or if an unusual event occurred. 2728 */ 2729 mutex_exit(&mir->mir_mutex); 2730 putnext(q, mp); 2731 mutex_enter(&mir->mir_mutex); 2732 } 2733 2734 if (q->q_first == NULL) 2735 /* 2736 * If we call mir_svc_idle_start() below, then 2737 * clearing mir_inwservice here will also result in 2738 * any thread waiting in mir_close() to be signaled. 2739 */ 2740 mir->mir_inwservice = 0; 2741 2742 if (mir->mir_type != RPC_SERVER) { 2743 mutex_exit(&mir->mir_mutex); 2744 return; 2745 } 2746 2747 /* 2748 * If idle we call mir_svc_idle_start to start the timer (or wakeup 2749 * a close). Also make sure not to start the idle timer on the 2750 * listener stream. This can cause nfsd to send an orderly release 2751 * command on the listener stream. 2752 */ 2753 if (MIR_SVC_QUIESCED(mir) && !(mir->mir_listen_stream)) { 2754 RPCLOG(16, "mir_wsrv: calling mir_svc_idle_start on 0x%p " 2755 "because mir slot is idle\n", (void *)q); 2756 mir_svc_idle_start(q, mir); 2757 } 2758 2759 /* 2760 * If outbound flow control has been relieved, then allow new 2761 * inbound requests to be processed. 2762 */ 2763 if (mir->mir_hold_inbound) { 2764 mir->mir_hold_inbound = 0; 2765 qenable(RD(q)); 2766 } 2767 mutex_exit(&mir->mir_mutex); 2768 } 2769 2770 static void 2771 mir_disconnect(queue_t *q, mir_t *mir) 2772 { 2773 ASSERT(MUTEX_HELD(&mir->mir_mutex)); 2774 2775 switch (mir->mir_type) { 2776 case RPC_CLIENT: 2777 /* 2778 * We are disconnecting, but not necessarily 2779 * closing. By not closing, we will fail to 2780 * pick up a possibly changed global timeout value, 2781 * unless we store it now. 2782 */ 2783 mir->mir_idle_timeout = clnt_idle_timeout; 2784 mir_clnt_idle_start(WR(q), mir); 2785 mutex_exit(&mir->mir_mutex); 2786 2787 /* 2788 * T_DISCON_REQ is passed to kRPC as an integer value 2789 * (this is not a TPI message). It is used as a 2790 * convenient value to indicate a sanity check 2791 * failure -- the same kRPC routine is also called 2792 * for T_DISCON_INDs and T_ORDREL_INDs. 2793 */ 2794 clnt_dispatch_notifyall(WR(q), T_DISCON_REQ, 0); 2795 break; 2796 2797 case RPC_SERVER: 2798 mir->mir_svc_no_more_msgs = 1; 2799 mir_svc_idle_stop(WR(q), mir); 2800 mutex_exit(&mir->mir_mutex); 2801 RPCLOG(16, "mir_disconnect: telling " 2802 "stream head listener to disconnect stream " 2803 "(0x%p)\n", (void *) q); 2804 (void) mir_svc_policy_notify(q, 2); 2805 break; 2806 2807 default: 2808 mutex_exit(&mir->mir_mutex); 2809 break; 2810 } 2811 } 2812 2813 /* 2814 * Sanity check the message length, and if it's too large, shutdown the 2815 * connection. Returns 1 if the connection is shutdown; 0 otherwise. 2816 */ 2817 static int 2818 mir_check_len(queue_t *q, mblk_t *head_mp) 2819 { 2820 mir_t *mir = q->q_ptr; 2821 uint_t maxsize = 0; 2822 size_t msg_len = msgdsize(head_mp); 2823 2824 if (mir->mir_max_msg_sizep != NULL) 2825 maxsize = *mir->mir_max_msg_sizep; 2826 2827 if (maxsize == 0 || msg_len <= maxsize) 2828 return (0); 2829 2830 freemsg(head_mp); 2831 mir->mir_head_mp = NULL; 2832 mir->mir_tail_mp = NULL; 2833 mir->mir_frag_header = 0; 2834 mir->mir_frag_len = -(int32_t)sizeof (uint32_t); 2835 if (mir->mir_type != RPC_SERVER || mir->mir_setup_complete) { 2836 cmn_err(CE_NOTE, 2837 "kRPC: record fragment from %s of size(%lu) exceeds " 2838 "maximum (%u). Disconnecting", 2839 (mir->mir_type == RPC_CLIENT) ? "server" : 2840 (mir->mir_type == RPC_SERVER) ? "client" : 2841 "test tool", msg_len, maxsize); 2842 } 2843 2844 mir_disconnect(q, mir); 2845 return (1); 2846 } 2847