1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T 28 * All Rights Reserved 29 */ 30 31 /* 32 * Portions of this source code were derived from Berkeley 4.3 BSD 33 * under license from the Regents of the University of California. 34 */ 35 36 37 /* 38 * Implements a kernel based, client side RPC over Connection Oriented 39 * Transports (COTS). 40 */ 41 42 /* 43 * Much of this file has been re-written to let NFS work better over slow 44 * transports. A description follows. 45 * 46 * One of the annoying things about kRPC/COTS is that it will temporarily 47 * create more than one connection between a client and server. This 48 * happens because when a connection is made, the end-points entry in the 49 * linked list of connections (headed by cm_hd), is removed so that other 50 * threads don't mess with it. Went ahead and bit the bullet by keeping 51 * the endpoint on the connection list and introducing state bits, 52 * condition variables etc. to the connection entry data structure (struct 53 * cm_xprt). 54 * 55 * Here is a summary of the changes to cm-xprt: 56 * 57 * x_ctime is the timestamp of when the endpoint was last 58 * connected or disconnected. If an end-point is ever disconnected 59 * or re-connected, then any outstanding RPC request is presumed 60 * lost, telling clnt_cots_kcallit that it needs to re-send the 61 * request, not just wait for the original request's reply to 62 * arrive. 63 * 64 * x_thread flag which tells us if a thread is doing a connection attempt. 65 * 66 * x_waitdis flag which tells us we are waiting a disconnect ACK. 67 * 68 * x_needdis flag which tells us we need to send a T_DISCONN_REQ 69 * to kill the connection. 70 * 71 * x_needrel flag which tells us we need to send a T_ORDREL_REQ to 72 * gracefully close the connection. 73 * 74 * #defined bitmasks for the all the b_* bits so that more 75 * efficient (and at times less clumsy) masks can be used to 76 * manipulated state in cases where multiple bits have to 77 * set/cleared/checked in the same critical section. 78 * 79 * x_conn_cv and x_dis-_cv are new condition variables to let 80 * threads knows when the connection attempt is done, and to let 81 * the connecting thread know when the disconnect handshake is 82 * done. 83 * 84 * Added the CONN_HOLD() macro so that all reference holds have the same 85 * look and feel. 86 * 87 * In the private (cku_private) portion of the client handle, 88 * 89 * cku_flags replaces the cku_sent a boolean. cku_flags keeps 90 * track of whether a request as been sent, and whether the 91 * client's handles call record is on the dispatch list (so that 92 * the reply can be matched by XID to the right client handle). 93 * The idea of CKU_ONQUEUE is that we can exit clnt_cots_kcallit() 94 * and still have the response find the right client handle so 95 * that the retry of CLNT_CALL() gets the result. Testing, found 96 * situations where if the timeout was increased, performance 97 * degraded. This was due to us hitting a window where the thread 98 * was back in rfscall() (probably printing server not responding) 99 * while the response came back but no place to put it. 100 * 101 * cku_ctime is just a cache of x_ctime. If they match, 102 * clnt_cots_kcallit() won't to send a retry (unless the maximum 103 * receive count limit as been reached). If the don't match, then 104 * we assume the request has been lost, and a retry of the request 105 * is needed. 106 * 107 * cku_recv_attempts counts the number of receive count attempts 108 * after one try is sent on the wire. 109 * 110 * Added the clnt_delay() routine so that interruptible and 111 * noninterruptible delays are possible. 112 * 113 * CLNT_MIN_TIMEOUT has been bumped to 10 seconds from 3. This is used to 114 * control how long the client delays before returned after getting 115 * ECONNREFUSED. At 3 seconds, 8 client threads per mount really does bash 116 * a server that may be booting and not yet started nfsd. 117 * 118 * CLNT_MAXRECV_WITHOUT_RETRY is a new macro (value of 3) (with a tunable) 119 * Why don't we just wait forever (receive an infinite # of times)? 120 * Because the server may have rebooted. More insidious is that some 121 * servers (ours) will drop NFS/TCP requests in some cases. This is bad, 122 * but it is a reality. 123 * 124 * The case of a server doing orderly release really messes up the 125 * client's recovery, especially if the server's TCP implementation is 126 * buggy. It was found was that the kRPC/COTS client was breaking some 127 * TPI rules, such as not waiting for the acknowledgement of a 128 * T_DISCON_REQ (hence the added case statements T_ERROR_ACK, T_OK_ACK and 129 * T_DISCON_REQ in clnt_dispatch_notifyall()). 130 * 131 * One of things that we've seen is that a kRPC TCP endpoint goes into 132 * TIMEWAIT and a thus a reconnect takes a long time to satisfy because 133 * that the TIMEWAIT state takes a while to finish. If a server sends a 134 * T_ORDREL_IND, there is little point in an RPC client doing a 135 * T_ORDREL_REQ, because the RPC request isn't going to make it (the 136 * server is saying that it won't accept any more data). So kRPC was 137 * changed to send a T_DISCON_REQ when we get a T_ORDREL_IND. So now the 138 * connection skips the TIMEWAIT state and goes straight to a bound state 139 * that kRPC can quickly switch to connected. 140 * 141 * Code that issues TPI request must use waitforack() to wait for the 142 * corresponding ack (assuming there is one) in any future modifications. 143 * This works around problems that may be introduced by breaking TPI rules 144 * (by submitting new calls before earlier requests have been acked) in the 145 * case of a signal or other early return. waitforack() depends on 146 * clnt_dispatch_notifyconn() to issue the wakeup when the ack 147 * arrives, so adding new TPI calls may require corresponding changes 148 * to clnt_dispatch_notifyconn(). Presently, the timeout period is based on 149 * CLNT_MIN_TIMEOUT which is 10 seconds. If you modify this value, be sure 150 * not to set it too low or TPI ACKS will be lost. 151 */ 152 153 #include <sys/param.h> 154 #include <sys/types.h> 155 #include <sys/user.h> 156 #include <sys/systm.h> 157 #include <sys/sysmacros.h> 158 #include <sys/proc.h> 159 #include <sys/socket.h> 160 #include <sys/file.h> 161 #include <sys/stream.h> 162 #include <sys/strsubr.h> 163 #include <sys/stropts.h> 164 #include <sys/strsun.h> 165 #include <sys/timod.h> 166 #include <sys/tiuser.h> 167 #include <sys/tihdr.h> 168 #include <sys/t_kuser.h> 169 #include <sys/fcntl.h> 170 #include <sys/errno.h> 171 #include <sys/kmem.h> 172 #include <sys/debug.h> 173 #include <sys/systm.h> 174 #include <sys/kstat.h> 175 #include <sys/t_lock.h> 176 #include <sys/ddi.h> 177 #include <sys/cmn_err.h> 178 #include <sys/time.h> 179 #include <sys/isa_defs.h> 180 #include <sys/callb.h> 181 #include <sys/sunddi.h> 182 #include <sys/atomic.h> 183 #include <sys/sdt.h> 184 185 #include <netinet/in.h> 186 #include <netinet/tcp.h> 187 188 #include <rpc/types.h> 189 #include <rpc/xdr.h> 190 #include <rpc/auth.h> 191 #include <rpc/clnt.h> 192 #include <rpc/rpc_msg.h> 193 194 #define COTS_DEFAULT_ALLOCSIZE 2048 195 196 #define WIRE_HDR_SIZE 20 /* serialized call header, sans proc number */ 197 #define MSG_OFFSET 128 /* offset of call into the mblk */ 198 199 const char *kinet_ntop6(uchar_t *, char *, size_t); 200 201 static int clnt_cots_ksettimers(CLIENT *, struct rpc_timers *, 202 struct rpc_timers *, int, void(*)(int, int, caddr_t), caddr_t, uint32_t); 203 static enum clnt_stat clnt_cots_kcallit(CLIENT *, rpcproc_t, xdrproc_t, 204 caddr_t, xdrproc_t, caddr_t, struct timeval); 205 static void clnt_cots_kabort(CLIENT *); 206 static void clnt_cots_kerror(CLIENT *, struct rpc_err *); 207 static bool_t clnt_cots_kfreeres(CLIENT *, xdrproc_t, caddr_t); 208 static void clnt_cots_kdestroy(CLIENT *); 209 static bool_t clnt_cots_kcontrol(CLIENT *, int, char *); 210 211 212 /* List of transports managed by the connection manager. */ 213 struct cm_xprt { 214 TIUSER *x_tiptr; /* transport handle */ 215 queue_t *x_wq; /* send queue */ 216 clock_t x_time; /* last time we handed this xprt out */ 217 clock_t x_ctime; /* time we went to CONNECTED */ 218 int x_tidu_size; /* TIDU size of this transport */ 219 union { 220 struct { 221 unsigned int 222 #ifdef _BIT_FIELDS_HTOL 223 b_closing: 1, /* we've sent a ord rel on this conn */ 224 b_dead: 1, /* transport is closed or disconn */ 225 b_doomed: 1, /* too many conns, let this go idle */ 226 b_connected: 1, /* this connection is connected */ 227 228 b_ordrel: 1, /* do an orderly release? */ 229 b_thread: 1, /* thread doing connect */ 230 b_waitdis: 1, /* waiting for disconnect ACK */ 231 b_needdis: 1, /* need T_DISCON_REQ */ 232 233 b_needrel: 1, /* need T_ORDREL_REQ */ 234 b_early_disc: 1, /* got a T_ORDREL_IND or T_DISCON_IND */ 235 /* disconnect during connect */ 236 237 b_pad: 22; 238 239 #endif 240 241 #ifdef _BIT_FIELDS_LTOH 242 b_pad: 22, 243 244 b_early_disc: 1, /* got a T_ORDREL_IND or T_DISCON_IND */ 245 /* disconnect during connect */ 246 b_needrel: 1, /* need T_ORDREL_REQ */ 247 248 b_needdis: 1, /* need T_DISCON_REQ */ 249 b_waitdis: 1, /* waiting for disconnect ACK */ 250 b_thread: 1, /* thread doing connect */ 251 b_ordrel: 1, /* do an orderly release? */ 252 253 b_connected: 1, /* this connection is connected */ 254 b_doomed: 1, /* too many conns, let this go idle */ 255 b_dead: 1, /* transport is closed or disconn */ 256 b_closing: 1; /* we've sent a ord rel on this conn */ 257 #endif 258 } bit; unsigned int word; 259 260 #define x_closing x_state.bit.b_closing 261 #define x_dead x_state.bit.b_dead 262 #define x_doomed x_state.bit.b_doomed 263 #define x_connected x_state.bit.b_connected 264 265 #define x_ordrel x_state.bit.b_ordrel 266 #define x_thread x_state.bit.b_thread 267 #define x_waitdis x_state.bit.b_waitdis 268 #define x_needdis x_state.bit.b_needdis 269 270 #define x_needrel x_state.bit.b_needrel 271 #define x_early_disc x_state.bit.b_early_disc 272 273 #define x_state_flags x_state.word 274 275 #define X_CLOSING 0x80000000 276 #define X_DEAD 0x40000000 277 #define X_DOOMED 0x20000000 278 #define X_CONNECTED 0x10000000 279 280 #define X_ORDREL 0x08000000 281 #define X_THREAD 0x04000000 282 #define X_WAITDIS 0x02000000 283 #define X_NEEDDIS 0x01000000 284 285 #define X_NEEDREL 0x00800000 286 #define X_EARLYDISC 0x00400000 287 288 #define X_BADSTATES (X_CLOSING | X_DEAD | X_DOOMED) 289 290 } x_state; 291 int x_ref; /* number of users of this xprt */ 292 int x_family; /* address family of transport */ 293 dev_t x_rdev; /* device number of transport */ 294 struct cm_xprt *x_next; 295 296 struct netbuf x_server; /* destination address */ 297 struct netbuf x_src; /* src address (for retries) */ 298 kmutex_t x_lock; /* lock on this entry */ 299 kcondvar_t x_cv; /* to signal when can be closed */ 300 kcondvar_t x_conn_cv; /* to signal when connection attempt */ 301 /* is complete */ 302 kstat_t *x_ksp; 303 304 kcondvar_t x_dis_cv; /* to signal when disconnect attempt */ 305 /* is complete */ 306 zoneid_t x_zoneid; /* zone this xprt belongs to */ 307 }; 308 309 typedef struct cm_kstat_xprt { 310 kstat_named_t x_wq; 311 kstat_named_t x_server; 312 kstat_named_t x_family; 313 kstat_named_t x_rdev; 314 kstat_named_t x_time; 315 kstat_named_t x_state; 316 kstat_named_t x_ref; 317 kstat_named_t x_port; 318 } cm_kstat_xprt_t; 319 320 static cm_kstat_xprt_t cm_kstat_template = { 321 { "write_queue", KSTAT_DATA_UINT32 }, 322 { "server", KSTAT_DATA_STRING }, 323 { "addr_family", KSTAT_DATA_UINT32 }, 324 { "device", KSTAT_DATA_UINT32 }, 325 { "time_stamp", KSTAT_DATA_UINT32 }, 326 { "status", KSTAT_DATA_UINT32 }, 327 { "ref_count", KSTAT_DATA_INT32 }, 328 { "port", KSTAT_DATA_UINT32 }, 329 }; 330 331 /* 332 * The inverse of this is connmgr_release(). 333 */ 334 #define CONN_HOLD(Cm_entry) {\ 335 mutex_enter(&(Cm_entry)->x_lock); \ 336 (Cm_entry)->x_ref++; \ 337 mutex_exit(&(Cm_entry)->x_lock); \ 338 } 339 340 341 /* 342 * Private data per rpc handle. This structure is allocated by 343 * clnt_cots_kcreate, and freed by clnt_cots_kdestroy. 344 */ 345 typedef struct cku_private_s { 346 CLIENT cku_client; /* client handle */ 347 calllist_t cku_call; /* for dispatching calls */ 348 struct rpc_err cku_err; /* error status */ 349 350 struct netbuf cku_srcaddr; /* source address for retries */ 351 int cku_addrfmly; /* for binding port */ 352 struct netbuf cku_addr; /* remote address */ 353 dev_t cku_device; /* device to use */ 354 uint_t cku_flags; 355 #define CKU_ONQUEUE 0x1 356 #define CKU_SENT 0x2 357 358 bool_t cku_progress; /* for CLSET_PROGRESS */ 359 uint32_t cku_xid; /* current XID */ 360 clock_t cku_ctime; /* time stamp of when */ 361 /* connection was created */ 362 uint_t cku_recv_attempts; 363 XDR cku_outxdr; /* xdr routine for output */ 364 XDR cku_inxdr; /* xdr routine for input */ 365 char cku_rpchdr[WIRE_HDR_SIZE + 4]; 366 /* pre-serialized rpc header */ 367 368 uint_t cku_outbuflen; /* default output mblk length */ 369 struct cred *cku_cred; /* credentials */ 370 bool_t cku_nodelayonerr; 371 /* for CLSET_NODELAYONERR */ 372 int cku_useresvport; /* Use reserved port */ 373 struct rpc_cots_client *cku_stats; /* stats for zone */ 374 } cku_private_t; 375 376 static struct cm_xprt *connmgr_wrapconnect(struct cm_xprt *, 377 const struct timeval *, struct netbuf *, int, struct netbuf *, 378 struct rpc_err *, bool_t, bool_t, cred_t *); 379 380 static bool_t connmgr_connect(struct cm_xprt *, queue_t *, struct netbuf *, 381 int, calllist_t *, int *, bool_t reconnect, 382 const struct timeval *, bool_t, cred_t *); 383 384 static bool_t connmgr_setopt(queue_t *, int, int, calllist_t *, cred_t *cr); 385 static void connmgr_sndrel(struct cm_xprt *); 386 static void connmgr_snddis(struct cm_xprt *); 387 static void connmgr_close(struct cm_xprt *); 388 static void connmgr_release(struct cm_xprt *); 389 static struct cm_xprt *connmgr_wrapget(struct netbuf *, const struct timeval *, 390 cku_private_t *); 391 392 static struct cm_xprt *connmgr_get(struct netbuf *, const struct timeval *, 393 struct netbuf *, int, struct netbuf *, struct rpc_err *, dev_t, 394 bool_t, int, cred_t *); 395 396 static void connmgr_cancelconn(struct cm_xprt *); 397 static enum clnt_stat connmgr_cwait(struct cm_xprt *, const struct timeval *, 398 bool_t); 399 static void connmgr_dis_and_wait(struct cm_xprt *); 400 401 static int clnt_dispatch_send(queue_t *, mblk_t *, calllist_t *, uint_t, 402 uint_t); 403 404 static int clnt_delay(clock_t, bool_t); 405 406 static int waitforack(calllist_t *, t_scalar_t, const struct timeval *, bool_t); 407 408 /* 409 * Operations vector for TCP/IP based RPC 410 */ 411 static struct clnt_ops tcp_ops = { 412 clnt_cots_kcallit, /* do rpc call */ 413 clnt_cots_kabort, /* abort call */ 414 clnt_cots_kerror, /* return error status */ 415 clnt_cots_kfreeres, /* free results */ 416 clnt_cots_kdestroy, /* destroy rpc handle */ 417 clnt_cots_kcontrol, /* the ioctl() of rpc */ 418 clnt_cots_ksettimers, /* set retry timers */ 419 }; 420 421 static int rpc_kstat_instance = 0; /* keeps the current instance */ 422 /* number for the next kstat_create */ 423 424 static struct cm_xprt *cm_hd = NULL; 425 static kmutex_t connmgr_lock; /* for connection mngr's list of transports */ 426 427 extern kmutex_t clnt_max_msg_lock; 428 429 static calllist_t *clnt_pending = NULL; 430 extern kmutex_t clnt_pending_lock; 431 432 static int clnt_cots_hash_size = DEFAULT_HASH_SIZE; 433 434 static call_table_t *cots_call_ht; 435 436 static const struct rpc_cots_client { 437 kstat_named_t rccalls; 438 kstat_named_t rcbadcalls; 439 kstat_named_t rcbadxids; 440 kstat_named_t rctimeouts; 441 kstat_named_t rcnewcreds; 442 kstat_named_t rcbadverfs; 443 kstat_named_t rctimers; 444 kstat_named_t rccantconn; 445 kstat_named_t rcnomem; 446 kstat_named_t rcintrs; 447 } cots_rcstat_tmpl = { 448 { "calls", KSTAT_DATA_UINT64 }, 449 { "badcalls", KSTAT_DATA_UINT64 }, 450 { "badxids", KSTAT_DATA_UINT64 }, 451 { "timeouts", KSTAT_DATA_UINT64 }, 452 { "newcreds", KSTAT_DATA_UINT64 }, 453 { "badverfs", KSTAT_DATA_UINT64 }, 454 { "timers", KSTAT_DATA_UINT64 }, 455 { "cantconn", KSTAT_DATA_UINT64 }, 456 { "nomem", KSTAT_DATA_UINT64 }, 457 { "interrupts", KSTAT_DATA_UINT64 } 458 }; 459 460 #define COTSRCSTAT_INCR(p, x) \ 461 atomic_add_64(&(p)->x.value.ui64, 1) 462 463 #define CLNT_MAX_CONNS 1 /* concurrent connections between clnt/srvr */ 464 static int clnt_max_conns = CLNT_MAX_CONNS; 465 466 #define CLNT_MIN_TIMEOUT 10 /* seconds to wait after we get a */ 467 /* connection reset */ 468 #define CLNT_MIN_CONNTIMEOUT 5 /* seconds to wait for a connection */ 469 470 471 static int clnt_cots_min_tout = CLNT_MIN_TIMEOUT; 472 static int clnt_cots_min_conntout = CLNT_MIN_CONNTIMEOUT; 473 474 /* 475 * Limit the number of times we will attempt to receive a reply without 476 * re-sending a response. 477 */ 478 #define CLNT_MAXRECV_WITHOUT_RETRY 3 479 static uint_t clnt_cots_maxrecv = CLNT_MAXRECV_WITHOUT_RETRY; 480 481 uint_t *clnt_max_msg_sizep; 482 void (*clnt_stop_idle)(queue_t *wq); 483 484 #define ptoh(p) (&((p)->cku_client)) 485 #define htop(h) ((cku_private_t *)((h)->cl_private)) 486 487 /* 488 * Times to retry 489 */ 490 #define REFRESHES 2 /* authentication refreshes */ 491 492 /* 493 * The following is used to determine the global default behavior for 494 * COTS when binding to a local port. 495 * 496 * If the value is set to 1 the default will be to select a reserved 497 * (aka privileged) port, if the value is zero the default will be to 498 * use non-reserved ports. Users of kRPC may override this by using 499 * CLNT_CONTROL() and CLSET_BINDRESVPORT. 500 */ 501 static int clnt_cots_do_bindresvport = 1; 502 503 static zone_key_t zone_cots_key; 504 505 /* 506 * We need to do this after all kernel threads in the zone have exited. 507 */ 508 /* ARGSUSED */ 509 static void 510 clnt_zone_destroy(zoneid_t zoneid, void *unused) 511 { 512 struct cm_xprt **cmp; 513 struct cm_xprt *cm_entry; 514 struct cm_xprt *freelist = NULL; 515 516 mutex_enter(&connmgr_lock); 517 cmp = &cm_hd; 518 while ((cm_entry = *cmp) != NULL) { 519 if (cm_entry->x_zoneid == zoneid) { 520 *cmp = cm_entry->x_next; 521 cm_entry->x_next = freelist; 522 freelist = cm_entry; 523 } else { 524 cmp = &cm_entry->x_next; 525 } 526 } 527 mutex_exit(&connmgr_lock); 528 while ((cm_entry = freelist) != NULL) { 529 freelist = cm_entry->x_next; 530 connmgr_close(cm_entry); 531 } 532 } 533 534 int 535 clnt_cots_kcreate(dev_t dev, struct netbuf *addr, int family, rpcprog_t prog, 536 rpcvers_t vers, uint_t max_msgsize, cred_t *cred, CLIENT **ncl) 537 { 538 CLIENT *h; 539 cku_private_t *p; 540 struct rpc_msg call_msg; 541 struct rpcstat *rpcstat; 542 543 RPCLOG(8, "clnt_cots_kcreate: prog %u\n", prog); 544 545 rpcstat = zone_getspecific(rpcstat_zone_key, rpc_zone()); 546 ASSERT(rpcstat != NULL); 547 548 /* Allocate and intialize the client handle. */ 549 p = kmem_zalloc(sizeof (*p), KM_SLEEP); 550 551 h = ptoh(p); 552 553 h->cl_private = (caddr_t)p; 554 h->cl_auth = authkern_create(); 555 h->cl_ops = &tcp_ops; 556 557 cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL); 558 mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL); 559 560 /* 561 * If the current sanity check size in rpcmod is smaller 562 * than the size needed, then increase the sanity check. 563 */ 564 if (max_msgsize != 0 && clnt_max_msg_sizep != NULL && 565 max_msgsize > *clnt_max_msg_sizep) { 566 mutex_enter(&clnt_max_msg_lock); 567 if (max_msgsize > *clnt_max_msg_sizep) 568 *clnt_max_msg_sizep = max_msgsize; 569 mutex_exit(&clnt_max_msg_lock); 570 } 571 572 p->cku_outbuflen = COTS_DEFAULT_ALLOCSIZE; 573 574 /* Preserialize the call message header */ 575 576 call_msg.rm_xid = 0; 577 call_msg.rm_direction = CALL; 578 call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION; 579 call_msg.rm_call.cb_prog = prog; 580 call_msg.rm_call.cb_vers = vers; 581 582 xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, WIRE_HDR_SIZE, XDR_ENCODE); 583 584 if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) { 585 RPCLOG0(1, "clnt_cots_kcreate - Fatal header serialization " 586 "error\n"); 587 auth_destroy(h->cl_auth); 588 kmem_free(p, sizeof (cku_private_t)); 589 RPCLOG0(1, "clnt_cots_kcreate: create failed error EINVAL\n"); 590 return (EINVAL); /* XXX */ 591 } 592 593 /* 594 * The zalloc initialized the fields below. 595 * p->cku_xid = 0; 596 * p->cku_flags = 0; 597 * p->cku_srcaddr.len = 0; 598 * p->cku_srcaddr.maxlen = 0; 599 */ 600 601 p->cku_cred = cred; 602 p->cku_device = dev; 603 p->cku_addrfmly = family; 604 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP); 605 p->cku_addr.maxlen = addr->maxlen; 606 p->cku_addr.len = addr->len; 607 bcopy(addr->buf, p->cku_addr.buf, addr->len); 608 p->cku_stats = rpcstat->rpc_cots_client; 609 p->cku_useresvport = -1; /* value is has not been set */ 610 611 *ncl = h; 612 return (0); 613 } 614 615 /*ARGSUSED*/ 616 static void 617 clnt_cots_kabort(CLIENT *h) 618 { 619 } 620 621 /* 622 * Return error info on this handle. 623 */ 624 static void 625 clnt_cots_kerror(CLIENT *h, struct rpc_err *err) 626 { 627 /* LINTED pointer alignment */ 628 cku_private_t *p = htop(h); 629 630 *err = p->cku_err; 631 } 632 633 static bool_t 634 clnt_cots_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr) 635 { 636 /* LINTED pointer alignment */ 637 cku_private_t *p = htop(h); 638 XDR *xdrs; 639 640 xdrs = &(p->cku_outxdr); 641 xdrs->x_op = XDR_FREE; 642 return ((*xdr_res)(xdrs, res_ptr)); 643 } 644 645 static bool_t 646 clnt_cots_kcontrol(CLIENT *h, int cmd, char *arg) 647 { 648 cku_private_t *p = htop(h); 649 650 switch (cmd) { 651 case CLSET_PROGRESS: 652 p->cku_progress = TRUE; 653 return (TRUE); 654 655 case CLSET_XID: 656 if (arg == NULL) 657 return (FALSE); 658 659 p->cku_xid = *((uint32_t *)arg); 660 return (TRUE); 661 662 case CLGET_XID: 663 if (arg == NULL) 664 return (FALSE); 665 666 *((uint32_t *)arg) = p->cku_xid; 667 return (TRUE); 668 669 case CLSET_NODELAYONERR: 670 if (arg == NULL) 671 return (FALSE); 672 673 if (*((bool_t *)arg) == TRUE) { 674 p->cku_nodelayonerr = TRUE; 675 return (TRUE); 676 } 677 if (*((bool_t *)arg) == FALSE) { 678 p->cku_nodelayonerr = FALSE; 679 return (TRUE); 680 } 681 return (FALSE); 682 683 case CLGET_NODELAYONERR: 684 if (arg == NULL) 685 return (FALSE); 686 687 *((bool_t *)arg) = p->cku_nodelayonerr; 688 return (TRUE); 689 690 case CLSET_BINDRESVPORT: 691 if (arg == NULL) 692 return (FALSE); 693 694 if (*(int *)arg != 1 && *(int *)arg != 0) 695 return (FALSE); 696 697 p->cku_useresvport = *(int *)arg; 698 699 return (TRUE); 700 701 case CLGET_BINDRESVPORT: 702 if (arg == NULL) 703 return (FALSE); 704 705 *(int *)arg = p->cku_useresvport; 706 707 return (TRUE); 708 709 default: 710 return (FALSE); 711 } 712 } 713 714 /* 715 * Destroy rpc handle. Frees the space used for output buffer, 716 * private data, and handle structure. 717 */ 718 static void 719 clnt_cots_kdestroy(CLIENT *h) 720 { 721 /* LINTED pointer alignment */ 722 cku_private_t *p = htop(h); 723 calllist_t *call = &p->cku_call; 724 725 RPCLOG(8, "clnt_cots_kdestroy h: %p\n", (void *)h); 726 RPCLOG(8, "clnt_cots_kdestroy h: xid=0x%x\n", p->cku_xid); 727 728 if (p->cku_flags & CKU_ONQUEUE) { 729 RPCLOG(64, "clnt_cots_kdestroy h: removing call for xid 0x%x " 730 "from dispatch list\n", p->cku_xid); 731 call_table_remove(call); 732 } 733 734 if (call->call_reply) 735 freemsg(call->call_reply); 736 cv_destroy(&call->call_cv); 737 mutex_destroy(&call->call_lock); 738 739 kmem_free(p->cku_srcaddr.buf, p->cku_srcaddr.maxlen); 740 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen); 741 kmem_free(p, sizeof (*p)); 742 } 743 744 static int clnt_cots_pulls; 745 #define RM_HDR_SIZE 4 /* record mark header size */ 746 747 /* 748 * Call remote procedure. 749 */ 750 static enum clnt_stat 751 clnt_cots_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args, 752 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp, struct timeval wait) 753 { 754 /* LINTED pointer alignment */ 755 cku_private_t *p = htop(h); 756 calllist_t *call = &p->cku_call; 757 XDR *xdrs; 758 struct rpc_msg reply_msg; 759 mblk_t *mp; 760 #ifdef RPCDEBUG 761 clock_t time_sent; 762 #endif 763 struct netbuf *retryaddr; 764 struct cm_xprt *cm_entry = NULL; 765 queue_t *wq; 766 int len; 767 int mpsize; 768 int refreshes = REFRESHES; 769 int interrupted; 770 int tidu_size; 771 enum clnt_stat status; 772 struct timeval cwait; 773 bool_t delay_first = FALSE; 774 clock_t ticks; 775 776 RPCLOG(2, "clnt_cots_kcallit, procnum %u\n", procnum); 777 COTSRCSTAT_INCR(p->cku_stats, rccalls); 778 779 RPCLOG(2, "clnt_cots_kcallit: wait.tv_sec: %ld\n", wait.tv_sec); 780 RPCLOG(2, "clnt_cots_kcallit: wait.tv_usec: %ld\n", wait.tv_usec); 781 782 /* 783 * Bug ID 1240234: 784 * Look out for zero length timeouts. We don't want to 785 * wait zero seconds for a connection to be established. 786 */ 787 if (wait.tv_sec < clnt_cots_min_conntout) { 788 cwait.tv_sec = clnt_cots_min_conntout; 789 cwait.tv_usec = 0; 790 RPCLOG(8, "clnt_cots_kcallit: wait.tv_sec (%ld) too low,", 791 wait.tv_sec); 792 RPCLOG(8, " setting to: %d\n", clnt_cots_min_conntout); 793 } else { 794 cwait = wait; 795 } 796 797 call_again: 798 if (cm_entry) { 799 connmgr_release(cm_entry); 800 cm_entry = NULL; 801 } 802 803 mp = NULL; 804 805 /* 806 * If the call is not a retry, allocate a new xid and cache it 807 * for future retries. 808 * Bug ID 1246045: 809 * Treat call as a retry for purposes of binding the source 810 * port only if we actually attempted to send anything on 811 * the previous call. 812 */ 813 if (p->cku_xid == 0) { 814 p->cku_xid = alloc_xid(); 815 call->call_zoneid = rpc_zoneid(); 816 817 /* 818 * We need to ASSERT here that our xid != 0 because this 819 * determines whether or not our call record gets placed on 820 * the hash table or the linked list. By design, we mandate 821 * that RPC calls over cots must have xid's != 0, so we can 822 * ensure proper management of the hash table. 823 */ 824 ASSERT(p->cku_xid != 0); 825 826 retryaddr = NULL; 827 p->cku_flags &= ~CKU_SENT; 828 829 if (p->cku_flags & CKU_ONQUEUE) { 830 RPCLOG(8, "clnt_cots_kcallit: new call, dequeuing old" 831 " one (%p)\n", (void *)call); 832 call_table_remove(call); 833 p->cku_flags &= ~CKU_ONQUEUE; 834 RPCLOG(64, "clnt_cots_kcallit: removing call from " 835 "dispatch list because xid was zero (now 0x%x)\n", 836 p->cku_xid); 837 } 838 839 if (call->call_reply != NULL) { 840 freemsg(call->call_reply); 841 call->call_reply = NULL; 842 } 843 } else if (p->cku_srcaddr.buf == NULL || p->cku_srcaddr.len == 0) { 844 retryaddr = NULL; 845 846 } else if (p->cku_flags & CKU_SENT) { 847 retryaddr = &p->cku_srcaddr; 848 849 } else { 850 /* 851 * Bug ID 1246045: Nothing was sent, so set retryaddr to 852 * NULL and let connmgr_get() bind to any source port it 853 * can get. 854 */ 855 retryaddr = NULL; 856 } 857 858 RPCLOG(64, "clnt_cots_kcallit: xid = 0x%x", p->cku_xid); 859 RPCLOG(64, " flags = 0x%x\n", p->cku_flags); 860 861 p->cku_err.re_status = RPC_TIMEDOUT; 862 p->cku_err.re_errno = p->cku_err.re_terrno = 0; 863 864 cm_entry = connmgr_wrapget(retryaddr, &cwait, p); 865 866 if (cm_entry == NULL) { 867 RPCLOG(1, "clnt_cots_kcallit: can't connect status %s\n", 868 clnt_sperrno(p->cku_err.re_status)); 869 870 /* 871 * The reasons why we fail to create a connection are 872 * varied. In most cases we don't want the caller to 873 * immediately retry. This could have one or more 874 * bad effects. This includes flooding the net with 875 * connect requests to ports with no listener; a hard 876 * kernel loop due to all the "reserved" TCP ports being 877 * in use. 878 */ 879 delay_first = TRUE; 880 881 /* 882 * Even if we end up returning EINTR, we still count a 883 * a "can't connect", because the connection manager 884 * might have been committed to waiting for or timing out on 885 * a connection. 886 */ 887 COTSRCSTAT_INCR(p->cku_stats, rccantconn); 888 switch (p->cku_err.re_status) { 889 case RPC_INTR: 890 p->cku_err.re_errno = EINTR; 891 892 /* 893 * No need to delay because a UNIX signal(2) 894 * interrupted us. The caller likely won't 895 * retry the CLNT_CALL() and even if it does, 896 * we assume the caller knows what it is doing. 897 */ 898 delay_first = FALSE; 899 break; 900 901 case RPC_TIMEDOUT: 902 p->cku_err.re_errno = ETIMEDOUT; 903 904 /* 905 * No need to delay because timed out already 906 * on the connection request and assume that the 907 * transport time out is longer than our minimum 908 * timeout, or least not too much smaller. 909 */ 910 delay_first = FALSE; 911 break; 912 913 case RPC_SYSTEMERROR: 914 case RPC_TLIERROR: 915 /* 916 * We want to delay here because a transient 917 * system error has a better chance of going away 918 * if we delay a bit. If it's not transient, then 919 * we don't want end up in a hard kernel loop 920 * due to retries. 921 */ 922 ASSERT(p->cku_err.re_errno != 0); 923 break; 924 925 926 case RPC_CANTCONNECT: 927 /* 928 * RPC_CANTCONNECT is set on T_ERROR_ACK which 929 * implies some error down in the TCP layer or 930 * below. If cku_nodelayonerror is set then we 931 * assume the caller knows not to try too hard. 932 */ 933 RPCLOG0(8, "clnt_cots_kcallit: connection failed,"); 934 RPCLOG0(8, " re_status=RPC_CANTCONNECT,"); 935 RPCLOG(8, " re_errno=%d,", p->cku_err.re_errno); 936 RPCLOG(8, " cku_nodelayonerr=%d", p->cku_nodelayonerr); 937 if (p->cku_nodelayonerr == TRUE) 938 delay_first = FALSE; 939 940 p->cku_err.re_errno = EIO; 941 942 break; 943 944 case RPC_XPRTFAILED: 945 /* 946 * We want to delay here because we likely 947 * got a refused connection. 948 */ 949 if (p->cku_err.re_errno == 0) 950 p->cku_err.re_errno = EIO; 951 952 RPCLOG(1, "clnt_cots_kcallit: transport failed: %d\n", 953 p->cku_err.re_errno); 954 955 break; 956 957 default: 958 /* 959 * We delay here because it is better to err 960 * on the side of caution. If we got here then 961 * status could have been RPC_SUCCESS, but we 962 * know that we did not get a connection, so 963 * force the rpc status to RPC_CANTCONNECT. 964 */ 965 p->cku_err.re_status = RPC_CANTCONNECT; 966 p->cku_err.re_errno = EIO; 967 break; 968 } 969 if (delay_first == TRUE) 970 ticks = clnt_cots_min_tout * drv_usectohz(1000000); 971 goto cots_done; 972 } 973 974 /* 975 * If we've never sent any request on this connection (send count 976 * is zero, or the connection has been reset), cache the 977 * the connection's create time and send a request (possibly a retry) 978 */ 979 if ((p->cku_flags & CKU_SENT) == 0 || 980 p->cku_ctime != cm_entry->x_ctime) { 981 p->cku_ctime = cm_entry->x_ctime; 982 983 } else if ((p->cku_flags & CKU_SENT) && (p->cku_flags & CKU_ONQUEUE) && 984 (call->call_reply != NULL || 985 p->cku_recv_attempts < clnt_cots_maxrecv)) { 986 987 /* 988 * If we've sent a request and our call is on the dispatch 989 * queue and we haven't made too many receive attempts, then 990 * don't re-send, just receive. 991 */ 992 p->cku_recv_attempts++; 993 goto read_again; 994 } 995 996 /* 997 * Now we create the RPC request in a STREAMS message. We have to do 998 * this after the call to connmgr_get so that we have the correct 999 * TIDU size for the transport. 1000 */ 1001 tidu_size = cm_entry->x_tidu_size; 1002 len = MSG_OFFSET + MAX(tidu_size, RM_HDR_SIZE + WIRE_HDR_SIZE); 1003 1004 while ((mp = allocb(len, BPRI_MED)) == NULL) { 1005 if (strwaitbuf(len, BPRI_MED)) { 1006 p->cku_err.re_status = RPC_SYSTEMERROR; 1007 p->cku_err.re_errno = ENOSR; 1008 COTSRCSTAT_INCR(p->cku_stats, rcnomem); 1009 goto cots_done; 1010 } 1011 } 1012 xdrs = &p->cku_outxdr; 1013 xdrmblk_init(xdrs, mp, XDR_ENCODE, tidu_size); 1014 mpsize = MBLKSIZE(mp); 1015 ASSERT(mpsize >= len); 1016 ASSERT(mp->b_rptr == mp->b_datap->db_base); 1017 1018 /* 1019 * If the size of mblk is not appreciably larger than what we 1020 * asked, then resize the mblk to exactly len bytes. The reason for 1021 * this: suppose len is 1600 bytes, the tidu is 1460 bytes 1022 * (from TCP over ethernet), and the arguments to the RPC require 1023 * 2800 bytes. Ideally we want the protocol to render two 1024 * ~1400 byte segments over the wire. However if allocb() gives us a 2k 1025 * mblk, and we allocate a second mblk for the remainder, the protocol 1026 * module may generate 3 segments over the wire: 1027 * 1460 bytes for the first, 448 (2048 - 1600) for the second, and 1028 * 892 for the third. If we "waste" 448 bytes in the first mblk, 1029 * the XDR encoding will generate two ~1400 byte mblks, and the 1030 * protocol module is more likely to produce properly sized segments. 1031 */ 1032 if ((mpsize >> 1) <= len) 1033 mp->b_rptr += (mpsize - len); 1034 1035 /* 1036 * Adjust b_rptr to reserve space for the non-data protocol headers 1037 * any downstream modules might like to add, and for the 1038 * record marking header. 1039 */ 1040 mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE); 1041 1042 if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { 1043 /* Copy in the preserialized RPC header information. */ 1044 bcopy(p->cku_rpchdr, mp->b_rptr, WIRE_HDR_SIZE); 1045 1046 /* Use XDR_SETPOS() to set the b_wptr to past the RPC header. */ 1047 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base + 1048 WIRE_HDR_SIZE)); 1049 1050 ASSERT((mp->b_wptr - mp->b_rptr) == WIRE_HDR_SIZE); 1051 1052 /* Serialize the procedure number and the arguments. */ 1053 if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) || 1054 (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) || 1055 (!(*xdr_args)(xdrs, argsp))) { 1056 p->cku_err.re_status = RPC_CANTENCODEARGS; 1057 p->cku_err.re_errno = EIO; 1058 goto cots_done; 1059 } 1060 1061 (*(uint32_t *)(mp->b_rptr)) = p->cku_xid; 1062 } else { 1063 uint32_t *uproc = (uint32_t *)&p->cku_rpchdr[WIRE_HDR_SIZE]; 1064 IXDR_PUT_U_INT32(uproc, procnum); 1065 1066 (*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid; 1067 1068 /* Use XDR_SETPOS() to set the b_wptr. */ 1069 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base)); 1070 1071 /* Serialize the procedure number and the arguments. */ 1072 if (!AUTH_WRAP(h->cl_auth, p->cku_rpchdr, WIRE_HDR_SIZE+4, 1073 xdrs, xdr_args, argsp)) { 1074 p->cku_err.re_status = RPC_CANTENCODEARGS; 1075 p->cku_err.re_errno = EIO; 1076 goto cots_done; 1077 } 1078 } 1079 1080 RPCLOG(2, "clnt_cots_kcallit: connected, sending call, tidu_size %d\n", 1081 tidu_size); 1082 1083 wq = cm_entry->x_wq; 1084 status = clnt_dispatch_send(wq, mp, call, p->cku_xid, 1085 (p->cku_flags & CKU_ONQUEUE)); 1086 1087 if (status == RPC_CANTSEND) { 1088 p->cku_err.re_status = status; 1089 p->cku_err.re_errno = EIO; 1090 DTRACE_PROBE(krpc__e__clntcots__kcallit__cantsend); 1091 1092 /* 1093 * Allow for processing of the QFULL queue. 1094 */ 1095 delay_first = TRUE; 1096 ticks = clnt_cots_min_tout * drv_usectohz(1000000); 1097 1098 goto cots_done; 1099 } 1100 1101 RPCLOG(64, "clnt_cots_kcallit: sent call for xid 0x%x\n", 1102 (uint_t)p->cku_xid); 1103 p->cku_flags = (CKU_ONQUEUE|CKU_SENT); 1104 p->cku_recv_attempts = 1; 1105 1106 #ifdef RPCDEBUG 1107 time_sent = lbolt; 1108 #endif 1109 1110 /* 1111 * Wait for a reply or a timeout. If there is no error or timeout, 1112 * (both indicated by call_status), call->call_reply will contain 1113 * the RPC reply message. 1114 */ 1115 read_again: 1116 mutex_enter(&call->call_lock); 1117 interrupted = 0; 1118 if (call->call_status == RPC_TIMEDOUT) { 1119 /* 1120 * Indicate that the lwp is not to be stopped while waiting 1121 * for this network traffic. This is to avoid deadlock while 1122 * debugging a process via /proc and also to avoid recursive 1123 * mutex_enter()s due to NFS page faults while stopping 1124 * (NFS holds locks when it calls here). 1125 */ 1126 clock_t cv_wait_ret; 1127 clock_t timout; 1128 clock_t oldlbolt; 1129 1130 klwp_t *lwp = ttolwp(curthread); 1131 1132 if (lwp != NULL) 1133 lwp->lwp_nostop++; 1134 1135 oldlbolt = lbolt; 1136 timout = wait.tv_sec * drv_usectohz(1000000) + 1137 drv_usectohz(wait.tv_usec) + oldlbolt; 1138 /* 1139 * Iterate until the call_status is changed to something 1140 * other that RPC_TIMEDOUT, or if cv_timedwait_sig() returns 1141 * something <=0 zero. The latter means that we timed 1142 * out. 1143 */ 1144 if (h->cl_nosignal) 1145 while ((cv_wait_ret = cv_timedwait(&call->call_cv, 1146 &call->call_lock, timout)) > 0 && 1147 call->call_status == RPC_TIMEDOUT) 1148 ; 1149 else 1150 while ((cv_wait_ret = cv_timedwait_sig( 1151 &call->call_cv, 1152 &call->call_lock, timout)) > 0 && 1153 call->call_status == RPC_TIMEDOUT) 1154 ; 1155 1156 switch (cv_wait_ret) { 1157 case 0: 1158 /* 1159 * If we got out of the above loop with 1160 * cv_timedwait_sig() returning 0, then we were 1161 * interrupted regardless what call_status is. 1162 */ 1163 interrupted = 1; 1164 break; 1165 case -1: 1166 /* cv_timedwait_sig() timed out */ 1167 break; 1168 default: 1169 1170 /* 1171 * We were cv_signaled(). If we didn't 1172 * get a successful call_status and returned 1173 * before time expired, delay up to clnt_cots_min_tout 1174 * seconds so that the caller doesn't immediately 1175 * try to call us again and thus force the 1176 * same condition that got us here (such 1177 * as a RPC_XPRTFAILED due to the server not 1178 * listening on the end-point. 1179 */ 1180 if (call->call_status != RPC_SUCCESS) { 1181 clock_t curlbolt; 1182 clock_t diff; 1183 1184 curlbolt = ddi_get_lbolt(); 1185 ticks = clnt_cots_min_tout * 1186 drv_usectohz(1000000); 1187 diff = curlbolt - oldlbolt; 1188 if (diff < ticks) { 1189 delay_first = TRUE; 1190 if (diff > 0) 1191 ticks -= diff; 1192 } 1193 } 1194 break; 1195 } 1196 1197 if (lwp != NULL) 1198 lwp->lwp_nostop--; 1199 } 1200 /* 1201 * Get the reply message, if any. This will be freed at the end 1202 * whether or not an error occurred. 1203 */ 1204 mp = call->call_reply; 1205 call->call_reply = NULL; 1206 1207 /* 1208 * call_err is the error info when the call is on dispatch queue. 1209 * cku_err is the error info returned to the caller. 1210 * Sync cku_err with call_err for local message processing. 1211 */ 1212 1213 status = call->call_status; 1214 p->cku_err = call->call_err; 1215 mutex_exit(&call->call_lock); 1216 1217 if (status != RPC_SUCCESS) { 1218 switch (status) { 1219 case RPC_TIMEDOUT: 1220 if (interrupted) { 1221 COTSRCSTAT_INCR(p->cku_stats, rcintrs); 1222 p->cku_err.re_status = RPC_INTR; 1223 p->cku_err.re_errno = EINTR; 1224 RPCLOG(1, "clnt_cots_kcallit: xid 0x%x", 1225 p->cku_xid); 1226 RPCLOG(1, "signal interrupted at %ld", lbolt); 1227 RPCLOG(1, ", was sent at %ld\n", time_sent); 1228 } else { 1229 COTSRCSTAT_INCR(p->cku_stats, rctimeouts); 1230 p->cku_err.re_errno = ETIMEDOUT; 1231 RPCLOG(1, "clnt_cots_kcallit: timed out at %ld", 1232 lbolt); 1233 RPCLOG(1, ", was sent at %ld\n", time_sent); 1234 } 1235 break; 1236 1237 case RPC_XPRTFAILED: 1238 if (p->cku_err.re_errno == 0) 1239 p->cku_err.re_errno = EIO; 1240 1241 RPCLOG(1, "clnt_cots_kcallit: transport failed: %d\n", 1242 p->cku_err.re_errno); 1243 break; 1244 1245 case RPC_SYSTEMERROR: 1246 ASSERT(p->cku_err.re_errno); 1247 RPCLOG(1, "clnt_cots_kcallit: system error: %d\n", 1248 p->cku_err.re_errno); 1249 break; 1250 1251 default: 1252 p->cku_err.re_status = RPC_SYSTEMERROR; 1253 p->cku_err.re_errno = EIO; 1254 RPCLOG(1, "clnt_cots_kcallit: error: %s\n", 1255 clnt_sperrno(status)); 1256 break; 1257 } 1258 if (p->cku_err.re_status != RPC_TIMEDOUT) { 1259 1260 if (p->cku_flags & CKU_ONQUEUE) { 1261 call_table_remove(call); 1262 p->cku_flags &= ~CKU_ONQUEUE; 1263 } 1264 1265 RPCLOG(64, "clnt_cots_kcallit: non TIMEOUT so xid 0x%x " 1266 "taken off dispatch list\n", p->cku_xid); 1267 if (call->call_reply) { 1268 freemsg(call->call_reply); 1269 call->call_reply = NULL; 1270 } 1271 } else if (wait.tv_sec != 0) { 1272 /* 1273 * We've sent the request over TCP and so we have 1274 * every reason to believe it will get 1275 * delivered. In which case returning a timeout is not 1276 * appropriate. 1277 */ 1278 if (p->cku_progress == TRUE && 1279 p->cku_recv_attempts < clnt_cots_maxrecv) { 1280 p->cku_err.re_status = RPC_INPROGRESS; 1281 } 1282 } 1283 goto cots_done; 1284 } 1285 1286 xdrs = &p->cku_inxdr; 1287 xdrmblk_init(xdrs, mp, XDR_DECODE, 0); 1288 1289 reply_msg.rm_direction = REPLY; 1290 reply_msg.rm_reply.rp_stat = MSG_ACCEPTED; 1291 reply_msg.acpted_rply.ar_stat = SUCCESS; 1292 1293 reply_msg.acpted_rply.ar_verf = _null_auth; 1294 /* 1295 * xdr_results will be done in AUTH_UNWRAP. 1296 */ 1297 reply_msg.acpted_rply.ar_results.where = NULL; 1298 reply_msg.acpted_rply.ar_results.proc = xdr_void; 1299 1300 if (xdr_replymsg(xdrs, &reply_msg)) { 1301 enum clnt_stat re_status; 1302 1303 _seterr_reply(&reply_msg, &p->cku_err); 1304 1305 re_status = p->cku_err.re_status; 1306 if (re_status == RPC_SUCCESS) { 1307 /* 1308 * Reply is good, check auth. 1309 */ 1310 if (!AUTH_VALIDATE(h->cl_auth, 1311 &reply_msg.acpted_rply.ar_verf)) { 1312 COTSRCSTAT_INCR(p->cku_stats, rcbadverfs); 1313 RPCLOG0(1, "clnt_cots_kcallit: validation " 1314 "failure\n"); 1315 freemsg(mp); 1316 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 1317 mutex_enter(&call->call_lock); 1318 if (call->call_reply == NULL) 1319 call->call_status = RPC_TIMEDOUT; 1320 mutex_exit(&call->call_lock); 1321 goto read_again; 1322 } else if (!AUTH_UNWRAP(h->cl_auth, xdrs, 1323 xdr_results, resultsp)) { 1324 RPCLOG0(1, "clnt_cots_kcallit: validation " 1325 "failure (unwrap)\n"); 1326 p->cku_err.re_status = RPC_CANTDECODERES; 1327 p->cku_err.re_errno = EIO; 1328 } 1329 } else { 1330 /* set errno in case we can't recover */ 1331 if (re_status != RPC_VERSMISMATCH && 1332 re_status != RPC_AUTHERROR && 1333 re_status != RPC_PROGVERSMISMATCH) 1334 p->cku_err.re_errno = EIO; 1335 1336 if (re_status == RPC_AUTHERROR) { 1337 /* 1338 * Maybe our credential need to be refreshed 1339 */ 1340 if (cm_entry) { 1341 /* 1342 * There is the potential that the 1343 * cm_entry has/will be marked dead, 1344 * so drop the connection altogether, 1345 * force REFRESH to establish new 1346 * connection. 1347 */ 1348 connmgr_cancelconn(cm_entry); 1349 cm_entry = NULL; 1350 } 1351 1352 if ((refreshes > 0) && 1353 AUTH_REFRESH(h->cl_auth, &reply_msg, 1354 p->cku_cred)) { 1355 refreshes--; 1356 (void) xdr_rpc_free_verifier(xdrs, 1357 &reply_msg); 1358 freemsg(mp); 1359 mp = NULL; 1360 1361 if (p->cku_flags & CKU_ONQUEUE) { 1362 call_table_remove(call); 1363 p->cku_flags &= ~CKU_ONQUEUE; 1364 } 1365 1366 RPCLOG(64, 1367 "clnt_cots_kcallit: AUTH_ERROR, xid" 1368 " 0x%x removed off dispatch list\n", 1369 p->cku_xid); 1370 if (call->call_reply) { 1371 freemsg(call->call_reply); 1372 call->call_reply = NULL; 1373 } 1374 1375 COTSRCSTAT_INCR(p->cku_stats, 1376 rcbadcalls); 1377 COTSRCSTAT_INCR(p->cku_stats, 1378 rcnewcreds); 1379 goto call_again; 1380 } 1381 1382 /* 1383 * We have used the client handle to 1384 * do an AUTH_REFRESH and the RPC status may 1385 * be set to RPC_SUCCESS; Let's make sure to 1386 * set it to RPC_AUTHERROR. 1387 */ 1388 p->cku_err.re_status = RPC_AUTHERROR; 1389 1390 /* 1391 * Map recoverable and unrecoverable 1392 * authentication errors to appropriate errno 1393 */ 1394 switch (p->cku_err.re_why) { 1395 case AUTH_TOOWEAK: 1396 /* 1397 * This could be a failure where the 1398 * server requires use of a reserved 1399 * port, check and optionally set the 1400 * client handle useresvport trying 1401 * one more time. Next go round we 1402 * fall out with the tooweak error. 1403 */ 1404 if (p->cku_useresvport != 1) { 1405 p->cku_useresvport = 1; 1406 p->cku_xid = 0; 1407 (void) xdr_rpc_free_verifier 1408 (xdrs, &reply_msg); 1409 freemsg(mp); 1410 goto call_again; 1411 } 1412 /* FALLTHRU */ 1413 case AUTH_BADCRED: 1414 case AUTH_BADVERF: 1415 case AUTH_INVALIDRESP: 1416 case AUTH_FAILED: 1417 case RPCSEC_GSS_NOCRED: 1418 case RPCSEC_GSS_FAILED: 1419 p->cku_err.re_errno = EACCES; 1420 break; 1421 case AUTH_REJECTEDCRED: 1422 case AUTH_REJECTEDVERF: 1423 default: p->cku_err.re_errno = EIO; 1424 break; 1425 } 1426 RPCLOG(1, "clnt_cots_kcallit : authentication" 1427 " failed with RPC_AUTHERROR of type %d\n", 1428 (int)p->cku_err.re_why); 1429 } 1430 } 1431 } else { 1432 /* reply didn't decode properly. */ 1433 p->cku_err.re_status = RPC_CANTDECODERES; 1434 p->cku_err.re_errno = EIO; 1435 RPCLOG0(1, "clnt_cots_kcallit: decode failure\n"); 1436 } 1437 1438 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 1439 1440 if (p->cku_flags & CKU_ONQUEUE) { 1441 call_table_remove(call); 1442 p->cku_flags &= ~CKU_ONQUEUE; 1443 } 1444 1445 RPCLOG(64, "clnt_cots_kcallit: xid 0x%x taken off dispatch list", 1446 p->cku_xid); 1447 RPCLOG(64, " status is %s\n", clnt_sperrno(p->cku_err.re_status)); 1448 cots_done: 1449 if (cm_entry) 1450 connmgr_release(cm_entry); 1451 1452 if (mp != NULL) 1453 freemsg(mp); 1454 if ((p->cku_flags & CKU_ONQUEUE) == 0 && call->call_reply) { 1455 freemsg(call->call_reply); 1456 call->call_reply = NULL; 1457 } 1458 if (p->cku_err.re_status != RPC_SUCCESS) { 1459 RPCLOG0(1, "clnt_cots_kcallit: tail-end failure\n"); 1460 COTSRCSTAT_INCR(p->cku_stats, rcbadcalls); 1461 } 1462 1463 /* 1464 * No point in delaying if the zone is going away. 1465 */ 1466 if (delay_first == TRUE && 1467 !(zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)) { 1468 if (clnt_delay(ticks, h->cl_nosignal) == EINTR) { 1469 p->cku_err.re_errno = EINTR; 1470 p->cku_err.re_status = RPC_INTR; 1471 } 1472 } 1473 return (p->cku_err.re_status); 1474 } 1475 1476 /* 1477 * Kinit routine for cots. This sets up the correct operations in 1478 * the client handle, as the handle may have previously been a clts 1479 * handle, and clears the xid field so there is no way a new call 1480 * could be mistaken for a retry. It also sets in the handle the 1481 * information that is passed at create/kinit time but needed at 1482 * call time, as cots creates the transport at call time - device, 1483 * address of the server, protocol family. 1484 */ 1485 void 1486 clnt_cots_kinit(CLIENT *h, dev_t dev, int family, struct netbuf *addr, 1487 int max_msgsize, cred_t *cred) 1488 { 1489 /* LINTED pointer alignment */ 1490 cku_private_t *p = htop(h); 1491 calllist_t *call = &p->cku_call; 1492 1493 h->cl_ops = &tcp_ops; 1494 if (p->cku_flags & CKU_ONQUEUE) { 1495 call_table_remove(call); 1496 p->cku_flags &= ~CKU_ONQUEUE; 1497 RPCLOG(64, "clnt_cots_kinit: removing call for xid 0x%x from" 1498 " dispatch list\n", p->cku_xid); 1499 } 1500 1501 if (call->call_reply != NULL) { 1502 freemsg(call->call_reply); 1503 call->call_reply = NULL; 1504 } 1505 1506 call->call_bucket = NULL; 1507 call->call_hash = 0; 1508 1509 /* 1510 * We don't clear cku_flags here, because clnt_cots_kcallit() 1511 * takes care of handling the cku_flags reset. 1512 */ 1513 p->cku_xid = 0; 1514 p->cku_device = dev; 1515 p->cku_addrfmly = family; 1516 p->cku_cred = cred; 1517 1518 if (p->cku_addr.maxlen < addr->len) { 1519 if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL) 1520 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen); 1521 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP); 1522 p->cku_addr.maxlen = addr->maxlen; 1523 } 1524 1525 p->cku_addr.len = addr->len; 1526 bcopy(addr->buf, p->cku_addr.buf, addr->len); 1527 1528 /* 1529 * If the current sanity check size in rpcmod is smaller 1530 * than the size needed, then increase the sanity check. 1531 */ 1532 if (max_msgsize != 0 && clnt_max_msg_sizep != NULL && 1533 max_msgsize > *clnt_max_msg_sizep) { 1534 mutex_enter(&clnt_max_msg_lock); 1535 if (max_msgsize > *clnt_max_msg_sizep) 1536 *clnt_max_msg_sizep = max_msgsize; 1537 mutex_exit(&clnt_max_msg_lock); 1538 } 1539 } 1540 1541 /* 1542 * ksettimers is a no-op for cots, with the exception of setting the xid. 1543 */ 1544 /* ARGSUSED */ 1545 static int 1546 clnt_cots_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all, 1547 int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg, 1548 uint32_t xid) 1549 { 1550 /* LINTED pointer alignment */ 1551 cku_private_t *p = htop(h); 1552 1553 if (xid) 1554 p->cku_xid = xid; 1555 COTSRCSTAT_INCR(p->cku_stats, rctimers); 1556 return (0); 1557 } 1558 1559 extern void rpc_poptimod(struct vnode *); 1560 extern int kstr_push(struct vnode *, char *); 1561 1562 int 1563 conn_kstat_update(kstat_t *ksp, int rw) 1564 { 1565 struct cm_xprt *cm_entry; 1566 struct cm_kstat_xprt *cm_ksp_data; 1567 uchar_t *b; 1568 char *fbuf; 1569 1570 if (rw == KSTAT_WRITE) 1571 return (EACCES); 1572 if (ksp == NULL || ksp->ks_private == NULL) 1573 return (EIO); 1574 cm_entry = (struct cm_xprt *)ksp->ks_private; 1575 cm_ksp_data = (struct cm_kstat_xprt *)ksp->ks_data; 1576 1577 cm_ksp_data->x_wq.value.ui32 = (uint32_t)(uintptr_t)cm_entry->x_wq; 1578 cm_ksp_data->x_family.value.ui32 = cm_entry->x_family; 1579 cm_ksp_data->x_rdev.value.ui32 = (uint32_t)cm_entry->x_rdev; 1580 cm_ksp_data->x_time.value.ui32 = cm_entry->x_time; 1581 cm_ksp_data->x_ref.value.ui32 = cm_entry->x_ref; 1582 cm_ksp_data->x_state.value.ui32 = cm_entry->x_state_flags; 1583 1584 if (cm_entry->x_server.buf) { 1585 fbuf = cm_ksp_data->x_server.value.str.addr.ptr; 1586 if (cm_entry->x_family == AF_INET && 1587 cm_entry->x_server.len == 1588 sizeof (struct sockaddr_in)) { 1589 struct sockaddr_in *sa; 1590 sa = (struct sockaddr_in *) 1591 cm_entry->x_server.buf; 1592 b = (uchar_t *)&sa->sin_addr; 1593 (void) sprintf(fbuf, 1594 "%03d.%03d.%03d.%03d", b[0] & 0xFF, b[1] & 0xFF, 1595 b[2] & 0xFF, b[3] & 0xFF); 1596 cm_ksp_data->x_port.value.ui32 = 1597 (uint32_t)sa->sin_port; 1598 } else if (cm_entry->x_family == AF_INET6 && 1599 cm_entry->x_server.len >= 1600 sizeof (struct sockaddr_in6)) { 1601 /* extract server IP address & port */ 1602 struct sockaddr_in6 *sin6; 1603 sin6 = (struct sockaddr_in6 *)cm_entry->x_server.buf; 1604 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, fbuf, 1605 INET6_ADDRSTRLEN); 1606 cm_ksp_data->x_port.value.ui32 = sin6->sin6_port; 1607 } else { 1608 struct sockaddr_in *sa; 1609 1610 sa = (struct sockaddr_in *)cm_entry->x_server.buf; 1611 b = (uchar_t *)&sa->sin_addr; 1612 (void) sprintf(fbuf, 1613 "%03d.%03d.%03d.%03d", b[0] & 0xFF, b[1] & 0xFF, 1614 b[2] & 0xFF, b[3] & 0xFF); 1615 } 1616 KSTAT_NAMED_STR_BUFLEN(&cm_ksp_data->x_server) = 1617 strlen(fbuf) + 1; 1618 } 1619 1620 return (0); 1621 } 1622 1623 1624 /* 1625 * We want a version of delay which is interruptible by a UNIX signal 1626 * Return EINTR if an interrupt occured. 1627 */ 1628 static int 1629 clnt_delay(clock_t ticks, bool_t nosignal) 1630 { 1631 if (nosignal == TRUE) { 1632 delay(ticks); 1633 return (0); 1634 } 1635 return (delay_sig(ticks)); 1636 } 1637 1638 /* 1639 * Wait for a connection until a timeout, or until we are 1640 * signalled that there has been a connection state change. 1641 */ 1642 static enum clnt_stat 1643 connmgr_cwait(struct cm_xprt *cm_entry, const struct timeval *waitp, 1644 bool_t nosignal) 1645 { 1646 bool_t interrupted; 1647 clock_t timout, cv_stat; 1648 enum clnt_stat clstat; 1649 unsigned int old_state; 1650 1651 ASSERT(MUTEX_HELD(&connmgr_lock)); 1652 /* 1653 * We wait for the transport connection to be made, or an 1654 * indication that it could not be made. 1655 */ 1656 clstat = RPC_TIMEDOUT; 1657 interrupted = FALSE; 1658 1659 old_state = cm_entry->x_state_flags; 1660 /* 1661 * Now loop until cv_timedwait{_sig} returns because of 1662 * a signal(0) or timeout(-1) or cv_signal(>0). But it may be 1663 * cv_signalled for various other reasons too. So loop 1664 * until there is a state change on the connection. 1665 */ 1666 1667 timout = waitp->tv_sec * drv_usectohz(1000000) + 1668 drv_usectohz(waitp->tv_usec) + lbolt; 1669 1670 if (nosignal) { 1671 while ((cv_stat = cv_timedwait(&cm_entry->x_conn_cv, 1672 &connmgr_lock, timout)) > 0 && 1673 cm_entry->x_state_flags == old_state) 1674 ; 1675 } else { 1676 while ((cv_stat = cv_timedwait_sig(&cm_entry->x_conn_cv, 1677 &connmgr_lock, timout)) > 0 && 1678 cm_entry->x_state_flags == old_state) 1679 ; 1680 1681 if (cv_stat == 0) /* got intr signal? */ 1682 interrupted = TRUE; 1683 } 1684 1685 if ((cm_entry->x_state_flags & (X_BADSTATES|X_CONNECTED)) == 1686 X_CONNECTED) { 1687 clstat = RPC_SUCCESS; 1688 } else { 1689 if (interrupted == TRUE) 1690 clstat = RPC_INTR; 1691 RPCLOG(1, "connmgr_cwait: can't connect, error: %s\n", 1692 clnt_sperrno(clstat)); 1693 } 1694 1695 return (clstat); 1696 } 1697 1698 /* 1699 * Primary interface for how RPC grabs a connection. 1700 */ 1701 static struct cm_xprt * 1702 connmgr_wrapget( 1703 struct netbuf *retryaddr, 1704 const struct timeval *waitp, 1705 cku_private_t *p) 1706 { 1707 struct cm_xprt *cm_entry; 1708 1709 cm_entry = connmgr_get(retryaddr, waitp, &p->cku_addr, p->cku_addrfmly, 1710 &p->cku_srcaddr, &p->cku_err, p->cku_device, 1711 p->cku_client.cl_nosignal, p->cku_useresvport, p->cku_cred); 1712 1713 if (cm_entry == NULL) { 1714 /* 1715 * Re-map the call status to RPC_INTR if the err code is 1716 * EINTR. This can happen if calls status is RPC_TLIERROR. 1717 * However, don't re-map if signalling has been turned off. 1718 * XXX Really need to create a separate thread whenever 1719 * there isn't an existing connection. 1720 */ 1721 if (p->cku_err.re_errno == EINTR) { 1722 if (p->cku_client.cl_nosignal == TRUE) 1723 p->cku_err.re_errno = EIO; 1724 else 1725 p->cku_err.re_status = RPC_INTR; 1726 } 1727 } 1728 1729 return (cm_entry); 1730 } 1731 1732 /* 1733 * Obtains a transport to the server specified in addr. If a suitable transport 1734 * does not already exist in the list of cached transports, a new connection 1735 * is created, connected, and added to the list. The connection is for sending 1736 * only - the reply message may come back on another transport connection. 1737 */ 1738 static struct cm_xprt * 1739 connmgr_get( 1740 struct netbuf *retryaddr, 1741 const struct timeval *waitp, /* changed to a ptr to converse stack */ 1742 struct netbuf *destaddr, 1743 int addrfmly, 1744 struct netbuf *srcaddr, 1745 struct rpc_err *rpcerr, 1746 dev_t device, 1747 bool_t nosignal, 1748 int useresvport, 1749 cred_t *cr) 1750 { 1751 struct cm_xprt *cm_entry; 1752 struct cm_xprt *lru_entry; 1753 struct cm_xprt **cmp; 1754 queue_t *wq; 1755 TIUSER *tiptr; 1756 int i; 1757 int retval; 1758 clock_t prev_time; 1759 int tidu_size; 1760 bool_t connected; 1761 zoneid_t zoneid = rpc_zoneid(); 1762 1763 /* 1764 * If the call is not a retry, look for a transport entry that 1765 * goes to the server of interest. 1766 */ 1767 mutex_enter(&connmgr_lock); 1768 1769 if (retryaddr == NULL) { 1770 use_new_conn: 1771 i = 0; 1772 cm_entry = lru_entry = NULL; 1773 prev_time = lbolt; 1774 1775 cmp = &cm_hd; 1776 while ((cm_entry = *cmp) != NULL) { 1777 ASSERT(cm_entry != cm_entry->x_next); 1778 /* 1779 * Garbage collect conections that are marked 1780 * for needs disconnect. 1781 */ 1782 if (cm_entry->x_needdis) { 1783 CONN_HOLD(cm_entry); 1784 connmgr_dis_and_wait(cm_entry); 1785 connmgr_release(cm_entry); 1786 /* 1787 * connmgr_lock could have been 1788 * dropped for the disconnect 1789 * processing so start over. 1790 */ 1791 goto use_new_conn; 1792 } 1793 1794 /* 1795 * Garbage collect the dead connections that have 1796 * no threads working on them. 1797 */ 1798 if ((cm_entry->x_state_flags & (X_DEAD|X_THREAD)) == 1799 X_DEAD) { 1800 mutex_enter(&cm_entry->x_lock); 1801 if (cm_entry->x_ref != 0) { 1802 /* 1803 * Currently in use. 1804 * Cleanup later. 1805 */ 1806 cmp = &cm_entry->x_next; 1807 mutex_exit(&cm_entry->x_lock); 1808 continue; 1809 } 1810 mutex_exit(&cm_entry->x_lock); 1811 *cmp = cm_entry->x_next; 1812 mutex_exit(&connmgr_lock); 1813 connmgr_close(cm_entry); 1814 mutex_enter(&connmgr_lock); 1815 goto use_new_conn; 1816 } 1817 1818 1819 if ((cm_entry->x_state_flags & X_BADSTATES) == 0 && 1820 cm_entry->x_zoneid == zoneid && 1821 cm_entry->x_rdev == device && 1822 destaddr->len == cm_entry->x_server.len && 1823 bcmp(destaddr->buf, cm_entry->x_server.buf, 1824 destaddr->len) == 0) { 1825 /* 1826 * If the matching entry isn't connected, 1827 * attempt to reconnect it. 1828 */ 1829 if (cm_entry->x_connected == FALSE) { 1830 /* 1831 * We don't go through trying 1832 * to find the least recently 1833 * used connected because 1834 * connmgr_reconnect() briefly 1835 * dropped the connmgr_lock, 1836 * allowing a window for our 1837 * accounting to be messed up. 1838 * In any case, a re-connected 1839 * connection is as good as 1840 * a LRU connection. 1841 */ 1842 return (connmgr_wrapconnect(cm_entry, 1843 waitp, destaddr, addrfmly, srcaddr, 1844 rpcerr, TRUE, nosignal, cr)); 1845 } 1846 i++; 1847 if (cm_entry->x_time - prev_time <= 0 || 1848 lru_entry == NULL) { 1849 prev_time = cm_entry->x_time; 1850 lru_entry = cm_entry; 1851 } 1852 } 1853 cmp = &cm_entry->x_next; 1854 } 1855 1856 if (i > clnt_max_conns) { 1857 RPCLOG(8, "connmgr_get: too many conns, dooming entry" 1858 " %p\n", (void *)lru_entry->x_tiptr); 1859 lru_entry->x_doomed = TRUE; 1860 goto use_new_conn; 1861 } 1862 1863 /* 1864 * If we are at the maximum number of connections to 1865 * the server, hand back the least recently used one. 1866 */ 1867 if (i == clnt_max_conns) { 1868 /* 1869 * Copy into the handle the source address of 1870 * the connection, which we will use in case of 1871 * a later retry. 1872 */ 1873 if (srcaddr->len != lru_entry->x_src.len) { 1874 if (srcaddr->len > 0) 1875 kmem_free(srcaddr->buf, 1876 srcaddr->maxlen); 1877 srcaddr->buf = kmem_zalloc( 1878 lru_entry->x_src.len, KM_SLEEP); 1879 srcaddr->maxlen = srcaddr->len = 1880 lru_entry->x_src.len; 1881 } 1882 bcopy(lru_entry->x_src.buf, srcaddr->buf, srcaddr->len); 1883 RPCLOG(2, "connmgr_get: call going out on %p\n", 1884 (void *)lru_entry); 1885 lru_entry->x_time = lbolt; 1886 CONN_HOLD(lru_entry); 1887 mutex_exit(&connmgr_lock); 1888 return (lru_entry); 1889 } 1890 1891 } else { 1892 /* 1893 * This is the retry case (retryaddr != NULL). Retries must 1894 * be sent on the same source port as the original call. 1895 */ 1896 1897 /* 1898 * Walk the list looking for a connection with a source address 1899 * that matches the retry address. 1900 */ 1901 start_retry_loop: 1902 cmp = &cm_hd; 1903 while ((cm_entry = *cmp) != NULL) { 1904 ASSERT(cm_entry != cm_entry->x_next); 1905 1906 /* 1907 * determine if this connection matches the passed 1908 * in retry address. If it does not match, advance 1909 * to the next element on the list. 1910 */ 1911 if (zoneid != cm_entry->x_zoneid || 1912 device != cm_entry->x_rdev || 1913 retryaddr->len != cm_entry->x_src.len || 1914 bcmp(retryaddr->buf, cm_entry->x_src.buf, 1915 retryaddr->len) != 0) { 1916 cmp = &cm_entry->x_next; 1917 continue; 1918 } 1919 /* 1920 * Garbage collect conections that are marked 1921 * for needs disconnect. 1922 */ 1923 if (cm_entry->x_needdis) { 1924 CONN_HOLD(cm_entry); 1925 connmgr_dis_and_wait(cm_entry); 1926 connmgr_release(cm_entry); 1927 /* 1928 * connmgr_lock could have been 1929 * dropped for the disconnect 1930 * processing so start over. 1931 */ 1932 goto start_retry_loop; 1933 } 1934 /* 1935 * Garbage collect the dead connections that have 1936 * no threads working on them. 1937 */ 1938 if ((cm_entry->x_state_flags & (X_DEAD|X_THREAD)) == 1939 X_DEAD) { 1940 mutex_enter(&cm_entry->x_lock); 1941 if (cm_entry->x_ref != 0) { 1942 /* 1943 * Currently in use. 1944 * Cleanup later. 1945 */ 1946 cmp = &cm_entry->x_next; 1947 mutex_exit(&cm_entry->x_lock); 1948 continue; 1949 } 1950 mutex_exit(&cm_entry->x_lock); 1951 *cmp = cm_entry->x_next; 1952 mutex_exit(&connmgr_lock); 1953 connmgr_close(cm_entry); 1954 mutex_enter(&connmgr_lock); 1955 goto start_retry_loop; 1956 } 1957 1958 /* 1959 * Sanity check: if the connection with our source 1960 * port is going to some other server, something went 1961 * wrong, as we never delete connections (i.e. release 1962 * ports) unless they have been idle. In this case, 1963 * it is probably better to send the call out using 1964 * a new source address than to fail it altogether, 1965 * since that port may never be released. 1966 */ 1967 if (destaddr->len != cm_entry->x_server.len || 1968 bcmp(destaddr->buf, cm_entry->x_server.buf, 1969 destaddr->len) != 0) { 1970 RPCLOG(1, "connmgr_get: tiptr %p" 1971 " is going to a different server" 1972 " with the port that belongs" 1973 " to us!\n", (void *)cm_entry->x_tiptr); 1974 retryaddr = NULL; 1975 goto use_new_conn; 1976 } 1977 1978 /* 1979 * If the connection of interest is not connected and we 1980 * can't reconnect it, then the server is probably 1981 * still down. Return NULL to the caller and let it 1982 * retry later if it wants to. We have a delay so the 1983 * machine doesn't go into a tight retry loop. If the 1984 * entry was already connected, or the reconnected was 1985 * successful, return this entry. 1986 */ 1987 if (cm_entry->x_connected == FALSE) { 1988 return (connmgr_wrapconnect(cm_entry, 1989 waitp, destaddr, addrfmly, NULL, 1990 rpcerr, TRUE, nosignal, cr)); 1991 } else { 1992 CONN_HOLD(cm_entry); 1993 1994 cm_entry->x_time = lbolt; 1995 mutex_exit(&connmgr_lock); 1996 RPCLOG(2, "connmgr_get: found old " 1997 "transport %p for retry\n", 1998 (void *)cm_entry); 1999 return (cm_entry); 2000 } 2001 } 2002 2003 /* 2004 * We cannot find an entry in the list for this retry. 2005 * Either the entry has been removed temporarily to be 2006 * reconnected by another thread, or the original call 2007 * got a port but never got connected, 2008 * and hence the transport never got put in the 2009 * list. Fall through to the "create new connection" code - 2010 * the former case will fail there trying to rebind the port, 2011 * and the later case (and any other pathological cases) will 2012 * rebind and reconnect and not hang the client machine. 2013 */ 2014 RPCLOG0(8, "connmgr_get: no entry in list for retry\n"); 2015 } 2016 /* 2017 * Set up a transport entry in the connection manager's list. 2018 */ 2019 cm_entry = (struct cm_xprt *) 2020 kmem_zalloc(sizeof (struct cm_xprt), KM_SLEEP); 2021 2022 cm_entry->x_server.buf = kmem_zalloc(destaddr->len, KM_SLEEP); 2023 bcopy(destaddr->buf, cm_entry->x_server.buf, destaddr->len); 2024 cm_entry->x_server.len = cm_entry->x_server.maxlen = destaddr->len; 2025 2026 cm_entry->x_state_flags = X_THREAD; 2027 cm_entry->x_ref = 1; 2028 cm_entry->x_family = addrfmly; 2029 cm_entry->x_rdev = device; 2030 cm_entry->x_zoneid = zoneid; 2031 mutex_init(&cm_entry->x_lock, NULL, MUTEX_DEFAULT, NULL); 2032 cv_init(&cm_entry->x_cv, NULL, CV_DEFAULT, NULL); 2033 cv_init(&cm_entry->x_conn_cv, NULL, CV_DEFAULT, NULL); 2034 cv_init(&cm_entry->x_dis_cv, NULL, CV_DEFAULT, NULL); 2035 2036 /* 2037 * Note that we add this partially initialized entry to the 2038 * connection list. This is so that we don't have connections to 2039 * the same server. 2040 * 2041 * Note that x_src is not initialized at this point. This is because 2042 * retryaddr might be NULL in which case x_src is whatever 2043 * t_kbind/bindresvport gives us. If another thread wants a 2044 * connection to the same server, seemingly we have an issue, but we 2045 * don't. If the other thread comes in with retryaddr == NULL, then it 2046 * will never look at x_src, and it will end up waiting in 2047 * connmgr_cwait() for the first thread to finish the connection 2048 * attempt. If the other thread comes in with retryaddr != NULL, then 2049 * that means there was a request sent on a connection, in which case 2050 * the the connection should already exist. Thus the first thread 2051 * never gets here ... it finds the connection it its server in the 2052 * connection list. 2053 * 2054 * But even if theory is wrong, in the retryaddr != NULL case, the 2nd 2055 * thread will skip us because x_src.len == 0. 2056 */ 2057 cm_entry->x_next = cm_hd; 2058 cm_hd = cm_entry; 2059 mutex_exit(&connmgr_lock); 2060 2061 /* 2062 * Either we didn't find an entry to the server of interest, or we 2063 * don't have the maximum number of connections to that server - 2064 * create a new connection. 2065 */ 2066 RPCLOG0(8, "connmgr_get: creating new connection\n"); 2067 rpcerr->re_status = RPC_TLIERROR; 2068 2069 i = t_kopen(NULL, device, FREAD|FWRITE|FNDELAY, &tiptr, zone_kcred()); 2070 if (i) { 2071 RPCLOG(1, "connmgr_get: can't open cots device, error %d\n", i); 2072 rpcerr->re_errno = i; 2073 connmgr_cancelconn(cm_entry); 2074 return (NULL); 2075 } 2076 rpc_poptimod(tiptr->fp->f_vnode); 2077 2078 if (i = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0, 2079 K_TO_K, kcred, &retval)) { 2080 RPCLOG(1, "connmgr_get: can't push cots module, %d\n", i); 2081 (void) t_kclose(tiptr, 1); 2082 rpcerr->re_errno = i; 2083 connmgr_cancelconn(cm_entry); 2084 return (NULL); 2085 } 2086 2087 if (i = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K, 2088 kcred, &retval)) { 2089 RPCLOG(1, "connmgr_get: can't set client status with cots " 2090 "module, %d\n", i); 2091 (void) t_kclose(tiptr, 1); 2092 rpcerr->re_errno = i; 2093 connmgr_cancelconn(cm_entry); 2094 return (NULL); 2095 } 2096 2097 mutex_enter(&connmgr_lock); 2098 2099 wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next; 2100 cm_entry->x_wq = wq; 2101 2102 mutex_exit(&connmgr_lock); 2103 2104 if (i = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0, 2105 K_TO_K, kcred, &retval)) { 2106 RPCLOG(1, "connmgr_get: can't push timod, %d\n", i); 2107 (void) t_kclose(tiptr, 1); 2108 rpcerr->re_errno = i; 2109 connmgr_cancelconn(cm_entry); 2110 return (NULL); 2111 } 2112 2113 /* 2114 * If the caller has not specified reserved port usage then 2115 * take the system default. 2116 */ 2117 if (useresvport == -1) 2118 useresvport = clnt_cots_do_bindresvport; 2119 2120 if ((useresvport || retryaddr != NULL) && 2121 (addrfmly == AF_INET || addrfmly == AF_INET6)) { 2122 bool_t alloc_src = FALSE; 2123 2124 if (srcaddr->len != destaddr->len) { 2125 kmem_free(srcaddr->buf, srcaddr->maxlen); 2126 srcaddr->buf = kmem_zalloc(destaddr->len, KM_SLEEP); 2127 srcaddr->maxlen = destaddr->len; 2128 srcaddr->len = destaddr->len; 2129 alloc_src = TRUE; 2130 } 2131 2132 if ((i = bindresvport(tiptr, retryaddr, srcaddr, TRUE)) != 0) { 2133 (void) t_kclose(tiptr, 1); 2134 RPCLOG(1, "connmgr_get: couldn't bind, retryaddr: " 2135 "%p\n", (void *)retryaddr); 2136 2137 /* 2138 * 1225408: If we allocated a source address, then it 2139 * is either garbage or all zeroes. In that case 2140 * we need to clear srcaddr. 2141 */ 2142 if (alloc_src == TRUE) { 2143 kmem_free(srcaddr->buf, srcaddr->maxlen); 2144 srcaddr->maxlen = srcaddr->len = 0; 2145 srcaddr->buf = NULL; 2146 } 2147 rpcerr->re_errno = i; 2148 connmgr_cancelconn(cm_entry); 2149 return (NULL); 2150 } 2151 } else { 2152 if ((i = t_kbind(tiptr, NULL, NULL)) != 0) { 2153 RPCLOG(1, "clnt_cots_kcreate: t_kbind: %d\n", i); 2154 (void) t_kclose(tiptr, 1); 2155 rpcerr->re_errno = i; 2156 connmgr_cancelconn(cm_entry); 2157 return (NULL); 2158 } 2159 } 2160 2161 { 2162 /* 2163 * Keep the kernel stack lean. Don't move this call 2164 * declaration to the top of this function because a 2165 * call is declared in connmgr_wrapconnect() 2166 */ 2167 calllist_t call; 2168 2169 bzero(&call, sizeof (call)); 2170 cv_init(&call.call_cv, NULL, CV_DEFAULT, NULL); 2171 2172 /* 2173 * This is a bound end-point so don't close it's stream. 2174 */ 2175 connected = connmgr_connect(cm_entry, wq, destaddr, addrfmly, 2176 &call, &tidu_size, FALSE, waitp, nosignal, cr); 2177 *rpcerr = call.call_err; 2178 cv_destroy(&call.call_cv); 2179 2180 } 2181 2182 mutex_enter(&connmgr_lock); 2183 2184 /* 2185 * Set up a transport entry in the connection manager's list. 2186 */ 2187 cm_entry->x_src.buf = kmem_zalloc(srcaddr->len, KM_SLEEP); 2188 bcopy(srcaddr->buf, cm_entry->x_src.buf, srcaddr->len); 2189 cm_entry->x_src.len = cm_entry->x_src.maxlen = srcaddr->len; 2190 2191 cm_entry->x_tiptr = tiptr; 2192 cm_entry->x_time = lbolt; 2193 2194 if (tiptr->tp_info.servtype == T_COTS_ORD) 2195 cm_entry->x_ordrel = TRUE; 2196 else 2197 cm_entry->x_ordrel = FALSE; 2198 2199 cm_entry->x_tidu_size = tidu_size; 2200 2201 if (cm_entry->x_early_disc) { 2202 /* 2203 * We need to check if a disconnect request has come 2204 * while we are connected, if so, then we need to 2205 * set rpcerr->re_status appropriately before returning 2206 * NULL to caller. 2207 */ 2208 if (rpcerr->re_status == RPC_SUCCESS) 2209 rpcerr->re_status = RPC_XPRTFAILED; 2210 cm_entry->x_connected = FALSE; 2211 } else 2212 cm_entry->x_connected = connected; 2213 2214 /* 2215 * There could be a discrepancy here such that 2216 * x_early_disc is TRUE yet connected is TRUE as well 2217 * and the connection is actually connected. In that case 2218 * lets be conservative and declare the connection as not 2219 * connected. 2220 */ 2221 cm_entry->x_early_disc = FALSE; 2222 cm_entry->x_needdis = (cm_entry->x_connected == FALSE); 2223 cm_entry->x_ctime = lbolt; 2224 2225 /* 2226 * Notify any threads waiting that the connection attempt is done. 2227 */ 2228 cm_entry->x_thread = FALSE; 2229 cv_broadcast(&cm_entry->x_conn_cv); 2230 2231 if (cm_entry->x_connected == FALSE) { 2232 mutex_exit(&connmgr_lock); 2233 connmgr_release(cm_entry); 2234 return (NULL); 2235 } 2236 2237 mutex_exit(&connmgr_lock); 2238 2239 return (cm_entry); 2240 } 2241 2242 /* 2243 * Keep the cm_xprt entry on the connecton list when making a connection. This 2244 * is to prevent multiple connections to a slow server from appearing. 2245 * We use the bit field x_thread to tell if a thread is doing a connection 2246 * which keeps other interested threads from messing with connection. 2247 * Those other threads just wait if x_thread is set. 2248 * 2249 * If x_thread is not set, then we do the actual work of connecting via 2250 * connmgr_connect(). 2251 * 2252 * mutex convention: called with connmgr_lock held, returns with it released. 2253 */ 2254 static struct cm_xprt * 2255 connmgr_wrapconnect( 2256 struct cm_xprt *cm_entry, 2257 const struct timeval *waitp, 2258 struct netbuf *destaddr, 2259 int addrfmly, 2260 struct netbuf *srcaddr, 2261 struct rpc_err *rpcerr, 2262 bool_t reconnect, 2263 bool_t nosignal, 2264 cred_t *cr) 2265 { 2266 ASSERT(MUTEX_HELD(&connmgr_lock)); 2267 /* 2268 * Hold this entry as we are about to drop connmgr_lock. 2269 */ 2270 CONN_HOLD(cm_entry); 2271 2272 /* 2273 * If there is a thread already making a connection for us, then 2274 * wait for it to complete the connection. 2275 */ 2276 if (cm_entry->x_thread == TRUE) { 2277 rpcerr->re_status = connmgr_cwait(cm_entry, waitp, nosignal); 2278 2279 if (rpcerr->re_status != RPC_SUCCESS) { 2280 mutex_exit(&connmgr_lock); 2281 connmgr_release(cm_entry); 2282 return (NULL); 2283 } 2284 } else { 2285 bool_t connected; 2286 calllist_t call; 2287 2288 cm_entry->x_thread = TRUE; 2289 2290 while (cm_entry->x_needrel == TRUE) { 2291 cm_entry->x_needrel = FALSE; 2292 2293 connmgr_sndrel(cm_entry); 2294 delay(drv_usectohz(1000000)); 2295 2296 mutex_enter(&connmgr_lock); 2297 } 2298 2299 /* 2300 * If we need to send a T_DISCON_REQ, send one. 2301 */ 2302 connmgr_dis_and_wait(cm_entry); 2303 2304 mutex_exit(&connmgr_lock); 2305 2306 bzero(&call, sizeof (call)); 2307 cv_init(&call.call_cv, NULL, CV_DEFAULT, NULL); 2308 2309 connected = connmgr_connect(cm_entry, cm_entry->x_wq, 2310 destaddr, addrfmly, &call, &cm_entry->x_tidu_size, 2311 reconnect, waitp, nosignal, cr); 2312 2313 *rpcerr = call.call_err; 2314 cv_destroy(&call.call_cv); 2315 2316 mutex_enter(&connmgr_lock); 2317 2318 2319 if (cm_entry->x_early_disc) { 2320 /* 2321 * We need to check if a disconnect request has come 2322 * while we are connected, if so, then we need to 2323 * set rpcerr->re_status appropriately before returning 2324 * NULL to caller. 2325 */ 2326 if (rpcerr->re_status == RPC_SUCCESS) 2327 rpcerr->re_status = RPC_XPRTFAILED; 2328 cm_entry->x_connected = FALSE; 2329 } else 2330 cm_entry->x_connected = connected; 2331 2332 /* 2333 * There could be a discrepancy here such that 2334 * x_early_disc is TRUE yet connected is TRUE as well 2335 * and the connection is actually connected. In that case 2336 * lets be conservative and declare the connection as not 2337 * connected. 2338 */ 2339 2340 cm_entry->x_early_disc = FALSE; 2341 cm_entry->x_needdis = (cm_entry->x_connected == FALSE); 2342 2343 2344 /* 2345 * connmgr_connect() may have given up before the connection 2346 * actually timed out. So ensure that before the next 2347 * connection attempt we do a disconnect. 2348 */ 2349 cm_entry->x_ctime = lbolt; 2350 cm_entry->x_thread = FALSE; 2351 2352 cv_broadcast(&cm_entry->x_conn_cv); 2353 2354 if (cm_entry->x_connected == FALSE) { 2355 mutex_exit(&connmgr_lock); 2356 connmgr_release(cm_entry); 2357 return (NULL); 2358 } 2359 } 2360 2361 if (srcaddr != NULL) { 2362 /* 2363 * Copy into the handle the 2364 * source address of the 2365 * connection, which we will use 2366 * in case of a later retry. 2367 */ 2368 if (srcaddr->len != cm_entry->x_src.len) { 2369 if (srcaddr->maxlen > 0) 2370 kmem_free(srcaddr->buf, srcaddr->maxlen); 2371 srcaddr->buf = kmem_zalloc(cm_entry->x_src.len, 2372 KM_SLEEP); 2373 srcaddr->maxlen = srcaddr->len = 2374 cm_entry->x_src.len; 2375 } 2376 bcopy(cm_entry->x_src.buf, srcaddr->buf, srcaddr->len); 2377 } 2378 cm_entry->x_time = lbolt; 2379 mutex_exit(&connmgr_lock); 2380 return (cm_entry); 2381 } 2382 2383 /* 2384 * If we need to send a T_DISCON_REQ, send one. 2385 */ 2386 static void 2387 connmgr_dis_and_wait(struct cm_xprt *cm_entry) 2388 { 2389 ASSERT(MUTEX_HELD(&connmgr_lock)); 2390 for (;;) { 2391 while (cm_entry->x_needdis == TRUE) { 2392 RPCLOG(8, "connmgr_dis_and_wait: need " 2393 "T_DISCON_REQ for connection 0x%p\n", 2394 (void *)cm_entry); 2395 cm_entry->x_needdis = FALSE; 2396 cm_entry->x_waitdis = TRUE; 2397 2398 connmgr_snddis(cm_entry); 2399 2400 mutex_enter(&connmgr_lock); 2401 } 2402 2403 if (cm_entry->x_waitdis == TRUE) { 2404 clock_t curlbolt; 2405 clock_t timout; 2406 2407 RPCLOG(8, "connmgr_dis_and_wait waiting for " 2408 "T_DISCON_REQ's ACK for connection %p\n", 2409 (void *)cm_entry); 2410 curlbolt = ddi_get_lbolt(); 2411 2412 timout = clnt_cots_min_conntout * 2413 drv_usectohz(1000000) + curlbolt; 2414 2415 /* 2416 * The TPI spec says that the T_DISCON_REQ 2417 * will get acknowledged, but in practice 2418 * the ACK may never get sent. So don't 2419 * block forever. 2420 */ 2421 (void) cv_timedwait(&cm_entry->x_dis_cv, 2422 &connmgr_lock, timout); 2423 } 2424 /* 2425 * If we got the ACK, break. If we didn't, 2426 * then send another T_DISCON_REQ. 2427 */ 2428 if (cm_entry->x_waitdis == FALSE) { 2429 break; 2430 } else { 2431 RPCLOG(8, "connmgr_dis_and_wait: did" 2432 "not get T_DISCON_REQ's ACK for " 2433 "connection %p\n", (void *)cm_entry); 2434 cm_entry->x_needdis = TRUE; 2435 } 2436 } 2437 } 2438 2439 static void 2440 connmgr_cancelconn(struct cm_xprt *cm_entry) 2441 { 2442 /* 2443 * Mark the connection table entry as dead; the next thread that 2444 * goes through connmgr_release() will notice this and deal with it. 2445 */ 2446 mutex_enter(&connmgr_lock); 2447 cm_entry->x_dead = TRUE; 2448 2449 /* 2450 * Notify any threads waiting for the connection that it isn't 2451 * going to happen. 2452 */ 2453 cm_entry->x_thread = FALSE; 2454 cv_broadcast(&cm_entry->x_conn_cv); 2455 mutex_exit(&connmgr_lock); 2456 2457 connmgr_release(cm_entry); 2458 } 2459 2460 static void 2461 connmgr_close(struct cm_xprt *cm_entry) 2462 { 2463 mutex_enter(&cm_entry->x_lock); 2464 while (cm_entry->x_ref != 0) { 2465 /* 2466 * Must be a noninterruptible wait. 2467 */ 2468 cv_wait(&cm_entry->x_cv, &cm_entry->x_lock); 2469 } 2470 2471 if (cm_entry->x_tiptr != NULL) 2472 (void) t_kclose(cm_entry->x_tiptr, 1); 2473 2474 mutex_exit(&cm_entry->x_lock); 2475 if (cm_entry->x_ksp != NULL) { 2476 mutex_enter(&connmgr_lock); 2477 cm_entry->x_ksp->ks_private = NULL; 2478 mutex_exit(&connmgr_lock); 2479 2480 /* 2481 * Must free the buffer we allocated for the 2482 * server address in the update function 2483 */ 2484 if (((struct cm_kstat_xprt *)(cm_entry->x_ksp->ks_data))-> 2485 x_server.value.str.addr.ptr != NULL) 2486 kmem_free(((struct cm_kstat_xprt *)(cm_entry->x_ksp-> 2487 ks_data))->x_server.value.str.addr.ptr, 2488 INET6_ADDRSTRLEN); 2489 kmem_free(cm_entry->x_ksp->ks_data, 2490 cm_entry->x_ksp->ks_data_size); 2491 kstat_delete(cm_entry->x_ksp); 2492 } 2493 2494 mutex_destroy(&cm_entry->x_lock); 2495 cv_destroy(&cm_entry->x_cv); 2496 cv_destroy(&cm_entry->x_conn_cv); 2497 cv_destroy(&cm_entry->x_dis_cv); 2498 2499 if (cm_entry->x_server.buf != NULL) 2500 kmem_free(cm_entry->x_server.buf, cm_entry->x_server.maxlen); 2501 if (cm_entry->x_src.buf != NULL) 2502 kmem_free(cm_entry->x_src.buf, cm_entry->x_src.maxlen); 2503 kmem_free(cm_entry, sizeof (struct cm_xprt)); 2504 } 2505 2506 /* 2507 * Called by KRPC after sending the call message to release the connection 2508 * it was using. 2509 */ 2510 static void 2511 connmgr_release(struct cm_xprt *cm_entry) 2512 { 2513 mutex_enter(&cm_entry->x_lock); 2514 cm_entry->x_ref--; 2515 if (cm_entry->x_ref == 0) 2516 cv_signal(&cm_entry->x_cv); 2517 mutex_exit(&cm_entry->x_lock); 2518 } 2519 2520 /* 2521 * Given an open stream, connect to the remote. Returns true if connected, 2522 * false otherwise. 2523 */ 2524 static bool_t 2525 connmgr_connect( 2526 struct cm_xprt *cm_entry, 2527 queue_t *wq, 2528 struct netbuf *addr, 2529 int addrfmly, 2530 calllist_t *e, 2531 int *tidu_ptr, 2532 bool_t reconnect, 2533 const struct timeval *waitp, 2534 bool_t nosignal, 2535 cred_t *cr) 2536 { 2537 mblk_t *mp; 2538 struct T_conn_req *tcr; 2539 struct T_info_ack *tinfo; 2540 int interrupted, error; 2541 int tidu_size, kstat_instance; 2542 2543 /* if it's a reconnect, flush any lingering data messages */ 2544 if (reconnect) 2545 (void) putctl1(wq, M_FLUSH, FLUSHRW); 2546 2547 /* 2548 * Note: if the receiver uses SCM_UCRED/getpeerucred the pid will 2549 * appear as -1. 2550 */ 2551 mp = allocb_cred(sizeof (*tcr) + addr->len, cr, NOPID); 2552 if (mp == NULL) { 2553 /* 2554 * This is unfortunate, but we need to look up the stats for 2555 * this zone to increment the "memory allocation failed" 2556 * counter. curproc->p_zone is safe since we're initiating a 2557 * connection and not in some strange streams context. 2558 */ 2559 struct rpcstat *rpcstat; 2560 2561 rpcstat = zone_getspecific(rpcstat_zone_key, rpc_zone()); 2562 ASSERT(rpcstat != NULL); 2563 2564 RPCLOG0(1, "connmgr_connect: cannot alloc mp for " 2565 "sending conn request\n"); 2566 COTSRCSTAT_INCR(rpcstat->rpc_cots_client, rcnomem); 2567 e->call_status = RPC_SYSTEMERROR; 2568 e->call_reason = ENOSR; 2569 return (FALSE); 2570 } 2571 2572 mp->b_datap->db_type = M_PROTO; 2573 tcr = (struct T_conn_req *)mp->b_rptr; 2574 bzero(tcr, sizeof (*tcr)); 2575 tcr->PRIM_type = T_CONN_REQ; 2576 tcr->DEST_length = addr->len; 2577 tcr->DEST_offset = sizeof (struct T_conn_req); 2578 mp->b_wptr = mp->b_rptr + sizeof (*tcr); 2579 2580 bcopy(addr->buf, mp->b_wptr, tcr->DEST_length); 2581 mp->b_wptr += tcr->DEST_length; 2582 2583 RPCLOG(8, "connmgr_connect: sending conn request on queue " 2584 "%p", (void *)wq); 2585 RPCLOG(8, " call %p\n", (void *)wq); 2586 /* 2587 * We use the entry in the handle that is normally used for 2588 * waiting for RPC replies to wait for the connection accept. 2589 */ 2590 if (clnt_dispatch_send(wq, mp, e, 0, 0) != RPC_SUCCESS) { 2591 DTRACE_PROBE(krpc__e__connmgr__connect__cantsend); 2592 freemsg(mp); 2593 return (FALSE); 2594 } 2595 2596 mutex_enter(&clnt_pending_lock); 2597 2598 /* 2599 * We wait for the transport connection to be made, or an 2600 * indication that it could not be made. 2601 */ 2602 interrupted = 0; 2603 2604 /* 2605 * waitforack should have been called with T_OK_ACK, but the 2606 * present implementation needs to be passed T_INFO_ACK to 2607 * work correctly. 2608 */ 2609 error = waitforack(e, T_INFO_ACK, waitp, nosignal); 2610 if (error == EINTR) 2611 interrupted = 1; 2612 if (zone_status_get(curproc->p_zone) >= ZONE_IS_EMPTY) { 2613 /* 2614 * No time to lose; we essentially have been signaled to 2615 * quit. 2616 */ 2617 interrupted = 1; 2618 } 2619 #ifdef RPCDEBUG 2620 if (error == ETIME) 2621 RPCLOG0(8, "connmgr_connect: giving up " 2622 "on connection attempt; " 2623 "clnt_dispatch notifyconn " 2624 "diagnostic 'no one waiting for " 2625 "connection' should not be " 2626 "unexpected\n"); 2627 #endif 2628 if (e->call_prev) 2629 e->call_prev->call_next = e->call_next; 2630 else 2631 clnt_pending = e->call_next; 2632 if (e->call_next) 2633 e->call_next->call_prev = e->call_prev; 2634 mutex_exit(&clnt_pending_lock); 2635 2636 if (e->call_status != RPC_SUCCESS || error != 0) { 2637 if (interrupted) 2638 e->call_status = RPC_INTR; 2639 else if (error == ETIME) 2640 e->call_status = RPC_TIMEDOUT; 2641 else if (error == EPROTO) 2642 e->call_status = RPC_SYSTEMERROR; 2643 2644 RPCLOG(8, "connmgr_connect: can't connect, status: " 2645 "%s\n", clnt_sperrno(e->call_status)); 2646 2647 if (e->call_reply) { 2648 freemsg(e->call_reply); 2649 e->call_reply = NULL; 2650 } 2651 2652 return (FALSE); 2653 } 2654 /* 2655 * The result of the "connection accept" is a T_info_ack 2656 * in the call_reply field. 2657 */ 2658 ASSERT(e->call_reply != NULL); 2659 mp = e->call_reply; 2660 e->call_reply = NULL; 2661 tinfo = (struct T_info_ack *)mp->b_rptr; 2662 2663 tidu_size = tinfo->TIDU_size; 2664 tidu_size -= (tidu_size % BYTES_PER_XDR_UNIT); 2665 if (tidu_size > COTS_DEFAULT_ALLOCSIZE || (tidu_size <= 0)) 2666 tidu_size = COTS_DEFAULT_ALLOCSIZE; 2667 *tidu_ptr = tidu_size; 2668 2669 freemsg(mp); 2670 2671 /* 2672 * Set up the pertinent options. NODELAY is so the transport doesn't 2673 * buffer up RPC messages on either end. This may not be valid for 2674 * all transports. Failure to set this option is not cause to 2675 * bail out so we return success anyway. Note that lack of NODELAY 2676 * or some other way to flush the message on both ends will cause 2677 * lots of retries and terrible performance. 2678 */ 2679 if (addrfmly == AF_INET || addrfmly == AF_INET6) { 2680 (void) connmgr_setopt(wq, IPPROTO_TCP, TCP_NODELAY, e, cr); 2681 if (e->call_status == RPC_XPRTFAILED) 2682 return (FALSE); 2683 } 2684 2685 /* 2686 * Since we have a connection, we now need to figure out if 2687 * we need to create a kstat. If x_ksp is not NULL then we 2688 * are reusing a connection and so we do not need to create 2689 * another kstat -- lets just return. 2690 */ 2691 if (cm_entry->x_ksp != NULL) 2692 return (TRUE); 2693 2694 /* 2695 * We need to increment rpc_kstat_instance atomically to prevent 2696 * two kstats being created with the same instance. 2697 */ 2698 kstat_instance = atomic_add_32_nv((uint32_t *)&rpc_kstat_instance, 1); 2699 2700 if ((cm_entry->x_ksp = kstat_create_zone("unix", kstat_instance, 2701 "rpc_cots_connections", "rpc", KSTAT_TYPE_NAMED, 2702 (uint_t)(sizeof (cm_kstat_xprt_t) / sizeof (kstat_named_t)), 2703 KSTAT_FLAG_VIRTUAL, cm_entry->x_zoneid)) == NULL) { 2704 return (TRUE); 2705 } 2706 2707 cm_entry->x_ksp->ks_lock = &connmgr_lock; 2708 cm_entry->x_ksp->ks_private = cm_entry; 2709 cm_entry->x_ksp->ks_data_size = ((INET6_ADDRSTRLEN * sizeof (char)) 2710 + sizeof (cm_kstat_template)); 2711 cm_entry->x_ksp->ks_data = kmem_alloc(cm_entry->x_ksp->ks_data_size, 2712 KM_SLEEP); 2713 bcopy(&cm_kstat_template, cm_entry->x_ksp->ks_data, 2714 cm_entry->x_ksp->ks_data_size); 2715 ((struct cm_kstat_xprt *)(cm_entry->x_ksp->ks_data))-> 2716 x_server.value.str.addr.ptr = 2717 kmem_alloc(INET6_ADDRSTRLEN, KM_SLEEP); 2718 2719 cm_entry->x_ksp->ks_update = conn_kstat_update; 2720 kstat_install(cm_entry->x_ksp); 2721 return (TRUE); 2722 } 2723 2724 /* 2725 * Called by connmgr_connect to set an option on the new stream. 2726 */ 2727 static bool_t 2728 connmgr_setopt(queue_t *wq, int level, int name, calllist_t *e, cred_t *cr) 2729 { 2730 mblk_t *mp; 2731 struct opthdr *opt; 2732 struct T_optmgmt_req *tor; 2733 struct timeval waitp; 2734 int error; 2735 2736 mp = allocb_cred(sizeof (struct T_optmgmt_req) + 2737 sizeof (struct opthdr) + sizeof (int), cr, NOPID); 2738 if (mp == NULL) { 2739 RPCLOG0(1, "connmgr_setopt: cannot alloc mp for option " 2740 "request\n"); 2741 return (FALSE); 2742 } 2743 2744 mp->b_datap->db_type = M_PROTO; 2745 tor = (struct T_optmgmt_req *)(mp->b_rptr); 2746 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 2747 tor->MGMT_flags = T_NEGOTIATE; 2748 tor->OPT_length = sizeof (struct opthdr) + sizeof (int); 2749 tor->OPT_offset = sizeof (struct T_optmgmt_req); 2750 2751 opt = (struct opthdr *)(mp->b_rptr + sizeof (struct T_optmgmt_req)); 2752 opt->level = level; 2753 opt->name = name; 2754 opt->len = sizeof (int); 2755 *(int *)((char *)opt + sizeof (*opt)) = 1; 2756 mp->b_wptr += sizeof (struct T_optmgmt_req) + sizeof (struct opthdr) + 2757 sizeof (int); 2758 2759 /* 2760 * We will use this connection regardless 2761 * of whether or not the option is settable. 2762 */ 2763 if (clnt_dispatch_send(wq, mp, e, 0, 0) != RPC_SUCCESS) { 2764 DTRACE_PROBE(krpc__e__connmgr__setopt__cantsend); 2765 freemsg(mp); 2766 return (FALSE); 2767 } 2768 2769 mutex_enter(&clnt_pending_lock); 2770 2771 waitp.tv_sec = clnt_cots_min_conntout; 2772 waitp.tv_usec = 0; 2773 error = waitforack(e, T_OPTMGMT_ACK, &waitp, 1); 2774 2775 if (e->call_prev) 2776 e->call_prev->call_next = e->call_next; 2777 else 2778 clnt_pending = e->call_next; 2779 if (e->call_next) 2780 e->call_next->call_prev = e->call_prev; 2781 mutex_exit(&clnt_pending_lock); 2782 2783 if (e->call_reply != NULL) { 2784 freemsg(e->call_reply); 2785 e->call_reply = NULL; 2786 } 2787 2788 if (e->call_status != RPC_SUCCESS || error != 0) { 2789 RPCLOG(1, "connmgr_setopt: can't set option: %d\n", name); 2790 return (FALSE); 2791 } 2792 RPCLOG(8, "connmgr_setopt: successfully set option: %d\n", name); 2793 return (TRUE); 2794 } 2795 2796 #ifdef DEBUG 2797 2798 /* 2799 * This is a knob to let us force code coverage in allocation failure 2800 * case. 2801 */ 2802 static int connmgr_failsnd; 2803 #define CONN_SND_ALLOC(Size, Pri) \ 2804 ((connmgr_failsnd-- > 0) ? NULL : allocb(Size, Pri)) 2805 2806 #else 2807 2808 #define CONN_SND_ALLOC(Size, Pri) allocb(Size, Pri) 2809 2810 #endif 2811 2812 /* 2813 * Sends an orderly release on the specified queue. 2814 * Entered with connmgr_lock. Exited without connmgr_lock 2815 */ 2816 static void 2817 connmgr_sndrel(struct cm_xprt *cm_entry) 2818 { 2819 struct T_ordrel_req *torr; 2820 mblk_t *mp; 2821 queue_t *q = cm_entry->x_wq; 2822 ASSERT(MUTEX_HELD(&connmgr_lock)); 2823 mp = CONN_SND_ALLOC(sizeof (struct T_ordrel_req), BPRI_LO); 2824 if (mp == NULL) { 2825 cm_entry->x_needrel = TRUE; 2826 mutex_exit(&connmgr_lock); 2827 RPCLOG(1, "connmgr_sndrel: cannot alloc mp for sending ordrel " 2828 "to queue %p\n", (void *)q); 2829 return; 2830 } 2831 mutex_exit(&connmgr_lock); 2832 2833 mp->b_datap->db_type = M_PROTO; 2834 torr = (struct T_ordrel_req *)(mp->b_rptr); 2835 torr->PRIM_type = T_ORDREL_REQ; 2836 mp->b_wptr = mp->b_rptr + sizeof (struct T_ordrel_req); 2837 2838 RPCLOG(8, "connmgr_sndrel: sending ordrel to queue %p\n", (void *)q); 2839 put(q, mp); 2840 } 2841 2842 /* 2843 * Sends an disconnect on the specified queue. 2844 * Entered with connmgr_lock. Exited without connmgr_lock 2845 */ 2846 static void 2847 connmgr_snddis(struct cm_xprt *cm_entry) 2848 { 2849 struct T_discon_req *tdis; 2850 mblk_t *mp; 2851 queue_t *q = cm_entry->x_wq; 2852 2853 ASSERT(MUTEX_HELD(&connmgr_lock)); 2854 mp = CONN_SND_ALLOC(sizeof (*tdis), BPRI_LO); 2855 if (mp == NULL) { 2856 cm_entry->x_needdis = TRUE; 2857 mutex_exit(&connmgr_lock); 2858 RPCLOG(1, "connmgr_snddis: cannot alloc mp for sending discon " 2859 "to queue %p\n", (void *)q); 2860 return; 2861 } 2862 mutex_exit(&connmgr_lock); 2863 2864 mp->b_datap->db_type = M_PROTO; 2865 tdis = (struct T_discon_req *)mp->b_rptr; 2866 tdis->PRIM_type = T_DISCON_REQ; 2867 mp->b_wptr = mp->b_rptr + sizeof (*tdis); 2868 2869 RPCLOG(8, "connmgr_snddis: sending discon to queue %p\n", (void *)q); 2870 put(q, mp); 2871 } 2872 2873 /* 2874 * Sets up the entry for receiving replies, and calls rpcmod's write put proc 2875 * (through put) to send the call. 2876 */ 2877 static int 2878 clnt_dispatch_send(queue_t *q, mblk_t *mp, calllist_t *e, uint_t xid, 2879 uint_t queue_flag) 2880 { 2881 ASSERT(e != NULL); 2882 2883 e->call_status = RPC_TIMEDOUT; /* optimistic, eh? */ 2884 e->call_reason = 0; 2885 e->call_wq = q; 2886 e->call_xid = xid; 2887 e->call_notified = FALSE; 2888 2889 if (!canput(q)) { 2890 e->call_status = RPC_CANTSEND; 2891 e->call_reason = EIO; 2892 return (RPC_CANTSEND); 2893 } 2894 2895 /* 2896 * If queue_flag is set then the calllist_t is already on the hash 2897 * queue. In this case just send the message and return. 2898 */ 2899 if (queue_flag) { 2900 put(q, mp); 2901 return (RPC_SUCCESS); 2902 2903 } 2904 2905 /* 2906 * Set up calls for RPC requests (with XID != 0) on the hash 2907 * queue for fast lookups and place other calls (i.e. 2908 * connection management) on the linked list. 2909 */ 2910 if (xid != 0) { 2911 RPCLOG(64, "clnt_dispatch_send: putting xid 0x%x on " 2912 "dispatch list\n", xid); 2913 e->call_hash = call_hash(xid, clnt_cots_hash_size); 2914 e->call_bucket = &cots_call_ht[e->call_hash]; 2915 call_table_enter(e); 2916 } else { 2917 mutex_enter(&clnt_pending_lock); 2918 if (clnt_pending) 2919 clnt_pending->call_prev = e; 2920 e->call_next = clnt_pending; 2921 e->call_prev = NULL; 2922 clnt_pending = e; 2923 mutex_exit(&clnt_pending_lock); 2924 } 2925 2926 put(q, mp); 2927 return (RPC_SUCCESS); 2928 } 2929 2930 /* 2931 * Called by rpcmod to notify a client with a clnt_pending call that its reply 2932 * has arrived. If we can't find a client waiting for this reply, we log 2933 * the error and return. 2934 */ 2935 bool_t 2936 clnt_dispatch_notify(mblk_t *mp, zoneid_t zoneid) 2937 { 2938 calllist_t *e = NULL; 2939 call_table_t *chtp; 2940 uint32_t xid; 2941 uint_t hash; 2942 2943 if ((IS_P2ALIGNED(mp->b_rptr, sizeof (uint32_t))) && 2944 (mp->b_wptr - mp->b_rptr) >= sizeof (xid)) 2945 xid = *((uint32_t *)mp->b_rptr); 2946 else { 2947 int i = 0; 2948 unsigned char *p = (unsigned char *)&xid; 2949 unsigned char *rptr; 2950 mblk_t *tmp = mp; 2951 2952 /* 2953 * Copy the xid, byte-by-byte into xid. 2954 */ 2955 while (tmp) { 2956 rptr = tmp->b_rptr; 2957 while (rptr < tmp->b_wptr) { 2958 *p++ = *rptr++; 2959 if (++i >= sizeof (xid)) 2960 goto done_xid_copy; 2961 } 2962 tmp = tmp->b_cont; 2963 } 2964 2965 /* 2966 * If we got here, we ran out of mblk space before the 2967 * xid could be copied. 2968 */ 2969 ASSERT(tmp == NULL && i < sizeof (xid)); 2970 2971 RPCLOG0(1, 2972 "clnt_dispatch_notify: message less than size of xid\n"); 2973 return (FALSE); 2974 2975 } 2976 done_xid_copy: 2977 2978 hash = call_hash(xid, clnt_cots_hash_size); 2979 chtp = &cots_call_ht[hash]; 2980 /* call_table_find returns with the hash bucket locked */ 2981 call_table_find(chtp, xid, e); 2982 2983 if (e != NULL) { 2984 /* 2985 * Found thread waiting for this reply 2986 */ 2987 mutex_enter(&e->call_lock); 2988 2989 /* 2990 * verify that the reply is coming in on 2991 * the same zone that it was sent from. 2992 */ 2993 if (e->call_zoneid != zoneid) { 2994 mutex_exit(&e->call_lock); 2995 mutex_exit(&chtp->ct_lock); 2996 return (FALSE); 2997 } 2998 2999 if (e->call_reply) 3000 /* 3001 * This can happen under the following scenario: 3002 * clnt_cots_kcallit() times out on the response, 3003 * rfscall() repeats the CLNT_CALL() with 3004 * the same xid, clnt_cots_kcallit() sends the retry, 3005 * thereby putting the clnt handle on the pending list, 3006 * the first response arrives, signalling the thread 3007 * in clnt_cots_kcallit(). Before that thread is 3008 * dispatched, the second response arrives as well, 3009 * and clnt_dispatch_notify still finds the handle on 3010 * the pending list, with call_reply set. So free the 3011 * old reply now. 3012 * 3013 * It is also possible for a response intended for 3014 * an RPC call with a different xid to reside here. 3015 * This can happen if the thread that owned this 3016 * client handle prior to the current owner bailed 3017 * out and left its call record on the dispatch 3018 * queue. A window exists where the response can 3019 * arrive before the current owner dispatches its 3020 * RPC call. 3021 * 3022 * In any case, this is the very last point where we 3023 * can safely check the call_reply field before 3024 * placing the new response there. 3025 */ 3026 freemsg(e->call_reply); 3027 e->call_reply = mp; 3028 e->call_status = RPC_SUCCESS; 3029 e->call_notified = TRUE; 3030 cv_signal(&e->call_cv); 3031 mutex_exit(&e->call_lock); 3032 mutex_exit(&chtp->ct_lock); 3033 return (TRUE); 3034 } else { 3035 zone_t *zone; 3036 struct rpcstat *rpcstat; 3037 3038 mutex_exit(&chtp->ct_lock); 3039 RPCLOG(65, "clnt_dispatch_notify: no caller for reply 0x%x\n", 3040 xid); 3041 /* 3042 * This is unfortunate, but we need to lookup the zone so we 3043 * can increment its "rcbadxids" counter. 3044 */ 3045 zone = zone_find_by_id(zoneid); 3046 if (zone == NULL) { 3047 /* 3048 * The zone went away... 3049 */ 3050 return (FALSE); 3051 } 3052 rpcstat = zone_getspecific(rpcstat_zone_key, zone); 3053 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 3054 /* 3055 * Not interested 3056 */ 3057 zone_rele(zone); 3058 return (FALSE); 3059 } 3060 COTSRCSTAT_INCR(rpcstat->rpc_cots_client, rcbadxids); 3061 zone_rele(zone); 3062 } 3063 return (FALSE); 3064 } 3065 3066 /* 3067 * Called by rpcmod when a non-data indication arrives. The ones in which we 3068 * are interested are connection indications and options acks. We dispatch 3069 * based on the queue the indication came in on. If we are not interested in 3070 * what came in, we return false to rpcmod, who will then pass it upstream. 3071 */ 3072 bool_t 3073 clnt_dispatch_notifyconn(queue_t *q, mblk_t *mp) 3074 { 3075 calllist_t *e; 3076 int type; 3077 3078 ASSERT((q->q_flag & QREADR) == 0); 3079 3080 type = ((union T_primitives *)mp->b_rptr)->type; 3081 RPCLOG(8, "clnt_dispatch_notifyconn: prim type: [%s]\n", 3082 rpc_tpiprim2name(type)); 3083 mutex_enter(&clnt_pending_lock); 3084 for (e = clnt_pending; /* NO CONDITION */; e = e->call_next) { 3085 if (e == NULL) { 3086 mutex_exit(&clnt_pending_lock); 3087 RPCLOG(1, "clnt_dispatch_notifyconn: no one waiting " 3088 "for connection on queue 0x%p\n", (void *)q); 3089 return (FALSE); 3090 } 3091 if (e->call_wq == q) 3092 break; 3093 } 3094 3095 switch (type) { 3096 case T_CONN_CON: 3097 /* 3098 * The transport is now connected, send a T_INFO_REQ to get 3099 * the tidu size. 3100 */ 3101 mutex_exit(&clnt_pending_lock); 3102 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 3103 sizeof (struct T_info_req)); 3104 mp->b_rptr = mp->b_datap->db_base; 3105 ((union T_primitives *)mp->b_rptr)->type = T_INFO_REQ; 3106 mp->b_wptr = mp->b_rptr + sizeof (struct T_info_req); 3107 mp->b_datap->db_type = M_PCPROTO; 3108 put(q, mp); 3109 return (TRUE); 3110 case T_INFO_ACK: 3111 case T_OPTMGMT_ACK: 3112 e->call_status = RPC_SUCCESS; 3113 e->call_reply = mp; 3114 e->call_notified = TRUE; 3115 cv_signal(&e->call_cv); 3116 break; 3117 case T_ERROR_ACK: 3118 e->call_status = RPC_CANTCONNECT; 3119 e->call_reply = mp; 3120 e->call_notified = TRUE; 3121 cv_signal(&e->call_cv); 3122 break; 3123 case T_OK_ACK: 3124 /* 3125 * Great, but we are really waiting for a T_CONN_CON 3126 */ 3127 freemsg(mp); 3128 break; 3129 default: 3130 mutex_exit(&clnt_pending_lock); 3131 RPCLOG(1, "clnt_dispatch_notifyconn: bad type %d\n", type); 3132 return (FALSE); 3133 } 3134 3135 mutex_exit(&clnt_pending_lock); 3136 return (TRUE); 3137 } 3138 3139 /* 3140 * Called by rpcmod when the transport is (or should be) going away. Informs 3141 * all callers waiting for replies and marks the entry in the connection 3142 * manager's list as unconnected, and either closing (close handshake in 3143 * progress) or dead. 3144 */ 3145 void 3146 clnt_dispatch_notifyall(queue_t *q, int32_t msg_type, int32_t reason) 3147 { 3148 calllist_t *e; 3149 call_table_t *ctp; 3150 struct cm_xprt *cm_entry; 3151 int have_connmgr_lock; 3152 int i; 3153 3154 ASSERT((q->q_flag & QREADR) == 0); 3155 3156 RPCLOG(1, "clnt_dispatch_notifyall on queue %p", (void *)q); 3157 RPCLOG(1, " received a notifcation prim type [%s]", 3158 rpc_tpiprim2name(msg_type)); 3159 RPCLOG(1, " and reason %d\n", reason); 3160 3161 /* 3162 * Find the transport entry in the connection manager's list, close 3163 * the transport and delete the entry. In the case where rpcmod's 3164 * idle timer goes off, it sends us a T_ORDREL_REQ, indicating we 3165 * should gracefully close the connection. 3166 */ 3167 have_connmgr_lock = 1; 3168 mutex_enter(&connmgr_lock); 3169 for (cm_entry = cm_hd; cm_entry; cm_entry = cm_entry->x_next) { 3170 ASSERT(cm_entry != cm_entry->x_next); 3171 if (cm_entry->x_wq == q) { 3172 ASSERT(MUTEX_HELD(&connmgr_lock)); 3173 ASSERT(have_connmgr_lock == 1); 3174 switch (msg_type) { 3175 case T_ORDREL_REQ: 3176 3177 if (cm_entry->x_dead) { 3178 RPCLOG(1, "idle timeout on dead " 3179 "connection: %p\n", 3180 (void *)cm_entry); 3181 if (clnt_stop_idle != NULL) 3182 (*clnt_stop_idle)(q); 3183 break; 3184 } 3185 3186 /* 3187 * Only mark the connection as dead if it is 3188 * connected and idle. 3189 * An unconnected connection has probably 3190 * gone idle because the server is down, 3191 * and when it comes back up there will be 3192 * retries that need to use that connection. 3193 */ 3194 if (cm_entry->x_connected || 3195 cm_entry->x_doomed) { 3196 if (cm_entry->x_ordrel) { 3197 if (cm_entry->x_closing == 3198 TRUE) { 3199 /* 3200 * The connection is 3201 * obviously wedged due 3202 * to a bug or problem 3203 * with the transport. 3204 * Mark it as dead. 3205 * Otherwise we can 3206 * leak connections. 3207 */ 3208 cm_entry->x_dead = TRUE; 3209 mutex_exit( 3210 &connmgr_lock); 3211 have_connmgr_lock = 0; 3212 if (clnt_stop_idle != 3213 NULL) 3214 (*clnt_stop_idle)(q); 3215 break; 3216 } 3217 cm_entry->x_closing = TRUE; 3218 connmgr_sndrel(cm_entry); 3219 have_connmgr_lock = 0; 3220 } else { 3221 cm_entry->x_dead = TRUE; 3222 mutex_exit(&connmgr_lock); 3223 have_connmgr_lock = 0; 3224 if (clnt_stop_idle != NULL) 3225 (*clnt_stop_idle)(q); 3226 } 3227 } else { 3228 /* 3229 * We don't mark the connection 3230 * as dead, but we turn off the 3231 * idle timer. 3232 */ 3233 mutex_exit(&connmgr_lock); 3234 have_connmgr_lock = 0; 3235 if (clnt_stop_idle != NULL) 3236 (*clnt_stop_idle)(q); 3237 RPCLOG(1, "clnt_dispatch_notifyall:" 3238 " ignoring timeout from rpcmod" 3239 " (q %p) because we are not " 3240 " connected\n", (void *)q); 3241 } 3242 break; 3243 case T_ORDREL_IND: 3244 /* 3245 * If this entry is marked closing, then we are 3246 * completing a close handshake, and the 3247 * connection is dead. Otherwise, the server is 3248 * trying to close. Since the server will not 3249 * be sending any more RPC replies, we abort 3250 * the connection, including flushing 3251 * any RPC requests that are in-transit. 3252 * In either case, mark the entry as dead so 3253 * that it can be closed by the connection 3254 * manager's garbage collector. 3255 */ 3256 cm_entry->x_dead = TRUE; 3257 if (cm_entry->x_closing) { 3258 mutex_exit(&connmgr_lock); 3259 have_connmgr_lock = 0; 3260 if (clnt_stop_idle != NULL) 3261 (*clnt_stop_idle)(q); 3262 } else { 3263 /* 3264 * if we're getting a disconnect 3265 * before we've finished our 3266 * connect attempt, mark it for 3267 * later processing 3268 */ 3269 if (cm_entry->x_thread) 3270 cm_entry->x_early_disc = TRUE; 3271 else 3272 cm_entry->x_connected = FALSE; 3273 cm_entry->x_waitdis = TRUE; 3274 connmgr_snddis(cm_entry); 3275 have_connmgr_lock = 0; 3276 } 3277 break; 3278 3279 case T_ERROR_ACK: 3280 case T_OK_ACK: 3281 cm_entry->x_waitdis = FALSE; 3282 cv_signal(&cm_entry->x_dis_cv); 3283 mutex_exit(&connmgr_lock); 3284 return; 3285 3286 case T_DISCON_REQ: 3287 if (cm_entry->x_thread) 3288 cm_entry->x_early_disc = TRUE; 3289 else 3290 cm_entry->x_connected = FALSE; 3291 cm_entry->x_waitdis = TRUE; 3292 3293 connmgr_snddis(cm_entry); 3294 have_connmgr_lock = 0; 3295 break; 3296 3297 case T_DISCON_IND: 3298 default: 3299 /* 3300 * if we're getting a disconnect before 3301 * we've finished our connect attempt, 3302 * mark it for later processing 3303 */ 3304 if (cm_entry->x_closing) { 3305 cm_entry->x_dead = TRUE; 3306 mutex_exit(&connmgr_lock); 3307 have_connmgr_lock = 0; 3308 if (clnt_stop_idle != NULL) 3309 (*clnt_stop_idle)(q); 3310 } else { 3311 if (cm_entry->x_thread) { 3312 cm_entry->x_early_disc = TRUE; 3313 } else { 3314 cm_entry->x_dead = TRUE; 3315 cm_entry->x_connected = FALSE; 3316 } 3317 } 3318 break; 3319 } 3320 break; 3321 } 3322 } 3323 3324 if (have_connmgr_lock) 3325 mutex_exit(&connmgr_lock); 3326 3327 if (msg_type == T_ERROR_ACK || msg_type == T_OK_ACK) { 3328 RPCLOG(1, "clnt_dispatch_notifyall: (wq %p) could not find " 3329 "connmgr entry for discon ack\n", (void *)q); 3330 return; 3331 } 3332 3333 /* 3334 * Then kick all the clnt_pending calls out of their wait. There 3335 * should be no clnt_pending calls in the case of rpcmod's idle 3336 * timer firing. 3337 */ 3338 for (i = 0; i < clnt_cots_hash_size; i++) { 3339 ctp = &cots_call_ht[i]; 3340 mutex_enter(&ctp->ct_lock); 3341 for (e = ctp->ct_call_next; 3342 e != (calllist_t *)ctp; 3343 e = e->call_next) { 3344 if (e->call_wq == q && e->call_notified == FALSE) { 3345 RPCLOG(1, 3346 "clnt_dispatch_notifyall for queue %p ", 3347 (void *)q); 3348 RPCLOG(1, "aborting clnt_pending call %p\n", 3349 (void *)e); 3350 3351 if (msg_type == T_DISCON_IND) 3352 e->call_reason = reason; 3353 e->call_notified = TRUE; 3354 e->call_status = RPC_XPRTFAILED; 3355 cv_signal(&e->call_cv); 3356 } 3357 } 3358 mutex_exit(&ctp->ct_lock); 3359 } 3360 3361 mutex_enter(&clnt_pending_lock); 3362 for (e = clnt_pending; e; e = e->call_next) { 3363 /* 3364 * Only signal those RPC handles that haven't been 3365 * signalled yet. Otherwise we can get a bogus call_reason. 3366 * This can happen if thread A is making a call over a 3367 * connection. If the server is killed, it will cause 3368 * reset, and reason will default to EIO as a result of 3369 * a T_ORDREL_IND. Thread B then attempts to recreate 3370 * the connection but gets a T_DISCON_IND. If we set the 3371 * call_reason code for all threads, then if thread A 3372 * hasn't been dispatched yet, it will get the wrong 3373 * reason. The bogus call_reason can make it harder to 3374 * discriminate between calls that fail because the 3375 * connection attempt failed versus those where the call 3376 * may have been executed on the server. 3377 */ 3378 if (e->call_wq == q && e->call_notified == FALSE) { 3379 RPCLOG(1, "clnt_dispatch_notifyall for queue %p ", 3380 (void *)q); 3381 RPCLOG(1, " aborting clnt_pending call %p\n", 3382 (void *)e); 3383 3384 if (msg_type == T_DISCON_IND) 3385 e->call_reason = reason; 3386 e->call_notified = TRUE; 3387 /* 3388 * Let the caller timeout, else he will retry 3389 * immediately. 3390 */ 3391 e->call_status = RPC_XPRTFAILED; 3392 3393 /* 3394 * We used to just signal those threads 3395 * waiting for a connection, (call_xid = 0). 3396 * That meant that threads waiting for a response 3397 * waited till their timeout expired. This 3398 * could be a long time if they've specified a 3399 * maximum timeout. (2^31 - 1). So we 3400 * Signal all threads now. 3401 */ 3402 cv_signal(&e->call_cv); 3403 } 3404 } 3405 mutex_exit(&clnt_pending_lock); 3406 } 3407 3408 3409 /*ARGSUSED*/ 3410 /* 3411 * after resuming a system that's been suspended for longer than the 3412 * NFS server's idle timeout (svc_idle_timeout for Solaris 2), rfscall() 3413 * generates "NFS server X not responding" and "NFS server X ok" messages; 3414 * here we reset inet connections to cause a re-connect and avoid those 3415 * NFS messages. see 4045054 3416 */ 3417 boolean_t 3418 connmgr_cpr_reset(void *arg, int code) 3419 { 3420 struct cm_xprt *cxp; 3421 3422 if (code == CB_CODE_CPR_CHKPT) 3423 return (B_TRUE); 3424 3425 if (mutex_tryenter(&connmgr_lock) == 0) 3426 return (B_FALSE); 3427 for (cxp = cm_hd; cxp; cxp = cxp->x_next) { 3428 if ((cxp->x_family == AF_INET || cxp->x_family == AF_INET6) && 3429 cxp->x_connected == TRUE) { 3430 if (cxp->x_thread) 3431 cxp->x_early_disc = TRUE; 3432 else 3433 cxp->x_connected = FALSE; 3434 cxp->x_needdis = TRUE; 3435 } 3436 } 3437 mutex_exit(&connmgr_lock); 3438 return (B_TRUE); 3439 } 3440 3441 void 3442 clnt_cots_stats_init(zoneid_t zoneid, struct rpc_cots_client **statsp) 3443 { 3444 3445 *statsp = (struct rpc_cots_client *)rpcstat_zone_init_common(zoneid, 3446 "unix", "rpc_cots_client", (const kstat_named_t *)&cots_rcstat_tmpl, 3447 sizeof (cots_rcstat_tmpl)); 3448 } 3449 3450 void 3451 clnt_cots_stats_fini(zoneid_t zoneid, struct rpc_cots_client **statsp) 3452 { 3453 rpcstat_zone_fini_common(zoneid, "unix", "rpc_cots_client"); 3454 kmem_free(*statsp, sizeof (cots_rcstat_tmpl)); 3455 } 3456 3457 void 3458 clnt_cots_init(void) 3459 { 3460 mutex_init(&connmgr_lock, NULL, MUTEX_DEFAULT, NULL); 3461 mutex_init(&clnt_pending_lock, NULL, MUTEX_DEFAULT, NULL); 3462 3463 if (clnt_cots_hash_size < DEFAULT_MIN_HASH_SIZE) 3464 clnt_cots_hash_size = DEFAULT_MIN_HASH_SIZE; 3465 3466 cots_call_ht = call_table_init(clnt_cots_hash_size); 3467 zone_key_create(&zone_cots_key, NULL, NULL, clnt_zone_destroy); 3468 } 3469 3470 void 3471 clnt_cots_fini(void) 3472 { 3473 (void) zone_key_delete(zone_cots_key); 3474 } 3475 3476 /* 3477 * Wait for TPI ack, returns success only if expected ack is received 3478 * within timeout period. 3479 */ 3480 3481 static int 3482 waitforack(calllist_t *e, t_scalar_t ack_prim, const struct timeval *waitp, 3483 bool_t nosignal) 3484 { 3485 union T_primitives *tpr; 3486 clock_t timout; 3487 int cv_stat = 1; 3488 3489 ASSERT(MUTEX_HELD(&clnt_pending_lock)); 3490 while (e->call_reply == NULL) { 3491 if (waitp != NULL) { 3492 timout = waitp->tv_sec * drv_usectohz(MICROSEC) + 3493 drv_usectohz(waitp->tv_usec) + lbolt; 3494 if (nosignal) 3495 cv_stat = cv_timedwait(&e->call_cv, 3496 &clnt_pending_lock, timout); 3497 else 3498 cv_stat = cv_timedwait_sig(&e->call_cv, 3499 &clnt_pending_lock, timout); 3500 } else { 3501 if (nosignal) 3502 cv_wait(&e->call_cv, &clnt_pending_lock); 3503 else 3504 cv_stat = cv_wait_sig(&e->call_cv, 3505 &clnt_pending_lock); 3506 } 3507 if (cv_stat == -1) 3508 return (ETIME); 3509 if (cv_stat == 0) 3510 return (EINTR); 3511 /* 3512 * if we received an error from the server and we know a reply 3513 * is not going to be sent, do not wait for the full timeout, 3514 * return now. 3515 */ 3516 if (e->call_status == RPC_XPRTFAILED) 3517 return (e->call_reason); 3518 } 3519 tpr = (union T_primitives *)e->call_reply->b_rptr; 3520 if (tpr->type == ack_prim) 3521 return (0); /* Success */ 3522 3523 if (tpr->type == T_ERROR_ACK) { 3524 if (tpr->error_ack.TLI_error == TSYSERR) 3525 return (tpr->error_ack.UNIX_error); 3526 else 3527 return (t_tlitosyserr(tpr->error_ack.TLI_error)); 3528 } 3529 3530 return (EPROTO); /* unknown or unexpected primitive */ 3531 } 3532