xref: /titanic_41/usr/src/uts/common/os/zone.c (revision fa4825fa53a7f93d9b56c4c309623155890c9059)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2013, Joyent Inc. All rights reserved.
25  */
26 
27 /*
28  * Zones
29  *
30  *   A zone is a named collection of processes, namespace constraints,
31  *   and other system resources which comprise a secure and manageable
32  *   application containment facility.
33  *
34  *   Zones (represented by the reference counted zone_t) are tracked in
35  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
36  *   (zoneid_t) are used to track zone association.  Zone IDs are
37  *   dynamically generated when the zone is created; if a persistent
38  *   identifier is needed (core files, accounting logs, audit trail,
39  *   etc.), the zone name should be used.
40  *
41  *
42  *   Global Zone:
43  *
44  *   The global zone (zoneid 0) is automatically associated with all
45  *   system resources that have not been bound to a user-created zone.
46  *   This means that even systems where zones are not in active use
47  *   have a global zone, and all processes, mounts, etc. are
48  *   associated with that zone.  The global zone is generally
49  *   unconstrained in terms of privileges and access, though the usual
50  *   credential and privilege based restrictions apply.
51  *
52  *
53  *   Zone States:
54  *
55  *   The states in which a zone may be in and the transitions are as
56  *   follows:
57  *
58  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59  *   initialized zone is added to the list of active zones on the system but
60  *   isn't accessible.
61  *
62  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63  *   not yet completed. Not possible to enter the zone, but attributes can
64  *   be retrieved.
65  *
66  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67  *   ready.  The zone is made visible after the ZSD constructor callbacks are
68  *   executed.  A zone remains in this state until it transitions into
69  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70  *
71  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73  *   state.
74  *
75  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
76  *   successfully started init.   A zone remains in this state until
77  *   zone_shutdown() is called.
78  *
79  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80  *   killing all processes running in the zone. The zone remains
81  *   in this state until there are no more user processes running in the zone.
82  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83  *   Since zone_shutdown() is restartable, it may be called successfully
84  *   multiple times for the same zone_t.  Setting of the zone's state to
85  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86  *   the zone's status without worrying about it being a moving target.
87  *
88  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89  *   are no more user processes in the zone.  The zone remains in this
90  *   state until there are no more kernel threads associated with the
91  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
92  *   fail.
93  *
94  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
96  *   join the zone or create kernel threads therein.
97  *
98  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
100  *   return NULL from now on.
101  *
102  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
103  *   processes or threads doing work on behalf of the zone.  The zone is
104  *   removed from the list of active zones.  zone_destroy() returns, and
105  *   the zone can be recreated.
106  *
107  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108  *   callbacks are executed, and all memory associated with the zone is
109  *   freed.
110  *
111  *   Threads can wait for the zone to enter a requested state by using
112  *   zone_status_wait() or zone_status_timedwait() with the desired
113  *   state passed in as an argument.  Zone state transitions are
114  *   uni-directional; it is not possible to move back to an earlier state.
115  *
116  *
117  *   Zone-Specific Data:
118  *
119  *   Subsystems needing to maintain zone-specific data can store that
120  *   data using the ZSD mechanism.  This provides a zone-specific data
121  *   store, similar to thread-specific data (see pthread_getspecific(3C)
122  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
123  *   to register callbacks to be invoked when a zone is created, shut
124  *   down, or destroyed.  This can be used to initialize zone-specific
125  *   data for new zones and to clean up when zones go away.
126  *
127  *
128  *   Data Structures:
129  *
130  *   The per-zone structure (zone_t) is reference counted, and freed
131  *   when all references are released.  zone_hold and zone_rele can be
132  *   used to adjust the reference count.  In addition, reference counts
133  *   associated with the cred_t structure are tracked separately using
134  *   zone_cred_hold and zone_cred_rele.
135  *
136  *   Pointers to active zone_t's are stored in two hash tables; one
137  *   for searching by id, the other for searching by name.  Lookups
138  *   can be performed on either basis, using zone_find_by_id and
139  *   zone_find_by_name.  Both return zone_t pointers with the zone
140  *   held, so zone_rele should be called when the pointer is no longer
141  *   needed.  Zones can also be searched by path; zone_find_by_path
142  *   returns the zone with which a path name is associated (global
143  *   zone if the path is not within some other zone's file system
144  *   hierarchy).  This currently requires iterating through each zone,
145  *   so it is slower than an id or name search via a hash table.
146  *
147  *
148  *   Locking:
149  *
150  *   zonehash_lock: This is a top-level global lock used to protect the
151  *       zone hash tables and lists.  Zones cannot be created or destroyed
152  *       while this lock is held.
153  *   zone_status_lock: This is a global lock protecting zone state.
154  *       Zones cannot change state while this lock is held.  It also
155  *       protects the list of kernel threads associated with a zone.
156  *   zone_lock: This is a per-zone lock used to protect several fields of
157  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
158  *       this lock means that the zone cannot go away.
159  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
160  *	 related to the zone.max-lwps rctl.
161  *   zone_mem_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
163  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164  *       currently just max_lofi
165  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
166  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
167  *       list (a list of zones in the ZONE_IS_DEAD state).
168  *
169  *   Ordering requirements:
170  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
172  *
173  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176  *
177  *   Blocking memory allocations are permitted while holding any of the
178  *   zone locks.
179  *
180  *
181  *   System Call Interface:
182  *
183  *   The zone subsystem can be managed and queried from user level with
184  *   the following system calls (all subcodes of the primary "zone"
185  *   system call):
186  *   - zone_create: creates a zone with selected attributes (name,
187  *     root path, privileges, resource controls, ZFS datasets)
188  *   - zone_enter: allows the current process to enter a zone
189  *   - zone_getattr: reports attributes of a zone
190  *   - zone_setattr: set attributes of a zone
191  *   - zone_boot: set 'init' running for the zone
192  *   - zone_list: lists all zones active in the system
193  *   - zone_lookup: looks up zone id based on name
194  *   - zone_shutdown: initiates shutdown process (see states above)
195  *   - zone_destroy: completes shutdown process (see states above)
196  *
197  */
198 
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
234 
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
238 
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
253 
254 /*
255  * This constant specifies the number of seconds that threads waiting for
256  * subsystems to release a zone's general-purpose references will wait before
257  * they log the zone's reference counts.  The constant's value shouldn't
258  * be so small that reference counts are unnecessarily reported for zones
259  * whose references are slowly released.  On the other hand, it shouldn't be so
260  * large that users reboot their systems out of frustration over hung zones
261  * before the system logs the zones' reference counts.
262  */
263 #define	ZONE_DESTROY_TIMEOUT_SECS	60
264 
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 	datalink_id_t	zdl_id;
268 	nvlist_t	*zdl_net;
269 	list_node_t	zdl_linkage;
270 } zone_dl_t;
271 
272 /*
273  * cv used to signal that all references to the zone have been released.  This
274  * needs to be global since there may be multiple waiters, and the first to
275  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276  */
277 static kcondvar_t zone_destroy_cv;
278 /*
279  * Lock used to serialize access to zone_cv.  This could have been per-zone,
280  * but then we'd need another lock for zone_destroy_cv, and why bother?
281  */
282 static kmutex_t zone_status_lock;
283 
284 /*
285  * ZSD-related global variables.
286  */
287 static kmutex_t zsd_key_lock;	/* protects the following two */
288 /*
289  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290  */
291 static zone_key_t zsd_keyval = 0;
292 /*
293  * Global list of registered keys.  We use this when a new zone is created.
294  */
295 static list_t zsd_registered_keys;
296 
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
302 
303 /*
304  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305  * kernel proper runs, and which manages all other zones.
306  *
307  * Although not declared as static, the variable "zone0" should not be used
308  * except for by code that needs to reference the global zone early on in boot,
309  * before it is fully initialized.  All other consumers should use
310  * 'global_zone'.
311  */
312 zone_t zone0;
313 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
314 
315 /*
316  * List of active zones, protected by zonehash_lock.
317  */
318 static list_t zone_active;
319 
320 /*
321  * List of destroyed zones that still have outstanding cred references.
322  * Used for debugging.  Uses a separate lock to avoid lock ordering
323  * problems in zone_free.
324  */
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
327 
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
330 
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
333 
334 /*
335  * This table holds the mapping from kernel zone states to
336  * states visible in the state notification API.
337  * The idea is that we only expose "obvious" states and
338  * do not expose states which are just implementation details.
339  */
340 const char  *zone_status_table[] = {
341 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
342 	ZONE_EVENT_INITIALIZED,		/* initialized */
343 	ZONE_EVENT_READY,		/* ready */
344 	ZONE_EVENT_READY,		/* booting */
345 	ZONE_EVENT_RUNNING,		/* running */
346 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
347 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
350 	ZONE_EVENT_UNINITIALIZED,	/* dead */
351 };
352 
353 /*
354  * This array contains the names of the subsystems listed in zone_ref_subsys_t
355  * (see sys/zone.h).
356  */
357 static char *zone_ref_subsys_names[] = {
358 	"NFS",		/* ZONE_REF_NFS */
359 	"NFSv4",	/* ZONE_REF_NFSV4 */
360 	"SMBFS",	/* ZONE_REF_SMBFS */
361 	"MNTFS",	/* ZONE_REF_MNTFS */
362 	"LOFI",		/* ZONE_REF_LOFI */
363 	"VFS",		/* ZONE_REF_VFS */
364 	"IPC"		/* ZONE_REF_IPC */
365 };
366 
367 /*
368  * This isn't static so lint doesn't complain.
369  */
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
381 /*
382  * Synchronization primitives used to synchronize between mounts and zone
383  * creation/destruction.
384  */
385 static int mounts_in_progress;
386 static kcondvar_t mount_cv;
387 static kmutex_t mount_lock;
388 
389 const char * const zone_default_initname = "/sbin/init";
390 static char * const zone_prefix = "/zone/";
391 static int zone_shutdown(zoneid_t zoneid);
392 static int zone_add_datalink(zoneid_t, datalink_id_t);
393 static int zone_remove_datalink(zoneid_t, datalink_id_t);
394 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
395 static int zone_set_network(zoneid_t, zone_net_data_t *);
396 static int zone_get_network(zoneid_t, zone_net_data_t *);
397 
398 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 
400 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
401 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
402 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
403 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
404     zone_key_t);
405 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
406 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
407     kmutex_t *);
408 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
409     kmutex_t *);
410 
411 /*
412  * Bump this number when you alter the zone syscall interfaces; this is
413  * because we need to have support for previous API versions in libc
414  * to support patching; libc calls into the kernel to determine this number.
415  *
416  * Version 1 of the API is the version originally shipped with Solaris 10
417  * Version 2 alters the zone_create system call in order to support more
418  *     arguments by moving the args into a structure; and to do better
419  *     error reporting when zone_create() fails.
420  * Version 3 alters the zone_create system call in order to support the
421  *     import of ZFS datasets to zones.
422  * Version 4 alters the zone_create system call in order to support
423  *     Trusted Extensions.
424  * Version 5 alters the zone_boot system call, and converts its old
425  *     bootargs parameter to be set by the zone_setattr API instead.
426  * Version 6 adds the flag argument to zone_create.
427  */
428 static const int ZONE_SYSCALL_API_VERSION = 6;
429 
430 /*
431  * Certain filesystems (such as NFS and autofs) need to know which zone
432  * the mount is being placed in.  Because of this, we need to be able to
433  * ensure that a zone isn't in the process of being created such that
434  * nfs_mount() thinks it is in the global zone, while by the time it
435  * gets added the list of mounted zones, it ends up on zoneA's mount
436  * list.
437  *
438  * The following functions: block_mounts()/resume_mounts() and
439  * mount_in_progress()/mount_completed() are used by zones and the VFS
440  * layer (respectively) to synchronize zone creation and new mounts.
441  *
442  * The semantics are like a reader-reader lock such that there may
443  * either be multiple mounts (or zone creations, if that weren't
444  * serialized by zonehash_lock) in progress at the same time, but not
445  * both.
446  *
447  * We use cv's so the user can ctrl-C out of the operation if it's
448  * taking too long.
449  *
450  * The semantics are such that there is unfair bias towards the
451  * "current" operation.  This means that zone creations may starve if
452  * there is a rapid succession of new mounts coming in to the system, or
453  * there is a remote possibility that zones will be created at such a
454  * rate that new mounts will not be able to proceed.
455  */
456 /*
457  * Prevent new mounts from progressing to the point of calling
458  * VFS_MOUNT().  If there are already mounts in this "region", wait for
459  * them to complete.
460  */
461 static int
462 block_mounts(void)
463 {
464 	int retval = 0;
465 
466 	/*
467 	 * Since it may block for a long time, block_mounts() shouldn't be
468 	 * called with zonehash_lock held.
469 	 */
470 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
471 	mutex_enter(&mount_lock);
472 	while (mounts_in_progress > 0) {
473 		if (cv_wait_sig(&mount_cv, &mount_lock) == 0)
474 			goto signaled;
475 	}
476 	/*
477 	 * A negative value of mounts_in_progress indicates that mounts
478 	 * have been blocked by (-mounts_in_progress) different callers.
479 	 */
480 	mounts_in_progress--;
481 	retval = 1;
482 signaled:
483 	mutex_exit(&mount_lock);
484 	return (retval);
485 }
486 
487 /*
488  * The VFS layer may progress with new mounts as far as we're concerned.
489  * Allow them to progress if we were the last obstacle.
490  */
491 static void
492 resume_mounts(void)
493 {
494 	mutex_enter(&mount_lock);
495 	if (++mounts_in_progress == 0)
496 		cv_broadcast(&mount_cv);
497 	mutex_exit(&mount_lock);
498 }
499 
500 /*
501  * The VFS layer is busy with a mount; zones should wait until all
502  * mounts are completed to progress.
503  */
504 void
505 mount_in_progress(void)
506 {
507 	mutex_enter(&mount_lock);
508 	while (mounts_in_progress < 0)
509 		cv_wait(&mount_cv, &mount_lock);
510 	mounts_in_progress++;
511 	mutex_exit(&mount_lock);
512 }
513 
514 /*
515  * VFS is done with one mount; wake up any waiting block_mounts()
516  * callers if this is the last mount.
517  */
518 void
519 mount_completed(void)
520 {
521 	mutex_enter(&mount_lock);
522 	if (--mounts_in_progress == 0)
523 		cv_broadcast(&mount_cv);
524 	mutex_exit(&mount_lock);
525 }
526 
527 /*
528  * ZSD routines.
529  *
530  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
531  * defined by the pthread_key_create() and related interfaces.
532  *
533  * Kernel subsystems may register one or more data items and/or
534  * callbacks to be executed when a zone is created, shutdown, or
535  * destroyed.
536  *
537  * Unlike the thread counterpart, destructor callbacks will be executed
538  * even if the data pointer is NULL and/or there are no constructor
539  * callbacks, so it is the responsibility of such callbacks to check for
540  * NULL data values if necessary.
541  *
542  * The locking strategy and overall picture is as follows:
543  *
544  * When someone calls zone_key_create(), a template ZSD entry is added to the
545  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
546  * holding that lock all the existing zones are marked as
547  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
548  * zone_zsd list (protected by zone_lock). The global list is updated first
549  * (under zone_key_lock) to make sure that newly created zones use the
550  * most recent list of keys. Then under zonehash_lock we walk the zones
551  * and mark them.  Similar locking is used in zone_key_delete().
552  *
553  * The actual create, shutdown, and destroy callbacks are done without
554  * holding any lock. And zsd_flags are used to ensure that the operations
555  * completed so that when zone_key_create (and zone_create) is done, as well as
556  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
557  * are completed.
558  *
559  * When new zones are created constructor callbacks for all registered ZSD
560  * entries will be called. That also uses the above two phases of marking
561  * what needs to be done, and then running the callbacks without holding
562  * any locks.
563  *
564  * The framework does not provide any locking around zone_getspecific() and
565  * zone_setspecific() apart from that needed for internal consistency, so
566  * callers interested in atomic "test-and-set" semantics will need to provide
567  * their own locking.
568  */
569 
570 /*
571  * Helper function to find the zsd_entry associated with the key in the
572  * given list.
573  */
574 static struct zsd_entry *
575 zsd_find(list_t *l, zone_key_t key)
576 {
577 	struct zsd_entry *zsd;
578 
579 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
580 		if (zsd->zsd_key == key) {
581 			return (zsd);
582 		}
583 	}
584 	return (NULL);
585 }
586 
587 /*
588  * Helper function to find the zsd_entry associated with the key in the
589  * given list. Move it to the front of the list.
590  */
591 static struct zsd_entry *
592 zsd_find_mru(list_t *l, zone_key_t key)
593 {
594 	struct zsd_entry *zsd;
595 
596 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
597 		if (zsd->zsd_key == key) {
598 			/*
599 			 * Move to head of list to keep list in MRU order.
600 			 */
601 			if (zsd != list_head(l)) {
602 				list_remove(l, zsd);
603 				list_insert_head(l, zsd);
604 			}
605 			return (zsd);
606 		}
607 	}
608 	return (NULL);
609 }
610 
611 void
612 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
613     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
614 {
615 	struct zsd_entry *zsdp;
616 	struct zsd_entry *t;
617 	struct zone *zone;
618 	zone_key_t  key;
619 
620 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
621 	zsdp->zsd_data = NULL;
622 	zsdp->zsd_create = create;
623 	zsdp->zsd_shutdown = shutdown;
624 	zsdp->zsd_destroy = destroy;
625 
626 	/*
627 	 * Insert in global list of callbacks. Makes future zone creations
628 	 * see it.
629 	 */
630 	mutex_enter(&zsd_key_lock);
631 	key = zsdp->zsd_key = ++zsd_keyval;
632 	ASSERT(zsd_keyval != 0);
633 	list_insert_tail(&zsd_registered_keys, zsdp);
634 	mutex_exit(&zsd_key_lock);
635 
636 	/*
637 	 * Insert for all existing zones and mark them as needing
638 	 * a create callback.
639 	 */
640 	mutex_enter(&zonehash_lock);	/* stop the world */
641 	for (zone = list_head(&zone_active); zone != NULL;
642 	    zone = list_next(&zone_active, zone)) {
643 		zone_status_t status;
644 
645 		mutex_enter(&zone->zone_lock);
646 
647 		/* Skip zones that are on the way down or not yet up */
648 		status = zone_status_get(zone);
649 		if (status >= ZONE_IS_DOWN ||
650 		    status == ZONE_IS_UNINITIALIZED) {
651 			mutex_exit(&zone->zone_lock);
652 			continue;
653 		}
654 
655 		t = zsd_find_mru(&zone->zone_zsd, key);
656 		if (t != NULL) {
657 			/*
658 			 * A zsd_configure already inserted it after
659 			 * we dropped zsd_key_lock above.
660 			 */
661 			mutex_exit(&zone->zone_lock);
662 			continue;
663 		}
664 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
665 		t->zsd_key = key;
666 		t->zsd_create = create;
667 		t->zsd_shutdown = shutdown;
668 		t->zsd_destroy = destroy;
669 		if (create != NULL) {
670 			t->zsd_flags = ZSD_CREATE_NEEDED;
671 			DTRACE_PROBE2(zsd__create__needed,
672 			    zone_t *, zone, zone_key_t, key);
673 		}
674 		list_insert_tail(&zone->zone_zsd, t);
675 		mutex_exit(&zone->zone_lock);
676 	}
677 	mutex_exit(&zonehash_lock);
678 
679 	if (create != NULL) {
680 		/* Now call the create callback for this key */
681 		zsd_apply_all_zones(zsd_apply_create, key);
682 	}
683 	/*
684 	 * It is safe for consumers to use the key now, make it
685 	 * globally visible. Specifically zone_getspecific() will
686 	 * always successfully return the zone specific data associated
687 	 * with the key.
688 	 */
689 	*keyp = key;
690 
691 }
692 
693 /*
694  * Function called when a module is being unloaded, or otherwise wishes
695  * to unregister its ZSD key and callbacks.
696  *
697  * Remove from the global list and determine the functions that need to
698  * be called under a global lock. Then call the functions without
699  * holding any locks. Finally free up the zone_zsd entries. (The apply
700  * functions need to access the zone_zsd entries to find zsd_data etc.)
701  */
702 int
703 zone_key_delete(zone_key_t key)
704 {
705 	struct zsd_entry *zsdp = NULL;
706 	zone_t *zone;
707 
708 	mutex_enter(&zsd_key_lock);
709 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
710 	if (zsdp == NULL) {
711 		mutex_exit(&zsd_key_lock);
712 		return (-1);
713 	}
714 	list_remove(&zsd_registered_keys, zsdp);
715 	mutex_exit(&zsd_key_lock);
716 
717 	mutex_enter(&zonehash_lock);
718 	for (zone = list_head(&zone_active); zone != NULL;
719 	    zone = list_next(&zone_active, zone)) {
720 		struct zsd_entry *del;
721 
722 		mutex_enter(&zone->zone_lock);
723 		del = zsd_find_mru(&zone->zone_zsd, key);
724 		if (del == NULL) {
725 			/*
726 			 * Somebody else got here first e.g the zone going
727 			 * away.
728 			 */
729 			mutex_exit(&zone->zone_lock);
730 			continue;
731 		}
732 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
733 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
734 		if (del->zsd_shutdown != NULL &&
735 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
736 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
737 			DTRACE_PROBE2(zsd__shutdown__needed,
738 			    zone_t *, zone, zone_key_t, key);
739 		}
740 		if (del->zsd_destroy != NULL &&
741 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
742 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
743 			DTRACE_PROBE2(zsd__destroy__needed,
744 			    zone_t *, zone, zone_key_t, key);
745 		}
746 		mutex_exit(&zone->zone_lock);
747 	}
748 	mutex_exit(&zonehash_lock);
749 	kmem_free(zsdp, sizeof (*zsdp));
750 
751 	/* Now call the shutdown and destroy callback for this key */
752 	zsd_apply_all_zones(zsd_apply_shutdown, key);
753 	zsd_apply_all_zones(zsd_apply_destroy, key);
754 
755 	/* Now we can free up the zsdp structures in each zone */
756 	mutex_enter(&zonehash_lock);
757 	for (zone = list_head(&zone_active); zone != NULL;
758 	    zone = list_next(&zone_active, zone)) {
759 		struct zsd_entry *del;
760 
761 		mutex_enter(&zone->zone_lock);
762 		del = zsd_find(&zone->zone_zsd, key);
763 		if (del != NULL) {
764 			list_remove(&zone->zone_zsd, del);
765 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
766 			kmem_free(del, sizeof (*del));
767 		}
768 		mutex_exit(&zone->zone_lock);
769 	}
770 	mutex_exit(&zonehash_lock);
771 
772 	return (0);
773 }
774 
775 /*
776  * ZSD counterpart of pthread_setspecific().
777  *
778  * Since all zsd callbacks, including those with no create function,
779  * have an entry in zone_zsd, if the key is registered it is part of
780  * the zone_zsd list.
781  * Return an error if the key wasn't registerd.
782  */
783 int
784 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
785 {
786 	struct zsd_entry *t;
787 
788 	mutex_enter(&zone->zone_lock);
789 	t = zsd_find_mru(&zone->zone_zsd, key);
790 	if (t != NULL) {
791 		/*
792 		 * Replace old value with new
793 		 */
794 		t->zsd_data = (void *)data;
795 		mutex_exit(&zone->zone_lock);
796 		return (0);
797 	}
798 	mutex_exit(&zone->zone_lock);
799 	return (-1);
800 }
801 
802 /*
803  * ZSD counterpart of pthread_getspecific().
804  */
805 void *
806 zone_getspecific(zone_key_t key, zone_t *zone)
807 {
808 	struct zsd_entry *t;
809 	void *data;
810 
811 	mutex_enter(&zone->zone_lock);
812 	t = zsd_find_mru(&zone->zone_zsd, key);
813 	data = (t == NULL ? NULL : t->zsd_data);
814 	mutex_exit(&zone->zone_lock);
815 	return (data);
816 }
817 
818 /*
819  * Function used to initialize a zone's list of ZSD callbacks and data
820  * when the zone is being created.  The callbacks are initialized from
821  * the template list (zsd_registered_keys). The constructor callback is
822  * executed later (once the zone exists and with locks dropped).
823  */
824 static void
825 zone_zsd_configure(zone_t *zone)
826 {
827 	struct zsd_entry *zsdp;
828 	struct zsd_entry *t;
829 
830 	ASSERT(MUTEX_HELD(&zonehash_lock));
831 	ASSERT(list_head(&zone->zone_zsd) == NULL);
832 	mutex_enter(&zone->zone_lock);
833 	mutex_enter(&zsd_key_lock);
834 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
835 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
836 		/*
837 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
838 		 * should not have added anything to it.
839 		 */
840 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
841 
842 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
843 		t->zsd_key = zsdp->zsd_key;
844 		t->zsd_create = zsdp->zsd_create;
845 		t->zsd_shutdown = zsdp->zsd_shutdown;
846 		t->zsd_destroy = zsdp->zsd_destroy;
847 		if (zsdp->zsd_create != NULL) {
848 			t->zsd_flags = ZSD_CREATE_NEEDED;
849 			DTRACE_PROBE2(zsd__create__needed,
850 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
851 		}
852 		list_insert_tail(&zone->zone_zsd, t);
853 	}
854 	mutex_exit(&zsd_key_lock);
855 	mutex_exit(&zone->zone_lock);
856 }
857 
858 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
859 
860 /*
861  * Helper function to execute shutdown or destructor callbacks.
862  */
863 static void
864 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
865 {
866 	struct zsd_entry *t;
867 
868 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
869 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
870 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
871 
872 	/*
873 	 * Run the callback solely based on what is registered for the zone
874 	 * in zone_zsd. The global list can change independently of this
875 	 * as keys are registered and unregistered and we don't register new
876 	 * callbacks for a zone that is in the process of going away.
877 	 */
878 	mutex_enter(&zone->zone_lock);
879 	for (t = list_head(&zone->zone_zsd); t != NULL;
880 	    t = list_next(&zone->zone_zsd, t)) {
881 		zone_key_t key = t->zsd_key;
882 
883 		/* Skip if no callbacks registered */
884 
885 		if (ct == ZSD_SHUTDOWN) {
886 			if (t->zsd_shutdown != NULL &&
887 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
888 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
889 				DTRACE_PROBE2(zsd__shutdown__needed,
890 				    zone_t *, zone, zone_key_t, key);
891 			}
892 		} else {
893 			if (t->zsd_destroy != NULL &&
894 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
895 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
896 				DTRACE_PROBE2(zsd__destroy__needed,
897 				    zone_t *, zone, zone_key_t, key);
898 			}
899 		}
900 	}
901 	mutex_exit(&zone->zone_lock);
902 
903 	/* Now call the shutdown and destroy callback for this key */
904 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
905 	zsd_apply_all_keys(zsd_apply_destroy, zone);
906 
907 }
908 
909 /*
910  * Called when the zone is going away; free ZSD-related memory, and
911  * destroy the zone_zsd list.
912  */
913 static void
914 zone_free_zsd(zone_t *zone)
915 {
916 	struct zsd_entry *t, *next;
917 
918 	/*
919 	 * Free all the zsd_entry's we had on this zone.
920 	 */
921 	mutex_enter(&zone->zone_lock);
922 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
923 		next = list_next(&zone->zone_zsd, t);
924 		list_remove(&zone->zone_zsd, t);
925 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
926 		kmem_free(t, sizeof (*t));
927 	}
928 	list_destroy(&zone->zone_zsd);
929 	mutex_exit(&zone->zone_lock);
930 
931 }
932 
933 /*
934  * Apply a function to all zones for particular key value.
935  *
936  * The applyfn has to drop zonehash_lock if it does some work, and
937  * then reacquire it before it returns.
938  * When the lock is dropped we don't follow list_next even
939  * if it is possible to do so without any hazards. This is
940  * because we want the design to allow for the list of zones
941  * to change in any arbitrary way during the time the
942  * lock was dropped.
943  *
944  * It is safe to restart the loop at list_head since the applyfn
945  * changes the zsd_flags as it does work, so a subsequent
946  * pass through will have no effect in applyfn, hence the loop will terminate
947  * in at worst O(N^2).
948  */
949 static void
950 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
951 {
952 	zone_t *zone;
953 
954 	mutex_enter(&zonehash_lock);
955 	zone = list_head(&zone_active);
956 	while (zone != NULL) {
957 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
958 			/* Lock dropped - restart at head */
959 			zone = list_head(&zone_active);
960 		} else {
961 			zone = list_next(&zone_active, zone);
962 		}
963 	}
964 	mutex_exit(&zonehash_lock);
965 }
966 
967 /*
968  * Apply a function to all keys for a particular zone.
969  *
970  * The applyfn has to drop zonehash_lock if it does some work, and
971  * then reacquire it before it returns.
972  * When the lock is dropped we don't follow list_next even
973  * if it is possible to do so without any hazards. This is
974  * because we want the design to allow for the list of zsd callbacks
975  * to change in any arbitrary way during the time the
976  * lock was dropped.
977  *
978  * It is safe to restart the loop at list_head since the applyfn
979  * changes the zsd_flags as it does work, so a subsequent
980  * pass through will have no effect in applyfn, hence the loop will terminate
981  * in at worst O(N^2).
982  */
983 static void
984 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
985 {
986 	struct zsd_entry *t;
987 
988 	mutex_enter(&zone->zone_lock);
989 	t = list_head(&zone->zone_zsd);
990 	while (t != NULL) {
991 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
992 			/* Lock dropped - restart at head */
993 			t = list_head(&zone->zone_zsd);
994 		} else {
995 			t = list_next(&zone->zone_zsd, t);
996 		}
997 	}
998 	mutex_exit(&zone->zone_lock);
999 }
1000 
1001 /*
1002  * Call the create function for the zone and key if CREATE_NEEDED
1003  * is set.
1004  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1005  * we wait for that thread to complete so that we can ensure that
1006  * all the callbacks are done when we've looped over all zones/keys.
1007  *
1008  * When we call the create function, we drop the global held by the
1009  * caller, and return true to tell the caller it needs to re-evalute the
1010  * state.
1011  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1012  * remains held on exit.
1013  */
1014 static boolean_t
1015 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1016     zone_t *zone, zone_key_t key)
1017 {
1018 	void *result;
1019 	struct zsd_entry *t;
1020 	boolean_t dropped;
1021 
1022 	if (lockp != NULL) {
1023 		ASSERT(MUTEX_HELD(lockp));
1024 	}
1025 	if (zone_lock_held) {
1026 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1027 	} else {
1028 		mutex_enter(&zone->zone_lock);
1029 	}
1030 
1031 	t = zsd_find(&zone->zone_zsd, key);
1032 	if (t == NULL) {
1033 		/*
1034 		 * Somebody else got here first e.g the zone going
1035 		 * away.
1036 		 */
1037 		if (!zone_lock_held)
1038 			mutex_exit(&zone->zone_lock);
1039 		return (B_FALSE);
1040 	}
1041 	dropped = B_FALSE;
1042 	if (zsd_wait_for_inprogress(zone, t, lockp))
1043 		dropped = B_TRUE;
1044 
1045 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1046 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1047 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1048 		DTRACE_PROBE2(zsd__create__inprogress,
1049 		    zone_t *, zone, zone_key_t, key);
1050 		mutex_exit(&zone->zone_lock);
1051 		if (lockp != NULL)
1052 			mutex_exit(lockp);
1053 
1054 		dropped = B_TRUE;
1055 		ASSERT(t->zsd_create != NULL);
1056 		DTRACE_PROBE2(zsd__create__start,
1057 		    zone_t *, zone, zone_key_t, key);
1058 
1059 		result = (*t->zsd_create)(zone->zone_id);
1060 
1061 		DTRACE_PROBE2(zsd__create__end,
1062 		    zone_t *, zone, voidn *, result);
1063 
1064 		ASSERT(result != NULL);
1065 		if (lockp != NULL)
1066 			mutex_enter(lockp);
1067 		mutex_enter(&zone->zone_lock);
1068 		t->zsd_data = result;
1069 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1070 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1071 		cv_broadcast(&t->zsd_cv);
1072 		DTRACE_PROBE2(zsd__create__completed,
1073 		    zone_t *, zone, zone_key_t, key);
1074 	}
1075 	if (!zone_lock_held)
1076 		mutex_exit(&zone->zone_lock);
1077 	return (dropped);
1078 }
1079 
1080 /*
1081  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1082  * is set.
1083  * If some other thread gets here first and sets *_INPROGRESS, then
1084  * we wait for that thread to complete so that we can ensure that
1085  * all the callbacks are done when we've looped over all zones/keys.
1086  *
1087  * When we call the shutdown function, we drop the global held by the
1088  * caller, and return true to tell the caller it needs to re-evalute the
1089  * state.
1090  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1091  * remains held on exit.
1092  */
1093 static boolean_t
1094 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1095     zone_t *zone, zone_key_t key)
1096 {
1097 	struct zsd_entry *t;
1098 	void *data;
1099 	boolean_t dropped;
1100 
1101 	if (lockp != NULL) {
1102 		ASSERT(MUTEX_HELD(lockp));
1103 	}
1104 	if (zone_lock_held) {
1105 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1106 	} else {
1107 		mutex_enter(&zone->zone_lock);
1108 	}
1109 
1110 	t = zsd_find(&zone->zone_zsd, key);
1111 	if (t == NULL) {
1112 		/*
1113 		 * Somebody else got here first e.g the zone going
1114 		 * away.
1115 		 */
1116 		if (!zone_lock_held)
1117 			mutex_exit(&zone->zone_lock);
1118 		return (B_FALSE);
1119 	}
1120 	dropped = B_FALSE;
1121 	if (zsd_wait_for_creator(zone, t, lockp))
1122 		dropped = B_TRUE;
1123 
1124 	if (zsd_wait_for_inprogress(zone, t, lockp))
1125 		dropped = B_TRUE;
1126 
1127 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1128 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1129 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1130 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1131 		    zone_t *, zone, zone_key_t, key);
1132 		mutex_exit(&zone->zone_lock);
1133 		if (lockp != NULL)
1134 			mutex_exit(lockp);
1135 		dropped = B_TRUE;
1136 
1137 		ASSERT(t->zsd_shutdown != NULL);
1138 		data = t->zsd_data;
1139 
1140 		DTRACE_PROBE2(zsd__shutdown__start,
1141 		    zone_t *, zone, zone_key_t, key);
1142 
1143 		(t->zsd_shutdown)(zone->zone_id, data);
1144 		DTRACE_PROBE2(zsd__shutdown__end,
1145 		    zone_t *, zone, zone_key_t, key);
1146 
1147 		if (lockp != NULL)
1148 			mutex_enter(lockp);
1149 		mutex_enter(&zone->zone_lock);
1150 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1151 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1152 		cv_broadcast(&t->zsd_cv);
1153 		DTRACE_PROBE2(zsd__shutdown__completed,
1154 		    zone_t *, zone, zone_key_t, key);
1155 	}
1156 	if (!zone_lock_held)
1157 		mutex_exit(&zone->zone_lock);
1158 	return (dropped);
1159 }
1160 
1161 /*
1162  * Call the destroy function for the zone and key if DESTROY_NEEDED
1163  * is set.
1164  * If some other thread gets here first and sets *_INPROGRESS, then
1165  * we wait for that thread to complete so that we can ensure that
1166  * all the callbacks are done when we've looped over all zones/keys.
1167  *
1168  * When we call the destroy function, we drop the global held by the
1169  * caller, and return true to tell the caller it needs to re-evalute the
1170  * state.
1171  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1172  * remains held on exit.
1173  */
1174 static boolean_t
1175 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1176     zone_t *zone, zone_key_t key)
1177 {
1178 	struct zsd_entry *t;
1179 	void *data;
1180 	boolean_t dropped;
1181 
1182 	if (lockp != NULL) {
1183 		ASSERT(MUTEX_HELD(lockp));
1184 	}
1185 	if (zone_lock_held) {
1186 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1187 	} else {
1188 		mutex_enter(&zone->zone_lock);
1189 	}
1190 
1191 	t = zsd_find(&zone->zone_zsd, key);
1192 	if (t == NULL) {
1193 		/*
1194 		 * Somebody else got here first e.g the zone going
1195 		 * away.
1196 		 */
1197 		if (!zone_lock_held)
1198 			mutex_exit(&zone->zone_lock);
1199 		return (B_FALSE);
1200 	}
1201 	dropped = B_FALSE;
1202 	if (zsd_wait_for_creator(zone, t, lockp))
1203 		dropped = B_TRUE;
1204 
1205 	if (zsd_wait_for_inprogress(zone, t, lockp))
1206 		dropped = B_TRUE;
1207 
1208 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1209 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1210 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1211 		DTRACE_PROBE2(zsd__destroy__inprogress,
1212 		    zone_t *, zone, zone_key_t, key);
1213 		mutex_exit(&zone->zone_lock);
1214 		if (lockp != NULL)
1215 			mutex_exit(lockp);
1216 		dropped = B_TRUE;
1217 
1218 		ASSERT(t->zsd_destroy != NULL);
1219 		data = t->zsd_data;
1220 		DTRACE_PROBE2(zsd__destroy__start,
1221 		    zone_t *, zone, zone_key_t, key);
1222 
1223 		(t->zsd_destroy)(zone->zone_id, data);
1224 		DTRACE_PROBE2(zsd__destroy__end,
1225 		    zone_t *, zone, zone_key_t, key);
1226 
1227 		if (lockp != NULL)
1228 			mutex_enter(lockp);
1229 		mutex_enter(&zone->zone_lock);
1230 		t->zsd_data = NULL;
1231 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1232 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1233 		cv_broadcast(&t->zsd_cv);
1234 		DTRACE_PROBE2(zsd__destroy__completed,
1235 		    zone_t *, zone, zone_key_t, key);
1236 	}
1237 	if (!zone_lock_held)
1238 		mutex_exit(&zone->zone_lock);
1239 	return (dropped);
1240 }
1241 
1242 /*
1243  * Wait for any CREATE_NEEDED flag to be cleared.
1244  * Returns true if lockp was temporarily dropped while waiting.
1245  */
1246 static boolean_t
1247 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1248 {
1249 	boolean_t dropped = B_FALSE;
1250 
1251 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1252 		DTRACE_PROBE2(zsd__wait__for__creator,
1253 		    zone_t *, zone, struct zsd_entry *, t);
1254 		if (lockp != NULL) {
1255 			dropped = B_TRUE;
1256 			mutex_exit(lockp);
1257 		}
1258 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1259 		if (lockp != NULL) {
1260 			/* First drop zone_lock to preserve order */
1261 			mutex_exit(&zone->zone_lock);
1262 			mutex_enter(lockp);
1263 			mutex_enter(&zone->zone_lock);
1264 		}
1265 	}
1266 	return (dropped);
1267 }
1268 
1269 /*
1270  * Wait for any INPROGRESS flag to be cleared.
1271  * Returns true if lockp was temporarily dropped while waiting.
1272  */
1273 static boolean_t
1274 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1275 {
1276 	boolean_t dropped = B_FALSE;
1277 
1278 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1279 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1280 		    zone_t *, zone, struct zsd_entry *, t);
1281 		if (lockp != NULL) {
1282 			dropped = B_TRUE;
1283 			mutex_exit(lockp);
1284 		}
1285 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1286 		if (lockp != NULL) {
1287 			/* First drop zone_lock to preserve order */
1288 			mutex_exit(&zone->zone_lock);
1289 			mutex_enter(lockp);
1290 			mutex_enter(&zone->zone_lock);
1291 		}
1292 	}
1293 	return (dropped);
1294 }
1295 
1296 /*
1297  * Frees memory associated with the zone dataset list.
1298  */
1299 static void
1300 zone_free_datasets(zone_t *zone)
1301 {
1302 	zone_dataset_t *t, *next;
1303 
1304 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1305 		next = list_next(&zone->zone_datasets, t);
1306 		list_remove(&zone->zone_datasets, t);
1307 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1308 		kmem_free(t, sizeof (*t));
1309 	}
1310 	list_destroy(&zone->zone_datasets);
1311 }
1312 
1313 /*
1314  * zone.cpu-shares resource control support.
1315  */
1316 /*ARGSUSED*/
1317 static rctl_qty_t
1318 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1319 {
1320 	ASSERT(MUTEX_HELD(&p->p_lock));
1321 	return (p->p_zone->zone_shares);
1322 }
1323 
1324 /*ARGSUSED*/
1325 static int
1326 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1327     rctl_qty_t nv)
1328 {
1329 	ASSERT(MUTEX_HELD(&p->p_lock));
1330 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1331 	if (e->rcep_p.zone == NULL)
1332 		return (0);
1333 
1334 	e->rcep_p.zone->zone_shares = nv;
1335 	return (0);
1336 }
1337 
1338 static rctl_ops_t zone_cpu_shares_ops = {
1339 	rcop_no_action,
1340 	zone_cpu_shares_usage,
1341 	zone_cpu_shares_set,
1342 	rcop_no_test
1343 };
1344 
1345 /*
1346  * zone.cpu-cap resource control support.
1347  */
1348 /*ARGSUSED*/
1349 static rctl_qty_t
1350 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1351 {
1352 	ASSERT(MUTEX_HELD(&p->p_lock));
1353 	return (cpucaps_zone_get(p->p_zone));
1354 }
1355 
1356 /*ARGSUSED*/
1357 static int
1358 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1359     rctl_qty_t nv)
1360 {
1361 	zone_t *zone = e->rcep_p.zone;
1362 
1363 	ASSERT(MUTEX_HELD(&p->p_lock));
1364 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1365 
1366 	if (zone == NULL)
1367 		return (0);
1368 
1369 	/*
1370 	 * set cap to the new value.
1371 	 */
1372 	return (cpucaps_zone_set(zone, nv));
1373 }
1374 
1375 static rctl_ops_t zone_cpu_cap_ops = {
1376 	rcop_no_action,
1377 	zone_cpu_cap_get,
1378 	zone_cpu_cap_set,
1379 	rcop_no_test
1380 };
1381 
1382 /*ARGSUSED*/
1383 static rctl_qty_t
1384 zone_lwps_usage(rctl_t *r, proc_t *p)
1385 {
1386 	rctl_qty_t nlwps;
1387 	zone_t *zone = p->p_zone;
1388 
1389 	ASSERT(MUTEX_HELD(&p->p_lock));
1390 
1391 	mutex_enter(&zone->zone_nlwps_lock);
1392 	nlwps = zone->zone_nlwps;
1393 	mutex_exit(&zone->zone_nlwps_lock);
1394 
1395 	return (nlwps);
1396 }
1397 
1398 /*ARGSUSED*/
1399 static int
1400 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1401     rctl_qty_t incr, uint_t flags)
1402 {
1403 	rctl_qty_t nlwps;
1404 
1405 	ASSERT(MUTEX_HELD(&p->p_lock));
1406 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1407 	if (e->rcep_p.zone == NULL)
1408 		return (0);
1409 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1410 	nlwps = e->rcep_p.zone->zone_nlwps;
1411 
1412 	if (nlwps + incr > rcntl->rcv_value)
1413 		return (1);
1414 
1415 	return (0);
1416 }
1417 
1418 /*ARGSUSED*/
1419 static int
1420 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1421 {
1422 	ASSERT(MUTEX_HELD(&p->p_lock));
1423 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1424 	if (e->rcep_p.zone == NULL)
1425 		return (0);
1426 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1427 	return (0);
1428 }
1429 
1430 static rctl_ops_t zone_lwps_ops = {
1431 	rcop_no_action,
1432 	zone_lwps_usage,
1433 	zone_lwps_set,
1434 	zone_lwps_test,
1435 };
1436 
1437 /*ARGSUSED*/
1438 static rctl_qty_t
1439 zone_procs_usage(rctl_t *r, proc_t *p)
1440 {
1441 	rctl_qty_t nprocs;
1442 	zone_t *zone = p->p_zone;
1443 
1444 	ASSERT(MUTEX_HELD(&p->p_lock));
1445 
1446 	mutex_enter(&zone->zone_nlwps_lock);
1447 	nprocs = zone->zone_nprocs;
1448 	mutex_exit(&zone->zone_nlwps_lock);
1449 
1450 	return (nprocs);
1451 }
1452 
1453 /*ARGSUSED*/
1454 static int
1455 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1456     rctl_qty_t incr, uint_t flags)
1457 {
1458 	rctl_qty_t nprocs;
1459 
1460 	ASSERT(MUTEX_HELD(&p->p_lock));
1461 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1462 	if (e->rcep_p.zone == NULL)
1463 		return (0);
1464 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1465 	nprocs = e->rcep_p.zone->zone_nprocs;
1466 
1467 	if (nprocs + incr > rcntl->rcv_value)
1468 		return (1);
1469 
1470 	return (0);
1471 }
1472 
1473 /*ARGSUSED*/
1474 static int
1475 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1476 {
1477 	ASSERT(MUTEX_HELD(&p->p_lock));
1478 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1479 	if (e->rcep_p.zone == NULL)
1480 		return (0);
1481 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1482 	return (0);
1483 }
1484 
1485 static rctl_ops_t zone_procs_ops = {
1486 	rcop_no_action,
1487 	zone_procs_usage,
1488 	zone_procs_set,
1489 	zone_procs_test,
1490 };
1491 
1492 /*ARGSUSED*/
1493 static int
1494 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1495     rctl_qty_t incr, uint_t flags)
1496 {
1497 	rctl_qty_t v;
1498 	ASSERT(MUTEX_HELD(&p->p_lock));
1499 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1500 	v = e->rcep_p.zone->zone_shmmax + incr;
1501 	if (v > rval->rcv_value)
1502 		return (1);
1503 	return (0);
1504 }
1505 
1506 static rctl_ops_t zone_shmmax_ops = {
1507 	rcop_no_action,
1508 	rcop_no_usage,
1509 	rcop_no_set,
1510 	zone_shmmax_test
1511 };
1512 
1513 /*ARGSUSED*/
1514 static int
1515 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1516     rctl_qty_t incr, uint_t flags)
1517 {
1518 	rctl_qty_t v;
1519 	ASSERT(MUTEX_HELD(&p->p_lock));
1520 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1521 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1522 	if (v > rval->rcv_value)
1523 		return (1);
1524 	return (0);
1525 }
1526 
1527 static rctl_ops_t zone_shmmni_ops = {
1528 	rcop_no_action,
1529 	rcop_no_usage,
1530 	rcop_no_set,
1531 	zone_shmmni_test
1532 };
1533 
1534 /*ARGSUSED*/
1535 static int
1536 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1537     rctl_qty_t incr, uint_t flags)
1538 {
1539 	rctl_qty_t v;
1540 	ASSERT(MUTEX_HELD(&p->p_lock));
1541 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1542 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1543 	if (v > rval->rcv_value)
1544 		return (1);
1545 	return (0);
1546 }
1547 
1548 static rctl_ops_t zone_semmni_ops = {
1549 	rcop_no_action,
1550 	rcop_no_usage,
1551 	rcop_no_set,
1552 	zone_semmni_test
1553 };
1554 
1555 /*ARGSUSED*/
1556 static int
1557 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1558     rctl_qty_t incr, uint_t flags)
1559 {
1560 	rctl_qty_t v;
1561 	ASSERT(MUTEX_HELD(&p->p_lock));
1562 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1563 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1564 	if (v > rval->rcv_value)
1565 		return (1);
1566 	return (0);
1567 }
1568 
1569 static rctl_ops_t zone_msgmni_ops = {
1570 	rcop_no_action,
1571 	rcop_no_usage,
1572 	rcop_no_set,
1573 	zone_msgmni_test
1574 };
1575 
1576 /*ARGSUSED*/
1577 static rctl_qty_t
1578 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1579 {
1580 	rctl_qty_t q;
1581 	ASSERT(MUTEX_HELD(&p->p_lock));
1582 	mutex_enter(&p->p_zone->zone_mem_lock);
1583 	q = p->p_zone->zone_locked_mem;
1584 	mutex_exit(&p->p_zone->zone_mem_lock);
1585 	return (q);
1586 }
1587 
1588 /*ARGSUSED*/
1589 static int
1590 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1591     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1592 {
1593 	rctl_qty_t q;
1594 	zone_t *z;
1595 
1596 	z = e->rcep_p.zone;
1597 	ASSERT(MUTEX_HELD(&p->p_lock));
1598 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1599 	q = z->zone_locked_mem;
1600 	if (q + incr > rcntl->rcv_value)
1601 		return (1);
1602 	return (0);
1603 }
1604 
1605 /*ARGSUSED*/
1606 static int
1607 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1608     rctl_qty_t nv)
1609 {
1610 	ASSERT(MUTEX_HELD(&p->p_lock));
1611 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1612 	if (e->rcep_p.zone == NULL)
1613 		return (0);
1614 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1615 	return (0);
1616 }
1617 
1618 static rctl_ops_t zone_locked_mem_ops = {
1619 	rcop_no_action,
1620 	zone_locked_mem_usage,
1621 	zone_locked_mem_set,
1622 	zone_locked_mem_test
1623 };
1624 
1625 /*ARGSUSED*/
1626 static rctl_qty_t
1627 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1628 {
1629 	rctl_qty_t q;
1630 	zone_t *z = p->p_zone;
1631 
1632 	ASSERT(MUTEX_HELD(&p->p_lock));
1633 	mutex_enter(&z->zone_mem_lock);
1634 	q = z->zone_max_swap;
1635 	mutex_exit(&z->zone_mem_lock);
1636 	return (q);
1637 }
1638 
1639 /*ARGSUSED*/
1640 static int
1641 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1642     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1643 {
1644 	rctl_qty_t q;
1645 	zone_t *z;
1646 
1647 	z = e->rcep_p.zone;
1648 	ASSERT(MUTEX_HELD(&p->p_lock));
1649 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1650 	q = z->zone_max_swap;
1651 	if (q + incr > rcntl->rcv_value)
1652 		return (1);
1653 	return (0);
1654 }
1655 
1656 /*ARGSUSED*/
1657 static int
1658 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1659     rctl_qty_t nv)
1660 {
1661 	ASSERT(MUTEX_HELD(&p->p_lock));
1662 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1663 	if (e->rcep_p.zone == NULL)
1664 		return (0);
1665 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1666 	return (0);
1667 }
1668 
1669 static rctl_ops_t zone_max_swap_ops = {
1670 	rcop_no_action,
1671 	zone_max_swap_usage,
1672 	zone_max_swap_set,
1673 	zone_max_swap_test
1674 };
1675 
1676 /*ARGSUSED*/
1677 static rctl_qty_t
1678 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1679 {
1680 	rctl_qty_t q;
1681 	zone_t *z = p->p_zone;
1682 
1683 	ASSERT(MUTEX_HELD(&p->p_lock));
1684 	mutex_enter(&z->zone_rctl_lock);
1685 	q = z->zone_max_lofi;
1686 	mutex_exit(&z->zone_rctl_lock);
1687 	return (q);
1688 }
1689 
1690 /*ARGSUSED*/
1691 static int
1692 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1693     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1694 {
1695 	rctl_qty_t q;
1696 	zone_t *z;
1697 
1698 	z = e->rcep_p.zone;
1699 	ASSERT(MUTEX_HELD(&p->p_lock));
1700 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1701 	q = z->zone_max_lofi;
1702 	if (q + incr > rcntl->rcv_value)
1703 		return (1);
1704 	return (0);
1705 }
1706 
1707 /*ARGSUSED*/
1708 static int
1709 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1710     rctl_qty_t nv)
1711 {
1712 	ASSERT(MUTEX_HELD(&p->p_lock));
1713 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1714 	if (e->rcep_p.zone == NULL)
1715 		return (0);
1716 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1717 	return (0);
1718 }
1719 
1720 static rctl_ops_t zone_max_lofi_ops = {
1721 	rcop_no_action,
1722 	zone_max_lofi_usage,
1723 	zone_max_lofi_set,
1724 	zone_max_lofi_test
1725 };
1726 
1727 /*
1728  * Helper function to brand the zone with a unique ID.
1729  */
1730 static void
1731 zone_uniqid(zone_t *zone)
1732 {
1733 	static uint64_t uniqid = 0;
1734 
1735 	ASSERT(MUTEX_HELD(&zonehash_lock));
1736 	zone->zone_uniqid = uniqid++;
1737 }
1738 
1739 /*
1740  * Returns a held pointer to the "kcred" for the specified zone.
1741  */
1742 struct cred *
1743 zone_get_kcred(zoneid_t zoneid)
1744 {
1745 	zone_t *zone;
1746 	cred_t *cr;
1747 
1748 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1749 		return (NULL);
1750 	cr = zone->zone_kcred;
1751 	crhold(cr);
1752 	zone_rele(zone);
1753 	return (cr);
1754 }
1755 
1756 static int
1757 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1758 {
1759 	zone_t *zone = ksp->ks_private;
1760 	zone_kstat_t *zk = ksp->ks_data;
1761 
1762 	if (rw == KSTAT_WRITE)
1763 		return (EACCES);
1764 
1765 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1766 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1767 	return (0);
1768 }
1769 
1770 static int
1771 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1772 {
1773 	zone_t *zone = ksp->ks_private;
1774 	zone_kstat_t *zk = ksp->ks_data;
1775 
1776 	if (rw == KSTAT_WRITE)
1777 		return (EACCES);
1778 
1779 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1780 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1781 	return (0);
1782 }
1783 
1784 static int
1785 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1786 {
1787 	zone_t *zone = ksp->ks_private;
1788 	zone_kstat_t *zk = ksp->ks_data;
1789 
1790 	if (rw == KSTAT_WRITE)
1791 		return (EACCES);
1792 
1793 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1794 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1795 	return (0);
1796 }
1797 
1798 static kstat_t *
1799 zone_kstat_create_common(zone_t *zone, char *name,
1800     int (*updatefunc) (kstat_t *, int))
1801 {
1802 	kstat_t *ksp;
1803 	zone_kstat_t *zk;
1804 
1805 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1806 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1807 	    KSTAT_FLAG_VIRTUAL);
1808 
1809 	if (ksp == NULL)
1810 		return (NULL);
1811 
1812 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1813 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1814 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1815 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1816 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1817 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1818 	ksp->ks_update = updatefunc;
1819 	ksp->ks_private = zone;
1820 	kstat_install(ksp);
1821 	return (ksp);
1822 }
1823 
1824 static int
1825 zone_misc_kstat_update(kstat_t *ksp, int rw)
1826 {
1827 	zone_t *zone = ksp->ks_private;
1828 	zone_misc_kstat_t *zmp = ksp->ks_data;
1829 	hrtime_t tmp;
1830 
1831 	if (rw == KSTAT_WRITE)
1832 		return (EACCES);
1833 
1834 	tmp = zone->zone_utime;
1835 	scalehrtime(&tmp);
1836 	zmp->zm_utime.value.ui64 = tmp;
1837 	tmp = zone->zone_stime;
1838 	scalehrtime(&tmp);
1839 	zmp->zm_stime.value.ui64 = tmp;
1840 	tmp = zone->zone_wtime;
1841 	scalehrtime(&tmp);
1842 	zmp->zm_wtime.value.ui64 = tmp;
1843 
1844 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1845 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1846 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1847 
1848 	return (0);
1849 }
1850 
1851 static kstat_t *
1852 zone_misc_kstat_create(zone_t *zone)
1853 {
1854 	kstat_t *ksp;
1855 	zone_misc_kstat_t *zmp;
1856 
1857 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1858 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1859 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1860 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1861 		return (NULL);
1862 
1863 	if (zone->zone_id != GLOBAL_ZONEID)
1864 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1865 
1866 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1867 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1868 	ksp->ks_lock = &zone->zone_misc_lock;
1869 	zone->zone_misc_stats = zmp;
1870 
1871 	/* The kstat "name" field is not large enough for a full zonename */
1872 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1873 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1874 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1875 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1876 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1877 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1878 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1879 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1880 	    KSTAT_DATA_UINT32);
1881 
1882 	ksp->ks_update = zone_misc_kstat_update;
1883 	ksp->ks_private = zone;
1884 
1885 	kstat_install(ksp);
1886 	return (ksp);
1887 }
1888 
1889 static void
1890 zone_kstat_create(zone_t *zone)
1891 {
1892 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1893 	    "lockedmem", zone_lockedmem_kstat_update);
1894 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1895 	    "swapresv", zone_swapresv_kstat_update);
1896 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1897 	    "nprocs", zone_nprocs_kstat_update);
1898 
1899 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
1900 		zone->zone_misc_stats = kmem_zalloc(
1901 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
1902 	}
1903 }
1904 
1905 static void
1906 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
1907 {
1908 	void *data;
1909 
1910 	if (*pkstat != NULL) {
1911 		data = (*pkstat)->ks_data;
1912 		kstat_delete(*pkstat);
1913 		kmem_free(data, datasz);
1914 		*pkstat = NULL;
1915 	}
1916 }
1917 
1918 static void
1919 zone_kstat_delete(zone_t *zone)
1920 {
1921 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
1922 	    sizeof (zone_kstat_t));
1923 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
1924 	    sizeof (zone_kstat_t));
1925 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
1926 	    sizeof (zone_kstat_t));
1927 	zone_kstat_delete_common(&zone->zone_misc_ksp,
1928 	    sizeof (zone_misc_kstat_t));
1929 }
1930 
1931 /*
1932  * Called very early on in boot to initialize the ZSD list so that
1933  * zone_key_create() can be called before zone_init().  It also initializes
1934  * portions of zone0 which may be used before zone_init() is called.  The
1935  * variable "global_zone" will be set when zone0 is fully initialized by
1936  * zone_init().
1937  */
1938 void
1939 zone_zsd_init(void)
1940 {
1941 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1942 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1943 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1944 	    offsetof(struct zsd_entry, zsd_linkage));
1945 	list_create(&zone_active, sizeof (zone_t),
1946 	    offsetof(zone_t, zone_linkage));
1947 	list_create(&zone_deathrow, sizeof (zone_t),
1948 	    offsetof(zone_t, zone_linkage));
1949 
1950 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1951 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1952 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1953 	zone0.zone_shares = 1;
1954 	zone0.zone_nlwps = 0;
1955 	zone0.zone_nlwps_ctl = INT_MAX;
1956 	zone0.zone_nprocs = 0;
1957 	zone0.zone_nprocs_ctl = INT_MAX;
1958 	zone0.zone_locked_mem = 0;
1959 	zone0.zone_locked_mem_ctl = UINT64_MAX;
1960 	ASSERT(zone0.zone_max_swap == 0);
1961 	zone0.zone_max_swap_ctl = UINT64_MAX;
1962 	zone0.zone_max_lofi = 0;
1963 	zone0.zone_max_lofi_ctl = UINT64_MAX;
1964 	zone0.zone_shmmax = 0;
1965 	zone0.zone_ipc.ipcq_shmmni = 0;
1966 	zone0.zone_ipc.ipcq_semmni = 0;
1967 	zone0.zone_ipc.ipcq_msgmni = 0;
1968 	zone0.zone_name = GLOBAL_ZONENAME;
1969 	zone0.zone_nodename = utsname.nodename;
1970 	zone0.zone_domain = srpc_domain;
1971 	zone0.zone_hostid = HW_INVALID_HOSTID;
1972 	zone0.zone_fs_allowed = NULL;
1973 	zone0.zone_ref = 1;
1974 	zone0.zone_id = GLOBAL_ZONEID;
1975 	zone0.zone_status = ZONE_IS_RUNNING;
1976 	zone0.zone_rootpath = "/";
1977 	zone0.zone_rootpathlen = 2;
1978 	zone0.zone_psetid = ZONE_PS_INVAL;
1979 	zone0.zone_ncpus = 0;
1980 	zone0.zone_ncpus_online = 0;
1981 	zone0.zone_proc_initpid = 1;
1982 	zone0.zone_initname = initname;
1983 	zone0.zone_lockedmem_kstat = NULL;
1984 	zone0.zone_swapresv_kstat = NULL;
1985 	zone0.zone_nprocs_kstat = NULL;
1986 
1987 	zone0.zone_stime = 0;
1988 	zone0.zone_utime = 0;
1989 	zone0.zone_wtime = 0;
1990 
1991 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
1992 	    offsetof(zone_ref_t, zref_linkage));
1993 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
1994 	    offsetof(struct zsd_entry, zsd_linkage));
1995 	list_insert_head(&zone_active, &zone0);
1996 
1997 	/*
1998 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
1999 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2000 	 * vfs_mountroot().
2001 	 */
2002 	zone0.zone_rootvp = NULL;
2003 	zone0.zone_vfslist = NULL;
2004 	zone0.zone_bootargs = initargs;
2005 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2006 	/*
2007 	 * The global zone has all privileges
2008 	 */
2009 	priv_fillset(zone0.zone_privset);
2010 	/*
2011 	 * Add p0 to the global zone
2012 	 */
2013 	zone0.zone_zsched = &p0;
2014 	p0.p_zone = &zone0;
2015 }
2016 
2017 /*
2018  * Compute a hash value based on the contents of the label and the DOI.  The
2019  * hash algorithm is somewhat arbitrary, but is based on the observation that
2020  * humans will likely pick labels that differ by amounts that work out to be
2021  * multiples of the number of hash chains, and thus stirring in some primes
2022  * should help.
2023  */
2024 static uint_t
2025 hash_bylabel(void *hdata, mod_hash_key_t key)
2026 {
2027 	const ts_label_t *lab = (ts_label_t *)key;
2028 	const uint32_t *up, *ue;
2029 	uint_t hash;
2030 	int i;
2031 
2032 	_NOTE(ARGUNUSED(hdata));
2033 
2034 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2035 	/* we depend on alignment of label, but not representation */
2036 	up = (const uint32_t *)&lab->tsl_label;
2037 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2038 	i = 1;
2039 	while (up < ue) {
2040 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2041 		hash += *up + (*up << ((i % 16) + 1));
2042 		up++;
2043 		i++;
2044 	}
2045 	return (hash);
2046 }
2047 
2048 /*
2049  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2050  * equal).  This may need to be changed if less than / greater than is ever
2051  * needed.
2052  */
2053 static int
2054 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2055 {
2056 	ts_label_t *lab1 = (ts_label_t *)key1;
2057 	ts_label_t *lab2 = (ts_label_t *)key2;
2058 
2059 	return (label_equal(lab1, lab2) ? 0 : 1);
2060 }
2061 
2062 /*
2063  * Called by main() to initialize the zones framework.
2064  */
2065 void
2066 zone_init(void)
2067 {
2068 	rctl_dict_entry_t *rde;
2069 	rctl_val_t *dval;
2070 	rctl_set_t *set;
2071 	rctl_alloc_gp_t *gp;
2072 	rctl_entity_p_t e;
2073 	int res;
2074 
2075 	ASSERT(curproc == &p0);
2076 
2077 	/*
2078 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2079 	 * global zone.
2080 	 */
2081 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2082 
2083 	/*
2084 	 * Initialize generic zone resource controls, if any.
2085 	 */
2086 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2087 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2088 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2089 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2090 
2091 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2092 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2093 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2094 	    RCTL_GLOBAL_INFINITE,
2095 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2096 
2097 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2098 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2099 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2100 
2101 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2102 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2103 	    INT_MAX, INT_MAX, &zone_procs_ops);
2104 
2105 	/*
2106 	 * System V IPC resource controls
2107 	 */
2108 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2109 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2110 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2111 
2112 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2113 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2114 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2115 
2116 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2117 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2118 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2119 
2120 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2121 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2122 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2123 
2124 	/*
2125 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2126 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2127 	 */
2128 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2129 	bzero(dval, sizeof (rctl_val_t));
2130 	dval->rcv_value = 1;
2131 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2132 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2133 	dval->rcv_action_recip_pid = -1;
2134 
2135 	rde = rctl_dict_lookup("zone.cpu-shares");
2136 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2137 
2138 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2139 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2140 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2141 	    &zone_locked_mem_ops);
2142 
2143 	rc_zone_max_swap = rctl_register("zone.max-swap",
2144 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2145 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2146 	    &zone_max_swap_ops);
2147 
2148 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2149 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2150 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2151 	    &zone_max_lofi_ops);
2152 
2153 	/*
2154 	 * Initialize the ``global zone''.
2155 	 */
2156 	set = rctl_set_create();
2157 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2158 	mutex_enter(&p0.p_lock);
2159 	e.rcep_p.zone = &zone0;
2160 	e.rcep_t = RCENTITY_ZONE;
2161 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2162 	    gp);
2163 
2164 	zone0.zone_nlwps = p0.p_lwpcnt;
2165 	zone0.zone_nprocs = 1;
2166 	zone0.zone_ntasks = 1;
2167 	mutex_exit(&p0.p_lock);
2168 	zone0.zone_restart_init = B_TRUE;
2169 	zone0.zone_brand = &native_brand;
2170 	rctl_prealloc_destroy(gp);
2171 	/*
2172 	 * pool_default hasn't been initialized yet, so we let pool_init()
2173 	 * take care of making sure the global zone is in the default pool.
2174 	 */
2175 
2176 	/*
2177 	 * Initialize global zone kstats
2178 	 */
2179 	zone_kstat_create(&zone0);
2180 
2181 	/*
2182 	 * Initialize zone label.
2183 	 * mlp are initialized when tnzonecfg is loaded.
2184 	 */
2185 	zone0.zone_slabel = l_admin_low;
2186 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2187 	label_hold(l_admin_low);
2188 
2189 	/*
2190 	 * Initialise the lock for the database structure used by mntfs.
2191 	 */
2192 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2193 
2194 	mutex_enter(&zonehash_lock);
2195 	zone_uniqid(&zone0);
2196 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2197 
2198 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2199 	    mod_hash_null_valdtor);
2200 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2201 	    zone_hash_size, mod_hash_null_valdtor);
2202 	/*
2203 	 * maintain zonehashbylabel only for labeled systems
2204 	 */
2205 	if (is_system_labeled())
2206 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2207 		    zone_hash_size, mod_hash_null_keydtor,
2208 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2209 		    hash_labelkey_cmp, KM_SLEEP);
2210 	zonecount = 1;
2211 
2212 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2213 	    (mod_hash_val_t)&zone0);
2214 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2215 	    (mod_hash_val_t)&zone0);
2216 	if (is_system_labeled()) {
2217 		zone0.zone_flags |= ZF_HASHED_LABEL;
2218 		(void) mod_hash_insert(zonehashbylabel,
2219 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2220 	}
2221 	mutex_exit(&zonehash_lock);
2222 
2223 	/*
2224 	 * We avoid setting zone_kcred until now, since kcred is initialized
2225 	 * sometime after zone_zsd_init() and before zone_init().
2226 	 */
2227 	zone0.zone_kcred = kcred;
2228 	/*
2229 	 * The global zone is fully initialized (except for zone_rootvp which
2230 	 * will be set when the root filesystem is mounted).
2231 	 */
2232 	global_zone = &zone0;
2233 
2234 	/*
2235 	 * Setup an event channel to send zone status change notifications on
2236 	 */
2237 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2238 	    EVCH_CREAT);
2239 
2240 	if (res)
2241 		panic("Sysevent_evc_bind failed during zone setup.\n");
2242 
2243 }
2244 
2245 static void
2246 zone_free(zone_t *zone)
2247 {
2248 	ASSERT(zone != global_zone);
2249 	ASSERT(zone->zone_ntasks == 0);
2250 	ASSERT(zone->zone_nlwps == 0);
2251 	ASSERT(zone->zone_nprocs == 0);
2252 	ASSERT(zone->zone_cred_ref == 0);
2253 	ASSERT(zone->zone_kcred == NULL);
2254 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2255 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2256 	ASSERT(list_is_empty(&zone->zone_ref_list));
2257 
2258 	/*
2259 	 * Remove any zone caps.
2260 	 */
2261 	cpucaps_zone_remove(zone);
2262 
2263 	ASSERT(zone->zone_cpucap == NULL);
2264 
2265 	/* remove from deathrow list */
2266 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2267 		ASSERT(zone->zone_ref == 0);
2268 		mutex_enter(&zone_deathrow_lock);
2269 		list_remove(&zone_deathrow, zone);
2270 		mutex_exit(&zone_deathrow_lock);
2271 	}
2272 
2273 	list_destroy(&zone->zone_ref_list);
2274 	zone_free_zsd(zone);
2275 	zone_free_datasets(zone);
2276 	list_destroy(&zone->zone_dl_list);
2277 
2278 	if (zone->zone_rootvp != NULL)
2279 		VN_RELE(zone->zone_rootvp);
2280 	if (zone->zone_rootpath)
2281 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2282 	if (zone->zone_name != NULL)
2283 		kmem_free(zone->zone_name, ZONENAME_MAX);
2284 	if (zone->zone_slabel != NULL)
2285 		label_rele(zone->zone_slabel);
2286 	if (zone->zone_nodename != NULL)
2287 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2288 	if (zone->zone_domain != NULL)
2289 		kmem_free(zone->zone_domain, _SYS_NMLN);
2290 	if (zone->zone_privset != NULL)
2291 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2292 	if (zone->zone_rctls != NULL)
2293 		rctl_set_free(zone->zone_rctls);
2294 	if (zone->zone_bootargs != NULL)
2295 		strfree(zone->zone_bootargs);
2296 	if (zone->zone_initname != NULL)
2297 		strfree(zone->zone_initname);
2298 	if (zone->zone_fs_allowed != NULL)
2299 		strfree(zone->zone_fs_allowed);
2300 	if (zone->zone_pfexecd != NULL)
2301 		klpd_freelist(&zone->zone_pfexecd);
2302 	id_free(zoneid_space, zone->zone_id);
2303 	mutex_destroy(&zone->zone_lock);
2304 	cv_destroy(&zone->zone_cv);
2305 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2306 	rw_destroy(&zone->zone_mntfs_db_lock);
2307 	kmem_free(zone, sizeof (zone_t));
2308 }
2309 
2310 /*
2311  * See block comment at the top of this file for information about zone
2312  * status values.
2313  */
2314 /*
2315  * Convenience function for setting zone status.
2316  */
2317 static void
2318 zone_status_set(zone_t *zone, zone_status_t status)
2319 {
2320 
2321 	nvlist_t *nvl = NULL;
2322 	ASSERT(MUTEX_HELD(&zone_status_lock));
2323 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2324 	    status >= zone_status_get(zone));
2325 
2326 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2327 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2328 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2329 	    zone_status_table[status]) ||
2330 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2331 	    zone_status_table[zone->zone_status]) ||
2332 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2333 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2334 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2335 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2336 #ifdef DEBUG
2337 		(void) printf(
2338 		    "Failed to allocate and send zone state change event.\n");
2339 #endif
2340 	}
2341 	nvlist_free(nvl);
2342 
2343 	zone->zone_status = status;
2344 
2345 	cv_broadcast(&zone->zone_cv);
2346 }
2347 
2348 /*
2349  * Public function to retrieve the zone status.  The zone status may
2350  * change after it is retrieved.
2351  */
2352 zone_status_t
2353 zone_status_get(zone_t *zone)
2354 {
2355 	return (zone->zone_status);
2356 }
2357 
2358 static int
2359 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2360 {
2361 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2362 	int err = 0;
2363 
2364 	ASSERT(zone != global_zone);
2365 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2366 		goto done;	/* EFAULT or ENAMETOOLONG */
2367 
2368 	if (zone->zone_bootargs != NULL)
2369 		strfree(zone->zone_bootargs);
2370 
2371 	zone->zone_bootargs = strdup(buf);
2372 
2373 done:
2374 	kmem_free(buf, BOOTARGS_MAX);
2375 	return (err);
2376 }
2377 
2378 static int
2379 zone_set_brand(zone_t *zone, const char *brand)
2380 {
2381 	struct brand_attr *attrp;
2382 	brand_t *bp;
2383 
2384 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2385 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2386 		kmem_free(attrp, sizeof (struct brand_attr));
2387 		return (EFAULT);
2388 	}
2389 
2390 	bp = brand_register_zone(attrp);
2391 	kmem_free(attrp, sizeof (struct brand_attr));
2392 	if (bp == NULL)
2393 		return (EINVAL);
2394 
2395 	/*
2396 	 * This is the only place where a zone can change it's brand.
2397 	 * We already need to hold zone_status_lock to check the zone
2398 	 * status, so we'll just use that lock to serialize zone
2399 	 * branding requests as well.
2400 	 */
2401 	mutex_enter(&zone_status_lock);
2402 
2403 	/* Re-Branding is not allowed and the zone can't be booted yet */
2404 	if ((ZONE_IS_BRANDED(zone)) ||
2405 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2406 		mutex_exit(&zone_status_lock);
2407 		brand_unregister_zone(bp);
2408 		return (EINVAL);
2409 	}
2410 
2411 	/* set up the brand specific data */
2412 	zone->zone_brand = bp;
2413 	ZBROP(zone)->b_init_brand_data(zone);
2414 
2415 	mutex_exit(&zone_status_lock);
2416 	return (0);
2417 }
2418 
2419 static int
2420 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2421 {
2422 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2423 	int err = 0;
2424 
2425 	ASSERT(zone != global_zone);
2426 	if ((err = copyinstr(zone_fs_allowed, buf,
2427 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2428 		goto done;
2429 
2430 	if (zone->zone_fs_allowed != NULL)
2431 		strfree(zone->zone_fs_allowed);
2432 
2433 	zone->zone_fs_allowed = strdup(buf);
2434 
2435 done:
2436 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2437 	return (err);
2438 }
2439 
2440 static int
2441 zone_set_initname(zone_t *zone, const char *zone_initname)
2442 {
2443 	char initname[INITNAME_SZ];
2444 	size_t len;
2445 	int err = 0;
2446 
2447 	ASSERT(zone != global_zone);
2448 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2449 		return (err);	/* EFAULT or ENAMETOOLONG */
2450 
2451 	if (zone->zone_initname != NULL)
2452 		strfree(zone->zone_initname);
2453 
2454 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2455 	(void) strcpy(zone->zone_initname, initname);
2456 	return (0);
2457 }
2458 
2459 static int
2460 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2461 {
2462 	uint64_t mcap;
2463 	int err = 0;
2464 
2465 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2466 		zone->zone_phys_mcap = mcap;
2467 
2468 	return (err);
2469 }
2470 
2471 static int
2472 zone_set_sched_class(zone_t *zone, const char *new_class)
2473 {
2474 	char sched_class[PC_CLNMSZ];
2475 	id_t classid;
2476 	int err;
2477 
2478 	ASSERT(zone != global_zone);
2479 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2480 		return (err);	/* EFAULT or ENAMETOOLONG */
2481 
2482 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2483 		return (set_errno(EINVAL));
2484 	zone->zone_defaultcid = classid;
2485 	ASSERT(zone->zone_defaultcid > 0 &&
2486 	    zone->zone_defaultcid < loaded_classes);
2487 
2488 	return (0);
2489 }
2490 
2491 /*
2492  * Block indefinitely waiting for (zone_status >= status)
2493  */
2494 void
2495 zone_status_wait(zone_t *zone, zone_status_t status)
2496 {
2497 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2498 
2499 	mutex_enter(&zone_status_lock);
2500 	while (zone->zone_status < status) {
2501 		cv_wait(&zone->zone_cv, &zone_status_lock);
2502 	}
2503 	mutex_exit(&zone_status_lock);
2504 }
2505 
2506 /*
2507  * Private CPR-safe version of zone_status_wait().
2508  */
2509 static void
2510 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2511 {
2512 	callb_cpr_t cprinfo;
2513 
2514 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2515 
2516 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2517 	    str);
2518 	mutex_enter(&zone_status_lock);
2519 	while (zone->zone_status < status) {
2520 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2521 		cv_wait(&zone->zone_cv, &zone_status_lock);
2522 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2523 	}
2524 	/*
2525 	 * zone_status_lock is implicitly released by the following.
2526 	 */
2527 	CALLB_CPR_EXIT(&cprinfo);
2528 }
2529 
2530 /*
2531  * Block until zone enters requested state or signal is received.  Return (0)
2532  * if signaled, non-zero otherwise.
2533  */
2534 int
2535 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2536 {
2537 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2538 
2539 	mutex_enter(&zone_status_lock);
2540 	while (zone->zone_status < status) {
2541 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2542 			mutex_exit(&zone_status_lock);
2543 			return (0);
2544 		}
2545 	}
2546 	mutex_exit(&zone_status_lock);
2547 	return (1);
2548 }
2549 
2550 /*
2551  * Block until the zone enters the requested state or the timeout expires,
2552  * whichever happens first.  Return (-1) if operation timed out, time remaining
2553  * otherwise.
2554  */
2555 clock_t
2556 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2557 {
2558 	clock_t timeleft = 0;
2559 
2560 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2561 
2562 	mutex_enter(&zone_status_lock);
2563 	while (zone->zone_status < status && timeleft != -1) {
2564 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2565 	}
2566 	mutex_exit(&zone_status_lock);
2567 	return (timeleft);
2568 }
2569 
2570 /*
2571  * Block until the zone enters the requested state, the current process is
2572  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2573  * operation timed out, 0 if signaled, time remaining otherwise.
2574  */
2575 clock_t
2576 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2577 {
2578 	clock_t timeleft = tim - ddi_get_lbolt();
2579 
2580 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2581 
2582 	mutex_enter(&zone_status_lock);
2583 	while (zone->zone_status < status) {
2584 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2585 		    tim);
2586 		if (timeleft <= 0)
2587 			break;
2588 	}
2589 	mutex_exit(&zone_status_lock);
2590 	return (timeleft);
2591 }
2592 
2593 /*
2594  * Zones have two reference counts: one for references from credential
2595  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2596  * This is so we can allow a zone to be rebooted while there are still
2597  * outstanding cred references, since certain drivers cache dblks (which
2598  * implicitly results in cached creds).  We wait for zone_ref to drop to
2599  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2600  * later freed when the zone_cred_ref drops to 0, though nothing other
2601  * than the zone id and privilege set should be accessed once the zone
2602  * is "dead".
2603  *
2604  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2605  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2606  * to 0.  This can be useful to flush out other sources of cached creds
2607  * that may be less innocuous than the driver case.
2608  *
2609  * Zones also provide a tracked reference counting mechanism in which zone
2610  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2611  * debuggers determine the sources of leaked zone references.  See
2612  * zone_hold_ref() and zone_rele_ref() below for more information.
2613  */
2614 
2615 int zone_wait_for_cred = 0;
2616 
2617 static void
2618 zone_hold_locked(zone_t *z)
2619 {
2620 	ASSERT(MUTEX_HELD(&z->zone_lock));
2621 	z->zone_ref++;
2622 	ASSERT(z->zone_ref != 0);
2623 }
2624 
2625 /*
2626  * Increment the specified zone's reference count.  The zone's zone_t structure
2627  * will not be freed as long as the zone's reference count is nonzero.
2628  * Decrement the zone's reference count via zone_rele().
2629  *
2630  * NOTE: This function should only be used to hold zones for short periods of
2631  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2632  */
2633 void
2634 zone_hold(zone_t *z)
2635 {
2636 	mutex_enter(&z->zone_lock);
2637 	zone_hold_locked(z);
2638 	mutex_exit(&z->zone_lock);
2639 }
2640 
2641 /*
2642  * If the non-cred ref count drops to 1 and either the cred ref count
2643  * is 0 or we aren't waiting for cred references, the zone is ready to
2644  * be destroyed.
2645  */
2646 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2647 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2648 
2649 /*
2650  * Common zone reference release function invoked by zone_rele() and
2651  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2652  * zone's subsystem-specific reference counters are not affected by the
2653  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2654  * removed from the specified zone's reference list.  ref must be non-NULL iff
2655  * subsys is not ZONE_REF_NUM_SUBSYS.
2656  */
2657 static void
2658 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2659 {
2660 	boolean_t wakeup;
2661 
2662 	mutex_enter(&z->zone_lock);
2663 	ASSERT(z->zone_ref != 0);
2664 	z->zone_ref--;
2665 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2666 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2667 		z->zone_subsys_ref[subsys]--;
2668 		list_remove(&z->zone_ref_list, ref);
2669 	}
2670 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2671 		/* no more refs, free the structure */
2672 		mutex_exit(&z->zone_lock);
2673 		zone_free(z);
2674 		return;
2675 	}
2676 	/* signal zone_destroy so the zone can finish halting */
2677 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2678 	mutex_exit(&z->zone_lock);
2679 
2680 	if (wakeup) {
2681 		/*
2682 		 * Grabbing zonehash_lock here effectively synchronizes with
2683 		 * zone_destroy() to avoid missed signals.
2684 		 */
2685 		mutex_enter(&zonehash_lock);
2686 		cv_broadcast(&zone_destroy_cv);
2687 		mutex_exit(&zonehash_lock);
2688 	}
2689 }
2690 
2691 /*
2692  * Decrement the specified zone's reference count.  The specified zone will
2693  * cease to exist after this function returns if the reference count drops to
2694  * zero.  This function should be paired with zone_hold().
2695  */
2696 void
2697 zone_rele(zone_t *z)
2698 {
2699 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2700 }
2701 
2702 /*
2703  * Initialize a zone reference structure.  This function must be invoked for
2704  * a reference structure before the structure is passed to zone_hold_ref().
2705  */
2706 void
2707 zone_init_ref(zone_ref_t *ref)
2708 {
2709 	ref->zref_zone = NULL;
2710 	list_link_init(&ref->zref_linkage);
2711 }
2712 
2713 /*
2714  * Acquire a reference to zone z.  The caller must specify the
2715  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2716  * zone_ref_t structure will represent a reference to the specified zone.  Use
2717  * zone_rele_ref() to release the reference.
2718  *
2719  * The referenced zone_t structure will not be freed as long as the zone_t's
2720  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2721  * references.
2722  *
2723  * NOTE: The zone_ref_t structure must be initialized before it is used.
2724  * See zone_init_ref() above.
2725  */
2726 void
2727 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2728 {
2729 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2730 
2731 	/*
2732 	 * Prevent consumers from reusing a reference structure before
2733 	 * releasing it.
2734 	 */
2735 	VERIFY(ref->zref_zone == NULL);
2736 
2737 	ref->zref_zone = z;
2738 	mutex_enter(&z->zone_lock);
2739 	zone_hold_locked(z);
2740 	z->zone_subsys_ref[subsys]++;
2741 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2742 	list_insert_head(&z->zone_ref_list, ref);
2743 	mutex_exit(&z->zone_lock);
2744 }
2745 
2746 /*
2747  * Release the zone reference represented by the specified zone_ref_t.
2748  * The reference is invalid after it's released; however, the zone_ref_t
2749  * structure can be reused without having to invoke zone_init_ref().
2750  * subsys should be the same value that was passed to zone_hold_ref()
2751  * when the reference was acquired.
2752  */
2753 void
2754 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2755 {
2756 	zone_rele_common(ref->zref_zone, ref, subsys);
2757 
2758 	/*
2759 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2760 	 * when consumers dereference the reference.  This helps us catch
2761 	 * consumers who use released references.  Furthermore, this lets
2762 	 * consumers reuse the zone_ref_t structure without having to
2763 	 * invoke zone_init_ref().
2764 	 */
2765 	ref->zref_zone = NULL;
2766 }
2767 
2768 void
2769 zone_cred_hold(zone_t *z)
2770 {
2771 	mutex_enter(&z->zone_lock);
2772 	z->zone_cred_ref++;
2773 	ASSERT(z->zone_cred_ref != 0);
2774 	mutex_exit(&z->zone_lock);
2775 }
2776 
2777 void
2778 zone_cred_rele(zone_t *z)
2779 {
2780 	boolean_t wakeup;
2781 
2782 	mutex_enter(&z->zone_lock);
2783 	ASSERT(z->zone_cred_ref != 0);
2784 	z->zone_cred_ref--;
2785 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2786 		/* no more refs, free the structure */
2787 		mutex_exit(&z->zone_lock);
2788 		zone_free(z);
2789 		return;
2790 	}
2791 	/*
2792 	 * If zone_destroy is waiting for the cred references to drain
2793 	 * out, and they have, signal it.
2794 	 */
2795 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2796 	    zone_status_get(z) >= ZONE_IS_DEAD);
2797 	mutex_exit(&z->zone_lock);
2798 
2799 	if (wakeup) {
2800 		/*
2801 		 * Grabbing zonehash_lock here effectively synchronizes with
2802 		 * zone_destroy() to avoid missed signals.
2803 		 */
2804 		mutex_enter(&zonehash_lock);
2805 		cv_broadcast(&zone_destroy_cv);
2806 		mutex_exit(&zonehash_lock);
2807 	}
2808 }
2809 
2810 void
2811 zone_task_hold(zone_t *z)
2812 {
2813 	mutex_enter(&z->zone_lock);
2814 	z->zone_ntasks++;
2815 	ASSERT(z->zone_ntasks != 0);
2816 	mutex_exit(&z->zone_lock);
2817 }
2818 
2819 void
2820 zone_task_rele(zone_t *zone)
2821 {
2822 	uint_t refcnt;
2823 
2824 	mutex_enter(&zone->zone_lock);
2825 	ASSERT(zone->zone_ntasks != 0);
2826 	refcnt = --zone->zone_ntasks;
2827 	if (refcnt > 1)	{	/* Common case */
2828 		mutex_exit(&zone->zone_lock);
2829 		return;
2830 	}
2831 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2832 	mutex_exit(&zone->zone_lock);
2833 	if (refcnt == 1) {
2834 		/*
2835 		 * See if the zone is shutting down.
2836 		 */
2837 		mutex_enter(&zone_status_lock);
2838 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2839 			goto out;
2840 		}
2841 
2842 		/*
2843 		 * Make sure the ntasks didn't change since we
2844 		 * dropped zone_lock.
2845 		 */
2846 		mutex_enter(&zone->zone_lock);
2847 		if (refcnt != zone->zone_ntasks) {
2848 			mutex_exit(&zone->zone_lock);
2849 			goto out;
2850 		}
2851 		mutex_exit(&zone->zone_lock);
2852 
2853 		/*
2854 		 * No more user processes in the zone.  The zone is empty.
2855 		 */
2856 		zone_status_set(zone, ZONE_IS_EMPTY);
2857 		goto out;
2858 	}
2859 
2860 	ASSERT(refcnt == 0);
2861 	/*
2862 	 * zsched has exited; the zone is dead.
2863 	 */
2864 	zone->zone_zsched = NULL;		/* paranoia */
2865 	mutex_enter(&zone_status_lock);
2866 	zone_status_set(zone, ZONE_IS_DEAD);
2867 out:
2868 	mutex_exit(&zone_status_lock);
2869 	zone_rele(zone);
2870 }
2871 
2872 zoneid_t
2873 getzoneid(void)
2874 {
2875 	return (curproc->p_zone->zone_id);
2876 }
2877 
2878 /*
2879  * Internal versions of zone_find_by_*().  These don't zone_hold() or
2880  * check the validity of a zone's state.
2881  */
2882 static zone_t *
2883 zone_find_all_by_id(zoneid_t zoneid)
2884 {
2885 	mod_hash_val_t hv;
2886 	zone_t *zone = NULL;
2887 
2888 	ASSERT(MUTEX_HELD(&zonehash_lock));
2889 
2890 	if (mod_hash_find(zonehashbyid,
2891 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2892 		zone = (zone_t *)hv;
2893 	return (zone);
2894 }
2895 
2896 static zone_t *
2897 zone_find_all_by_label(const ts_label_t *label)
2898 {
2899 	mod_hash_val_t hv;
2900 	zone_t *zone = NULL;
2901 
2902 	ASSERT(MUTEX_HELD(&zonehash_lock));
2903 
2904 	/*
2905 	 * zonehashbylabel is not maintained for unlabeled systems
2906 	 */
2907 	if (!is_system_labeled())
2908 		return (NULL);
2909 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2910 		zone = (zone_t *)hv;
2911 	return (zone);
2912 }
2913 
2914 static zone_t *
2915 zone_find_all_by_name(char *name)
2916 {
2917 	mod_hash_val_t hv;
2918 	zone_t *zone = NULL;
2919 
2920 	ASSERT(MUTEX_HELD(&zonehash_lock));
2921 
2922 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2923 		zone = (zone_t *)hv;
2924 	return (zone);
2925 }
2926 
2927 /*
2928  * Public interface for looking up a zone by zoneid.  Only returns the zone if
2929  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2930  * Caller must call zone_rele() once it is done with the zone.
2931  *
2932  * The zone may begin the zone_destroy() sequence immediately after this
2933  * function returns, but may be safely used until zone_rele() is called.
2934  */
2935 zone_t *
2936 zone_find_by_id(zoneid_t zoneid)
2937 {
2938 	zone_t *zone;
2939 	zone_status_t status;
2940 
2941 	mutex_enter(&zonehash_lock);
2942 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2943 		mutex_exit(&zonehash_lock);
2944 		return (NULL);
2945 	}
2946 	status = zone_status_get(zone);
2947 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2948 		/*
2949 		 * For all practical purposes the zone doesn't exist.
2950 		 */
2951 		mutex_exit(&zonehash_lock);
2952 		return (NULL);
2953 	}
2954 	zone_hold(zone);
2955 	mutex_exit(&zonehash_lock);
2956 	return (zone);
2957 }
2958 
2959 /*
2960  * Similar to zone_find_by_id, but using zone label as the key.
2961  */
2962 zone_t *
2963 zone_find_by_label(const ts_label_t *label)
2964 {
2965 	zone_t *zone;
2966 	zone_status_t status;
2967 
2968 	mutex_enter(&zonehash_lock);
2969 	if ((zone = zone_find_all_by_label(label)) == NULL) {
2970 		mutex_exit(&zonehash_lock);
2971 		return (NULL);
2972 	}
2973 
2974 	status = zone_status_get(zone);
2975 	if (status > ZONE_IS_DOWN) {
2976 		/*
2977 		 * For all practical purposes the zone doesn't exist.
2978 		 */
2979 		mutex_exit(&zonehash_lock);
2980 		return (NULL);
2981 	}
2982 	zone_hold(zone);
2983 	mutex_exit(&zonehash_lock);
2984 	return (zone);
2985 }
2986 
2987 /*
2988  * Similar to zone_find_by_id, but using zone name as the key.
2989  */
2990 zone_t *
2991 zone_find_by_name(char *name)
2992 {
2993 	zone_t *zone;
2994 	zone_status_t status;
2995 
2996 	mutex_enter(&zonehash_lock);
2997 	if ((zone = zone_find_all_by_name(name)) == NULL) {
2998 		mutex_exit(&zonehash_lock);
2999 		return (NULL);
3000 	}
3001 	status = zone_status_get(zone);
3002 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3003 		/*
3004 		 * For all practical purposes the zone doesn't exist.
3005 		 */
3006 		mutex_exit(&zonehash_lock);
3007 		return (NULL);
3008 	}
3009 	zone_hold(zone);
3010 	mutex_exit(&zonehash_lock);
3011 	return (zone);
3012 }
3013 
3014 /*
3015  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3016  * if there is a zone "foo" rooted at /foo/root, and the path argument
3017  * is "/foo/root/proc", it will return the held zone_t corresponding to
3018  * zone "foo".
3019  *
3020  * zone_find_by_path() always returns a non-NULL value, since at the
3021  * very least every path will be contained in the global zone.
3022  *
3023  * As with the other zone_find_by_*() functions, the caller is
3024  * responsible for zone_rele()ing the return value of this function.
3025  */
3026 zone_t *
3027 zone_find_by_path(const char *path)
3028 {
3029 	zone_t *zone;
3030 	zone_t *zret = NULL;
3031 	zone_status_t status;
3032 
3033 	if (path == NULL) {
3034 		/*
3035 		 * Call from rootconf().
3036 		 */
3037 		zone_hold(global_zone);
3038 		return (global_zone);
3039 	}
3040 	ASSERT(*path == '/');
3041 	mutex_enter(&zonehash_lock);
3042 	for (zone = list_head(&zone_active); zone != NULL;
3043 	    zone = list_next(&zone_active, zone)) {
3044 		if (ZONE_PATH_VISIBLE(path, zone))
3045 			zret = zone;
3046 	}
3047 	ASSERT(zret != NULL);
3048 	status = zone_status_get(zret);
3049 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3050 		/*
3051 		 * Zone practically doesn't exist.
3052 		 */
3053 		zret = global_zone;
3054 	}
3055 	zone_hold(zret);
3056 	mutex_exit(&zonehash_lock);
3057 	return (zret);
3058 }
3059 
3060 /*
3061  * Public interface for updating per-zone load averages.  Called once per
3062  * second.
3063  *
3064  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3065  */
3066 void
3067 zone_loadavg_update()
3068 {
3069 	zone_t *zp;
3070 	zone_status_t status;
3071 	struct loadavg_s *lavg;
3072 	hrtime_t zone_total;
3073 	int i;
3074 	hrtime_t hr_avg;
3075 	int nrun;
3076 	static int64_t f[3] = { 135, 27, 9 };
3077 	int64_t q, r;
3078 
3079 	mutex_enter(&zonehash_lock);
3080 	for (zp = list_head(&zone_active); zp != NULL;
3081 	    zp = list_next(&zone_active, zp)) {
3082 		mutex_enter(&zp->zone_lock);
3083 
3084 		/* Skip zones that are on the way down or not yet up */
3085 		status = zone_status_get(zp);
3086 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3087 			/* For all practical purposes the zone doesn't exist. */
3088 			mutex_exit(&zp->zone_lock);
3089 			continue;
3090 		}
3091 
3092 		/*
3093 		 * Update the 10 second moving average data in zone_loadavg.
3094 		 */
3095 		lavg = &zp->zone_loadavg;
3096 
3097 		zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3098 		scalehrtime(&zone_total);
3099 
3100 		/* The zone_total should always be increasing. */
3101 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3102 		    zone_total - lavg->lg_total : 0;
3103 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3104 		/* lg_total holds the prev. 1 sec. total */
3105 		lavg->lg_total = zone_total;
3106 
3107 		/*
3108 		 * To simplify the calculation, we don't calculate the load avg.
3109 		 * until the zone has been up for at least 10 seconds and our
3110 		 * moving average is thus full.
3111 		 */
3112 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3113 			lavg->lg_len++;
3114 			mutex_exit(&zp->zone_lock);
3115 			continue;
3116 		}
3117 
3118 		/* Now calculate the 1min, 5min, 15 min load avg. */
3119 		hr_avg = 0;
3120 		for (i = 0; i < S_LOADAVG_SZ; i++)
3121 			hr_avg += lavg->lg_loads[i];
3122 		hr_avg = hr_avg / S_LOADAVG_SZ;
3123 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3124 
3125 		/* Compute load avg. See comment in calcloadavg() */
3126 		for (i = 0; i < 3; i++) {
3127 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3128 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3129 			zp->zone_hp_avenrun[i] +=
3130 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3131 
3132 			/* avenrun[] can only hold 31 bits of load avg. */
3133 			if (zp->zone_hp_avenrun[i] <
3134 			    ((uint64_t)1<<(31+16-FSHIFT)))
3135 				zp->zone_avenrun[i] = (int32_t)
3136 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3137 			else
3138 				zp->zone_avenrun[i] = 0x7fffffff;
3139 		}
3140 
3141 		mutex_exit(&zp->zone_lock);
3142 	}
3143 	mutex_exit(&zonehash_lock);
3144 }
3145 
3146 /*
3147  * Get the number of cpus visible to this zone.  The system-wide global
3148  * 'ncpus' is returned if pools are disabled, the caller is in the
3149  * global zone, or a NULL zone argument is passed in.
3150  */
3151 int
3152 zone_ncpus_get(zone_t *zone)
3153 {
3154 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3155 
3156 	return (myncpus != 0 ? myncpus : ncpus);
3157 }
3158 
3159 /*
3160  * Get the number of online cpus visible to this zone.  The system-wide
3161  * global 'ncpus_online' is returned if pools are disabled, the caller
3162  * is in the global zone, or a NULL zone argument is passed in.
3163  */
3164 int
3165 zone_ncpus_online_get(zone_t *zone)
3166 {
3167 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3168 
3169 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3170 }
3171 
3172 /*
3173  * Return the pool to which the zone is currently bound.
3174  */
3175 pool_t *
3176 zone_pool_get(zone_t *zone)
3177 {
3178 	ASSERT(pool_lock_held());
3179 
3180 	return (zone->zone_pool);
3181 }
3182 
3183 /*
3184  * Set the zone's pool pointer and update the zone's visibility to match
3185  * the resources in the new pool.
3186  */
3187 void
3188 zone_pool_set(zone_t *zone, pool_t *pool)
3189 {
3190 	ASSERT(pool_lock_held());
3191 	ASSERT(MUTEX_HELD(&cpu_lock));
3192 
3193 	zone->zone_pool = pool;
3194 	zone_pset_set(zone, pool->pool_pset->pset_id);
3195 }
3196 
3197 /*
3198  * Return the cached value of the id of the processor set to which the
3199  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3200  * facility is disabled.
3201  */
3202 psetid_t
3203 zone_pset_get(zone_t *zone)
3204 {
3205 	ASSERT(MUTEX_HELD(&cpu_lock));
3206 
3207 	return (zone->zone_psetid);
3208 }
3209 
3210 /*
3211  * Set the cached value of the id of the processor set to which the zone
3212  * is currently bound.  Also update the zone's visibility to match the
3213  * resources in the new processor set.
3214  */
3215 void
3216 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3217 {
3218 	psetid_t oldpsetid;
3219 
3220 	ASSERT(MUTEX_HELD(&cpu_lock));
3221 	oldpsetid = zone_pset_get(zone);
3222 
3223 	if (oldpsetid == newpsetid)
3224 		return;
3225 	/*
3226 	 * Global zone sees all.
3227 	 */
3228 	if (zone != global_zone) {
3229 		zone->zone_psetid = newpsetid;
3230 		if (newpsetid != ZONE_PS_INVAL)
3231 			pool_pset_visibility_add(newpsetid, zone);
3232 		if (oldpsetid != ZONE_PS_INVAL)
3233 			pool_pset_visibility_remove(oldpsetid, zone);
3234 	}
3235 	/*
3236 	 * Disabling pools, so we should start using the global values
3237 	 * for ncpus and ncpus_online.
3238 	 */
3239 	if (newpsetid == ZONE_PS_INVAL) {
3240 		zone->zone_ncpus = 0;
3241 		zone->zone_ncpus_online = 0;
3242 	}
3243 }
3244 
3245 /*
3246  * Walk the list of active zones and issue the provided callback for
3247  * each of them.
3248  *
3249  * Caller must not be holding any locks that may be acquired under
3250  * zonehash_lock.  See comment at the beginning of the file for a list of
3251  * common locks and their interactions with zones.
3252  */
3253 int
3254 zone_walk(int (*cb)(zone_t *, void *), void *data)
3255 {
3256 	zone_t *zone;
3257 	int ret = 0;
3258 	zone_status_t status;
3259 
3260 	mutex_enter(&zonehash_lock);
3261 	for (zone = list_head(&zone_active); zone != NULL;
3262 	    zone = list_next(&zone_active, zone)) {
3263 		/*
3264 		 * Skip zones that shouldn't be externally visible.
3265 		 */
3266 		status = zone_status_get(zone);
3267 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3268 			continue;
3269 		/*
3270 		 * Bail immediately if any callback invocation returns a
3271 		 * non-zero value.
3272 		 */
3273 		ret = (*cb)(zone, data);
3274 		if (ret != 0)
3275 			break;
3276 	}
3277 	mutex_exit(&zonehash_lock);
3278 	return (ret);
3279 }
3280 
3281 static int
3282 zone_set_root(zone_t *zone, const char *upath)
3283 {
3284 	vnode_t *vp;
3285 	int trycount;
3286 	int error = 0;
3287 	char *path;
3288 	struct pathname upn, pn;
3289 	size_t pathlen;
3290 
3291 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3292 		return (error);
3293 
3294 	pn_alloc(&pn);
3295 
3296 	/* prevent infinite loop */
3297 	trycount = 10;
3298 	for (;;) {
3299 		if (--trycount <= 0) {
3300 			error = ESTALE;
3301 			goto out;
3302 		}
3303 
3304 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3305 			/*
3306 			 * VOP_ACCESS() may cover 'vp' with a new
3307 			 * filesystem, if 'vp' is an autoFS vnode.
3308 			 * Get the new 'vp' if so.
3309 			 */
3310 			if ((error =
3311 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3312 			    (!vn_ismntpt(vp) ||
3313 			    (error = traverse(&vp)) == 0)) {
3314 				pathlen = pn.pn_pathlen + 2;
3315 				path = kmem_alloc(pathlen, KM_SLEEP);
3316 				(void) strncpy(path, pn.pn_path,
3317 				    pn.pn_pathlen + 1);
3318 				path[pathlen - 2] = '/';
3319 				path[pathlen - 1] = '\0';
3320 				pn_free(&pn);
3321 				pn_free(&upn);
3322 
3323 				/* Success! */
3324 				break;
3325 			}
3326 			VN_RELE(vp);
3327 		}
3328 		if (error != ESTALE)
3329 			goto out;
3330 	}
3331 
3332 	ASSERT(error == 0);
3333 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3334 	zone->zone_rootpath = path;
3335 	zone->zone_rootpathlen = pathlen;
3336 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3337 		zone->zone_flags |= ZF_IS_SCRATCH;
3338 	return (0);
3339 
3340 out:
3341 	pn_free(&pn);
3342 	pn_free(&upn);
3343 	return (error);
3344 }
3345 
3346 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3347 			((c) >= 'a' && (c) <= 'z') || \
3348 			((c) >= 'A' && (c) <= 'Z'))
3349 
3350 static int
3351 zone_set_name(zone_t *zone, const char *uname)
3352 {
3353 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3354 	size_t len;
3355 	int i, err;
3356 
3357 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3358 		kmem_free(kname, ZONENAME_MAX);
3359 		return (err);	/* EFAULT or ENAMETOOLONG */
3360 	}
3361 
3362 	/* must be less than ZONENAME_MAX */
3363 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3364 		kmem_free(kname, ZONENAME_MAX);
3365 		return (EINVAL);
3366 	}
3367 
3368 	/*
3369 	 * Name must start with an alphanumeric and must contain only
3370 	 * alphanumerics, '-', '_' and '.'.
3371 	 */
3372 	if (!isalnum(kname[0])) {
3373 		kmem_free(kname, ZONENAME_MAX);
3374 		return (EINVAL);
3375 	}
3376 	for (i = 1; i < len - 1; i++) {
3377 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3378 		    kname[i] != '.') {
3379 			kmem_free(kname, ZONENAME_MAX);
3380 			return (EINVAL);
3381 		}
3382 	}
3383 
3384 	zone->zone_name = kname;
3385 	return (0);
3386 }
3387 
3388 /*
3389  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3390  * is NULL or it points to a zone with no hostid emulation, then the machine's
3391  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3392  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3393  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3394  * hostid and the machine's hostid is invalid.
3395  */
3396 uint32_t
3397 zone_get_hostid(zone_t *zonep)
3398 {
3399 	unsigned long machine_hostid;
3400 
3401 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3402 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3403 			return (HW_INVALID_HOSTID);
3404 		return ((uint32_t)machine_hostid);
3405 	}
3406 	return (zonep->zone_hostid);
3407 }
3408 
3409 /*
3410  * Similar to thread_create(), but makes sure the thread is in the appropriate
3411  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3412  */
3413 /*ARGSUSED*/
3414 kthread_t *
3415 zthread_create(
3416     caddr_t stk,
3417     size_t stksize,
3418     void (*proc)(),
3419     void *arg,
3420     size_t len,
3421     pri_t pri)
3422 {
3423 	kthread_t *t;
3424 	zone_t *zone = curproc->p_zone;
3425 	proc_t *pp = zone->zone_zsched;
3426 
3427 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3428 
3429 	/*
3430 	 * No-one should be trying to create threads if the zone is shutting
3431 	 * down and there aren't any kernel threads around.  See comment
3432 	 * in zthread_exit().
3433 	 */
3434 	ASSERT(!(zone->zone_kthreads == NULL &&
3435 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3436 	/*
3437 	 * Create a thread, but don't let it run until we've finished setting
3438 	 * things up.
3439 	 */
3440 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3441 	ASSERT(t->t_forw == NULL);
3442 	mutex_enter(&zone_status_lock);
3443 	if (zone->zone_kthreads == NULL) {
3444 		t->t_forw = t->t_back = t;
3445 	} else {
3446 		kthread_t *tx = zone->zone_kthreads;
3447 
3448 		t->t_forw = tx;
3449 		t->t_back = tx->t_back;
3450 		tx->t_back->t_forw = t;
3451 		tx->t_back = t;
3452 	}
3453 	zone->zone_kthreads = t;
3454 	mutex_exit(&zone_status_lock);
3455 
3456 	mutex_enter(&pp->p_lock);
3457 	t->t_proc_flag |= TP_ZTHREAD;
3458 	project_rele(t->t_proj);
3459 	t->t_proj = project_hold(pp->p_task->tk_proj);
3460 
3461 	/*
3462 	 * Setup complete, let it run.
3463 	 */
3464 	thread_lock(t);
3465 	t->t_schedflag |= TS_ALLSTART;
3466 	setrun_locked(t);
3467 	thread_unlock(t);
3468 
3469 	mutex_exit(&pp->p_lock);
3470 
3471 	return (t);
3472 }
3473 
3474 /*
3475  * Similar to thread_exit().  Must be called by threads created via
3476  * zthread_exit().
3477  */
3478 void
3479 zthread_exit(void)
3480 {
3481 	kthread_t *t = curthread;
3482 	proc_t *pp = curproc;
3483 	zone_t *zone = pp->p_zone;
3484 
3485 	mutex_enter(&zone_status_lock);
3486 
3487 	/*
3488 	 * Reparent to p0
3489 	 */
3490 	kpreempt_disable();
3491 	mutex_enter(&pp->p_lock);
3492 	t->t_proc_flag &= ~TP_ZTHREAD;
3493 	t->t_procp = &p0;
3494 	hat_thread_exit(t);
3495 	mutex_exit(&pp->p_lock);
3496 	kpreempt_enable();
3497 
3498 	if (t->t_back == t) {
3499 		ASSERT(t->t_forw == t);
3500 		/*
3501 		 * If the zone is empty, once the thread count
3502 		 * goes to zero no further kernel threads can be
3503 		 * created.  This is because if the creator is a process
3504 		 * in the zone, then it must have exited before the zone
3505 		 * state could be set to ZONE_IS_EMPTY.
3506 		 * Otherwise, if the creator is a kernel thread in the
3507 		 * zone, the thread count is non-zero.
3508 		 *
3509 		 * This really means that non-zone kernel threads should
3510 		 * not create zone kernel threads.
3511 		 */
3512 		zone->zone_kthreads = NULL;
3513 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3514 			zone_status_set(zone, ZONE_IS_DOWN);
3515 			/*
3516 			 * Remove any CPU caps on this zone.
3517 			 */
3518 			cpucaps_zone_remove(zone);
3519 		}
3520 	} else {
3521 		t->t_forw->t_back = t->t_back;
3522 		t->t_back->t_forw = t->t_forw;
3523 		if (zone->zone_kthreads == t)
3524 			zone->zone_kthreads = t->t_forw;
3525 	}
3526 	mutex_exit(&zone_status_lock);
3527 	zone_rele(zone);
3528 	thread_exit();
3529 	/* NOTREACHED */
3530 }
3531 
3532 static void
3533 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3534 {
3535 	vnode_t *oldvp;
3536 
3537 	/* we're going to hold a reference here to the directory */
3538 	VN_HOLD(vp);
3539 
3540 	/* update abs cwd/root path see c2/audit.c */
3541 	if (AU_AUDITING())
3542 		audit_chdirec(vp, vpp);
3543 
3544 	mutex_enter(&pp->p_lock);
3545 	oldvp = *vpp;
3546 	*vpp = vp;
3547 	mutex_exit(&pp->p_lock);
3548 	if (oldvp != NULL)
3549 		VN_RELE(oldvp);
3550 }
3551 
3552 /*
3553  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3554  */
3555 static int
3556 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3557 {
3558 	nvpair_t *nvp = NULL;
3559 	boolean_t priv_set = B_FALSE;
3560 	boolean_t limit_set = B_FALSE;
3561 	boolean_t action_set = B_FALSE;
3562 
3563 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3564 		const char *name;
3565 		uint64_t ui64;
3566 
3567 		name = nvpair_name(nvp);
3568 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3569 			return (EINVAL);
3570 		(void) nvpair_value_uint64(nvp, &ui64);
3571 		if (strcmp(name, "privilege") == 0) {
3572 			/*
3573 			 * Currently only privileged values are allowed, but
3574 			 * this may change in the future.
3575 			 */
3576 			if (ui64 != RCPRIV_PRIVILEGED)
3577 				return (EINVAL);
3578 			rv->rcv_privilege = ui64;
3579 			priv_set = B_TRUE;
3580 		} else if (strcmp(name, "limit") == 0) {
3581 			rv->rcv_value = ui64;
3582 			limit_set = B_TRUE;
3583 		} else if (strcmp(name, "action") == 0) {
3584 			if (ui64 != RCTL_LOCAL_NOACTION &&
3585 			    ui64 != RCTL_LOCAL_DENY)
3586 				return (EINVAL);
3587 			rv->rcv_flagaction = ui64;
3588 			action_set = B_TRUE;
3589 		} else {
3590 			return (EINVAL);
3591 		}
3592 	}
3593 
3594 	if (!(priv_set && limit_set && action_set))
3595 		return (EINVAL);
3596 	rv->rcv_action_signal = 0;
3597 	rv->rcv_action_recipient = NULL;
3598 	rv->rcv_action_recip_pid = -1;
3599 	rv->rcv_firing_time = 0;
3600 
3601 	return (0);
3602 }
3603 
3604 /*
3605  * Non-global zone version of start_init.
3606  */
3607 void
3608 zone_start_init(void)
3609 {
3610 	proc_t *p = ttoproc(curthread);
3611 	zone_t *z = p->p_zone;
3612 
3613 	ASSERT(!INGLOBALZONE(curproc));
3614 
3615 	/*
3616 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3617 	 * storing just the pid of init is sufficient.
3618 	 */
3619 	z->zone_proc_initpid = p->p_pid;
3620 
3621 	/*
3622 	 * We maintain zone_boot_err so that we can return the cause of the
3623 	 * failure back to the caller of the zone_boot syscall.
3624 	 */
3625 	p->p_zone->zone_boot_err = start_init_common();
3626 
3627 	/*
3628 	 * We will prevent booting zones from becoming running zones if the
3629 	 * global zone is shutting down.
3630 	 */
3631 	mutex_enter(&zone_status_lock);
3632 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3633 	    ZONE_IS_SHUTTING_DOWN) {
3634 		/*
3635 		 * Make sure we are still in the booting state-- we could have
3636 		 * raced and already be shutting down, or even further along.
3637 		 */
3638 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3639 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3640 		}
3641 		mutex_exit(&zone_status_lock);
3642 		/* It's gone bad, dispose of the process */
3643 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3644 			mutex_enter(&p->p_lock);
3645 			ASSERT(p->p_flag & SEXITLWPS);
3646 			lwp_exit();
3647 		}
3648 	} else {
3649 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3650 			zone_status_set(z, ZONE_IS_RUNNING);
3651 		mutex_exit(&zone_status_lock);
3652 		/* cause the process to return to userland. */
3653 		lwp_rtt();
3654 	}
3655 }
3656 
3657 struct zsched_arg {
3658 	zone_t *zone;
3659 	nvlist_t *nvlist;
3660 };
3661 
3662 /*
3663  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3664  * anything to do with scheduling, but rather with the fact that
3665  * per-zone kernel threads are parented to zsched, just like regular
3666  * kernel threads are parented to sched (p0).
3667  *
3668  * zsched is also responsible for launching init for the zone.
3669  */
3670 static void
3671 zsched(void *arg)
3672 {
3673 	struct zsched_arg *za = arg;
3674 	proc_t *pp = curproc;
3675 	proc_t *initp = proc_init;
3676 	zone_t *zone = za->zone;
3677 	cred_t *cr, *oldcred;
3678 	rctl_set_t *set;
3679 	rctl_alloc_gp_t *gp;
3680 	contract_t *ct = NULL;
3681 	task_t *tk, *oldtk;
3682 	rctl_entity_p_t e;
3683 	kproject_t *pj;
3684 
3685 	nvlist_t *nvl = za->nvlist;
3686 	nvpair_t *nvp = NULL;
3687 
3688 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3689 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3690 	PTOU(pp)->u_argc = 0;
3691 	PTOU(pp)->u_argv = NULL;
3692 	PTOU(pp)->u_envp = NULL;
3693 	closeall(P_FINFO(pp));
3694 
3695 	/*
3696 	 * We are this zone's "zsched" process.  As the zone isn't generally
3697 	 * visible yet we don't need to grab any locks before initializing its
3698 	 * zone_proc pointer.
3699 	 */
3700 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3701 	zone->zone_zsched = pp;
3702 	mutex_enter(&pp->p_lock);
3703 	pp->p_zone = zone;
3704 	mutex_exit(&pp->p_lock);
3705 
3706 	/*
3707 	 * Disassociate process from its 'parent'; parent ourselves to init
3708 	 * (pid 1) and change other values as needed.
3709 	 */
3710 	sess_create();
3711 
3712 	mutex_enter(&pidlock);
3713 	proc_detach(pp);
3714 	pp->p_ppid = 1;
3715 	pp->p_flag |= SZONETOP;
3716 	pp->p_ancpid = 1;
3717 	pp->p_parent = initp;
3718 	pp->p_psibling = NULL;
3719 	if (initp->p_child)
3720 		initp->p_child->p_psibling = pp;
3721 	pp->p_sibling = initp->p_child;
3722 	initp->p_child = pp;
3723 
3724 	/* Decrement what newproc() incremented. */
3725 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3726 	/*
3727 	 * Our credentials are about to become kcred-like, so we don't care
3728 	 * about the caller's ruid.
3729 	 */
3730 	upcount_inc(crgetruid(kcred), zone->zone_id);
3731 	mutex_exit(&pidlock);
3732 
3733 	/*
3734 	 * getting out of global zone, so decrement lwp and process counts
3735 	 */
3736 	pj = pp->p_task->tk_proj;
3737 	mutex_enter(&global_zone->zone_nlwps_lock);
3738 	pj->kpj_nlwps -= pp->p_lwpcnt;
3739 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3740 	pj->kpj_nprocs--;
3741 	global_zone->zone_nprocs--;
3742 	mutex_exit(&global_zone->zone_nlwps_lock);
3743 
3744 	/*
3745 	 * Decrement locked memory counts on old zone and project.
3746 	 */
3747 	mutex_enter(&global_zone->zone_mem_lock);
3748 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3749 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3750 	mutex_exit(&global_zone->zone_mem_lock);
3751 
3752 	/*
3753 	 * Create and join a new task in project '0' of this zone.
3754 	 *
3755 	 * We don't need to call holdlwps() since we know we're the only lwp in
3756 	 * this process.
3757 	 *
3758 	 * task_join() returns with p_lock held.
3759 	 */
3760 	tk = task_create(0, zone);
3761 	mutex_enter(&cpu_lock);
3762 	oldtk = task_join(tk, 0);
3763 
3764 	pj = pp->p_task->tk_proj;
3765 
3766 	mutex_enter(&zone->zone_mem_lock);
3767 	zone->zone_locked_mem += pp->p_locked_mem;
3768 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3769 	mutex_exit(&zone->zone_mem_lock);
3770 
3771 	/*
3772 	 * add lwp and process counts to zsched's zone, and increment
3773 	 * project's task and process count due to the task created in
3774 	 * the above task_create.
3775 	 */
3776 	mutex_enter(&zone->zone_nlwps_lock);
3777 	pj->kpj_nlwps += pp->p_lwpcnt;
3778 	pj->kpj_ntasks += 1;
3779 	zone->zone_nlwps += pp->p_lwpcnt;
3780 	pj->kpj_nprocs++;
3781 	zone->zone_nprocs++;
3782 	mutex_exit(&zone->zone_nlwps_lock);
3783 
3784 	mutex_exit(&curproc->p_lock);
3785 	mutex_exit(&cpu_lock);
3786 	task_rele(oldtk);
3787 
3788 	/*
3789 	 * The process was created by a process in the global zone, hence the
3790 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3791 	 */
3792 	cr = zone->zone_kcred;
3793 	crhold(cr);
3794 	mutex_enter(&pp->p_crlock);
3795 	oldcred = pp->p_cred;
3796 	pp->p_cred = cr;
3797 	mutex_exit(&pp->p_crlock);
3798 	crfree(oldcred);
3799 
3800 	/*
3801 	 * Hold credentials again (for thread)
3802 	 */
3803 	crhold(cr);
3804 
3805 	/*
3806 	 * p_lwpcnt can't change since this is a kernel process.
3807 	 */
3808 	crset(pp, cr);
3809 
3810 	/*
3811 	 * Chroot
3812 	 */
3813 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3814 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3815 
3816 	/*
3817 	 * Initialize zone's rctl set.
3818 	 */
3819 	set = rctl_set_create();
3820 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3821 	mutex_enter(&pp->p_lock);
3822 	e.rcep_p.zone = zone;
3823 	e.rcep_t = RCENTITY_ZONE;
3824 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3825 	mutex_exit(&pp->p_lock);
3826 	rctl_prealloc_destroy(gp);
3827 
3828 	/*
3829 	 * Apply the rctls passed in to zone_create().  This is basically a list
3830 	 * assignment: all of the old values are removed and the new ones
3831 	 * inserted.  That is, if an empty list is passed in, all values are
3832 	 * removed.
3833 	 */
3834 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3835 		rctl_dict_entry_t *rde;
3836 		rctl_hndl_t hndl;
3837 		char *name;
3838 		nvlist_t **nvlarray;
3839 		uint_t i, nelem;
3840 		int error;	/* For ASSERT()s */
3841 
3842 		name = nvpair_name(nvp);
3843 		hndl = rctl_hndl_lookup(name);
3844 		ASSERT(hndl != -1);
3845 		rde = rctl_dict_lookup_hndl(hndl);
3846 		ASSERT(rde != NULL);
3847 
3848 		for (; /* ever */; ) {
3849 			rctl_val_t oval;
3850 
3851 			mutex_enter(&pp->p_lock);
3852 			error = rctl_local_get(hndl, NULL, &oval, pp);
3853 			mutex_exit(&pp->p_lock);
3854 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3855 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3856 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3857 				break;
3858 			mutex_enter(&pp->p_lock);
3859 			error = rctl_local_delete(hndl, &oval, pp);
3860 			mutex_exit(&pp->p_lock);
3861 			ASSERT(error == 0);
3862 		}
3863 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3864 		ASSERT(error == 0);
3865 		for (i = 0; i < nelem; i++) {
3866 			rctl_val_t *nvalp;
3867 
3868 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3869 			error = nvlist2rctlval(nvlarray[i], nvalp);
3870 			ASSERT(error == 0);
3871 			/*
3872 			 * rctl_local_insert can fail if the value being
3873 			 * inserted is a duplicate; this is OK.
3874 			 */
3875 			mutex_enter(&pp->p_lock);
3876 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
3877 				kmem_cache_free(rctl_val_cache, nvalp);
3878 			mutex_exit(&pp->p_lock);
3879 		}
3880 	}
3881 	/*
3882 	 * Tell the world that we're done setting up.
3883 	 *
3884 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3885 	 * and atomically set the zone's processor set visibility.  Once
3886 	 * we drop pool_lock() this zone will automatically get updated
3887 	 * to reflect any future changes to the pools configuration.
3888 	 *
3889 	 * Note that after we drop the locks below (zonehash_lock in
3890 	 * particular) other operations such as a zone_getattr call can
3891 	 * now proceed and observe the zone. That is the reason for doing a
3892 	 * state transition to the INITIALIZED state.
3893 	 */
3894 	pool_lock();
3895 	mutex_enter(&cpu_lock);
3896 	mutex_enter(&zonehash_lock);
3897 	zone_uniqid(zone);
3898 	zone_zsd_configure(zone);
3899 	if (pool_state == POOL_ENABLED)
3900 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
3901 	mutex_enter(&zone_status_lock);
3902 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3903 	zone_status_set(zone, ZONE_IS_INITIALIZED);
3904 	mutex_exit(&zone_status_lock);
3905 	mutex_exit(&zonehash_lock);
3906 	mutex_exit(&cpu_lock);
3907 	pool_unlock();
3908 
3909 	/* Now call the create callback for this key */
3910 	zsd_apply_all_keys(zsd_apply_create, zone);
3911 
3912 	/* The callbacks are complete. Mark ZONE_IS_READY */
3913 	mutex_enter(&zone_status_lock);
3914 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3915 	zone_status_set(zone, ZONE_IS_READY);
3916 	mutex_exit(&zone_status_lock);
3917 
3918 	/*
3919 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3920 	 * we launch init, and set the state to running.
3921 	 */
3922 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3923 
3924 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3925 		id_t cid;
3926 
3927 		/*
3928 		 * Ok, this is a little complicated.  We need to grab the
3929 		 * zone's pool's scheduling class ID; note that by now, we
3930 		 * are already bound to a pool if we need to be (zoneadmd
3931 		 * will have done that to us while we're in the READY
3932 		 * state).  *But* the scheduling class for the zone's 'init'
3933 		 * must be explicitly passed to newproc, which doesn't
3934 		 * respect pool bindings.
3935 		 *
3936 		 * We hold the pool_lock across the call to newproc() to
3937 		 * close the obvious race: the pool's scheduling class
3938 		 * could change before we manage to create the LWP with
3939 		 * classid 'cid'.
3940 		 */
3941 		pool_lock();
3942 		if (zone->zone_defaultcid > 0)
3943 			cid = zone->zone_defaultcid;
3944 		else
3945 			cid = pool_get_class(zone->zone_pool);
3946 		if (cid == -1)
3947 			cid = defaultcid;
3948 
3949 		/*
3950 		 * If this fails, zone_boot will ultimately fail.  The
3951 		 * state of the zone will be set to SHUTTING_DOWN-- userland
3952 		 * will have to tear down the zone, and fail, or try again.
3953 		 */
3954 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3955 		    minclsyspri - 1, &ct, 0)) != 0) {
3956 			mutex_enter(&zone_status_lock);
3957 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3958 			mutex_exit(&zone_status_lock);
3959 		} else {
3960 			zone->zone_boot_time = gethrestime_sec();
3961 		}
3962 
3963 		pool_unlock();
3964 	}
3965 
3966 	/*
3967 	 * Wait for zone_destroy() to be called.  This is what we spend
3968 	 * most of our life doing.
3969 	 */
3970 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3971 
3972 	if (ct)
3973 		/*
3974 		 * At this point the process contract should be empty.
3975 		 * (Though if it isn't, it's not the end of the world.)
3976 		 */
3977 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3978 
3979 	/*
3980 	 * Allow kcred to be freed when all referring processes
3981 	 * (including this one) go away.  We can't just do this in
3982 	 * zone_free because we need to wait for the zone_cred_ref to
3983 	 * drop to 0 before calling zone_free, and the existence of
3984 	 * zone_kcred will prevent that.  Thus, we call crfree here to
3985 	 * balance the crdup in zone_create.  The crhold calls earlier
3986 	 * in zsched will be dropped when the thread and process exit.
3987 	 */
3988 	crfree(zone->zone_kcred);
3989 	zone->zone_kcred = NULL;
3990 
3991 	exit(CLD_EXITED, 0);
3992 }
3993 
3994 /*
3995  * Helper function to determine if there are any submounts of the
3996  * provided path.  Used to make sure the zone doesn't "inherit" any
3997  * mounts from before it is created.
3998  */
3999 static uint_t
4000 zone_mount_count(const char *rootpath)
4001 {
4002 	vfs_t *vfsp;
4003 	uint_t count = 0;
4004 	size_t rootpathlen = strlen(rootpath);
4005 
4006 	/*
4007 	 * Holding zonehash_lock prevents race conditions with
4008 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4009 	 * zone_find_by_path().
4010 	 */
4011 	ASSERT(MUTEX_HELD(&zonehash_lock));
4012 	/*
4013 	 * The rootpath must end with a '/'
4014 	 */
4015 	ASSERT(rootpath[rootpathlen - 1] == '/');
4016 
4017 	/*
4018 	 * This intentionally does not count the rootpath itself if that
4019 	 * happens to be a mount point.
4020 	 */
4021 	vfs_list_read_lock();
4022 	vfsp = rootvfs;
4023 	do {
4024 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4025 		    rootpathlen) == 0)
4026 			count++;
4027 		vfsp = vfsp->vfs_next;
4028 	} while (vfsp != rootvfs);
4029 	vfs_list_unlock();
4030 	return (count);
4031 }
4032 
4033 /*
4034  * Helper function to make sure that a zone created on 'rootpath'
4035  * wouldn't end up containing other zones' rootpaths.
4036  */
4037 static boolean_t
4038 zone_is_nested(const char *rootpath)
4039 {
4040 	zone_t *zone;
4041 	size_t rootpathlen = strlen(rootpath);
4042 	size_t len;
4043 
4044 	ASSERT(MUTEX_HELD(&zonehash_lock));
4045 
4046 	/*
4047 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4048 	 */
4049 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4050 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4051 		return (B_TRUE);
4052 
4053 	for (zone = list_head(&zone_active); zone != NULL;
4054 	    zone = list_next(&zone_active, zone)) {
4055 		if (zone == global_zone)
4056 			continue;
4057 		len = strlen(zone->zone_rootpath);
4058 		if (strncmp(rootpath, zone->zone_rootpath,
4059 		    MIN(rootpathlen, len)) == 0)
4060 			return (B_TRUE);
4061 	}
4062 	return (B_FALSE);
4063 }
4064 
4065 static int
4066 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4067     size_t zone_privssz)
4068 {
4069 	priv_set_t *privs;
4070 
4071 	if (zone_privssz < sizeof (priv_set_t))
4072 		return (ENOMEM);
4073 
4074 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4075 
4076 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4077 		kmem_free(privs, sizeof (priv_set_t));
4078 		return (EFAULT);
4079 	}
4080 
4081 	zone->zone_privset = privs;
4082 	return (0);
4083 }
4084 
4085 /*
4086  * We make creative use of nvlists to pass in rctls from userland.  The list is
4087  * a list of the following structures:
4088  *
4089  * (name = rctl_name, value = nvpair_list_array)
4090  *
4091  * Where each element of the nvpair_list_array is of the form:
4092  *
4093  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4094  * 	(name = "limit", value = uint64_t),
4095  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4096  */
4097 static int
4098 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4099 {
4100 	nvpair_t *nvp = NULL;
4101 	nvlist_t *nvl = NULL;
4102 	char *kbuf;
4103 	int error;
4104 	rctl_val_t rv;
4105 
4106 	*nvlp = NULL;
4107 
4108 	if (buflen == 0)
4109 		return (0);
4110 
4111 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4112 		return (ENOMEM);
4113 	if (copyin(ubuf, kbuf, buflen)) {
4114 		error = EFAULT;
4115 		goto out;
4116 	}
4117 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4118 		/*
4119 		 * nvl may have been allocated/free'd, but the value set to
4120 		 * non-NULL, so we reset it here.
4121 		 */
4122 		nvl = NULL;
4123 		error = EINVAL;
4124 		goto out;
4125 	}
4126 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4127 		rctl_dict_entry_t *rde;
4128 		rctl_hndl_t hndl;
4129 		nvlist_t **nvlarray;
4130 		uint_t i, nelem;
4131 		char *name;
4132 
4133 		error = EINVAL;
4134 		name = nvpair_name(nvp);
4135 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4136 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4137 			goto out;
4138 		}
4139 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4140 			goto out;
4141 		}
4142 		rde = rctl_dict_lookup_hndl(hndl);
4143 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4144 		ASSERT(error == 0);
4145 		for (i = 0; i < nelem; i++) {
4146 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4147 				goto out;
4148 		}
4149 		if (rctl_invalid_value(rde, &rv)) {
4150 			error = EINVAL;
4151 			goto out;
4152 		}
4153 	}
4154 	error = 0;
4155 	*nvlp = nvl;
4156 out:
4157 	kmem_free(kbuf, buflen);
4158 	if (error && nvl != NULL)
4159 		nvlist_free(nvl);
4160 	return (error);
4161 }
4162 
4163 int
4164 zone_create_error(int er_error, int er_ext, int *er_out) {
4165 	if (er_out != NULL) {
4166 		if (copyout(&er_ext, er_out, sizeof (int))) {
4167 			return (set_errno(EFAULT));
4168 		}
4169 	}
4170 	return (set_errno(er_error));
4171 }
4172 
4173 static int
4174 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4175 {
4176 	ts_label_t *tsl;
4177 	bslabel_t blab;
4178 
4179 	/* Get label from user */
4180 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4181 		return (EFAULT);
4182 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4183 	if (tsl == NULL)
4184 		return (ENOMEM);
4185 
4186 	zone->zone_slabel = tsl;
4187 	return (0);
4188 }
4189 
4190 /*
4191  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4192  */
4193 static int
4194 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4195 {
4196 	char *kbuf;
4197 	char *dataset, *next;
4198 	zone_dataset_t *zd;
4199 	size_t len;
4200 
4201 	if (ubuf == NULL || buflen == 0)
4202 		return (0);
4203 
4204 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4205 		return (ENOMEM);
4206 
4207 	if (copyin(ubuf, kbuf, buflen) != 0) {
4208 		kmem_free(kbuf, buflen);
4209 		return (EFAULT);
4210 	}
4211 
4212 	dataset = next = kbuf;
4213 	for (;;) {
4214 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4215 
4216 		next = strchr(dataset, ',');
4217 
4218 		if (next == NULL)
4219 			len = strlen(dataset);
4220 		else
4221 			len = next - dataset;
4222 
4223 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4224 		bcopy(dataset, zd->zd_dataset, len);
4225 		zd->zd_dataset[len] = '\0';
4226 
4227 		list_insert_head(&zone->zone_datasets, zd);
4228 
4229 		if (next == NULL)
4230 			break;
4231 
4232 		dataset = next + 1;
4233 	}
4234 
4235 	kmem_free(kbuf, buflen);
4236 	return (0);
4237 }
4238 
4239 /*
4240  * System call to create/initialize a new zone named 'zone_name', rooted
4241  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4242  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4243  * with labeling set by 'match', 'doi', and 'label'.
4244  *
4245  * If extended error is non-null, we may use it to return more detailed
4246  * error information.
4247  */
4248 static zoneid_t
4249 zone_create(const char *zone_name, const char *zone_root,
4250     const priv_set_t *zone_privs, size_t zone_privssz,
4251     caddr_t rctlbuf, size_t rctlbufsz,
4252     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4253     int match, uint32_t doi, const bslabel_t *label,
4254     int flags)
4255 {
4256 	struct zsched_arg zarg;
4257 	nvlist_t *rctls = NULL;
4258 	proc_t *pp = curproc;
4259 	zone_t *zone, *ztmp;
4260 	zoneid_t zoneid;
4261 	int error;
4262 	int error2 = 0;
4263 	char *str;
4264 	cred_t *zkcr;
4265 	boolean_t insert_label_hash;
4266 
4267 	if (secpolicy_zone_config(CRED()) != 0)
4268 		return (set_errno(EPERM));
4269 
4270 	/* can't boot zone from within chroot environment */
4271 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4272 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4273 		    extended_error));
4274 
4275 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4276 	zoneid = zone->zone_id = id_alloc(zoneid_space);
4277 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4278 	zone->zone_pool = pool_default;
4279 	zone->zone_pool_mod = gethrtime();
4280 	zone->zone_psetid = ZONE_PS_INVAL;
4281 	zone->zone_ncpus = 0;
4282 	zone->zone_ncpus_online = 0;
4283 	zone->zone_restart_init = B_TRUE;
4284 	zone->zone_brand = &native_brand;
4285 	zone->zone_initname = NULL;
4286 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4287 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4288 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4289 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4290 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4291 	    offsetof(zone_ref_t, zref_linkage));
4292 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4293 	    offsetof(struct zsd_entry, zsd_linkage));
4294 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4295 	    offsetof(zone_dataset_t, zd_linkage));
4296 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4297 	    offsetof(zone_dl_t, zdl_linkage));
4298 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4299 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4300 
4301 	if (flags & ZCF_NET_EXCL) {
4302 		zone->zone_flags |= ZF_NET_EXCL;
4303 	}
4304 
4305 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4306 		zone_free(zone);
4307 		return (zone_create_error(error, 0, extended_error));
4308 	}
4309 
4310 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4311 		zone_free(zone);
4312 		return (zone_create_error(error, 0, extended_error));
4313 	}
4314 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4315 		zone_free(zone);
4316 		return (zone_create_error(error, 0, extended_error));
4317 	}
4318 
4319 	/* initialize node name to be the same as zone name */
4320 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4321 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4322 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4323 
4324 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4325 	zone->zone_domain[0] = '\0';
4326 	zone->zone_hostid = HW_INVALID_HOSTID;
4327 	zone->zone_shares = 1;
4328 	zone->zone_shmmax = 0;
4329 	zone->zone_ipc.ipcq_shmmni = 0;
4330 	zone->zone_ipc.ipcq_semmni = 0;
4331 	zone->zone_ipc.ipcq_msgmni = 0;
4332 	zone->zone_bootargs = NULL;
4333 	zone->zone_fs_allowed = NULL;
4334 	zone->zone_initname =
4335 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4336 	(void) strcpy(zone->zone_initname, zone_default_initname);
4337 	zone->zone_nlwps = 0;
4338 	zone->zone_nlwps_ctl = INT_MAX;
4339 	zone->zone_nprocs = 0;
4340 	zone->zone_nprocs_ctl = INT_MAX;
4341 	zone->zone_locked_mem = 0;
4342 	zone->zone_locked_mem_ctl = UINT64_MAX;
4343 	zone->zone_max_swap = 0;
4344 	zone->zone_max_swap_ctl = UINT64_MAX;
4345 	zone->zone_max_lofi = 0;
4346 	zone->zone_max_lofi_ctl = UINT64_MAX;
4347 	zone0.zone_lockedmem_kstat = NULL;
4348 	zone0.zone_swapresv_kstat = NULL;
4349 
4350 	/*
4351 	 * Zsched initializes the rctls.
4352 	 */
4353 	zone->zone_rctls = NULL;
4354 
4355 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4356 		zone_free(zone);
4357 		return (zone_create_error(error, 0, extended_error));
4358 	}
4359 
4360 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4361 		zone_free(zone);
4362 		return (set_errno(error));
4363 	}
4364 
4365 	/*
4366 	 * Read in the trusted system parameters:
4367 	 * match flag and sensitivity label.
4368 	 */
4369 	zone->zone_match = match;
4370 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4371 		/* Fail if requested to set doi to anything but system's doi */
4372 		if (doi != 0 && doi != default_doi) {
4373 			zone_free(zone);
4374 			return (set_errno(EINVAL));
4375 		}
4376 		/* Always apply system's doi to the zone */
4377 		error = zone_set_label(zone, label, default_doi);
4378 		if (error != 0) {
4379 			zone_free(zone);
4380 			return (set_errno(error));
4381 		}
4382 		insert_label_hash = B_TRUE;
4383 	} else {
4384 		/* all zones get an admin_low label if system is not labeled */
4385 		zone->zone_slabel = l_admin_low;
4386 		label_hold(l_admin_low);
4387 		insert_label_hash = B_FALSE;
4388 	}
4389 
4390 	/*
4391 	 * Stop all lwps since that's what normally happens as part of fork().
4392 	 * This needs to happen before we grab any locks to avoid deadlock
4393 	 * (another lwp in the process could be waiting for the held lock).
4394 	 */
4395 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4396 		zone_free(zone);
4397 		if (rctls)
4398 			nvlist_free(rctls);
4399 		return (zone_create_error(error, 0, extended_error));
4400 	}
4401 
4402 	if (block_mounts() == 0) {
4403 		mutex_enter(&pp->p_lock);
4404 		if (curthread != pp->p_agenttp)
4405 			continuelwps(pp);
4406 		mutex_exit(&pp->p_lock);
4407 		zone_free(zone);
4408 		if (rctls)
4409 			nvlist_free(rctls);
4410 		return (zone_create_error(error, 0, extended_error));
4411 	}
4412 
4413 	/*
4414 	 * Set up credential for kernel access.  After this, any errors
4415 	 * should go through the dance in errout rather than calling
4416 	 * zone_free directly.
4417 	 */
4418 	zone->zone_kcred = crdup(kcred);
4419 	crsetzone(zone->zone_kcred, zone);
4420 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4421 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4422 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4423 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4424 
4425 	mutex_enter(&zonehash_lock);
4426 	/*
4427 	 * Make sure zone doesn't already exist.
4428 	 *
4429 	 * If the system and zone are labeled,
4430 	 * make sure no other zone exists that has the same label.
4431 	 */
4432 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4433 	    (insert_label_hash &&
4434 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4435 		zone_status_t status;
4436 
4437 		status = zone_status_get(ztmp);
4438 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4439 			error = EEXIST;
4440 		else
4441 			error = EBUSY;
4442 
4443 		if (insert_label_hash)
4444 			error2 = ZE_LABELINUSE;
4445 
4446 		goto errout;
4447 	}
4448 
4449 	/*
4450 	 * Don't allow zone creations which would cause one zone's rootpath to
4451 	 * be accessible from that of another (non-global) zone.
4452 	 */
4453 	if (zone_is_nested(zone->zone_rootpath)) {
4454 		error = EBUSY;
4455 		goto errout;
4456 	}
4457 
4458 	ASSERT(zonecount != 0);		/* check for leaks */
4459 	if (zonecount + 1 > maxzones) {
4460 		error = ENOMEM;
4461 		goto errout;
4462 	}
4463 
4464 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4465 		error = EBUSY;
4466 		error2 = ZE_AREMOUNTS;
4467 		goto errout;
4468 	}
4469 
4470 	/*
4471 	 * Zone is still incomplete, but we need to drop all locks while
4472 	 * zsched() initializes this zone's kernel process.  We
4473 	 * optimistically add the zone to the hashtable and associated
4474 	 * lists so a parallel zone_create() doesn't try to create the
4475 	 * same zone.
4476 	 */
4477 	zonecount++;
4478 	(void) mod_hash_insert(zonehashbyid,
4479 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4480 	    (mod_hash_val_t)(uintptr_t)zone);
4481 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4482 	(void) strcpy(str, zone->zone_name);
4483 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4484 	    (mod_hash_val_t)(uintptr_t)zone);
4485 	if (insert_label_hash) {
4486 		(void) mod_hash_insert(zonehashbylabel,
4487 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4488 		zone->zone_flags |= ZF_HASHED_LABEL;
4489 	}
4490 
4491 	/*
4492 	 * Insert into active list.  At this point there are no 'hold's
4493 	 * on the zone, but everyone else knows not to use it, so we can
4494 	 * continue to use it.  zsched() will do a zone_hold() if the
4495 	 * newproc() is successful.
4496 	 */
4497 	list_insert_tail(&zone_active, zone);
4498 	mutex_exit(&zonehash_lock);
4499 
4500 	zarg.zone = zone;
4501 	zarg.nvlist = rctls;
4502 	/*
4503 	 * The process, task, and project rctls are probably wrong;
4504 	 * we need an interface to get the default values of all rctls,
4505 	 * and initialize zsched appropriately.  I'm not sure that that
4506 	 * makes much of a difference, though.
4507 	 */
4508 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4509 	if (error != 0) {
4510 		/*
4511 		 * We need to undo all globally visible state.
4512 		 */
4513 		mutex_enter(&zonehash_lock);
4514 		list_remove(&zone_active, zone);
4515 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4516 			ASSERT(zone->zone_slabel != NULL);
4517 			(void) mod_hash_destroy(zonehashbylabel,
4518 			    (mod_hash_key_t)zone->zone_slabel);
4519 		}
4520 		(void) mod_hash_destroy(zonehashbyname,
4521 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4522 		(void) mod_hash_destroy(zonehashbyid,
4523 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4524 		ASSERT(zonecount > 1);
4525 		zonecount--;
4526 		goto errout;
4527 	}
4528 
4529 	/*
4530 	 * Zone creation can't fail from now on.
4531 	 */
4532 
4533 	/*
4534 	 * Create zone kstats
4535 	 */
4536 	zone_kstat_create(zone);
4537 
4538 	/*
4539 	 * Let the other lwps continue.
4540 	 */
4541 	mutex_enter(&pp->p_lock);
4542 	if (curthread != pp->p_agenttp)
4543 		continuelwps(pp);
4544 	mutex_exit(&pp->p_lock);
4545 
4546 	/*
4547 	 * Wait for zsched to finish initializing the zone.
4548 	 */
4549 	zone_status_wait(zone, ZONE_IS_READY);
4550 	/*
4551 	 * The zone is fully visible, so we can let mounts progress.
4552 	 */
4553 	resume_mounts();
4554 	if (rctls)
4555 		nvlist_free(rctls);
4556 
4557 	return (zoneid);
4558 
4559 errout:
4560 	mutex_exit(&zonehash_lock);
4561 	/*
4562 	 * Let the other lwps continue.
4563 	 */
4564 	mutex_enter(&pp->p_lock);
4565 	if (curthread != pp->p_agenttp)
4566 		continuelwps(pp);
4567 	mutex_exit(&pp->p_lock);
4568 
4569 	resume_mounts();
4570 	if (rctls)
4571 		nvlist_free(rctls);
4572 	/*
4573 	 * There is currently one reference to the zone, a cred_ref from
4574 	 * zone_kcred.  To free the zone, we call crfree, which will call
4575 	 * zone_cred_rele, which will call zone_free.
4576 	 */
4577 	ASSERT(zone->zone_cred_ref == 1);
4578 	ASSERT(zone->zone_kcred->cr_ref == 1);
4579 	ASSERT(zone->zone_ref == 0);
4580 	zkcr = zone->zone_kcred;
4581 	zone->zone_kcred = NULL;
4582 	crfree(zkcr);				/* triggers call to zone_free */
4583 	return (zone_create_error(error, error2, extended_error));
4584 }
4585 
4586 /*
4587  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4588  * the heavy lifting.  initname is the path to the program to launch
4589  * at the "top" of the zone; if this is NULL, we use the system default,
4590  * which is stored at zone_default_initname.
4591  */
4592 static int
4593 zone_boot(zoneid_t zoneid)
4594 {
4595 	int err;
4596 	zone_t *zone;
4597 
4598 	if (secpolicy_zone_config(CRED()) != 0)
4599 		return (set_errno(EPERM));
4600 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4601 		return (set_errno(EINVAL));
4602 
4603 	mutex_enter(&zonehash_lock);
4604 	/*
4605 	 * Look for zone under hash lock to prevent races with calls to
4606 	 * zone_shutdown, zone_destroy, etc.
4607 	 */
4608 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4609 		mutex_exit(&zonehash_lock);
4610 		return (set_errno(EINVAL));
4611 	}
4612 
4613 	mutex_enter(&zone_status_lock);
4614 	if (zone_status_get(zone) != ZONE_IS_READY) {
4615 		mutex_exit(&zone_status_lock);
4616 		mutex_exit(&zonehash_lock);
4617 		return (set_errno(EINVAL));
4618 	}
4619 	zone_status_set(zone, ZONE_IS_BOOTING);
4620 	mutex_exit(&zone_status_lock);
4621 
4622 	zone_hold(zone);	/* so we can use the zone_t later */
4623 	mutex_exit(&zonehash_lock);
4624 
4625 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4626 		zone_rele(zone);
4627 		return (set_errno(EINTR));
4628 	}
4629 
4630 	/*
4631 	 * Boot (starting init) might have failed, in which case the zone
4632 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4633 	 * be placed in zone->zone_boot_err, and so we return that.
4634 	 */
4635 	err = zone->zone_boot_err;
4636 	zone_rele(zone);
4637 	return (err ? set_errno(err) : 0);
4638 }
4639 
4640 /*
4641  * Kills all user processes in the zone, waiting for them all to exit
4642  * before returning.
4643  */
4644 static int
4645 zone_empty(zone_t *zone)
4646 {
4647 	int waitstatus;
4648 
4649 	/*
4650 	 * We need to drop zonehash_lock before killing all
4651 	 * processes, otherwise we'll deadlock with zone_find_*
4652 	 * which can be called from the exit path.
4653 	 */
4654 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4655 	while ((waitstatus = zone_status_timedwait_sig(zone,
4656 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4657 		killall(zone->zone_id);
4658 	}
4659 	/*
4660 	 * return EINTR if we were signaled
4661 	 */
4662 	if (waitstatus == 0)
4663 		return (EINTR);
4664 	return (0);
4665 }
4666 
4667 /*
4668  * This function implements the policy for zone visibility.
4669  *
4670  * In standard Solaris, a non-global zone can only see itself.
4671  *
4672  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4673  * it dominates. For this test, the label of the global zone is treated as
4674  * admin_high so it is special-cased instead of being checked for dominance.
4675  *
4676  * Returns true if zone attributes are viewable, false otherwise.
4677  */
4678 static boolean_t
4679 zone_list_access(zone_t *zone)
4680 {
4681 
4682 	if (curproc->p_zone == global_zone ||
4683 	    curproc->p_zone == zone) {
4684 		return (B_TRUE);
4685 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4686 		bslabel_t *curproc_label;
4687 		bslabel_t *zone_label;
4688 
4689 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4690 		zone_label = label2bslabel(zone->zone_slabel);
4691 
4692 		if (zone->zone_id != GLOBAL_ZONEID &&
4693 		    bldominates(curproc_label, zone_label)) {
4694 			return (B_TRUE);
4695 		} else {
4696 			return (B_FALSE);
4697 		}
4698 	} else {
4699 		return (B_FALSE);
4700 	}
4701 }
4702 
4703 /*
4704  * Systemcall to start the zone's halt sequence.  By the time this
4705  * function successfully returns, all user processes and kernel threads
4706  * executing in it will have exited, ZSD shutdown callbacks executed,
4707  * and the zone status set to ZONE_IS_DOWN.
4708  *
4709  * It is possible that the call will interrupt itself if the caller is the
4710  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4711  */
4712 static int
4713 zone_shutdown(zoneid_t zoneid)
4714 {
4715 	int error;
4716 	zone_t *zone;
4717 	zone_status_t status;
4718 
4719 	if (secpolicy_zone_config(CRED()) != 0)
4720 		return (set_errno(EPERM));
4721 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4722 		return (set_errno(EINVAL));
4723 
4724 	/*
4725 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4726 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4727 	 *
4728 	 * e.g. NFS can fail the mount if it determines that the zone
4729 	 * has already begun the shutdown sequence.
4730 	 */
4731 	if (block_mounts() == 0)
4732 		return (set_errno(EINTR));
4733 	mutex_enter(&zonehash_lock);
4734 	/*
4735 	 * Look for zone under hash lock to prevent races with other
4736 	 * calls to zone_shutdown and zone_destroy.
4737 	 */
4738 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4739 		mutex_exit(&zonehash_lock);
4740 		resume_mounts();
4741 		return (set_errno(EINVAL));
4742 	}
4743 	mutex_enter(&zone_status_lock);
4744 	status = zone_status_get(zone);
4745 	/*
4746 	 * Fail if the zone isn't fully initialized yet.
4747 	 */
4748 	if (status < ZONE_IS_READY) {
4749 		mutex_exit(&zone_status_lock);
4750 		mutex_exit(&zonehash_lock);
4751 		resume_mounts();
4752 		return (set_errno(EINVAL));
4753 	}
4754 	/*
4755 	 * If conditions required for zone_shutdown() to return have been met,
4756 	 * return success.
4757 	 */
4758 	if (status >= ZONE_IS_DOWN) {
4759 		mutex_exit(&zone_status_lock);
4760 		mutex_exit(&zonehash_lock);
4761 		resume_mounts();
4762 		return (0);
4763 	}
4764 	/*
4765 	 * If zone_shutdown() hasn't been called before, go through the motions.
4766 	 * If it has, there's nothing to do but wait for the kernel threads to
4767 	 * drain.
4768 	 */
4769 	if (status < ZONE_IS_EMPTY) {
4770 		uint_t ntasks;
4771 
4772 		mutex_enter(&zone->zone_lock);
4773 		if ((ntasks = zone->zone_ntasks) != 1) {
4774 			/*
4775 			 * There's still stuff running.
4776 			 */
4777 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4778 		}
4779 		mutex_exit(&zone->zone_lock);
4780 		if (ntasks == 1) {
4781 			/*
4782 			 * The only way to create another task is through
4783 			 * zone_enter(), which will block until we drop
4784 			 * zonehash_lock.  The zone is empty.
4785 			 */
4786 			if (zone->zone_kthreads == NULL) {
4787 				/*
4788 				 * Skip ahead to ZONE_IS_DOWN
4789 				 */
4790 				zone_status_set(zone, ZONE_IS_DOWN);
4791 			} else {
4792 				zone_status_set(zone, ZONE_IS_EMPTY);
4793 			}
4794 		}
4795 	}
4796 	zone_hold(zone);	/* so we can use the zone_t later */
4797 	mutex_exit(&zone_status_lock);
4798 	mutex_exit(&zonehash_lock);
4799 	resume_mounts();
4800 
4801 	if (error = zone_empty(zone)) {
4802 		zone_rele(zone);
4803 		return (set_errno(error));
4804 	}
4805 	/*
4806 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
4807 	 * longer be notified of changes to the pools configuration, so
4808 	 * in order to not end up with a stale pool pointer, we point
4809 	 * ourselves at the default pool and remove all resource
4810 	 * visibility.  This is especially important as the zone_t may
4811 	 * languish on the deathrow for a very long time waiting for
4812 	 * cred's to drain out.
4813 	 *
4814 	 * This rebinding of the zone can happen multiple times
4815 	 * (presumably due to interrupted or parallel systemcalls)
4816 	 * without any adverse effects.
4817 	 */
4818 	if (pool_lock_intr() != 0) {
4819 		zone_rele(zone);
4820 		return (set_errno(EINTR));
4821 	}
4822 	if (pool_state == POOL_ENABLED) {
4823 		mutex_enter(&cpu_lock);
4824 		zone_pool_set(zone, pool_default);
4825 		/*
4826 		 * The zone no longer needs to be able to see any cpus.
4827 		 */
4828 		zone_pset_set(zone, ZONE_PS_INVAL);
4829 		mutex_exit(&cpu_lock);
4830 	}
4831 	pool_unlock();
4832 
4833 	/*
4834 	 * ZSD shutdown callbacks can be executed multiple times, hence
4835 	 * it is safe to not be holding any locks across this call.
4836 	 */
4837 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4838 
4839 	mutex_enter(&zone_status_lock);
4840 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4841 		zone_status_set(zone, ZONE_IS_DOWN);
4842 	mutex_exit(&zone_status_lock);
4843 
4844 	/*
4845 	 * Wait for kernel threads to drain.
4846 	 */
4847 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4848 		zone_rele(zone);
4849 		return (set_errno(EINTR));
4850 	}
4851 
4852 	/*
4853 	 * Zone can be become down/destroyable even if the above wait
4854 	 * returns EINTR, so any code added here may never execute.
4855 	 * (i.e. don't add code here)
4856 	 */
4857 
4858 	zone_rele(zone);
4859 	return (0);
4860 }
4861 
4862 /*
4863  * Log the specified zone's reference counts.  The caller should not be
4864  * holding the zone's zone_lock.
4865  */
4866 static void
4867 zone_log_refcounts(zone_t *zone)
4868 {
4869 	char *buffer;
4870 	char *buffer_position;
4871 	uint32_t buffer_size;
4872 	uint32_t index;
4873 	uint_t ref;
4874 	uint_t cred_ref;
4875 
4876 	/*
4877 	 * Construct a string representing the subsystem-specific reference
4878 	 * counts.  The counts are printed in ascending order by index into the
4879 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
4880 	 * square brackets [] and will only contain nonzero reference counts.
4881 	 *
4882 	 * The buffer will hold two square bracket characters plus ten digits,
4883 	 * one colon, one space, one comma, and some characters for a
4884 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
4885 	 * bit integers have at most ten decimal digits.)  The last
4886 	 * reference count's comma is replaced by the closing square
4887 	 * bracket and a NULL character to terminate the string.
4888 	 *
4889 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
4890 	 * snapshot of the zone's reference counters.
4891 	 *
4892 	 * First, figure out how much space the string buffer will need.
4893 	 * The buffer's size is stored in buffer_size.
4894 	 */
4895 	buffer_size = 2;			/* for the square brackets */
4896 	mutex_enter(&zone->zone_lock);
4897 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4898 	ref = zone->zone_ref;
4899 	cred_ref = zone->zone_cred_ref;
4900 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4901 		if (zone->zone_subsys_ref[index] != 0)
4902 			buffer_size += strlen(zone_ref_subsys_names[index]) +
4903 			    13;
4904 	if (buffer_size == 2) {
4905 		/*
4906 		 * No subsystems had nonzero reference counts.  Don't bother
4907 		 * with allocating a buffer; just log the general-purpose and
4908 		 * credential reference counts.
4909 		 */
4910 		mutex_exit(&zone->zone_lock);
4911 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4912 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
4913 		    "references and %u credential references are still extant",
4914 		    zone->zone_name, zone->zone_id, ref, cred_ref);
4915 		return;
4916 	}
4917 
4918 	/*
4919 	 * buffer_size contains the exact number of characters that the
4920 	 * buffer will need.  Allocate the buffer and fill it with nonzero
4921 	 * subsystem-specific reference counts.  Surround the results with
4922 	 * square brackets afterwards.
4923 	 */
4924 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
4925 	buffer_position = &buffer[1];
4926 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
4927 		/*
4928 		 * NOTE: The DDI's version of sprintf() returns a pointer to
4929 		 * the modified buffer rather than the number of bytes written
4930 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
4931 		 * Therefore, we'll use snprintf() with INT_MAX to get the
4932 		 * number of bytes written.  Using INT_MAX is safe because
4933 		 * the buffer is perfectly sized for the data: we'll never
4934 		 * overrun the buffer.
4935 		 */
4936 		if (zone->zone_subsys_ref[index] != 0)
4937 			buffer_position += snprintf(buffer_position, INT_MAX,
4938 			    "%s: %u,", zone_ref_subsys_names[index],
4939 			    zone->zone_subsys_ref[index]);
4940 	}
4941 	mutex_exit(&zone->zone_lock);
4942 	buffer[0] = '[';
4943 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
4944 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
4945 	buffer_position[-1] = ']';
4946 
4947 	/*
4948 	 * Log the reference counts and free the message buffer.
4949 	 */
4950 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4951 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
4952 	    "%u credential references are still extant %s", zone->zone_name,
4953 	    zone->zone_id, ref, cred_ref, buffer);
4954 	kmem_free(buffer, buffer_size);
4955 }
4956 
4957 /*
4958  * Systemcall entry point to finalize the zone halt process.  The caller
4959  * must have already successfully called zone_shutdown().
4960  *
4961  * Upon successful completion, the zone will have been fully destroyed:
4962  * zsched will have exited, destructor callbacks executed, and the zone
4963  * removed from the list of active zones.
4964  */
4965 static int
4966 zone_destroy(zoneid_t zoneid)
4967 {
4968 	uint64_t uniqid;
4969 	zone_t *zone;
4970 	zone_status_t status;
4971 	clock_t wait_time;
4972 	boolean_t log_refcounts;
4973 
4974 	if (secpolicy_zone_config(CRED()) != 0)
4975 		return (set_errno(EPERM));
4976 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4977 		return (set_errno(EINVAL));
4978 
4979 	mutex_enter(&zonehash_lock);
4980 	/*
4981 	 * Look for zone under hash lock to prevent races with other
4982 	 * calls to zone_destroy.
4983 	 */
4984 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4985 		mutex_exit(&zonehash_lock);
4986 		return (set_errno(EINVAL));
4987 	}
4988 
4989 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4990 		mutex_exit(&zonehash_lock);
4991 		return (set_errno(EBUSY));
4992 	}
4993 	mutex_enter(&zone_status_lock);
4994 	status = zone_status_get(zone);
4995 	if (status < ZONE_IS_DOWN) {
4996 		mutex_exit(&zone_status_lock);
4997 		mutex_exit(&zonehash_lock);
4998 		return (set_errno(EBUSY));
4999 	} else if (status == ZONE_IS_DOWN) {
5000 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5001 	}
5002 	mutex_exit(&zone_status_lock);
5003 	zone_hold(zone);
5004 	mutex_exit(&zonehash_lock);
5005 
5006 	/*
5007 	 * wait for zsched to exit
5008 	 */
5009 	zone_status_wait(zone, ZONE_IS_DEAD);
5010 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5011 	zone->zone_netstack = NULL;
5012 	uniqid = zone->zone_uniqid;
5013 	zone_rele(zone);
5014 	zone = NULL;	/* potentially free'd */
5015 
5016 	log_refcounts = B_FALSE;
5017 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5018 	mutex_enter(&zonehash_lock);
5019 	for (; /* ever */; ) {
5020 		boolean_t unref;
5021 		boolean_t refs_have_been_logged;
5022 
5023 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5024 		    zone->zone_uniqid != uniqid) {
5025 			/*
5026 			 * The zone has gone away.  Necessary conditions
5027 			 * are met, so we return success.
5028 			 */
5029 			mutex_exit(&zonehash_lock);
5030 			return (0);
5031 		}
5032 		mutex_enter(&zone->zone_lock);
5033 		unref = ZONE_IS_UNREF(zone);
5034 		refs_have_been_logged = (zone->zone_flags &
5035 		    ZF_REFCOUNTS_LOGGED);
5036 		mutex_exit(&zone->zone_lock);
5037 		if (unref) {
5038 			/*
5039 			 * There is only one reference to the zone -- that
5040 			 * added when the zone was added to the hashtables --
5041 			 * and things will remain this way until we drop
5042 			 * zonehash_lock... we can go ahead and cleanup the
5043 			 * zone.
5044 			 */
5045 			break;
5046 		}
5047 
5048 		/*
5049 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5050 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5051 		 * some zone's general-purpose reference count reaches one.
5052 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5053 		 * on zone_destroy_cv, then log the zone's reference counts and
5054 		 * continue to wait for zone_rele() and zone_cred_rele().
5055 		 */
5056 		if (!refs_have_been_logged) {
5057 			if (!log_refcounts) {
5058 				/*
5059 				 * This thread hasn't timed out waiting on
5060 				 * zone_destroy_cv yet.  Wait wait_time clock
5061 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5062 				 * seconds) for the zone's references to clear.
5063 				 */
5064 				ASSERT(wait_time > 0);
5065 				wait_time = cv_reltimedwait_sig(
5066 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5067 				    TR_SEC);
5068 				if (wait_time > 0) {
5069 					/*
5070 					 * A thread in zone_rele() or
5071 					 * zone_cred_rele() signaled
5072 					 * zone_destroy_cv before this thread's
5073 					 * wait timed out.  The zone might have
5074 					 * only one reference left; find out!
5075 					 */
5076 					continue;
5077 				} else if (wait_time == 0) {
5078 					/* The thread's process was signaled. */
5079 					mutex_exit(&zonehash_lock);
5080 					return (set_errno(EINTR));
5081 				}
5082 
5083 				/*
5084 				 * The thread timed out while waiting on
5085 				 * zone_destroy_cv.  Even though the thread
5086 				 * timed out, it has to check whether another
5087 				 * thread woke up from zone_destroy_cv and
5088 				 * destroyed the zone.
5089 				 *
5090 				 * If the zone still exists and has more than
5091 				 * one unreleased general-purpose reference,
5092 				 * then log the zone's reference counts.
5093 				 */
5094 				log_refcounts = B_TRUE;
5095 				continue;
5096 			}
5097 
5098 			/*
5099 			 * The thread already timed out on zone_destroy_cv while
5100 			 * waiting for subsystems to release the zone's last
5101 			 * general-purpose references.  Log the zone's reference
5102 			 * counts and wait indefinitely on zone_destroy_cv.
5103 			 */
5104 			zone_log_refcounts(zone);
5105 		}
5106 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5107 			/* The thread's process was signaled. */
5108 			mutex_exit(&zonehash_lock);
5109 			return (set_errno(EINTR));
5110 		}
5111 	}
5112 
5113 	/*
5114 	 * Remove CPU cap for this zone now since we're not going to
5115 	 * fail below this point.
5116 	 */
5117 	cpucaps_zone_remove(zone);
5118 
5119 	/* Get rid of the zone's kstats */
5120 	zone_kstat_delete(zone);
5121 
5122 	/* remove the pfexecd doors */
5123 	if (zone->zone_pfexecd != NULL) {
5124 		klpd_freelist(&zone->zone_pfexecd);
5125 		zone->zone_pfexecd = NULL;
5126 	}
5127 
5128 	/* free brand specific data */
5129 	if (ZONE_IS_BRANDED(zone))
5130 		ZBROP(zone)->b_free_brand_data(zone);
5131 
5132 	/* Say goodbye to brand framework. */
5133 	brand_unregister_zone(zone->zone_brand);
5134 
5135 	/*
5136 	 * It is now safe to let the zone be recreated; remove it from the
5137 	 * lists.  The memory will not be freed until the last cred
5138 	 * reference goes away.
5139 	 */
5140 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5141 	zonecount--;
5142 	/* remove from active list and hash tables */
5143 	list_remove(&zone_active, zone);
5144 	(void) mod_hash_destroy(zonehashbyname,
5145 	    (mod_hash_key_t)zone->zone_name);
5146 	(void) mod_hash_destroy(zonehashbyid,
5147 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5148 	if (zone->zone_flags & ZF_HASHED_LABEL)
5149 		(void) mod_hash_destroy(zonehashbylabel,
5150 		    (mod_hash_key_t)zone->zone_slabel);
5151 	mutex_exit(&zonehash_lock);
5152 
5153 	/*
5154 	 * Release the root vnode; we're not using it anymore.  Nor should any
5155 	 * other thread that might access it exist.
5156 	 */
5157 	if (zone->zone_rootvp != NULL) {
5158 		VN_RELE(zone->zone_rootvp);
5159 		zone->zone_rootvp = NULL;
5160 	}
5161 
5162 	/* add to deathrow list */
5163 	mutex_enter(&zone_deathrow_lock);
5164 	list_insert_tail(&zone_deathrow, zone);
5165 	mutex_exit(&zone_deathrow_lock);
5166 
5167 	/*
5168 	 * Drop last reference (which was added by zsched()), this will
5169 	 * free the zone unless there are outstanding cred references.
5170 	 */
5171 	zone_rele(zone);
5172 	return (0);
5173 }
5174 
5175 /*
5176  * Systemcall entry point for zone_getattr(2).
5177  */
5178 static ssize_t
5179 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5180 {
5181 	size_t size;
5182 	int error = 0, err;
5183 	zone_t *zone;
5184 	char *zonepath;
5185 	char *outstr;
5186 	zone_status_t zone_status;
5187 	pid_t initpid;
5188 	boolean_t global = (curzone == global_zone);
5189 	boolean_t inzone = (curzone->zone_id == zoneid);
5190 	ushort_t flags;
5191 	zone_net_data_t *zbuf;
5192 
5193 	mutex_enter(&zonehash_lock);
5194 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5195 		mutex_exit(&zonehash_lock);
5196 		return (set_errno(EINVAL));
5197 	}
5198 	zone_status = zone_status_get(zone);
5199 	if (zone_status < ZONE_IS_INITIALIZED) {
5200 		mutex_exit(&zonehash_lock);
5201 		return (set_errno(EINVAL));
5202 	}
5203 	zone_hold(zone);
5204 	mutex_exit(&zonehash_lock);
5205 
5206 	/*
5207 	 * If not in the global zone, don't show information about other zones,
5208 	 * unless the system is labeled and the local zone's label dominates
5209 	 * the other zone.
5210 	 */
5211 	if (!zone_list_access(zone)) {
5212 		zone_rele(zone);
5213 		return (set_errno(EINVAL));
5214 	}
5215 
5216 	switch (attr) {
5217 	case ZONE_ATTR_ROOT:
5218 		if (global) {
5219 			/*
5220 			 * Copy the path to trim the trailing "/" (except for
5221 			 * the global zone).
5222 			 */
5223 			if (zone != global_zone)
5224 				size = zone->zone_rootpathlen - 1;
5225 			else
5226 				size = zone->zone_rootpathlen;
5227 			zonepath = kmem_alloc(size, KM_SLEEP);
5228 			bcopy(zone->zone_rootpath, zonepath, size);
5229 			zonepath[size - 1] = '\0';
5230 		} else {
5231 			if (inzone || !is_system_labeled()) {
5232 				/*
5233 				 * Caller is not in the global zone.
5234 				 * if the query is on the current zone
5235 				 * or the system is not labeled,
5236 				 * just return faked-up path for current zone.
5237 				 */
5238 				zonepath = "/";
5239 				size = 2;
5240 			} else {
5241 				/*
5242 				 * Return related path for current zone.
5243 				 */
5244 				int prefix_len = strlen(zone_prefix);
5245 				int zname_len = strlen(zone->zone_name);
5246 
5247 				size = prefix_len + zname_len + 1;
5248 				zonepath = kmem_alloc(size, KM_SLEEP);
5249 				bcopy(zone_prefix, zonepath, prefix_len);
5250 				bcopy(zone->zone_name, zonepath +
5251 				    prefix_len, zname_len);
5252 				zonepath[size - 1] = '\0';
5253 			}
5254 		}
5255 		if (bufsize > size)
5256 			bufsize = size;
5257 		if (buf != NULL) {
5258 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5259 			if (err != 0 && err != ENAMETOOLONG)
5260 				error = EFAULT;
5261 		}
5262 		if (global || (is_system_labeled() && !inzone))
5263 			kmem_free(zonepath, size);
5264 		break;
5265 
5266 	case ZONE_ATTR_NAME:
5267 		size = strlen(zone->zone_name) + 1;
5268 		if (bufsize > size)
5269 			bufsize = size;
5270 		if (buf != NULL) {
5271 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5272 			if (err != 0 && err != ENAMETOOLONG)
5273 				error = EFAULT;
5274 		}
5275 		break;
5276 
5277 	case ZONE_ATTR_STATUS:
5278 		/*
5279 		 * Since we're not holding zonehash_lock, the zone status
5280 		 * may be anything; leave it up to userland to sort it out.
5281 		 */
5282 		size = sizeof (zone_status);
5283 		if (bufsize > size)
5284 			bufsize = size;
5285 		zone_status = zone_status_get(zone);
5286 		if (buf != NULL &&
5287 		    copyout(&zone_status, buf, bufsize) != 0)
5288 			error = EFAULT;
5289 		break;
5290 	case ZONE_ATTR_FLAGS:
5291 		size = sizeof (zone->zone_flags);
5292 		if (bufsize > size)
5293 			bufsize = size;
5294 		flags = zone->zone_flags;
5295 		if (buf != NULL &&
5296 		    copyout(&flags, buf, bufsize) != 0)
5297 			error = EFAULT;
5298 		break;
5299 	case ZONE_ATTR_PRIVSET:
5300 		size = sizeof (priv_set_t);
5301 		if (bufsize > size)
5302 			bufsize = size;
5303 		if (buf != NULL &&
5304 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5305 			error = EFAULT;
5306 		break;
5307 	case ZONE_ATTR_UNIQID:
5308 		size = sizeof (zone->zone_uniqid);
5309 		if (bufsize > size)
5310 			bufsize = size;
5311 		if (buf != NULL &&
5312 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5313 			error = EFAULT;
5314 		break;
5315 	case ZONE_ATTR_POOLID:
5316 		{
5317 			pool_t *pool;
5318 			poolid_t poolid;
5319 
5320 			if (pool_lock_intr() != 0) {
5321 				error = EINTR;
5322 				break;
5323 			}
5324 			pool = zone_pool_get(zone);
5325 			poolid = pool->pool_id;
5326 			pool_unlock();
5327 			size = sizeof (poolid);
5328 			if (bufsize > size)
5329 				bufsize = size;
5330 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5331 				error = EFAULT;
5332 		}
5333 		break;
5334 	case ZONE_ATTR_SLBL:
5335 		size = sizeof (bslabel_t);
5336 		if (bufsize > size)
5337 			bufsize = size;
5338 		if (zone->zone_slabel == NULL)
5339 			error = EINVAL;
5340 		else if (buf != NULL &&
5341 		    copyout(label2bslabel(zone->zone_slabel), buf,
5342 		    bufsize) != 0)
5343 			error = EFAULT;
5344 		break;
5345 	case ZONE_ATTR_INITPID:
5346 		size = sizeof (initpid);
5347 		if (bufsize > size)
5348 			bufsize = size;
5349 		initpid = zone->zone_proc_initpid;
5350 		if (initpid == -1) {
5351 			error = ESRCH;
5352 			break;
5353 		}
5354 		if (buf != NULL &&
5355 		    copyout(&initpid, buf, bufsize) != 0)
5356 			error = EFAULT;
5357 		break;
5358 	case ZONE_ATTR_BRAND:
5359 		size = strlen(zone->zone_brand->b_name) + 1;
5360 
5361 		if (bufsize > size)
5362 			bufsize = size;
5363 		if (buf != NULL) {
5364 			err = copyoutstr(zone->zone_brand->b_name, buf,
5365 			    bufsize, NULL);
5366 			if (err != 0 && err != ENAMETOOLONG)
5367 				error = EFAULT;
5368 		}
5369 		break;
5370 	case ZONE_ATTR_INITNAME:
5371 		size = strlen(zone->zone_initname) + 1;
5372 		if (bufsize > size)
5373 			bufsize = size;
5374 		if (buf != NULL) {
5375 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5376 			    NULL);
5377 			if (err != 0 && err != ENAMETOOLONG)
5378 				error = EFAULT;
5379 		}
5380 		break;
5381 	case ZONE_ATTR_BOOTARGS:
5382 		if (zone->zone_bootargs == NULL)
5383 			outstr = "";
5384 		else
5385 			outstr = zone->zone_bootargs;
5386 		size = strlen(outstr) + 1;
5387 		if (bufsize > size)
5388 			bufsize = size;
5389 		if (buf != NULL) {
5390 			err = copyoutstr(outstr, buf, bufsize, NULL);
5391 			if (err != 0 && err != ENAMETOOLONG)
5392 				error = EFAULT;
5393 		}
5394 		break;
5395 	case ZONE_ATTR_PHYS_MCAP:
5396 		size = sizeof (zone->zone_phys_mcap);
5397 		if (bufsize > size)
5398 			bufsize = size;
5399 		if (buf != NULL &&
5400 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5401 			error = EFAULT;
5402 		break;
5403 	case ZONE_ATTR_SCHED_CLASS:
5404 		mutex_enter(&class_lock);
5405 
5406 		if (zone->zone_defaultcid >= loaded_classes)
5407 			outstr = "";
5408 		else
5409 			outstr = sclass[zone->zone_defaultcid].cl_name;
5410 		size = strlen(outstr) + 1;
5411 		if (bufsize > size)
5412 			bufsize = size;
5413 		if (buf != NULL) {
5414 			err = copyoutstr(outstr, buf, bufsize, NULL);
5415 			if (err != 0 && err != ENAMETOOLONG)
5416 				error = EFAULT;
5417 		}
5418 
5419 		mutex_exit(&class_lock);
5420 		break;
5421 	case ZONE_ATTR_HOSTID:
5422 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5423 		    bufsize == sizeof (zone->zone_hostid)) {
5424 			size = sizeof (zone->zone_hostid);
5425 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5426 			    bufsize) != 0)
5427 				error = EFAULT;
5428 		} else {
5429 			error = EINVAL;
5430 		}
5431 		break;
5432 	case ZONE_ATTR_FS_ALLOWED:
5433 		if (zone->zone_fs_allowed == NULL)
5434 			outstr = "";
5435 		else
5436 			outstr = zone->zone_fs_allowed;
5437 		size = strlen(outstr) + 1;
5438 		if (bufsize > size)
5439 			bufsize = size;
5440 		if (buf != NULL) {
5441 			err = copyoutstr(outstr, buf, bufsize, NULL);
5442 			if (err != 0 && err != ENAMETOOLONG)
5443 				error = EFAULT;
5444 		}
5445 		break;
5446 	case ZONE_ATTR_NETWORK:
5447 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5448 		if (copyin(buf, zbuf, bufsize) != 0) {
5449 			error = EFAULT;
5450 		} else {
5451 			error = zone_get_network(zoneid, zbuf);
5452 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5453 				error = EFAULT;
5454 		}
5455 		kmem_free(zbuf, bufsize);
5456 		break;
5457 	default:
5458 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5459 			size = bufsize;
5460 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5461 		} else {
5462 			error = EINVAL;
5463 		}
5464 	}
5465 	zone_rele(zone);
5466 
5467 	if (error)
5468 		return (set_errno(error));
5469 	return ((ssize_t)size);
5470 }
5471 
5472 /*
5473  * Systemcall entry point for zone_setattr(2).
5474  */
5475 /*ARGSUSED*/
5476 static int
5477 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5478 {
5479 	zone_t *zone;
5480 	zone_status_t zone_status;
5481 	int err = -1;
5482 	zone_net_data_t *zbuf;
5483 
5484 	if (secpolicy_zone_config(CRED()) != 0)
5485 		return (set_errno(EPERM));
5486 
5487 	/*
5488 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5489 	 * global zone.
5490 	 */
5491 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5492 		return (set_errno(EINVAL));
5493 	}
5494 
5495 	mutex_enter(&zonehash_lock);
5496 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5497 		mutex_exit(&zonehash_lock);
5498 		return (set_errno(EINVAL));
5499 	}
5500 	zone_hold(zone);
5501 	mutex_exit(&zonehash_lock);
5502 
5503 	/*
5504 	 * At present most attributes can only be set on non-running,
5505 	 * non-global zones.
5506 	 */
5507 	zone_status = zone_status_get(zone);
5508 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5509 		err = EINVAL;
5510 		goto done;
5511 	}
5512 
5513 	switch (attr) {
5514 	case ZONE_ATTR_INITNAME:
5515 		err = zone_set_initname(zone, (const char *)buf);
5516 		break;
5517 	case ZONE_ATTR_BOOTARGS:
5518 		err = zone_set_bootargs(zone, (const char *)buf);
5519 		break;
5520 	case ZONE_ATTR_BRAND:
5521 		err = zone_set_brand(zone, (const char *)buf);
5522 		break;
5523 	case ZONE_ATTR_FS_ALLOWED:
5524 		err = zone_set_fs_allowed(zone, (const char *)buf);
5525 		break;
5526 	case ZONE_ATTR_PHYS_MCAP:
5527 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5528 		break;
5529 	case ZONE_ATTR_SCHED_CLASS:
5530 		err = zone_set_sched_class(zone, (const char *)buf);
5531 		break;
5532 	case ZONE_ATTR_HOSTID:
5533 		if (bufsize == sizeof (zone->zone_hostid)) {
5534 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5535 				err = 0;
5536 			else
5537 				err = EFAULT;
5538 		} else {
5539 			err = EINVAL;
5540 		}
5541 		break;
5542 	case ZONE_ATTR_NETWORK:
5543 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5544 			err = EINVAL;
5545 			break;
5546 		}
5547 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5548 		if (copyin(buf, zbuf, bufsize) != 0) {
5549 			kmem_free(zbuf, bufsize);
5550 			err = EFAULT;
5551 			break;
5552 		}
5553 		err = zone_set_network(zoneid, zbuf);
5554 		kmem_free(zbuf, bufsize);
5555 		break;
5556 	default:
5557 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5558 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5559 		else
5560 			err = EINVAL;
5561 	}
5562 
5563 done:
5564 	zone_rele(zone);
5565 	ASSERT(err != -1);
5566 	return (err != 0 ? set_errno(err) : 0);
5567 }
5568 
5569 /*
5570  * Return zero if the process has at least one vnode mapped in to its
5571  * address space which shouldn't be allowed to change zones.
5572  *
5573  * Also return zero if the process has any shared mappings which reserve
5574  * swap.  This is because the counting for zone.max-swap does not allow swap
5575  * reservation to be shared between zones.  zone swap reservation is counted
5576  * on zone->zone_max_swap.
5577  */
5578 static int
5579 as_can_change_zones(void)
5580 {
5581 	proc_t *pp = curproc;
5582 	struct seg *seg;
5583 	struct as *as = pp->p_as;
5584 	vnode_t *vp;
5585 	int allow = 1;
5586 
5587 	ASSERT(pp->p_as != &kas);
5588 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
5589 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5590 
5591 		/*
5592 		 * Cannot enter zone with shared anon memory which
5593 		 * reserves swap.  See comment above.
5594 		 */
5595 		if (seg_can_change_zones(seg) == B_FALSE) {
5596 			allow = 0;
5597 			break;
5598 		}
5599 		/*
5600 		 * if we can't get a backing vnode for this segment then skip
5601 		 * it.
5602 		 */
5603 		vp = NULL;
5604 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5605 			continue;
5606 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5607 			allow = 0;
5608 			break;
5609 		}
5610 	}
5611 	AS_LOCK_EXIT(as, &as->a_lock);
5612 	return (allow);
5613 }
5614 
5615 /*
5616  * Count swap reserved by curproc's address space
5617  */
5618 static size_t
5619 as_swresv(void)
5620 {
5621 	proc_t *pp = curproc;
5622 	struct seg *seg;
5623 	struct as *as = pp->p_as;
5624 	size_t swap = 0;
5625 
5626 	ASSERT(pp->p_as != &kas);
5627 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
5628 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5629 		swap += seg_swresv(seg);
5630 
5631 	return (swap);
5632 }
5633 
5634 /*
5635  * Systemcall entry point for zone_enter().
5636  *
5637  * The current process is injected into said zone.  In the process
5638  * it will change its project membership, privileges, rootdir/cwd,
5639  * zone-wide rctls, and pool association to match those of the zone.
5640  *
5641  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5642  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5643  * enter a zone that is "ready" or "running".
5644  */
5645 static int
5646 zone_enter(zoneid_t zoneid)
5647 {
5648 	zone_t *zone;
5649 	vnode_t *vp;
5650 	proc_t *pp = curproc;
5651 	contract_t *ct;
5652 	cont_process_t *ctp;
5653 	task_t *tk, *oldtk;
5654 	kproject_t *zone_proj0;
5655 	cred_t *cr, *newcr;
5656 	pool_t *oldpool, *newpool;
5657 	sess_t *sp;
5658 	uid_t uid;
5659 	zone_status_t status;
5660 	int err = 0;
5661 	rctl_entity_p_t e;
5662 	size_t swap;
5663 	kthread_id_t t;
5664 
5665 	if (secpolicy_zone_config(CRED()) != 0)
5666 		return (set_errno(EPERM));
5667 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5668 		return (set_errno(EINVAL));
5669 
5670 	/*
5671 	 * Stop all lwps so we don't need to hold a lock to look at
5672 	 * curproc->p_zone.  This needs to happen before we grab any
5673 	 * locks to avoid deadlock (another lwp in the process could
5674 	 * be waiting for the held lock).
5675 	 */
5676 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5677 		return (set_errno(EINTR));
5678 
5679 	/*
5680 	 * Make sure we're not changing zones with files open or mapped in
5681 	 * to our address space which shouldn't be changing zones.
5682 	 */
5683 	if (!files_can_change_zones()) {
5684 		err = EBADF;
5685 		goto out;
5686 	}
5687 	if (!as_can_change_zones()) {
5688 		err = EFAULT;
5689 		goto out;
5690 	}
5691 
5692 	mutex_enter(&zonehash_lock);
5693 	if (pp->p_zone != global_zone) {
5694 		mutex_exit(&zonehash_lock);
5695 		err = EINVAL;
5696 		goto out;
5697 	}
5698 
5699 	zone = zone_find_all_by_id(zoneid);
5700 	if (zone == NULL) {
5701 		mutex_exit(&zonehash_lock);
5702 		err = EINVAL;
5703 		goto out;
5704 	}
5705 
5706 	/*
5707 	 * To prevent processes in a zone from holding contracts on
5708 	 * extrazonal resources, and to avoid process contract
5709 	 * memberships which span zones, contract holders and processes
5710 	 * which aren't the sole members of their encapsulating process
5711 	 * contracts are not allowed to zone_enter.
5712 	 */
5713 	ctp = pp->p_ct_process;
5714 	ct = &ctp->conp_contract;
5715 	mutex_enter(&ct->ct_lock);
5716 	mutex_enter(&pp->p_lock);
5717 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5718 		mutex_exit(&pp->p_lock);
5719 		mutex_exit(&ct->ct_lock);
5720 		mutex_exit(&zonehash_lock);
5721 		err = EINVAL;
5722 		goto out;
5723 	}
5724 
5725 	/*
5726 	 * Moreover, we don't allow processes whose encapsulating
5727 	 * process contracts have inherited extrazonal contracts.
5728 	 * While it would be easier to eliminate all process contracts
5729 	 * with inherited contracts, we need to be able to give a
5730 	 * restarted init (or other zone-penetrating process) its
5731 	 * predecessor's contracts.
5732 	 */
5733 	if (ctp->conp_ninherited != 0) {
5734 		contract_t *next;
5735 		for (next = list_head(&ctp->conp_inherited); next;
5736 		    next = list_next(&ctp->conp_inherited, next)) {
5737 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5738 				mutex_exit(&pp->p_lock);
5739 				mutex_exit(&ct->ct_lock);
5740 				mutex_exit(&zonehash_lock);
5741 				err = EINVAL;
5742 				goto out;
5743 			}
5744 		}
5745 	}
5746 
5747 	mutex_exit(&pp->p_lock);
5748 	mutex_exit(&ct->ct_lock);
5749 
5750 	status = zone_status_get(zone);
5751 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5752 		/*
5753 		 * Can't join
5754 		 */
5755 		mutex_exit(&zonehash_lock);
5756 		err = EINVAL;
5757 		goto out;
5758 	}
5759 
5760 	/*
5761 	 * Make sure new priv set is within the permitted set for caller
5762 	 */
5763 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5764 		mutex_exit(&zonehash_lock);
5765 		err = EPERM;
5766 		goto out;
5767 	}
5768 	/*
5769 	 * We want to momentarily drop zonehash_lock while we optimistically
5770 	 * bind curproc to the pool it should be running in.  This is safe
5771 	 * since the zone can't disappear (we have a hold on it).
5772 	 */
5773 	zone_hold(zone);
5774 	mutex_exit(&zonehash_lock);
5775 
5776 	/*
5777 	 * Grab pool_lock to keep the pools configuration from changing
5778 	 * and to stop ourselves from getting rebound to another pool
5779 	 * until we join the zone.
5780 	 */
5781 	if (pool_lock_intr() != 0) {
5782 		zone_rele(zone);
5783 		err = EINTR;
5784 		goto out;
5785 	}
5786 	ASSERT(secpolicy_pool(CRED()) == 0);
5787 	/*
5788 	 * Bind ourselves to the pool currently associated with the zone.
5789 	 */
5790 	oldpool = curproc->p_pool;
5791 	newpool = zone_pool_get(zone);
5792 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
5793 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
5794 	    POOL_BIND_ALL)) != 0) {
5795 		pool_unlock();
5796 		zone_rele(zone);
5797 		goto out;
5798 	}
5799 
5800 	/*
5801 	 * Grab cpu_lock now; we'll need it later when we call
5802 	 * task_join().
5803 	 */
5804 	mutex_enter(&cpu_lock);
5805 	mutex_enter(&zonehash_lock);
5806 	/*
5807 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5808 	 */
5809 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5810 		/*
5811 		 * Can't join anymore.
5812 		 */
5813 		mutex_exit(&zonehash_lock);
5814 		mutex_exit(&cpu_lock);
5815 		if (pool_state == POOL_ENABLED &&
5816 		    newpool != oldpool)
5817 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
5818 			    POOL_BIND_ALL);
5819 		pool_unlock();
5820 		zone_rele(zone);
5821 		err = EINVAL;
5822 		goto out;
5823 	}
5824 
5825 	/*
5826 	 * a_lock must be held while transfering locked memory and swap
5827 	 * reservation from the global zone to the non global zone because
5828 	 * asynchronous faults on the processes' address space can lock
5829 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5830 	 * segments respectively.
5831 	 */
5832 	AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER);
5833 	swap = as_swresv();
5834 	mutex_enter(&pp->p_lock);
5835 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5836 	/* verify that we do not exceed and task or lwp limits */
5837 	mutex_enter(&zone->zone_nlwps_lock);
5838 	/* add new lwps to zone and zone's proj0 */
5839 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5840 	zone->zone_nlwps += pp->p_lwpcnt;
5841 	/* add 1 task to zone's proj0 */
5842 	zone_proj0->kpj_ntasks += 1;
5843 
5844 	zone_proj0->kpj_nprocs++;
5845 	zone->zone_nprocs++;
5846 	mutex_exit(&zone->zone_nlwps_lock);
5847 
5848 	mutex_enter(&zone->zone_mem_lock);
5849 	zone->zone_locked_mem += pp->p_locked_mem;
5850 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5851 	zone->zone_max_swap += swap;
5852 	mutex_exit(&zone->zone_mem_lock);
5853 
5854 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5855 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5856 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5857 
5858 	/* remove lwps and process from proc's old zone and old project */
5859 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
5860 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5861 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5862 	pp->p_task->tk_proj->kpj_nprocs--;
5863 	pp->p_zone->zone_nprocs--;
5864 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
5865 
5866 	mutex_enter(&pp->p_zone->zone_mem_lock);
5867 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5868 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5869 	pp->p_zone->zone_max_swap -= swap;
5870 	mutex_exit(&pp->p_zone->zone_mem_lock);
5871 
5872 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5873 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5874 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5875 
5876 	pp->p_flag |= SZONETOP;
5877 	pp->p_zone = zone;
5878 	mutex_exit(&pp->p_lock);
5879 	AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock);
5880 
5881 	/*
5882 	 * Joining the zone cannot fail from now on.
5883 	 *
5884 	 * This means that a lot of the following code can be commonized and
5885 	 * shared with zsched().
5886 	 */
5887 
5888 	/*
5889 	 * If the process contract fmri was inherited, we need to
5890 	 * flag this so that any contract status will not leak
5891 	 * extra zone information, svc_fmri in this case
5892 	 */
5893 	if (ctp->conp_svc_ctid != ct->ct_id) {
5894 		mutex_enter(&ct->ct_lock);
5895 		ctp->conp_svc_zone_enter = ct->ct_id;
5896 		mutex_exit(&ct->ct_lock);
5897 	}
5898 
5899 	/*
5900 	 * Reset the encapsulating process contract's zone.
5901 	 */
5902 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5903 	contract_setzuniqid(ct, zone->zone_uniqid);
5904 
5905 	/*
5906 	 * Create a new task and associate the process with the project keyed
5907 	 * by (projid,zoneid).
5908 	 *
5909 	 * We might as well be in project 0; the global zone's projid doesn't
5910 	 * make much sense in a zone anyhow.
5911 	 *
5912 	 * This also increments zone_ntasks, and returns with p_lock held.
5913 	 */
5914 	tk = task_create(0, zone);
5915 	oldtk = task_join(tk, 0);
5916 	mutex_exit(&cpu_lock);
5917 
5918 	/*
5919 	 * call RCTLOP_SET functions on this proc
5920 	 */
5921 	e.rcep_p.zone = zone;
5922 	e.rcep_t = RCENTITY_ZONE;
5923 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5924 	    RCD_CALLBACK);
5925 	mutex_exit(&pp->p_lock);
5926 
5927 	/*
5928 	 * We don't need to hold any of zsched's locks here; not only do we know
5929 	 * the process and zone aren't going away, we know its session isn't
5930 	 * changing either.
5931 	 *
5932 	 * By joining zsched's session here, we mimic the behavior in the
5933 	 * global zone of init's sid being the pid of sched.  We extend this
5934 	 * to all zlogin-like zone_enter()'ing processes as well.
5935 	 */
5936 	mutex_enter(&pidlock);
5937 	sp = zone->zone_zsched->p_sessp;
5938 	sess_hold(zone->zone_zsched);
5939 	mutex_enter(&pp->p_lock);
5940 	pgexit(pp);
5941 	sess_rele(pp->p_sessp, B_TRUE);
5942 	pp->p_sessp = sp;
5943 	pgjoin(pp, zone->zone_zsched->p_pidp);
5944 
5945 	/*
5946 	 * If any threads are scheduled to be placed on zone wait queue they
5947 	 * should abandon the idea since the wait queue is changing.
5948 	 * We need to be holding pidlock & p_lock to do this.
5949 	 */
5950 	if ((t = pp->p_tlist) != NULL) {
5951 		do {
5952 			thread_lock(t);
5953 			/*
5954 			 * Kick this thread so that he doesn't sit
5955 			 * on a wrong wait queue.
5956 			 */
5957 			if (ISWAITING(t))
5958 				setrun_locked(t);
5959 
5960 			if (t->t_schedflag & TS_ANYWAITQ)
5961 				t->t_schedflag &= ~ TS_ANYWAITQ;
5962 
5963 			thread_unlock(t);
5964 		} while ((t = t->t_forw) != pp->p_tlist);
5965 	}
5966 
5967 	/*
5968 	 * If there is a default scheduling class for the zone and it is not
5969 	 * the class we are currently in, change all of the threads in the
5970 	 * process to the new class.  We need to be holding pidlock & p_lock
5971 	 * when we call parmsset so this is a good place to do it.
5972 	 */
5973 	if (zone->zone_defaultcid > 0 &&
5974 	    zone->zone_defaultcid != curthread->t_cid) {
5975 		pcparms_t pcparms;
5976 
5977 		pcparms.pc_cid = zone->zone_defaultcid;
5978 		pcparms.pc_clparms[0] = 0;
5979 
5980 		/*
5981 		 * If setting the class fails, we still want to enter the zone.
5982 		 */
5983 		if ((t = pp->p_tlist) != NULL) {
5984 			do {
5985 				(void) parmsset(&pcparms, t);
5986 			} while ((t = t->t_forw) != pp->p_tlist);
5987 		}
5988 	}
5989 
5990 	mutex_exit(&pp->p_lock);
5991 	mutex_exit(&pidlock);
5992 
5993 	mutex_exit(&zonehash_lock);
5994 	/*
5995 	 * We're firmly in the zone; let pools progress.
5996 	 */
5997 	pool_unlock();
5998 	task_rele(oldtk);
5999 	/*
6000 	 * We don't need to retain a hold on the zone since we already
6001 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6002 	 */
6003 	zone_rele(zone);
6004 
6005 	/*
6006 	 * Chroot
6007 	 */
6008 	vp = zone->zone_rootvp;
6009 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6010 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6011 
6012 	/*
6013 	 * Change process credentials
6014 	 */
6015 	newcr = cralloc();
6016 	mutex_enter(&pp->p_crlock);
6017 	cr = pp->p_cred;
6018 	crcopy_to(cr, newcr);
6019 	crsetzone(newcr, zone);
6020 	pp->p_cred = newcr;
6021 
6022 	/*
6023 	 * Restrict all process privilege sets to zone limit
6024 	 */
6025 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6026 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6027 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6028 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6029 	mutex_exit(&pp->p_crlock);
6030 	crset(pp, newcr);
6031 
6032 	/*
6033 	 * Adjust upcount to reflect zone entry.
6034 	 */
6035 	uid = crgetruid(newcr);
6036 	mutex_enter(&pidlock);
6037 	upcount_dec(uid, GLOBAL_ZONEID);
6038 	upcount_inc(uid, zoneid);
6039 	mutex_exit(&pidlock);
6040 
6041 	/*
6042 	 * Set up core file path and content.
6043 	 */
6044 	set_core_defaults();
6045 
6046 out:
6047 	/*
6048 	 * Let the other lwps continue.
6049 	 */
6050 	mutex_enter(&pp->p_lock);
6051 	if (curthread != pp->p_agenttp)
6052 		continuelwps(pp);
6053 	mutex_exit(&pp->p_lock);
6054 
6055 	return (err != 0 ? set_errno(err) : 0);
6056 }
6057 
6058 /*
6059  * Systemcall entry point for zone_list(2).
6060  *
6061  * Processes running in a (non-global) zone only see themselves.
6062  * On labeled systems, they see all zones whose label they dominate.
6063  */
6064 static int
6065 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6066 {
6067 	zoneid_t *zoneids;
6068 	zone_t *zone, *myzone;
6069 	uint_t user_nzones, real_nzones;
6070 	uint_t domi_nzones;
6071 	int error;
6072 
6073 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6074 		return (set_errno(EFAULT));
6075 
6076 	myzone = curproc->p_zone;
6077 	if (myzone != global_zone) {
6078 		bslabel_t *mybslab;
6079 
6080 		if (!is_system_labeled()) {
6081 			/* just return current zone */
6082 			real_nzones = domi_nzones = 1;
6083 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6084 			zoneids[0] = myzone->zone_id;
6085 		} else {
6086 			/* return all zones that are dominated */
6087 			mutex_enter(&zonehash_lock);
6088 			real_nzones = zonecount;
6089 			domi_nzones = 0;
6090 			if (real_nzones > 0) {
6091 				zoneids = kmem_alloc(real_nzones *
6092 				    sizeof (zoneid_t), KM_SLEEP);
6093 				mybslab = label2bslabel(myzone->zone_slabel);
6094 				for (zone = list_head(&zone_active);
6095 				    zone != NULL;
6096 				    zone = list_next(&zone_active, zone)) {
6097 					if (zone->zone_id == GLOBAL_ZONEID)
6098 						continue;
6099 					if (zone != myzone &&
6100 					    (zone->zone_flags & ZF_IS_SCRATCH))
6101 						continue;
6102 					/*
6103 					 * Note that a label always dominates
6104 					 * itself, so myzone is always included
6105 					 * in the list.
6106 					 */
6107 					if (bldominates(mybslab,
6108 					    label2bslabel(zone->zone_slabel))) {
6109 						zoneids[domi_nzones++] =
6110 						    zone->zone_id;
6111 					}
6112 				}
6113 			}
6114 			mutex_exit(&zonehash_lock);
6115 		}
6116 	} else {
6117 		mutex_enter(&zonehash_lock);
6118 		real_nzones = zonecount;
6119 		domi_nzones = 0;
6120 		if (real_nzones > 0) {
6121 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6122 			    KM_SLEEP);
6123 			for (zone = list_head(&zone_active); zone != NULL;
6124 			    zone = list_next(&zone_active, zone))
6125 				zoneids[domi_nzones++] = zone->zone_id;
6126 			ASSERT(domi_nzones == real_nzones);
6127 		}
6128 		mutex_exit(&zonehash_lock);
6129 	}
6130 
6131 	/*
6132 	 * If user has allocated space for fewer entries than we found, then
6133 	 * return only up to his limit.  Either way, tell him exactly how many
6134 	 * we found.
6135 	 */
6136 	if (domi_nzones < user_nzones)
6137 		user_nzones = domi_nzones;
6138 	error = 0;
6139 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6140 		error = EFAULT;
6141 	} else if (zoneidlist != NULL && user_nzones != 0) {
6142 		if (copyout(zoneids, zoneidlist,
6143 		    user_nzones * sizeof (zoneid_t)) != 0)
6144 			error = EFAULT;
6145 	}
6146 
6147 	if (real_nzones > 0)
6148 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6149 
6150 	if (error != 0)
6151 		return (set_errno(error));
6152 	else
6153 		return (0);
6154 }
6155 
6156 /*
6157  * Systemcall entry point for zone_lookup(2).
6158  *
6159  * Non-global zones are only able to see themselves and (on labeled systems)
6160  * the zones they dominate.
6161  */
6162 static zoneid_t
6163 zone_lookup(const char *zone_name)
6164 {
6165 	char *kname;
6166 	zone_t *zone;
6167 	zoneid_t zoneid;
6168 	int err;
6169 
6170 	if (zone_name == NULL) {
6171 		/* return caller's zone id */
6172 		return (getzoneid());
6173 	}
6174 
6175 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6176 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6177 		kmem_free(kname, ZONENAME_MAX);
6178 		return (set_errno(err));
6179 	}
6180 
6181 	mutex_enter(&zonehash_lock);
6182 	zone = zone_find_all_by_name(kname);
6183 	kmem_free(kname, ZONENAME_MAX);
6184 	/*
6185 	 * In a non-global zone, can only lookup global and own name.
6186 	 * In Trusted Extensions zone label dominance rules apply.
6187 	 */
6188 	if (zone == NULL ||
6189 	    zone_status_get(zone) < ZONE_IS_READY ||
6190 	    !zone_list_access(zone)) {
6191 		mutex_exit(&zonehash_lock);
6192 		return (set_errno(EINVAL));
6193 	} else {
6194 		zoneid = zone->zone_id;
6195 		mutex_exit(&zonehash_lock);
6196 		return (zoneid);
6197 	}
6198 }
6199 
6200 static int
6201 zone_version(int *version_arg)
6202 {
6203 	int version = ZONE_SYSCALL_API_VERSION;
6204 
6205 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6206 		return (set_errno(EFAULT));
6207 	return (0);
6208 }
6209 
6210 /* ARGSUSED */
6211 long
6212 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6213 {
6214 	zone_def zs;
6215 	int err;
6216 
6217 	switch (cmd) {
6218 	case ZONE_CREATE:
6219 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6220 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6221 				return (set_errno(EFAULT));
6222 			}
6223 		} else {
6224 #ifdef _SYSCALL32_IMPL
6225 			zone_def32 zs32;
6226 
6227 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6228 				return (set_errno(EFAULT));
6229 			}
6230 			zs.zone_name =
6231 			    (const char *)(unsigned long)zs32.zone_name;
6232 			zs.zone_root =
6233 			    (const char *)(unsigned long)zs32.zone_root;
6234 			zs.zone_privs =
6235 			    (const struct priv_set *)
6236 			    (unsigned long)zs32.zone_privs;
6237 			zs.zone_privssz = zs32.zone_privssz;
6238 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6239 			zs.rctlbufsz = zs32.rctlbufsz;
6240 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6241 			zs.zfsbufsz = zs32.zfsbufsz;
6242 			zs.extended_error =
6243 			    (int *)(unsigned long)zs32.extended_error;
6244 			zs.match = zs32.match;
6245 			zs.doi = zs32.doi;
6246 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6247 			zs.flags = zs32.flags;
6248 #else
6249 			panic("get_udatamodel() returned bogus result\n");
6250 #endif
6251 		}
6252 
6253 		return (zone_create(zs.zone_name, zs.zone_root,
6254 		    zs.zone_privs, zs.zone_privssz,
6255 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6256 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6257 		    zs.extended_error, zs.match, zs.doi,
6258 		    zs.label, zs.flags));
6259 	case ZONE_BOOT:
6260 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6261 	case ZONE_DESTROY:
6262 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6263 	case ZONE_GETATTR:
6264 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6265 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6266 	case ZONE_SETATTR:
6267 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6268 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6269 	case ZONE_ENTER:
6270 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6271 	case ZONE_LIST:
6272 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6273 	case ZONE_SHUTDOWN:
6274 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6275 	case ZONE_LOOKUP:
6276 		return (zone_lookup((const char *)arg1));
6277 	case ZONE_VERSION:
6278 		return (zone_version((int *)arg1));
6279 	case ZONE_ADD_DATALINK:
6280 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6281 		    (datalink_id_t)(uintptr_t)arg2));
6282 	case ZONE_DEL_DATALINK:
6283 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6284 		    (datalink_id_t)(uintptr_t)arg2));
6285 	case ZONE_CHECK_DATALINK: {
6286 		zoneid_t	zoneid;
6287 		boolean_t	need_copyout;
6288 
6289 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6290 			return (EFAULT);
6291 		need_copyout = (zoneid == ALL_ZONES);
6292 		err = zone_check_datalink(&zoneid,
6293 		    (datalink_id_t)(uintptr_t)arg2);
6294 		if (err == 0 && need_copyout) {
6295 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6296 				err = EFAULT;
6297 		}
6298 		return (err == 0 ? 0 : set_errno(err));
6299 	}
6300 	case ZONE_LIST_DATALINK:
6301 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6302 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6303 	default:
6304 		return (set_errno(EINVAL));
6305 	}
6306 }
6307 
6308 struct zarg {
6309 	zone_t *zone;
6310 	zone_cmd_arg_t arg;
6311 };
6312 
6313 static int
6314 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6315 {
6316 	char *buf;
6317 	size_t buflen;
6318 	int error;
6319 
6320 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6321 	buf = kmem_alloc(buflen, KM_SLEEP);
6322 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6323 	error = door_ki_open(buf, doorp);
6324 	kmem_free(buf, buflen);
6325 	return (error);
6326 }
6327 
6328 static void
6329 zone_release_door(door_handle_t *doorp)
6330 {
6331 	door_ki_rele(*doorp);
6332 	*doorp = NULL;
6333 }
6334 
6335 static void
6336 zone_ki_call_zoneadmd(struct zarg *zargp)
6337 {
6338 	door_handle_t door = NULL;
6339 	door_arg_t darg, save_arg;
6340 	char *zone_name;
6341 	size_t zone_namelen;
6342 	zoneid_t zoneid;
6343 	zone_t *zone;
6344 	zone_cmd_arg_t arg;
6345 	uint64_t uniqid;
6346 	size_t size;
6347 	int error;
6348 	int retry;
6349 
6350 	zone = zargp->zone;
6351 	arg = zargp->arg;
6352 	kmem_free(zargp, sizeof (*zargp));
6353 
6354 	zone_namelen = strlen(zone->zone_name) + 1;
6355 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6356 	bcopy(zone->zone_name, zone_name, zone_namelen);
6357 	zoneid = zone->zone_id;
6358 	uniqid = zone->zone_uniqid;
6359 	/*
6360 	 * zoneadmd may be down, but at least we can empty out the zone.
6361 	 * We can ignore the return value of zone_empty() since we're called
6362 	 * from a kernel thread and know we won't be delivered any signals.
6363 	 */
6364 	ASSERT(curproc == &p0);
6365 	(void) zone_empty(zone);
6366 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6367 	zone_rele(zone);
6368 
6369 	size = sizeof (arg);
6370 	darg.rbuf = (char *)&arg;
6371 	darg.data_ptr = (char *)&arg;
6372 	darg.rsize = size;
6373 	darg.data_size = size;
6374 	darg.desc_ptr = NULL;
6375 	darg.desc_num = 0;
6376 
6377 	save_arg = darg;
6378 	/*
6379 	 * Since we're not holding a reference to the zone, any number of
6380 	 * things can go wrong, including the zone disappearing before we get a
6381 	 * chance to talk to zoneadmd.
6382 	 */
6383 	for (retry = 0; /* forever */; retry++) {
6384 		if (door == NULL &&
6385 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6386 			goto next;
6387 		}
6388 		ASSERT(door != NULL);
6389 
6390 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6391 		    SIZE_MAX, 0)) == 0) {
6392 			break;
6393 		}
6394 		switch (error) {
6395 		case EINTR:
6396 			/* FALLTHROUGH */
6397 		case EAGAIN:	/* process may be forking */
6398 			/*
6399 			 * Back off for a bit
6400 			 */
6401 			break;
6402 		case EBADF:
6403 			zone_release_door(&door);
6404 			if (zone_lookup_door(zone_name, &door) != 0) {
6405 				/*
6406 				 * zoneadmd may be dead, but it may come back to
6407 				 * life later.
6408 				 */
6409 				break;
6410 			}
6411 			break;
6412 		default:
6413 			cmn_err(CE_WARN,
6414 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6415 			    error);
6416 			goto out;
6417 		}
6418 next:
6419 		/*
6420 		 * If this isn't the same zone_t that we originally had in mind,
6421 		 * then this is the same as if two kadmin requests come in at
6422 		 * the same time: the first one wins.  This means we lose, so we
6423 		 * bail.
6424 		 */
6425 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6426 			/*
6427 			 * Problem is solved.
6428 			 */
6429 			break;
6430 		}
6431 		if (zone->zone_uniqid != uniqid) {
6432 			/*
6433 			 * zoneid recycled
6434 			 */
6435 			zone_rele(zone);
6436 			break;
6437 		}
6438 		/*
6439 		 * We could zone_status_timedwait(), but there doesn't seem to
6440 		 * be much point in doing that (plus, it would mean that
6441 		 * zone_free() isn't called until this thread exits).
6442 		 */
6443 		zone_rele(zone);
6444 		delay(hz);
6445 		darg = save_arg;
6446 	}
6447 out:
6448 	if (door != NULL) {
6449 		zone_release_door(&door);
6450 	}
6451 	kmem_free(zone_name, zone_namelen);
6452 	thread_exit();
6453 }
6454 
6455 /*
6456  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6457  * kadmin().  The caller is a process in the zone.
6458  *
6459  * In order to shutdown the zone, we will hand off control to zoneadmd
6460  * (running in the global zone) via a door.  We do a half-hearted job at
6461  * killing all processes in the zone, create a kernel thread to contact
6462  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6463  * a form of generation number used to let zoneadmd (as well as
6464  * zone_destroy()) know exactly which zone they're re talking about.
6465  */
6466 int
6467 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6468 {
6469 	struct zarg *zargp;
6470 	zone_cmd_t zcmd;
6471 	zone_t *zone;
6472 
6473 	zone = curproc->p_zone;
6474 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6475 
6476 	switch (cmd) {
6477 	case A_SHUTDOWN:
6478 		switch (fcn) {
6479 		case AD_HALT:
6480 		case AD_POWEROFF:
6481 			zcmd = Z_HALT;
6482 			break;
6483 		case AD_BOOT:
6484 			zcmd = Z_REBOOT;
6485 			break;
6486 		case AD_IBOOT:
6487 		case AD_SBOOT:
6488 		case AD_SIBOOT:
6489 		case AD_NOSYNC:
6490 			return (ENOTSUP);
6491 		default:
6492 			return (EINVAL);
6493 		}
6494 		break;
6495 	case A_REBOOT:
6496 		zcmd = Z_REBOOT;
6497 		break;
6498 	case A_FTRACE:
6499 	case A_REMOUNT:
6500 	case A_FREEZE:
6501 	case A_DUMP:
6502 	case A_CONFIG:
6503 		return (ENOTSUP);
6504 	default:
6505 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6506 		return (EINVAL);
6507 	}
6508 
6509 	if (secpolicy_zone_admin(credp, B_FALSE))
6510 		return (EPERM);
6511 	mutex_enter(&zone_status_lock);
6512 
6513 	/*
6514 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6515 	 * is in the zone.
6516 	 */
6517 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6518 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6519 		/*
6520 		 * This zone is already on its way down.
6521 		 */
6522 		mutex_exit(&zone_status_lock);
6523 		return (0);
6524 	}
6525 	/*
6526 	 * Prevent future zone_enter()s
6527 	 */
6528 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6529 	mutex_exit(&zone_status_lock);
6530 
6531 	/*
6532 	 * Kill everyone now and call zoneadmd later.
6533 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6534 	 * later.
6535 	 */
6536 	killall(zone->zone_id);
6537 	/*
6538 	 * Now, create the thread to contact zoneadmd and do the rest of the
6539 	 * work.  This thread can't be created in our zone otherwise
6540 	 * zone_destroy() would deadlock.
6541 	 */
6542 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6543 	zargp->arg.cmd = zcmd;
6544 	zargp->arg.uniqid = zone->zone_uniqid;
6545 	zargp->zone = zone;
6546 	(void) strcpy(zargp->arg.locale, "C");
6547 	/* mdep was already copied in for us by uadmin */
6548 	if (mdep != NULL)
6549 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6550 		    sizeof (zargp->arg.bootbuf));
6551 	zone_hold(zone);
6552 
6553 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6554 	    TS_RUN, minclsyspri);
6555 	exit(CLD_EXITED, 0);
6556 
6557 	return (EINVAL);
6558 }
6559 
6560 /*
6561  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6562  * status to ZONE_IS_SHUTTING_DOWN.
6563  *
6564  * This function also shuts down all running zones to ensure that they won't
6565  * fork new processes.
6566  */
6567 void
6568 zone_shutdown_global(void)
6569 {
6570 	zone_t *current_zonep;
6571 
6572 	ASSERT(INGLOBALZONE(curproc));
6573 	mutex_enter(&zonehash_lock);
6574 	mutex_enter(&zone_status_lock);
6575 
6576 	/* Modify the global zone's status first. */
6577 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6578 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6579 
6580 	/*
6581 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6582 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6583 	 * could cause assertions to fail (e.g., assertions about a zone's
6584 	 * state during initialization, readying, or booting) or produce races.
6585 	 * We'll let threads continue to initialize and ready new zones: they'll
6586 	 * fail to boot the new zones when they see that the global zone is
6587 	 * shutting down.
6588 	 */
6589 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6590 	    current_zonep = list_next(&zone_active, current_zonep)) {
6591 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6592 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6593 	}
6594 	mutex_exit(&zone_status_lock);
6595 	mutex_exit(&zonehash_lock);
6596 }
6597 
6598 /*
6599  * Returns true if the named dataset is visible in the current zone.
6600  * The 'write' parameter is set to 1 if the dataset is also writable.
6601  */
6602 int
6603 zone_dataset_visible(const char *dataset, int *write)
6604 {
6605 	static int zfstype = -1;
6606 	zone_dataset_t *zd;
6607 	size_t len;
6608 	zone_t *zone = curproc->p_zone;
6609 	const char *name = NULL;
6610 	vfs_t *vfsp = NULL;
6611 
6612 	if (dataset[0] == '\0')
6613 		return (0);
6614 
6615 	/*
6616 	 * Walk the list once, looking for datasets which match exactly, or
6617 	 * specify a dataset underneath an exported dataset.  If found, return
6618 	 * true and note that it is writable.
6619 	 */
6620 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6621 	    zd = list_next(&zone->zone_datasets, zd)) {
6622 
6623 		len = strlen(zd->zd_dataset);
6624 		if (strlen(dataset) >= len &&
6625 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6626 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6627 		    dataset[len] == '@')) {
6628 			if (write)
6629 				*write = 1;
6630 			return (1);
6631 		}
6632 	}
6633 
6634 	/*
6635 	 * Walk the list a second time, searching for datasets which are parents
6636 	 * of exported datasets.  These should be visible, but read-only.
6637 	 *
6638 	 * Note that we also have to support forms such as 'pool/dataset/', with
6639 	 * a trailing slash.
6640 	 */
6641 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6642 	    zd = list_next(&zone->zone_datasets, zd)) {
6643 
6644 		len = strlen(dataset);
6645 		if (dataset[len - 1] == '/')
6646 			len--;	/* Ignore trailing slash */
6647 		if (len < strlen(zd->zd_dataset) &&
6648 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6649 		    zd->zd_dataset[len] == '/') {
6650 			if (write)
6651 				*write = 0;
6652 			return (1);
6653 		}
6654 	}
6655 
6656 	/*
6657 	 * We reach here if the given dataset is not found in the zone_dataset
6658 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6659 	 * instead of delegation. For this we search for the dataset in the
6660 	 * zone_vfslist of this zone. If found, return true and note that it is
6661 	 * not writable.
6662 	 */
6663 
6664 	/*
6665 	 * Initialize zfstype if it is not initialized yet.
6666 	 */
6667 	if (zfstype == -1) {
6668 		struct vfssw *vswp = vfs_getvfssw("zfs");
6669 		zfstype = vswp - vfssw;
6670 		vfs_unrefvfssw(vswp);
6671 	}
6672 
6673 	vfs_list_read_lock();
6674 	vfsp = zone->zone_vfslist;
6675 	do {
6676 		ASSERT(vfsp);
6677 		if (vfsp->vfs_fstype == zfstype) {
6678 			name = refstr_value(vfsp->vfs_resource);
6679 
6680 			/*
6681 			 * Check if we have an exact match.
6682 			 */
6683 			if (strcmp(dataset, name) == 0) {
6684 				vfs_list_unlock();
6685 				if (write)
6686 					*write = 0;
6687 				return (1);
6688 			}
6689 			/*
6690 			 * We need to check if we are looking for parents of
6691 			 * a dataset. These should be visible, but read-only.
6692 			 */
6693 			len = strlen(dataset);
6694 			if (dataset[len - 1] == '/')
6695 				len--;
6696 
6697 			if (len < strlen(name) &&
6698 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6699 				vfs_list_unlock();
6700 				if (write)
6701 					*write = 0;
6702 				return (1);
6703 			}
6704 		}
6705 		vfsp = vfsp->vfs_zone_next;
6706 	} while (vfsp != zone->zone_vfslist);
6707 
6708 	vfs_list_unlock();
6709 	return (0);
6710 }
6711 
6712 /*
6713  * zone_find_by_any_path() -
6714  *
6715  * kernel-private routine similar to zone_find_by_path(), but which
6716  * effectively compares against zone paths rather than zonerootpath
6717  * (i.e., the last component of zonerootpaths, which should be "root/",
6718  * are not compared.)  This is done in order to accurately identify all
6719  * paths, whether zone-visible or not, including those which are parallel
6720  * to /root/, such as /dev/, /home/, etc...
6721  *
6722  * If the specified path does not fall under any zone path then global
6723  * zone is returned.
6724  *
6725  * The treat_abs parameter indicates whether the path should be treated as
6726  * an absolute path although it does not begin with "/".  (This supports
6727  * nfs mount syntax such as host:any/path.)
6728  *
6729  * The caller is responsible for zone_rele of the returned zone.
6730  */
6731 zone_t *
6732 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6733 {
6734 	zone_t *zone;
6735 	int path_offset = 0;
6736 
6737 	if (path == NULL) {
6738 		zone_hold(global_zone);
6739 		return (global_zone);
6740 	}
6741 
6742 	if (*path != '/') {
6743 		ASSERT(treat_abs);
6744 		path_offset = 1;
6745 	}
6746 
6747 	mutex_enter(&zonehash_lock);
6748 	for (zone = list_head(&zone_active); zone != NULL;
6749 	    zone = list_next(&zone_active, zone)) {
6750 		char	*c;
6751 		size_t	pathlen;
6752 		char *rootpath_start;
6753 
6754 		if (zone == global_zone)	/* skip global zone */
6755 			continue;
6756 
6757 		/* scan backwards to find start of last component */
6758 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6759 		do {
6760 			c--;
6761 		} while (*c != '/');
6762 
6763 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6764 		rootpath_start = (zone->zone_rootpath + path_offset);
6765 		if (strncmp(path, rootpath_start, pathlen) == 0)
6766 			break;
6767 	}
6768 	if (zone == NULL)
6769 		zone = global_zone;
6770 	zone_hold(zone);
6771 	mutex_exit(&zonehash_lock);
6772 	return (zone);
6773 }
6774 
6775 /*
6776  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
6777  * zone_dl_t pointer if found, and NULL otherwise.
6778  */
6779 static zone_dl_t *
6780 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6781 {
6782 	zone_dl_t *zdl;
6783 
6784 	ASSERT(mutex_owned(&zone->zone_lock));
6785 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6786 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6787 		if (zdl->zdl_id == linkid)
6788 			break;
6789 	}
6790 	return (zdl);
6791 }
6792 
6793 static boolean_t
6794 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6795 {
6796 	boolean_t exists;
6797 
6798 	mutex_enter(&zone->zone_lock);
6799 	exists = (zone_find_dl(zone, linkid) != NULL);
6800 	mutex_exit(&zone->zone_lock);
6801 	return (exists);
6802 }
6803 
6804 /*
6805  * Add an data link name for the zone.
6806  */
6807 static int
6808 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6809 {
6810 	zone_dl_t *zdl;
6811 	zone_t *zone;
6812 	zone_t *thiszone;
6813 
6814 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6815 		return (set_errno(ENXIO));
6816 
6817 	/* Verify that the datalink ID doesn't already belong to a zone. */
6818 	mutex_enter(&zonehash_lock);
6819 	for (zone = list_head(&zone_active); zone != NULL;
6820 	    zone = list_next(&zone_active, zone)) {
6821 		if (zone_dl_exists(zone, linkid)) {
6822 			mutex_exit(&zonehash_lock);
6823 			zone_rele(thiszone);
6824 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6825 		}
6826 	}
6827 
6828 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6829 	zdl->zdl_id = linkid;
6830 	zdl->zdl_net = NULL;
6831 	mutex_enter(&thiszone->zone_lock);
6832 	list_insert_head(&thiszone->zone_dl_list, zdl);
6833 	mutex_exit(&thiszone->zone_lock);
6834 	mutex_exit(&zonehash_lock);
6835 	zone_rele(thiszone);
6836 	return (0);
6837 }
6838 
6839 static int
6840 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6841 {
6842 	zone_dl_t *zdl;
6843 	zone_t *zone;
6844 	int err = 0;
6845 
6846 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6847 		return (set_errno(EINVAL));
6848 
6849 	mutex_enter(&zone->zone_lock);
6850 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6851 		err = ENXIO;
6852 	} else {
6853 		list_remove(&zone->zone_dl_list, zdl);
6854 		if (zdl->zdl_net != NULL)
6855 			nvlist_free(zdl->zdl_net);
6856 		kmem_free(zdl, sizeof (zone_dl_t));
6857 	}
6858 	mutex_exit(&zone->zone_lock);
6859 	zone_rele(zone);
6860 	return (err == 0 ? 0 : set_errno(err));
6861 }
6862 
6863 /*
6864  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6865  * the linkid.  Otherwise we just check if the specified zoneidp has been
6866  * assigned the supplied linkid.
6867  */
6868 int
6869 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6870 {
6871 	zone_t *zone;
6872 	int err = ENXIO;
6873 
6874 	if (*zoneidp != ALL_ZONES) {
6875 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6876 			if (zone_dl_exists(zone, linkid))
6877 				err = 0;
6878 			zone_rele(zone);
6879 		}
6880 		return (err);
6881 	}
6882 
6883 	mutex_enter(&zonehash_lock);
6884 	for (zone = list_head(&zone_active); zone != NULL;
6885 	    zone = list_next(&zone_active, zone)) {
6886 		if (zone_dl_exists(zone, linkid)) {
6887 			*zoneidp = zone->zone_id;
6888 			err = 0;
6889 			break;
6890 		}
6891 	}
6892 	mutex_exit(&zonehash_lock);
6893 	return (err);
6894 }
6895 
6896 /*
6897  * Get the list of datalink IDs assigned to a zone.
6898  *
6899  * On input, *nump is the number of datalink IDs that can fit in the supplied
6900  * idarray.  Upon return, *nump is either set to the number of datalink IDs
6901  * that were placed in the array if the array was large enough, or to the
6902  * number of datalink IDs that the function needs to place in the array if the
6903  * array is too small.
6904  */
6905 static int
6906 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6907 {
6908 	uint_t num, dlcount;
6909 	zone_t *zone;
6910 	zone_dl_t *zdl;
6911 	datalink_id_t *idptr = idarray;
6912 
6913 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6914 		return (set_errno(EFAULT));
6915 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6916 		return (set_errno(ENXIO));
6917 
6918 	num = 0;
6919 	mutex_enter(&zone->zone_lock);
6920 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6921 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6922 		/*
6923 		 * If the list is bigger than what the caller supplied, just
6924 		 * count, don't do copyout.
6925 		 */
6926 		if (++num > dlcount)
6927 			continue;
6928 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6929 			mutex_exit(&zone->zone_lock);
6930 			zone_rele(zone);
6931 			return (set_errno(EFAULT));
6932 		}
6933 		idptr++;
6934 	}
6935 	mutex_exit(&zone->zone_lock);
6936 	zone_rele(zone);
6937 
6938 	/* Increased or decreased, caller should be notified. */
6939 	if (num != dlcount) {
6940 		if (copyout(&num, nump, sizeof (num)) != 0)
6941 			return (set_errno(EFAULT));
6942 	}
6943 	return (0);
6944 }
6945 
6946 /*
6947  * Public interface for looking up a zone by zoneid. It's a customized version
6948  * for netstack_zone_create(). It can only be called from the zsd create
6949  * callbacks, since it doesn't have reference on the zone structure hence if
6950  * it is called elsewhere the zone could disappear after the zonehash_lock
6951  * is dropped.
6952  *
6953  * Furthermore it
6954  * 1. Doesn't check the status of the zone.
6955  * 2. It will be called even before zone_init is called, in that case the
6956  *    address of zone0 is returned directly, and netstack_zone_create()
6957  *    will only assign a value to zone0.zone_netstack, won't break anything.
6958  * 3. Returns without the zone being held.
6959  */
6960 zone_t *
6961 zone_find_by_id_nolock(zoneid_t zoneid)
6962 {
6963 	zone_t *zone;
6964 
6965 	mutex_enter(&zonehash_lock);
6966 	if (zonehashbyid == NULL)
6967 		zone = &zone0;
6968 	else
6969 		zone = zone_find_all_by_id(zoneid);
6970 	mutex_exit(&zonehash_lock);
6971 	return (zone);
6972 }
6973 
6974 /*
6975  * Walk the datalinks for a given zone
6976  */
6977 int
6978 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
6979     void *data)
6980 {
6981 	zone_t		*zone;
6982 	zone_dl_t	*zdl;
6983 	datalink_id_t	*idarray;
6984 	uint_t		idcount = 0;
6985 	int		i, ret = 0;
6986 
6987 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6988 		return (ENOENT);
6989 
6990 	/*
6991 	 * We first build an array of linkid's so that we can walk these and
6992 	 * execute the callback with the zone_lock dropped.
6993 	 */
6994 	mutex_enter(&zone->zone_lock);
6995 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6996 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6997 		idcount++;
6998 	}
6999 
7000 	if (idcount == 0) {
7001 		mutex_exit(&zone->zone_lock);
7002 		zone_rele(zone);
7003 		return (0);
7004 	}
7005 
7006 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7007 	if (idarray == NULL) {
7008 		mutex_exit(&zone->zone_lock);
7009 		zone_rele(zone);
7010 		return (ENOMEM);
7011 	}
7012 
7013 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7014 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7015 		idarray[i] = zdl->zdl_id;
7016 	}
7017 
7018 	mutex_exit(&zone->zone_lock);
7019 
7020 	for (i = 0; i < idcount && ret == 0; i++) {
7021 		if ((ret = (*cb)(idarray[i], data)) != 0)
7022 			break;
7023 	}
7024 
7025 	zone_rele(zone);
7026 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7027 	return (ret);
7028 }
7029 
7030 static char *
7031 zone_net_type2name(int type)
7032 {
7033 	switch (type) {
7034 	case ZONE_NETWORK_ADDRESS:
7035 		return (ZONE_NET_ADDRNAME);
7036 	case ZONE_NETWORK_DEFROUTER:
7037 		return (ZONE_NET_RTRNAME);
7038 	default:
7039 		return (NULL);
7040 	}
7041 }
7042 
7043 static int
7044 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7045 {
7046 	zone_t *zone;
7047 	zone_dl_t *zdl;
7048 	nvlist_t *nvl;
7049 	int err = 0;
7050 	uint8_t *new = NULL;
7051 	char *nvname;
7052 	int bufsize;
7053 	datalink_id_t linkid = znbuf->zn_linkid;
7054 
7055 	if (secpolicy_zone_config(CRED()) != 0)
7056 		return (set_errno(EPERM));
7057 
7058 	if (zoneid == GLOBAL_ZONEID)
7059 		return (set_errno(EINVAL));
7060 
7061 	nvname = zone_net_type2name(znbuf->zn_type);
7062 	bufsize = znbuf->zn_len;
7063 	new = znbuf->zn_val;
7064 	if (nvname == NULL)
7065 		return (set_errno(EINVAL));
7066 
7067 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7068 		return (set_errno(EINVAL));
7069 	}
7070 
7071 	mutex_enter(&zone->zone_lock);
7072 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7073 		err = ENXIO;
7074 		goto done;
7075 	}
7076 	if ((nvl = zdl->zdl_net) == NULL) {
7077 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7078 			err = ENOMEM;
7079 			goto done;
7080 		} else {
7081 			zdl->zdl_net = nvl;
7082 		}
7083 	}
7084 	if (nvlist_exists(nvl, nvname)) {
7085 		err = EINVAL;
7086 		goto done;
7087 	}
7088 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7089 	ASSERT(err == 0);
7090 done:
7091 	mutex_exit(&zone->zone_lock);
7092 	zone_rele(zone);
7093 	if (err != 0)
7094 		return (set_errno(err));
7095 	else
7096 		return (0);
7097 }
7098 
7099 static int
7100 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7101 {
7102 	zone_t *zone;
7103 	zone_dl_t *zdl;
7104 	nvlist_t *nvl;
7105 	uint8_t *ptr;
7106 	uint_t psize;
7107 	int err = 0;
7108 	char *nvname;
7109 	int bufsize;
7110 	void *buf;
7111 	datalink_id_t linkid = znbuf->zn_linkid;
7112 
7113 	if (zoneid == GLOBAL_ZONEID)
7114 		return (set_errno(EINVAL));
7115 
7116 	nvname = zone_net_type2name(znbuf->zn_type);
7117 	bufsize = znbuf->zn_len;
7118 	buf = znbuf->zn_val;
7119 
7120 	if (nvname == NULL)
7121 		return (set_errno(EINVAL));
7122 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7123 		return (set_errno(EINVAL));
7124 
7125 	mutex_enter(&zone->zone_lock);
7126 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7127 		err = ENXIO;
7128 		goto done;
7129 	}
7130 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7131 		err = ENOENT;
7132 		goto done;
7133 	}
7134 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7135 	ASSERT(err == 0);
7136 
7137 	if (psize > bufsize) {
7138 		err = ENOBUFS;
7139 		goto done;
7140 	}
7141 	znbuf->zn_len = psize;
7142 	bcopy(ptr, buf, psize);
7143 done:
7144 	mutex_exit(&zone->zone_lock);
7145 	zone_rele(zone);
7146 	if (err != 0)
7147 		return (set_errno(err));
7148 	else
7149 		return (0);
7150 }
7151