1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T 28 * All Rights Reserved 29 */ 30 31 /* 32 * Portions of this source code were derived from Berkeley 4.3 BSD 33 * under license from the Regents of the University of California. 34 */ 35 36 #pragma ident "%Z%%M% %I% %E% SMI" 37 38 /* 39 * Implements a kernel based, client side RPC over Connection Oriented 40 * Transports (COTS). 41 */ 42 43 /* 44 * Much of this file has been re-written to let NFS work better over slow 45 * transports. A description follows. 46 * 47 * One of the annoying things about kRPC/COTS is that it will temporarily 48 * create more than one connection between a client and server. This 49 * happens because when a connection is made, the end-points entry in the 50 * linked list of connections (headed by cm_hd), is removed so that other 51 * threads don't mess with it. Went ahead and bit the bullet by keeping 52 * the endpoint on the connection list and introducing state bits, 53 * condition variables etc. to the connection entry data structure (struct 54 * cm_xprt). 55 * 56 * Here is a summary of the changes to cm-xprt: 57 * 58 * x_ctime is the timestamp of when the endpoint was last 59 * connected or disconnected. If an end-point is ever disconnected 60 * or re-connected, then any outstanding RPC request is presumed 61 * lost, telling clnt_cots_kcallit that it needs to re-send the 62 * request, not just wait for the original request's reply to 63 * arrive. 64 * 65 * x_thread flag which tells us if a thread is doing a connection attempt. 66 * 67 * x_waitdis flag which tells us we are waiting a disconnect ACK. 68 * 69 * x_needdis flag which tells us we need to send a T_DISCONN_REQ 70 * to kill the connection. 71 * 72 * x_needrel flag which tells us we need to send a T_ORDREL_REQ to 73 * gracefully close the connection. 74 * 75 * #defined bitmasks for the all the b_* bits so that more 76 * efficient (and at times less clumsy) masks can be used to 77 * manipulated state in cases where multiple bits have to 78 * set/cleared/checked in the same critical section. 79 * 80 * x_conn_cv and x_dis-_cv are new condition variables to let 81 * threads knows when the connection attempt is done, and to let 82 * the connecting thread know when the disconnect handshake is 83 * done. 84 * 85 * Added the CONN_HOLD() macro so that all reference holds have the same 86 * look and feel. 87 * 88 * In the private (cku_private) portion of the client handle, 89 * 90 * cku_flags replaces the cku_sent a boolean. cku_flags keeps 91 * track of whether a request as been sent, and whether the 92 * client's handles call record is on the dispatch list (so that 93 * the reply can be matched by XID to the right client handle). 94 * The idea of CKU_ONQUEUE is that we can exit clnt_cots_kcallit() 95 * and still have the response find the right client handle so 96 * that the retry of CLNT_CALL() gets the result. Testing, found 97 * situations where if the timeout was increased, performance 98 * degraded. This was due to us hitting a window where the thread 99 * was back in rfscall() (probably printing server not responding) 100 * while the response came back but no place to put it. 101 * 102 * cku_ctime is just a cache of x_ctime. If they match, 103 * clnt_cots_kcallit() won't to send a retry (unless the maximum 104 * receive count limit as been reached). If the don't match, then 105 * we assume the request has been lost, and a retry of the request 106 * is needed. 107 * 108 * cku_recv_attempts counts the number of receive count attempts 109 * after one try is sent on the wire. 110 * 111 * Added the clnt_delay() routine so that interruptible and 112 * noninterruptible delays are possible. 113 * 114 * CLNT_MIN_TIMEOUT has been bumped to 10 seconds from 3. This is used to 115 * control how long the client delays before returned after getting 116 * ECONNREFUSED. At 3 seconds, 8 client threads per mount really does bash 117 * a server that may be booting and not yet started nfsd. 118 * 119 * CLNT_MAXRECV_WITHOUT_RETRY is a new macro (value of 3) (with a tunable) 120 * Why don't we just wait forever (receive an infinite # of times)? 121 * Because the server may have rebooted. More insidious is that some 122 * servers (ours) will drop NFS/TCP requests in some cases. This is bad, 123 * but it is a reality. 124 * 125 * The case of a server doing orderly release really messes up the 126 * client's recovery, especially if the server's TCP implementation is 127 * buggy. It was found was that the kRPC/COTS client was breaking some 128 * TPI rules, such as not waiting for the acknowledgement of a 129 * T_DISCON_REQ (hence the added case statements T_ERROR_ACK, T_OK_ACK and 130 * T_DISCON_REQ in clnt_dispatch_notifyall()). 131 * 132 * One of things that we've seen is that a kRPC TCP endpoint goes into 133 * TIMEWAIT and a thus a reconnect takes a long time to satisfy because 134 * that the TIMEWAIT state takes a while to finish. If a server sends a 135 * T_ORDREL_IND, there is little point in an RPC client doing a 136 * T_ORDREL_REQ, because the RPC request isn't going to make it (the 137 * server is saying that it won't accept any more data). So kRPC was 138 * changed to send a T_DISCON_REQ when we get a T_ORDREL_IND. So now the 139 * connection skips the TIMEWAIT state and goes straight to a bound state 140 * that kRPC can quickly switch to connected. 141 * 142 * Code that issues TPI request must use waitforack() to wait for the 143 * corresponding ack (assuming there is one) in any future modifications. 144 * This works around problems that may be introduced by breaking TPI rules 145 * (by submitting new calls before earlier requests have been acked) in the 146 * case of a signal or other early return. waitforack() depends on 147 * clnt_dispatch_notifyconn() to issue the wakeup when the ack 148 * arrives, so adding new TPI calls may require corresponding changes 149 * to clnt_dispatch_notifyconn(). Presently, the timeout period is based on 150 * CLNT_MIN_TIMEOUT which is 10 seconds. If you modify this value, be sure 151 * not to set it too low or TPI ACKS will be lost. 152 */ 153 154 #include <sys/param.h> 155 #include <sys/types.h> 156 #include <sys/user.h> 157 #include <sys/systm.h> 158 #include <sys/sysmacros.h> 159 #include <sys/proc.h> 160 #include <sys/socket.h> 161 #include <sys/file.h> 162 #include <sys/stream.h> 163 #include <sys/strsubr.h> 164 #include <sys/stropts.h> 165 #include <sys/strsun.h> 166 #include <sys/timod.h> 167 #include <sys/tiuser.h> 168 #include <sys/tihdr.h> 169 #include <sys/t_kuser.h> 170 #include <sys/fcntl.h> 171 #include <sys/errno.h> 172 #include <sys/kmem.h> 173 #include <sys/debug.h> 174 #include <sys/systm.h> 175 #include <sys/kstat.h> 176 #include <sys/t_lock.h> 177 #include <sys/ddi.h> 178 #include <sys/cmn_err.h> 179 #include <sys/time.h> 180 #include <sys/isa_defs.h> 181 #include <sys/callb.h> 182 #include <sys/sunddi.h> 183 #include <sys/atomic.h> 184 185 #include <netinet/in.h> 186 #include <netinet/tcp.h> 187 188 #include <rpc/types.h> 189 #include <rpc/xdr.h> 190 #include <rpc/auth.h> 191 #include <rpc/clnt.h> 192 #include <rpc/rpc_msg.h> 193 194 #define COTS_DEFAULT_ALLOCSIZE 2048 195 196 #define WIRE_HDR_SIZE 20 /* serialized call header, sans proc number */ 197 #define MSG_OFFSET 128 /* offset of call into the mblk */ 198 199 const char *kinet_ntop6(uchar_t *, char *, size_t); 200 201 static int clnt_cots_ksettimers(CLIENT *, struct rpc_timers *, 202 struct rpc_timers *, int, void(*)(int, int, caddr_t), caddr_t, uint32_t); 203 static enum clnt_stat clnt_cots_kcallit(CLIENT *, rpcproc_t, xdrproc_t, 204 caddr_t, xdrproc_t, caddr_t, struct timeval); 205 static void clnt_cots_kabort(CLIENT *); 206 static void clnt_cots_kerror(CLIENT *, struct rpc_err *); 207 static bool_t clnt_cots_kfreeres(CLIENT *, xdrproc_t, caddr_t); 208 static void clnt_cots_kdestroy(CLIENT *); 209 static bool_t clnt_cots_kcontrol(CLIENT *, int, char *); 210 211 212 /* List of transports managed by the connection manager. */ 213 struct cm_xprt { 214 TIUSER *x_tiptr; /* transport handle */ 215 queue_t *x_wq; /* send queue */ 216 clock_t x_time; /* last time we handed this xprt out */ 217 clock_t x_ctime; /* time we went to CONNECTED */ 218 int x_tidu_size; /* TIDU size of this transport */ 219 union { 220 struct { 221 unsigned int 222 #ifdef _BIT_FIELDS_HTOL 223 b_closing: 1, /* we've sent a ord rel on this conn */ 224 b_dead: 1, /* transport is closed or disconn */ 225 b_doomed: 1, /* too many conns, let this go idle */ 226 b_connected: 1, /* this connection is connected */ 227 228 b_ordrel: 1, /* do an orderly release? */ 229 b_thread: 1, /* thread doing connect */ 230 b_waitdis: 1, /* waiting for disconnect ACK */ 231 b_needdis: 1, /* need T_DISCON_REQ */ 232 233 b_needrel: 1, /* need T_ORDREL_REQ */ 234 b_early_disc: 1, /* got a T_ORDREL_IND or T_DISCON_IND */ 235 /* disconnect during connect */ 236 237 b_pad: 22; 238 239 #endif 240 241 #ifdef _BIT_FIELDS_LTOH 242 b_pad: 22, 243 244 b_early_disc: 1, /* got a T_ORDREL_IND or T_DISCON_IND */ 245 /* disconnect during connect */ 246 b_needrel: 1, /* need T_ORDREL_REQ */ 247 248 b_needdis: 1, /* need T_DISCON_REQ */ 249 b_waitdis: 1, /* waiting for disconnect ACK */ 250 b_thread: 1, /* thread doing connect */ 251 b_ordrel: 1, /* do an orderly release? */ 252 253 b_connected: 1, /* this connection is connected */ 254 b_doomed: 1, /* too many conns, let this go idle */ 255 b_dead: 1, /* transport is closed or disconn */ 256 b_closing: 1; /* we've sent a ord rel on this conn */ 257 #endif 258 } bit; unsigned int word; 259 260 #define x_closing x_state.bit.b_closing 261 #define x_dead x_state.bit.b_dead 262 #define x_doomed x_state.bit.b_doomed 263 #define x_connected x_state.bit.b_connected 264 265 #define x_ordrel x_state.bit.b_ordrel 266 #define x_thread x_state.bit.b_thread 267 #define x_waitdis x_state.bit.b_waitdis 268 #define x_needdis x_state.bit.b_needdis 269 270 #define x_needrel x_state.bit.b_needrel 271 #define x_early_disc x_state.bit.b_early_disc 272 273 #define x_state_flags x_state.word 274 275 #define X_CLOSING 0x80000000 276 #define X_DEAD 0x40000000 277 #define X_DOOMED 0x20000000 278 #define X_CONNECTED 0x10000000 279 280 #define X_ORDREL 0x08000000 281 #define X_THREAD 0x04000000 282 #define X_WAITDIS 0x02000000 283 #define X_NEEDDIS 0x01000000 284 285 #define X_NEEDREL 0x00800000 286 #define X_EARLYDISC 0x00400000 287 288 #define X_BADSTATES (X_CLOSING | X_DEAD | X_DOOMED) 289 290 } x_state; 291 int x_ref; /* number of users of this xprt */ 292 int x_family; /* address family of transport */ 293 dev_t x_rdev; /* device number of transport */ 294 struct cm_xprt *x_next; 295 296 struct netbuf x_server; /* destination address */ 297 struct netbuf x_src; /* src address (for retries) */ 298 kmutex_t x_lock; /* lock on this entry */ 299 kcondvar_t x_cv; /* to signal when can be closed */ 300 kcondvar_t x_conn_cv; /* to signal when connection attempt */ 301 /* is complete */ 302 kstat_t *x_ksp; 303 304 kcondvar_t x_dis_cv; /* to signal when disconnect attempt */ 305 /* is complete */ 306 zoneid_t x_zoneid; /* zone this xprt belongs to */ 307 }; 308 309 typedef struct cm_kstat_xprt { 310 kstat_named_t x_wq; 311 kstat_named_t x_server; 312 kstat_named_t x_family; 313 kstat_named_t x_rdev; 314 kstat_named_t x_time; 315 kstat_named_t x_state; 316 kstat_named_t x_ref; 317 kstat_named_t x_port; 318 } cm_kstat_xprt_t; 319 320 static cm_kstat_xprt_t cm_kstat_template = { 321 { "write_queue", KSTAT_DATA_UINT32 }, 322 { "server", KSTAT_DATA_STRING }, 323 { "addr_family", KSTAT_DATA_UINT32 }, 324 { "device", KSTAT_DATA_UINT32 }, 325 { "time_stamp", KSTAT_DATA_UINT32 }, 326 { "status", KSTAT_DATA_UINT32 }, 327 { "ref_count", KSTAT_DATA_INT32 }, 328 { "port", KSTAT_DATA_UINT32 }, 329 }; 330 331 /* 332 * The inverse of this is connmgr_release(). 333 */ 334 #define CONN_HOLD(Cm_entry) {\ 335 mutex_enter(&(Cm_entry)->x_lock); \ 336 (Cm_entry)->x_ref++; \ 337 mutex_exit(&(Cm_entry)->x_lock); \ 338 } 339 340 341 /* 342 * Private data per rpc handle. This structure is allocated by 343 * clnt_cots_kcreate, and freed by clnt_cots_kdestroy. 344 */ 345 typedef struct cku_private_s { 346 CLIENT cku_client; /* client handle */ 347 calllist_t cku_call; /* for dispatching calls */ 348 struct rpc_err cku_err; /* error status */ 349 350 struct netbuf cku_srcaddr; /* source address for retries */ 351 int cku_addrfmly; /* for binding port */ 352 struct netbuf cku_addr; /* remote address */ 353 dev_t cku_device; /* device to use */ 354 uint_t cku_flags; 355 #define CKU_ONQUEUE 0x1 356 #define CKU_SENT 0x2 357 358 bool_t cku_progress; /* for CLSET_PROGRESS */ 359 uint32_t cku_xid; /* current XID */ 360 clock_t cku_ctime; /* time stamp of when */ 361 /* connection was created */ 362 uint_t cku_recv_attempts; 363 XDR cku_outxdr; /* xdr routine for output */ 364 XDR cku_inxdr; /* xdr routine for input */ 365 char cku_rpchdr[WIRE_HDR_SIZE + 4]; 366 /* pre-serialized rpc header */ 367 368 uint_t cku_outbuflen; /* default output mblk length */ 369 struct cred *cku_cred; /* credentials */ 370 bool_t cku_nodelayonerr; 371 /* for CLSET_NODELAYONERR */ 372 int cku_useresvport; /* Use reserved port */ 373 struct rpc_cots_client *cku_stats; /* stats for zone */ 374 } cku_private_t; 375 376 static struct cm_xprt *connmgr_wrapconnect(struct cm_xprt *, 377 const struct timeval *, struct netbuf *, int, struct netbuf *, 378 struct rpc_err *, bool_t, bool_t); 379 380 static bool_t connmgr_connect(struct cm_xprt *, queue_t *, struct netbuf *, 381 int, calllist_t *, int *, bool_t reconnect, 382 const struct timeval *, bool_t); 383 384 static bool_t connmgr_setopt(queue_t *, int, int, calllist_t *); 385 static void connmgr_sndrel(struct cm_xprt *); 386 static void connmgr_snddis(struct cm_xprt *); 387 static void connmgr_close(struct cm_xprt *); 388 static void connmgr_release(struct cm_xprt *); 389 static struct cm_xprt *connmgr_wrapget(struct netbuf *, const struct timeval *, 390 cku_private_t *); 391 392 static struct cm_xprt *connmgr_get(struct netbuf *, const struct timeval *, 393 struct netbuf *, int, struct netbuf *, struct rpc_err *, dev_t, 394 bool_t, int); 395 396 static void connmgr_cancelconn(struct cm_xprt *); 397 static enum clnt_stat connmgr_cwait(struct cm_xprt *, const struct timeval *, 398 bool_t); 399 static void connmgr_dis_and_wait(struct cm_xprt *); 400 401 static void clnt_dispatch_send(queue_t *, mblk_t *, calllist_t *, uint_t, 402 uint_t); 403 404 static int clnt_delay(clock_t, bool_t); 405 406 static int waitforack(calllist_t *, t_scalar_t, const struct timeval *, bool_t); 407 408 /* 409 * Operations vector for TCP/IP based RPC 410 */ 411 static struct clnt_ops tcp_ops = { 412 clnt_cots_kcallit, /* do rpc call */ 413 clnt_cots_kabort, /* abort call */ 414 clnt_cots_kerror, /* return error status */ 415 clnt_cots_kfreeres, /* free results */ 416 clnt_cots_kdestroy, /* destroy rpc handle */ 417 clnt_cots_kcontrol, /* the ioctl() of rpc */ 418 clnt_cots_ksettimers, /* set retry timers */ 419 }; 420 421 static int rpc_kstat_instance = 0; /* keeps the current instance */ 422 /* number for the next kstat_create */ 423 424 static struct cm_xprt *cm_hd = NULL; 425 static kmutex_t connmgr_lock; /* for connection mngr's list of transports */ 426 427 extern kmutex_t clnt_max_msg_lock; 428 429 static calllist_t *clnt_pending = NULL; 430 extern kmutex_t clnt_pending_lock; 431 432 static int clnt_cots_hash_size = DEFAULT_HASH_SIZE; 433 434 static call_table_t *cots_call_ht; 435 436 static const struct rpc_cots_client { 437 kstat_named_t rccalls; 438 kstat_named_t rcbadcalls; 439 kstat_named_t rcbadxids; 440 kstat_named_t rctimeouts; 441 kstat_named_t rcnewcreds; 442 kstat_named_t rcbadverfs; 443 kstat_named_t rctimers; 444 kstat_named_t rccantconn; 445 kstat_named_t rcnomem; 446 kstat_named_t rcintrs; 447 } cots_rcstat_tmpl = { 448 { "calls", KSTAT_DATA_UINT64 }, 449 { "badcalls", KSTAT_DATA_UINT64 }, 450 { "badxids", KSTAT_DATA_UINT64 }, 451 { "timeouts", KSTAT_DATA_UINT64 }, 452 { "newcreds", KSTAT_DATA_UINT64 }, 453 { "badverfs", KSTAT_DATA_UINT64 }, 454 { "timers", KSTAT_DATA_UINT64 }, 455 { "cantconn", KSTAT_DATA_UINT64 }, 456 { "nomem", KSTAT_DATA_UINT64 }, 457 { "interrupts", KSTAT_DATA_UINT64 } 458 }; 459 460 #define COTSRCSTAT_INCR(p, x) \ 461 atomic_add_64(&(p)->x.value.ui64, 1) 462 463 #define CLNT_MAX_CONNS 1 /* concurrent connections between clnt/srvr */ 464 static int clnt_max_conns = CLNT_MAX_CONNS; 465 466 #define CLNT_MIN_TIMEOUT 10 /* seconds to wait after we get a */ 467 /* connection reset */ 468 #define CLNT_MIN_CONNTIMEOUT 5 /* seconds to wait for a connection */ 469 470 471 static int clnt_cots_min_tout = CLNT_MIN_TIMEOUT; 472 static int clnt_cots_min_conntout = CLNT_MIN_CONNTIMEOUT; 473 474 /* 475 * Limit the number of times we will attempt to receive a reply without 476 * re-sending a response. 477 */ 478 #define CLNT_MAXRECV_WITHOUT_RETRY 3 479 static uint_t clnt_cots_maxrecv = CLNT_MAXRECV_WITHOUT_RETRY; 480 481 uint_t *clnt_max_msg_sizep; 482 void (*clnt_stop_idle)(queue_t *wq); 483 484 #define ptoh(p) (&((p)->cku_client)) 485 #define htop(h) ((cku_private_t *)((h)->cl_private)) 486 487 /* 488 * Times to retry 489 */ 490 #define REFRESHES 2 /* authentication refreshes */ 491 492 /* 493 * The following is used to determine the global default behavior for 494 * COTS when binding to a local port. 495 * 496 * If the value is set to 1 the default will be to select a reserved 497 * (aka privileged) port, if the value is zero the default will be to 498 * use non-reserved ports. Users of kRPC may override this by using 499 * CLNT_CONTROL() and CLSET_BINDRESVPORT. 500 */ 501 static int clnt_cots_do_bindresvport = 1; 502 503 static zone_key_t zone_cots_key; 504 505 /* 506 * We need to do this after all kernel threads in the zone have exited. 507 */ 508 /* ARGSUSED */ 509 static void 510 clnt_zone_destroy(zoneid_t zoneid, void *unused) 511 { 512 struct cm_xprt **cmp; 513 struct cm_xprt *cm_entry; 514 struct cm_xprt *freelist = NULL; 515 516 mutex_enter(&connmgr_lock); 517 cmp = &cm_hd; 518 while ((cm_entry = *cmp) != NULL) { 519 if (cm_entry->x_zoneid == zoneid) { 520 *cmp = cm_entry->x_next; 521 cm_entry->x_next = freelist; 522 freelist = cm_entry; 523 } else { 524 cmp = &cm_entry->x_next; 525 } 526 } 527 mutex_exit(&connmgr_lock); 528 while ((cm_entry = freelist) != NULL) { 529 freelist = cm_entry->x_next; 530 connmgr_close(cm_entry); 531 } 532 } 533 534 int 535 clnt_cots_kcreate(dev_t dev, struct netbuf *addr, int family, rpcprog_t prog, 536 rpcvers_t vers, uint_t max_msgsize, cred_t *cred, CLIENT **ncl) 537 { 538 CLIENT *h; 539 cku_private_t *p; 540 struct rpc_msg call_msg; 541 struct rpcstat *rpcstat; 542 543 RPCLOG(8, "clnt_cots_kcreate: prog %u\n", prog); 544 545 rpcstat = zone_getspecific(rpcstat_zone_key, rpc_zone()); 546 ASSERT(rpcstat != NULL); 547 548 /* Allocate and intialize the client handle. */ 549 p = kmem_zalloc(sizeof (*p), KM_SLEEP); 550 551 h = ptoh(p); 552 553 h->cl_private = (caddr_t)p; 554 h->cl_auth = authkern_create(); 555 h->cl_ops = &tcp_ops; 556 557 cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL); 558 mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL); 559 560 /* 561 * If the current sanity check size in rpcmod is smaller 562 * than the size needed, then increase the sanity check. 563 */ 564 if (max_msgsize != 0 && clnt_max_msg_sizep != NULL && 565 max_msgsize > *clnt_max_msg_sizep) { 566 mutex_enter(&clnt_max_msg_lock); 567 if (max_msgsize > *clnt_max_msg_sizep) 568 *clnt_max_msg_sizep = max_msgsize; 569 mutex_exit(&clnt_max_msg_lock); 570 } 571 572 p->cku_outbuflen = COTS_DEFAULT_ALLOCSIZE; 573 574 /* Preserialize the call message header */ 575 576 call_msg.rm_xid = 0; 577 call_msg.rm_direction = CALL; 578 call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION; 579 call_msg.rm_call.cb_prog = prog; 580 call_msg.rm_call.cb_vers = vers; 581 582 xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, WIRE_HDR_SIZE, XDR_ENCODE); 583 584 if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) { 585 RPCLOG0(1, "clnt_cots_kcreate - Fatal header serialization " 586 "error\n"); 587 auth_destroy(h->cl_auth); 588 kmem_free(p, sizeof (cku_private_t)); 589 RPCLOG0(1, "clnt_cots_kcreate: create failed error EINVAL\n"); 590 return (EINVAL); /* XXX */ 591 } 592 593 /* 594 * The zalloc initialized the fields below. 595 * p->cku_xid = 0; 596 * p->cku_flags = 0; 597 * p->cku_srcaddr.len = 0; 598 * p->cku_srcaddr.maxlen = 0; 599 */ 600 601 p->cku_cred = cred; 602 p->cku_device = dev; 603 p->cku_addrfmly = family; 604 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP); 605 p->cku_addr.maxlen = addr->maxlen; 606 p->cku_addr.len = addr->len; 607 bcopy(addr->buf, p->cku_addr.buf, addr->len); 608 p->cku_stats = rpcstat->rpc_cots_client; 609 p->cku_useresvport = -1; /* value is has not been set */ 610 611 *ncl = h; 612 return (0); 613 } 614 615 /*ARGSUSED*/ 616 static void 617 clnt_cots_kabort(CLIENT *h) 618 { 619 } 620 621 /* 622 * Return error info on this handle. 623 */ 624 static void 625 clnt_cots_kerror(CLIENT *h, struct rpc_err *err) 626 { 627 /* LINTED pointer alignment */ 628 cku_private_t *p = htop(h); 629 630 *err = p->cku_err; 631 } 632 633 static bool_t 634 clnt_cots_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr) 635 { 636 /* LINTED pointer alignment */ 637 cku_private_t *p = htop(h); 638 XDR *xdrs; 639 640 xdrs = &(p->cku_outxdr); 641 xdrs->x_op = XDR_FREE; 642 return ((*xdr_res)(xdrs, res_ptr)); 643 } 644 645 static bool_t 646 clnt_cots_kcontrol(CLIENT *h, int cmd, char *arg) 647 { 648 cku_private_t *p = htop(h); 649 650 switch (cmd) { 651 case CLSET_PROGRESS: 652 p->cku_progress = TRUE; 653 return (TRUE); 654 655 case CLSET_XID: 656 if (arg == NULL) 657 return (FALSE); 658 659 p->cku_xid = *((uint32_t *)arg); 660 return (TRUE); 661 662 case CLGET_XID: 663 if (arg == NULL) 664 return (FALSE); 665 666 *((uint32_t *)arg) = p->cku_xid; 667 return (TRUE); 668 669 case CLSET_NODELAYONERR: 670 if (arg == NULL) 671 return (FALSE); 672 673 if (*((bool_t *)arg) == TRUE) { 674 p->cku_nodelayonerr = TRUE; 675 return (TRUE); 676 } 677 if (*((bool_t *)arg) == FALSE) { 678 p->cku_nodelayonerr = FALSE; 679 return (TRUE); 680 } 681 return (FALSE); 682 683 case CLGET_NODELAYONERR: 684 if (arg == NULL) 685 return (FALSE); 686 687 *((bool_t *)arg) = p->cku_nodelayonerr; 688 return (TRUE); 689 690 case CLSET_BINDRESVPORT: 691 if (arg == NULL) 692 return (FALSE); 693 694 if (*(int *)arg != 1 && *(int *)arg != 0) 695 return (FALSE); 696 697 p->cku_useresvport = *(int *)arg; 698 699 return (TRUE); 700 701 case CLGET_BINDRESVPORT: 702 if (arg == NULL) 703 return (FALSE); 704 705 *(int *)arg = p->cku_useresvport; 706 707 return (TRUE); 708 709 default: 710 return (FALSE); 711 } 712 } 713 714 /* 715 * Destroy rpc handle. Frees the space used for output buffer, 716 * private data, and handle structure. 717 */ 718 static void 719 clnt_cots_kdestroy(CLIENT *h) 720 { 721 /* LINTED pointer alignment */ 722 cku_private_t *p = htop(h); 723 calllist_t *call = &p->cku_call; 724 725 RPCLOG(8, "clnt_cots_kdestroy h: %p\n", (void *)h); 726 RPCLOG(8, "clnt_cots_kdestroy h: xid=0x%x\n", p->cku_xid); 727 728 if (p->cku_flags & CKU_ONQUEUE) { 729 RPCLOG(64, "clnt_cots_kdestroy h: removing call for xid 0x%x " 730 "from dispatch list\n", p->cku_xid); 731 call_table_remove(call); 732 } 733 734 if (call->call_reply) 735 freemsg(call->call_reply); 736 cv_destroy(&call->call_cv); 737 mutex_destroy(&call->call_lock); 738 739 kmem_free(p->cku_srcaddr.buf, p->cku_srcaddr.maxlen); 740 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen); 741 kmem_free(p, sizeof (*p)); 742 } 743 744 static int clnt_cots_pulls; 745 #define RM_HDR_SIZE 4 /* record mark header size */ 746 747 /* 748 * Call remote procedure. 749 */ 750 static enum clnt_stat 751 clnt_cots_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args, 752 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp, struct timeval wait) 753 { 754 /* LINTED pointer alignment */ 755 cku_private_t *p = htop(h); 756 calllist_t *call = &p->cku_call; 757 XDR *xdrs; 758 struct rpc_msg reply_msg; 759 mblk_t *mp; 760 #ifdef RPCDEBUG 761 clock_t time_sent; 762 #endif 763 struct netbuf *retryaddr; 764 struct cm_xprt *cm_entry = NULL; 765 queue_t *wq; 766 int len; 767 int mpsize; 768 int refreshes = REFRESHES; 769 int interrupted; 770 int tidu_size; 771 enum clnt_stat status; 772 struct timeval cwait; 773 bool_t delay_first = FALSE; 774 clock_t ticks; 775 776 RPCLOG(2, "clnt_cots_kcallit, procnum %u\n", procnum); 777 COTSRCSTAT_INCR(p->cku_stats, rccalls); 778 779 RPCLOG(2, "clnt_cots_kcallit: wait.tv_sec: %ld\n", wait.tv_sec); 780 RPCLOG(2, "clnt_cots_kcallit: wait.tv_usec: %ld\n", wait.tv_usec); 781 782 /* 783 * Bug ID 1240234: 784 * Look out for zero length timeouts. We don't want to 785 * wait zero seconds for a connection to be established. 786 */ 787 if (wait.tv_sec < clnt_cots_min_conntout) { 788 cwait.tv_sec = clnt_cots_min_conntout; 789 cwait.tv_usec = 0; 790 RPCLOG(8, "clnt_cots_kcallit: wait.tv_sec (%ld) too low,", 791 wait.tv_sec); 792 RPCLOG(8, " setting to: %d\n", clnt_cots_min_conntout); 793 } else { 794 cwait = wait; 795 } 796 797 call_again: 798 if (cm_entry) { 799 connmgr_release(cm_entry); 800 cm_entry = NULL; 801 } 802 803 mp = NULL; 804 805 /* 806 * If the call is not a retry, allocate a new xid and cache it 807 * for future retries. 808 * Bug ID 1246045: 809 * Treat call as a retry for purposes of binding the source 810 * port only if we actually attempted to send anything on 811 * the previous call. 812 */ 813 if (p->cku_xid == 0) { 814 p->cku_xid = alloc_xid(); 815 /* 816 * We need to ASSERT here that our xid != 0 because this 817 * determines whether or not our call record gets placed on 818 * the hash table or the linked list. By design, we mandate 819 * that RPC calls over cots must have xid's != 0, so we can 820 * ensure proper management of the hash table. 821 */ 822 ASSERT(p->cku_xid != 0); 823 824 retryaddr = NULL; 825 p->cku_flags &= ~CKU_SENT; 826 827 if (p->cku_flags & CKU_ONQUEUE) { 828 RPCLOG(8, "clnt_cots_kcallit: new call, dequeuing old" 829 " one (%p)\n", (void *)call); 830 call_table_remove(call); 831 p->cku_flags &= ~CKU_ONQUEUE; 832 RPCLOG(64, "clnt_cots_kcallit: removing call from " 833 "dispatch list because xid was zero (now 0x%x)\n", 834 p->cku_xid); 835 } 836 837 if (call->call_reply != NULL) { 838 freemsg(call->call_reply); 839 call->call_reply = NULL; 840 } 841 } else if (p->cku_srcaddr.buf == NULL || p->cku_srcaddr.len == 0) { 842 retryaddr = NULL; 843 844 } else if (p->cku_flags & CKU_SENT) { 845 retryaddr = &p->cku_srcaddr; 846 847 } else { 848 /* 849 * Bug ID 1246045: Nothing was sent, so set retryaddr to 850 * NULL and let connmgr_get() bind to any source port it 851 * can get. 852 */ 853 retryaddr = NULL; 854 } 855 856 RPCLOG(64, "clnt_cots_kcallit: xid = 0x%x", p->cku_xid); 857 RPCLOG(64, " flags = 0x%x\n", p->cku_flags); 858 859 p->cku_err.re_status = RPC_TIMEDOUT; 860 p->cku_err.re_errno = p->cku_err.re_terrno = 0; 861 862 cm_entry = connmgr_wrapget(retryaddr, &cwait, p); 863 864 if (cm_entry == NULL) { 865 RPCLOG(1, "clnt_cots_kcallit: can't connect status %s\n", 866 clnt_sperrno(p->cku_err.re_status)); 867 868 /* 869 * The reasons why we fail to create a connection are 870 * varied. In most cases we don't want the caller to 871 * immediately retry. This could have one or more 872 * bad effects. This includes flooding the net with 873 * connect requests to ports with no listener; a hard 874 * kernel loop due to all the "reserved" TCP ports being 875 * in use. 876 */ 877 delay_first = TRUE; 878 879 /* 880 * Even if we end up returning EINTR, we still count a 881 * a "can't connect", because the connection manager 882 * might have been committed to waiting for or timing out on 883 * a connection. 884 */ 885 COTSRCSTAT_INCR(p->cku_stats, rccantconn); 886 switch (p->cku_err.re_status) { 887 case RPC_INTR: 888 p->cku_err.re_errno = EINTR; 889 890 /* 891 * No need to delay because a UNIX signal(2) 892 * interrupted us. The caller likely won't 893 * retry the CLNT_CALL() and even if it does, 894 * we assume the caller knows what it is doing. 895 */ 896 delay_first = FALSE; 897 break; 898 899 case RPC_TIMEDOUT: 900 p->cku_err.re_errno = ETIMEDOUT; 901 902 /* 903 * No need to delay because timed out already 904 * on the connection request and assume that the 905 * transport time out is longer than our minimum 906 * timeout, or least not too much smaller. 907 */ 908 delay_first = FALSE; 909 break; 910 911 case RPC_SYSTEMERROR: 912 case RPC_TLIERROR: 913 /* 914 * We want to delay here because a transient 915 * system error has a better chance of going away 916 * if we delay a bit. If it's not transient, then 917 * we don't want end up in a hard kernel loop 918 * due to retries. 919 */ 920 ASSERT(p->cku_err.re_errno != 0); 921 break; 922 923 924 case RPC_CANTCONNECT: 925 /* 926 * RPC_CANTCONNECT is set on T_ERROR_ACK which 927 * implies some error down in the TCP layer or 928 * below. If cku_nodelayonerror is set then we 929 * assume the caller knows not to try too hard. 930 */ 931 RPCLOG0(8, "clnt_cots_kcallit: connection failed,"); 932 RPCLOG0(8, " re_status=RPC_CANTCONNECT,"); 933 RPCLOG(8, " re_errno=%d,", p->cku_err.re_errno); 934 RPCLOG(8, " cku_nodelayonerr=%d", p->cku_nodelayonerr); 935 if (p->cku_nodelayonerr == TRUE) 936 delay_first = FALSE; 937 938 p->cku_err.re_errno = EIO; 939 940 break; 941 942 case RPC_XPRTFAILED: 943 /* 944 * We want to delay here because we likely 945 * got a refused connection. 946 */ 947 if (p->cku_err.re_errno == 0) 948 p->cku_err.re_errno = EIO; 949 950 RPCLOG(1, "clnt_cots_kcallit: transport failed: %d\n", 951 p->cku_err.re_errno); 952 953 break; 954 955 default: 956 /* 957 * We delay here because it is better to err 958 * on the side of caution. If we got here then 959 * status could have been RPC_SUCCESS, but we 960 * know that we did not get a connection, so 961 * force the rpc status to RPC_CANTCONNECT. 962 */ 963 p->cku_err.re_status = RPC_CANTCONNECT; 964 p->cku_err.re_errno = EIO; 965 break; 966 } 967 if (delay_first == TRUE) 968 ticks = clnt_cots_min_tout * drv_usectohz(1000000); 969 goto cots_done; 970 } 971 972 /* 973 * If we've never sent any request on this connection (send count 974 * is zero, or the connection has been reset), cache the 975 * the connection's create time and send a request (possibly a retry) 976 */ 977 if ((p->cku_flags & CKU_SENT) == 0 || 978 p->cku_ctime != cm_entry->x_ctime) { 979 p->cku_ctime = cm_entry->x_ctime; 980 981 } else if ((p->cku_flags & CKU_SENT) && (p->cku_flags & CKU_ONQUEUE) && 982 (call->call_reply != NULL || 983 p->cku_recv_attempts < clnt_cots_maxrecv)) { 984 985 /* 986 * If we've sent a request and our call is on the dispatch 987 * queue and we haven't made too many receive attempts, then 988 * don't re-send, just receive. 989 */ 990 p->cku_recv_attempts++; 991 goto read_again; 992 } 993 994 /* 995 * Now we create the RPC request in a STREAMS message. We have to do 996 * this after the call to connmgr_get so that we have the correct 997 * TIDU size for the transport. 998 */ 999 tidu_size = cm_entry->x_tidu_size; 1000 len = MSG_OFFSET + MAX(tidu_size, RM_HDR_SIZE + WIRE_HDR_SIZE); 1001 1002 while ((mp = allocb(len, BPRI_MED)) == NULL) { 1003 if (strwaitbuf(len, BPRI_MED)) { 1004 p->cku_err.re_status = RPC_SYSTEMERROR; 1005 p->cku_err.re_errno = ENOSR; 1006 COTSRCSTAT_INCR(p->cku_stats, rcnomem); 1007 goto cots_done; 1008 } 1009 } 1010 xdrs = &p->cku_outxdr; 1011 xdrmblk_init(xdrs, mp, XDR_ENCODE, tidu_size); 1012 mpsize = MBLKSIZE(mp); 1013 ASSERT(mpsize >= len); 1014 ASSERT(mp->b_rptr == mp->b_datap->db_base); 1015 1016 /* 1017 * If the size of mblk is not appreciably larger than what we 1018 * asked, then resize the mblk to exactly len bytes. The reason for 1019 * this: suppose len is 1600 bytes, the tidu is 1460 bytes 1020 * (from TCP over ethernet), and the arguments to the RPC require 1021 * 2800 bytes. Ideally we want the protocol to render two 1022 * ~1400 byte segments over the wire. However if allocb() gives us a 2k 1023 * mblk, and we allocate a second mblk for the remainder, the protocol 1024 * module may generate 3 segments over the wire: 1025 * 1460 bytes for the first, 448 (2048 - 1600) for the second, and 1026 * 892 for the third. If we "waste" 448 bytes in the first mblk, 1027 * the XDR encoding will generate two ~1400 byte mblks, and the 1028 * protocol module is more likely to produce properly sized segments. 1029 */ 1030 if ((mpsize >> 1) <= len) 1031 mp->b_rptr += (mpsize - len); 1032 1033 /* 1034 * Adjust b_rptr to reserve space for the non-data protocol headers 1035 * any downstream modules might like to add, and for the 1036 * record marking header. 1037 */ 1038 mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE); 1039 1040 if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { 1041 /* Copy in the preserialized RPC header information. */ 1042 bcopy(p->cku_rpchdr, mp->b_rptr, WIRE_HDR_SIZE); 1043 1044 /* Use XDR_SETPOS() to set the b_wptr to past the RPC header. */ 1045 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base + 1046 WIRE_HDR_SIZE)); 1047 1048 ASSERT((mp->b_wptr - mp->b_rptr) == WIRE_HDR_SIZE); 1049 1050 /* Serialize the procedure number and the arguments. */ 1051 if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) || 1052 (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) || 1053 (!(*xdr_args)(xdrs, argsp))) { 1054 p->cku_err.re_status = RPC_CANTENCODEARGS; 1055 p->cku_err.re_errno = EIO; 1056 goto cots_done; 1057 } 1058 1059 (*(uint32_t *)(mp->b_rptr)) = p->cku_xid; 1060 } else { 1061 uint32_t *uproc = (uint32_t *)&p->cku_rpchdr[WIRE_HDR_SIZE]; 1062 IXDR_PUT_U_INT32(uproc, procnum); 1063 1064 (*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid; 1065 1066 /* Use XDR_SETPOS() to set the b_wptr. */ 1067 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base)); 1068 1069 /* Serialize the procedure number and the arguments. */ 1070 if (!AUTH_WRAP(h->cl_auth, p->cku_rpchdr, WIRE_HDR_SIZE+4, 1071 xdrs, xdr_args, argsp)) { 1072 p->cku_err.re_status = RPC_CANTENCODEARGS; 1073 p->cku_err.re_errno = EIO; 1074 goto cots_done; 1075 } 1076 } 1077 1078 RPCLOG(2, "clnt_cots_kcallit: connected, sending call, tidu_size %d\n", 1079 tidu_size); 1080 1081 wq = cm_entry->x_wq; 1082 clnt_dispatch_send(wq, mp, call, p->cku_xid, 1083 (p->cku_flags & CKU_ONQUEUE)); 1084 1085 RPCLOG(64, "clnt_cots_kcallit: sent call for xid 0x%x\n", 1086 (uint_t)p->cku_xid); 1087 p->cku_flags = (CKU_ONQUEUE|CKU_SENT); 1088 p->cku_recv_attempts = 1; 1089 1090 #ifdef RPCDEBUG 1091 time_sent = lbolt; 1092 #endif 1093 1094 /* 1095 * Wait for a reply or a timeout. If there is no error or timeout, 1096 * (both indicated by call_status), call->call_reply will contain 1097 * the RPC reply message. 1098 */ 1099 read_again: 1100 mutex_enter(&call->call_lock); 1101 interrupted = 0; 1102 if (call->call_status == RPC_TIMEDOUT) { 1103 /* 1104 * Indicate that the lwp is not to be stopped while waiting 1105 * for this network traffic. This is to avoid deadlock while 1106 * debugging a process via /proc and also to avoid recursive 1107 * mutex_enter()s due to NFS page faults while stopping 1108 * (NFS holds locks when it calls here). 1109 */ 1110 clock_t cv_wait_ret; 1111 clock_t timout; 1112 clock_t oldlbolt; 1113 1114 klwp_t *lwp = ttolwp(curthread); 1115 1116 if (lwp != NULL) 1117 lwp->lwp_nostop++; 1118 1119 oldlbolt = lbolt; 1120 timout = wait.tv_sec * drv_usectohz(1000000) + 1121 drv_usectohz(wait.tv_usec) + oldlbolt; 1122 /* 1123 * Iterate until the call_status is changed to something 1124 * other that RPC_TIMEDOUT, or if cv_timedwait_sig() returns 1125 * something <=0 zero. The latter means that we timed 1126 * out. 1127 */ 1128 if (h->cl_nosignal) 1129 while ((cv_wait_ret = cv_timedwait(&call->call_cv, 1130 &call->call_lock, timout)) > 0 && 1131 call->call_status == RPC_TIMEDOUT); 1132 else 1133 while ((cv_wait_ret = cv_timedwait_sig( 1134 &call->call_cv, 1135 &call->call_lock, timout)) > 0 && 1136 call->call_status == RPC_TIMEDOUT); 1137 1138 switch (cv_wait_ret) { 1139 case 0: 1140 /* 1141 * If we got out of the above loop with 1142 * cv_timedwait_sig() returning 0, then we were 1143 * interrupted regardless what call_status is. 1144 */ 1145 interrupted = 1; 1146 break; 1147 case -1: 1148 /* cv_timedwait_sig() timed out */ 1149 break; 1150 default: 1151 1152 /* 1153 * We were cv_signaled(). If we didn't 1154 * get a successful call_status and returned 1155 * before time expired, delay up to clnt_cots_min_tout 1156 * seconds so that the caller doesn't immediately 1157 * try to call us again and thus force the 1158 * same condition that got us here (such 1159 * as a RPC_XPRTFAILED due to the server not 1160 * listening on the end-point. 1161 */ 1162 if (call->call_status != RPC_SUCCESS) { 1163 clock_t curlbolt; 1164 clock_t diff; 1165 1166 curlbolt = ddi_get_lbolt(); 1167 ticks = clnt_cots_min_tout * 1168 drv_usectohz(1000000); 1169 diff = curlbolt - oldlbolt; 1170 if (diff < ticks) { 1171 delay_first = TRUE; 1172 if (diff > 0) 1173 ticks -= diff; 1174 } 1175 } 1176 break; 1177 } 1178 1179 if (lwp != NULL) 1180 lwp->lwp_nostop--; 1181 } 1182 /* 1183 * Get the reply message, if any. This will be freed at the end 1184 * whether or not an error occurred. 1185 */ 1186 mp = call->call_reply; 1187 call->call_reply = NULL; 1188 1189 /* 1190 * call_err is the error info when the call is on dispatch queue. 1191 * cku_err is the error info returned to the caller. 1192 * Sync cku_err with call_err for local message processing. 1193 */ 1194 1195 status = call->call_status; 1196 p->cku_err = call->call_err; 1197 mutex_exit(&call->call_lock); 1198 1199 if (status != RPC_SUCCESS) { 1200 switch (status) { 1201 case RPC_TIMEDOUT: 1202 if (interrupted) { 1203 COTSRCSTAT_INCR(p->cku_stats, rcintrs); 1204 p->cku_err.re_status = RPC_INTR; 1205 p->cku_err.re_errno = EINTR; 1206 RPCLOG(1, "clnt_cots_kcallit: xid 0x%x", 1207 p->cku_xid); 1208 RPCLOG(1, "signal interrupted at %ld", lbolt); 1209 RPCLOG(1, ", was sent at %ld\n", time_sent); 1210 } else { 1211 COTSRCSTAT_INCR(p->cku_stats, rctimeouts); 1212 p->cku_err.re_errno = ETIMEDOUT; 1213 RPCLOG(1, "clnt_cots_kcallit: timed out at %ld", 1214 lbolt); 1215 RPCLOG(1, ", was sent at %ld\n", time_sent); 1216 } 1217 break; 1218 1219 case RPC_XPRTFAILED: 1220 if (p->cku_err.re_errno == 0) 1221 p->cku_err.re_errno = EIO; 1222 1223 RPCLOG(1, "clnt_cots_kcallit: transport failed: %d\n", 1224 p->cku_err.re_errno); 1225 break; 1226 1227 case RPC_SYSTEMERROR: 1228 ASSERT(p->cku_err.re_errno); 1229 RPCLOG(1, "clnt_cots_kcallit: system error: %d\n", 1230 p->cku_err.re_errno); 1231 break; 1232 1233 default: 1234 p->cku_err.re_status = RPC_SYSTEMERROR; 1235 p->cku_err.re_errno = EIO; 1236 RPCLOG(1, "clnt_cots_kcallit: error: %s\n", 1237 clnt_sperrno(status)); 1238 break; 1239 } 1240 if (p->cku_err.re_status != RPC_TIMEDOUT) { 1241 1242 if (p->cku_flags & CKU_ONQUEUE) { 1243 call_table_remove(call); 1244 p->cku_flags &= ~CKU_ONQUEUE; 1245 } 1246 1247 RPCLOG(64, "clnt_cots_kcallit: non TIMEOUT so xid 0x%x " 1248 "taken off dispatch list\n", p->cku_xid); 1249 if (call->call_reply) { 1250 freemsg(call->call_reply); 1251 call->call_reply = NULL; 1252 } 1253 } else if (wait.tv_sec != 0) { 1254 /* 1255 * We've sent the request over TCP and so we have 1256 * every reason to believe it will get 1257 * delivered. In which case returning a timeout is not 1258 * appropriate. 1259 */ 1260 if (p->cku_progress == TRUE && 1261 p->cku_recv_attempts < clnt_cots_maxrecv) { 1262 p->cku_err.re_status = RPC_INPROGRESS; 1263 } 1264 } 1265 goto cots_done; 1266 } 1267 1268 xdrs = &p->cku_inxdr; 1269 xdrmblk_init(xdrs, mp, XDR_DECODE, 0); 1270 1271 reply_msg.rm_direction = REPLY; 1272 reply_msg.rm_reply.rp_stat = MSG_ACCEPTED; 1273 reply_msg.acpted_rply.ar_stat = SUCCESS; 1274 1275 reply_msg.acpted_rply.ar_verf = _null_auth; 1276 /* 1277 * xdr_results will be done in AUTH_UNWRAP. 1278 */ 1279 reply_msg.acpted_rply.ar_results.where = NULL; 1280 reply_msg.acpted_rply.ar_results.proc = xdr_void; 1281 1282 if (xdr_replymsg(xdrs, &reply_msg)) { 1283 enum clnt_stat re_status; 1284 1285 _seterr_reply(&reply_msg, &p->cku_err); 1286 1287 re_status = p->cku_err.re_status; 1288 if (re_status == RPC_SUCCESS) { 1289 /* 1290 * Reply is good, check auth. 1291 */ 1292 if (!AUTH_VALIDATE(h->cl_auth, 1293 &reply_msg.acpted_rply.ar_verf)) { 1294 COTSRCSTAT_INCR(p->cku_stats, rcbadverfs); 1295 RPCLOG0(1, "clnt_cots_kcallit: validation " 1296 "failure\n"); 1297 freemsg(mp); 1298 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 1299 mutex_enter(&call->call_lock); 1300 if (call->call_reply == NULL) 1301 call->call_status = RPC_TIMEDOUT; 1302 mutex_exit(&call->call_lock); 1303 goto read_again; 1304 } else if (!AUTH_UNWRAP(h->cl_auth, xdrs, 1305 xdr_results, resultsp)) { 1306 RPCLOG0(1, "clnt_cots_kcallit: validation " 1307 "failure (unwrap)\n"); 1308 p->cku_err.re_status = RPC_CANTDECODERES; 1309 p->cku_err.re_errno = EIO; 1310 } 1311 } else { 1312 /* set errno in case we can't recover */ 1313 if (re_status != RPC_VERSMISMATCH && 1314 re_status != RPC_AUTHERROR && 1315 re_status != RPC_PROGVERSMISMATCH) 1316 p->cku_err.re_errno = EIO; 1317 1318 if (re_status == RPC_AUTHERROR) { 1319 /* 1320 * Maybe our credential need to be refreshed 1321 */ 1322 if (cm_entry) { 1323 /* 1324 * There is the potential that the 1325 * cm_entry has/will be marked dead, 1326 * so drop the connection altogether, 1327 * force REFRESH to establish new 1328 * connection. 1329 */ 1330 connmgr_cancelconn(cm_entry); 1331 cm_entry = NULL; 1332 } 1333 1334 if ((refreshes > 0) && 1335 AUTH_REFRESH(h->cl_auth, &reply_msg, 1336 p->cku_cred)) { 1337 refreshes--; 1338 (void) xdr_rpc_free_verifier(xdrs, 1339 &reply_msg); 1340 freemsg(mp); 1341 mp = NULL; 1342 1343 if (p->cku_flags & CKU_ONQUEUE) { 1344 call_table_remove(call); 1345 p->cku_flags &= ~CKU_ONQUEUE; 1346 } 1347 1348 RPCLOG(64, 1349 "clnt_cots_kcallit: AUTH_ERROR, xid" 1350 " 0x%x removed off dispatch list\n", 1351 p->cku_xid); 1352 if (call->call_reply) { 1353 freemsg(call->call_reply); 1354 call->call_reply = NULL; 1355 } 1356 1357 COTSRCSTAT_INCR(p->cku_stats, 1358 rcbadcalls); 1359 COTSRCSTAT_INCR(p->cku_stats, 1360 rcnewcreds); 1361 goto call_again; 1362 } 1363 1364 /* 1365 * We have used the client handle to 1366 * do an AUTH_REFRESH and the RPC status may 1367 * be set to RPC_SUCCESS; Let's make sure to 1368 * set it to RPC_AUTHERROR. 1369 */ 1370 p->cku_err.re_status = RPC_AUTHERROR; 1371 1372 /* 1373 * Map recoverable and unrecoverable 1374 * authentication errors to appropriate errno 1375 */ 1376 switch (p->cku_err.re_why) { 1377 case AUTH_TOOWEAK: 1378 /* 1379 * This could be a failure where the 1380 * server requires use of a reserved 1381 * port, check and optionally set the 1382 * client handle useresvport trying 1383 * one more time. Next go round we 1384 * fall out with the tooweak error. 1385 */ 1386 if (p->cku_useresvport != 1) { 1387 p->cku_useresvport = 1; 1388 p->cku_xid = 0; 1389 (void) xdr_rpc_free_verifier 1390 (xdrs, &reply_msg); 1391 freemsg(mp); 1392 goto call_again; 1393 } 1394 /* FALLTHRU */ 1395 case AUTH_BADCRED: 1396 case AUTH_BADVERF: 1397 case AUTH_INVALIDRESP: 1398 case AUTH_FAILED: 1399 case RPCSEC_GSS_NOCRED: 1400 case RPCSEC_GSS_FAILED: 1401 p->cku_err.re_errno = EACCES; 1402 break; 1403 case AUTH_REJECTEDCRED: 1404 case AUTH_REJECTEDVERF: 1405 default: p->cku_err.re_errno = EIO; 1406 break; 1407 } 1408 RPCLOG(1, "clnt_cots_kcallit : authentication" 1409 " failed with RPC_AUTHERROR of type %d\n", 1410 (int)p->cku_err.re_why); 1411 } 1412 } 1413 } else { 1414 /* reply didn't decode properly. */ 1415 p->cku_err.re_status = RPC_CANTDECODERES; 1416 p->cku_err.re_errno = EIO; 1417 RPCLOG0(1, "clnt_cots_kcallit: decode failure\n"); 1418 } 1419 1420 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 1421 1422 if (p->cku_flags & CKU_ONQUEUE) { 1423 call_table_remove(call); 1424 p->cku_flags &= ~CKU_ONQUEUE; 1425 } 1426 1427 RPCLOG(64, "clnt_cots_kcallit: xid 0x%x taken off dispatch list", 1428 p->cku_xid); 1429 RPCLOG(64, " status is %s\n", clnt_sperrno(p->cku_err.re_status)); 1430 cots_done: 1431 if (cm_entry) 1432 connmgr_release(cm_entry); 1433 1434 if (mp != NULL) 1435 freemsg(mp); 1436 if ((p->cku_flags & CKU_ONQUEUE) == 0 && call->call_reply) { 1437 freemsg(call->call_reply); 1438 call->call_reply = NULL; 1439 } 1440 if (p->cku_err.re_status != RPC_SUCCESS) { 1441 RPCLOG0(1, "clnt_cots_kcallit: tail-end failure\n"); 1442 COTSRCSTAT_INCR(p->cku_stats, rcbadcalls); 1443 } 1444 1445 /* 1446 * No point in delaying if the zone is going away. 1447 */ 1448 if (delay_first == TRUE && 1449 !(zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)) { 1450 if (clnt_delay(ticks, h->cl_nosignal) == EINTR) { 1451 p->cku_err.re_errno = EINTR; 1452 p->cku_err.re_status = RPC_INTR; 1453 } 1454 } 1455 return (p->cku_err.re_status); 1456 } 1457 1458 /* 1459 * Kinit routine for cots. This sets up the correct operations in 1460 * the client handle, as the handle may have previously been a clts 1461 * handle, and clears the xid field so there is no way a new call 1462 * could be mistaken for a retry. It also sets in the handle the 1463 * information that is passed at create/kinit time but needed at 1464 * call time, as cots creates the transport at call time - device, 1465 * address of the server, protocol family. 1466 */ 1467 void 1468 clnt_cots_kinit(CLIENT *h, dev_t dev, int family, struct netbuf *addr, 1469 int max_msgsize, cred_t *cred) 1470 { 1471 /* LINTED pointer alignment */ 1472 cku_private_t *p = htop(h); 1473 calllist_t *call = &p->cku_call; 1474 1475 h->cl_ops = &tcp_ops; 1476 if (p->cku_flags & CKU_ONQUEUE) { 1477 call_table_remove(call); 1478 p->cku_flags &= ~CKU_ONQUEUE; 1479 RPCLOG(64, "clnt_cots_kinit: removing call for xid 0x%x from" 1480 " dispatch list\n", p->cku_xid); 1481 } 1482 1483 if (call->call_reply != NULL) { 1484 freemsg(call->call_reply); 1485 call->call_reply = NULL; 1486 } 1487 1488 call->call_bucket = NULL; 1489 call->call_hash = 0; 1490 1491 /* 1492 * We don't clear cku_flags here, because clnt_cots_kcallit() 1493 * takes care of handling the cku_flags reset. 1494 */ 1495 p->cku_xid = 0; 1496 p->cku_device = dev; 1497 p->cku_addrfmly = family; 1498 p->cku_cred = cred; 1499 1500 if (p->cku_addr.maxlen < addr->len) { 1501 if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL) 1502 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen); 1503 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP); 1504 p->cku_addr.maxlen = addr->maxlen; 1505 } 1506 1507 p->cku_addr.len = addr->len; 1508 bcopy(addr->buf, p->cku_addr.buf, addr->len); 1509 1510 /* 1511 * If the current sanity check size in rpcmod is smaller 1512 * than the size needed, then increase the sanity check. 1513 */ 1514 if (max_msgsize != 0 && clnt_max_msg_sizep != NULL && 1515 max_msgsize > *clnt_max_msg_sizep) { 1516 mutex_enter(&clnt_max_msg_lock); 1517 if (max_msgsize > *clnt_max_msg_sizep) 1518 *clnt_max_msg_sizep = max_msgsize; 1519 mutex_exit(&clnt_max_msg_lock); 1520 } 1521 } 1522 1523 /* 1524 * ksettimers is a no-op for cots, with the exception of setting the xid. 1525 */ 1526 /* ARGSUSED */ 1527 static int 1528 clnt_cots_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all, 1529 int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg, 1530 uint32_t xid) 1531 { 1532 /* LINTED pointer alignment */ 1533 cku_private_t *p = htop(h); 1534 1535 if (xid) 1536 p->cku_xid = xid; 1537 COTSRCSTAT_INCR(p->cku_stats, rctimers); 1538 return (0); 1539 } 1540 1541 extern void rpc_poptimod(struct vnode *); 1542 extern int kstr_push(struct vnode *, char *); 1543 1544 int 1545 conn_kstat_update(kstat_t *ksp, int rw) 1546 { 1547 struct cm_xprt *cm_entry; 1548 struct cm_kstat_xprt *cm_ksp_data; 1549 uchar_t *b; 1550 char *fbuf; 1551 1552 if (rw == KSTAT_WRITE) 1553 return (EACCES); 1554 if (ksp == NULL || ksp->ks_private == NULL) 1555 return (EIO); 1556 cm_entry = (struct cm_xprt *)ksp->ks_private; 1557 cm_ksp_data = (struct cm_kstat_xprt *)ksp->ks_data; 1558 1559 cm_ksp_data->x_wq.value.ui32 = (uint32_t)(uintptr_t)cm_entry->x_wq; 1560 cm_ksp_data->x_family.value.ui32 = cm_entry->x_family; 1561 cm_ksp_data->x_rdev.value.ui32 = (uint32_t)cm_entry->x_rdev; 1562 cm_ksp_data->x_time.value.ui32 = cm_entry->x_time; 1563 cm_ksp_data->x_ref.value.ui32 = cm_entry->x_ref; 1564 cm_ksp_data->x_state.value.ui32 = cm_entry->x_state_flags; 1565 1566 if (cm_entry->x_server.buf) { 1567 fbuf = cm_ksp_data->x_server.value.str.addr.ptr; 1568 if (cm_entry->x_family == AF_INET && 1569 cm_entry->x_server.len == 1570 sizeof (struct sockaddr_in)) { 1571 struct sockaddr_in *sa; 1572 sa = (struct sockaddr_in *) 1573 cm_entry->x_server.buf; 1574 b = (uchar_t *)&sa->sin_addr; 1575 (void) sprintf(fbuf, 1576 "%03d.%03d.%03d.%03d", b[0] & 0xFF, b[1] & 0xFF, 1577 b[2] & 0xFF, b[3] & 0xFF); 1578 cm_ksp_data->x_port.value.ui32 = 1579 (uint32_t)sa->sin_port; 1580 } else if (cm_entry->x_family == AF_INET6 && 1581 cm_entry->x_server.len >= 1582 sizeof (struct sockaddr_in6)) { 1583 /* extract server IP address & port */ 1584 struct sockaddr_in6 *sin6; 1585 sin6 = (struct sockaddr_in6 *)cm_entry->x_server.buf; 1586 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, fbuf, 1587 INET6_ADDRSTRLEN); 1588 cm_ksp_data->x_port.value.ui32 = sin6->sin6_port; 1589 } else { 1590 struct sockaddr_in *sa; 1591 1592 sa = (struct sockaddr_in *)cm_entry->x_server.buf; 1593 b = (uchar_t *)&sa->sin_addr; 1594 (void) sprintf(fbuf, 1595 "%03d.%03d.%03d.%03d", b[0] & 0xFF, b[1] & 0xFF, 1596 b[2] & 0xFF, b[3] & 0xFF); 1597 } 1598 KSTAT_NAMED_STR_BUFLEN(&cm_ksp_data->x_server) = 1599 strlen(fbuf) + 1; 1600 } 1601 1602 return (0); 1603 } 1604 1605 1606 /* 1607 * We want a version of delay which is interruptible by a UNIX signal 1608 * Return EINTR if an interrupt occured. 1609 */ 1610 static int 1611 clnt_delay(clock_t ticks, bool_t nosignal) 1612 { 1613 if (nosignal == TRUE) { 1614 delay(ticks); 1615 return (0); 1616 } 1617 return (delay_sig(ticks)); 1618 } 1619 1620 /* 1621 * Wait for a connection until a timeout, or until we are 1622 * signalled that there has been a connection state change. 1623 */ 1624 static enum clnt_stat 1625 connmgr_cwait(struct cm_xprt *cm_entry, const struct timeval *waitp, 1626 bool_t nosignal) 1627 { 1628 bool_t interrupted; 1629 clock_t timout, cv_stat; 1630 enum clnt_stat clstat; 1631 unsigned int old_state; 1632 1633 ASSERT(MUTEX_HELD(&connmgr_lock)); 1634 /* 1635 * We wait for the transport connection to be made, or an 1636 * indication that it could not be made. 1637 */ 1638 clstat = RPC_TIMEDOUT; 1639 interrupted = FALSE; 1640 1641 old_state = cm_entry->x_state_flags; 1642 /* 1643 * Now loop until cv_timedwait{_sig} returns because of 1644 * a signal(0) or timeout(-1) or cv_signal(>0). But it may be 1645 * cv_signalled for various other reasons too. So loop 1646 * until there is a state change on the connection. 1647 */ 1648 1649 timout = waitp->tv_sec * drv_usectohz(1000000) + 1650 drv_usectohz(waitp->tv_usec) + lbolt; 1651 1652 if (nosignal) { 1653 while ((cv_stat = cv_timedwait(&cm_entry->x_conn_cv, 1654 &connmgr_lock, timout)) > 0 && 1655 cm_entry->x_state_flags == old_state) 1656 ; 1657 } else { 1658 while ((cv_stat = cv_timedwait_sig(&cm_entry->x_conn_cv, 1659 &connmgr_lock, timout)) > 0 && 1660 cm_entry->x_state_flags == old_state) 1661 ; 1662 1663 if (cv_stat == 0) /* got intr signal? */ 1664 interrupted = TRUE; 1665 } 1666 1667 if ((cm_entry->x_state_flags & (X_BADSTATES|X_CONNECTED)) == 1668 X_CONNECTED) { 1669 clstat = RPC_SUCCESS; 1670 } else { 1671 if (interrupted == TRUE) 1672 clstat = RPC_INTR; 1673 RPCLOG(1, "connmgr_cwait: can't connect, error: %s\n", 1674 clnt_sperrno(clstat)); 1675 } 1676 1677 return (clstat); 1678 } 1679 1680 /* 1681 * Primary interface for how RPC grabs a connection. 1682 */ 1683 static struct cm_xprt * 1684 connmgr_wrapget( 1685 struct netbuf *retryaddr, 1686 const struct timeval *waitp, 1687 cku_private_t *p) 1688 { 1689 struct cm_xprt *cm_entry; 1690 1691 cm_entry = connmgr_get(retryaddr, waitp, &p->cku_addr, p->cku_addrfmly, 1692 &p->cku_srcaddr, &p->cku_err, p->cku_device, 1693 p->cku_client.cl_nosignal, p->cku_useresvport); 1694 1695 if (cm_entry == NULL) { 1696 /* 1697 * Re-map the call status to RPC_INTR if the err code is 1698 * EINTR. This can happen if calls status is RPC_TLIERROR. 1699 * However, don't re-map if signalling has been turned off. 1700 * XXX Really need to create a separate thread whenever 1701 * there isn't an existing connection. 1702 */ 1703 if (p->cku_err.re_errno == EINTR) { 1704 if (p->cku_client.cl_nosignal == TRUE) 1705 p->cku_err.re_errno = EIO; 1706 else 1707 p->cku_err.re_status = RPC_INTR; 1708 } 1709 } 1710 1711 return (cm_entry); 1712 } 1713 1714 /* 1715 * Obtains a transport to the server specified in addr. If a suitable transport 1716 * does not already exist in the list of cached transports, a new connection 1717 * is created, connected, and added to the list. The connection is for sending 1718 * only - the reply message may come back on another transport connection. 1719 */ 1720 static struct cm_xprt * 1721 connmgr_get( 1722 struct netbuf *retryaddr, 1723 const struct timeval *waitp, /* changed to a ptr to converse stack */ 1724 struct netbuf *destaddr, 1725 int addrfmly, 1726 struct netbuf *srcaddr, 1727 struct rpc_err *rpcerr, 1728 dev_t device, 1729 bool_t nosignal, 1730 int useresvport) 1731 { 1732 struct cm_xprt *cm_entry; 1733 struct cm_xprt *lru_entry; 1734 struct cm_xprt **cmp; 1735 queue_t *wq; 1736 TIUSER *tiptr; 1737 int i; 1738 int retval; 1739 clock_t prev_time; 1740 int tidu_size; 1741 bool_t connected; 1742 zoneid_t zoneid = rpc_zoneid(); 1743 1744 /* 1745 * If the call is not a retry, look for a transport entry that 1746 * goes to the server of interest. 1747 */ 1748 mutex_enter(&connmgr_lock); 1749 1750 if (retryaddr == NULL) { 1751 use_new_conn: 1752 i = 0; 1753 cm_entry = lru_entry = NULL; 1754 prev_time = lbolt; 1755 1756 cmp = &cm_hd; 1757 while ((cm_entry = *cmp) != NULL) { 1758 ASSERT(cm_entry != cm_entry->x_next); 1759 /* 1760 * Garbage collect conections that are marked 1761 * for needs disconnect. 1762 */ 1763 if (cm_entry->x_needdis) { 1764 CONN_HOLD(cm_entry); 1765 connmgr_dis_and_wait(cm_entry); 1766 connmgr_release(cm_entry); 1767 /* 1768 * connmgr_lock could have been 1769 * dropped for the disconnect 1770 * processing so start over. 1771 */ 1772 goto use_new_conn; 1773 } 1774 1775 /* 1776 * Garbage collect the dead connections that have 1777 * no threads working on them. 1778 */ 1779 if ((cm_entry->x_state_flags & (X_DEAD|X_THREAD)) == 1780 X_DEAD) { 1781 mutex_enter(&cm_entry->x_lock); 1782 if (cm_entry->x_ref != 0) { 1783 /* 1784 * Currently in use. 1785 * Cleanup later. 1786 */ 1787 cmp = &cm_entry->x_next; 1788 mutex_exit(&cm_entry->x_lock); 1789 continue; 1790 } 1791 mutex_exit(&cm_entry->x_lock); 1792 *cmp = cm_entry->x_next; 1793 mutex_exit(&connmgr_lock); 1794 connmgr_close(cm_entry); 1795 mutex_enter(&connmgr_lock); 1796 goto use_new_conn; 1797 } 1798 1799 1800 if ((cm_entry->x_state_flags & X_BADSTATES) == 0 && 1801 cm_entry->x_zoneid == zoneid && 1802 cm_entry->x_rdev == device && 1803 destaddr->len == cm_entry->x_server.len && 1804 bcmp(destaddr->buf, cm_entry->x_server.buf, 1805 destaddr->len) == 0) { 1806 /* 1807 * If the matching entry isn't connected, 1808 * attempt to reconnect it. 1809 */ 1810 if (cm_entry->x_connected == FALSE) { 1811 /* 1812 * We don't go through trying 1813 * to find the least recently 1814 * used connected because 1815 * connmgr_reconnect() briefly 1816 * dropped the connmgr_lock, 1817 * allowing a window for our 1818 * accounting to be messed up. 1819 * In any case, a re-connected 1820 * connection is as good as 1821 * a LRU connection. 1822 */ 1823 return (connmgr_wrapconnect(cm_entry, 1824 waitp, destaddr, addrfmly, srcaddr, 1825 rpcerr, TRUE, nosignal)); 1826 } 1827 i++; 1828 if (cm_entry->x_time - prev_time <= 0 || 1829 lru_entry == NULL) { 1830 prev_time = cm_entry->x_time; 1831 lru_entry = cm_entry; 1832 } 1833 } 1834 cmp = &cm_entry->x_next; 1835 } 1836 1837 if (i > clnt_max_conns) { 1838 RPCLOG(8, "connmgr_get: too many conns, dooming entry" 1839 " %p\n", (void *)lru_entry->x_tiptr); 1840 lru_entry->x_doomed = TRUE; 1841 goto use_new_conn; 1842 } 1843 1844 /* 1845 * If we are at the maximum number of connections to 1846 * the server, hand back the least recently used one. 1847 */ 1848 if (i == clnt_max_conns) { 1849 /* 1850 * Copy into the handle the source address of 1851 * the connection, which we will use in case of 1852 * a later retry. 1853 */ 1854 if (srcaddr->len != lru_entry->x_src.len) { 1855 if (srcaddr->len > 0) 1856 kmem_free(srcaddr->buf, 1857 srcaddr->maxlen); 1858 srcaddr->buf = kmem_zalloc( 1859 lru_entry->x_src.len, KM_SLEEP); 1860 srcaddr->maxlen = srcaddr->len = 1861 lru_entry->x_src.len; 1862 } 1863 bcopy(lru_entry->x_src.buf, srcaddr->buf, srcaddr->len); 1864 RPCLOG(2, "connmgr_get: call going out on %p\n", 1865 (void *)lru_entry); 1866 lru_entry->x_time = lbolt; 1867 CONN_HOLD(lru_entry); 1868 mutex_exit(&connmgr_lock); 1869 return (lru_entry); 1870 } 1871 1872 } else { 1873 /* 1874 * This is the retry case (retryaddr != NULL). Retries must 1875 * be sent on the same source port as the original call. 1876 */ 1877 1878 /* 1879 * Walk the list looking for a connection with a source address 1880 * that matches the retry address. 1881 */ 1882 cmp = &cm_hd; 1883 while ((cm_entry = *cmp) != NULL) { 1884 ASSERT(cm_entry != cm_entry->x_next); 1885 if (zoneid != cm_entry->x_zoneid || 1886 device != cm_entry->x_rdev || 1887 retryaddr->len != cm_entry->x_src.len || 1888 bcmp(retryaddr->buf, cm_entry->x_src.buf, 1889 retryaddr->len) != 0) { 1890 cmp = &cm_entry->x_next; 1891 continue; 1892 } 1893 1894 /* 1895 * Sanity check: if the connection with our source 1896 * port is going to some other server, something went 1897 * wrong, as we never delete connections (i.e. release 1898 * ports) unless they have been idle. In this case, 1899 * it is probably better to send the call out using 1900 * a new source address than to fail it altogether, 1901 * since that port may never be released. 1902 */ 1903 if (destaddr->len != cm_entry->x_server.len || 1904 bcmp(destaddr->buf, cm_entry->x_server.buf, 1905 destaddr->len) != 0) { 1906 RPCLOG(1, "connmgr_get: tiptr %p" 1907 " is going to a different server" 1908 " with the port that belongs" 1909 " to us!\n", (void *)cm_entry->x_tiptr); 1910 retryaddr = NULL; 1911 goto use_new_conn; 1912 } 1913 1914 /* 1915 * If the connection of interest is not connected and we 1916 * can't reconnect it, then the server is probably 1917 * still down. Return NULL to the caller and let it 1918 * retry later if it wants to. We have a delay so the 1919 * machine doesn't go into a tight retry loop. If the 1920 * entry was already connected, or the reconnected was 1921 * successful, return this entry. 1922 */ 1923 if (cm_entry->x_connected == FALSE) { 1924 return (connmgr_wrapconnect(cm_entry, 1925 waitp, destaddr, addrfmly, NULL, 1926 rpcerr, TRUE, nosignal)); 1927 } else { 1928 CONN_HOLD(cm_entry); 1929 1930 cm_entry->x_time = lbolt; 1931 mutex_exit(&connmgr_lock); 1932 RPCLOG(2, "connmgr_get: found old " 1933 "transport %p for retry\n", 1934 (void *)cm_entry); 1935 return (cm_entry); 1936 } 1937 } 1938 1939 /* 1940 * We cannot find an entry in the list for this retry. 1941 * Either the entry has been removed temporarily to be 1942 * reconnected by another thread, or the original call 1943 * got a port but never got connected, 1944 * and hence the transport never got put in the 1945 * list. Fall through to the "create new connection" code - 1946 * the former case will fail there trying to rebind the port, 1947 * and the later case (and any other pathological cases) will 1948 * rebind and reconnect and not hang the client machine. 1949 */ 1950 RPCLOG0(8, "connmgr_get: no entry in list for retry\n"); 1951 } 1952 /* 1953 * Set up a transport entry in the connection manager's list. 1954 */ 1955 cm_entry = (struct cm_xprt *) 1956 kmem_zalloc(sizeof (struct cm_xprt), KM_SLEEP); 1957 1958 cm_entry->x_server.buf = kmem_zalloc(destaddr->len, KM_SLEEP); 1959 bcopy(destaddr->buf, cm_entry->x_server.buf, destaddr->len); 1960 cm_entry->x_server.len = cm_entry->x_server.maxlen = destaddr->len; 1961 1962 cm_entry->x_state_flags = X_THREAD; 1963 cm_entry->x_ref = 1; 1964 cm_entry->x_family = addrfmly; 1965 cm_entry->x_rdev = device; 1966 cm_entry->x_zoneid = zoneid; 1967 mutex_init(&cm_entry->x_lock, NULL, MUTEX_DEFAULT, NULL); 1968 cv_init(&cm_entry->x_cv, NULL, CV_DEFAULT, NULL); 1969 cv_init(&cm_entry->x_conn_cv, NULL, CV_DEFAULT, NULL); 1970 cv_init(&cm_entry->x_dis_cv, NULL, CV_DEFAULT, NULL); 1971 1972 /* 1973 * Note that we add this partially initialized entry to the 1974 * connection list. This is so that we don't have connections to 1975 * the same server. 1976 * 1977 * Note that x_src is not initialized at this point. This is because 1978 * retryaddr might be NULL in which case x_src is whatever 1979 * t_kbind/bindresvport gives us. If another thread wants a 1980 * connection to the same server, seemingly we have an issue, but we 1981 * don't. If the other thread comes in with retryaddr == NULL, then it 1982 * will never look at x_src, and it will end up waiting in 1983 * connmgr_cwait() for the first thread to finish the connection 1984 * attempt. If the other thread comes in with retryaddr != NULL, then 1985 * that means there was a request sent on a connection, in which case 1986 * the the connection should already exist. Thus the first thread 1987 * never gets here ... it finds the connection it its server in the 1988 * connection list. 1989 * 1990 * But even if theory is wrong, in the retryaddr != NULL case, the 2nd 1991 * thread will skip us because x_src.len == 0. 1992 */ 1993 cm_entry->x_next = cm_hd; 1994 cm_hd = cm_entry; 1995 mutex_exit(&connmgr_lock); 1996 1997 /* 1998 * Either we didn't find an entry to the server of interest, or we 1999 * don't have the maximum number of connections to that server - 2000 * create a new connection. 2001 */ 2002 RPCLOG0(8, "connmgr_get: creating new connection\n"); 2003 rpcerr->re_status = RPC_TLIERROR; 2004 2005 i = t_kopen(NULL, device, FREAD|FWRITE|FNDELAY, &tiptr, zone_kcred()); 2006 if (i) { 2007 RPCLOG(1, "connmgr_get: can't open cots device, error %d\n", i); 2008 rpcerr->re_errno = i; 2009 connmgr_cancelconn(cm_entry); 2010 return (NULL); 2011 } 2012 rpc_poptimod(tiptr->fp->f_vnode); 2013 2014 if (i = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0, 2015 K_TO_K, kcred, &retval)) { 2016 RPCLOG(1, "connmgr_get: can't push cots module, %d\n", i); 2017 (void) t_kclose(tiptr, 1); 2018 rpcerr->re_errno = i; 2019 connmgr_cancelconn(cm_entry); 2020 return (NULL); 2021 } 2022 2023 if (i = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K, 2024 kcred, &retval)) { 2025 RPCLOG(1, "connmgr_get: can't set client status with cots " 2026 "module, %d\n", i); 2027 (void) t_kclose(tiptr, 1); 2028 rpcerr->re_errno = i; 2029 connmgr_cancelconn(cm_entry); 2030 return (NULL); 2031 } 2032 2033 mutex_enter(&connmgr_lock); 2034 2035 wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next; 2036 cm_entry->x_wq = wq; 2037 2038 mutex_exit(&connmgr_lock); 2039 2040 if (i = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0, 2041 K_TO_K, kcred, &retval)) { 2042 RPCLOG(1, "connmgr_get: can't push timod, %d\n", i); 2043 (void) t_kclose(tiptr, 1); 2044 rpcerr->re_errno = i; 2045 connmgr_cancelconn(cm_entry); 2046 return (NULL); 2047 } 2048 2049 /* 2050 * If the caller has not specified reserved port usage then 2051 * take the system default. 2052 */ 2053 if (useresvport == -1) 2054 useresvport = clnt_cots_do_bindresvport; 2055 2056 if ((useresvport || retryaddr != NULL) && 2057 (addrfmly == AF_INET || addrfmly == AF_INET6)) { 2058 bool_t alloc_src = FALSE; 2059 2060 if (srcaddr->len != destaddr->len) { 2061 kmem_free(srcaddr->buf, srcaddr->maxlen); 2062 srcaddr->buf = kmem_zalloc(destaddr->len, KM_SLEEP); 2063 srcaddr->maxlen = destaddr->len; 2064 srcaddr->len = destaddr->len; 2065 alloc_src = TRUE; 2066 } 2067 2068 if ((i = bindresvport(tiptr, retryaddr, srcaddr, TRUE)) != 0) { 2069 (void) t_kclose(tiptr, 1); 2070 RPCLOG(1, "connmgr_get: couldn't bind, retryaddr: " 2071 "%p\n", (void *)retryaddr); 2072 2073 /* 2074 * 1225408: If we allocated a source address, then it 2075 * is either garbage or all zeroes. In that case 2076 * we need to clear srcaddr. 2077 */ 2078 if (alloc_src == TRUE) { 2079 kmem_free(srcaddr->buf, srcaddr->maxlen); 2080 srcaddr->maxlen = srcaddr->len = 0; 2081 srcaddr->buf = NULL; 2082 } 2083 rpcerr->re_errno = i; 2084 connmgr_cancelconn(cm_entry); 2085 return (NULL); 2086 } 2087 } else { 2088 if ((i = t_kbind(tiptr, NULL, NULL)) != 0) { 2089 RPCLOG(1, "clnt_cots_kcreate: t_kbind: %d\n", i); 2090 (void) t_kclose(tiptr, 1); 2091 rpcerr->re_errno = i; 2092 connmgr_cancelconn(cm_entry); 2093 return (NULL); 2094 } 2095 } 2096 2097 { 2098 /* 2099 * Keep the kernel stack lean. Don't move this call 2100 * declaration to the top of this function because a 2101 * call is declared in connmgr_wrapconnect() 2102 */ 2103 calllist_t call; 2104 2105 bzero(&call, sizeof (call)); 2106 cv_init(&call.call_cv, NULL, CV_DEFAULT, NULL); 2107 2108 /* 2109 * This is a bound end-point so don't close it's stream. 2110 */ 2111 connected = connmgr_connect(cm_entry, wq, destaddr, addrfmly, 2112 &call, &tidu_size, FALSE, waitp, 2113 nosignal); 2114 *rpcerr = call.call_err; 2115 cv_destroy(&call.call_cv); 2116 2117 } 2118 2119 mutex_enter(&connmgr_lock); 2120 2121 /* 2122 * Set up a transport entry in the connection manager's list. 2123 */ 2124 cm_entry->x_src.buf = kmem_zalloc(srcaddr->len, KM_SLEEP); 2125 bcopy(srcaddr->buf, cm_entry->x_src.buf, srcaddr->len); 2126 cm_entry->x_src.len = cm_entry->x_src.maxlen = srcaddr->len; 2127 2128 cm_entry->x_tiptr = tiptr; 2129 cm_entry->x_time = lbolt; 2130 2131 if (tiptr->tp_info.servtype == T_COTS_ORD) 2132 cm_entry->x_ordrel = TRUE; 2133 else 2134 cm_entry->x_ordrel = FALSE; 2135 2136 cm_entry->x_tidu_size = tidu_size; 2137 2138 if (cm_entry->x_early_disc) { 2139 /* 2140 * We need to check if a disconnect request has come 2141 * while we are connected, if so, then we need to 2142 * set rpcerr->re_status appropriately before returning 2143 * NULL to caller. 2144 */ 2145 if (rpcerr->re_status == RPC_SUCCESS) 2146 rpcerr->re_status = RPC_XPRTFAILED; 2147 cm_entry->x_connected = FALSE; 2148 } else 2149 cm_entry->x_connected = connected; 2150 2151 /* 2152 * There could be a discrepancy here such that 2153 * x_early_disc is TRUE yet connected is TRUE as well 2154 * and the connection is actually connected. In that case 2155 * lets be conservative and declare the connection as not 2156 * connected. 2157 */ 2158 cm_entry->x_early_disc = FALSE; 2159 cm_entry->x_needdis = (cm_entry->x_connected == FALSE); 2160 cm_entry->x_ctime = lbolt; 2161 2162 /* 2163 * Notify any threads waiting that the connection attempt is done. 2164 */ 2165 cm_entry->x_thread = FALSE; 2166 cv_broadcast(&cm_entry->x_conn_cv); 2167 2168 if (cm_entry->x_connected == FALSE) { 2169 mutex_exit(&connmgr_lock); 2170 connmgr_release(cm_entry); 2171 return (NULL); 2172 } 2173 2174 mutex_exit(&connmgr_lock); 2175 2176 return (cm_entry); 2177 } 2178 2179 /* 2180 * Keep the cm_xprt entry on the connecton list when making a connection. This 2181 * is to prevent multiple connections to a slow server from appearing. 2182 * We use the bit field x_thread to tell if a thread is doing a connection 2183 * which keeps other interested threads from messing with connection. 2184 * Those other threads just wait if x_thread is set. 2185 * 2186 * If x_thread is not set, then we do the actual work of connecting via 2187 * connmgr_connect(). 2188 * 2189 * mutex convention: called with connmgr_lock held, returns with it released. 2190 */ 2191 static struct cm_xprt * 2192 connmgr_wrapconnect( 2193 struct cm_xprt *cm_entry, 2194 const struct timeval *waitp, 2195 struct netbuf *destaddr, 2196 int addrfmly, 2197 struct netbuf *srcaddr, 2198 struct rpc_err *rpcerr, 2199 bool_t reconnect, 2200 bool_t nosignal) 2201 { 2202 ASSERT(MUTEX_HELD(&connmgr_lock)); 2203 /* 2204 * Hold this entry as we are about to drop connmgr_lock. 2205 */ 2206 CONN_HOLD(cm_entry); 2207 2208 /* 2209 * If there is a thread already making a connection for us, then 2210 * wait for it to complete the connection. 2211 */ 2212 if (cm_entry->x_thread == TRUE) { 2213 rpcerr->re_status = connmgr_cwait(cm_entry, waitp, nosignal); 2214 2215 if (rpcerr->re_status != RPC_SUCCESS) { 2216 mutex_exit(&connmgr_lock); 2217 connmgr_release(cm_entry); 2218 return (NULL); 2219 } 2220 } else { 2221 bool_t connected; 2222 calllist_t call; 2223 2224 cm_entry->x_thread = TRUE; 2225 2226 while (cm_entry->x_needrel == TRUE) { 2227 cm_entry->x_needrel = FALSE; 2228 2229 connmgr_sndrel(cm_entry); 2230 delay(drv_usectohz(1000000)); 2231 2232 mutex_enter(&connmgr_lock); 2233 } 2234 2235 /* 2236 * If we need to send a T_DISCON_REQ, send one. 2237 */ 2238 connmgr_dis_and_wait(cm_entry); 2239 2240 mutex_exit(&connmgr_lock); 2241 2242 bzero(&call, sizeof (call)); 2243 cv_init(&call.call_cv, NULL, CV_DEFAULT, NULL); 2244 2245 connected = connmgr_connect(cm_entry, cm_entry->x_wq, 2246 destaddr, addrfmly, &call, 2247 &cm_entry->x_tidu_size, 2248 reconnect, waitp, nosignal); 2249 2250 *rpcerr = call.call_err; 2251 cv_destroy(&call.call_cv); 2252 2253 mutex_enter(&connmgr_lock); 2254 2255 2256 if (cm_entry->x_early_disc) { 2257 /* 2258 * We need to check if a disconnect request has come 2259 * while we are connected, if so, then we need to 2260 * set rpcerr->re_status appropriately before returning 2261 * NULL to caller. 2262 */ 2263 if (rpcerr->re_status == RPC_SUCCESS) 2264 rpcerr->re_status = RPC_XPRTFAILED; 2265 cm_entry->x_connected = FALSE; 2266 } else 2267 cm_entry->x_connected = connected; 2268 2269 /* 2270 * There could be a discrepancy here such that 2271 * x_early_disc is TRUE yet connected is TRUE as well 2272 * and the connection is actually connected. In that case 2273 * lets be conservative and declare the connection as not 2274 * connected. 2275 */ 2276 2277 cm_entry->x_early_disc = FALSE; 2278 cm_entry->x_needdis = (cm_entry->x_connected == FALSE); 2279 2280 2281 /* 2282 * connmgr_connect() may have given up before the connection 2283 * actually timed out. So ensure that before the next 2284 * connection attempt we do a disconnect. 2285 */ 2286 cm_entry->x_ctime = lbolt; 2287 cm_entry->x_thread = FALSE; 2288 2289 cv_broadcast(&cm_entry->x_conn_cv); 2290 2291 if (cm_entry->x_connected == FALSE) { 2292 mutex_exit(&connmgr_lock); 2293 connmgr_release(cm_entry); 2294 return (NULL); 2295 } 2296 } 2297 2298 if (srcaddr != NULL) { 2299 /* 2300 * Copy into the handle the 2301 * source address of the 2302 * connection, which we will use 2303 * in case of a later retry. 2304 */ 2305 if (srcaddr->len != cm_entry->x_src.len) { 2306 if (srcaddr->maxlen > 0) 2307 kmem_free(srcaddr->buf, srcaddr->maxlen); 2308 srcaddr->buf = kmem_zalloc(cm_entry->x_src.len, 2309 KM_SLEEP); 2310 srcaddr->maxlen = srcaddr->len = 2311 cm_entry->x_src.len; 2312 } 2313 bcopy(cm_entry->x_src.buf, srcaddr->buf, srcaddr->len); 2314 } 2315 cm_entry->x_time = lbolt; 2316 mutex_exit(&connmgr_lock); 2317 return (cm_entry); 2318 } 2319 2320 /* 2321 * If we need to send a T_DISCON_REQ, send one. 2322 */ 2323 static void 2324 connmgr_dis_and_wait(struct cm_xprt *cm_entry) 2325 { 2326 ASSERT(MUTEX_HELD(&connmgr_lock)); 2327 for (;;) { 2328 while (cm_entry->x_needdis == TRUE) { 2329 RPCLOG(8, "connmgr_dis_and_wait: need " 2330 "T_DISCON_REQ for connection 0x%p\n", 2331 (void *)cm_entry); 2332 cm_entry->x_needdis = FALSE; 2333 cm_entry->x_waitdis = TRUE; 2334 2335 connmgr_snddis(cm_entry); 2336 2337 mutex_enter(&connmgr_lock); 2338 } 2339 2340 if (cm_entry->x_waitdis == TRUE) { 2341 clock_t curlbolt; 2342 clock_t timout; 2343 2344 RPCLOG(8, "connmgr_dis_and_wait waiting for " 2345 "T_DISCON_REQ's ACK for connection %p\n", 2346 (void *)cm_entry); 2347 curlbolt = ddi_get_lbolt(); 2348 2349 timout = clnt_cots_min_conntout * 2350 drv_usectohz(1000000) + curlbolt; 2351 2352 /* 2353 * The TPI spec says that the T_DISCON_REQ 2354 * will get acknowledged, but in practice 2355 * the ACK may never get sent. So don't 2356 * block forever. 2357 */ 2358 (void) cv_timedwait(&cm_entry->x_dis_cv, 2359 &connmgr_lock, timout); 2360 } 2361 /* 2362 * If we got the ACK, break. If we didn't, 2363 * then send another T_DISCON_REQ. 2364 */ 2365 if (cm_entry->x_waitdis == FALSE) { 2366 break; 2367 } else { 2368 RPCLOG(8, "connmgr_dis_and_wait: did" 2369 "not get T_DISCON_REQ's ACK for " 2370 "connection %p\n", (void *)cm_entry); 2371 cm_entry->x_needdis = TRUE; 2372 } 2373 } 2374 } 2375 2376 static void 2377 connmgr_cancelconn(struct cm_xprt *cm_entry) 2378 { 2379 /* 2380 * Mark the connection table entry as dead; the next thread that 2381 * goes through connmgr_release() will notice this and deal with it. 2382 */ 2383 mutex_enter(&connmgr_lock); 2384 cm_entry->x_dead = TRUE; 2385 2386 /* 2387 * Notify any threads waiting for the connection that it isn't 2388 * going to happen. 2389 */ 2390 cm_entry->x_thread = FALSE; 2391 cv_broadcast(&cm_entry->x_conn_cv); 2392 mutex_exit(&connmgr_lock); 2393 2394 connmgr_release(cm_entry); 2395 } 2396 2397 static void 2398 connmgr_close(struct cm_xprt *cm_entry) 2399 { 2400 mutex_enter(&cm_entry->x_lock); 2401 while (cm_entry->x_ref != 0) { 2402 /* 2403 * Must be a noninterruptible wait. 2404 */ 2405 cv_wait(&cm_entry->x_cv, &cm_entry->x_lock); 2406 } 2407 2408 if (cm_entry->x_tiptr != NULL) 2409 (void) t_kclose(cm_entry->x_tiptr, 1); 2410 2411 mutex_exit(&cm_entry->x_lock); 2412 if (cm_entry->x_ksp != NULL) { 2413 mutex_enter(&connmgr_lock); 2414 cm_entry->x_ksp->ks_private = NULL; 2415 mutex_exit(&connmgr_lock); 2416 2417 /* 2418 * Must free the buffer we allocated for the 2419 * server address in the update function 2420 */ 2421 if (((struct cm_kstat_xprt *)(cm_entry->x_ksp->ks_data))-> 2422 x_server.value.str.addr.ptr != NULL) 2423 kmem_free(((struct cm_kstat_xprt *)(cm_entry->x_ksp-> 2424 ks_data))->x_server.value.str.addr.ptr, 2425 INET6_ADDRSTRLEN); 2426 kmem_free(cm_entry->x_ksp->ks_data, 2427 cm_entry->x_ksp->ks_data_size); 2428 kstat_delete(cm_entry->x_ksp); 2429 } 2430 2431 mutex_destroy(&cm_entry->x_lock); 2432 cv_destroy(&cm_entry->x_cv); 2433 cv_destroy(&cm_entry->x_conn_cv); 2434 cv_destroy(&cm_entry->x_dis_cv); 2435 2436 if (cm_entry->x_server.buf != NULL) 2437 kmem_free(cm_entry->x_server.buf, cm_entry->x_server.maxlen); 2438 if (cm_entry->x_src.buf != NULL) 2439 kmem_free(cm_entry->x_src.buf, cm_entry->x_src.maxlen); 2440 kmem_free(cm_entry, sizeof (struct cm_xprt)); 2441 } 2442 2443 /* 2444 * Called by KRPC after sending the call message to release the connection 2445 * it was using. 2446 */ 2447 static void 2448 connmgr_release(struct cm_xprt *cm_entry) 2449 { 2450 mutex_enter(&cm_entry->x_lock); 2451 cm_entry->x_ref--; 2452 if (cm_entry->x_ref == 0) 2453 cv_signal(&cm_entry->x_cv); 2454 mutex_exit(&cm_entry->x_lock); 2455 } 2456 2457 /* 2458 * Given an open stream, connect to the remote. Returns true if connected, 2459 * false otherwise. 2460 */ 2461 static bool_t 2462 connmgr_connect( 2463 struct cm_xprt *cm_entry, 2464 queue_t *wq, 2465 struct netbuf *addr, 2466 int addrfmly, 2467 calllist_t *e, 2468 int *tidu_ptr, 2469 bool_t reconnect, 2470 const struct timeval *waitp, 2471 bool_t nosignal) 2472 { 2473 mblk_t *mp; 2474 struct T_conn_req *tcr; 2475 struct T_info_ack *tinfo; 2476 int interrupted, error; 2477 int tidu_size, kstat_instance; 2478 2479 /* if it's a reconnect, flush any lingering data messages */ 2480 if (reconnect) 2481 (void) putctl1(wq, M_FLUSH, FLUSHRW); 2482 2483 mp = allocb(sizeof (*tcr) + addr->len, BPRI_LO); 2484 if (mp == NULL) { 2485 /* 2486 * This is unfortunate, but we need to look up the stats for 2487 * this zone to increment the "memory allocation failed" 2488 * counter. curproc->p_zone is safe since we're initiating a 2489 * connection and not in some strange streams context. 2490 */ 2491 struct rpcstat *rpcstat; 2492 2493 rpcstat = zone_getspecific(rpcstat_zone_key, rpc_zone()); 2494 ASSERT(rpcstat != NULL); 2495 2496 RPCLOG0(1, "connmgr_connect: cannot alloc mp for " 2497 "sending conn request\n"); 2498 COTSRCSTAT_INCR(rpcstat->rpc_cots_client, rcnomem); 2499 e->call_status = RPC_SYSTEMERROR; 2500 e->call_reason = ENOSR; 2501 return (FALSE); 2502 } 2503 2504 mp->b_datap->db_type = M_PROTO; 2505 tcr = (struct T_conn_req *)mp->b_rptr; 2506 bzero(tcr, sizeof (*tcr)); 2507 tcr->PRIM_type = T_CONN_REQ; 2508 tcr->DEST_length = addr->len; 2509 tcr->DEST_offset = sizeof (struct T_conn_req); 2510 mp->b_wptr = mp->b_rptr + sizeof (*tcr); 2511 2512 bcopy(addr->buf, mp->b_wptr, tcr->DEST_length); 2513 mp->b_wptr += tcr->DEST_length; 2514 2515 RPCLOG(8, "connmgr_connect: sending conn request on queue " 2516 "%p", (void *)wq); 2517 RPCLOG(8, " call %p\n", (void *)wq); 2518 /* 2519 * We use the entry in the handle that is normally used for 2520 * waiting for RPC replies to wait for the connection accept. 2521 */ 2522 clnt_dispatch_send(wq, mp, e, 0, 0); 2523 2524 mutex_enter(&clnt_pending_lock); 2525 2526 /* 2527 * We wait for the transport connection to be made, or an 2528 * indication that it could not be made. 2529 */ 2530 interrupted = 0; 2531 2532 /* 2533 * waitforack should have been called with T_OK_ACK, but the 2534 * present implementation needs to be passed T_INFO_ACK to 2535 * work correctly. 2536 */ 2537 error = waitforack(e, T_INFO_ACK, waitp, nosignal); 2538 if (error == EINTR) 2539 interrupted = 1; 2540 if (zone_status_get(curproc->p_zone) >= ZONE_IS_EMPTY) { 2541 /* 2542 * No time to lose; we essentially have been signaled to 2543 * quit. 2544 */ 2545 interrupted = 1; 2546 } 2547 #ifdef RPCDEBUG 2548 if (error == ETIME) 2549 RPCLOG0(8, "connmgr_connect: giving up " 2550 "on connection attempt; " 2551 "clnt_dispatch notifyconn " 2552 "diagnostic 'no one waiting for " 2553 "connection' should not be " 2554 "unexpected\n"); 2555 #endif 2556 if (e->call_prev) 2557 e->call_prev->call_next = e->call_next; 2558 else 2559 clnt_pending = e->call_next; 2560 if (e->call_next) 2561 e->call_next->call_prev = e->call_prev; 2562 mutex_exit(&clnt_pending_lock); 2563 2564 if (e->call_status != RPC_SUCCESS || error != 0) { 2565 if (interrupted) 2566 e->call_status = RPC_INTR; 2567 else if (error == ETIME) 2568 e->call_status = RPC_TIMEDOUT; 2569 else if (error == EPROTO) 2570 e->call_status = RPC_SYSTEMERROR; 2571 2572 RPCLOG(8, "connmgr_connect: can't connect, status: " 2573 "%s\n", clnt_sperrno(e->call_status)); 2574 2575 if (e->call_reply) { 2576 freemsg(e->call_reply); 2577 e->call_reply = NULL; 2578 } 2579 2580 return (FALSE); 2581 } 2582 /* 2583 * The result of the "connection accept" is a T_info_ack 2584 * in the call_reply field. 2585 */ 2586 ASSERT(e->call_reply != NULL); 2587 mp = e->call_reply; 2588 e->call_reply = NULL; 2589 tinfo = (struct T_info_ack *)mp->b_rptr; 2590 2591 tidu_size = tinfo->TIDU_size; 2592 tidu_size -= (tidu_size % BYTES_PER_XDR_UNIT); 2593 if (tidu_size > COTS_DEFAULT_ALLOCSIZE || (tidu_size <= 0)) 2594 tidu_size = COTS_DEFAULT_ALLOCSIZE; 2595 *tidu_ptr = tidu_size; 2596 2597 freemsg(mp); 2598 2599 /* 2600 * Set up the pertinent options. NODELAY is so the transport doesn't 2601 * buffer up RPC messages on either end. This may not be valid for 2602 * all transports. Failure to set this option is not cause to 2603 * bail out so we return success anyway. Note that lack of NODELAY 2604 * or some other way to flush the message on both ends will cause 2605 * lots of retries and terrible performance. 2606 */ 2607 if (addrfmly == AF_INET || addrfmly == AF_INET6) { 2608 (void) connmgr_setopt(wq, IPPROTO_TCP, TCP_NODELAY, e); 2609 if (e->call_status == RPC_XPRTFAILED) 2610 return (FALSE); 2611 } 2612 2613 /* 2614 * Since we have a connection, we now need to figure out if 2615 * we need to create a kstat. If x_ksp is not NULL then we 2616 * are reusing a connection and so we do not need to create 2617 * another kstat -- lets just return. 2618 */ 2619 if (cm_entry->x_ksp != NULL) 2620 return (TRUE); 2621 2622 /* 2623 * We need to increment rpc_kstat_instance atomically to prevent 2624 * two kstats being created with the same instance. 2625 */ 2626 kstat_instance = atomic_add_32_nv((uint32_t *)&rpc_kstat_instance, 1); 2627 2628 if ((cm_entry->x_ksp = kstat_create_zone("unix", kstat_instance, 2629 "rpc_cots_connections", "rpc", KSTAT_TYPE_NAMED, 2630 (uint_t)(sizeof (cm_kstat_xprt_t) / sizeof (kstat_named_t)), 2631 KSTAT_FLAG_VIRTUAL, cm_entry->x_zoneid)) == NULL) { 2632 return (TRUE); 2633 } 2634 2635 cm_entry->x_ksp->ks_lock = &connmgr_lock; 2636 cm_entry->x_ksp->ks_private = cm_entry; 2637 cm_entry->x_ksp->ks_data_size = ((INET6_ADDRSTRLEN * sizeof (char)) 2638 + sizeof (cm_kstat_template)); 2639 cm_entry->x_ksp->ks_data = kmem_alloc(cm_entry->x_ksp->ks_data_size, 2640 KM_SLEEP); 2641 bcopy(&cm_kstat_template, cm_entry->x_ksp->ks_data, 2642 cm_entry->x_ksp->ks_data_size); 2643 ((struct cm_kstat_xprt *)(cm_entry->x_ksp->ks_data))-> 2644 x_server.value.str.addr.ptr = 2645 kmem_alloc(INET6_ADDRSTRLEN, KM_SLEEP); 2646 2647 cm_entry->x_ksp->ks_update = conn_kstat_update; 2648 kstat_install(cm_entry->x_ksp); 2649 return (TRUE); 2650 } 2651 2652 /* 2653 * Called by connmgr_connect to set an option on the new stream. 2654 */ 2655 static bool_t 2656 connmgr_setopt(queue_t *wq, int level, int name, calllist_t *e) 2657 { 2658 mblk_t *mp; 2659 struct opthdr *opt; 2660 struct T_optmgmt_req *tor; 2661 struct timeval waitp; 2662 int error; 2663 2664 mp = allocb(sizeof (struct T_optmgmt_req) + sizeof (struct opthdr) + 2665 sizeof (int), BPRI_LO); 2666 if (mp == NULL) { 2667 RPCLOG0(1, "connmgr_setopt: cannot alloc mp for option " 2668 "request\n"); 2669 return (FALSE); 2670 } 2671 2672 mp->b_datap->db_type = M_PROTO; 2673 tor = (struct T_optmgmt_req *)(mp->b_rptr); 2674 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 2675 tor->MGMT_flags = T_NEGOTIATE; 2676 tor->OPT_length = sizeof (struct opthdr) + sizeof (int); 2677 tor->OPT_offset = sizeof (struct T_optmgmt_req); 2678 2679 opt = (struct opthdr *)(mp->b_rptr + sizeof (struct T_optmgmt_req)); 2680 opt->level = level; 2681 opt->name = name; 2682 opt->len = sizeof (int); 2683 *(int *)((char *)opt + sizeof (*opt)) = 1; 2684 mp->b_wptr += sizeof (struct T_optmgmt_req) + sizeof (struct opthdr) + 2685 sizeof (int); 2686 2687 /* 2688 * We will use this connection regardless 2689 * of whether or not the option is settable. 2690 */ 2691 clnt_dispatch_send(wq, mp, e, 0, 0); 2692 mutex_enter(&clnt_pending_lock); 2693 2694 waitp.tv_sec = clnt_cots_min_conntout; 2695 waitp.tv_usec = 0; 2696 error = waitforack(e, T_OPTMGMT_ACK, &waitp, 1); 2697 2698 if (e->call_prev) 2699 e->call_prev->call_next = e->call_next; 2700 else 2701 clnt_pending = e->call_next; 2702 if (e->call_next) 2703 e->call_next->call_prev = e->call_prev; 2704 mutex_exit(&clnt_pending_lock); 2705 2706 if (e->call_reply != NULL) { 2707 freemsg(e->call_reply); 2708 e->call_reply = NULL; 2709 } 2710 2711 if (e->call_status != RPC_SUCCESS || error != 0) { 2712 RPCLOG(1, "connmgr_setopt: can't set option: %d\n", name); 2713 return (FALSE); 2714 } 2715 RPCLOG(8, "connmgr_setopt: successfully set option: %d\n", name); 2716 return (TRUE); 2717 } 2718 2719 #ifdef DEBUG 2720 2721 /* 2722 * This is a knob to let us force code coverage in allocation failure 2723 * case. 2724 */ 2725 static int connmgr_failsnd; 2726 #define CONN_SND_ALLOC(Size, Pri) \ 2727 ((connmgr_failsnd-- > 0) ? NULL : allocb(Size, Pri)) 2728 2729 #else 2730 2731 #define CONN_SND_ALLOC(Size, Pri) allocb(Size, Pri) 2732 2733 #endif 2734 2735 /* 2736 * Sends an orderly release on the specified queue. 2737 * Entered with connmgr_lock. Exited without connmgr_lock 2738 */ 2739 static void 2740 connmgr_sndrel(struct cm_xprt *cm_entry) 2741 { 2742 struct T_ordrel_req *torr; 2743 mblk_t *mp; 2744 queue_t *q = cm_entry->x_wq; 2745 ASSERT(MUTEX_HELD(&connmgr_lock)); 2746 mp = CONN_SND_ALLOC(sizeof (struct T_ordrel_req), BPRI_LO); 2747 if (mp == NULL) { 2748 cm_entry->x_needrel = TRUE; 2749 mutex_exit(&connmgr_lock); 2750 RPCLOG(1, "connmgr_sndrel: cannot alloc mp for sending ordrel " 2751 "to queue %p\n", (void *)q); 2752 return; 2753 } 2754 mutex_exit(&connmgr_lock); 2755 2756 mp->b_datap->db_type = M_PROTO; 2757 torr = (struct T_ordrel_req *)(mp->b_rptr); 2758 torr->PRIM_type = T_ORDREL_REQ; 2759 mp->b_wptr = mp->b_rptr + sizeof (struct T_ordrel_req); 2760 2761 RPCLOG(8, "connmgr_sndrel: sending ordrel to queue %p\n", (void *)q); 2762 put(q, mp); 2763 } 2764 2765 /* 2766 * Sends an disconnect on the specified queue. 2767 * Entered with connmgr_lock. Exited without connmgr_lock 2768 */ 2769 static void 2770 connmgr_snddis(struct cm_xprt *cm_entry) 2771 { 2772 struct T_discon_req *tdis; 2773 mblk_t *mp; 2774 queue_t *q = cm_entry->x_wq; 2775 2776 ASSERT(MUTEX_HELD(&connmgr_lock)); 2777 mp = CONN_SND_ALLOC(sizeof (*tdis), BPRI_LO); 2778 if (mp == NULL) { 2779 cm_entry->x_needdis = TRUE; 2780 mutex_exit(&connmgr_lock); 2781 RPCLOG(1, "connmgr_snddis: cannot alloc mp for sending discon " 2782 "to queue %p\n", (void *)q); 2783 return; 2784 } 2785 mutex_exit(&connmgr_lock); 2786 2787 mp->b_datap->db_type = M_PROTO; 2788 tdis = (struct T_discon_req *)mp->b_rptr; 2789 tdis->PRIM_type = T_DISCON_REQ; 2790 mp->b_wptr = mp->b_rptr + sizeof (*tdis); 2791 2792 RPCLOG(8, "connmgr_snddis: sending discon to queue %p\n", (void *)q); 2793 put(q, mp); 2794 } 2795 2796 /* 2797 * Sets up the entry for receiving replies, and calls rpcmod's write put proc 2798 * (through put) to send the call. 2799 */ 2800 static void 2801 clnt_dispatch_send(queue_t *q, mblk_t *mp, calllist_t *e, uint_t xid, 2802 uint_t queue_flag) 2803 { 2804 ASSERT(e != NULL); 2805 2806 e->call_status = RPC_TIMEDOUT; /* optimistic, eh? */ 2807 e->call_reason = 0; 2808 e->call_wq = q; 2809 e->call_xid = xid; 2810 e->call_notified = FALSE; 2811 2812 /* 2813 * If queue_flag is set then the calllist_t is already on the hash 2814 * queue. In this case just send the message and return. 2815 */ 2816 if (queue_flag) { 2817 put(q, mp); 2818 return; 2819 } 2820 2821 /* 2822 * Set up calls for RPC requests (with XID != 0) on the hash 2823 * queue for fast lookups and place other calls (i.e. 2824 * connection management) on the linked list. 2825 */ 2826 if (xid != 0) { 2827 RPCLOG(64, "clnt_dispatch_send: putting xid 0x%x on " 2828 "dispatch list\n", xid); 2829 e->call_hash = call_hash(xid, clnt_cots_hash_size); 2830 e->call_bucket = &cots_call_ht[e->call_hash]; 2831 call_table_enter(e); 2832 } else { 2833 mutex_enter(&clnt_pending_lock); 2834 if (clnt_pending) 2835 clnt_pending->call_prev = e; 2836 e->call_next = clnt_pending; 2837 e->call_prev = NULL; 2838 clnt_pending = e; 2839 mutex_exit(&clnt_pending_lock); 2840 } 2841 2842 put(q, mp); 2843 } 2844 2845 /* 2846 * Called by rpcmod to notify a client with a clnt_pending call that its reply 2847 * has arrived. If we can't find a client waiting for this reply, we log 2848 * the error and return. 2849 */ 2850 bool_t 2851 clnt_dispatch_notify(mblk_t *mp, zoneid_t zoneid) 2852 { 2853 calllist_t *e = NULL; 2854 call_table_t *chtp; 2855 uint32_t xid; 2856 uint_t hash; 2857 2858 if ((IS_P2ALIGNED(mp->b_rptr, sizeof (uint32_t))) && 2859 (mp->b_wptr - mp->b_rptr) >= sizeof (xid)) 2860 xid = *((uint32_t *)mp->b_rptr); 2861 else { 2862 int i = 0; 2863 unsigned char *p = (unsigned char *)&xid; 2864 unsigned char *rptr; 2865 mblk_t *tmp = mp; 2866 2867 /* 2868 * Copy the xid, byte-by-byte into xid. 2869 */ 2870 while (tmp) { 2871 rptr = tmp->b_rptr; 2872 while (rptr < tmp->b_wptr) { 2873 *p++ = *rptr++; 2874 if (++i >= sizeof (xid)) 2875 goto done_xid_copy; 2876 } 2877 tmp = tmp->b_cont; 2878 } 2879 2880 /* 2881 * If we got here, we ran out of mblk space before the 2882 * xid could be copied. 2883 */ 2884 ASSERT(tmp == NULL && i < sizeof (xid)); 2885 2886 RPCLOG0(1, 2887 "clnt_dispatch_notify: message less than size of xid\n"); 2888 return (FALSE); 2889 2890 } 2891 done_xid_copy: 2892 2893 hash = call_hash(xid, clnt_cots_hash_size); 2894 chtp = &cots_call_ht[hash]; 2895 /* call_table_find returns with the hash bucket locked */ 2896 call_table_find(chtp, xid, e); 2897 2898 if (e != NULL) { 2899 /* 2900 * Found thread waiting for this reply 2901 */ 2902 mutex_enter(&e->call_lock); 2903 if (e->call_reply) 2904 /* 2905 * This can happen under the following scenario: 2906 * clnt_cots_kcallit() times out on the response, 2907 * rfscall() repeats the CLNT_CALL() with 2908 * the same xid, clnt_cots_kcallit() sends the retry, 2909 * thereby putting the clnt handle on the pending list, 2910 * the first response arrives, signalling the thread 2911 * in clnt_cots_kcallit(). Before that thread is 2912 * dispatched, the second response arrives as well, 2913 * and clnt_dispatch_notify still finds the handle on 2914 * the pending list, with call_reply set. So free the 2915 * old reply now. 2916 * 2917 * It is also possible for a response intended for 2918 * an RPC call with a different xid to reside here. 2919 * This can happen if the thread that owned this 2920 * client handle prior to the current owner bailed 2921 * out and left its call record on the dispatch 2922 * queue. A window exists where the response can 2923 * arrive before the current owner dispatches its 2924 * RPC call. 2925 * 2926 * In any case, this is the very last point where we 2927 * can safely check the call_reply field before 2928 * placing the new response there. 2929 */ 2930 freemsg(e->call_reply); 2931 e->call_reply = mp; 2932 e->call_status = RPC_SUCCESS; 2933 e->call_notified = TRUE; 2934 cv_signal(&e->call_cv); 2935 mutex_exit(&e->call_lock); 2936 mutex_exit(&chtp->ct_lock); 2937 return (TRUE); 2938 } else { 2939 zone_t *zone; 2940 struct rpcstat *rpcstat; 2941 2942 mutex_exit(&chtp->ct_lock); 2943 RPCLOG(65, "clnt_dispatch_notify: no caller for reply 0x%x\n", 2944 xid); 2945 /* 2946 * This is unfortunate, but we need to lookup the zone so we 2947 * can increment its "rcbadxids" counter. 2948 */ 2949 zone = zone_find_by_id(zoneid); 2950 if (zone == NULL) { 2951 /* 2952 * The zone went away... 2953 */ 2954 return (FALSE); 2955 } 2956 rpcstat = zone_getspecific(rpcstat_zone_key, zone); 2957 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 2958 /* 2959 * Not interested 2960 */ 2961 zone_rele(zone); 2962 return (FALSE); 2963 } 2964 COTSRCSTAT_INCR(rpcstat->rpc_cots_client, rcbadxids); 2965 zone_rele(zone); 2966 } 2967 return (FALSE); 2968 } 2969 2970 /* 2971 * Called by rpcmod when a non-data indication arrives. The ones in which we 2972 * are interested are connection indications and options acks. We dispatch 2973 * based on the queue the indication came in on. If we are not interested in 2974 * what came in, we return false to rpcmod, who will then pass it upstream. 2975 */ 2976 bool_t 2977 clnt_dispatch_notifyconn(queue_t *q, mblk_t *mp) 2978 { 2979 calllist_t *e; 2980 int type; 2981 2982 ASSERT((q->q_flag & QREADR) == 0); 2983 2984 type = ((union T_primitives *)mp->b_rptr)->type; 2985 RPCLOG(8, "clnt_dispatch_notifyconn: prim type: [%s]\n", 2986 rpc_tpiprim2name(type)); 2987 mutex_enter(&clnt_pending_lock); 2988 for (e = clnt_pending; /* NO CONDITION */; e = e->call_next) { 2989 if (e == NULL) { 2990 mutex_exit(&clnt_pending_lock); 2991 RPCLOG(1, "clnt_dispatch_notifyconn: no one waiting " 2992 "for connection on queue 0x%p\n", (void *)q); 2993 return (FALSE); 2994 } 2995 if (e->call_wq == q) 2996 break; 2997 } 2998 2999 switch (type) { 3000 case T_CONN_CON: 3001 /* 3002 * The transport is now connected, send a T_INFO_REQ to get 3003 * the tidu size. 3004 */ 3005 mutex_exit(&clnt_pending_lock); 3006 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 3007 sizeof (struct T_info_req)); 3008 mp->b_rptr = mp->b_datap->db_base; 3009 ((union T_primitives *)mp->b_rptr)->type = T_INFO_REQ; 3010 mp->b_wptr = mp->b_rptr + sizeof (struct T_info_req); 3011 mp->b_datap->db_type = M_PCPROTO; 3012 put(q, mp); 3013 return (TRUE); 3014 case T_INFO_ACK: 3015 case T_OPTMGMT_ACK: 3016 e->call_status = RPC_SUCCESS; 3017 e->call_reply = mp; 3018 e->call_notified = TRUE; 3019 cv_signal(&e->call_cv); 3020 break; 3021 case T_ERROR_ACK: 3022 e->call_status = RPC_CANTCONNECT; 3023 e->call_reply = mp; 3024 e->call_notified = TRUE; 3025 cv_signal(&e->call_cv); 3026 break; 3027 case T_OK_ACK: 3028 /* 3029 * Great, but we are really waiting for a T_CONN_CON 3030 */ 3031 freemsg(mp); 3032 break; 3033 default: 3034 mutex_exit(&clnt_pending_lock); 3035 RPCLOG(1, "clnt_dispatch_notifyconn: bad type %d\n", type); 3036 return (FALSE); 3037 } 3038 3039 mutex_exit(&clnt_pending_lock); 3040 return (TRUE); 3041 } 3042 3043 /* 3044 * Called by rpcmod when the transport is (or should be) going away. Informs 3045 * all callers waiting for replies and marks the entry in the connection 3046 * manager's list as unconnected, and either closing (close handshake in 3047 * progress) or dead. 3048 */ 3049 void 3050 clnt_dispatch_notifyall(queue_t *q, int32_t msg_type, int32_t reason) 3051 { 3052 calllist_t *e; 3053 call_table_t *ctp; 3054 struct cm_xprt *cm_entry; 3055 int have_connmgr_lock; 3056 int i; 3057 3058 ASSERT((q->q_flag & QREADR) == 0); 3059 3060 RPCLOG(1, "clnt_dispatch_notifyall on queue %p", (void *)q); 3061 RPCLOG(1, " received a notifcation prim type [%s]", 3062 rpc_tpiprim2name(msg_type)); 3063 RPCLOG(1, " and reason %d\n", reason); 3064 3065 /* 3066 * Find the transport entry in the connection manager's list, close 3067 * the transport and delete the entry. In the case where rpcmod's 3068 * idle timer goes off, it sends us a T_ORDREL_REQ, indicating we 3069 * should gracefully close the connection. 3070 */ 3071 have_connmgr_lock = 1; 3072 mutex_enter(&connmgr_lock); 3073 for (cm_entry = cm_hd; cm_entry; cm_entry = cm_entry->x_next) { 3074 ASSERT(cm_entry != cm_entry->x_next); 3075 if (cm_entry->x_wq == q) { 3076 ASSERT(MUTEX_HELD(&connmgr_lock)); 3077 ASSERT(have_connmgr_lock == 1); 3078 switch (msg_type) { 3079 case T_ORDREL_REQ: 3080 3081 if (cm_entry->x_dead) { 3082 RPCLOG(1, "idle timeout on dead " 3083 "connection: %p\n", 3084 (void *)cm_entry); 3085 if (clnt_stop_idle != NULL) 3086 (*clnt_stop_idle)(q); 3087 break; 3088 } 3089 3090 /* 3091 * Only mark the connection as dead if it is 3092 * connected and idle. 3093 * An unconnected connection has probably 3094 * gone idle because the server is down, 3095 * and when it comes back up there will be 3096 * retries that need to use that connection. 3097 */ 3098 if (cm_entry->x_connected || 3099 cm_entry->x_doomed) { 3100 if (cm_entry->x_ordrel) { 3101 if (cm_entry->x_closing == TRUE) { 3102 /* 3103 * The connection is obviously 3104 * wedged due to a bug or problem 3105 * with the transport. Mark it 3106 * as dead. Otherwise we can leak 3107 * connections. 3108 */ 3109 cm_entry->x_dead = TRUE; 3110 mutex_exit(&connmgr_lock); 3111 have_connmgr_lock = 0; 3112 if (clnt_stop_idle != NULL) 3113 (*clnt_stop_idle)(q); 3114 break; 3115 } 3116 cm_entry->x_closing = TRUE; 3117 connmgr_sndrel(cm_entry); 3118 have_connmgr_lock = 0; 3119 } else { 3120 cm_entry->x_dead = TRUE; 3121 mutex_exit(&connmgr_lock); 3122 have_connmgr_lock = 0; 3123 if (clnt_stop_idle != NULL) 3124 (*clnt_stop_idle)(q); 3125 } 3126 } else { 3127 /* 3128 * We don't mark the connection 3129 * as dead, but we turn off the 3130 * idle timer. 3131 */ 3132 mutex_exit(&connmgr_lock); 3133 have_connmgr_lock = 0; 3134 if (clnt_stop_idle != NULL) 3135 (*clnt_stop_idle)(q); 3136 RPCLOG(1, "clnt_dispatch_notifyall:" 3137 " ignoring timeout from rpcmod" 3138 " (q %p) because we are not " 3139 " connected\n", (void *)q); 3140 } 3141 break; 3142 case T_ORDREL_IND: 3143 /* 3144 * If this entry is marked closing, then we are 3145 * completing a close handshake, and the 3146 * connection is dead. Otherwise, the server is 3147 * trying to close. Since the server will not 3148 * be sending any more RPC replies, we abort 3149 * the connection, including flushing 3150 * any RPC requests that are in-transit. 3151 */ 3152 if (cm_entry->x_closing) { 3153 cm_entry->x_dead = TRUE; 3154 mutex_exit(&connmgr_lock); 3155 have_connmgr_lock = 0; 3156 if (clnt_stop_idle != NULL) 3157 (*clnt_stop_idle)(q); 3158 } else { 3159 /* 3160 * if we're getting a disconnect 3161 * before we've finished our 3162 * connect attempt, mark it for 3163 * later processing 3164 */ 3165 if (cm_entry->x_thread) 3166 cm_entry->x_early_disc = TRUE; 3167 else 3168 cm_entry->x_connected = FALSE; 3169 cm_entry->x_waitdis = TRUE; 3170 connmgr_snddis(cm_entry); 3171 have_connmgr_lock = 0; 3172 } 3173 break; 3174 3175 case T_ERROR_ACK: 3176 case T_OK_ACK: 3177 cm_entry->x_waitdis = FALSE; 3178 cv_signal(&cm_entry->x_dis_cv); 3179 mutex_exit(&connmgr_lock); 3180 return; 3181 3182 case T_DISCON_REQ: 3183 if (cm_entry->x_thread) 3184 cm_entry->x_early_disc = TRUE; 3185 else 3186 cm_entry->x_connected = FALSE; 3187 cm_entry->x_waitdis = TRUE; 3188 3189 connmgr_snddis(cm_entry); 3190 have_connmgr_lock = 0; 3191 break; 3192 3193 case T_DISCON_IND: 3194 default: 3195 /* 3196 * if we're getting a disconnect before 3197 * we've finished our connect attempt, 3198 * mark it for later processing 3199 */ 3200 if (cm_entry->x_closing) { 3201 cm_entry->x_dead = TRUE; 3202 mutex_exit(&connmgr_lock); 3203 have_connmgr_lock = 0; 3204 if (clnt_stop_idle != NULL) 3205 (*clnt_stop_idle)(q); 3206 } else { 3207 if (cm_entry->x_thread) { 3208 cm_entry->x_early_disc = TRUE; 3209 } else { 3210 cm_entry->x_dead = TRUE; 3211 cm_entry->x_connected = FALSE; 3212 } 3213 } 3214 break; 3215 } 3216 break; 3217 } 3218 } 3219 3220 if (have_connmgr_lock) 3221 mutex_exit(&connmgr_lock); 3222 3223 if (msg_type == T_ERROR_ACK || msg_type == T_OK_ACK) { 3224 RPCLOG(1, "clnt_dispatch_notifyall: (wq %p) could not find " 3225 "connmgr entry for discon ack\n", (void *)q); 3226 return; 3227 } 3228 3229 /* 3230 * Then kick all the clnt_pending calls out of their wait. There 3231 * should be no clnt_pending calls in the case of rpcmod's idle 3232 * timer firing. 3233 */ 3234 for (i = 0; i < clnt_cots_hash_size; i++) { 3235 ctp = &cots_call_ht[i]; 3236 mutex_enter(&ctp->ct_lock); 3237 for (e = ctp->ct_call_next; 3238 e != (calllist_t *)ctp; 3239 e = e->call_next) { 3240 if (e->call_wq == q && e->call_notified == FALSE) { 3241 RPCLOG(1, 3242 "clnt_dispatch_notifyall for queue %p ", 3243 (void *)q); 3244 RPCLOG(1, "aborting clnt_pending call %p\n", 3245 (void *)e); 3246 3247 if (msg_type == T_DISCON_IND) 3248 e->call_reason = reason; 3249 e->call_notified = TRUE; 3250 e->call_status = RPC_XPRTFAILED; 3251 cv_signal(&e->call_cv); 3252 } 3253 } 3254 mutex_exit(&ctp->ct_lock); 3255 } 3256 3257 mutex_enter(&clnt_pending_lock); 3258 for (e = clnt_pending; e; e = e->call_next) { 3259 /* 3260 * Only signal those RPC handles that haven't been 3261 * signalled yet. Otherwise we can get a bogus call_reason. 3262 * This can happen if thread A is making a call over a 3263 * connection. If the server is killed, it will cause 3264 * reset, and reason will default to EIO as a result of 3265 * a T_ORDREL_IND. Thread B then attempts to recreate 3266 * the connection but gets a T_DISCON_IND. If we set the 3267 * call_reason code for all threads, then if thread A 3268 * hasn't been dispatched yet, it will get the wrong 3269 * reason. The bogus call_reason can make it harder to 3270 * discriminate between calls that fail because the 3271 * connection attempt failed versus those where the call 3272 * may have been executed on the server. 3273 */ 3274 if (e->call_wq == q && e->call_notified == FALSE) { 3275 RPCLOG(1, "clnt_dispatch_notifyall for queue %p ", 3276 (void *)q); 3277 RPCLOG(1, " aborting clnt_pending call %p\n", 3278 (void *)e); 3279 3280 if (msg_type == T_DISCON_IND) 3281 e->call_reason = reason; 3282 e->call_notified = TRUE; 3283 /* 3284 * Let the caller timeout, else he will retry 3285 * immediately. 3286 */ 3287 e->call_status = RPC_XPRTFAILED; 3288 3289 /* 3290 * We used to just signal those threads 3291 * waiting for a connection, (call_xid = 0). 3292 * That meant that threads waiting for a response 3293 * waited till their timeout expired. This 3294 * could be a long time if they've specified a 3295 * maximum timeout. (2^31 - 1). So we 3296 * Signal all threads now. 3297 */ 3298 cv_signal(&e->call_cv); 3299 } 3300 } 3301 mutex_exit(&clnt_pending_lock); 3302 } 3303 3304 3305 /*ARGSUSED*/ 3306 /* 3307 * after resuming a system that's been suspended for longer than the 3308 * NFS server's idle timeout (svc_idle_timeout for Solaris 2), rfscall() 3309 * generates "NFS server X not responding" and "NFS server X ok" messages; 3310 * here we reset inet connections to cause a re-connect and avoid those 3311 * NFS messages. see 4045054 3312 */ 3313 boolean_t 3314 connmgr_cpr_reset(void *arg, int code) 3315 { 3316 struct cm_xprt *cxp; 3317 3318 if (code == CB_CODE_CPR_CHKPT) 3319 return (B_TRUE); 3320 3321 if (mutex_tryenter(&connmgr_lock) == 0) 3322 return (B_FALSE); 3323 for (cxp = cm_hd; cxp; cxp = cxp->x_next) { 3324 if ((cxp->x_family == AF_INET || cxp->x_family == AF_INET6) && 3325 cxp->x_connected == TRUE) { 3326 if (cxp->x_thread) 3327 cxp->x_early_disc = TRUE; 3328 else 3329 cxp->x_connected = FALSE; 3330 cxp->x_needdis = TRUE; 3331 } 3332 } 3333 mutex_exit(&connmgr_lock); 3334 return (B_TRUE); 3335 } 3336 3337 void 3338 clnt_cots_stats_init(zoneid_t zoneid, struct rpc_cots_client **statsp) 3339 { 3340 3341 *statsp = (struct rpc_cots_client *)rpcstat_zone_init_common(zoneid, 3342 "unix", "rpc_cots_client", (const kstat_named_t *)&cots_rcstat_tmpl, 3343 sizeof (cots_rcstat_tmpl)); 3344 } 3345 3346 void 3347 clnt_cots_stats_fini(zoneid_t zoneid, struct rpc_cots_client **statsp) 3348 { 3349 rpcstat_zone_fini_common(zoneid, "unix", "rpc_cots_client"); 3350 kmem_free(*statsp, sizeof (cots_rcstat_tmpl)); 3351 } 3352 3353 void 3354 clnt_cots_init(void) 3355 { 3356 mutex_init(&connmgr_lock, NULL, MUTEX_DEFAULT, NULL); 3357 mutex_init(&clnt_pending_lock, NULL, MUTEX_DEFAULT, NULL); 3358 3359 if (clnt_cots_hash_size < DEFAULT_MIN_HASH_SIZE) 3360 clnt_cots_hash_size = DEFAULT_MIN_HASH_SIZE; 3361 3362 cots_call_ht = call_table_init(clnt_cots_hash_size); 3363 zone_key_create(&zone_cots_key, NULL, NULL, clnt_zone_destroy); 3364 } 3365 3366 void 3367 clnt_cots_fini(void) 3368 { 3369 (void) zone_key_delete(zone_cots_key); 3370 } 3371 3372 /* 3373 * Wait for TPI ack, returns success only if expected ack is received 3374 * within timeout period. 3375 */ 3376 3377 static int 3378 waitforack(calllist_t *e, t_scalar_t ack_prim, const struct timeval *waitp, 3379 bool_t nosignal) 3380 { 3381 union T_primitives *tpr; 3382 clock_t timout; 3383 int cv_stat = 1; 3384 3385 ASSERT(MUTEX_HELD(&clnt_pending_lock)); 3386 while (e->call_reply == NULL) { 3387 if (waitp != NULL) { 3388 timout = waitp->tv_sec * drv_usectohz(MICROSEC) + 3389 drv_usectohz(waitp->tv_usec) + lbolt; 3390 if (nosignal) 3391 cv_stat = cv_timedwait(&e->call_cv, 3392 &clnt_pending_lock, timout); 3393 else 3394 cv_stat = cv_timedwait_sig(&e->call_cv, 3395 &clnt_pending_lock, timout); 3396 } else { 3397 if (nosignal) 3398 cv_wait(&e->call_cv, &clnt_pending_lock); 3399 else 3400 cv_stat = cv_wait_sig(&e->call_cv, 3401 &clnt_pending_lock); 3402 } 3403 if (cv_stat == -1) 3404 return (ETIME); 3405 if (cv_stat == 0) 3406 return (EINTR); 3407 } 3408 tpr = (union T_primitives *)e->call_reply->b_rptr; 3409 if (tpr->type == ack_prim) 3410 return (0); /* Success */ 3411 3412 if (tpr->type == T_ERROR_ACK) { 3413 if (tpr->error_ack.TLI_error == TSYSERR) 3414 return (tpr->error_ack.UNIX_error); 3415 else 3416 return (t_tlitosyserr(tpr->error_ack.TLI_error)); 3417 } 3418 3419 return (EPROTO); /* unknown or unexpected primitive */ 3420 } 3421