1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T 28 * All Rights Reserved 29 */ 30 31 /* 32 * Portions of this source code were derived from Berkeley 4.3 BSD 33 * under license from the Regents of the University of California. 34 */ 35 36 37 /* 38 * Implements a kernel based, client side RPC. 39 */ 40 41 #include <sys/param.h> 42 #include <sys/types.h> 43 #include <sys/systm.h> 44 #include <sys/sysmacros.h> 45 #include <sys/stream.h> 46 #include <sys/strsubr.h> 47 #include <sys/ddi.h> 48 #include <sys/tiuser.h> 49 #include <sys/tihdr.h> 50 #include <sys/t_kuser.h> 51 #include <sys/errno.h> 52 #include <sys/kmem.h> 53 #include <sys/debug.h> 54 #include <sys/kstat.h> 55 #include <sys/t_lock.h> 56 #include <sys/cmn_err.h> 57 #include <sys/conf.h> 58 #include <sys/disp.h> 59 #include <sys/taskq.h> 60 #include <sys/list.h> 61 #include <sys/atomic.h> 62 #include <sys/zone.h> 63 #include <netinet/in.h> 64 #include <rpc/types.h> 65 #include <rpc/xdr.h> 66 #include <rpc/auth.h> 67 #include <rpc/clnt.h> 68 #include <rpc/rpc_msg.h> 69 70 #include <sys/sdt.h> 71 72 static enum clnt_stat clnt_clts_kcallit(CLIENT *, rpcproc_t, xdrproc_t, 73 caddr_t, xdrproc_t, caddr_t, struct timeval); 74 static void clnt_clts_kabort(CLIENT *); 75 static void clnt_clts_kerror(CLIENT *, struct rpc_err *); 76 static bool_t clnt_clts_kfreeres(CLIENT *, xdrproc_t, caddr_t); 77 static bool_t clnt_clts_kcontrol(CLIENT *, int, char *); 78 static void clnt_clts_kdestroy(CLIENT *); 79 static int clnt_clts_ksettimers(CLIENT *, struct rpc_timers *, 80 struct rpc_timers *, int, void (*)(), caddr_t, uint32_t); 81 82 /* 83 * Operations vector for CLTS based RPC 84 */ 85 static struct clnt_ops clts_ops = { 86 clnt_clts_kcallit, /* do rpc call */ 87 clnt_clts_kabort, /* abort call */ 88 clnt_clts_kerror, /* return error status */ 89 clnt_clts_kfreeres, /* free results */ 90 clnt_clts_kdestroy, /* destroy rpc handle */ 91 clnt_clts_kcontrol, /* the ioctl() of rpc */ 92 clnt_clts_ksettimers /* set retry timers */ 93 }; 94 95 /* 96 * Endpoint for CLTS (INET, INET6, loopback, etc.) 97 */ 98 typedef struct endpnt_type { 99 struct endpnt_type *e_next; /* pointer to next endpoint type */ 100 list_t e_pool; /* list of available endpoints */ 101 list_t e_ilist; /* list of idle endpoints */ 102 struct endpnt *e_pcurr; /* pointer to current endpoint */ 103 char e_protofmly[KNC_STRSIZE]; /* protocol family */ 104 dev_t e_rdev; /* device */ 105 kmutex_t e_plock; /* pool lock */ 106 kmutex_t e_ilock; /* idle list lock */ 107 timeout_id_t e_itimer; /* timer to dispatch the taskq */ 108 uint_t e_cnt; /* number of endpoints in the pool */ 109 zoneid_t e_zoneid; /* zoneid of endpoint type */ 110 kcondvar_t e_async_cv; /* cv for asynchronous reap threads */ 111 uint_t e_async_count; /* count of asynchronous reap threads */ 112 } endpnt_type_t; 113 114 typedef struct endpnt { 115 list_node_t e_node; /* link to the pool */ 116 list_node_t e_idle; /* link to the idle list */ 117 endpnt_type_t *e_type; /* back pointer to endpoint type */ 118 TIUSER *e_tiptr; /* pointer to transport endpoint */ 119 queue_t *e_wq; /* write queue */ 120 uint_t e_flags; /* endpoint flags */ 121 uint_t e_ref; /* ref count on endpoint */ 122 kcondvar_t e_cv; /* condition variable */ 123 kmutex_t e_lock; /* protects cv and flags */ 124 time_t e_itime; /* time when rele'd */ 125 } endpnt_t; 126 127 #define ENDPNT_ESTABLISHED 0x1 /* endpoint is established */ 128 #define ENDPNT_WAITING 0x2 /* thread waiting for endpoint */ 129 #define ENDPNT_BOUND 0x4 /* endpoint is bound */ 130 #define ENDPNT_STALE 0x8 /* endpoint is dead */ 131 #define ENDPNT_ONIDLE 0x10 /* endpoint is on the idle list */ 132 133 static krwlock_t endpnt_type_lock; /* protects endpnt_type_list */ 134 static endpnt_type_t *endpnt_type_list = NULL; /* list of CLTS endpoints */ 135 static struct kmem_cache *endpnt_cache; /* cache of endpnt_t's */ 136 static taskq_t *endpnt_taskq; /* endpnt_t reaper thread */ 137 static bool_t taskq_created; /* flag for endpnt_taskq */ 138 static kmutex_t endpnt_taskq_lock; /* taskq lock */ 139 static zone_key_t endpnt_destructor_key; 140 141 #define DEFAULT_ENDPOINT_REAP_INTERVAL 60 /* 1 minute */ 142 #define DEFAULT_INTERVAL_SHIFT 30 /* 30 seconds */ 143 144 /* 145 * Endpoint tunables 146 */ 147 static int clnt_clts_max_endpoints = -1; 148 static int clnt_clts_hash_size = DEFAULT_HASH_SIZE; 149 static time_t clnt_clts_endpoint_reap_interval = -1; 150 static clock_t clnt_clts_taskq_dispatch_interval; 151 152 /* 153 * Response completion hash queue 154 */ 155 static call_table_t *clts_call_ht; 156 157 /* 158 * Routines for the endpoint manager 159 */ 160 static struct endpnt_type *endpnt_type_create(struct knetconfig *); 161 static void endpnt_type_free(struct endpnt_type *); 162 static int check_endpnt(struct endpnt *, struct endpnt **); 163 static struct endpnt *endpnt_get(struct knetconfig *, int); 164 static void endpnt_rele(struct endpnt *); 165 static void endpnt_reap_settimer(endpnt_type_t *); 166 static void endpnt_reap(endpnt_type_t *); 167 static void endpnt_reap_dispatch(void *); 168 static void endpnt_reclaim(zoneid_t); 169 170 171 /* 172 * Request dipatching function. 173 */ 174 static int clnt_clts_dispatch_send(queue_t *q, mblk_t *, struct netbuf *addr, 175 calllist_t *, uint_t, cred_t *); 176 177 /* 178 * The size of the preserialized RPC header information. 179 */ 180 #define CKU_HDRSIZE 20 181 /* 182 * The initial allocation size. It is small to reduce space requirements. 183 */ 184 #define CKU_INITSIZE 2048 185 /* 186 * The size of additional allocations, if required. It is larger to 187 * reduce the number of actual allocations. 188 */ 189 #define CKU_ALLOCSIZE 8192 190 191 /* 192 * Private data per rpc handle. This structure is allocated by 193 * clnt_clts_kcreate, and freed by clnt_clts_kdestroy. 194 */ 195 struct cku_private { 196 CLIENT cku_client; /* client handle */ 197 int cku_retrys; /* request retrys */ 198 calllist_t cku_call; 199 struct endpnt *cku_endpnt; /* open end point */ 200 struct knetconfig cku_config; 201 struct netbuf cku_addr; /* remote address */ 202 struct rpc_err cku_err; /* error status */ 203 XDR cku_outxdr; /* xdr stream for output */ 204 XDR cku_inxdr; /* xdr stream for input */ 205 char cku_rpchdr[CKU_HDRSIZE + 4]; /* rpc header */ 206 struct cred *cku_cred; /* credentials */ 207 struct rpc_timers *cku_timers; /* for estimating RTT */ 208 struct rpc_timers *cku_timeall; /* for estimating RTT */ 209 void (*cku_feedback)(int, int, caddr_t); 210 /* ptr to feedback rtn */ 211 caddr_t cku_feedarg; /* argument for feedback func */ 212 uint32_t cku_xid; /* current XID */ 213 bool_t cku_bcast; /* RPC broadcast hint */ 214 int cku_useresvport; /* Use reserved port */ 215 struct rpc_clts_client *cku_stats; /* counters for the zone */ 216 }; 217 218 static const struct rpc_clts_client { 219 kstat_named_t rccalls; 220 kstat_named_t rcbadcalls; 221 kstat_named_t rcretrans; 222 kstat_named_t rcbadxids; 223 kstat_named_t rctimeouts; 224 kstat_named_t rcnewcreds; 225 kstat_named_t rcbadverfs; 226 kstat_named_t rctimers; 227 kstat_named_t rcnomem; 228 kstat_named_t rccantsend; 229 } clts_rcstat_tmpl = { 230 { "calls", KSTAT_DATA_UINT64 }, 231 { "badcalls", KSTAT_DATA_UINT64 }, 232 { "retrans", KSTAT_DATA_UINT64 }, 233 { "badxids", KSTAT_DATA_UINT64 }, 234 { "timeouts", KSTAT_DATA_UINT64 }, 235 { "newcreds", KSTAT_DATA_UINT64 }, 236 { "badverfs", KSTAT_DATA_UINT64 }, 237 { "timers", KSTAT_DATA_UINT64 }, 238 { "nomem", KSTAT_DATA_UINT64 }, 239 { "cantsend", KSTAT_DATA_UINT64 }, 240 }; 241 242 static uint_t clts_rcstat_ndata = 243 sizeof (clts_rcstat_tmpl) / sizeof (kstat_named_t); 244 245 #define RCSTAT_INCR(s, x) \ 246 atomic_add_64(&(s)->x.value.ui64, 1) 247 248 #define ptoh(p) (&((p)->cku_client)) 249 #define htop(h) ((struct cku_private *)((h)->cl_private)) 250 251 /* 252 * Times to retry 253 */ 254 #define SNDTRIES 4 255 #define REFRESHES 2 /* authentication refreshes */ 256 257 /* 258 * The following is used to determine the global default behavior for 259 * CLTS when binding to a local port. 260 * 261 * If the value is set to 1 the default will be to select a reserved 262 * (aka privileged) port, if the value is zero the default will be to 263 * use non-reserved ports. Users of kRPC may override this by using 264 * CLNT_CONTROL() and CLSET_BINDRESVPORT. 265 */ 266 static int clnt_clts_do_bindresvport = 1; 267 268 #define BINDRESVPORT_RETRIES 5 269 270 void 271 clnt_clts_stats_init(zoneid_t zoneid, struct rpc_clts_client **statsp) 272 { 273 kstat_t *ksp; 274 kstat_named_t *knp; 275 276 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_client", 277 (const kstat_named_t *)&clts_rcstat_tmpl, 278 sizeof (clts_rcstat_tmpl)); 279 /* 280 * Backwards compatibility for old kstat clients 281 */ 282 ksp = kstat_create_zone("unix", 0, "rpc_client", "rpc", 283 KSTAT_TYPE_NAMED, clts_rcstat_ndata, 284 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid); 285 if (ksp) { 286 ksp->ks_data = knp; 287 kstat_install(ksp); 288 } 289 *statsp = (struct rpc_clts_client *)knp; 290 } 291 292 void 293 clnt_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_client **statsp) 294 { 295 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_client"); 296 kstat_delete_byname_zone("unix", 0, "rpc_client", zoneid); 297 kmem_free(*statsp, sizeof (clts_rcstat_tmpl)); 298 } 299 300 /* 301 * Create an rpc handle for a clts rpc connection. 302 * Allocates space for the handle structure and the private data. 303 */ 304 /* ARGSUSED */ 305 int 306 clnt_clts_kcreate(struct knetconfig *config, struct netbuf *addr, 307 rpcprog_t pgm, rpcvers_t vers, int retrys, struct cred *cred, 308 CLIENT **cl) 309 { 310 CLIENT *h; 311 struct cku_private *p; 312 struct rpc_msg call_msg; 313 int error; 314 int plen; 315 316 if (cl == NULL) 317 return (EINVAL); 318 319 *cl = NULL; 320 error = 0; 321 322 p = kmem_zalloc(sizeof (*p), KM_SLEEP); 323 324 h = ptoh(p); 325 326 /* handle */ 327 h->cl_ops = &clts_ops; 328 h->cl_private = (caddr_t)p; 329 h->cl_auth = authkern_create(); 330 331 /* call message, just used to pre-serialize below */ 332 call_msg.rm_xid = 0; 333 call_msg.rm_direction = CALL; 334 call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION; 335 call_msg.rm_call.cb_prog = pgm; 336 call_msg.rm_call.cb_vers = vers; 337 338 /* private */ 339 clnt_clts_kinit(h, addr, retrys, cred); 340 341 xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, CKU_HDRSIZE, XDR_ENCODE); 342 343 /* pre-serialize call message header */ 344 if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) { 345 error = EINVAL; /* XXX */ 346 goto bad; 347 } 348 349 p->cku_config.knc_rdev = config->knc_rdev; 350 p->cku_config.knc_semantics = config->knc_semantics; 351 plen = strlen(config->knc_protofmly) + 1; 352 p->cku_config.knc_protofmly = kmem_alloc(plen, KM_SLEEP); 353 bcopy(config->knc_protofmly, p->cku_config.knc_protofmly, plen); 354 p->cku_useresvport = -1; /* value is has not been set */ 355 356 cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL); 357 mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL); 358 359 *cl = h; 360 return (0); 361 362 bad: 363 auth_destroy(h->cl_auth); 364 kmem_free(p->cku_addr.buf, addr->maxlen); 365 kmem_free(p, sizeof (struct cku_private)); 366 367 return (error); 368 } 369 370 void 371 clnt_clts_kinit(CLIENT *h, struct netbuf *addr, int retrys, cred_t *cred) 372 { 373 /* LINTED pointer alignment */ 374 struct cku_private *p = htop(h); 375 struct rpcstat *rsp; 376 377 rsp = zone_getspecific(rpcstat_zone_key, rpc_zone()); 378 ASSERT(rsp != NULL); 379 380 p->cku_retrys = retrys; 381 382 if (p->cku_addr.maxlen < addr->len) { 383 if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL) 384 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen); 385 386 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP); 387 p->cku_addr.maxlen = addr->maxlen; 388 } 389 390 p->cku_addr.len = addr->len; 391 bcopy(addr->buf, p->cku_addr.buf, addr->len); 392 393 p->cku_cred = cred; 394 p->cku_xid = 0; 395 p->cku_timers = NULL; 396 p->cku_timeall = NULL; 397 p->cku_feedback = NULL; 398 p->cku_bcast = FALSE; 399 p->cku_call.call_xid = 0; 400 p->cku_call.call_hash = 0; 401 p->cku_call.call_notified = FALSE; 402 p->cku_call.call_next = NULL; 403 p->cku_call.call_prev = NULL; 404 p->cku_call.call_reply = NULL; 405 p->cku_call.call_wq = NULL; 406 p->cku_stats = rsp->rpc_clts_client; 407 } 408 409 /* 410 * set the timers. Return current retransmission timeout. 411 */ 412 static int 413 clnt_clts_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all, 414 int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg, 415 uint32_t xid) 416 { 417 /* LINTED pointer alignment */ 418 struct cku_private *p = htop(h); 419 int value; 420 421 p->cku_feedback = feedback; 422 p->cku_feedarg = arg; 423 p->cku_timers = t; 424 p->cku_timeall = all; 425 if (xid) 426 p->cku_xid = xid; 427 value = all->rt_rtxcur; 428 value += t->rt_rtxcur; 429 if (value < minimum) 430 return (minimum); 431 RCSTAT_INCR(p->cku_stats, rctimers); 432 return (value); 433 } 434 435 /* 436 * Time out back off function. tim is in HZ 437 */ 438 #define MAXTIMO (20 * hz) 439 #define backoff(tim) (((tim) < MAXTIMO) ? dobackoff(tim) : (tim)) 440 #define dobackoff(tim) ((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1)) 441 442 #define RETRY_POLL_TIMO 30 443 444 /* 445 * Call remote procedure. 446 * Most of the work of rpc is done here. We serialize what is left 447 * of the header (some was pre-serialized in the handle), serialize 448 * the arguments, and send it off. We wait for a reply or a time out. 449 * Timeout causes an immediate return, other packet problems may cause 450 * a retry on the receive. When a good packet is received we deserialize 451 * it, and check verification. A bad reply code will cause one retry 452 * with full (longhand) credentials. 453 */ 454 enum clnt_stat 455 clnt_clts_kcallit_addr(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args, 456 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp, 457 struct timeval wait, struct netbuf *sin) 458 { 459 /* LINTED pointer alignment */ 460 struct cku_private *p = htop(h); 461 XDR *xdrs; 462 int stries = p->cku_retrys; 463 int refreshes = REFRESHES; /* number of times to refresh cred */ 464 int round_trip; /* time the RPC */ 465 int error; 466 mblk_t *mp; 467 mblk_t *mpdup; 468 mblk_t *resp = NULL; 469 mblk_t *tmp; 470 calllist_t *call = &p->cku_call; 471 clock_t ori_timout, timout; 472 bool_t interrupted; 473 enum clnt_stat status; 474 struct rpc_msg reply_msg; 475 enum clnt_stat re_status; 476 endpnt_t *endpt; 477 478 RCSTAT_INCR(p->cku_stats, rccalls); 479 480 RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_sec: %ld\n", wait.tv_sec); 481 RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_usec: %ld\n", wait.tv_usec); 482 483 timout = TIMEVAL_TO_TICK(&wait); 484 ori_timout = timout; 485 486 if (p->cku_xid == 0) { 487 p->cku_xid = alloc_xid(); 488 if (p->cku_endpnt != NULL) 489 endpnt_rele(p->cku_endpnt); 490 p->cku_endpnt = NULL; 491 } 492 call->call_zoneid = rpc_zoneid(); 493 494 mpdup = NULL; 495 call_again: 496 497 if (mpdup == NULL) { 498 499 while ((mp = allocb(CKU_INITSIZE, BPRI_LO)) == NULL) { 500 if (strwaitbuf(CKU_INITSIZE, BPRI_LO)) { 501 p->cku_err.re_status = RPC_SYSTEMERROR; 502 p->cku_err.re_errno = ENOSR; 503 goto done; 504 } 505 } 506 507 xdrs = &p->cku_outxdr; 508 xdrmblk_init(xdrs, mp, XDR_ENCODE, CKU_ALLOCSIZE); 509 510 if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) { 511 /* 512 * Copy in the preserialized RPC header 513 * information. 514 */ 515 bcopy(p->cku_rpchdr, mp->b_rptr, CKU_HDRSIZE); 516 517 /* 518 * transaction id is the 1st thing in the output 519 * buffer. 520 */ 521 /* LINTED pointer alignment */ 522 (*(uint32_t *)(mp->b_rptr)) = p->cku_xid; 523 524 /* Skip the preserialized stuff. */ 525 XDR_SETPOS(xdrs, CKU_HDRSIZE); 526 527 /* Serialize dynamic stuff into the output buffer. */ 528 if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) || 529 (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) || 530 (!(*xdr_args)(xdrs, argsp))) { 531 freemsg(mp); 532 p->cku_err.re_status = RPC_CANTENCODEARGS; 533 p->cku_err.re_errno = EIO; 534 goto done; 535 } 536 } else { 537 uint32_t *uproc = (uint32_t *) 538 &p->cku_rpchdr[CKU_HDRSIZE]; 539 IXDR_PUT_U_INT32(uproc, procnum); 540 541 (*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid; 542 XDR_SETPOS(xdrs, 0); 543 544 /* Serialize the procedure number and the arguments. */ 545 if (!AUTH_WRAP(h->cl_auth, (caddr_t)p->cku_rpchdr, 546 CKU_HDRSIZE+4, xdrs, xdr_args, argsp)) { 547 freemsg(mp); 548 p->cku_err.re_status = RPC_CANTENCODEARGS; 549 p->cku_err.re_errno = EIO; 550 goto done; 551 } 552 } 553 } else 554 mp = mpdup; 555 556 mpdup = dupmsg(mp); 557 if (mpdup == NULL) { 558 freemsg(mp); 559 p->cku_err.re_status = RPC_SYSTEMERROR; 560 p->cku_err.re_errno = ENOSR; 561 goto done; 562 } 563 564 /* 565 * Grab an endpnt only if the endpoint is NULL. We could be retrying 566 * the request and in this case we want to go through the same 567 * source port, so that the duplicate request cache may detect a 568 * retry. 569 */ 570 571 if (p->cku_endpnt == NULL) 572 p->cku_endpnt = endpnt_get(&p->cku_config, p->cku_useresvport); 573 574 if (p->cku_endpnt == NULL) { 575 freemsg(mp); 576 p->cku_err.re_status = RPC_SYSTEMERROR; 577 p->cku_err.re_errno = ENOSR; 578 goto done; 579 } 580 581 round_trip = ddi_get_lbolt(); 582 583 error = clnt_clts_dispatch_send(p->cku_endpnt->e_wq, mp, 584 &p->cku_addr, call, p->cku_xid, p->cku_cred); 585 586 if (error != 0) { 587 freemsg(mp); 588 p->cku_err.re_status = RPC_CANTSEND; 589 p->cku_err.re_errno = error; 590 RCSTAT_INCR(p->cku_stats, rccantsend); 591 goto done1; 592 } 593 594 RPCLOG(64, "clnt_clts_kcallit_addr: sent call for xid 0x%x\n", 595 p->cku_xid); 596 597 /* 598 * There are two reasons for which we go back to to tryread. 599 * 600 * a) In case the status is RPC_PROCUNAVAIL and we sent out a 601 * broadcast we should not get any invalid messages with the 602 * RPC_PROCUNAVAIL error back. Some broken RPC implementations 603 * send them and for this we have to ignore them ( as we would 604 * have never received them ) and look for another message 605 * which might contain the valid response because we don't know 606 * how many broken implementations are in the network. So we are 607 * going to loop until 608 * - we received a valid response 609 * - we have processed all invalid responses and 610 * got a time out when we try to receive again a 611 * message. 612 * 613 * b) We will jump back to tryread also in case we failed 614 * within the AUTH_VALIDATE. In this case we should move 615 * on and loop until we received a valid response or we 616 * have processed all responses with broken authentication 617 * and we got a time out when we try to receive a message. 618 */ 619 tryread: 620 mutex_enter(&call->call_lock); 621 interrupted = FALSE; 622 if (call->call_notified == FALSE) { 623 klwp_t *lwp = ttolwp(curthread); 624 clock_t cv_wait_ret = 1; /* init to > 0 */ 625 clock_t cv_timout = timout; 626 627 if (lwp != NULL) 628 lwp->lwp_nostop++; 629 630 cv_timout += ddi_get_lbolt(); 631 632 if (h->cl_nosignal) 633 while ((cv_wait_ret = 634 cv_timedwait(&call->call_cv, 635 &call->call_lock, cv_timout)) > 0 && 636 call->call_notified == FALSE) 637 ; 638 else 639 while ((cv_wait_ret = 640 cv_timedwait_sig(&call->call_cv, 641 &call->call_lock, cv_timout)) > 0 && 642 call->call_notified == FALSE) 643 ; 644 645 if (cv_wait_ret == 0) 646 interrupted = TRUE; 647 648 if (lwp != NULL) 649 lwp->lwp_nostop--; 650 } 651 resp = call->call_reply; 652 call->call_reply = NULL; 653 status = call->call_status; 654 /* 655 * We have to reset the call_notified here. In case we have 656 * to do a retry ( e.g. in case we got a RPC_PROCUNAVAIL 657 * error ) we need to set this to false to ensure that 658 * we will wait for the next message. When the next message 659 * is going to arrive the function clnt_clts_dispatch_notify 660 * will set this to true again. 661 */ 662 call->call_notified = FALSE; 663 call->call_status = RPC_TIMEDOUT; 664 mutex_exit(&call->call_lock); 665 666 if (status == RPC_TIMEDOUT) { 667 if (interrupted) { 668 /* 669 * We got interrupted, bail out 670 */ 671 p->cku_err.re_status = RPC_INTR; 672 p->cku_err.re_errno = EINTR; 673 goto done1; 674 } else { 675 RPCLOG(8, "clnt_clts_kcallit_addr: " 676 "request w/xid 0x%x timedout " 677 "waiting for reply\n", p->cku_xid); 678 #if 0 /* XXX not yet */ 679 /* 680 * Timeout may be due to a dead gateway. Send 681 * an ioctl downstream advising deletion of 682 * route when we reach the half-way point to 683 * timing out. 684 */ 685 if (stries == p->cku_retrys/2) { 686 t_kadvise(p->cku_endpnt->e_tiptr, 687 (uchar_t *)p->cku_addr.buf, 688 p->cku_addr.len); 689 } 690 #endif /* not yet */ 691 p->cku_err.re_status = RPC_TIMEDOUT; 692 p->cku_err.re_errno = ETIMEDOUT; 693 RCSTAT_INCR(p->cku_stats, rctimeouts); 694 goto done1; 695 } 696 } 697 698 ASSERT(resp != NULL); 699 700 /* 701 * Prepare the message for further processing. We need to remove 702 * the datagram header and copy the source address if necessary. No 703 * need to verify the header since rpcmod took care of that. 704 */ 705 /* 706 * Copy the source address if the caller has supplied a netbuf. 707 */ 708 if (sin != NULL) { 709 union T_primitives *pptr; 710 711 pptr = (union T_primitives *)resp->b_rptr; 712 bcopy(resp->b_rptr + pptr->unitdata_ind.SRC_offset, sin->buf, 713 pptr->unitdata_ind.SRC_length); 714 sin->len = pptr->unitdata_ind.SRC_length; 715 } 716 717 /* 718 * Pop off the datagram header. 719 * It was retained in rpcmodrput(). 720 */ 721 tmp = resp; 722 resp = resp->b_cont; 723 tmp->b_cont = NULL; 724 freeb(tmp); 725 726 round_trip = ddi_get_lbolt() - round_trip; 727 /* 728 * Van Jacobson timer algorithm here, only if NOT a retransmission. 729 */ 730 if (p->cku_timers != NULL && stries == p->cku_retrys) { 731 int rt; 732 733 rt = round_trip; 734 rt -= (p->cku_timers->rt_srtt >> 3); 735 p->cku_timers->rt_srtt += rt; 736 if (rt < 0) 737 rt = - rt; 738 rt -= (p->cku_timers->rt_deviate >> 2); 739 p->cku_timers->rt_deviate += rt; 740 p->cku_timers->rt_rtxcur = 741 (clock_t)((p->cku_timers->rt_srtt >> 2) + 742 p->cku_timers->rt_deviate) >> 1; 743 744 rt = round_trip; 745 rt -= (p->cku_timeall->rt_srtt >> 3); 746 p->cku_timeall->rt_srtt += rt; 747 if (rt < 0) 748 rt = - rt; 749 rt -= (p->cku_timeall->rt_deviate >> 2); 750 p->cku_timeall->rt_deviate += rt; 751 p->cku_timeall->rt_rtxcur = 752 (clock_t)((p->cku_timeall->rt_srtt >> 2) + 753 p->cku_timeall->rt_deviate) >> 1; 754 if (p->cku_feedback != NULL) { 755 (*p->cku_feedback)(FEEDBACK_OK, procnum, 756 p->cku_feedarg); 757 } 758 } 759 760 /* 761 * Process reply 762 */ 763 xdrs = &(p->cku_inxdr); 764 xdrmblk_init(xdrs, resp, XDR_DECODE, 0); 765 766 reply_msg.rm_direction = REPLY; 767 reply_msg.rm_reply.rp_stat = MSG_ACCEPTED; 768 reply_msg.acpted_rply.ar_stat = SUCCESS; 769 reply_msg.acpted_rply.ar_verf = _null_auth; 770 /* 771 * xdr_results will be done in AUTH_UNWRAP. 772 */ 773 reply_msg.acpted_rply.ar_results.where = NULL; 774 reply_msg.acpted_rply.ar_results.proc = xdr_void; 775 776 /* 777 * Decode and validate the response. 778 */ 779 if (!xdr_replymsg(xdrs, &reply_msg)) { 780 p->cku_err.re_status = RPC_CANTDECODERES; 781 p->cku_err.re_errno = EIO; 782 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 783 goto done1; 784 } 785 786 _seterr_reply(&reply_msg, &(p->cku_err)); 787 788 re_status = p->cku_err.re_status; 789 if (re_status == RPC_SUCCESS) { 790 /* 791 * Reply is good, check auth. 792 */ 793 if (!AUTH_VALIDATE(h->cl_auth, 794 &reply_msg.acpted_rply.ar_verf)) { 795 p->cku_err.re_status = RPC_AUTHERROR; 796 p->cku_err.re_why = AUTH_INVALIDRESP; 797 RCSTAT_INCR(p->cku_stats, rcbadverfs); 798 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 799 goto tryread; 800 } 801 if (!AUTH_UNWRAP(h->cl_auth, xdrs, xdr_results, resultsp)) { 802 p->cku_err.re_status = RPC_CANTDECODERES; 803 p->cku_err.re_errno = EIO; 804 } 805 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 806 goto done1; 807 } 808 /* set errno in case we can't recover */ 809 if (re_status != RPC_VERSMISMATCH && 810 re_status != RPC_AUTHERROR && re_status != RPC_PROGVERSMISMATCH) 811 p->cku_err.re_errno = EIO; 812 /* 813 * Determine whether or not we're doing an RPC 814 * broadcast. Some server implementations don't 815 * follow RFC 1050, section 7.4.2 in that they 816 * don't remain silent when they see a proc 817 * they don't support. Therefore we keep trying 818 * to receive on RPC_PROCUNAVAIL, hoping to get 819 * a valid response from a compliant server. 820 */ 821 if (re_status == RPC_PROCUNAVAIL && p->cku_bcast) { 822 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 823 goto tryread; 824 } 825 if (re_status == RPC_AUTHERROR) { 826 827 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 828 call_table_remove(call); 829 if (call->call_reply != NULL) { 830 freemsg(call->call_reply); 831 call->call_reply = NULL; 832 } 833 834 /* 835 * Maybe our credential need to be refreshed 836 */ 837 if (refreshes > 0 && 838 AUTH_REFRESH(h->cl_auth, &reply_msg, p->cku_cred)) { 839 /* 840 * The credential is refreshed. Try the request again. 841 * Even if stries == 0, we still retry as long as 842 * refreshes > 0. This prevents a soft authentication 843 * error turning into a hard one at an upper level. 844 */ 845 refreshes--; 846 RCSTAT_INCR(p->cku_stats, rcbadcalls); 847 RCSTAT_INCR(p->cku_stats, rcnewcreds); 848 849 freemsg(mpdup); 850 mpdup = NULL; 851 freemsg(resp); 852 resp = NULL; 853 goto call_again; 854 } 855 /* 856 * We have used the client handle to do an AUTH_REFRESH 857 * and the RPC status may be set to RPC_SUCCESS; 858 * Let's make sure to set it to RPC_AUTHERROR. 859 */ 860 p->cku_err.re_status = RPC_CANTDECODERES; 861 862 /* 863 * Map recoverable and unrecoverable 864 * authentication errors to appropriate errno 865 */ 866 switch (p->cku_err.re_why) { 867 case AUTH_TOOWEAK: 868 /* 869 * Could be an nfsportmon failure, set 870 * useresvport and try again. 871 */ 872 if (p->cku_useresvport != 1) { 873 p->cku_useresvport = 1; 874 875 freemsg(mpdup); 876 mpdup = NULL; 877 freemsg(resp); 878 resp = NULL; 879 880 endpt = p->cku_endpnt; 881 if (endpt->e_tiptr != NULL) { 882 mutex_enter(&endpt->e_lock); 883 endpt->e_flags &= ~ENDPNT_BOUND; 884 (void) t_kclose(endpt->e_tiptr, 1); 885 endpt->e_tiptr = NULL; 886 mutex_exit(&endpt->e_lock); 887 888 } 889 890 p->cku_xid = alloc_xid(); 891 endpnt_rele(p->cku_endpnt); 892 p->cku_endpnt = NULL; 893 goto call_again; 894 } 895 /* FALLTHRU */ 896 case AUTH_BADCRED: 897 case AUTH_BADVERF: 898 case AUTH_INVALIDRESP: 899 case AUTH_FAILED: 900 case RPCSEC_GSS_NOCRED: 901 case RPCSEC_GSS_FAILED: 902 p->cku_err.re_errno = EACCES; 903 break; 904 case AUTH_REJECTEDCRED: 905 case AUTH_REJECTEDVERF: 906 default: 907 p->cku_err.re_errno = EIO; 908 break; 909 } 910 RPCLOG(1, "clnt_clts_kcallit : authentication failed " 911 "with RPC_AUTHERROR of type %d\n", 912 p->cku_err.re_why); 913 goto done; 914 } 915 916 (void) xdr_rpc_free_verifier(xdrs, &reply_msg); 917 918 done1: 919 call_table_remove(call); 920 if (call->call_reply != NULL) { 921 freemsg(call->call_reply); 922 call->call_reply = NULL; 923 } 924 RPCLOG(64, "clnt_clts_kcallit_addr: xid 0x%x taken off dispatch list", 925 p->cku_xid); 926 927 done: 928 if (resp != NULL) { 929 freemsg(resp); 930 resp = NULL; 931 } 932 933 if ((p->cku_err.re_status != RPC_SUCCESS) && 934 (p->cku_err.re_status != RPC_INTR) && 935 (p->cku_err.re_status != RPC_UDERROR) && 936 !IS_UNRECOVERABLE_RPC(p->cku_err.re_status)) { 937 if (p->cku_feedback != NULL && stries == p->cku_retrys) { 938 (*p->cku_feedback)(FEEDBACK_REXMIT1, procnum, 939 p->cku_feedarg); 940 } 941 942 timout = backoff(timout); 943 if (p->cku_timeall != (struct rpc_timers *)0) 944 p->cku_timeall->rt_rtxcur = timout; 945 946 if (p->cku_err.re_status == RPC_SYSTEMERROR || 947 p->cku_err.re_status == RPC_CANTSEND) { 948 /* 949 * Errors due to lack of resources, wait a bit 950 * and try again. 951 */ 952 (void) delay(hz/10); 953 } 954 if (stries-- > 0) { 955 RCSTAT_INCR(p->cku_stats, rcretrans); 956 goto call_again; 957 } 958 } 959 960 if (mpdup != NULL) 961 freemsg(mpdup); 962 963 if (p->cku_err.re_status != RPC_SUCCESS) { 964 RCSTAT_INCR(p->cku_stats, rcbadcalls); 965 } 966 967 /* 968 * Allow the endpoint to be held by the client handle in case this 969 * RPC was not successful. A retry may occur at a higher level and 970 * in this case we may want to send the request over the same 971 * source port. 972 * Endpoint is also released for one-way RPC: no reply, nor retransmit 973 * is expected. 974 */ 975 if ((p->cku_err.re_status == RPC_SUCCESS || 976 (p->cku_err.re_status == RPC_TIMEDOUT && ori_timout == 0)) && 977 p->cku_endpnt != NULL) { 978 endpnt_rele(p->cku_endpnt); 979 p->cku_endpnt = NULL; 980 } else { 981 DTRACE_PROBE2(clnt_clts_kcallit_done, int, p->cku_err.re_status, 982 struct endpnt *, p->cku_endpnt); 983 } 984 985 return (p->cku_err.re_status); 986 } 987 988 static enum clnt_stat 989 clnt_clts_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args, 990 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp, 991 struct timeval wait) 992 { 993 return (clnt_clts_kcallit_addr(h, procnum, xdr_args, argsp, 994 xdr_results, resultsp, wait, NULL)); 995 } 996 997 /* 998 * Return error info on this handle. 999 */ 1000 static void 1001 clnt_clts_kerror(CLIENT *h, struct rpc_err *err) 1002 { 1003 /* LINTED pointer alignment */ 1004 struct cku_private *p = htop(h); 1005 1006 *err = p->cku_err; 1007 } 1008 1009 static bool_t 1010 clnt_clts_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr) 1011 { 1012 /* LINTED pointer alignment */ 1013 struct cku_private *p = htop(h); 1014 XDR *xdrs; 1015 1016 xdrs = &(p->cku_outxdr); 1017 xdrs->x_op = XDR_FREE; 1018 return ((*xdr_res)(xdrs, res_ptr)); 1019 } 1020 1021 /*ARGSUSED*/ 1022 static void 1023 clnt_clts_kabort(CLIENT *h) 1024 { 1025 } 1026 1027 static bool_t 1028 clnt_clts_kcontrol(CLIENT *h, int cmd, char *arg) 1029 { 1030 /* LINTED pointer alignment */ 1031 struct cku_private *p = htop(h); 1032 1033 switch (cmd) { 1034 case CLSET_XID: 1035 p->cku_xid = *((uint32_t *)arg); 1036 return (TRUE); 1037 1038 case CLGET_XID: 1039 *((uint32_t *)arg) = p->cku_xid; 1040 return (TRUE); 1041 1042 case CLSET_BCAST: 1043 p->cku_bcast = *((uint32_t *)arg); 1044 return (TRUE); 1045 1046 case CLGET_BCAST: 1047 *((uint32_t *)arg) = p->cku_bcast; 1048 return (TRUE); 1049 case CLSET_BINDRESVPORT: 1050 if (arg == NULL) 1051 return (FALSE); 1052 1053 if (*(int *)arg != 1 && *(int *)arg != 0) 1054 return (FALSE); 1055 1056 p->cku_useresvport = *(int *)arg; 1057 1058 return (TRUE); 1059 1060 case CLGET_BINDRESVPORT: 1061 if (arg == NULL) 1062 return (FALSE); 1063 1064 *(int *)arg = p->cku_useresvport; 1065 1066 return (TRUE); 1067 1068 default: 1069 return (FALSE); 1070 } 1071 } 1072 1073 /* 1074 * Destroy rpc handle. 1075 * Frees the space used for output buffer, private data, and handle 1076 * structure, and the file pointer/TLI data on last reference. 1077 */ 1078 static void 1079 clnt_clts_kdestroy(CLIENT *h) 1080 { 1081 /* LINTED pointer alignment */ 1082 struct cku_private *p = htop(h); 1083 calllist_t *call = &p->cku_call; 1084 1085 int plen; 1086 1087 RPCLOG(8, "clnt_clts_kdestroy h: %p\n", (void *)h); 1088 RPCLOG(8, "clnt_clts_kdestroy h: xid=0x%x\n", p->cku_xid); 1089 1090 if (p->cku_endpnt != NULL) 1091 endpnt_rele(p->cku_endpnt); 1092 1093 cv_destroy(&call->call_cv); 1094 mutex_destroy(&call->call_lock); 1095 1096 plen = strlen(p->cku_config.knc_protofmly) + 1; 1097 kmem_free(p->cku_config.knc_protofmly, plen); 1098 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen); 1099 kmem_free(p, sizeof (*p)); 1100 } 1101 1102 /* 1103 * The connectionless (CLTS) kRPC endpoint management subsystem. 1104 * 1105 * Because endpoints are potentially shared among threads making RPC calls, 1106 * they are managed in a pool according to type (endpnt_type_t). Each 1107 * endpnt_type_t points to a list of usable endpoints through the e_pool 1108 * field, which is of type list_t. list_t is a doubly-linked list. 1109 * The number of endpoints in the pool is stored in the e_cnt field of 1110 * endpnt_type_t and the endpoints are reference counted using the e_ref field 1111 * in the endpnt_t structure. 1112 * 1113 * As an optimization, endpoints that have no references are also linked 1114 * to an idle list via e_ilist which is also of type list_t. When a thread 1115 * calls endpnt_get() to obtain a transport endpoint, the idle list is first 1116 * consulted and if such an endpoint exists, it is removed from the idle list 1117 * and returned to the caller. 1118 * 1119 * If the idle list is empty, then a check is made to see if more endpoints 1120 * can be created. If so, we proceed and create a new endpoint which is added 1121 * to the pool and returned to the caller. If we have reached the limit and 1122 * cannot make a new endpoint then one is returned to the caller via round- 1123 * robin policy. 1124 * 1125 * When an endpoint is placed on the idle list by a thread calling 1126 * endpnt_rele(), it is timestamped and then a reaper taskq is scheduled to 1127 * be dispatched if one hasn't already been. When the timer fires, the 1128 * taskq traverses the idle list and checks to see which endpoints are 1129 * eligible to be closed. It determines this by checking if the timestamp 1130 * when the endpoint was released has exceeded the the threshold for how long 1131 * it should stay alive. 1132 * 1133 * endpnt_t structures remain persistent until the memory reclaim callback, 1134 * endpnt_reclaim(), is invoked. 1135 * 1136 * Here is an example of how the data structures would be laid out by the 1137 * subsystem: 1138 * 1139 * endpnt_type_t 1140 * 1141 * loopback inet 1142 * _______________ ______________ 1143 * | e_next |----------------------->| e_next |---->> 1144 * | e_pool |<---+ | e_pool |<----+ 1145 * | e_ilist |<---+--+ | e_ilist |<----+--+ 1146 * +->| e_pcurr |----+--+--+ +->| e_pcurr |-----+--+--+ 1147 * | | ... | | | | | | ... | | | | 1148 * | | e_itimer (90) | | | | | | e_itimer (0) | | | | 1149 * | | e_cnt (1) | | | | | | e_cnt (3) | | | | 1150 * | +---------------+ | | | | +--------------+ | | | 1151 * | | | | | | | | 1152 * | endpnt_t | | | | | | | 1153 * | ____________ | | | | ____________ | | | 1154 * | | e_node |<------+ | | | | e_node |<------+ | | 1155 * | | e_idle |<---------+ | | | e_idle | | | | 1156 * +--| e_type |<------------+ +--| e_type | | | | 1157 * | e_tiptr | | | e_tiptr | | | | 1158 * | ... | | | ... | | | | 1159 * | e_lock | | | e_lock | | | | 1160 * | ... | | | ... | | | | 1161 * | e_ref (0) | | | e_ref (2) | | | | 1162 * | e_itime | | | e_itime | | | | 1163 * +------------+ | +------------+ | | | 1164 * | | | | 1165 * | | | | 1166 * | ____________ | | | 1167 * | | e_node |<------+ | | 1168 * | | e_idle |<------+--+ | 1169 * +--| e_type | | | 1170 * | | e_tiptr | | | 1171 * | | ... | | | 1172 * | | e_lock | | | 1173 * | | ... | | | 1174 * | | e_ref (0) | | | 1175 * | | e_itime | | | 1176 * | +------------+ | | 1177 * | | | 1178 * | | | 1179 * | ____________ | | 1180 * | | e_node |<------+ | 1181 * | | e_idle | | 1182 * +--| e_type |<------------+ 1183 * | e_tiptr | 1184 * | ... | 1185 * | e_lock | 1186 * | ... | 1187 * | e_ref (1) | 1188 * | e_itime | 1189 * +------------+ 1190 * 1191 * Endpoint locking strategy: 1192 * 1193 * The following functions manipulate lists which hold the endpoint and the 1194 * endpoints themselves: 1195 * 1196 * endpnt_get()/check_endpnt()/endpnt_rele()/endpnt_reap()/do_endpnt_reclaim() 1197 * 1198 * Lock description follows: 1199 * 1200 * endpnt_type_lock: Global reader/writer lock which protects accesses to the 1201 * endpnt_type_list. 1202 * 1203 * e_plock: Lock defined in the endpnt_type_t. It is intended to 1204 * protect accesses to the pool of endopints (e_pool) for a given 1205 * endpnt_type_t. 1206 * 1207 * e_ilock: Lock defined in endpnt_type_t. It is intended to protect accesses 1208 * to the idle list (e_ilist) of available endpoints for a given 1209 * endpnt_type_t. It also protects access to the e_itimer, e_async_cv, 1210 * and e_async_count fields in endpnt_type_t. 1211 * 1212 * e_lock: Lock defined in the endpnt structure. It is intended to protect 1213 * flags, cv, and ref count. 1214 * 1215 * The order goes as follows so as not to induce deadlock. 1216 * 1217 * endpnt_type_lock -> e_plock -> e_ilock -> e_lock 1218 * 1219 * Interaction with Zones and shutting down: 1220 * 1221 * endpnt_type_ts are uniquely identified by the (e_zoneid, e_rdev, e_protofmly) 1222 * tuple, which means that a zone may not reuse another zone's idle endpoints 1223 * without first doing a t_kclose(). 1224 * 1225 * A zone's endpnt_type_ts are destroyed when a zone is shut down; e_async_cv 1226 * and e_async_count are used to keep track of the threads in endpnt_taskq 1227 * trying to reap endpnt_ts in the endpnt_type_t. 1228 */ 1229 1230 /* 1231 * Allocate and initialize an endpnt_type_t 1232 */ 1233 static struct endpnt_type * 1234 endpnt_type_create(struct knetconfig *config) 1235 { 1236 struct endpnt_type *etype; 1237 1238 /* 1239 * Allocate a new endpoint type to hang a list of 1240 * endpoints off of it. 1241 */ 1242 etype = kmem_alloc(sizeof (struct endpnt_type), KM_SLEEP); 1243 etype->e_next = NULL; 1244 etype->e_pcurr = NULL; 1245 etype->e_itimer = 0; 1246 etype->e_cnt = 0; 1247 1248 (void) strncpy(etype->e_protofmly, config->knc_protofmly, KNC_STRSIZE); 1249 mutex_init(&etype->e_plock, NULL, MUTEX_DEFAULT, NULL); 1250 mutex_init(&etype->e_ilock, NULL, MUTEX_DEFAULT, NULL); 1251 etype->e_rdev = config->knc_rdev; 1252 etype->e_zoneid = rpc_zoneid(); 1253 etype->e_async_count = 0; 1254 cv_init(&etype->e_async_cv, NULL, CV_DEFAULT, NULL); 1255 1256 list_create(&etype->e_pool, sizeof (endpnt_t), 1257 offsetof(endpnt_t, e_node)); 1258 list_create(&etype->e_ilist, sizeof (endpnt_t), 1259 offsetof(endpnt_t, e_idle)); 1260 1261 /* 1262 * Check to see if we need to create a taskq for endpoint 1263 * reaping 1264 */ 1265 mutex_enter(&endpnt_taskq_lock); 1266 if (taskq_created == FALSE) { 1267 taskq_created = TRUE; 1268 mutex_exit(&endpnt_taskq_lock); 1269 ASSERT(endpnt_taskq == NULL); 1270 endpnt_taskq = taskq_create("clts_endpnt_taskq", 1, 1271 minclsyspri, 200, INT_MAX, 0); 1272 } else 1273 mutex_exit(&endpnt_taskq_lock); 1274 1275 return (etype); 1276 } 1277 1278 /* 1279 * Free an endpnt_type_t 1280 */ 1281 static void 1282 endpnt_type_free(struct endpnt_type *etype) 1283 { 1284 mutex_destroy(&etype->e_plock); 1285 mutex_destroy(&etype->e_ilock); 1286 list_destroy(&etype->e_pool); 1287 list_destroy(&etype->e_ilist); 1288 kmem_free(etype, sizeof (endpnt_type_t)); 1289 } 1290 1291 /* 1292 * Check the endpoint to ensure that it is suitable for use. 1293 * 1294 * Possible return values: 1295 * 1296 * return (1) - Endpoint is established, but needs to be re-opened. 1297 * return (0) && *newp == NULL - Endpoint is established, but unusable. 1298 * return (0) && *newp != NULL - Endpoint is established and usable. 1299 */ 1300 static int 1301 check_endpnt(struct endpnt *endp, struct endpnt **newp) 1302 { 1303 *newp = endp; 1304 1305 mutex_enter(&endp->e_lock); 1306 ASSERT(endp->e_ref >= 1); 1307 1308 /* 1309 * The first condition we check for is if the endpoint has been 1310 * allocated, but is unusable either because it has been closed or 1311 * has been marked stale. Only *one* thread will be allowed to 1312 * execute the then clause. This is enforced because the first thread 1313 * to check this condition will clear the flags, so that subsequent 1314 * thread(s) checking this endpoint will move on. 1315 */ 1316 if ((endp->e_flags & ENDPNT_ESTABLISHED) && 1317 (!(endp->e_flags & ENDPNT_BOUND) || 1318 (endp->e_flags & ENDPNT_STALE))) { 1319 /* 1320 * Clear the flags here since they will be 1321 * set again by this thread. They need to be 1322 * individually cleared because we want to maintain 1323 * the state for ENDPNT_ONIDLE. 1324 */ 1325 endp->e_flags &= ~(ENDPNT_ESTABLISHED | 1326 ENDPNT_WAITING | ENDPNT_BOUND | ENDPNT_STALE); 1327 mutex_exit(&endp->e_lock); 1328 return (1); 1329 } 1330 1331 /* 1332 * The second condition is meant for any thread that is waiting for 1333 * an endpoint to become established. It will cv_wait() until 1334 * the condition for the endpoint has been changed to ENDPNT_BOUND or 1335 * ENDPNT_STALE. 1336 */ 1337 while (!(endp->e_flags & ENDPNT_BOUND) && 1338 !(endp->e_flags & ENDPNT_STALE)) { 1339 endp->e_flags |= ENDPNT_WAITING; 1340 cv_wait(&endp->e_cv, &endp->e_lock); 1341 } 1342 1343 ASSERT(endp->e_flags & ENDPNT_ESTABLISHED); 1344 1345 /* 1346 * The last case we check for is if the endpoint has been marked stale. 1347 * If this is the case then set *newp to NULL and return, so that the 1348 * caller is notified of the error and can take appropriate action. 1349 */ 1350 if (endp->e_flags & ENDPNT_STALE) { 1351 endp->e_ref--; 1352 *newp = NULL; 1353 } 1354 mutex_exit(&endp->e_lock); 1355 return (0); 1356 } 1357 1358 #ifdef DEBUG 1359 /* 1360 * Provide a fault injection setting to test error conditions. 1361 */ 1362 static int endpnt_get_return_null = 0; 1363 #endif 1364 1365 /* 1366 * Returns a handle (struct endpnt *) to an open and bound endpoint 1367 * specified by the knetconfig passed in. Returns NULL if no valid endpoint 1368 * can be obtained. 1369 */ 1370 static struct endpnt * 1371 endpnt_get(struct knetconfig *config, int useresvport) 1372 { 1373 struct endpnt_type *n_etype = NULL; 1374 struct endpnt_type *np = NULL; 1375 struct endpnt *new = NULL; 1376 struct endpnt *endp = NULL; 1377 struct endpnt *next = NULL; 1378 TIUSER *tiptr = NULL; 1379 int rtries = BINDRESVPORT_RETRIES; 1380 int i = 0; 1381 int error; 1382 int retval; 1383 zoneid_t zoneid = rpc_zoneid(); 1384 cred_t *cr; 1385 1386 RPCLOG(1, "endpnt_get: protofmly %s, ", config->knc_protofmly); 1387 RPCLOG(1, "rdev %ld\n", config->knc_rdev); 1388 1389 #ifdef DEBUG 1390 /* 1391 * Inject fault if desired. Pretend we have a stale endpoint 1392 * and return NULL. 1393 */ 1394 if (endpnt_get_return_null > 0) { 1395 endpnt_get_return_null--; 1396 return (NULL); 1397 } 1398 #endif 1399 rw_enter(&endpnt_type_lock, RW_READER); 1400 1401 top: 1402 for (np = endpnt_type_list; np != NULL; np = np->e_next) 1403 if ((np->e_zoneid == zoneid) && 1404 (np->e_rdev == config->knc_rdev) && 1405 (strcmp(np->e_protofmly, 1406 config->knc_protofmly) == 0)) 1407 break; 1408 1409 if (np == NULL && n_etype != NULL) { 1410 ASSERT(rw_write_held(&endpnt_type_lock)); 1411 1412 /* 1413 * Link the endpoint type onto the list 1414 */ 1415 n_etype->e_next = endpnt_type_list; 1416 endpnt_type_list = n_etype; 1417 np = n_etype; 1418 n_etype = NULL; 1419 } 1420 1421 if (np == NULL) { 1422 /* 1423 * The logic here is that we were unable to find an 1424 * endpnt_type_t that matched our criteria, so we allocate a 1425 * new one. Because kmem_alloc() needs to be called with 1426 * KM_SLEEP, we drop our locks so that we don't induce 1427 * deadlock. After allocating and initializing the 1428 * endpnt_type_t, we reaquire the lock and go back to check 1429 * if this entry needs to be added to the list. Since we do 1430 * some operations without any locking other threads may 1431 * have been looking for the same endpnt_type_t and gone 1432 * through this code path. We check for this case and allow 1433 * one thread to link its endpnt_type_t to the list and the 1434 * other threads will simply free theirs. 1435 */ 1436 rw_exit(&endpnt_type_lock); 1437 n_etype = endpnt_type_create(config); 1438 1439 /* 1440 * We need to reaquire the lock with RW_WRITER here so that 1441 * we can safely link the new endpoint type onto the list. 1442 */ 1443 rw_enter(&endpnt_type_lock, RW_WRITER); 1444 goto top; 1445 } 1446 1447 rw_exit(&endpnt_type_lock); 1448 /* 1449 * If n_etype is not NULL, then another thread was able to 1450 * insert an endpnt_type_t of this type onto the list before 1451 * we did. Go ahead and free ours. 1452 */ 1453 if (n_etype != NULL) 1454 endpnt_type_free(n_etype); 1455 1456 mutex_enter(&np->e_ilock); 1457 /* 1458 * The algorithm to hand out endpoints is to first 1459 * give out those that are idle if such endpoints 1460 * exist. Otherwise, create a new one if we haven't 1461 * reached the max threshold. Finally, we give out 1462 * endpoints in a pseudo LRU fashion (round-robin). 1463 * 1464 * Note: The idle list is merely a hint of those endpoints 1465 * that should be idle. There exists a window after the 1466 * endpoint is released and before it is linked back onto the 1467 * idle list where a thread could get a reference to it and 1468 * use it. This is okay, since the reference counts will 1469 * still be consistent. 1470 */ 1471 if ((endp = (endpnt_t *)list_head(&np->e_ilist)) != NULL) { 1472 timeout_id_t t_id = 0; 1473 1474 mutex_enter(&endp->e_lock); 1475 endp->e_ref++; 1476 endp->e_itime = 0; 1477 endp->e_flags &= ~ENDPNT_ONIDLE; 1478 mutex_exit(&endp->e_lock); 1479 1480 /* 1481 * Pop the endpoint off the idle list and hand it off 1482 */ 1483 list_remove(&np->e_ilist, endp); 1484 1485 if (np->e_itimer != 0) { 1486 t_id = np->e_itimer; 1487 np->e_itimer = 0; 1488 } 1489 mutex_exit(&np->e_ilock); 1490 /* 1491 * Reset the idle timer if it has been set 1492 */ 1493 if (t_id != (timeout_id_t)0) 1494 (void) untimeout(t_id); 1495 1496 if (check_endpnt(endp, &new) == 0) 1497 return (new); 1498 } else if (np->e_cnt >= clnt_clts_max_endpoints) { 1499 /* 1500 * There are no idle endpoints currently, so 1501 * create a new one if we have not reached the maximum or 1502 * hand one out in round-robin. 1503 */ 1504 mutex_exit(&np->e_ilock); 1505 mutex_enter(&np->e_plock); 1506 endp = np->e_pcurr; 1507 mutex_enter(&endp->e_lock); 1508 endp->e_ref++; 1509 mutex_exit(&endp->e_lock); 1510 1511 ASSERT(endp != NULL); 1512 /* 1513 * Advance the pointer to the next eligible endpoint, if 1514 * necessary. 1515 */ 1516 if (np->e_cnt > 1) { 1517 next = (endpnt_t *)list_next(&np->e_pool, np->e_pcurr); 1518 if (next == NULL) 1519 next = (endpnt_t *)list_head(&np->e_pool); 1520 np->e_pcurr = next; 1521 } 1522 1523 mutex_exit(&np->e_plock); 1524 1525 /* 1526 * We need to check to see if this endpoint is bound or 1527 * not. If it is in progress then just wait until 1528 * the set up is complete 1529 */ 1530 if (check_endpnt(endp, &new) == 0) 1531 return (new); 1532 } else { 1533 mutex_exit(&np->e_ilock); 1534 mutex_enter(&np->e_plock); 1535 1536 /* 1537 * Allocate a new endpoint to use. If we can't allocate any 1538 * more memory then use one that is already established if any 1539 * such endpoints exist. 1540 */ 1541 new = kmem_cache_alloc(endpnt_cache, KM_NOSLEEP); 1542 if (new == NULL) { 1543 RPCLOG0(1, "endpnt_get: kmem_cache_alloc failed\n"); 1544 /* 1545 * Try to recover by using an existing endpoint. 1546 */ 1547 if (np->e_cnt <= 0) { 1548 mutex_exit(&np->e_plock); 1549 return (NULL); 1550 } 1551 endp = np->e_pcurr; 1552 if ((next = list_next(&np->e_pool, np->e_pcurr)) != 1553 NULL) 1554 np->e_pcurr = next; 1555 ASSERT(endp != NULL); 1556 mutex_enter(&endp->e_lock); 1557 endp->e_ref++; 1558 mutex_exit(&endp->e_lock); 1559 mutex_exit(&np->e_plock); 1560 1561 if (check_endpnt(endp, &new) == 0) 1562 return (new); 1563 } else { 1564 /* 1565 * Partially init an endpoint structure and put 1566 * it on the list, so that other interested threads 1567 * know that one is being created 1568 */ 1569 bzero(new, sizeof (struct endpnt)); 1570 1571 cv_init(&new->e_cv, NULL, CV_DEFAULT, NULL); 1572 mutex_init(&new->e_lock, NULL, MUTEX_DEFAULT, NULL); 1573 new->e_ref = 1; 1574 new->e_type = np; 1575 1576 /* 1577 * Link the endpoint into the pool. 1578 */ 1579 list_insert_head(&np->e_pool, new); 1580 np->e_cnt++; 1581 if (np->e_pcurr == NULL) 1582 np->e_pcurr = new; 1583 mutex_exit(&np->e_plock); 1584 } 1585 } 1586 1587 /* 1588 * The transport should be opened with sufficient privs 1589 */ 1590 cr = zone_kcred(); 1591 error = t_kopen(NULL, config->knc_rdev, FREAD|FWRITE|FNDELAY, &tiptr, 1592 cr); 1593 if (error) { 1594 RPCLOG(1, "endpnt_get: t_kopen: %d\n", error); 1595 goto bad; 1596 } 1597 1598 new->e_tiptr = tiptr; 1599 rpc_poptimod(tiptr->fp->f_vnode); 1600 1601 /* 1602 * Allow the kernel to push the module on behalf of the user. 1603 */ 1604 error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0, 1605 K_TO_K, cr, &retval); 1606 if (error) { 1607 RPCLOG(1, "endpnt_get: kstr_push on rpcmod failed %d\n", error); 1608 goto bad; 1609 } 1610 1611 error = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K, 1612 cr, &retval); 1613 if (error) { 1614 RPCLOG(1, "endpnt_get: strioctl failed %d\n", error); 1615 goto bad; 1616 } 1617 1618 /* 1619 * Connectionless data flow should bypass the stream head. 1620 */ 1621 new->e_wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next; 1622 1623 error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0, 1624 K_TO_K, cr, &retval); 1625 if (error) { 1626 RPCLOG(1, "endpnt_get: kstr_push on timod failed %d\n", error); 1627 goto bad; 1628 } 1629 1630 /* 1631 * Attempt to bind the endpoint. If we fail then propogate 1632 * error back to calling subsystem, so that it can be handled 1633 * appropriately. 1634 * If the caller has not specified reserved port usage then 1635 * take the system default. 1636 */ 1637 if (useresvport == -1) 1638 useresvport = clnt_clts_do_bindresvport; 1639 1640 if (useresvport && 1641 (strcmp(config->knc_protofmly, NC_INET) == 0 || 1642 strcmp(config->knc_protofmly, NC_INET6) == 0)) { 1643 1644 while ((error = 1645 bindresvport(new->e_tiptr, NULL, NULL, FALSE)) != 0) { 1646 RPCLOG(1, 1647 "endpnt_get: bindresvport error %d\n", error); 1648 if (error != EPROTO) { 1649 if (rtries-- <= 0) 1650 goto bad; 1651 1652 delay(hz << i++); 1653 continue; 1654 } 1655 1656 (void) t_kclose(new->e_tiptr, 1); 1657 /* 1658 * reopen with all privileges 1659 */ 1660 error = t_kopen(NULL, config->knc_rdev, 1661 FREAD|FWRITE|FNDELAY, 1662 &new->e_tiptr, cr); 1663 if (error) { 1664 RPCLOG(1, "endpnt_get: t_kopen: %d\n", error); 1665 new->e_tiptr = NULL; 1666 goto bad; 1667 } 1668 } 1669 } else if ((error = t_kbind(new->e_tiptr, NULL, NULL)) != 0) { 1670 RPCLOG(1, "endpnt_get: t_kbind failed: %d\n", error); 1671 goto bad; 1672 } 1673 1674 /* 1675 * Set the flags and notify and waiters that we have an established 1676 * endpoint. 1677 */ 1678 mutex_enter(&new->e_lock); 1679 new->e_flags |= ENDPNT_ESTABLISHED; 1680 new->e_flags |= ENDPNT_BOUND; 1681 if (new->e_flags & ENDPNT_WAITING) { 1682 cv_broadcast(&new->e_cv); 1683 new->e_flags &= ~ENDPNT_WAITING; 1684 } 1685 mutex_exit(&new->e_lock); 1686 1687 return (new); 1688 1689 bad: 1690 ASSERT(new != NULL); 1691 /* 1692 * mark this endpoint as stale and notify any threads waiting 1693 * on this endpoint that it will be going away. 1694 */ 1695 mutex_enter(&new->e_lock); 1696 if (new->e_ref > 0) { 1697 new->e_flags |= ENDPNT_ESTABLISHED; 1698 new->e_flags |= ENDPNT_STALE; 1699 if (new->e_flags & ENDPNT_WAITING) { 1700 cv_broadcast(&new->e_cv); 1701 new->e_flags &= ~ENDPNT_WAITING; 1702 } 1703 } 1704 new->e_ref--; 1705 new->e_tiptr = NULL; 1706 mutex_exit(&new->e_lock); 1707 1708 /* 1709 * If there was a transport endopoint opened, then close it. 1710 */ 1711 if (tiptr != NULL) 1712 (void) t_kclose(tiptr, 1); 1713 1714 return (NULL); 1715 } 1716 1717 /* 1718 * Release a referece to the endpoint 1719 */ 1720 static void 1721 endpnt_rele(struct endpnt *sp) 1722 { 1723 mutex_enter(&sp->e_lock); 1724 ASSERT(sp->e_ref > 0); 1725 sp->e_ref--; 1726 /* 1727 * If the ref count is zero, then start the idle timer and link 1728 * the endpoint onto the idle list. 1729 */ 1730 if (sp->e_ref == 0) { 1731 sp->e_itime = gethrestime_sec(); 1732 1733 /* 1734 * Check to see if the endpoint is already linked to the idle 1735 * list, so that we don't try to reinsert it. 1736 */ 1737 if (sp->e_flags & ENDPNT_ONIDLE) { 1738 mutex_exit(&sp->e_lock); 1739 mutex_enter(&sp->e_type->e_ilock); 1740 endpnt_reap_settimer(sp->e_type); 1741 mutex_exit(&sp->e_type->e_ilock); 1742 return; 1743 } 1744 1745 sp->e_flags |= ENDPNT_ONIDLE; 1746 mutex_exit(&sp->e_lock); 1747 mutex_enter(&sp->e_type->e_ilock); 1748 list_insert_tail(&sp->e_type->e_ilist, sp); 1749 endpnt_reap_settimer(sp->e_type); 1750 mutex_exit(&sp->e_type->e_ilock); 1751 } else 1752 mutex_exit(&sp->e_lock); 1753 } 1754 1755 static void 1756 endpnt_reap_settimer(endpnt_type_t *etp) 1757 { 1758 if (etp->e_itimer == (timeout_id_t)0) 1759 etp->e_itimer = timeout(endpnt_reap_dispatch, (void *)etp, 1760 clnt_clts_taskq_dispatch_interval); 1761 } 1762 1763 static void 1764 endpnt_reap_dispatch(void *a) 1765 { 1766 endpnt_type_t *etp = a; 1767 1768 /* 1769 * The idle timer has fired, so dispatch the taskq to close the 1770 * endpoint. 1771 */ 1772 if (taskq_dispatch(endpnt_taskq, (task_func_t *)endpnt_reap, etp, 1773 TQ_NOSLEEP) == NULL) 1774 return; 1775 mutex_enter(&etp->e_ilock); 1776 etp->e_async_count++; 1777 mutex_exit(&etp->e_ilock); 1778 } 1779 1780 /* 1781 * Traverse the idle list and close those endpoints that have reached their 1782 * timeout interval. 1783 */ 1784 static void 1785 endpnt_reap(endpnt_type_t *etp) 1786 { 1787 struct endpnt *e; 1788 struct endpnt *next_node = NULL; 1789 1790 mutex_enter(&etp->e_ilock); 1791 e = list_head(&etp->e_ilist); 1792 while (e != NULL) { 1793 next_node = list_next(&etp->e_ilist, e); 1794 1795 mutex_enter(&e->e_lock); 1796 if (e->e_ref > 0) { 1797 mutex_exit(&e->e_lock); 1798 e = next_node; 1799 continue; 1800 } 1801 1802 ASSERT(e->e_ref == 0); 1803 if (e->e_itime > 0 && 1804 (e->e_itime + clnt_clts_endpoint_reap_interval) < 1805 gethrestime_sec()) { 1806 e->e_flags &= ~ENDPNT_BOUND; 1807 (void) t_kclose(e->e_tiptr, 1); 1808 e->e_tiptr = NULL; 1809 e->e_itime = 0; 1810 } 1811 mutex_exit(&e->e_lock); 1812 e = next_node; 1813 } 1814 etp->e_itimer = 0; 1815 if (--etp->e_async_count == 0) 1816 cv_signal(&etp->e_async_cv); 1817 mutex_exit(&etp->e_ilock); 1818 } 1819 1820 static void 1821 endpnt_reclaim(zoneid_t zoneid) 1822 { 1823 struct endpnt_type *np; 1824 struct endpnt *e; 1825 struct endpnt *next_node = NULL; 1826 list_t free_list; 1827 int rcnt = 0; 1828 1829 list_create(&free_list, sizeof (endpnt_t), offsetof(endpnt_t, e_node)); 1830 1831 RPCLOG0(1, "endpnt_reclaim: reclaim callback started\n"); 1832 rw_enter(&endpnt_type_lock, RW_READER); 1833 for (np = endpnt_type_list; np != NULL; np = np->e_next) { 1834 if (zoneid != ALL_ZONES && zoneid != np->e_zoneid) 1835 continue; 1836 1837 mutex_enter(&np->e_plock); 1838 RPCLOG(1, "endpnt_reclaim: protofmly %s, ", 1839 np->e_protofmly); 1840 RPCLOG(1, "rdev %ld\n", np->e_rdev); 1841 RPCLOG(1, "endpnt_reclaim: found %d endpoint(s)\n", 1842 np->e_cnt); 1843 1844 if (np->e_cnt == 0) { 1845 mutex_exit(&np->e_plock); 1846 continue; 1847 } 1848 1849 /* 1850 * The nice thing about maintaining an idle list is that if 1851 * there are any endpoints to reclaim, they are going to be 1852 * on this list. Just go through and reap the one's that 1853 * have ref counts of zero. 1854 */ 1855 mutex_enter(&np->e_ilock); 1856 e = list_head(&np->e_ilist); 1857 while (e != NULL) { 1858 next_node = list_next(&np->e_ilist, e); 1859 mutex_enter(&e->e_lock); 1860 if (e->e_ref > 0) { 1861 mutex_exit(&e->e_lock); 1862 e = next_node; 1863 continue; 1864 } 1865 ASSERT(e->e_ref == 0); 1866 mutex_exit(&e->e_lock); 1867 1868 list_remove(&np->e_ilist, e); 1869 list_remove(&np->e_pool, e); 1870 list_insert_head(&free_list, e); 1871 1872 rcnt++; 1873 np->e_cnt--; 1874 e = next_node; 1875 } 1876 mutex_exit(&np->e_ilock); 1877 /* 1878 * Reset the current pointer to be safe 1879 */ 1880 if ((e = (struct endpnt *)list_head(&np->e_pool)) != NULL) 1881 np->e_pcurr = e; 1882 else { 1883 ASSERT(np->e_cnt == 0); 1884 np->e_pcurr = NULL; 1885 } 1886 1887 mutex_exit(&np->e_plock); 1888 } 1889 rw_exit(&endpnt_type_lock); 1890 1891 while ((e = list_head(&free_list)) != NULL) { 1892 list_remove(&free_list, e); 1893 if (e->e_tiptr != NULL) 1894 (void) t_kclose(e->e_tiptr, 1); 1895 1896 cv_destroy(&e->e_cv); 1897 mutex_destroy(&e->e_lock); 1898 kmem_cache_free(endpnt_cache, e); 1899 } 1900 list_destroy(&free_list); 1901 RPCLOG(1, "endpnt_reclaim: reclaimed %d endpoint(s)\n", rcnt); 1902 } 1903 1904 /* 1905 * Endpoint reclaim zones destructor callback routine. 1906 * 1907 * After reclaiming any cached entries, we basically go through the endpnt_type 1908 * list, canceling outstanding timeouts and free'ing data structures. 1909 */ 1910 /* ARGSUSED */ 1911 static void 1912 endpnt_destructor(zoneid_t zoneid, void *a) 1913 { 1914 struct endpnt_type **npp; 1915 struct endpnt_type *np; 1916 struct endpnt_type *free_list = NULL; 1917 timeout_id_t t_id = 0; 1918 extern void clcleanup_zone(zoneid_t); 1919 extern void clcleanup4_zone(zoneid_t); 1920 1921 /* Make sure NFS client handles are released. */ 1922 clcleanup_zone(zoneid); 1923 clcleanup4_zone(zoneid); 1924 1925 endpnt_reclaim(zoneid); 1926 /* 1927 * We don't need to be holding on to any locks across the call to 1928 * endpnt_reclaim() and the code below; we know that no-one can 1929 * be holding open connections for this zone (all processes and kernel 1930 * threads are gone), so nothing could be adding anything to the list. 1931 */ 1932 rw_enter(&endpnt_type_lock, RW_WRITER); 1933 npp = &endpnt_type_list; 1934 while ((np = *npp) != NULL) { 1935 if (np->e_zoneid != zoneid) { 1936 npp = &np->e_next; 1937 continue; 1938 } 1939 mutex_enter(&np->e_plock); 1940 mutex_enter(&np->e_ilock); 1941 if (np->e_itimer != 0) { 1942 t_id = np->e_itimer; 1943 np->e_itimer = 0; 1944 } 1945 ASSERT(np->e_cnt == 0); 1946 ASSERT(list_head(&np->e_pool) == NULL); 1947 ASSERT(list_head(&np->e_ilist) == NULL); 1948 1949 mutex_exit(&np->e_ilock); 1950 mutex_exit(&np->e_plock); 1951 1952 /* 1953 * untimeout() any outstanding timers that have not yet fired. 1954 */ 1955 if (t_id != (timeout_id_t)0) 1956 (void) untimeout(t_id); 1957 *npp = np->e_next; 1958 np->e_next = free_list; 1959 free_list = np; 1960 } 1961 rw_exit(&endpnt_type_lock); 1962 1963 while (free_list != NULL) { 1964 np = free_list; 1965 free_list = free_list->e_next; 1966 /* 1967 * Wait for threads in endpnt_taskq trying to reap endpnt_ts in 1968 * the endpnt_type_t. 1969 */ 1970 mutex_enter(&np->e_ilock); 1971 while (np->e_async_count > 0) 1972 cv_wait(&np->e_async_cv, &np->e_ilock); 1973 cv_destroy(&np->e_async_cv); 1974 mutex_destroy(&np->e_plock); 1975 mutex_destroy(&np->e_ilock); 1976 list_destroy(&np->e_pool); 1977 list_destroy(&np->e_ilist); 1978 kmem_free(np, sizeof (endpnt_type_t)); 1979 } 1980 } 1981 1982 /* 1983 * Endpoint reclaim kmem callback routine. 1984 */ 1985 /* ARGSUSED */ 1986 static void 1987 endpnt_repossess(void *a) 1988 { 1989 /* 1990 * Reclaim idle endpnt's from all zones. 1991 */ 1992 if (endpnt_taskq != NULL) 1993 (void) taskq_dispatch(endpnt_taskq, 1994 (task_func_t *)endpnt_reclaim, (void *)ALL_ZONES, 1995 TQ_NOSLEEP); 1996 } 1997 1998 /* 1999 * RPC request dispatch routine. Constructs a datagram message and wraps it 2000 * around the RPC request to pass downstream. 2001 */ 2002 static int 2003 clnt_clts_dispatch_send(queue_t *q, mblk_t *mp, struct netbuf *addr, 2004 calllist_t *cp, uint_t xid, cred_t *cr) 2005 { 2006 mblk_t *bp; 2007 int msgsz; 2008 struct T_unitdata_req *udreq; 2009 2010 /* 2011 * Set up the call record. 2012 */ 2013 cp->call_wq = q; 2014 cp->call_xid = xid; 2015 cp->call_status = RPC_TIMEDOUT; 2016 cp->call_notified = FALSE; 2017 RPCLOG(64, 2018 "clnt_clts_dispatch_send: putting xid 0x%x on " 2019 "dispatch list\n", xid); 2020 cp->call_hash = call_hash(xid, clnt_clts_hash_size); 2021 cp->call_bucket = &clts_call_ht[cp->call_hash]; 2022 call_table_enter(cp); 2023 2024 /* 2025 * Construct the datagram 2026 */ 2027 msgsz = (int)TUNITDATAREQSZ; 2028 /* 2029 * Note: if the receiver uses SCM_UCRED/getpeerucred the pid will 2030 * appear as -1. 2031 */ 2032 while (!(bp = allocb_cred(msgsz + addr->len, cr, NOPID))) { 2033 if (strwaitbuf(msgsz + addr->len, BPRI_LO)) 2034 return (ENOSR); 2035 } 2036 2037 udreq = (struct T_unitdata_req *)bp->b_wptr; 2038 udreq->PRIM_type = T_UNITDATA_REQ; 2039 udreq->DEST_length = addr->len; 2040 2041 if (addr->len) { 2042 bcopy(addr->buf, bp->b_wptr + msgsz, addr->len); 2043 udreq->DEST_offset = (t_scalar_t)msgsz; 2044 msgsz += addr->len; 2045 } else 2046 udreq->DEST_offset = 0; 2047 udreq->OPT_length = 0; 2048 udreq->OPT_offset = 0; 2049 2050 bp->b_datap->db_type = M_PROTO; 2051 bp->b_wptr += msgsz; 2052 2053 /* 2054 * Link the datagram header with the actual data 2055 */ 2056 linkb(bp, mp); 2057 2058 /* 2059 * Send downstream. 2060 */ 2061 if (canput(cp->call_wq)) { 2062 put(cp->call_wq, bp); 2063 return (0); 2064 } 2065 2066 return (EIO); 2067 } 2068 2069 /* 2070 * RPC response delivery routine. Deliver the response to the waiting 2071 * thread by matching the xid. 2072 */ 2073 void 2074 clnt_clts_dispatch_notify(mblk_t *mp, int resp_off, zoneid_t zoneid) 2075 { 2076 calllist_t *e = NULL; 2077 call_table_t *chtp; 2078 uint32_t xid; 2079 uint_t hash; 2080 unsigned char *hdr_offset; 2081 mblk_t *resp; 2082 2083 /* 2084 * If the RPC response is not contained in the same mblk as the 2085 * datagram header, then move to the next mblk. 2086 */ 2087 hdr_offset = mp->b_rptr; 2088 resp = mp; 2089 if ((mp->b_wptr - (mp->b_rptr + resp_off)) == 0) 2090 resp = mp->b_cont; 2091 else 2092 resp->b_rptr += resp_off; 2093 2094 ASSERT(resp != NULL); 2095 2096 if ((IS_P2ALIGNED(resp->b_rptr, sizeof (uint32_t))) && 2097 (resp->b_wptr - resp->b_rptr) >= sizeof (xid)) 2098 xid = *((uint32_t *)resp->b_rptr); 2099 else { 2100 int i = 0; 2101 unsigned char *p = (unsigned char *)&xid; 2102 unsigned char *rptr; 2103 mblk_t *tmp = resp; 2104 2105 /* 2106 * Copy the xid, byte-by-byte into xid. 2107 */ 2108 while (tmp) { 2109 rptr = tmp->b_rptr; 2110 while (rptr < tmp->b_wptr) { 2111 *p++ = *rptr++; 2112 if (++i >= sizeof (xid)) 2113 goto done_xid_copy; 2114 } 2115 tmp = tmp->b_cont; 2116 } 2117 2118 /* 2119 * If we got here, we ran out of mblk space before the 2120 * xid could be copied. 2121 */ 2122 ASSERT(tmp == NULL && i < sizeof (xid)); 2123 2124 RPCLOG0(1, 2125 "clnt_dispatch_notify(clts): message less than " 2126 "size of xid\n"); 2127 2128 freemsg(mp); 2129 return; 2130 } 2131 2132 done_xid_copy: 2133 2134 /* 2135 * Reset the read pointer back to the beginning of the protocol 2136 * header if we moved it. 2137 */ 2138 if (mp->b_rptr != hdr_offset) 2139 mp->b_rptr = hdr_offset; 2140 2141 hash = call_hash(xid, clnt_clts_hash_size); 2142 chtp = &clts_call_ht[hash]; 2143 /* call_table_find returns with the hash bucket locked */ 2144 call_table_find(chtp, xid, e); 2145 2146 if (e != NULL) { 2147 mutex_enter(&e->call_lock); 2148 2149 /* 2150 * verify that the reply is coming in on 2151 * the same zone that it was sent from. 2152 */ 2153 if (e->call_zoneid != zoneid) { 2154 mutex_exit(&e->call_lock); 2155 mutex_exit(&chtp->ct_lock); 2156 RPCLOG0(8, "clnt_dispatch_notify (clts): incorrect " 2157 "zoneid\n"); 2158 freemsg(mp); 2159 return; 2160 } 2161 2162 /* 2163 * found thread waiting for this reply. 2164 */ 2165 if (e->call_reply) { 2166 RPCLOG(8, 2167 "clnt_dispatch_notify (clts): discarding old " 2168 "reply for xid 0x%x\n", 2169 xid); 2170 freemsg(e->call_reply); 2171 } 2172 e->call_notified = TRUE; 2173 e->call_reply = mp; 2174 e->call_status = RPC_SUCCESS; 2175 cv_signal(&e->call_cv); 2176 mutex_exit(&e->call_lock); 2177 mutex_exit(&chtp->ct_lock); 2178 } else { 2179 zone_t *zone; 2180 struct rpcstat *rpcstat; 2181 2182 mutex_exit(&chtp->ct_lock); 2183 RPCLOG(8, "clnt_dispatch_notify (clts): no caller for reply " 2184 "0x%x\n", xid); 2185 freemsg(mp); 2186 /* 2187 * This is unfortunate, but we need to lookup the zone so we 2188 * can increment its "rcbadxids" counter. 2189 */ 2190 zone = zone_find_by_id(zoneid); 2191 if (zone == NULL) { 2192 /* 2193 * The zone went away... 2194 */ 2195 return; 2196 } 2197 rpcstat = zone_getspecific(rpcstat_zone_key, zone); 2198 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 2199 /* 2200 * Not interested 2201 */ 2202 zone_rele(zone); 2203 return; 2204 } 2205 RCSTAT_INCR(rpcstat->rpc_clts_client, rcbadxids); 2206 zone_rele(zone); 2207 } 2208 } 2209 2210 /* 2211 * Init routine. Called when rpcmod is loaded. 2212 */ 2213 void 2214 clnt_clts_init(void) 2215 { 2216 endpnt_cache = kmem_cache_create("clnt_clts_endpnt_cache", 2217 sizeof (struct endpnt), 0, NULL, NULL, endpnt_repossess, NULL, 2218 NULL, 0); 2219 2220 rw_init(&endpnt_type_lock, NULL, RW_DEFAULT, NULL); 2221 2222 /* 2223 * Perform simple bounds checking to make sure that the setting is 2224 * reasonable 2225 */ 2226 if (clnt_clts_max_endpoints <= 0) { 2227 if (clnt_clts_do_bindresvport) 2228 clnt_clts_max_endpoints = RESERVED_PORTSPACE; 2229 else 2230 clnt_clts_max_endpoints = NONRESERVED_PORTSPACE; 2231 } 2232 2233 if (clnt_clts_do_bindresvport && 2234 clnt_clts_max_endpoints > RESERVED_PORTSPACE) 2235 clnt_clts_max_endpoints = RESERVED_PORTSPACE; 2236 else if (clnt_clts_max_endpoints > NONRESERVED_PORTSPACE) 2237 clnt_clts_max_endpoints = NONRESERVED_PORTSPACE; 2238 2239 if (clnt_clts_hash_size < DEFAULT_MIN_HASH_SIZE) 2240 clnt_clts_hash_size = DEFAULT_MIN_HASH_SIZE; 2241 2242 /* 2243 * Defer creating the taskq until rpcmod gets pushed. If we are 2244 * in diskless boot mode, rpcmod will get loaded early even before 2245 * thread_create() is available. 2246 */ 2247 endpnt_taskq = NULL; 2248 taskq_created = FALSE; 2249 mutex_init(&endpnt_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 2250 2251 if (clnt_clts_endpoint_reap_interval < DEFAULT_ENDPOINT_REAP_INTERVAL) 2252 clnt_clts_endpoint_reap_interval = 2253 DEFAULT_ENDPOINT_REAP_INTERVAL; 2254 2255 /* 2256 * Dispatch the taskq at an interval which is offset from the 2257 * interval that the endpoints should be reaped. 2258 */ 2259 clnt_clts_taskq_dispatch_interval = 2260 (clnt_clts_endpoint_reap_interval + DEFAULT_INTERVAL_SHIFT) * hz; 2261 2262 /* 2263 * Initialize the completion queue 2264 */ 2265 clts_call_ht = call_table_init(clnt_clts_hash_size); 2266 /* 2267 * Initialize the zone destructor callback. 2268 */ 2269 zone_key_create(&endpnt_destructor_key, NULL, NULL, endpnt_destructor); 2270 } 2271 2272 void 2273 clnt_clts_fini(void) 2274 { 2275 (void) zone_key_delete(endpnt_destructor_key); 2276 } 2277