1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * Zones 28 * 29 * A zone is a named collection of processes, namespace constraints, 30 * and other system resources which comprise a secure and manageable 31 * application containment facility. 32 * 33 * Zones (represented by the reference counted zone_t) are tracked in 34 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 35 * (zoneid_t) are used to track zone association. Zone IDs are 36 * dynamically generated when the zone is created; if a persistent 37 * identifier is needed (core files, accounting logs, audit trail, 38 * etc.), the zone name should be used. 39 * 40 * 41 * Global Zone: 42 * 43 * The global zone (zoneid 0) is automatically associated with all 44 * system resources that have not been bound to a user-created zone. 45 * This means that even systems where zones are not in active use 46 * have a global zone, and all processes, mounts, etc. are 47 * associated with that zone. The global zone is generally 48 * unconstrained in terms of privileges and access, though the usual 49 * credential and privilege based restrictions apply. 50 * 51 * 52 * Zone States: 53 * 54 * The states in which a zone may be in and the transitions are as 55 * follows: 56 * 57 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 58 * initialized zone is added to the list of active zones on the system but 59 * isn't accessible. 60 * 61 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 62 * not yet completed. Not possible to enter the zone, but attributes can 63 * be retrieved. 64 * 65 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 66 * ready. The zone is made visible after the ZSD constructor callbacks are 67 * executed. A zone remains in this state until it transitions into 68 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 69 * 70 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 71 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 72 * state. 73 * 74 * ZONE_IS_RUNNING: The zone is open for business: zsched has 75 * successfully started init. A zone remains in this state until 76 * zone_shutdown() is called. 77 * 78 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 79 * killing all processes running in the zone. The zone remains 80 * in this state until there are no more user processes running in the zone. 81 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 82 * Since zone_shutdown() is restartable, it may be called successfully 83 * multiple times for the same zone_t. Setting of the zone's state to 84 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 85 * the zone's status without worrying about it being a moving target. 86 * 87 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 88 * are no more user processes in the zone. The zone remains in this 89 * state until there are no more kernel threads associated with the 90 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 91 * fail. 92 * 93 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 94 * have exited. zone_shutdown() returns. Henceforth it is not possible to 95 * join the zone or create kernel threads therein. 96 * 97 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 98 * remains in this state until zsched exits. Calls to zone_find_by_*() 99 * return NULL from now on. 100 * 101 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 102 * processes or threads doing work on behalf of the zone. The zone is 103 * removed from the list of active zones. zone_destroy() returns, and 104 * the zone can be recreated. 105 * 106 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 107 * callbacks are executed, and all memory associated with the zone is 108 * freed. 109 * 110 * Threads can wait for the zone to enter a requested state by using 111 * zone_status_wait() or zone_status_timedwait() with the desired 112 * state passed in as an argument. Zone state transitions are 113 * uni-directional; it is not possible to move back to an earlier state. 114 * 115 * 116 * Zone-Specific Data: 117 * 118 * Subsystems needing to maintain zone-specific data can store that 119 * data using the ZSD mechanism. This provides a zone-specific data 120 * store, similar to thread-specific data (see pthread_getspecific(3C) 121 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 122 * to register callbacks to be invoked when a zone is created, shut 123 * down, or destroyed. This can be used to initialize zone-specific 124 * data for new zones and to clean up when zones go away. 125 * 126 * 127 * Data Structures: 128 * 129 * The per-zone structure (zone_t) is reference counted, and freed 130 * when all references are released. zone_hold and zone_rele can be 131 * used to adjust the reference count. In addition, reference counts 132 * associated with the cred_t structure are tracked separately using 133 * zone_cred_hold and zone_cred_rele. 134 * 135 * Pointers to active zone_t's are stored in two hash tables; one 136 * for searching by id, the other for searching by name. Lookups 137 * can be performed on either basis, using zone_find_by_id and 138 * zone_find_by_name. Both return zone_t pointers with the zone 139 * held, so zone_rele should be called when the pointer is no longer 140 * needed. Zones can also be searched by path; zone_find_by_path 141 * returns the zone with which a path name is associated (global 142 * zone if the path is not within some other zone's file system 143 * hierarchy). This currently requires iterating through each zone, 144 * so it is slower than an id or name search via a hash table. 145 * 146 * 147 * Locking: 148 * 149 * zonehash_lock: This is a top-level global lock used to protect the 150 * zone hash tables and lists. Zones cannot be created or destroyed 151 * while this lock is held. 152 * zone_status_lock: This is a global lock protecting zone state. 153 * Zones cannot change state while this lock is held. It also 154 * protects the list of kernel threads associated with a zone. 155 * zone_lock: This is a per-zone lock used to protect several fields of 156 * the zone_t (see <sys/zone.h> for details). In addition, holding 157 * this lock means that the zone cannot go away. 158 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 159 * related to the zone.max-lwps rctl. 160 * zone_mem_lock: This is a per-zone lock used to protect the fields 161 * related to the zone.max-locked-memory and zone.max-swap rctls. 162 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 163 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 164 * list (a list of zones in the ZONE_IS_DEAD state). 165 * 166 * Ordering requirements: 167 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 168 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 169 * 170 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 171 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 172 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 173 * 174 * Blocking memory allocations are permitted while holding any of the 175 * zone locks. 176 * 177 * 178 * System Call Interface: 179 * 180 * The zone subsystem can be managed and queried from user level with 181 * the following system calls (all subcodes of the primary "zone" 182 * system call): 183 * - zone_create: creates a zone with selected attributes (name, 184 * root path, privileges, resource controls, ZFS datasets) 185 * - zone_enter: allows the current process to enter a zone 186 * - zone_getattr: reports attributes of a zone 187 * - zone_setattr: set attributes of a zone 188 * - zone_boot: set 'init' running for the zone 189 * - zone_list: lists all zones active in the system 190 * - zone_lookup: looks up zone id based on name 191 * - zone_shutdown: initiates shutdown process (see states above) 192 * - zone_destroy: completes shutdown process (see states above) 193 * 194 */ 195 196 #include <sys/priv_impl.h> 197 #include <sys/cred.h> 198 #include <c2/audit.h> 199 #include <sys/debug.h> 200 #include <sys/file.h> 201 #include <sys/kmem.h> 202 #include <sys/kstat.h> 203 #include <sys/mutex.h> 204 #include <sys/note.h> 205 #include <sys/pathname.h> 206 #include <sys/proc.h> 207 #include <sys/project.h> 208 #include <sys/sysevent.h> 209 #include <sys/task.h> 210 #include <sys/systm.h> 211 #include <sys/types.h> 212 #include <sys/utsname.h> 213 #include <sys/vnode.h> 214 #include <sys/vfs.h> 215 #include <sys/systeminfo.h> 216 #include <sys/policy.h> 217 #include <sys/cred_impl.h> 218 #include <sys/contract_impl.h> 219 #include <sys/contract/process_impl.h> 220 #include <sys/class.h> 221 #include <sys/pool.h> 222 #include <sys/pool_pset.h> 223 #include <sys/pset.h> 224 #include <sys/sysmacros.h> 225 #include <sys/callb.h> 226 #include <sys/vmparam.h> 227 #include <sys/corectl.h> 228 #include <sys/ipc_impl.h> 229 #include <sys/klpd.h> 230 231 #include <sys/door.h> 232 #include <sys/cpuvar.h> 233 #include <sys/sdt.h> 234 235 #include <sys/uadmin.h> 236 #include <sys/session.h> 237 #include <sys/cmn_err.h> 238 #include <sys/modhash.h> 239 #include <sys/sunddi.h> 240 #include <sys/nvpair.h> 241 #include <sys/rctl.h> 242 #include <sys/fss.h> 243 #include <sys/brand.h> 244 #include <sys/zone.h> 245 #include <net/if.h> 246 #include <sys/cpucaps.h> 247 #include <vm/seg.h> 248 #include <sys/mac.h> 249 250 /* List of data link IDs which are accessible from the zone */ 251 typedef struct zone_dl { 252 datalink_id_t zdl_id; 253 list_node_t zdl_linkage; 254 } zone_dl_t; 255 256 /* 257 * cv used to signal that all references to the zone have been released. This 258 * needs to be global since there may be multiple waiters, and the first to 259 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 260 */ 261 static kcondvar_t zone_destroy_cv; 262 /* 263 * Lock used to serialize access to zone_cv. This could have been per-zone, 264 * but then we'd need another lock for zone_destroy_cv, and why bother? 265 */ 266 static kmutex_t zone_status_lock; 267 268 /* 269 * ZSD-related global variables. 270 */ 271 static kmutex_t zsd_key_lock; /* protects the following two */ 272 /* 273 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 274 */ 275 static zone_key_t zsd_keyval = 0; 276 /* 277 * Global list of registered keys. We use this when a new zone is created. 278 */ 279 static list_t zsd_registered_keys; 280 281 int zone_hash_size = 256; 282 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 283 static kmutex_t zonehash_lock; 284 static uint_t zonecount; 285 static id_space_t *zoneid_space; 286 287 /* 288 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 289 * kernel proper runs, and which manages all other zones. 290 * 291 * Although not declared as static, the variable "zone0" should not be used 292 * except for by code that needs to reference the global zone early on in boot, 293 * before it is fully initialized. All other consumers should use 294 * 'global_zone'. 295 */ 296 zone_t zone0; 297 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 298 299 /* 300 * List of active zones, protected by zonehash_lock. 301 */ 302 static list_t zone_active; 303 304 /* 305 * List of destroyed zones that still have outstanding cred references. 306 * Used for debugging. Uses a separate lock to avoid lock ordering 307 * problems in zone_free. 308 */ 309 static list_t zone_deathrow; 310 static kmutex_t zone_deathrow_lock; 311 312 /* number of zones is limited by virtual interface limit in IP */ 313 uint_t maxzones = 8192; 314 315 /* Event channel to sent zone state change notifications */ 316 evchan_t *zone_event_chan; 317 318 /* 319 * This table holds the mapping from kernel zone states to 320 * states visible in the state notification API. 321 * The idea is that we only expose "obvious" states and 322 * do not expose states which are just implementation details. 323 */ 324 const char *zone_status_table[] = { 325 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 326 ZONE_EVENT_INITIALIZED, /* initialized */ 327 ZONE_EVENT_READY, /* ready */ 328 ZONE_EVENT_READY, /* booting */ 329 ZONE_EVENT_RUNNING, /* running */ 330 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 331 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 332 ZONE_EVENT_SHUTTING_DOWN, /* down */ 333 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 334 ZONE_EVENT_UNINITIALIZED, /* dead */ 335 }; 336 337 /* 338 * This isn't static so lint doesn't complain. 339 */ 340 rctl_hndl_t rc_zone_cpu_shares; 341 rctl_hndl_t rc_zone_locked_mem; 342 rctl_hndl_t rc_zone_max_swap; 343 rctl_hndl_t rc_zone_cpu_cap; 344 rctl_hndl_t rc_zone_nlwps; 345 rctl_hndl_t rc_zone_shmmax; 346 rctl_hndl_t rc_zone_shmmni; 347 rctl_hndl_t rc_zone_semmni; 348 rctl_hndl_t rc_zone_msgmni; 349 /* 350 * Synchronization primitives used to synchronize between mounts and zone 351 * creation/destruction. 352 */ 353 static int mounts_in_progress; 354 static kcondvar_t mount_cv; 355 static kmutex_t mount_lock; 356 357 const char * const zone_default_initname = "/sbin/init"; 358 static char * const zone_prefix = "/zone/"; 359 static int zone_shutdown(zoneid_t zoneid); 360 static int zone_add_datalink(zoneid_t, datalink_id_t); 361 static int zone_remove_datalink(zoneid_t, datalink_id_t); 362 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 363 364 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 365 366 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 367 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 368 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 369 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 370 zone_key_t); 371 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 372 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 373 kmutex_t *); 374 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 375 kmutex_t *); 376 377 /* 378 * Bump this number when you alter the zone syscall interfaces; this is 379 * because we need to have support for previous API versions in libc 380 * to support patching; libc calls into the kernel to determine this number. 381 * 382 * Version 1 of the API is the version originally shipped with Solaris 10 383 * Version 2 alters the zone_create system call in order to support more 384 * arguments by moving the args into a structure; and to do better 385 * error reporting when zone_create() fails. 386 * Version 3 alters the zone_create system call in order to support the 387 * import of ZFS datasets to zones. 388 * Version 4 alters the zone_create system call in order to support 389 * Trusted Extensions. 390 * Version 5 alters the zone_boot system call, and converts its old 391 * bootargs parameter to be set by the zone_setattr API instead. 392 * Version 6 adds the flag argument to zone_create. 393 */ 394 static const int ZONE_SYSCALL_API_VERSION = 6; 395 396 /* 397 * Certain filesystems (such as NFS and autofs) need to know which zone 398 * the mount is being placed in. Because of this, we need to be able to 399 * ensure that a zone isn't in the process of being created such that 400 * nfs_mount() thinks it is in the global zone, while by the time it 401 * gets added the list of mounted zones, it ends up on zoneA's mount 402 * list. 403 * 404 * The following functions: block_mounts()/resume_mounts() and 405 * mount_in_progress()/mount_completed() are used by zones and the VFS 406 * layer (respectively) to synchronize zone creation and new mounts. 407 * 408 * The semantics are like a reader-reader lock such that there may 409 * either be multiple mounts (or zone creations, if that weren't 410 * serialized by zonehash_lock) in progress at the same time, but not 411 * both. 412 * 413 * We use cv's so the user can ctrl-C out of the operation if it's 414 * taking too long. 415 * 416 * The semantics are such that there is unfair bias towards the 417 * "current" operation. This means that zone creations may starve if 418 * there is a rapid succession of new mounts coming in to the system, or 419 * there is a remote possibility that zones will be created at such a 420 * rate that new mounts will not be able to proceed. 421 */ 422 /* 423 * Prevent new mounts from progressing to the point of calling 424 * VFS_MOUNT(). If there are already mounts in this "region", wait for 425 * them to complete. 426 */ 427 static int 428 block_mounts(void) 429 { 430 int retval = 0; 431 432 /* 433 * Since it may block for a long time, block_mounts() shouldn't be 434 * called with zonehash_lock held. 435 */ 436 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 437 mutex_enter(&mount_lock); 438 while (mounts_in_progress > 0) { 439 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 440 goto signaled; 441 } 442 /* 443 * A negative value of mounts_in_progress indicates that mounts 444 * have been blocked by (-mounts_in_progress) different callers. 445 */ 446 mounts_in_progress--; 447 retval = 1; 448 signaled: 449 mutex_exit(&mount_lock); 450 return (retval); 451 } 452 453 /* 454 * The VFS layer may progress with new mounts as far as we're concerned. 455 * Allow them to progress if we were the last obstacle. 456 */ 457 static void 458 resume_mounts(void) 459 { 460 mutex_enter(&mount_lock); 461 if (++mounts_in_progress == 0) 462 cv_broadcast(&mount_cv); 463 mutex_exit(&mount_lock); 464 } 465 466 /* 467 * The VFS layer is busy with a mount; zones should wait until all 468 * mounts are completed to progress. 469 */ 470 void 471 mount_in_progress(void) 472 { 473 mutex_enter(&mount_lock); 474 while (mounts_in_progress < 0) 475 cv_wait(&mount_cv, &mount_lock); 476 mounts_in_progress++; 477 mutex_exit(&mount_lock); 478 } 479 480 /* 481 * VFS is done with one mount; wake up any waiting block_mounts() 482 * callers if this is the last mount. 483 */ 484 void 485 mount_completed(void) 486 { 487 mutex_enter(&mount_lock); 488 if (--mounts_in_progress == 0) 489 cv_broadcast(&mount_cv); 490 mutex_exit(&mount_lock); 491 } 492 493 /* 494 * ZSD routines. 495 * 496 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 497 * defined by the pthread_key_create() and related interfaces. 498 * 499 * Kernel subsystems may register one or more data items and/or 500 * callbacks to be executed when a zone is created, shutdown, or 501 * destroyed. 502 * 503 * Unlike the thread counterpart, destructor callbacks will be executed 504 * even if the data pointer is NULL and/or there are no constructor 505 * callbacks, so it is the responsibility of such callbacks to check for 506 * NULL data values if necessary. 507 * 508 * The locking strategy and overall picture is as follows: 509 * 510 * When someone calls zone_key_create(), a template ZSD entry is added to the 511 * global list "zsd_registered_keys", protected by zsd_key_lock. While 512 * holding that lock all the existing zones are marked as 513 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 514 * zone_zsd list (protected by zone_lock). The global list is updated first 515 * (under zone_key_lock) to make sure that newly created zones use the 516 * most recent list of keys. Then under zonehash_lock we walk the zones 517 * and mark them. Similar locking is used in zone_key_delete(). 518 * 519 * The actual create, shutdown, and destroy callbacks are done without 520 * holding any lock. And zsd_flags are used to ensure that the operations 521 * completed so that when zone_key_create (and zone_create) is done, as well as 522 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 523 * are completed. 524 * 525 * When new zones are created constructor callbacks for all registered ZSD 526 * entries will be called. That also uses the above two phases of marking 527 * what needs to be done, and then running the callbacks without holding 528 * any locks. 529 * 530 * The framework does not provide any locking around zone_getspecific() and 531 * zone_setspecific() apart from that needed for internal consistency, so 532 * callers interested in atomic "test-and-set" semantics will need to provide 533 * their own locking. 534 */ 535 536 /* 537 * Helper function to find the zsd_entry associated with the key in the 538 * given list. 539 */ 540 static struct zsd_entry * 541 zsd_find(list_t *l, zone_key_t key) 542 { 543 struct zsd_entry *zsd; 544 545 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 546 if (zsd->zsd_key == key) { 547 return (zsd); 548 } 549 } 550 return (NULL); 551 } 552 553 /* 554 * Helper function to find the zsd_entry associated with the key in the 555 * given list. Move it to the front of the list. 556 */ 557 static struct zsd_entry * 558 zsd_find_mru(list_t *l, zone_key_t key) 559 { 560 struct zsd_entry *zsd; 561 562 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 563 if (zsd->zsd_key == key) { 564 /* 565 * Move to head of list to keep list in MRU order. 566 */ 567 if (zsd != list_head(l)) { 568 list_remove(l, zsd); 569 list_insert_head(l, zsd); 570 } 571 return (zsd); 572 } 573 } 574 return (NULL); 575 } 576 577 void 578 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 579 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 580 { 581 struct zsd_entry *zsdp; 582 struct zsd_entry *t; 583 struct zone *zone; 584 zone_key_t key; 585 586 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 587 zsdp->zsd_data = NULL; 588 zsdp->zsd_create = create; 589 zsdp->zsd_shutdown = shutdown; 590 zsdp->zsd_destroy = destroy; 591 592 /* 593 * Insert in global list of callbacks. Makes future zone creations 594 * see it. 595 */ 596 mutex_enter(&zsd_key_lock); 597 key = zsdp->zsd_key = ++zsd_keyval; 598 ASSERT(zsd_keyval != 0); 599 list_insert_tail(&zsd_registered_keys, zsdp); 600 mutex_exit(&zsd_key_lock); 601 602 /* 603 * Insert for all existing zones and mark them as needing 604 * a create callback. 605 */ 606 mutex_enter(&zonehash_lock); /* stop the world */ 607 for (zone = list_head(&zone_active); zone != NULL; 608 zone = list_next(&zone_active, zone)) { 609 zone_status_t status; 610 611 mutex_enter(&zone->zone_lock); 612 613 /* Skip zones that are on the way down or not yet up */ 614 status = zone_status_get(zone); 615 if (status >= ZONE_IS_DOWN || 616 status == ZONE_IS_UNINITIALIZED) { 617 mutex_exit(&zone->zone_lock); 618 continue; 619 } 620 621 t = zsd_find_mru(&zone->zone_zsd, key); 622 if (t != NULL) { 623 /* 624 * A zsd_configure already inserted it after 625 * we dropped zsd_key_lock above. 626 */ 627 mutex_exit(&zone->zone_lock); 628 continue; 629 } 630 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 631 t->zsd_key = key; 632 t->zsd_create = create; 633 t->zsd_shutdown = shutdown; 634 t->zsd_destroy = destroy; 635 if (create != NULL) { 636 t->zsd_flags = ZSD_CREATE_NEEDED; 637 DTRACE_PROBE2(zsd__create__needed, 638 zone_t *, zone, zone_key_t, key); 639 } 640 list_insert_tail(&zone->zone_zsd, t); 641 mutex_exit(&zone->zone_lock); 642 } 643 mutex_exit(&zonehash_lock); 644 645 if (create != NULL) { 646 /* Now call the create callback for this key */ 647 zsd_apply_all_zones(zsd_apply_create, key); 648 } 649 /* 650 * It is safe for consumers to use the key now, make it 651 * globally visible. Specifically zone_getspecific() will 652 * always successfully return the zone specific data associated 653 * with the key. 654 */ 655 *keyp = key; 656 657 } 658 659 /* 660 * Function called when a module is being unloaded, or otherwise wishes 661 * to unregister its ZSD key and callbacks. 662 * 663 * Remove from the global list and determine the functions that need to 664 * be called under a global lock. Then call the functions without 665 * holding any locks. Finally free up the zone_zsd entries. (The apply 666 * functions need to access the zone_zsd entries to find zsd_data etc.) 667 */ 668 int 669 zone_key_delete(zone_key_t key) 670 { 671 struct zsd_entry *zsdp = NULL; 672 zone_t *zone; 673 674 mutex_enter(&zsd_key_lock); 675 zsdp = zsd_find_mru(&zsd_registered_keys, key); 676 if (zsdp == NULL) { 677 mutex_exit(&zsd_key_lock); 678 return (-1); 679 } 680 list_remove(&zsd_registered_keys, zsdp); 681 mutex_exit(&zsd_key_lock); 682 683 mutex_enter(&zonehash_lock); 684 for (zone = list_head(&zone_active); zone != NULL; 685 zone = list_next(&zone_active, zone)) { 686 struct zsd_entry *del; 687 688 mutex_enter(&zone->zone_lock); 689 del = zsd_find_mru(&zone->zone_zsd, key); 690 if (del == NULL) { 691 /* 692 * Somebody else got here first e.g the zone going 693 * away. 694 */ 695 mutex_exit(&zone->zone_lock); 696 continue; 697 } 698 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 699 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 700 if (del->zsd_shutdown != NULL && 701 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 702 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 703 DTRACE_PROBE2(zsd__shutdown__needed, 704 zone_t *, zone, zone_key_t, key); 705 } 706 if (del->zsd_destroy != NULL && 707 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 708 del->zsd_flags |= ZSD_DESTROY_NEEDED; 709 DTRACE_PROBE2(zsd__destroy__needed, 710 zone_t *, zone, zone_key_t, key); 711 } 712 mutex_exit(&zone->zone_lock); 713 } 714 mutex_exit(&zonehash_lock); 715 kmem_free(zsdp, sizeof (*zsdp)); 716 717 /* Now call the shutdown and destroy callback for this key */ 718 zsd_apply_all_zones(zsd_apply_shutdown, key); 719 zsd_apply_all_zones(zsd_apply_destroy, key); 720 721 /* Now we can free up the zsdp structures in each zone */ 722 mutex_enter(&zonehash_lock); 723 for (zone = list_head(&zone_active); zone != NULL; 724 zone = list_next(&zone_active, zone)) { 725 struct zsd_entry *del; 726 727 mutex_enter(&zone->zone_lock); 728 del = zsd_find(&zone->zone_zsd, key); 729 if (del != NULL) { 730 list_remove(&zone->zone_zsd, del); 731 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 732 kmem_free(del, sizeof (*del)); 733 } 734 mutex_exit(&zone->zone_lock); 735 } 736 mutex_exit(&zonehash_lock); 737 738 return (0); 739 } 740 741 /* 742 * ZSD counterpart of pthread_setspecific(). 743 * 744 * Since all zsd callbacks, including those with no create function, 745 * have an entry in zone_zsd, if the key is registered it is part of 746 * the zone_zsd list. 747 * Return an error if the key wasn't registerd. 748 */ 749 int 750 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 751 { 752 struct zsd_entry *t; 753 754 mutex_enter(&zone->zone_lock); 755 t = zsd_find_mru(&zone->zone_zsd, key); 756 if (t != NULL) { 757 /* 758 * Replace old value with new 759 */ 760 t->zsd_data = (void *)data; 761 mutex_exit(&zone->zone_lock); 762 return (0); 763 } 764 mutex_exit(&zone->zone_lock); 765 return (-1); 766 } 767 768 /* 769 * ZSD counterpart of pthread_getspecific(). 770 */ 771 void * 772 zone_getspecific(zone_key_t key, zone_t *zone) 773 { 774 struct zsd_entry *t; 775 void *data; 776 777 mutex_enter(&zone->zone_lock); 778 t = zsd_find_mru(&zone->zone_zsd, key); 779 data = (t == NULL ? NULL : t->zsd_data); 780 mutex_exit(&zone->zone_lock); 781 return (data); 782 } 783 784 /* 785 * Function used to initialize a zone's list of ZSD callbacks and data 786 * when the zone is being created. The callbacks are initialized from 787 * the template list (zsd_registered_keys). The constructor callback is 788 * executed later (once the zone exists and with locks dropped). 789 */ 790 static void 791 zone_zsd_configure(zone_t *zone) 792 { 793 struct zsd_entry *zsdp; 794 struct zsd_entry *t; 795 796 ASSERT(MUTEX_HELD(&zonehash_lock)); 797 ASSERT(list_head(&zone->zone_zsd) == NULL); 798 mutex_enter(&zone->zone_lock); 799 mutex_enter(&zsd_key_lock); 800 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 801 zsdp = list_next(&zsd_registered_keys, zsdp)) { 802 /* 803 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 804 * should not have added anything to it. 805 */ 806 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 807 808 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 809 t->zsd_key = zsdp->zsd_key; 810 t->zsd_create = zsdp->zsd_create; 811 t->zsd_shutdown = zsdp->zsd_shutdown; 812 t->zsd_destroy = zsdp->zsd_destroy; 813 if (zsdp->zsd_create != NULL) { 814 t->zsd_flags = ZSD_CREATE_NEEDED; 815 DTRACE_PROBE2(zsd__create__needed, 816 zone_t *, zone, zone_key_t, zsdp->zsd_key); 817 } 818 list_insert_tail(&zone->zone_zsd, t); 819 } 820 mutex_exit(&zsd_key_lock); 821 mutex_exit(&zone->zone_lock); 822 } 823 824 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 825 826 /* 827 * Helper function to execute shutdown or destructor callbacks. 828 */ 829 static void 830 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 831 { 832 struct zsd_entry *t; 833 834 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 835 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 836 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 837 838 /* 839 * Run the callback solely based on what is registered for the zone 840 * in zone_zsd. The global list can change independently of this 841 * as keys are registered and unregistered and we don't register new 842 * callbacks for a zone that is in the process of going away. 843 */ 844 mutex_enter(&zone->zone_lock); 845 for (t = list_head(&zone->zone_zsd); t != NULL; 846 t = list_next(&zone->zone_zsd, t)) { 847 zone_key_t key = t->zsd_key; 848 849 /* Skip if no callbacks registered */ 850 851 if (ct == ZSD_SHUTDOWN) { 852 if (t->zsd_shutdown != NULL && 853 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 854 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 855 DTRACE_PROBE2(zsd__shutdown__needed, 856 zone_t *, zone, zone_key_t, key); 857 } 858 } else { 859 if (t->zsd_destroy != NULL && 860 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 861 t->zsd_flags |= ZSD_DESTROY_NEEDED; 862 DTRACE_PROBE2(zsd__destroy__needed, 863 zone_t *, zone, zone_key_t, key); 864 } 865 } 866 } 867 mutex_exit(&zone->zone_lock); 868 869 /* Now call the shutdown and destroy callback for this key */ 870 zsd_apply_all_keys(zsd_apply_shutdown, zone); 871 zsd_apply_all_keys(zsd_apply_destroy, zone); 872 873 } 874 875 /* 876 * Called when the zone is going away; free ZSD-related memory, and 877 * destroy the zone_zsd list. 878 */ 879 static void 880 zone_free_zsd(zone_t *zone) 881 { 882 struct zsd_entry *t, *next; 883 884 /* 885 * Free all the zsd_entry's we had on this zone. 886 */ 887 mutex_enter(&zone->zone_lock); 888 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 889 next = list_next(&zone->zone_zsd, t); 890 list_remove(&zone->zone_zsd, t); 891 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 892 kmem_free(t, sizeof (*t)); 893 } 894 list_destroy(&zone->zone_zsd); 895 mutex_exit(&zone->zone_lock); 896 897 } 898 899 /* 900 * Apply a function to all zones for particular key value. 901 * 902 * The applyfn has to drop zonehash_lock if it does some work, and 903 * then reacquire it before it returns. 904 * When the lock is dropped we don't follow list_next even 905 * if it is possible to do so without any hazards. This is 906 * because we want the design to allow for the list of zones 907 * to change in any arbitrary way during the time the 908 * lock was dropped. 909 * 910 * It is safe to restart the loop at list_head since the applyfn 911 * changes the zsd_flags as it does work, so a subsequent 912 * pass through will have no effect in applyfn, hence the loop will terminate 913 * in at worst O(N^2). 914 */ 915 static void 916 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 917 { 918 zone_t *zone; 919 920 mutex_enter(&zonehash_lock); 921 zone = list_head(&zone_active); 922 while (zone != NULL) { 923 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 924 /* Lock dropped - restart at head */ 925 zone = list_head(&zone_active); 926 } else { 927 zone = list_next(&zone_active, zone); 928 } 929 } 930 mutex_exit(&zonehash_lock); 931 } 932 933 /* 934 * Apply a function to all keys for a particular zone. 935 * 936 * The applyfn has to drop zonehash_lock if it does some work, and 937 * then reacquire it before it returns. 938 * When the lock is dropped we don't follow list_next even 939 * if it is possible to do so without any hazards. This is 940 * because we want the design to allow for the list of zsd callbacks 941 * to change in any arbitrary way during the time the 942 * lock was dropped. 943 * 944 * It is safe to restart the loop at list_head since the applyfn 945 * changes the zsd_flags as it does work, so a subsequent 946 * pass through will have no effect in applyfn, hence the loop will terminate 947 * in at worst O(N^2). 948 */ 949 static void 950 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 951 { 952 struct zsd_entry *t; 953 954 mutex_enter(&zone->zone_lock); 955 t = list_head(&zone->zone_zsd); 956 while (t != NULL) { 957 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 958 /* Lock dropped - restart at head */ 959 t = list_head(&zone->zone_zsd); 960 } else { 961 t = list_next(&zone->zone_zsd, t); 962 } 963 } 964 mutex_exit(&zone->zone_lock); 965 } 966 967 /* 968 * Call the create function for the zone and key if CREATE_NEEDED 969 * is set. 970 * If some other thread gets here first and sets CREATE_INPROGRESS, then 971 * we wait for that thread to complete so that we can ensure that 972 * all the callbacks are done when we've looped over all zones/keys. 973 * 974 * When we call the create function, we drop the global held by the 975 * caller, and return true to tell the caller it needs to re-evalute the 976 * state. 977 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 978 * remains held on exit. 979 */ 980 static boolean_t 981 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 982 zone_t *zone, zone_key_t key) 983 { 984 void *result; 985 struct zsd_entry *t; 986 boolean_t dropped; 987 988 if (lockp != NULL) { 989 ASSERT(MUTEX_HELD(lockp)); 990 } 991 if (zone_lock_held) { 992 ASSERT(MUTEX_HELD(&zone->zone_lock)); 993 } else { 994 mutex_enter(&zone->zone_lock); 995 } 996 997 t = zsd_find(&zone->zone_zsd, key); 998 if (t == NULL) { 999 /* 1000 * Somebody else got here first e.g the zone going 1001 * away. 1002 */ 1003 if (!zone_lock_held) 1004 mutex_exit(&zone->zone_lock); 1005 return (B_FALSE); 1006 } 1007 dropped = B_FALSE; 1008 if (zsd_wait_for_inprogress(zone, t, lockp)) 1009 dropped = B_TRUE; 1010 1011 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1012 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1013 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1014 DTRACE_PROBE2(zsd__create__inprogress, 1015 zone_t *, zone, zone_key_t, key); 1016 mutex_exit(&zone->zone_lock); 1017 if (lockp != NULL) 1018 mutex_exit(lockp); 1019 1020 dropped = B_TRUE; 1021 ASSERT(t->zsd_create != NULL); 1022 DTRACE_PROBE2(zsd__create__start, 1023 zone_t *, zone, zone_key_t, key); 1024 1025 result = (*t->zsd_create)(zone->zone_id); 1026 1027 DTRACE_PROBE2(zsd__create__end, 1028 zone_t *, zone, voidn *, result); 1029 1030 ASSERT(result != NULL); 1031 if (lockp != NULL) 1032 mutex_enter(lockp); 1033 mutex_enter(&zone->zone_lock); 1034 t->zsd_data = result; 1035 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1036 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1037 cv_broadcast(&t->zsd_cv); 1038 DTRACE_PROBE2(zsd__create__completed, 1039 zone_t *, zone, zone_key_t, key); 1040 } 1041 if (!zone_lock_held) 1042 mutex_exit(&zone->zone_lock); 1043 return (dropped); 1044 } 1045 1046 /* 1047 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1048 * is set. 1049 * If some other thread gets here first and sets *_INPROGRESS, then 1050 * we wait for that thread to complete so that we can ensure that 1051 * all the callbacks are done when we've looped over all zones/keys. 1052 * 1053 * When we call the shutdown function, we drop the global held by the 1054 * caller, and return true to tell the caller it needs to re-evalute the 1055 * state. 1056 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1057 * remains held on exit. 1058 */ 1059 static boolean_t 1060 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1061 zone_t *zone, zone_key_t key) 1062 { 1063 struct zsd_entry *t; 1064 void *data; 1065 boolean_t dropped; 1066 1067 if (lockp != NULL) { 1068 ASSERT(MUTEX_HELD(lockp)); 1069 } 1070 if (zone_lock_held) { 1071 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1072 } else { 1073 mutex_enter(&zone->zone_lock); 1074 } 1075 1076 t = zsd_find(&zone->zone_zsd, key); 1077 if (t == NULL) { 1078 /* 1079 * Somebody else got here first e.g the zone going 1080 * away. 1081 */ 1082 if (!zone_lock_held) 1083 mutex_exit(&zone->zone_lock); 1084 return (B_FALSE); 1085 } 1086 dropped = B_FALSE; 1087 if (zsd_wait_for_creator(zone, t, lockp)) 1088 dropped = B_TRUE; 1089 1090 if (zsd_wait_for_inprogress(zone, t, lockp)) 1091 dropped = B_TRUE; 1092 1093 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1094 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1095 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1096 DTRACE_PROBE2(zsd__shutdown__inprogress, 1097 zone_t *, zone, zone_key_t, key); 1098 mutex_exit(&zone->zone_lock); 1099 if (lockp != NULL) 1100 mutex_exit(lockp); 1101 dropped = B_TRUE; 1102 1103 ASSERT(t->zsd_shutdown != NULL); 1104 data = t->zsd_data; 1105 1106 DTRACE_PROBE2(zsd__shutdown__start, 1107 zone_t *, zone, zone_key_t, key); 1108 1109 (t->zsd_shutdown)(zone->zone_id, data); 1110 DTRACE_PROBE2(zsd__shutdown__end, 1111 zone_t *, zone, zone_key_t, key); 1112 1113 if (lockp != NULL) 1114 mutex_enter(lockp); 1115 mutex_enter(&zone->zone_lock); 1116 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1117 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1118 cv_broadcast(&t->zsd_cv); 1119 DTRACE_PROBE2(zsd__shutdown__completed, 1120 zone_t *, zone, zone_key_t, key); 1121 } 1122 if (!zone_lock_held) 1123 mutex_exit(&zone->zone_lock); 1124 return (dropped); 1125 } 1126 1127 /* 1128 * Call the destroy function for the zone and key if DESTROY_NEEDED 1129 * is set. 1130 * If some other thread gets here first and sets *_INPROGRESS, then 1131 * we wait for that thread to complete so that we can ensure that 1132 * all the callbacks are done when we've looped over all zones/keys. 1133 * 1134 * When we call the destroy function, we drop the global held by the 1135 * caller, and return true to tell the caller it needs to re-evalute the 1136 * state. 1137 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1138 * remains held on exit. 1139 */ 1140 static boolean_t 1141 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1142 zone_t *zone, zone_key_t key) 1143 { 1144 struct zsd_entry *t; 1145 void *data; 1146 boolean_t dropped; 1147 1148 if (lockp != NULL) { 1149 ASSERT(MUTEX_HELD(lockp)); 1150 } 1151 if (zone_lock_held) { 1152 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1153 } else { 1154 mutex_enter(&zone->zone_lock); 1155 } 1156 1157 t = zsd_find(&zone->zone_zsd, key); 1158 if (t == NULL) { 1159 /* 1160 * Somebody else got here first e.g the zone going 1161 * away. 1162 */ 1163 if (!zone_lock_held) 1164 mutex_exit(&zone->zone_lock); 1165 return (B_FALSE); 1166 } 1167 dropped = B_FALSE; 1168 if (zsd_wait_for_creator(zone, t, lockp)) 1169 dropped = B_TRUE; 1170 1171 if (zsd_wait_for_inprogress(zone, t, lockp)) 1172 dropped = B_TRUE; 1173 1174 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1175 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1176 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1177 DTRACE_PROBE2(zsd__destroy__inprogress, 1178 zone_t *, zone, zone_key_t, key); 1179 mutex_exit(&zone->zone_lock); 1180 if (lockp != NULL) 1181 mutex_exit(lockp); 1182 dropped = B_TRUE; 1183 1184 ASSERT(t->zsd_destroy != NULL); 1185 data = t->zsd_data; 1186 DTRACE_PROBE2(zsd__destroy__start, 1187 zone_t *, zone, zone_key_t, key); 1188 1189 (t->zsd_destroy)(zone->zone_id, data); 1190 DTRACE_PROBE2(zsd__destroy__end, 1191 zone_t *, zone, zone_key_t, key); 1192 1193 if (lockp != NULL) 1194 mutex_enter(lockp); 1195 mutex_enter(&zone->zone_lock); 1196 t->zsd_data = NULL; 1197 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1198 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1199 cv_broadcast(&t->zsd_cv); 1200 DTRACE_PROBE2(zsd__destroy__completed, 1201 zone_t *, zone, zone_key_t, key); 1202 } 1203 if (!zone_lock_held) 1204 mutex_exit(&zone->zone_lock); 1205 return (dropped); 1206 } 1207 1208 /* 1209 * Wait for any CREATE_NEEDED flag to be cleared. 1210 * Returns true if lockp was temporarily dropped while waiting. 1211 */ 1212 static boolean_t 1213 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1214 { 1215 boolean_t dropped = B_FALSE; 1216 1217 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1218 DTRACE_PROBE2(zsd__wait__for__creator, 1219 zone_t *, zone, struct zsd_entry *, t); 1220 if (lockp != NULL) { 1221 dropped = B_TRUE; 1222 mutex_exit(lockp); 1223 } 1224 cv_wait(&t->zsd_cv, &zone->zone_lock); 1225 if (lockp != NULL) { 1226 /* First drop zone_lock to preserve order */ 1227 mutex_exit(&zone->zone_lock); 1228 mutex_enter(lockp); 1229 mutex_enter(&zone->zone_lock); 1230 } 1231 } 1232 return (dropped); 1233 } 1234 1235 /* 1236 * Wait for any INPROGRESS flag to be cleared. 1237 * Returns true if lockp was temporarily dropped while waiting. 1238 */ 1239 static boolean_t 1240 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1241 { 1242 boolean_t dropped = B_FALSE; 1243 1244 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1245 DTRACE_PROBE2(zsd__wait__for__inprogress, 1246 zone_t *, zone, struct zsd_entry *, t); 1247 if (lockp != NULL) { 1248 dropped = B_TRUE; 1249 mutex_exit(lockp); 1250 } 1251 cv_wait(&t->zsd_cv, &zone->zone_lock); 1252 if (lockp != NULL) { 1253 /* First drop zone_lock to preserve order */ 1254 mutex_exit(&zone->zone_lock); 1255 mutex_enter(lockp); 1256 mutex_enter(&zone->zone_lock); 1257 } 1258 } 1259 return (dropped); 1260 } 1261 1262 /* 1263 * Frees memory associated with the zone dataset list. 1264 */ 1265 static void 1266 zone_free_datasets(zone_t *zone) 1267 { 1268 zone_dataset_t *t, *next; 1269 1270 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1271 next = list_next(&zone->zone_datasets, t); 1272 list_remove(&zone->zone_datasets, t); 1273 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1274 kmem_free(t, sizeof (*t)); 1275 } 1276 list_destroy(&zone->zone_datasets); 1277 } 1278 1279 /* 1280 * zone.cpu-shares resource control support. 1281 */ 1282 /*ARGSUSED*/ 1283 static rctl_qty_t 1284 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1285 { 1286 ASSERT(MUTEX_HELD(&p->p_lock)); 1287 return (p->p_zone->zone_shares); 1288 } 1289 1290 /*ARGSUSED*/ 1291 static int 1292 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1293 rctl_qty_t nv) 1294 { 1295 ASSERT(MUTEX_HELD(&p->p_lock)); 1296 ASSERT(e->rcep_t == RCENTITY_ZONE); 1297 if (e->rcep_p.zone == NULL) 1298 return (0); 1299 1300 e->rcep_p.zone->zone_shares = nv; 1301 return (0); 1302 } 1303 1304 static rctl_ops_t zone_cpu_shares_ops = { 1305 rcop_no_action, 1306 zone_cpu_shares_usage, 1307 zone_cpu_shares_set, 1308 rcop_no_test 1309 }; 1310 1311 /* 1312 * zone.cpu-cap resource control support. 1313 */ 1314 /*ARGSUSED*/ 1315 static rctl_qty_t 1316 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1317 { 1318 ASSERT(MUTEX_HELD(&p->p_lock)); 1319 return (cpucaps_zone_get(p->p_zone)); 1320 } 1321 1322 /*ARGSUSED*/ 1323 static int 1324 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1325 rctl_qty_t nv) 1326 { 1327 zone_t *zone = e->rcep_p.zone; 1328 1329 ASSERT(MUTEX_HELD(&p->p_lock)); 1330 ASSERT(e->rcep_t == RCENTITY_ZONE); 1331 1332 if (zone == NULL) 1333 return (0); 1334 1335 /* 1336 * set cap to the new value. 1337 */ 1338 return (cpucaps_zone_set(zone, nv)); 1339 } 1340 1341 static rctl_ops_t zone_cpu_cap_ops = { 1342 rcop_no_action, 1343 zone_cpu_cap_get, 1344 zone_cpu_cap_set, 1345 rcop_no_test 1346 }; 1347 1348 /*ARGSUSED*/ 1349 static rctl_qty_t 1350 zone_lwps_usage(rctl_t *r, proc_t *p) 1351 { 1352 rctl_qty_t nlwps; 1353 zone_t *zone = p->p_zone; 1354 1355 ASSERT(MUTEX_HELD(&p->p_lock)); 1356 1357 mutex_enter(&zone->zone_nlwps_lock); 1358 nlwps = zone->zone_nlwps; 1359 mutex_exit(&zone->zone_nlwps_lock); 1360 1361 return (nlwps); 1362 } 1363 1364 /*ARGSUSED*/ 1365 static int 1366 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1367 rctl_qty_t incr, uint_t flags) 1368 { 1369 rctl_qty_t nlwps; 1370 1371 ASSERT(MUTEX_HELD(&p->p_lock)); 1372 ASSERT(e->rcep_t == RCENTITY_ZONE); 1373 if (e->rcep_p.zone == NULL) 1374 return (0); 1375 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1376 nlwps = e->rcep_p.zone->zone_nlwps; 1377 1378 if (nlwps + incr > rcntl->rcv_value) 1379 return (1); 1380 1381 return (0); 1382 } 1383 1384 /*ARGSUSED*/ 1385 static int 1386 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1387 { 1388 ASSERT(MUTEX_HELD(&p->p_lock)); 1389 ASSERT(e->rcep_t == RCENTITY_ZONE); 1390 if (e->rcep_p.zone == NULL) 1391 return (0); 1392 e->rcep_p.zone->zone_nlwps_ctl = nv; 1393 return (0); 1394 } 1395 1396 static rctl_ops_t zone_lwps_ops = { 1397 rcop_no_action, 1398 zone_lwps_usage, 1399 zone_lwps_set, 1400 zone_lwps_test, 1401 }; 1402 1403 /*ARGSUSED*/ 1404 static int 1405 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1406 rctl_qty_t incr, uint_t flags) 1407 { 1408 rctl_qty_t v; 1409 ASSERT(MUTEX_HELD(&p->p_lock)); 1410 ASSERT(e->rcep_t == RCENTITY_ZONE); 1411 v = e->rcep_p.zone->zone_shmmax + incr; 1412 if (v > rval->rcv_value) 1413 return (1); 1414 return (0); 1415 } 1416 1417 static rctl_ops_t zone_shmmax_ops = { 1418 rcop_no_action, 1419 rcop_no_usage, 1420 rcop_no_set, 1421 zone_shmmax_test 1422 }; 1423 1424 /*ARGSUSED*/ 1425 static int 1426 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1427 rctl_qty_t incr, uint_t flags) 1428 { 1429 rctl_qty_t v; 1430 ASSERT(MUTEX_HELD(&p->p_lock)); 1431 ASSERT(e->rcep_t == RCENTITY_ZONE); 1432 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1433 if (v > rval->rcv_value) 1434 return (1); 1435 return (0); 1436 } 1437 1438 static rctl_ops_t zone_shmmni_ops = { 1439 rcop_no_action, 1440 rcop_no_usage, 1441 rcop_no_set, 1442 zone_shmmni_test 1443 }; 1444 1445 /*ARGSUSED*/ 1446 static int 1447 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1448 rctl_qty_t incr, uint_t flags) 1449 { 1450 rctl_qty_t v; 1451 ASSERT(MUTEX_HELD(&p->p_lock)); 1452 ASSERT(e->rcep_t == RCENTITY_ZONE); 1453 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1454 if (v > rval->rcv_value) 1455 return (1); 1456 return (0); 1457 } 1458 1459 static rctl_ops_t zone_semmni_ops = { 1460 rcop_no_action, 1461 rcop_no_usage, 1462 rcop_no_set, 1463 zone_semmni_test 1464 }; 1465 1466 /*ARGSUSED*/ 1467 static int 1468 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1469 rctl_qty_t incr, uint_t flags) 1470 { 1471 rctl_qty_t v; 1472 ASSERT(MUTEX_HELD(&p->p_lock)); 1473 ASSERT(e->rcep_t == RCENTITY_ZONE); 1474 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1475 if (v > rval->rcv_value) 1476 return (1); 1477 return (0); 1478 } 1479 1480 static rctl_ops_t zone_msgmni_ops = { 1481 rcop_no_action, 1482 rcop_no_usage, 1483 rcop_no_set, 1484 zone_msgmni_test 1485 }; 1486 1487 /*ARGSUSED*/ 1488 static rctl_qty_t 1489 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1490 { 1491 rctl_qty_t q; 1492 ASSERT(MUTEX_HELD(&p->p_lock)); 1493 mutex_enter(&p->p_zone->zone_mem_lock); 1494 q = p->p_zone->zone_locked_mem; 1495 mutex_exit(&p->p_zone->zone_mem_lock); 1496 return (q); 1497 } 1498 1499 /*ARGSUSED*/ 1500 static int 1501 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1502 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1503 { 1504 rctl_qty_t q; 1505 zone_t *z; 1506 1507 z = e->rcep_p.zone; 1508 ASSERT(MUTEX_HELD(&p->p_lock)); 1509 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1510 q = z->zone_locked_mem; 1511 if (q + incr > rcntl->rcv_value) 1512 return (1); 1513 return (0); 1514 } 1515 1516 /*ARGSUSED*/ 1517 static int 1518 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1519 rctl_qty_t nv) 1520 { 1521 ASSERT(MUTEX_HELD(&p->p_lock)); 1522 ASSERT(e->rcep_t == RCENTITY_ZONE); 1523 if (e->rcep_p.zone == NULL) 1524 return (0); 1525 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1526 return (0); 1527 } 1528 1529 static rctl_ops_t zone_locked_mem_ops = { 1530 rcop_no_action, 1531 zone_locked_mem_usage, 1532 zone_locked_mem_set, 1533 zone_locked_mem_test 1534 }; 1535 1536 /*ARGSUSED*/ 1537 static rctl_qty_t 1538 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1539 { 1540 rctl_qty_t q; 1541 zone_t *z = p->p_zone; 1542 1543 ASSERT(MUTEX_HELD(&p->p_lock)); 1544 mutex_enter(&z->zone_mem_lock); 1545 q = z->zone_max_swap; 1546 mutex_exit(&z->zone_mem_lock); 1547 return (q); 1548 } 1549 1550 /*ARGSUSED*/ 1551 static int 1552 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1553 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1554 { 1555 rctl_qty_t q; 1556 zone_t *z; 1557 1558 z = e->rcep_p.zone; 1559 ASSERT(MUTEX_HELD(&p->p_lock)); 1560 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1561 q = z->zone_max_swap; 1562 if (q + incr > rcntl->rcv_value) 1563 return (1); 1564 return (0); 1565 } 1566 1567 /*ARGSUSED*/ 1568 static int 1569 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1570 rctl_qty_t nv) 1571 { 1572 ASSERT(MUTEX_HELD(&p->p_lock)); 1573 ASSERT(e->rcep_t == RCENTITY_ZONE); 1574 if (e->rcep_p.zone == NULL) 1575 return (0); 1576 e->rcep_p.zone->zone_max_swap_ctl = nv; 1577 return (0); 1578 } 1579 1580 static rctl_ops_t zone_max_swap_ops = { 1581 rcop_no_action, 1582 zone_max_swap_usage, 1583 zone_max_swap_set, 1584 zone_max_swap_test 1585 }; 1586 1587 /* 1588 * Helper function to brand the zone with a unique ID. 1589 */ 1590 static void 1591 zone_uniqid(zone_t *zone) 1592 { 1593 static uint64_t uniqid = 0; 1594 1595 ASSERT(MUTEX_HELD(&zonehash_lock)); 1596 zone->zone_uniqid = uniqid++; 1597 } 1598 1599 /* 1600 * Returns a held pointer to the "kcred" for the specified zone. 1601 */ 1602 struct cred * 1603 zone_get_kcred(zoneid_t zoneid) 1604 { 1605 zone_t *zone; 1606 cred_t *cr; 1607 1608 if ((zone = zone_find_by_id(zoneid)) == NULL) 1609 return (NULL); 1610 cr = zone->zone_kcred; 1611 crhold(cr); 1612 zone_rele(zone); 1613 return (cr); 1614 } 1615 1616 static int 1617 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1618 { 1619 zone_t *zone = ksp->ks_private; 1620 zone_kstat_t *zk = ksp->ks_data; 1621 1622 if (rw == KSTAT_WRITE) 1623 return (EACCES); 1624 1625 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1626 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1627 return (0); 1628 } 1629 1630 static int 1631 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1632 { 1633 zone_t *zone = ksp->ks_private; 1634 zone_kstat_t *zk = ksp->ks_data; 1635 1636 if (rw == KSTAT_WRITE) 1637 return (EACCES); 1638 1639 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1640 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1641 return (0); 1642 } 1643 1644 static void 1645 zone_kstat_create(zone_t *zone) 1646 { 1647 kstat_t *ksp; 1648 zone_kstat_t *zk; 1649 1650 ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED, 1651 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1652 KSTAT_FLAG_VIRTUAL); 1653 1654 if (ksp == NULL) 1655 return; 1656 1657 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1658 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1659 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1660 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1661 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1662 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1663 ksp->ks_update = zone_lockedmem_kstat_update; 1664 ksp->ks_private = zone; 1665 kstat_install(ksp); 1666 1667 zone->zone_lockedmem_kstat = ksp; 1668 1669 ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED, 1670 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1671 KSTAT_FLAG_VIRTUAL); 1672 1673 if (ksp == NULL) 1674 return; 1675 1676 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1677 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1678 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1679 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1680 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1681 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1682 ksp->ks_update = zone_swapresv_kstat_update; 1683 ksp->ks_private = zone; 1684 kstat_install(ksp); 1685 1686 zone->zone_swapresv_kstat = ksp; 1687 } 1688 1689 static void 1690 zone_kstat_delete(zone_t *zone) 1691 { 1692 void *data; 1693 1694 if (zone->zone_lockedmem_kstat != NULL) { 1695 data = zone->zone_lockedmem_kstat->ks_data; 1696 kstat_delete(zone->zone_lockedmem_kstat); 1697 kmem_free(data, sizeof (zone_kstat_t)); 1698 } 1699 if (zone->zone_swapresv_kstat != NULL) { 1700 data = zone->zone_swapresv_kstat->ks_data; 1701 kstat_delete(zone->zone_swapresv_kstat); 1702 kmem_free(data, sizeof (zone_kstat_t)); 1703 } 1704 } 1705 1706 /* 1707 * Called very early on in boot to initialize the ZSD list so that 1708 * zone_key_create() can be called before zone_init(). It also initializes 1709 * portions of zone0 which may be used before zone_init() is called. The 1710 * variable "global_zone" will be set when zone0 is fully initialized by 1711 * zone_init(). 1712 */ 1713 void 1714 zone_zsd_init(void) 1715 { 1716 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1717 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1718 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1719 offsetof(struct zsd_entry, zsd_linkage)); 1720 list_create(&zone_active, sizeof (zone_t), 1721 offsetof(zone_t, zone_linkage)); 1722 list_create(&zone_deathrow, sizeof (zone_t), 1723 offsetof(zone_t, zone_linkage)); 1724 1725 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1726 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1727 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1728 zone0.zone_shares = 1; 1729 zone0.zone_nlwps = 0; 1730 zone0.zone_nlwps_ctl = INT_MAX; 1731 zone0.zone_locked_mem = 0; 1732 zone0.zone_locked_mem_ctl = UINT64_MAX; 1733 ASSERT(zone0.zone_max_swap == 0); 1734 zone0.zone_max_swap_ctl = UINT64_MAX; 1735 zone0.zone_shmmax = 0; 1736 zone0.zone_ipc.ipcq_shmmni = 0; 1737 zone0.zone_ipc.ipcq_semmni = 0; 1738 zone0.zone_ipc.ipcq_msgmni = 0; 1739 zone0.zone_name = GLOBAL_ZONENAME; 1740 zone0.zone_nodename = utsname.nodename; 1741 zone0.zone_domain = srpc_domain; 1742 zone0.zone_hostid = HW_INVALID_HOSTID; 1743 zone0.zone_ref = 1; 1744 zone0.zone_id = GLOBAL_ZONEID; 1745 zone0.zone_status = ZONE_IS_RUNNING; 1746 zone0.zone_rootpath = "/"; 1747 zone0.zone_rootpathlen = 2; 1748 zone0.zone_psetid = ZONE_PS_INVAL; 1749 zone0.zone_ncpus = 0; 1750 zone0.zone_ncpus_online = 0; 1751 zone0.zone_proc_initpid = 1; 1752 zone0.zone_initname = initname; 1753 zone0.zone_lockedmem_kstat = NULL; 1754 zone0.zone_swapresv_kstat = NULL; 1755 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1756 offsetof(struct zsd_entry, zsd_linkage)); 1757 list_insert_head(&zone_active, &zone0); 1758 1759 /* 1760 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1761 * to anything meaningful. It is assigned to be 'rootdir' in 1762 * vfs_mountroot(). 1763 */ 1764 zone0.zone_rootvp = NULL; 1765 zone0.zone_vfslist = NULL; 1766 zone0.zone_bootargs = initargs; 1767 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1768 /* 1769 * The global zone has all privileges 1770 */ 1771 priv_fillset(zone0.zone_privset); 1772 /* 1773 * Add p0 to the global zone 1774 */ 1775 zone0.zone_zsched = &p0; 1776 p0.p_zone = &zone0; 1777 } 1778 1779 /* 1780 * Compute a hash value based on the contents of the label and the DOI. The 1781 * hash algorithm is somewhat arbitrary, but is based on the observation that 1782 * humans will likely pick labels that differ by amounts that work out to be 1783 * multiples of the number of hash chains, and thus stirring in some primes 1784 * should help. 1785 */ 1786 static uint_t 1787 hash_bylabel(void *hdata, mod_hash_key_t key) 1788 { 1789 const ts_label_t *lab = (ts_label_t *)key; 1790 const uint32_t *up, *ue; 1791 uint_t hash; 1792 int i; 1793 1794 _NOTE(ARGUNUSED(hdata)); 1795 1796 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1797 /* we depend on alignment of label, but not representation */ 1798 up = (const uint32_t *)&lab->tsl_label; 1799 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1800 i = 1; 1801 while (up < ue) { 1802 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1803 hash += *up + (*up << ((i % 16) + 1)); 1804 up++; 1805 i++; 1806 } 1807 return (hash); 1808 } 1809 1810 /* 1811 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1812 * equal). This may need to be changed if less than / greater than is ever 1813 * needed. 1814 */ 1815 static int 1816 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1817 { 1818 ts_label_t *lab1 = (ts_label_t *)key1; 1819 ts_label_t *lab2 = (ts_label_t *)key2; 1820 1821 return (label_equal(lab1, lab2) ? 0 : 1); 1822 } 1823 1824 /* 1825 * Called by main() to initialize the zones framework. 1826 */ 1827 void 1828 zone_init(void) 1829 { 1830 rctl_dict_entry_t *rde; 1831 rctl_val_t *dval; 1832 rctl_set_t *set; 1833 rctl_alloc_gp_t *gp; 1834 rctl_entity_p_t e; 1835 int res; 1836 1837 ASSERT(curproc == &p0); 1838 1839 /* 1840 * Create ID space for zone IDs. ID 0 is reserved for the 1841 * global zone. 1842 */ 1843 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1844 1845 /* 1846 * Initialize generic zone resource controls, if any. 1847 */ 1848 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1849 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1850 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1851 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 1852 1853 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 1854 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 1855 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 1856 RCTL_GLOBAL_INFINITE, 1857 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 1858 1859 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1860 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1861 INT_MAX, INT_MAX, &zone_lwps_ops); 1862 /* 1863 * System V IPC resource controls 1864 */ 1865 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1866 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1867 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1868 1869 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1870 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1871 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1872 1873 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1874 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1875 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1876 1877 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1878 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1879 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1880 1881 /* 1882 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1883 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1884 */ 1885 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1886 bzero(dval, sizeof (rctl_val_t)); 1887 dval->rcv_value = 1; 1888 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1889 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1890 dval->rcv_action_recip_pid = -1; 1891 1892 rde = rctl_dict_lookup("zone.cpu-shares"); 1893 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1894 1895 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 1896 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1897 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1898 &zone_locked_mem_ops); 1899 1900 rc_zone_max_swap = rctl_register("zone.max-swap", 1901 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1902 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1903 &zone_max_swap_ops); 1904 1905 /* 1906 * Initialize the ``global zone''. 1907 */ 1908 set = rctl_set_create(); 1909 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1910 mutex_enter(&p0.p_lock); 1911 e.rcep_p.zone = &zone0; 1912 e.rcep_t = RCENTITY_ZONE; 1913 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1914 gp); 1915 1916 zone0.zone_nlwps = p0.p_lwpcnt; 1917 zone0.zone_ntasks = 1; 1918 mutex_exit(&p0.p_lock); 1919 zone0.zone_restart_init = B_TRUE; 1920 zone0.zone_brand = &native_brand; 1921 rctl_prealloc_destroy(gp); 1922 /* 1923 * pool_default hasn't been initialized yet, so we let pool_init() 1924 * take care of making sure the global zone is in the default pool. 1925 */ 1926 1927 /* 1928 * Initialize global zone kstats 1929 */ 1930 zone_kstat_create(&zone0); 1931 1932 /* 1933 * Initialize zone label. 1934 * mlp are initialized when tnzonecfg is loaded. 1935 */ 1936 zone0.zone_slabel = l_admin_low; 1937 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1938 label_hold(l_admin_low); 1939 1940 /* 1941 * Initialise the lock for the database structure used by mntfs. 1942 */ 1943 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 1944 1945 mutex_enter(&zonehash_lock); 1946 zone_uniqid(&zone0); 1947 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1948 1949 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1950 mod_hash_null_valdtor); 1951 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1952 zone_hash_size, mod_hash_null_valdtor); 1953 /* 1954 * maintain zonehashbylabel only for labeled systems 1955 */ 1956 if (is_system_labeled()) 1957 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1958 zone_hash_size, mod_hash_null_keydtor, 1959 mod_hash_null_valdtor, hash_bylabel, NULL, 1960 hash_labelkey_cmp, KM_SLEEP); 1961 zonecount = 1; 1962 1963 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1964 (mod_hash_val_t)&zone0); 1965 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1966 (mod_hash_val_t)&zone0); 1967 if (is_system_labeled()) { 1968 zone0.zone_flags |= ZF_HASHED_LABEL; 1969 (void) mod_hash_insert(zonehashbylabel, 1970 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1971 } 1972 mutex_exit(&zonehash_lock); 1973 1974 /* 1975 * We avoid setting zone_kcred until now, since kcred is initialized 1976 * sometime after zone_zsd_init() and before zone_init(). 1977 */ 1978 zone0.zone_kcred = kcred; 1979 /* 1980 * The global zone is fully initialized (except for zone_rootvp which 1981 * will be set when the root filesystem is mounted). 1982 */ 1983 global_zone = &zone0; 1984 1985 /* 1986 * Setup an event channel to send zone status change notifications on 1987 */ 1988 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1989 EVCH_CREAT); 1990 1991 if (res) 1992 panic("Sysevent_evc_bind failed during zone setup.\n"); 1993 1994 } 1995 1996 static void 1997 zone_free(zone_t *zone) 1998 { 1999 ASSERT(zone != global_zone); 2000 ASSERT(zone->zone_ntasks == 0); 2001 ASSERT(zone->zone_nlwps == 0); 2002 ASSERT(zone->zone_cred_ref == 0); 2003 ASSERT(zone->zone_kcred == NULL); 2004 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2005 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2006 2007 /* 2008 * Remove any zone caps. 2009 */ 2010 cpucaps_zone_remove(zone); 2011 2012 ASSERT(zone->zone_cpucap == NULL); 2013 2014 /* remove from deathrow list */ 2015 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2016 ASSERT(zone->zone_ref == 0); 2017 mutex_enter(&zone_deathrow_lock); 2018 list_remove(&zone_deathrow, zone); 2019 mutex_exit(&zone_deathrow_lock); 2020 } 2021 2022 zone_free_zsd(zone); 2023 zone_free_datasets(zone); 2024 list_destroy(&zone->zone_dl_list); 2025 2026 if (zone->zone_rootvp != NULL) 2027 VN_RELE(zone->zone_rootvp); 2028 if (zone->zone_rootpath) 2029 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2030 if (zone->zone_name != NULL) 2031 kmem_free(zone->zone_name, ZONENAME_MAX); 2032 if (zone->zone_slabel != NULL) 2033 label_rele(zone->zone_slabel); 2034 if (zone->zone_nodename != NULL) 2035 kmem_free(zone->zone_nodename, _SYS_NMLN); 2036 if (zone->zone_domain != NULL) 2037 kmem_free(zone->zone_domain, _SYS_NMLN); 2038 if (zone->zone_privset != NULL) 2039 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2040 if (zone->zone_rctls != NULL) 2041 rctl_set_free(zone->zone_rctls); 2042 if (zone->zone_bootargs != NULL) 2043 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2044 if (zone->zone_initname != NULL) 2045 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2046 if (zone->zone_pfexecd != NULL) 2047 klpd_freelist(&zone->zone_pfexecd); 2048 id_free(zoneid_space, zone->zone_id); 2049 mutex_destroy(&zone->zone_lock); 2050 cv_destroy(&zone->zone_cv); 2051 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2052 rw_destroy(&zone->zone_mntfs_db_lock); 2053 kmem_free(zone, sizeof (zone_t)); 2054 } 2055 2056 /* 2057 * See block comment at the top of this file for information about zone 2058 * status values. 2059 */ 2060 /* 2061 * Convenience function for setting zone status. 2062 */ 2063 static void 2064 zone_status_set(zone_t *zone, zone_status_t status) 2065 { 2066 2067 nvlist_t *nvl = NULL; 2068 ASSERT(MUTEX_HELD(&zone_status_lock)); 2069 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2070 status >= zone_status_get(zone)); 2071 2072 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2073 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2074 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2075 zone_status_table[status]) || 2076 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2077 zone_status_table[zone->zone_status]) || 2078 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2079 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2080 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2081 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2082 #ifdef DEBUG 2083 (void) printf( 2084 "Failed to allocate and send zone state change event.\n"); 2085 #endif 2086 } 2087 nvlist_free(nvl); 2088 2089 zone->zone_status = status; 2090 2091 cv_broadcast(&zone->zone_cv); 2092 } 2093 2094 /* 2095 * Public function to retrieve the zone status. The zone status may 2096 * change after it is retrieved. 2097 */ 2098 zone_status_t 2099 zone_status_get(zone_t *zone) 2100 { 2101 return (zone->zone_status); 2102 } 2103 2104 static int 2105 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2106 { 2107 char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2108 int err = 0; 2109 2110 ASSERT(zone != global_zone); 2111 if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0) 2112 goto done; /* EFAULT or ENAMETOOLONG */ 2113 2114 if (zone->zone_bootargs != NULL) 2115 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2116 2117 zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP); 2118 (void) strcpy(zone->zone_bootargs, bootargs); 2119 2120 done: 2121 kmem_free(bootargs, BOOTARGS_MAX); 2122 return (err); 2123 } 2124 2125 static int 2126 zone_set_brand(zone_t *zone, const char *brand) 2127 { 2128 struct brand_attr *attrp; 2129 brand_t *bp; 2130 2131 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2132 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2133 kmem_free(attrp, sizeof (struct brand_attr)); 2134 return (EFAULT); 2135 } 2136 2137 bp = brand_register_zone(attrp); 2138 kmem_free(attrp, sizeof (struct brand_attr)); 2139 if (bp == NULL) 2140 return (EINVAL); 2141 2142 /* 2143 * This is the only place where a zone can change it's brand. 2144 * We already need to hold zone_status_lock to check the zone 2145 * status, so we'll just use that lock to serialize zone 2146 * branding requests as well. 2147 */ 2148 mutex_enter(&zone_status_lock); 2149 2150 /* Re-Branding is not allowed and the zone can't be booted yet */ 2151 if ((ZONE_IS_BRANDED(zone)) || 2152 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2153 mutex_exit(&zone_status_lock); 2154 brand_unregister_zone(bp); 2155 return (EINVAL); 2156 } 2157 2158 /* set up the brand specific data */ 2159 zone->zone_brand = bp; 2160 ZBROP(zone)->b_init_brand_data(zone); 2161 2162 mutex_exit(&zone_status_lock); 2163 return (0); 2164 } 2165 2166 static int 2167 zone_set_initname(zone_t *zone, const char *zone_initname) 2168 { 2169 char initname[INITNAME_SZ]; 2170 size_t len; 2171 int err = 0; 2172 2173 ASSERT(zone != global_zone); 2174 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2175 return (err); /* EFAULT or ENAMETOOLONG */ 2176 2177 if (zone->zone_initname != NULL) 2178 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2179 2180 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2181 (void) strcpy(zone->zone_initname, initname); 2182 return (0); 2183 } 2184 2185 static int 2186 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2187 { 2188 uint64_t mcap; 2189 int err = 0; 2190 2191 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2192 zone->zone_phys_mcap = mcap; 2193 2194 return (err); 2195 } 2196 2197 static int 2198 zone_set_sched_class(zone_t *zone, const char *new_class) 2199 { 2200 char sched_class[PC_CLNMSZ]; 2201 id_t classid; 2202 int err; 2203 2204 ASSERT(zone != global_zone); 2205 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2206 return (err); /* EFAULT or ENAMETOOLONG */ 2207 2208 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2209 return (set_errno(EINVAL)); 2210 zone->zone_defaultcid = classid; 2211 ASSERT(zone->zone_defaultcid > 0 && 2212 zone->zone_defaultcid < loaded_classes); 2213 2214 return (0); 2215 } 2216 2217 /* 2218 * Block indefinitely waiting for (zone_status >= status) 2219 */ 2220 void 2221 zone_status_wait(zone_t *zone, zone_status_t status) 2222 { 2223 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2224 2225 mutex_enter(&zone_status_lock); 2226 while (zone->zone_status < status) { 2227 cv_wait(&zone->zone_cv, &zone_status_lock); 2228 } 2229 mutex_exit(&zone_status_lock); 2230 } 2231 2232 /* 2233 * Private CPR-safe version of zone_status_wait(). 2234 */ 2235 static void 2236 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2237 { 2238 callb_cpr_t cprinfo; 2239 2240 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2241 2242 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2243 str); 2244 mutex_enter(&zone_status_lock); 2245 while (zone->zone_status < status) { 2246 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2247 cv_wait(&zone->zone_cv, &zone_status_lock); 2248 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2249 } 2250 /* 2251 * zone_status_lock is implicitly released by the following. 2252 */ 2253 CALLB_CPR_EXIT(&cprinfo); 2254 } 2255 2256 /* 2257 * Block until zone enters requested state or signal is received. Return (0) 2258 * if signaled, non-zero otherwise. 2259 */ 2260 int 2261 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2262 { 2263 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2264 2265 mutex_enter(&zone_status_lock); 2266 while (zone->zone_status < status) { 2267 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2268 mutex_exit(&zone_status_lock); 2269 return (0); 2270 } 2271 } 2272 mutex_exit(&zone_status_lock); 2273 return (1); 2274 } 2275 2276 /* 2277 * Block until the zone enters the requested state or the timeout expires, 2278 * whichever happens first. Return (-1) if operation timed out, time remaining 2279 * otherwise. 2280 */ 2281 clock_t 2282 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2283 { 2284 clock_t timeleft = 0; 2285 2286 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2287 2288 mutex_enter(&zone_status_lock); 2289 while (zone->zone_status < status && timeleft != -1) { 2290 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2291 } 2292 mutex_exit(&zone_status_lock); 2293 return (timeleft); 2294 } 2295 2296 /* 2297 * Block until the zone enters the requested state, the current process is 2298 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2299 * operation timed out, 0 if signaled, time remaining otherwise. 2300 */ 2301 clock_t 2302 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2303 { 2304 clock_t timeleft = tim - ddi_get_lbolt(); 2305 2306 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2307 2308 mutex_enter(&zone_status_lock); 2309 while (zone->zone_status < status) { 2310 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2311 tim); 2312 if (timeleft <= 0) 2313 break; 2314 } 2315 mutex_exit(&zone_status_lock); 2316 return (timeleft); 2317 } 2318 2319 /* 2320 * Zones have two reference counts: one for references from credential 2321 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2322 * This is so we can allow a zone to be rebooted while there are still 2323 * outstanding cred references, since certain drivers cache dblks (which 2324 * implicitly results in cached creds). We wait for zone_ref to drop to 2325 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2326 * later freed when the zone_cred_ref drops to 0, though nothing other 2327 * than the zone id and privilege set should be accessed once the zone 2328 * is "dead". 2329 * 2330 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2331 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2332 * to 0. This can be useful to flush out other sources of cached creds 2333 * that may be less innocuous than the driver case. 2334 */ 2335 2336 int zone_wait_for_cred = 0; 2337 2338 static void 2339 zone_hold_locked(zone_t *z) 2340 { 2341 ASSERT(MUTEX_HELD(&z->zone_lock)); 2342 z->zone_ref++; 2343 ASSERT(z->zone_ref != 0); 2344 } 2345 2346 void 2347 zone_hold(zone_t *z) 2348 { 2349 mutex_enter(&z->zone_lock); 2350 zone_hold_locked(z); 2351 mutex_exit(&z->zone_lock); 2352 } 2353 2354 /* 2355 * If the non-cred ref count drops to 1 and either the cred ref count 2356 * is 0 or we aren't waiting for cred references, the zone is ready to 2357 * be destroyed. 2358 */ 2359 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2360 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2361 2362 void 2363 zone_rele(zone_t *z) 2364 { 2365 boolean_t wakeup; 2366 2367 mutex_enter(&z->zone_lock); 2368 ASSERT(z->zone_ref != 0); 2369 z->zone_ref--; 2370 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2371 /* no more refs, free the structure */ 2372 mutex_exit(&z->zone_lock); 2373 zone_free(z); 2374 return; 2375 } 2376 /* signal zone_destroy so the zone can finish halting */ 2377 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2378 mutex_exit(&z->zone_lock); 2379 2380 if (wakeup) { 2381 /* 2382 * Grabbing zonehash_lock here effectively synchronizes with 2383 * zone_destroy() to avoid missed signals. 2384 */ 2385 mutex_enter(&zonehash_lock); 2386 cv_broadcast(&zone_destroy_cv); 2387 mutex_exit(&zonehash_lock); 2388 } 2389 } 2390 2391 void 2392 zone_cred_hold(zone_t *z) 2393 { 2394 mutex_enter(&z->zone_lock); 2395 z->zone_cred_ref++; 2396 ASSERT(z->zone_cred_ref != 0); 2397 mutex_exit(&z->zone_lock); 2398 } 2399 2400 void 2401 zone_cred_rele(zone_t *z) 2402 { 2403 boolean_t wakeup; 2404 2405 mutex_enter(&z->zone_lock); 2406 ASSERT(z->zone_cred_ref != 0); 2407 z->zone_cred_ref--; 2408 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2409 /* no more refs, free the structure */ 2410 mutex_exit(&z->zone_lock); 2411 zone_free(z); 2412 return; 2413 } 2414 /* 2415 * If zone_destroy is waiting for the cred references to drain 2416 * out, and they have, signal it. 2417 */ 2418 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2419 zone_status_get(z) >= ZONE_IS_DEAD); 2420 mutex_exit(&z->zone_lock); 2421 2422 if (wakeup) { 2423 /* 2424 * Grabbing zonehash_lock here effectively synchronizes with 2425 * zone_destroy() to avoid missed signals. 2426 */ 2427 mutex_enter(&zonehash_lock); 2428 cv_broadcast(&zone_destroy_cv); 2429 mutex_exit(&zonehash_lock); 2430 } 2431 } 2432 2433 void 2434 zone_task_hold(zone_t *z) 2435 { 2436 mutex_enter(&z->zone_lock); 2437 z->zone_ntasks++; 2438 ASSERT(z->zone_ntasks != 0); 2439 mutex_exit(&z->zone_lock); 2440 } 2441 2442 void 2443 zone_task_rele(zone_t *zone) 2444 { 2445 uint_t refcnt; 2446 2447 mutex_enter(&zone->zone_lock); 2448 ASSERT(zone->zone_ntasks != 0); 2449 refcnt = --zone->zone_ntasks; 2450 if (refcnt > 1) { /* Common case */ 2451 mutex_exit(&zone->zone_lock); 2452 return; 2453 } 2454 zone_hold_locked(zone); /* so we can use the zone_t later */ 2455 mutex_exit(&zone->zone_lock); 2456 if (refcnt == 1) { 2457 /* 2458 * See if the zone is shutting down. 2459 */ 2460 mutex_enter(&zone_status_lock); 2461 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2462 goto out; 2463 } 2464 2465 /* 2466 * Make sure the ntasks didn't change since we 2467 * dropped zone_lock. 2468 */ 2469 mutex_enter(&zone->zone_lock); 2470 if (refcnt != zone->zone_ntasks) { 2471 mutex_exit(&zone->zone_lock); 2472 goto out; 2473 } 2474 mutex_exit(&zone->zone_lock); 2475 2476 /* 2477 * No more user processes in the zone. The zone is empty. 2478 */ 2479 zone_status_set(zone, ZONE_IS_EMPTY); 2480 goto out; 2481 } 2482 2483 ASSERT(refcnt == 0); 2484 /* 2485 * zsched has exited; the zone is dead. 2486 */ 2487 zone->zone_zsched = NULL; /* paranoia */ 2488 mutex_enter(&zone_status_lock); 2489 zone_status_set(zone, ZONE_IS_DEAD); 2490 out: 2491 mutex_exit(&zone_status_lock); 2492 zone_rele(zone); 2493 } 2494 2495 zoneid_t 2496 getzoneid(void) 2497 { 2498 return (curproc->p_zone->zone_id); 2499 } 2500 2501 /* 2502 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2503 * check the validity of a zone's state. 2504 */ 2505 static zone_t * 2506 zone_find_all_by_id(zoneid_t zoneid) 2507 { 2508 mod_hash_val_t hv; 2509 zone_t *zone = NULL; 2510 2511 ASSERT(MUTEX_HELD(&zonehash_lock)); 2512 2513 if (mod_hash_find(zonehashbyid, 2514 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2515 zone = (zone_t *)hv; 2516 return (zone); 2517 } 2518 2519 static zone_t * 2520 zone_find_all_by_label(const ts_label_t *label) 2521 { 2522 mod_hash_val_t hv; 2523 zone_t *zone = NULL; 2524 2525 ASSERT(MUTEX_HELD(&zonehash_lock)); 2526 2527 /* 2528 * zonehashbylabel is not maintained for unlabeled systems 2529 */ 2530 if (!is_system_labeled()) 2531 return (NULL); 2532 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2533 zone = (zone_t *)hv; 2534 return (zone); 2535 } 2536 2537 static zone_t * 2538 zone_find_all_by_name(char *name) 2539 { 2540 mod_hash_val_t hv; 2541 zone_t *zone = NULL; 2542 2543 ASSERT(MUTEX_HELD(&zonehash_lock)); 2544 2545 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2546 zone = (zone_t *)hv; 2547 return (zone); 2548 } 2549 2550 /* 2551 * Public interface for looking up a zone by zoneid. Only returns the zone if 2552 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2553 * Caller must call zone_rele() once it is done with the zone. 2554 * 2555 * The zone may begin the zone_destroy() sequence immediately after this 2556 * function returns, but may be safely used until zone_rele() is called. 2557 */ 2558 zone_t * 2559 zone_find_by_id(zoneid_t zoneid) 2560 { 2561 zone_t *zone; 2562 zone_status_t status; 2563 2564 mutex_enter(&zonehash_lock); 2565 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2566 mutex_exit(&zonehash_lock); 2567 return (NULL); 2568 } 2569 status = zone_status_get(zone); 2570 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2571 /* 2572 * For all practical purposes the zone doesn't exist. 2573 */ 2574 mutex_exit(&zonehash_lock); 2575 return (NULL); 2576 } 2577 zone_hold(zone); 2578 mutex_exit(&zonehash_lock); 2579 return (zone); 2580 } 2581 2582 /* 2583 * Similar to zone_find_by_id, but using zone label as the key. 2584 */ 2585 zone_t * 2586 zone_find_by_label(const ts_label_t *label) 2587 { 2588 zone_t *zone; 2589 zone_status_t status; 2590 2591 mutex_enter(&zonehash_lock); 2592 if ((zone = zone_find_all_by_label(label)) == NULL) { 2593 mutex_exit(&zonehash_lock); 2594 return (NULL); 2595 } 2596 2597 status = zone_status_get(zone); 2598 if (status > ZONE_IS_DOWN) { 2599 /* 2600 * For all practical purposes the zone doesn't exist. 2601 */ 2602 mutex_exit(&zonehash_lock); 2603 return (NULL); 2604 } 2605 zone_hold(zone); 2606 mutex_exit(&zonehash_lock); 2607 return (zone); 2608 } 2609 2610 /* 2611 * Similar to zone_find_by_id, but using zone name as the key. 2612 */ 2613 zone_t * 2614 zone_find_by_name(char *name) 2615 { 2616 zone_t *zone; 2617 zone_status_t status; 2618 2619 mutex_enter(&zonehash_lock); 2620 if ((zone = zone_find_all_by_name(name)) == NULL) { 2621 mutex_exit(&zonehash_lock); 2622 return (NULL); 2623 } 2624 status = zone_status_get(zone); 2625 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2626 /* 2627 * For all practical purposes the zone doesn't exist. 2628 */ 2629 mutex_exit(&zonehash_lock); 2630 return (NULL); 2631 } 2632 zone_hold(zone); 2633 mutex_exit(&zonehash_lock); 2634 return (zone); 2635 } 2636 2637 /* 2638 * Similar to zone_find_by_id(), using the path as a key. For instance, 2639 * if there is a zone "foo" rooted at /foo/root, and the path argument 2640 * is "/foo/root/proc", it will return the held zone_t corresponding to 2641 * zone "foo". 2642 * 2643 * zone_find_by_path() always returns a non-NULL value, since at the 2644 * very least every path will be contained in the global zone. 2645 * 2646 * As with the other zone_find_by_*() functions, the caller is 2647 * responsible for zone_rele()ing the return value of this function. 2648 */ 2649 zone_t * 2650 zone_find_by_path(const char *path) 2651 { 2652 zone_t *zone; 2653 zone_t *zret = NULL; 2654 zone_status_t status; 2655 2656 if (path == NULL) { 2657 /* 2658 * Call from rootconf(). 2659 */ 2660 zone_hold(global_zone); 2661 return (global_zone); 2662 } 2663 ASSERT(*path == '/'); 2664 mutex_enter(&zonehash_lock); 2665 for (zone = list_head(&zone_active); zone != NULL; 2666 zone = list_next(&zone_active, zone)) { 2667 if (ZONE_PATH_VISIBLE(path, zone)) 2668 zret = zone; 2669 } 2670 ASSERT(zret != NULL); 2671 status = zone_status_get(zret); 2672 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2673 /* 2674 * Zone practically doesn't exist. 2675 */ 2676 zret = global_zone; 2677 } 2678 zone_hold(zret); 2679 mutex_exit(&zonehash_lock); 2680 return (zret); 2681 } 2682 2683 /* 2684 * Get the number of cpus visible to this zone. The system-wide global 2685 * 'ncpus' is returned if pools are disabled, the caller is in the 2686 * global zone, or a NULL zone argument is passed in. 2687 */ 2688 int 2689 zone_ncpus_get(zone_t *zone) 2690 { 2691 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2692 2693 return (myncpus != 0 ? myncpus : ncpus); 2694 } 2695 2696 /* 2697 * Get the number of online cpus visible to this zone. The system-wide 2698 * global 'ncpus_online' is returned if pools are disabled, the caller 2699 * is in the global zone, or a NULL zone argument is passed in. 2700 */ 2701 int 2702 zone_ncpus_online_get(zone_t *zone) 2703 { 2704 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 2705 2706 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 2707 } 2708 2709 /* 2710 * Return the pool to which the zone is currently bound. 2711 */ 2712 pool_t * 2713 zone_pool_get(zone_t *zone) 2714 { 2715 ASSERT(pool_lock_held()); 2716 2717 return (zone->zone_pool); 2718 } 2719 2720 /* 2721 * Set the zone's pool pointer and update the zone's visibility to match 2722 * the resources in the new pool. 2723 */ 2724 void 2725 zone_pool_set(zone_t *zone, pool_t *pool) 2726 { 2727 ASSERT(pool_lock_held()); 2728 ASSERT(MUTEX_HELD(&cpu_lock)); 2729 2730 zone->zone_pool = pool; 2731 zone_pset_set(zone, pool->pool_pset->pset_id); 2732 } 2733 2734 /* 2735 * Return the cached value of the id of the processor set to which the 2736 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 2737 * facility is disabled. 2738 */ 2739 psetid_t 2740 zone_pset_get(zone_t *zone) 2741 { 2742 ASSERT(MUTEX_HELD(&cpu_lock)); 2743 2744 return (zone->zone_psetid); 2745 } 2746 2747 /* 2748 * Set the cached value of the id of the processor set to which the zone 2749 * is currently bound. Also update the zone's visibility to match the 2750 * resources in the new processor set. 2751 */ 2752 void 2753 zone_pset_set(zone_t *zone, psetid_t newpsetid) 2754 { 2755 psetid_t oldpsetid; 2756 2757 ASSERT(MUTEX_HELD(&cpu_lock)); 2758 oldpsetid = zone_pset_get(zone); 2759 2760 if (oldpsetid == newpsetid) 2761 return; 2762 /* 2763 * Global zone sees all. 2764 */ 2765 if (zone != global_zone) { 2766 zone->zone_psetid = newpsetid; 2767 if (newpsetid != ZONE_PS_INVAL) 2768 pool_pset_visibility_add(newpsetid, zone); 2769 if (oldpsetid != ZONE_PS_INVAL) 2770 pool_pset_visibility_remove(oldpsetid, zone); 2771 } 2772 /* 2773 * Disabling pools, so we should start using the global values 2774 * for ncpus and ncpus_online. 2775 */ 2776 if (newpsetid == ZONE_PS_INVAL) { 2777 zone->zone_ncpus = 0; 2778 zone->zone_ncpus_online = 0; 2779 } 2780 } 2781 2782 /* 2783 * Walk the list of active zones and issue the provided callback for 2784 * each of them. 2785 * 2786 * Caller must not be holding any locks that may be acquired under 2787 * zonehash_lock. See comment at the beginning of the file for a list of 2788 * common locks and their interactions with zones. 2789 */ 2790 int 2791 zone_walk(int (*cb)(zone_t *, void *), void *data) 2792 { 2793 zone_t *zone; 2794 int ret = 0; 2795 zone_status_t status; 2796 2797 mutex_enter(&zonehash_lock); 2798 for (zone = list_head(&zone_active); zone != NULL; 2799 zone = list_next(&zone_active, zone)) { 2800 /* 2801 * Skip zones that shouldn't be externally visible. 2802 */ 2803 status = zone_status_get(zone); 2804 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2805 continue; 2806 /* 2807 * Bail immediately if any callback invocation returns a 2808 * non-zero value. 2809 */ 2810 ret = (*cb)(zone, data); 2811 if (ret != 0) 2812 break; 2813 } 2814 mutex_exit(&zonehash_lock); 2815 return (ret); 2816 } 2817 2818 static int 2819 zone_set_root(zone_t *zone, const char *upath) 2820 { 2821 vnode_t *vp; 2822 int trycount; 2823 int error = 0; 2824 char *path; 2825 struct pathname upn, pn; 2826 size_t pathlen; 2827 2828 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2829 return (error); 2830 2831 pn_alloc(&pn); 2832 2833 /* prevent infinite loop */ 2834 trycount = 10; 2835 for (;;) { 2836 if (--trycount <= 0) { 2837 error = ESTALE; 2838 goto out; 2839 } 2840 2841 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2842 /* 2843 * VOP_ACCESS() may cover 'vp' with a new 2844 * filesystem, if 'vp' is an autoFS vnode. 2845 * Get the new 'vp' if so. 2846 */ 2847 if ((error = 2848 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 2849 (!vn_ismntpt(vp) || 2850 (error = traverse(&vp)) == 0)) { 2851 pathlen = pn.pn_pathlen + 2; 2852 path = kmem_alloc(pathlen, KM_SLEEP); 2853 (void) strncpy(path, pn.pn_path, 2854 pn.pn_pathlen + 1); 2855 path[pathlen - 2] = '/'; 2856 path[pathlen - 1] = '\0'; 2857 pn_free(&pn); 2858 pn_free(&upn); 2859 2860 /* Success! */ 2861 break; 2862 } 2863 VN_RELE(vp); 2864 } 2865 if (error != ESTALE) 2866 goto out; 2867 } 2868 2869 ASSERT(error == 0); 2870 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2871 zone->zone_rootpath = path; 2872 zone->zone_rootpathlen = pathlen; 2873 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2874 zone->zone_flags |= ZF_IS_SCRATCH; 2875 return (0); 2876 2877 out: 2878 pn_free(&pn); 2879 pn_free(&upn); 2880 return (error); 2881 } 2882 2883 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2884 ((c) >= 'a' && (c) <= 'z') || \ 2885 ((c) >= 'A' && (c) <= 'Z')) 2886 2887 static int 2888 zone_set_name(zone_t *zone, const char *uname) 2889 { 2890 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2891 size_t len; 2892 int i, err; 2893 2894 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2895 kmem_free(kname, ZONENAME_MAX); 2896 return (err); /* EFAULT or ENAMETOOLONG */ 2897 } 2898 2899 /* must be less than ZONENAME_MAX */ 2900 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2901 kmem_free(kname, ZONENAME_MAX); 2902 return (EINVAL); 2903 } 2904 2905 /* 2906 * Name must start with an alphanumeric and must contain only 2907 * alphanumerics, '-', '_' and '.'. 2908 */ 2909 if (!isalnum(kname[0])) { 2910 kmem_free(kname, ZONENAME_MAX); 2911 return (EINVAL); 2912 } 2913 for (i = 1; i < len - 1; i++) { 2914 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2915 kname[i] != '.') { 2916 kmem_free(kname, ZONENAME_MAX); 2917 return (EINVAL); 2918 } 2919 } 2920 2921 zone->zone_name = kname; 2922 return (0); 2923 } 2924 2925 /* 2926 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 2927 * is NULL or it points to a zone with no hostid emulation, then the machine's 2928 * hostid (i.e., the global zone's hostid) is returned. This function returns 2929 * zero if neither the zone nor the host machine (global zone) have hostids. It 2930 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 2931 * hostid and the machine's hostid is invalid. 2932 */ 2933 uint32_t 2934 zone_get_hostid(zone_t *zonep) 2935 { 2936 unsigned long machine_hostid; 2937 2938 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 2939 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 2940 return (HW_INVALID_HOSTID); 2941 return ((uint32_t)machine_hostid); 2942 } 2943 return (zonep->zone_hostid); 2944 } 2945 2946 /* 2947 * Similar to thread_create(), but makes sure the thread is in the appropriate 2948 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 2949 */ 2950 /*ARGSUSED*/ 2951 kthread_t * 2952 zthread_create( 2953 caddr_t stk, 2954 size_t stksize, 2955 void (*proc)(), 2956 void *arg, 2957 size_t len, 2958 pri_t pri) 2959 { 2960 kthread_t *t; 2961 zone_t *zone = curproc->p_zone; 2962 proc_t *pp = zone->zone_zsched; 2963 2964 zone_hold(zone); /* Reference to be dropped when thread exits */ 2965 2966 /* 2967 * No-one should be trying to create threads if the zone is shutting 2968 * down and there aren't any kernel threads around. See comment 2969 * in zthread_exit(). 2970 */ 2971 ASSERT(!(zone->zone_kthreads == NULL && 2972 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2973 /* 2974 * Create a thread, but don't let it run until we've finished setting 2975 * things up. 2976 */ 2977 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2978 ASSERT(t->t_forw == NULL); 2979 mutex_enter(&zone_status_lock); 2980 if (zone->zone_kthreads == NULL) { 2981 t->t_forw = t->t_back = t; 2982 } else { 2983 kthread_t *tx = zone->zone_kthreads; 2984 2985 t->t_forw = tx; 2986 t->t_back = tx->t_back; 2987 tx->t_back->t_forw = t; 2988 tx->t_back = t; 2989 } 2990 zone->zone_kthreads = t; 2991 mutex_exit(&zone_status_lock); 2992 2993 mutex_enter(&pp->p_lock); 2994 t->t_proc_flag |= TP_ZTHREAD; 2995 project_rele(t->t_proj); 2996 t->t_proj = project_hold(pp->p_task->tk_proj); 2997 2998 /* 2999 * Setup complete, let it run. 3000 */ 3001 thread_lock(t); 3002 t->t_schedflag |= TS_ALLSTART; 3003 setrun_locked(t); 3004 thread_unlock(t); 3005 3006 mutex_exit(&pp->p_lock); 3007 3008 return (t); 3009 } 3010 3011 /* 3012 * Similar to thread_exit(). Must be called by threads created via 3013 * zthread_exit(). 3014 */ 3015 void 3016 zthread_exit(void) 3017 { 3018 kthread_t *t = curthread; 3019 proc_t *pp = curproc; 3020 zone_t *zone = pp->p_zone; 3021 3022 mutex_enter(&zone_status_lock); 3023 3024 /* 3025 * Reparent to p0 3026 */ 3027 kpreempt_disable(); 3028 mutex_enter(&pp->p_lock); 3029 t->t_proc_flag &= ~TP_ZTHREAD; 3030 t->t_procp = &p0; 3031 hat_thread_exit(t); 3032 mutex_exit(&pp->p_lock); 3033 kpreempt_enable(); 3034 3035 if (t->t_back == t) { 3036 ASSERT(t->t_forw == t); 3037 /* 3038 * If the zone is empty, once the thread count 3039 * goes to zero no further kernel threads can be 3040 * created. This is because if the creator is a process 3041 * in the zone, then it must have exited before the zone 3042 * state could be set to ZONE_IS_EMPTY. 3043 * Otherwise, if the creator is a kernel thread in the 3044 * zone, the thread count is non-zero. 3045 * 3046 * This really means that non-zone kernel threads should 3047 * not create zone kernel threads. 3048 */ 3049 zone->zone_kthreads = NULL; 3050 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3051 zone_status_set(zone, ZONE_IS_DOWN); 3052 /* 3053 * Remove any CPU caps on this zone. 3054 */ 3055 cpucaps_zone_remove(zone); 3056 } 3057 } else { 3058 t->t_forw->t_back = t->t_back; 3059 t->t_back->t_forw = t->t_forw; 3060 if (zone->zone_kthreads == t) 3061 zone->zone_kthreads = t->t_forw; 3062 } 3063 mutex_exit(&zone_status_lock); 3064 zone_rele(zone); 3065 thread_exit(); 3066 /* NOTREACHED */ 3067 } 3068 3069 static void 3070 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3071 { 3072 vnode_t *oldvp; 3073 3074 /* we're going to hold a reference here to the directory */ 3075 VN_HOLD(vp); 3076 3077 /* update abs cwd/root path see c2/audit.c */ 3078 if (AU_AUDITING()) 3079 audit_chdirec(vp, vpp); 3080 3081 mutex_enter(&pp->p_lock); 3082 oldvp = *vpp; 3083 *vpp = vp; 3084 mutex_exit(&pp->p_lock); 3085 if (oldvp != NULL) 3086 VN_RELE(oldvp); 3087 } 3088 3089 /* 3090 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3091 */ 3092 static int 3093 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3094 { 3095 nvpair_t *nvp = NULL; 3096 boolean_t priv_set = B_FALSE; 3097 boolean_t limit_set = B_FALSE; 3098 boolean_t action_set = B_FALSE; 3099 3100 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3101 const char *name; 3102 uint64_t ui64; 3103 3104 name = nvpair_name(nvp); 3105 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3106 return (EINVAL); 3107 (void) nvpair_value_uint64(nvp, &ui64); 3108 if (strcmp(name, "privilege") == 0) { 3109 /* 3110 * Currently only privileged values are allowed, but 3111 * this may change in the future. 3112 */ 3113 if (ui64 != RCPRIV_PRIVILEGED) 3114 return (EINVAL); 3115 rv->rcv_privilege = ui64; 3116 priv_set = B_TRUE; 3117 } else if (strcmp(name, "limit") == 0) { 3118 rv->rcv_value = ui64; 3119 limit_set = B_TRUE; 3120 } else if (strcmp(name, "action") == 0) { 3121 if (ui64 != RCTL_LOCAL_NOACTION && 3122 ui64 != RCTL_LOCAL_DENY) 3123 return (EINVAL); 3124 rv->rcv_flagaction = ui64; 3125 action_set = B_TRUE; 3126 } else { 3127 return (EINVAL); 3128 } 3129 } 3130 3131 if (!(priv_set && limit_set && action_set)) 3132 return (EINVAL); 3133 rv->rcv_action_signal = 0; 3134 rv->rcv_action_recipient = NULL; 3135 rv->rcv_action_recip_pid = -1; 3136 rv->rcv_firing_time = 0; 3137 3138 return (0); 3139 } 3140 3141 /* 3142 * Non-global zone version of start_init. 3143 */ 3144 void 3145 zone_start_init(void) 3146 { 3147 proc_t *p = ttoproc(curthread); 3148 zone_t *z = p->p_zone; 3149 3150 ASSERT(!INGLOBALZONE(curproc)); 3151 3152 /* 3153 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3154 * storing just the pid of init is sufficient. 3155 */ 3156 z->zone_proc_initpid = p->p_pid; 3157 3158 /* 3159 * We maintain zone_boot_err so that we can return the cause of the 3160 * failure back to the caller of the zone_boot syscall. 3161 */ 3162 p->p_zone->zone_boot_err = start_init_common(); 3163 3164 /* 3165 * We will prevent booting zones from becoming running zones if the 3166 * global zone is shutting down. 3167 */ 3168 mutex_enter(&zone_status_lock); 3169 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3170 ZONE_IS_SHUTTING_DOWN) { 3171 /* 3172 * Make sure we are still in the booting state-- we could have 3173 * raced and already be shutting down, or even further along. 3174 */ 3175 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3176 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3177 } 3178 mutex_exit(&zone_status_lock); 3179 /* It's gone bad, dispose of the process */ 3180 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3181 mutex_enter(&p->p_lock); 3182 ASSERT(p->p_flag & SEXITLWPS); 3183 lwp_exit(); 3184 } 3185 } else { 3186 if (zone_status_get(z) == ZONE_IS_BOOTING) 3187 zone_status_set(z, ZONE_IS_RUNNING); 3188 mutex_exit(&zone_status_lock); 3189 /* cause the process to return to userland. */ 3190 lwp_rtt(); 3191 } 3192 } 3193 3194 struct zsched_arg { 3195 zone_t *zone; 3196 nvlist_t *nvlist; 3197 }; 3198 3199 /* 3200 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3201 * anything to do with scheduling, but rather with the fact that 3202 * per-zone kernel threads are parented to zsched, just like regular 3203 * kernel threads are parented to sched (p0). 3204 * 3205 * zsched is also responsible for launching init for the zone. 3206 */ 3207 static void 3208 zsched(void *arg) 3209 { 3210 struct zsched_arg *za = arg; 3211 proc_t *pp = curproc; 3212 proc_t *initp = proc_init; 3213 zone_t *zone = za->zone; 3214 cred_t *cr, *oldcred; 3215 rctl_set_t *set; 3216 rctl_alloc_gp_t *gp; 3217 contract_t *ct = NULL; 3218 task_t *tk, *oldtk; 3219 rctl_entity_p_t e; 3220 kproject_t *pj; 3221 3222 nvlist_t *nvl = za->nvlist; 3223 nvpair_t *nvp = NULL; 3224 3225 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3226 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3227 PTOU(pp)->u_argc = 0; 3228 PTOU(pp)->u_argv = NULL; 3229 PTOU(pp)->u_envp = NULL; 3230 closeall(P_FINFO(pp)); 3231 3232 /* 3233 * We are this zone's "zsched" process. As the zone isn't generally 3234 * visible yet we don't need to grab any locks before initializing its 3235 * zone_proc pointer. 3236 */ 3237 zone_hold(zone); /* this hold is released by zone_destroy() */ 3238 zone->zone_zsched = pp; 3239 mutex_enter(&pp->p_lock); 3240 pp->p_zone = zone; 3241 mutex_exit(&pp->p_lock); 3242 3243 /* 3244 * Disassociate process from its 'parent'; parent ourselves to init 3245 * (pid 1) and change other values as needed. 3246 */ 3247 sess_create(); 3248 3249 mutex_enter(&pidlock); 3250 proc_detach(pp); 3251 pp->p_ppid = 1; 3252 pp->p_flag |= SZONETOP; 3253 pp->p_ancpid = 1; 3254 pp->p_parent = initp; 3255 pp->p_psibling = NULL; 3256 if (initp->p_child) 3257 initp->p_child->p_psibling = pp; 3258 pp->p_sibling = initp->p_child; 3259 initp->p_child = pp; 3260 3261 /* Decrement what newproc() incremented. */ 3262 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3263 /* 3264 * Our credentials are about to become kcred-like, so we don't care 3265 * about the caller's ruid. 3266 */ 3267 upcount_inc(crgetruid(kcred), zone->zone_id); 3268 mutex_exit(&pidlock); 3269 3270 /* 3271 * getting out of global zone, so decrement lwp counts 3272 */ 3273 pj = pp->p_task->tk_proj; 3274 mutex_enter(&global_zone->zone_nlwps_lock); 3275 pj->kpj_nlwps -= pp->p_lwpcnt; 3276 global_zone->zone_nlwps -= pp->p_lwpcnt; 3277 mutex_exit(&global_zone->zone_nlwps_lock); 3278 3279 /* 3280 * Decrement locked memory counts on old zone and project. 3281 */ 3282 mutex_enter(&global_zone->zone_mem_lock); 3283 global_zone->zone_locked_mem -= pp->p_locked_mem; 3284 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3285 mutex_exit(&global_zone->zone_mem_lock); 3286 3287 /* 3288 * Create and join a new task in project '0' of this zone. 3289 * 3290 * We don't need to call holdlwps() since we know we're the only lwp in 3291 * this process. 3292 * 3293 * task_join() returns with p_lock held. 3294 */ 3295 tk = task_create(0, zone); 3296 mutex_enter(&cpu_lock); 3297 oldtk = task_join(tk, 0); 3298 3299 pj = pp->p_task->tk_proj; 3300 3301 mutex_enter(&zone->zone_mem_lock); 3302 zone->zone_locked_mem += pp->p_locked_mem; 3303 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3304 mutex_exit(&zone->zone_mem_lock); 3305 3306 /* 3307 * add lwp counts to zsched's zone, and increment project's task count 3308 * due to the task created in the above tasksys_settaskid 3309 */ 3310 3311 mutex_enter(&zone->zone_nlwps_lock); 3312 pj->kpj_nlwps += pp->p_lwpcnt; 3313 pj->kpj_ntasks += 1; 3314 zone->zone_nlwps += pp->p_lwpcnt; 3315 mutex_exit(&zone->zone_nlwps_lock); 3316 3317 mutex_exit(&curproc->p_lock); 3318 mutex_exit(&cpu_lock); 3319 task_rele(oldtk); 3320 3321 /* 3322 * The process was created by a process in the global zone, hence the 3323 * credentials are wrong. We might as well have kcred-ish credentials. 3324 */ 3325 cr = zone->zone_kcred; 3326 crhold(cr); 3327 mutex_enter(&pp->p_crlock); 3328 oldcred = pp->p_cred; 3329 pp->p_cred = cr; 3330 mutex_exit(&pp->p_crlock); 3331 crfree(oldcred); 3332 3333 /* 3334 * Hold credentials again (for thread) 3335 */ 3336 crhold(cr); 3337 3338 /* 3339 * p_lwpcnt can't change since this is a kernel process. 3340 */ 3341 crset(pp, cr); 3342 3343 /* 3344 * Chroot 3345 */ 3346 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3347 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3348 3349 /* 3350 * Initialize zone's rctl set. 3351 */ 3352 set = rctl_set_create(); 3353 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3354 mutex_enter(&pp->p_lock); 3355 e.rcep_p.zone = zone; 3356 e.rcep_t = RCENTITY_ZONE; 3357 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3358 mutex_exit(&pp->p_lock); 3359 rctl_prealloc_destroy(gp); 3360 3361 /* 3362 * Apply the rctls passed in to zone_create(). This is basically a list 3363 * assignment: all of the old values are removed and the new ones 3364 * inserted. That is, if an empty list is passed in, all values are 3365 * removed. 3366 */ 3367 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3368 rctl_dict_entry_t *rde; 3369 rctl_hndl_t hndl; 3370 char *name; 3371 nvlist_t **nvlarray; 3372 uint_t i, nelem; 3373 int error; /* For ASSERT()s */ 3374 3375 name = nvpair_name(nvp); 3376 hndl = rctl_hndl_lookup(name); 3377 ASSERT(hndl != -1); 3378 rde = rctl_dict_lookup_hndl(hndl); 3379 ASSERT(rde != NULL); 3380 3381 for (; /* ever */; ) { 3382 rctl_val_t oval; 3383 3384 mutex_enter(&pp->p_lock); 3385 error = rctl_local_get(hndl, NULL, &oval, pp); 3386 mutex_exit(&pp->p_lock); 3387 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3388 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3389 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3390 break; 3391 mutex_enter(&pp->p_lock); 3392 error = rctl_local_delete(hndl, &oval, pp); 3393 mutex_exit(&pp->p_lock); 3394 ASSERT(error == 0); 3395 } 3396 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3397 ASSERT(error == 0); 3398 for (i = 0; i < nelem; i++) { 3399 rctl_val_t *nvalp; 3400 3401 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3402 error = nvlist2rctlval(nvlarray[i], nvalp); 3403 ASSERT(error == 0); 3404 /* 3405 * rctl_local_insert can fail if the value being 3406 * inserted is a duplicate; this is OK. 3407 */ 3408 mutex_enter(&pp->p_lock); 3409 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3410 kmem_cache_free(rctl_val_cache, nvalp); 3411 mutex_exit(&pp->p_lock); 3412 } 3413 } 3414 /* 3415 * Tell the world that we're done setting up. 3416 * 3417 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3418 * and atomically set the zone's processor set visibility. Once 3419 * we drop pool_lock() this zone will automatically get updated 3420 * to reflect any future changes to the pools configuration. 3421 * 3422 * Note that after we drop the locks below (zonehash_lock in 3423 * particular) other operations such as a zone_getattr call can 3424 * now proceed and observe the zone. That is the reason for doing a 3425 * state transition to the INITIALIZED state. 3426 */ 3427 pool_lock(); 3428 mutex_enter(&cpu_lock); 3429 mutex_enter(&zonehash_lock); 3430 zone_uniqid(zone); 3431 zone_zsd_configure(zone); 3432 if (pool_state == POOL_ENABLED) 3433 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3434 mutex_enter(&zone_status_lock); 3435 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3436 zone_status_set(zone, ZONE_IS_INITIALIZED); 3437 mutex_exit(&zone_status_lock); 3438 mutex_exit(&zonehash_lock); 3439 mutex_exit(&cpu_lock); 3440 pool_unlock(); 3441 3442 /* Now call the create callback for this key */ 3443 zsd_apply_all_keys(zsd_apply_create, zone); 3444 3445 /* The callbacks are complete. Mark ZONE_IS_READY */ 3446 mutex_enter(&zone_status_lock); 3447 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3448 zone_status_set(zone, ZONE_IS_READY); 3449 mutex_exit(&zone_status_lock); 3450 3451 /* 3452 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3453 * we launch init, and set the state to running. 3454 */ 3455 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3456 3457 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3458 id_t cid; 3459 3460 /* 3461 * Ok, this is a little complicated. We need to grab the 3462 * zone's pool's scheduling class ID; note that by now, we 3463 * are already bound to a pool if we need to be (zoneadmd 3464 * will have done that to us while we're in the READY 3465 * state). *But* the scheduling class for the zone's 'init' 3466 * must be explicitly passed to newproc, which doesn't 3467 * respect pool bindings. 3468 * 3469 * We hold the pool_lock across the call to newproc() to 3470 * close the obvious race: the pool's scheduling class 3471 * could change before we manage to create the LWP with 3472 * classid 'cid'. 3473 */ 3474 pool_lock(); 3475 if (zone->zone_defaultcid > 0) 3476 cid = zone->zone_defaultcid; 3477 else 3478 cid = pool_get_class(zone->zone_pool); 3479 if (cid == -1) 3480 cid = defaultcid; 3481 3482 /* 3483 * If this fails, zone_boot will ultimately fail. The 3484 * state of the zone will be set to SHUTTING_DOWN-- userland 3485 * will have to tear down the zone, and fail, or try again. 3486 */ 3487 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3488 minclsyspri - 1, &ct, 0)) != 0) { 3489 mutex_enter(&zone_status_lock); 3490 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3491 mutex_exit(&zone_status_lock); 3492 } 3493 pool_unlock(); 3494 } 3495 3496 /* 3497 * Wait for zone_destroy() to be called. This is what we spend 3498 * most of our life doing. 3499 */ 3500 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3501 3502 if (ct) 3503 /* 3504 * At this point the process contract should be empty. 3505 * (Though if it isn't, it's not the end of the world.) 3506 */ 3507 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3508 3509 /* 3510 * Allow kcred to be freed when all referring processes 3511 * (including this one) go away. We can't just do this in 3512 * zone_free because we need to wait for the zone_cred_ref to 3513 * drop to 0 before calling zone_free, and the existence of 3514 * zone_kcred will prevent that. Thus, we call crfree here to 3515 * balance the crdup in zone_create. The crhold calls earlier 3516 * in zsched will be dropped when the thread and process exit. 3517 */ 3518 crfree(zone->zone_kcred); 3519 zone->zone_kcred = NULL; 3520 3521 exit(CLD_EXITED, 0); 3522 } 3523 3524 /* 3525 * Helper function to determine if there are any submounts of the 3526 * provided path. Used to make sure the zone doesn't "inherit" any 3527 * mounts from before it is created. 3528 */ 3529 static uint_t 3530 zone_mount_count(const char *rootpath) 3531 { 3532 vfs_t *vfsp; 3533 uint_t count = 0; 3534 size_t rootpathlen = strlen(rootpath); 3535 3536 /* 3537 * Holding zonehash_lock prevents race conditions with 3538 * vfs_list_add()/vfs_list_remove() since we serialize with 3539 * zone_find_by_path(). 3540 */ 3541 ASSERT(MUTEX_HELD(&zonehash_lock)); 3542 /* 3543 * The rootpath must end with a '/' 3544 */ 3545 ASSERT(rootpath[rootpathlen - 1] == '/'); 3546 3547 /* 3548 * This intentionally does not count the rootpath itself if that 3549 * happens to be a mount point. 3550 */ 3551 vfs_list_read_lock(); 3552 vfsp = rootvfs; 3553 do { 3554 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3555 rootpathlen) == 0) 3556 count++; 3557 vfsp = vfsp->vfs_next; 3558 } while (vfsp != rootvfs); 3559 vfs_list_unlock(); 3560 return (count); 3561 } 3562 3563 /* 3564 * Helper function to make sure that a zone created on 'rootpath' 3565 * wouldn't end up containing other zones' rootpaths. 3566 */ 3567 static boolean_t 3568 zone_is_nested(const char *rootpath) 3569 { 3570 zone_t *zone; 3571 size_t rootpathlen = strlen(rootpath); 3572 size_t len; 3573 3574 ASSERT(MUTEX_HELD(&zonehash_lock)); 3575 3576 /* 3577 * zone_set_root() appended '/' and '\0' at the end of rootpath 3578 */ 3579 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 3580 (rootpath[1] == '/') && (rootpath[2] == '\0')) 3581 return (B_TRUE); 3582 3583 for (zone = list_head(&zone_active); zone != NULL; 3584 zone = list_next(&zone_active, zone)) { 3585 if (zone == global_zone) 3586 continue; 3587 len = strlen(zone->zone_rootpath); 3588 if (strncmp(rootpath, zone->zone_rootpath, 3589 MIN(rootpathlen, len)) == 0) 3590 return (B_TRUE); 3591 } 3592 return (B_FALSE); 3593 } 3594 3595 static int 3596 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3597 size_t zone_privssz) 3598 { 3599 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3600 3601 if (zone_privssz < sizeof (priv_set_t)) 3602 return (set_errno(ENOMEM)); 3603 3604 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3605 kmem_free(privs, sizeof (priv_set_t)); 3606 return (EFAULT); 3607 } 3608 3609 zone->zone_privset = privs; 3610 return (0); 3611 } 3612 3613 /* 3614 * We make creative use of nvlists to pass in rctls from userland. The list is 3615 * a list of the following structures: 3616 * 3617 * (name = rctl_name, value = nvpair_list_array) 3618 * 3619 * Where each element of the nvpair_list_array is of the form: 3620 * 3621 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3622 * (name = "limit", value = uint64_t), 3623 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3624 */ 3625 static int 3626 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3627 { 3628 nvpair_t *nvp = NULL; 3629 nvlist_t *nvl = NULL; 3630 char *kbuf; 3631 int error; 3632 rctl_val_t rv; 3633 3634 *nvlp = NULL; 3635 3636 if (buflen == 0) 3637 return (0); 3638 3639 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3640 return (ENOMEM); 3641 if (copyin(ubuf, kbuf, buflen)) { 3642 error = EFAULT; 3643 goto out; 3644 } 3645 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3646 /* 3647 * nvl may have been allocated/free'd, but the value set to 3648 * non-NULL, so we reset it here. 3649 */ 3650 nvl = NULL; 3651 error = EINVAL; 3652 goto out; 3653 } 3654 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3655 rctl_dict_entry_t *rde; 3656 rctl_hndl_t hndl; 3657 nvlist_t **nvlarray; 3658 uint_t i, nelem; 3659 char *name; 3660 3661 error = EINVAL; 3662 name = nvpair_name(nvp); 3663 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3664 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3665 goto out; 3666 } 3667 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3668 goto out; 3669 } 3670 rde = rctl_dict_lookup_hndl(hndl); 3671 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3672 ASSERT(error == 0); 3673 for (i = 0; i < nelem; i++) { 3674 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3675 goto out; 3676 } 3677 if (rctl_invalid_value(rde, &rv)) { 3678 error = EINVAL; 3679 goto out; 3680 } 3681 } 3682 error = 0; 3683 *nvlp = nvl; 3684 out: 3685 kmem_free(kbuf, buflen); 3686 if (error && nvl != NULL) 3687 nvlist_free(nvl); 3688 return (error); 3689 } 3690 3691 int 3692 zone_create_error(int er_error, int er_ext, int *er_out) { 3693 if (er_out != NULL) { 3694 if (copyout(&er_ext, er_out, sizeof (int))) { 3695 return (set_errno(EFAULT)); 3696 } 3697 } 3698 return (set_errno(er_error)); 3699 } 3700 3701 static int 3702 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 3703 { 3704 ts_label_t *tsl; 3705 bslabel_t blab; 3706 3707 /* Get label from user */ 3708 if (copyin(lab, &blab, sizeof (blab)) != 0) 3709 return (EFAULT); 3710 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 3711 if (tsl == NULL) 3712 return (ENOMEM); 3713 3714 zone->zone_slabel = tsl; 3715 return (0); 3716 } 3717 3718 /* 3719 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 3720 */ 3721 static int 3722 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 3723 { 3724 char *kbuf; 3725 char *dataset, *next; 3726 zone_dataset_t *zd; 3727 size_t len; 3728 3729 if (ubuf == NULL || buflen == 0) 3730 return (0); 3731 3732 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3733 return (ENOMEM); 3734 3735 if (copyin(ubuf, kbuf, buflen) != 0) { 3736 kmem_free(kbuf, buflen); 3737 return (EFAULT); 3738 } 3739 3740 dataset = next = kbuf; 3741 for (;;) { 3742 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 3743 3744 next = strchr(dataset, ','); 3745 3746 if (next == NULL) 3747 len = strlen(dataset); 3748 else 3749 len = next - dataset; 3750 3751 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 3752 bcopy(dataset, zd->zd_dataset, len); 3753 zd->zd_dataset[len] = '\0'; 3754 3755 list_insert_head(&zone->zone_datasets, zd); 3756 3757 if (next == NULL) 3758 break; 3759 3760 dataset = next + 1; 3761 } 3762 3763 kmem_free(kbuf, buflen); 3764 return (0); 3765 } 3766 3767 /* 3768 * System call to create/initialize a new zone named 'zone_name', rooted 3769 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 3770 * and initialized with the zone-wide rctls described in 'rctlbuf', and 3771 * with labeling set by 'match', 'doi', and 'label'. 3772 * 3773 * If extended error is non-null, we may use it to return more detailed 3774 * error information. 3775 */ 3776 static zoneid_t 3777 zone_create(const char *zone_name, const char *zone_root, 3778 const priv_set_t *zone_privs, size_t zone_privssz, 3779 caddr_t rctlbuf, size_t rctlbufsz, 3780 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 3781 int match, uint32_t doi, const bslabel_t *label, 3782 int flags) 3783 { 3784 struct zsched_arg zarg; 3785 nvlist_t *rctls = NULL; 3786 proc_t *pp = curproc; 3787 zone_t *zone, *ztmp; 3788 zoneid_t zoneid; 3789 int error; 3790 int error2 = 0; 3791 char *str; 3792 cred_t *zkcr; 3793 boolean_t insert_label_hash; 3794 3795 if (secpolicy_zone_config(CRED()) != 0) 3796 return (set_errno(EPERM)); 3797 3798 /* can't boot zone from within chroot environment */ 3799 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 3800 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 3801 extended_error)); 3802 3803 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 3804 zoneid = zone->zone_id = id_alloc(zoneid_space); 3805 zone->zone_status = ZONE_IS_UNINITIALIZED; 3806 zone->zone_pool = pool_default; 3807 zone->zone_pool_mod = gethrtime(); 3808 zone->zone_psetid = ZONE_PS_INVAL; 3809 zone->zone_ncpus = 0; 3810 zone->zone_ncpus_online = 0; 3811 zone->zone_restart_init = B_TRUE; 3812 zone->zone_brand = &native_brand; 3813 zone->zone_initname = NULL; 3814 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 3815 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 3816 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 3817 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 3818 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 3819 offsetof(struct zsd_entry, zsd_linkage)); 3820 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 3821 offsetof(zone_dataset_t, zd_linkage)); 3822 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 3823 offsetof(zone_dl_t, zdl_linkage)); 3824 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 3825 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 3826 3827 if (flags & ZCF_NET_EXCL) { 3828 zone->zone_flags |= ZF_NET_EXCL; 3829 } 3830 3831 if ((error = zone_set_name(zone, zone_name)) != 0) { 3832 zone_free(zone); 3833 return (zone_create_error(error, 0, extended_error)); 3834 } 3835 3836 if ((error = zone_set_root(zone, zone_root)) != 0) { 3837 zone_free(zone); 3838 return (zone_create_error(error, 0, extended_error)); 3839 } 3840 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 3841 zone_free(zone); 3842 return (zone_create_error(error, 0, extended_error)); 3843 } 3844 3845 /* initialize node name to be the same as zone name */ 3846 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3847 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 3848 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 3849 3850 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3851 zone->zone_domain[0] = '\0'; 3852 zone->zone_hostid = HW_INVALID_HOSTID; 3853 zone->zone_shares = 1; 3854 zone->zone_shmmax = 0; 3855 zone->zone_ipc.ipcq_shmmni = 0; 3856 zone->zone_ipc.ipcq_semmni = 0; 3857 zone->zone_ipc.ipcq_msgmni = 0; 3858 zone->zone_bootargs = NULL; 3859 zone->zone_initname = 3860 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 3861 (void) strcpy(zone->zone_initname, zone_default_initname); 3862 zone->zone_nlwps = 0; 3863 zone->zone_nlwps_ctl = INT_MAX; 3864 zone->zone_locked_mem = 0; 3865 zone->zone_locked_mem_ctl = UINT64_MAX; 3866 zone->zone_max_swap = 0; 3867 zone->zone_max_swap_ctl = UINT64_MAX; 3868 zone0.zone_lockedmem_kstat = NULL; 3869 zone0.zone_swapresv_kstat = NULL; 3870 3871 /* 3872 * Zsched initializes the rctls. 3873 */ 3874 zone->zone_rctls = NULL; 3875 3876 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 3877 zone_free(zone); 3878 return (zone_create_error(error, 0, extended_error)); 3879 } 3880 3881 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 3882 zone_free(zone); 3883 return (set_errno(error)); 3884 } 3885 3886 /* 3887 * Read in the trusted system parameters: 3888 * match flag and sensitivity label. 3889 */ 3890 zone->zone_match = match; 3891 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3892 /* Fail if requested to set doi to anything but system's doi */ 3893 if (doi != 0 && doi != default_doi) { 3894 zone_free(zone); 3895 return (set_errno(EINVAL)); 3896 } 3897 /* Always apply system's doi to the zone */ 3898 error = zone_set_label(zone, label, default_doi); 3899 if (error != 0) { 3900 zone_free(zone); 3901 return (set_errno(error)); 3902 } 3903 insert_label_hash = B_TRUE; 3904 } else { 3905 /* all zones get an admin_low label if system is not labeled */ 3906 zone->zone_slabel = l_admin_low; 3907 label_hold(l_admin_low); 3908 insert_label_hash = B_FALSE; 3909 } 3910 3911 /* 3912 * Stop all lwps since that's what normally happens as part of fork(). 3913 * This needs to happen before we grab any locks to avoid deadlock 3914 * (another lwp in the process could be waiting for the held lock). 3915 */ 3916 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 3917 zone_free(zone); 3918 if (rctls) 3919 nvlist_free(rctls); 3920 return (zone_create_error(error, 0, extended_error)); 3921 } 3922 3923 if (block_mounts() == 0) { 3924 mutex_enter(&pp->p_lock); 3925 if (curthread != pp->p_agenttp) 3926 continuelwps(pp); 3927 mutex_exit(&pp->p_lock); 3928 zone_free(zone); 3929 if (rctls) 3930 nvlist_free(rctls); 3931 return (zone_create_error(error, 0, extended_error)); 3932 } 3933 3934 /* 3935 * Set up credential for kernel access. After this, any errors 3936 * should go through the dance in errout rather than calling 3937 * zone_free directly. 3938 */ 3939 zone->zone_kcred = crdup(kcred); 3940 crsetzone(zone->zone_kcred, zone); 3941 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 3942 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 3943 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 3944 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 3945 3946 mutex_enter(&zonehash_lock); 3947 /* 3948 * Make sure zone doesn't already exist. 3949 * 3950 * If the system and zone are labeled, 3951 * make sure no other zone exists that has the same label. 3952 */ 3953 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 3954 (insert_label_hash && 3955 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 3956 zone_status_t status; 3957 3958 status = zone_status_get(ztmp); 3959 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 3960 error = EEXIST; 3961 else 3962 error = EBUSY; 3963 3964 if (insert_label_hash) 3965 error2 = ZE_LABELINUSE; 3966 3967 goto errout; 3968 } 3969 3970 /* 3971 * Don't allow zone creations which would cause one zone's rootpath to 3972 * be accessible from that of another (non-global) zone. 3973 */ 3974 if (zone_is_nested(zone->zone_rootpath)) { 3975 error = EBUSY; 3976 goto errout; 3977 } 3978 3979 ASSERT(zonecount != 0); /* check for leaks */ 3980 if (zonecount + 1 > maxzones) { 3981 error = ENOMEM; 3982 goto errout; 3983 } 3984 3985 if (zone_mount_count(zone->zone_rootpath) != 0) { 3986 error = EBUSY; 3987 error2 = ZE_AREMOUNTS; 3988 goto errout; 3989 } 3990 3991 /* 3992 * Zone is still incomplete, but we need to drop all locks while 3993 * zsched() initializes this zone's kernel process. We 3994 * optimistically add the zone to the hashtable and associated 3995 * lists so a parallel zone_create() doesn't try to create the 3996 * same zone. 3997 */ 3998 zonecount++; 3999 (void) mod_hash_insert(zonehashbyid, 4000 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4001 (mod_hash_val_t)(uintptr_t)zone); 4002 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4003 (void) strcpy(str, zone->zone_name); 4004 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4005 (mod_hash_val_t)(uintptr_t)zone); 4006 if (insert_label_hash) { 4007 (void) mod_hash_insert(zonehashbylabel, 4008 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4009 zone->zone_flags |= ZF_HASHED_LABEL; 4010 } 4011 4012 /* 4013 * Insert into active list. At this point there are no 'hold's 4014 * on the zone, but everyone else knows not to use it, so we can 4015 * continue to use it. zsched() will do a zone_hold() if the 4016 * newproc() is successful. 4017 */ 4018 list_insert_tail(&zone_active, zone); 4019 mutex_exit(&zonehash_lock); 4020 4021 zarg.zone = zone; 4022 zarg.nvlist = rctls; 4023 /* 4024 * The process, task, and project rctls are probably wrong; 4025 * we need an interface to get the default values of all rctls, 4026 * and initialize zsched appropriately. I'm not sure that that 4027 * makes much of a difference, though. 4028 */ 4029 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4030 if (error != 0) { 4031 /* 4032 * We need to undo all globally visible state. 4033 */ 4034 mutex_enter(&zonehash_lock); 4035 list_remove(&zone_active, zone); 4036 if (zone->zone_flags & ZF_HASHED_LABEL) { 4037 ASSERT(zone->zone_slabel != NULL); 4038 (void) mod_hash_destroy(zonehashbylabel, 4039 (mod_hash_key_t)zone->zone_slabel); 4040 } 4041 (void) mod_hash_destroy(zonehashbyname, 4042 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4043 (void) mod_hash_destroy(zonehashbyid, 4044 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4045 ASSERT(zonecount > 1); 4046 zonecount--; 4047 goto errout; 4048 } 4049 4050 /* 4051 * Zone creation can't fail from now on. 4052 */ 4053 4054 /* 4055 * Create zone kstats 4056 */ 4057 zone_kstat_create(zone); 4058 4059 /* 4060 * Let the other lwps continue. 4061 */ 4062 mutex_enter(&pp->p_lock); 4063 if (curthread != pp->p_agenttp) 4064 continuelwps(pp); 4065 mutex_exit(&pp->p_lock); 4066 4067 /* 4068 * Wait for zsched to finish initializing the zone. 4069 */ 4070 zone_status_wait(zone, ZONE_IS_READY); 4071 /* 4072 * The zone is fully visible, so we can let mounts progress. 4073 */ 4074 resume_mounts(); 4075 if (rctls) 4076 nvlist_free(rctls); 4077 4078 return (zoneid); 4079 4080 errout: 4081 mutex_exit(&zonehash_lock); 4082 /* 4083 * Let the other lwps continue. 4084 */ 4085 mutex_enter(&pp->p_lock); 4086 if (curthread != pp->p_agenttp) 4087 continuelwps(pp); 4088 mutex_exit(&pp->p_lock); 4089 4090 resume_mounts(); 4091 if (rctls) 4092 nvlist_free(rctls); 4093 /* 4094 * There is currently one reference to the zone, a cred_ref from 4095 * zone_kcred. To free the zone, we call crfree, which will call 4096 * zone_cred_rele, which will call zone_free. 4097 */ 4098 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 4099 ASSERT(zone->zone_kcred->cr_ref == 1); 4100 ASSERT(zone->zone_ref == 0); 4101 zkcr = zone->zone_kcred; 4102 zone->zone_kcred = NULL; 4103 crfree(zkcr); /* triggers call to zone_free */ 4104 return (zone_create_error(error, error2, extended_error)); 4105 } 4106 4107 /* 4108 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4109 * the heavy lifting. initname is the path to the program to launch 4110 * at the "top" of the zone; if this is NULL, we use the system default, 4111 * which is stored at zone_default_initname. 4112 */ 4113 static int 4114 zone_boot(zoneid_t zoneid) 4115 { 4116 int err; 4117 zone_t *zone; 4118 4119 if (secpolicy_zone_config(CRED()) != 0) 4120 return (set_errno(EPERM)); 4121 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4122 return (set_errno(EINVAL)); 4123 4124 mutex_enter(&zonehash_lock); 4125 /* 4126 * Look for zone under hash lock to prevent races with calls to 4127 * zone_shutdown, zone_destroy, etc. 4128 */ 4129 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4130 mutex_exit(&zonehash_lock); 4131 return (set_errno(EINVAL)); 4132 } 4133 4134 mutex_enter(&zone_status_lock); 4135 if (zone_status_get(zone) != ZONE_IS_READY) { 4136 mutex_exit(&zone_status_lock); 4137 mutex_exit(&zonehash_lock); 4138 return (set_errno(EINVAL)); 4139 } 4140 zone_status_set(zone, ZONE_IS_BOOTING); 4141 mutex_exit(&zone_status_lock); 4142 4143 zone_hold(zone); /* so we can use the zone_t later */ 4144 mutex_exit(&zonehash_lock); 4145 4146 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4147 zone_rele(zone); 4148 return (set_errno(EINTR)); 4149 } 4150 4151 /* 4152 * Boot (starting init) might have failed, in which case the zone 4153 * will go to the SHUTTING_DOWN state; an appropriate errno will 4154 * be placed in zone->zone_boot_err, and so we return that. 4155 */ 4156 err = zone->zone_boot_err; 4157 zone_rele(zone); 4158 return (err ? set_errno(err) : 0); 4159 } 4160 4161 /* 4162 * Kills all user processes in the zone, waiting for them all to exit 4163 * before returning. 4164 */ 4165 static int 4166 zone_empty(zone_t *zone) 4167 { 4168 int waitstatus; 4169 4170 /* 4171 * We need to drop zonehash_lock before killing all 4172 * processes, otherwise we'll deadlock with zone_find_* 4173 * which can be called from the exit path. 4174 */ 4175 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4176 while ((waitstatus = zone_status_timedwait_sig(zone, 4177 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4178 killall(zone->zone_id); 4179 } 4180 /* 4181 * return EINTR if we were signaled 4182 */ 4183 if (waitstatus == 0) 4184 return (EINTR); 4185 return (0); 4186 } 4187 4188 /* 4189 * This function implements the policy for zone visibility. 4190 * 4191 * In standard Solaris, a non-global zone can only see itself. 4192 * 4193 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4194 * it dominates. For this test, the label of the global zone is treated as 4195 * admin_high so it is special-cased instead of being checked for dominance. 4196 * 4197 * Returns true if zone attributes are viewable, false otherwise. 4198 */ 4199 static boolean_t 4200 zone_list_access(zone_t *zone) 4201 { 4202 4203 if (curproc->p_zone == global_zone || 4204 curproc->p_zone == zone) { 4205 return (B_TRUE); 4206 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4207 bslabel_t *curproc_label; 4208 bslabel_t *zone_label; 4209 4210 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4211 zone_label = label2bslabel(zone->zone_slabel); 4212 4213 if (zone->zone_id != GLOBAL_ZONEID && 4214 bldominates(curproc_label, zone_label)) { 4215 return (B_TRUE); 4216 } else { 4217 return (B_FALSE); 4218 } 4219 } else { 4220 return (B_FALSE); 4221 } 4222 } 4223 4224 /* 4225 * Systemcall to start the zone's halt sequence. By the time this 4226 * function successfully returns, all user processes and kernel threads 4227 * executing in it will have exited, ZSD shutdown callbacks executed, 4228 * and the zone status set to ZONE_IS_DOWN. 4229 * 4230 * It is possible that the call will interrupt itself if the caller is the 4231 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4232 */ 4233 static int 4234 zone_shutdown(zoneid_t zoneid) 4235 { 4236 int error; 4237 zone_t *zone; 4238 zone_status_t status; 4239 4240 if (secpolicy_zone_config(CRED()) != 0) 4241 return (set_errno(EPERM)); 4242 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4243 return (set_errno(EINVAL)); 4244 4245 /* 4246 * Block mounts so that VFS_MOUNT() can get an accurate view of 4247 * the zone's status with regards to ZONE_IS_SHUTTING down. 4248 * 4249 * e.g. NFS can fail the mount if it determines that the zone 4250 * has already begun the shutdown sequence. 4251 */ 4252 if (block_mounts() == 0) 4253 return (set_errno(EINTR)); 4254 mutex_enter(&zonehash_lock); 4255 /* 4256 * Look for zone under hash lock to prevent races with other 4257 * calls to zone_shutdown and zone_destroy. 4258 */ 4259 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4260 mutex_exit(&zonehash_lock); 4261 resume_mounts(); 4262 return (set_errno(EINVAL)); 4263 } 4264 mutex_enter(&zone_status_lock); 4265 status = zone_status_get(zone); 4266 /* 4267 * Fail if the zone isn't fully initialized yet. 4268 */ 4269 if (status < ZONE_IS_READY) { 4270 mutex_exit(&zone_status_lock); 4271 mutex_exit(&zonehash_lock); 4272 resume_mounts(); 4273 return (set_errno(EINVAL)); 4274 } 4275 /* 4276 * If conditions required for zone_shutdown() to return have been met, 4277 * return success. 4278 */ 4279 if (status >= ZONE_IS_DOWN) { 4280 mutex_exit(&zone_status_lock); 4281 mutex_exit(&zonehash_lock); 4282 resume_mounts(); 4283 return (0); 4284 } 4285 /* 4286 * If zone_shutdown() hasn't been called before, go through the motions. 4287 * If it has, there's nothing to do but wait for the kernel threads to 4288 * drain. 4289 */ 4290 if (status < ZONE_IS_EMPTY) { 4291 uint_t ntasks; 4292 4293 mutex_enter(&zone->zone_lock); 4294 if ((ntasks = zone->zone_ntasks) != 1) { 4295 /* 4296 * There's still stuff running. 4297 */ 4298 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4299 } 4300 mutex_exit(&zone->zone_lock); 4301 if (ntasks == 1) { 4302 /* 4303 * The only way to create another task is through 4304 * zone_enter(), which will block until we drop 4305 * zonehash_lock. The zone is empty. 4306 */ 4307 if (zone->zone_kthreads == NULL) { 4308 /* 4309 * Skip ahead to ZONE_IS_DOWN 4310 */ 4311 zone_status_set(zone, ZONE_IS_DOWN); 4312 } else { 4313 zone_status_set(zone, ZONE_IS_EMPTY); 4314 } 4315 } 4316 } 4317 zone_hold(zone); /* so we can use the zone_t later */ 4318 mutex_exit(&zone_status_lock); 4319 mutex_exit(&zonehash_lock); 4320 resume_mounts(); 4321 4322 if (error = zone_empty(zone)) { 4323 zone_rele(zone); 4324 return (set_errno(error)); 4325 } 4326 /* 4327 * After the zone status goes to ZONE_IS_DOWN this zone will no 4328 * longer be notified of changes to the pools configuration, so 4329 * in order to not end up with a stale pool pointer, we point 4330 * ourselves at the default pool and remove all resource 4331 * visibility. This is especially important as the zone_t may 4332 * languish on the deathrow for a very long time waiting for 4333 * cred's to drain out. 4334 * 4335 * This rebinding of the zone can happen multiple times 4336 * (presumably due to interrupted or parallel systemcalls) 4337 * without any adverse effects. 4338 */ 4339 if (pool_lock_intr() != 0) { 4340 zone_rele(zone); 4341 return (set_errno(EINTR)); 4342 } 4343 if (pool_state == POOL_ENABLED) { 4344 mutex_enter(&cpu_lock); 4345 zone_pool_set(zone, pool_default); 4346 /* 4347 * The zone no longer needs to be able to see any cpus. 4348 */ 4349 zone_pset_set(zone, ZONE_PS_INVAL); 4350 mutex_exit(&cpu_lock); 4351 } 4352 pool_unlock(); 4353 4354 /* 4355 * ZSD shutdown callbacks can be executed multiple times, hence 4356 * it is safe to not be holding any locks across this call. 4357 */ 4358 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4359 4360 mutex_enter(&zone_status_lock); 4361 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4362 zone_status_set(zone, ZONE_IS_DOWN); 4363 mutex_exit(&zone_status_lock); 4364 4365 /* 4366 * Wait for kernel threads to drain. 4367 */ 4368 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4369 zone_rele(zone); 4370 return (set_errno(EINTR)); 4371 } 4372 4373 /* 4374 * Zone can be become down/destroyable even if the above wait 4375 * returns EINTR, so any code added here may never execute. 4376 * (i.e. don't add code here) 4377 */ 4378 4379 zone_rele(zone); 4380 return (0); 4381 } 4382 4383 /* 4384 * Systemcall entry point to finalize the zone halt process. The caller 4385 * must have already successfully called zone_shutdown(). 4386 * 4387 * Upon successful completion, the zone will have been fully destroyed: 4388 * zsched will have exited, destructor callbacks executed, and the zone 4389 * removed from the list of active zones. 4390 */ 4391 static int 4392 zone_destroy(zoneid_t zoneid) 4393 { 4394 uint64_t uniqid; 4395 zone_t *zone; 4396 zone_status_t status; 4397 4398 if (secpolicy_zone_config(CRED()) != 0) 4399 return (set_errno(EPERM)); 4400 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4401 return (set_errno(EINVAL)); 4402 4403 mutex_enter(&zonehash_lock); 4404 /* 4405 * Look for zone under hash lock to prevent races with other 4406 * calls to zone_destroy. 4407 */ 4408 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4409 mutex_exit(&zonehash_lock); 4410 return (set_errno(EINVAL)); 4411 } 4412 4413 if (zone_mount_count(zone->zone_rootpath) != 0) { 4414 mutex_exit(&zonehash_lock); 4415 return (set_errno(EBUSY)); 4416 } 4417 mutex_enter(&zone_status_lock); 4418 status = zone_status_get(zone); 4419 if (status < ZONE_IS_DOWN) { 4420 mutex_exit(&zone_status_lock); 4421 mutex_exit(&zonehash_lock); 4422 return (set_errno(EBUSY)); 4423 } else if (status == ZONE_IS_DOWN) { 4424 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 4425 } 4426 mutex_exit(&zone_status_lock); 4427 zone_hold(zone); 4428 mutex_exit(&zonehash_lock); 4429 4430 /* 4431 * wait for zsched to exit 4432 */ 4433 zone_status_wait(zone, ZONE_IS_DEAD); 4434 zone_zsd_callbacks(zone, ZSD_DESTROY); 4435 zone->zone_netstack = NULL; 4436 uniqid = zone->zone_uniqid; 4437 zone_rele(zone); 4438 zone = NULL; /* potentially free'd */ 4439 4440 mutex_enter(&zonehash_lock); 4441 for (; /* ever */; ) { 4442 boolean_t unref; 4443 4444 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 4445 zone->zone_uniqid != uniqid) { 4446 /* 4447 * The zone has gone away. Necessary conditions 4448 * are met, so we return success. 4449 */ 4450 mutex_exit(&zonehash_lock); 4451 return (0); 4452 } 4453 mutex_enter(&zone->zone_lock); 4454 unref = ZONE_IS_UNREF(zone); 4455 mutex_exit(&zone->zone_lock); 4456 if (unref) { 4457 /* 4458 * There is only one reference to the zone -- that 4459 * added when the zone was added to the hashtables -- 4460 * and things will remain this way until we drop 4461 * zonehash_lock... we can go ahead and cleanup the 4462 * zone. 4463 */ 4464 break; 4465 } 4466 4467 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 4468 /* Signaled */ 4469 mutex_exit(&zonehash_lock); 4470 return (set_errno(EINTR)); 4471 } 4472 4473 } 4474 4475 /* 4476 * Remove CPU cap for this zone now since we're not going to 4477 * fail below this point. 4478 */ 4479 cpucaps_zone_remove(zone); 4480 4481 /* Get rid of the zone's kstats */ 4482 zone_kstat_delete(zone); 4483 4484 /* remove the pfexecd doors */ 4485 if (zone->zone_pfexecd != NULL) { 4486 klpd_freelist(&zone->zone_pfexecd); 4487 zone->zone_pfexecd = NULL; 4488 } 4489 4490 /* free brand specific data */ 4491 if (ZONE_IS_BRANDED(zone)) 4492 ZBROP(zone)->b_free_brand_data(zone); 4493 4494 /* Say goodbye to brand framework. */ 4495 brand_unregister_zone(zone->zone_brand); 4496 4497 /* 4498 * It is now safe to let the zone be recreated; remove it from the 4499 * lists. The memory will not be freed until the last cred 4500 * reference goes away. 4501 */ 4502 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 4503 zonecount--; 4504 /* remove from active list and hash tables */ 4505 list_remove(&zone_active, zone); 4506 (void) mod_hash_destroy(zonehashbyname, 4507 (mod_hash_key_t)zone->zone_name); 4508 (void) mod_hash_destroy(zonehashbyid, 4509 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4510 if (zone->zone_flags & ZF_HASHED_LABEL) 4511 (void) mod_hash_destroy(zonehashbylabel, 4512 (mod_hash_key_t)zone->zone_slabel); 4513 mutex_exit(&zonehash_lock); 4514 4515 /* 4516 * Release the root vnode; we're not using it anymore. Nor should any 4517 * other thread that might access it exist. 4518 */ 4519 if (zone->zone_rootvp != NULL) { 4520 VN_RELE(zone->zone_rootvp); 4521 zone->zone_rootvp = NULL; 4522 } 4523 4524 /* add to deathrow list */ 4525 mutex_enter(&zone_deathrow_lock); 4526 list_insert_tail(&zone_deathrow, zone); 4527 mutex_exit(&zone_deathrow_lock); 4528 4529 /* 4530 * Drop last reference (which was added by zsched()), this will 4531 * free the zone unless there are outstanding cred references. 4532 */ 4533 zone_rele(zone); 4534 return (0); 4535 } 4536 4537 /* 4538 * Systemcall entry point for zone_getattr(2). 4539 */ 4540 static ssize_t 4541 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4542 { 4543 size_t size; 4544 int error = 0, err; 4545 zone_t *zone; 4546 char *zonepath; 4547 char *outstr; 4548 zone_status_t zone_status; 4549 pid_t initpid; 4550 boolean_t global = (curzone == global_zone); 4551 boolean_t inzone = (curzone->zone_id == zoneid); 4552 ushort_t flags; 4553 4554 mutex_enter(&zonehash_lock); 4555 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4556 mutex_exit(&zonehash_lock); 4557 return (set_errno(EINVAL)); 4558 } 4559 zone_status = zone_status_get(zone); 4560 if (zone_status < ZONE_IS_INITIALIZED) { 4561 mutex_exit(&zonehash_lock); 4562 return (set_errno(EINVAL)); 4563 } 4564 zone_hold(zone); 4565 mutex_exit(&zonehash_lock); 4566 4567 /* 4568 * If not in the global zone, don't show information about other zones, 4569 * unless the system is labeled and the local zone's label dominates 4570 * the other zone. 4571 */ 4572 if (!zone_list_access(zone)) { 4573 zone_rele(zone); 4574 return (set_errno(EINVAL)); 4575 } 4576 4577 switch (attr) { 4578 case ZONE_ATTR_ROOT: 4579 if (global) { 4580 /* 4581 * Copy the path to trim the trailing "/" (except for 4582 * the global zone). 4583 */ 4584 if (zone != global_zone) 4585 size = zone->zone_rootpathlen - 1; 4586 else 4587 size = zone->zone_rootpathlen; 4588 zonepath = kmem_alloc(size, KM_SLEEP); 4589 bcopy(zone->zone_rootpath, zonepath, size); 4590 zonepath[size - 1] = '\0'; 4591 } else { 4592 if (inzone || !is_system_labeled()) { 4593 /* 4594 * Caller is not in the global zone. 4595 * if the query is on the current zone 4596 * or the system is not labeled, 4597 * just return faked-up path for current zone. 4598 */ 4599 zonepath = "/"; 4600 size = 2; 4601 } else { 4602 /* 4603 * Return related path for current zone. 4604 */ 4605 int prefix_len = strlen(zone_prefix); 4606 int zname_len = strlen(zone->zone_name); 4607 4608 size = prefix_len + zname_len + 1; 4609 zonepath = kmem_alloc(size, KM_SLEEP); 4610 bcopy(zone_prefix, zonepath, prefix_len); 4611 bcopy(zone->zone_name, zonepath + 4612 prefix_len, zname_len); 4613 zonepath[size - 1] = '\0'; 4614 } 4615 } 4616 if (bufsize > size) 4617 bufsize = size; 4618 if (buf != NULL) { 4619 err = copyoutstr(zonepath, buf, bufsize, NULL); 4620 if (err != 0 && err != ENAMETOOLONG) 4621 error = EFAULT; 4622 } 4623 if (global || (is_system_labeled() && !inzone)) 4624 kmem_free(zonepath, size); 4625 break; 4626 4627 case ZONE_ATTR_NAME: 4628 size = strlen(zone->zone_name) + 1; 4629 if (bufsize > size) 4630 bufsize = size; 4631 if (buf != NULL) { 4632 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 4633 if (err != 0 && err != ENAMETOOLONG) 4634 error = EFAULT; 4635 } 4636 break; 4637 4638 case ZONE_ATTR_STATUS: 4639 /* 4640 * Since we're not holding zonehash_lock, the zone status 4641 * may be anything; leave it up to userland to sort it out. 4642 */ 4643 size = sizeof (zone_status); 4644 if (bufsize > size) 4645 bufsize = size; 4646 zone_status = zone_status_get(zone); 4647 if (buf != NULL && 4648 copyout(&zone_status, buf, bufsize) != 0) 4649 error = EFAULT; 4650 break; 4651 case ZONE_ATTR_FLAGS: 4652 size = sizeof (zone->zone_flags); 4653 if (bufsize > size) 4654 bufsize = size; 4655 flags = zone->zone_flags; 4656 if (buf != NULL && 4657 copyout(&flags, buf, bufsize) != 0) 4658 error = EFAULT; 4659 break; 4660 case ZONE_ATTR_PRIVSET: 4661 size = sizeof (priv_set_t); 4662 if (bufsize > size) 4663 bufsize = size; 4664 if (buf != NULL && 4665 copyout(zone->zone_privset, buf, bufsize) != 0) 4666 error = EFAULT; 4667 break; 4668 case ZONE_ATTR_UNIQID: 4669 size = sizeof (zone->zone_uniqid); 4670 if (bufsize > size) 4671 bufsize = size; 4672 if (buf != NULL && 4673 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 4674 error = EFAULT; 4675 break; 4676 case ZONE_ATTR_POOLID: 4677 { 4678 pool_t *pool; 4679 poolid_t poolid; 4680 4681 if (pool_lock_intr() != 0) { 4682 error = EINTR; 4683 break; 4684 } 4685 pool = zone_pool_get(zone); 4686 poolid = pool->pool_id; 4687 pool_unlock(); 4688 size = sizeof (poolid); 4689 if (bufsize > size) 4690 bufsize = size; 4691 if (buf != NULL && copyout(&poolid, buf, size) != 0) 4692 error = EFAULT; 4693 } 4694 break; 4695 case ZONE_ATTR_SLBL: 4696 size = sizeof (bslabel_t); 4697 if (bufsize > size) 4698 bufsize = size; 4699 if (zone->zone_slabel == NULL) 4700 error = EINVAL; 4701 else if (buf != NULL && 4702 copyout(label2bslabel(zone->zone_slabel), buf, 4703 bufsize) != 0) 4704 error = EFAULT; 4705 break; 4706 case ZONE_ATTR_INITPID: 4707 size = sizeof (initpid); 4708 if (bufsize > size) 4709 bufsize = size; 4710 initpid = zone->zone_proc_initpid; 4711 if (initpid == -1) { 4712 error = ESRCH; 4713 break; 4714 } 4715 if (buf != NULL && 4716 copyout(&initpid, buf, bufsize) != 0) 4717 error = EFAULT; 4718 break; 4719 case ZONE_ATTR_BRAND: 4720 size = strlen(zone->zone_brand->b_name) + 1; 4721 4722 if (bufsize > size) 4723 bufsize = size; 4724 if (buf != NULL) { 4725 err = copyoutstr(zone->zone_brand->b_name, buf, 4726 bufsize, NULL); 4727 if (err != 0 && err != ENAMETOOLONG) 4728 error = EFAULT; 4729 } 4730 break; 4731 case ZONE_ATTR_INITNAME: 4732 size = strlen(zone->zone_initname) + 1; 4733 if (bufsize > size) 4734 bufsize = size; 4735 if (buf != NULL) { 4736 err = copyoutstr(zone->zone_initname, buf, bufsize, 4737 NULL); 4738 if (err != 0 && err != ENAMETOOLONG) 4739 error = EFAULT; 4740 } 4741 break; 4742 case ZONE_ATTR_BOOTARGS: 4743 if (zone->zone_bootargs == NULL) 4744 outstr = ""; 4745 else 4746 outstr = zone->zone_bootargs; 4747 size = strlen(outstr) + 1; 4748 if (bufsize > size) 4749 bufsize = size; 4750 if (buf != NULL) { 4751 err = copyoutstr(outstr, buf, bufsize, NULL); 4752 if (err != 0 && err != ENAMETOOLONG) 4753 error = EFAULT; 4754 } 4755 break; 4756 case ZONE_ATTR_PHYS_MCAP: 4757 size = sizeof (zone->zone_phys_mcap); 4758 if (bufsize > size) 4759 bufsize = size; 4760 if (buf != NULL && 4761 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 4762 error = EFAULT; 4763 break; 4764 case ZONE_ATTR_SCHED_CLASS: 4765 mutex_enter(&class_lock); 4766 4767 if (zone->zone_defaultcid >= loaded_classes) 4768 outstr = ""; 4769 else 4770 outstr = sclass[zone->zone_defaultcid].cl_name; 4771 size = strlen(outstr) + 1; 4772 if (bufsize > size) 4773 bufsize = size; 4774 if (buf != NULL) { 4775 err = copyoutstr(outstr, buf, bufsize, NULL); 4776 if (err != 0 && err != ENAMETOOLONG) 4777 error = EFAULT; 4778 } 4779 4780 mutex_exit(&class_lock); 4781 break; 4782 case ZONE_ATTR_HOSTID: 4783 if (zone->zone_hostid != HW_INVALID_HOSTID && 4784 bufsize == sizeof (zone->zone_hostid)) { 4785 size = sizeof (zone->zone_hostid); 4786 if (buf != NULL && copyout(&zone->zone_hostid, buf, 4787 bufsize) != 0) 4788 error = EFAULT; 4789 } else { 4790 error = EINVAL; 4791 } 4792 break; 4793 default: 4794 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 4795 size = bufsize; 4796 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 4797 } else { 4798 error = EINVAL; 4799 } 4800 } 4801 zone_rele(zone); 4802 4803 if (error) 4804 return (set_errno(error)); 4805 return ((ssize_t)size); 4806 } 4807 4808 /* 4809 * Systemcall entry point for zone_setattr(2). 4810 */ 4811 /*ARGSUSED*/ 4812 static int 4813 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4814 { 4815 zone_t *zone; 4816 zone_status_t zone_status; 4817 int err; 4818 4819 if (secpolicy_zone_config(CRED()) != 0) 4820 return (set_errno(EPERM)); 4821 4822 /* 4823 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 4824 * global zone. 4825 */ 4826 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 4827 return (set_errno(EINVAL)); 4828 } 4829 4830 mutex_enter(&zonehash_lock); 4831 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4832 mutex_exit(&zonehash_lock); 4833 return (set_errno(EINVAL)); 4834 } 4835 zone_hold(zone); 4836 mutex_exit(&zonehash_lock); 4837 4838 /* 4839 * At present most attributes can only be set on non-running, 4840 * non-global zones. 4841 */ 4842 zone_status = zone_status_get(zone); 4843 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) 4844 goto done; 4845 4846 switch (attr) { 4847 case ZONE_ATTR_INITNAME: 4848 err = zone_set_initname(zone, (const char *)buf); 4849 break; 4850 case ZONE_ATTR_BOOTARGS: 4851 err = zone_set_bootargs(zone, (const char *)buf); 4852 break; 4853 case ZONE_ATTR_BRAND: 4854 err = zone_set_brand(zone, (const char *)buf); 4855 break; 4856 case ZONE_ATTR_PHYS_MCAP: 4857 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 4858 break; 4859 case ZONE_ATTR_SCHED_CLASS: 4860 err = zone_set_sched_class(zone, (const char *)buf); 4861 break; 4862 case ZONE_ATTR_HOSTID: 4863 if (bufsize == sizeof (zone->zone_hostid)) { 4864 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 4865 err = 0; 4866 else 4867 err = EFAULT; 4868 } else { 4869 err = EINVAL; 4870 } 4871 break; 4872 default: 4873 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 4874 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 4875 else 4876 err = EINVAL; 4877 } 4878 4879 done: 4880 zone_rele(zone); 4881 return (err != 0 ? set_errno(err) : 0); 4882 } 4883 4884 /* 4885 * Return zero if the process has at least one vnode mapped in to its 4886 * address space which shouldn't be allowed to change zones. 4887 * 4888 * Also return zero if the process has any shared mappings which reserve 4889 * swap. This is because the counting for zone.max-swap does not allow swap 4890 * reservation to be shared between zones. zone swap reservation is counted 4891 * on zone->zone_max_swap. 4892 */ 4893 static int 4894 as_can_change_zones(void) 4895 { 4896 proc_t *pp = curproc; 4897 struct seg *seg; 4898 struct as *as = pp->p_as; 4899 vnode_t *vp; 4900 int allow = 1; 4901 4902 ASSERT(pp->p_as != &kas); 4903 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 4904 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 4905 4906 /* 4907 * Cannot enter zone with shared anon memory which 4908 * reserves swap. See comment above. 4909 */ 4910 if (seg_can_change_zones(seg) == B_FALSE) { 4911 allow = 0; 4912 break; 4913 } 4914 /* 4915 * if we can't get a backing vnode for this segment then skip 4916 * it. 4917 */ 4918 vp = NULL; 4919 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 4920 continue; 4921 if (!vn_can_change_zones(vp)) { /* bail on first match */ 4922 allow = 0; 4923 break; 4924 } 4925 } 4926 AS_LOCK_EXIT(as, &as->a_lock); 4927 return (allow); 4928 } 4929 4930 /* 4931 * Count swap reserved by curproc's address space 4932 */ 4933 static size_t 4934 as_swresv(void) 4935 { 4936 proc_t *pp = curproc; 4937 struct seg *seg; 4938 struct as *as = pp->p_as; 4939 size_t swap = 0; 4940 4941 ASSERT(pp->p_as != &kas); 4942 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 4943 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 4944 swap += seg_swresv(seg); 4945 4946 return (swap); 4947 } 4948 4949 /* 4950 * Systemcall entry point for zone_enter(). 4951 * 4952 * The current process is injected into said zone. In the process 4953 * it will change its project membership, privileges, rootdir/cwd, 4954 * zone-wide rctls, and pool association to match those of the zone. 4955 * 4956 * The first zone_enter() called while the zone is in the ZONE_IS_READY 4957 * state will transition it to ZONE_IS_RUNNING. Processes may only 4958 * enter a zone that is "ready" or "running". 4959 */ 4960 static int 4961 zone_enter(zoneid_t zoneid) 4962 { 4963 zone_t *zone; 4964 vnode_t *vp; 4965 proc_t *pp = curproc; 4966 contract_t *ct; 4967 cont_process_t *ctp; 4968 task_t *tk, *oldtk; 4969 kproject_t *zone_proj0; 4970 cred_t *cr, *newcr; 4971 pool_t *oldpool, *newpool; 4972 sess_t *sp; 4973 uid_t uid; 4974 zone_status_t status; 4975 int err = 0; 4976 rctl_entity_p_t e; 4977 size_t swap; 4978 kthread_id_t t; 4979 4980 if (secpolicy_zone_config(CRED()) != 0) 4981 return (set_errno(EPERM)); 4982 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4983 return (set_errno(EINVAL)); 4984 4985 /* 4986 * Stop all lwps so we don't need to hold a lock to look at 4987 * curproc->p_zone. This needs to happen before we grab any 4988 * locks to avoid deadlock (another lwp in the process could 4989 * be waiting for the held lock). 4990 */ 4991 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 4992 return (set_errno(EINTR)); 4993 4994 /* 4995 * Make sure we're not changing zones with files open or mapped in 4996 * to our address space which shouldn't be changing zones. 4997 */ 4998 if (!files_can_change_zones()) { 4999 err = EBADF; 5000 goto out; 5001 } 5002 if (!as_can_change_zones()) { 5003 err = EFAULT; 5004 goto out; 5005 } 5006 5007 mutex_enter(&zonehash_lock); 5008 if (pp->p_zone != global_zone) { 5009 mutex_exit(&zonehash_lock); 5010 err = EINVAL; 5011 goto out; 5012 } 5013 5014 zone = zone_find_all_by_id(zoneid); 5015 if (zone == NULL) { 5016 mutex_exit(&zonehash_lock); 5017 err = EINVAL; 5018 goto out; 5019 } 5020 5021 /* 5022 * To prevent processes in a zone from holding contracts on 5023 * extrazonal resources, and to avoid process contract 5024 * memberships which span zones, contract holders and processes 5025 * which aren't the sole members of their encapsulating process 5026 * contracts are not allowed to zone_enter. 5027 */ 5028 ctp = pp->p_ct_process; 5029 ct = &ctp->conp_contract; 5030 mutex_enter(&ct->ct_lock); 5031 mutex_enter(&pp->p_lock); 5032 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5033 mutex_exit(&pp->p_lock); 5034 mutex_exit(&ct->ct_lock); 5035 mutex_exit(&zonehash_lock); 5036 err = EINVAL; 5037 goto out; 5038 } 5039 5040 /* 5041 * Moreover, we don't allow processes whose encapsulating 5042 * process contracts have inherited extrazonal contracts. 5043 * While it would be easier to eliminate all process contracts 5044 * with inherited contracts, we need to be able to give a 5045 * restarted init (or other zone-penetrating process) its 5046 * predecessor's contracts. 5047 */ 5048 if (ctp->conp_ninherited != 0) { 5049 contract_t *next; 5050 for (next = list_head(&ctp->conp_inherited); next; 5051 next = list_next(&ctp->conp_inherited, next)) { 5052 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5053 mutex_exit(&pp->p_lock); 5054 mutex_exit(&ct->ct_lock); 5055 mutex_exit(&zonehash_lock); 5056 err = EINVAL; 5057 goto out; 5058 } 5059 } 5060 } 5061 5062 mutex_exit(&pp->p_lock); 5063 mutex_exit(&ct->ct_lock); 5064 5065 status = zone_status_get(zone); 5066 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5067 /* 5068 * Can't join 5069 */ 5070 mutex_exit(&zonehash_lock); 5071 err = EINVAL; 5072 goto out; 5073 } 5074 5075 /* 5076 * Make sure new priv set is within the permitted set for caller 5077 */ 5078 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5079 mutex_exit(&zonehash_lock); 5080 err = EPERM; 5081 goto out; 5082 } 5083 /* 5084 * We want to momentarily drop zonehash_lock while we optimistically 5085 * bind curproc to the pool it should be running in. This is safe 5086 * since the zone can't disappear (we have a hold on it). 5087 */ 5088 zone_hold(zone); 5089 mutex_exit(&zonehash_lock); 5090 5091 /* 5092 * Grab pool_lock to keep the pools configuration from changing 5093 * and to stop ourselves from getting rebound to another pool 5094 * until we join the zone. 5095 */ 5096 if (pool_lock_intr() != 0) { 5097 zone_rele(zone); 5098 err = EINTR; 5099 goto out; 5100 } 5101 ASSERT(secpolicy_pool(CRED()) == 0); 5102 /* 5103 * Bind ourselves to the pool currently associated with the zone. 5104 */ 5105 oldpool = curproc->p_pool; 5106 newpool = zone_pool_get(zone); 5107 if (pool_state == POOL_ENABLED && newpool != oldpool && 5108 (err = pool_do_bind(newpool, P_PID, P_MYID, 5109 POOL_BIND_ALL)) != 0) { 5110 pool_unlock(); 5111 zone_rele(zone); 5112 goto out; 5113 } 5114 5115 /* 5116 * Grab cpu_lock now; we'll need it later when we call 5117 * task_join(). 5118 */ 5119 mutex_enter(&cpu_lock); 5120 mutex_enter(&zonehash_lock); 5121 /* 5122 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5123 */ 5124 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5125 /* 5126 * Can't join anymore. 5127 */ 5128 mutex_exit(&zonehash_lock); 5129 mutex_exit(&cpu_lock); 5130 if (pool_state == POOL_ENABLED && 5131 newpool != oldpool) 5132 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5133 POOL_BIND_ALL); 5134 pool_unlock(); 5135 zone_rele(zone); 5136 err = EINVAL; 5137 goto out; 5138 } 5139 5140 /* 5141 * a_lock must be held while transfering locked memory and swap 5142 * reservation from the global zone to the non global zone because 5143 * asynchronous faults on the processes' address space can lock 5144 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5145 * segments respectively. 5146 */ 5147 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5148 swap = as_swresv(); 5149 mutex_enter(&pp->p_lock); 5150 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5151 /* verify that we do not exceed and task or lwp limits */ 5152 mutex_enter(&zone->zone_nlwps_lock); 5153 /* add new lwps to zone and zone's proj0 */ 5154 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5155 zone->zone_nlwps += pp->p_lwpcnt; 5156 /* add 1 task to zone's proj0 */ 5157 zone_proj0->kpj_ntasks += 1; 5158 mutex_exit(&zone->zone_nlwps_lock); 5159 5160 mutex_enter(&zone->zone_mem_lock); 5161 zone->zone_locked_mem += pp->p_locked_mem; 5162 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5163 zone->zone_max_swap += swap; 5164 mutex_exit(&zone->zone_mem_lock); 5165 5166 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5167 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5168 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5169 5170 /* remove lwps from proc's old zone and old project */ 5171 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5172 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5173 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5174 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5175 5176 mutex_enter(&pp->p_zone->zone_mem_lock); 5177 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5178 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5179 pp->p_zone->zone_max_swap -= swap; 5180 mutex_exit(&pp->p_zone->zone_mem_lock); 5181 5182 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5183 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5184 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5185 5186 pp->p_flag |= SZONETOP; 5187 pp->p_zone = zone; 5188 mutex_exit(&pp->p_lock); 5189 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5190 5191 /* 5192 * Joining the zone cannot fail from now on. 5193 * 5194 * This means that a lot of the following code can be commonized and 5195 * shared with zsched(). 5196 */ 5197 5198 /* 5199 * If the process contract fmri was inherited, we need to 5200 * flag this so that any contract status will not leak 5201 * extra zone information, svc_fmri in this case 5202 */ 5203 if (ctp->conp_svc_ctid != ct->ct_id) { 5204 mutex_enter(&ct->ct_lock); 5205 ctp->conp_svc_zone_enter = ct->ct_id; 5206 mutex_exit(&ct->ct_lock); 5207 } 5208 5209 /* 5210 * Reset the encapsulating process contract's zone. 5211 */ 5212 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5213 contract_setzuniqid(ct, zone->zone_uniqid); 5214 5215 /* 5216 * Create a new task and associate the process with the project keyed 5217 * by (projid,zoneid). 5218 * 5219 * We might as well be in project 0; the global zone's projid doesn't 5220 * make much sense in a zone anyhow. 5221 * 5222 * This also increments zone_ntasks, and returns with p_lock held. 5223 */ 5224 tk = task_create(0, zone); 5225 oldtk = task_join(tk, 0); 5226 mutex_exit(&cpu_lock); 5227 5228 /* 5229 * call RCTLOP_SET functions on this proc 5230 */ 5231 e.rcep_p.zone = zone; 5232 e.rcep_t = RCENTITY_ZONE; 5233 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5234 RCD_CALLBACK); 5235 mutex_exit(&pp->p_lock); 5236 5237 /* 5238 * We don't need to hold any of zsched's locks here; not only do we know 5239 * the process and zone aren't going away, we know its session isn't 5240 * changing either. 5241 * 5242 * By joining zsched's session here, we mimic the behavior in the 5243 * global zone of init's sid being the pid of sched. We extend this 5244 * to all zlogin-like zone_enter()'ing processes as well. 5245 */ 5246 mutex_enter(&pidlock); 5247 sp = zone->zone_zsched->p_sessp; 5248 sess_hold(zone->zone_zsched); 5249 mutex_enter(&pp->p_lock); 5250 pgexit(pp); 5251 sess_rele(pp->p_sessp, B_TRUE); 5252 pp->p_sessp = sp; 5253 pgjoin(pp, zone->zone_zsched->p_pidp); 5254 5255 /* 5256 * If any threads are scheduled to be placed on zone wait queue they 5257 * should abandon the idea since the wait queue is changing. 5258 * We need to be holding pidlock & p_lock to do this. 5259 */ 5260 if ((t = pp->p_tlist) != NULL) { 5261 do { 5262 thread_lock(t); 5263 /* 5264 * Kick this thread so that he doesn't sit 5265 * on a wrong wait queue. 5266 */ 5267 if (ISWAITING(t)) 5268 setrun_locked(t); 5269 5270 if (t->t_schedflag & TS_ANYWAITQ) 5271 t->t_schedflag &= ~ TS_ANYWAITQ; 5272 5273 thread_unlock(t); 5274 } while ((t = t->t_forw) != pp->p_tlist); 5275 } 5276 5277 /* 5278 * If there is a default scheduling class for the zone and it is not 5279 * the class we are currently in, change all of the threads in the 5280 * process to the new class. We need to be holding pidlock & p_lock 5281 * when we call parmsset so this is a good place to do it. 5282 */ 5283 if (zone->zone_defaultcid > 0 && 5284 zone->zone_defaultcid != curthread->t_cid) { 5285 pcparms_t pcparms; 5286 5287 pcparms.pc_cid = zone->zone_defaultcid; 5288 pcparms.pc_clparms[0] = 0; 5289 5290 /* 5291 * If setting the class fails, we still want to enter the zone. 5292 */ 5293 if ((t = pp->p_tlist) != NULL) { 5294 do { 5295 (void) parmsset(&pcparms, t); 5296 } while ((t = t->t_forw) != pp->p_tlist); 5297 } 5298 } 5299 5300 mutex_exit(&pp->p_lock); 5301 mutex_exit(&pidlock); 5302 5303 mutex_exit(&zonehash_lock); 5304 /* 5305 * We're firmly in the zone; let pools progress. 5306 */ 5307 pool_unlock(); 5308 task_rele(oldtk); 5309 /* 5310 * We don't need to retain a hold on the zone since we already 5311 * incremented zone_ntasks, so the zone isn't going anywhere. 5312 */ 5313 zone_rele(zone); 5314 5315 /* 5316 * Chroot 5317 */ 5318 vp = zone->zone_rootvp; 5319 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 5320 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 5321 5322 /* 5323 * Change process credentials 5324 */ 5325 newcr = cralloc(); 5326 mutex_enter(&pp->p_crlock); 5327 cr = pp->p_cred; 5328 crcopy_to(cr, newcr); 5329 crsetzone(newcr, zone); 5330 pp->p_cred = newcr; 5331 5332 /* 5333 * Restrict all process privilege sets to zone limit 5334 */ 5335 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 5336 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 5337 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 5338 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 5339 mutex_exit(&pp->p_crlock); 5340 crset(pp, newcr); 5341 5342 /* 5343 * Adjust upcount to reflect zone entry. 5344 */ 5345 uid = crgetruid(newcr); 5346 mutex_enter(&pidlock); 5347 upcount_dec(uid, GLOBAL_ZONEID); 5348 upcount_inc(uid, zoneid); 5349 mutex_exit(&pidlock); 5350 5351 /* 5352 * Set up core file path and content. 5353 */ 5354 set_core_defaults(); 5355 5356 out: 5357 /* 5358 * Let the other lwps continue. 5359 */ 5360 mutex_enter(&pp->p_lock); 5361 if (curthread != pp->p_agenttp) 5362 continuelwps(pp); 5363 mutex_exit(&pp->p_lock); 5364 5365 return (err != 0 ? set_errno(err) : 0); 5366 } 5367 5368 /* 5369 * Systemcall entry point for zone_list(2). 5370 * 5371 * Processes running in a (non-global) zone only see themselves. 5372 * On labeled systems, they see all zones whose label they dominate. 5373 */ 5374 static int 5375 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 5376 { 5377 zoneid_t *zoneids; 5378 zone_t *zone, *myzone; 5379 uint_t user_nzones, real_nzones; 5380 uint_t domi_nzones; 5381 int error; 5382 5383 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 5384 return (set_errno(EFAULT)); 5385 5386 myzone = curproc->p_zone; 5387 if (myzone != global_zone) { 5388 bslabel_t *mybslab; 5389 5390 if (!is_system_labeled()) { 5391 /* just return current zone */ 5392 real_nzones = domi_nzones = 1; 5393 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 5394 zoneids[0] = myzone->zone_id; 5395 } else { 5396 /* return all zones that are dominated */ 5397 mutex_enter(&zonehash_lock); 5398 real_nzones = zonecount; 5399 domi_nzones = 0; 5400 if (real_nzones > 0) { 5401 zoneids = kmem_alloc(real_nzones * 5402 sizeof (zoneid_t), KM_SLEEP); 5403 mybslab = label2bslabel(myzone->zone_slabel); 5404 for (zone = list_head(&zone_active); 5405 zone != NULL; 5406 zone = list_next(&zone_active, zone)) { 5407 if (zone->zone_id == GLOBAL_ZONEID) 5408 continue; 5409 if (zone != myzone && 5410 (zone->zone_flags & ZF_IS_SCRATCH)) 5411 continue; 5412 /* 5413 * Note that a label always dominates 5414 * itself, so myzone is always included 5415 * in the list. 5416 */ 5417 if (bldominates(mybslab, 5418 label2bslabel(zone->zone_slabel))) { 5419 zoneids[domi_nzones++] = 5420 zone->zone_id; 5421 } 5422 } 5423 } 5424 mutex_exit(&zonehash_lock); 5425 } 5426 } else { 5427 mutex_enter(&zonehash_lock); 5428 real_nzones = zonecount; 5429 domi_nzones = 0; 5430 if (real_nzones > 0) { 5431 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 5432 KM_SLEEP); 5433 for (zone = list_head(&zone_active); zone != NULL; 5434 zone = list_next(&zone_active, zone)) 5435 zoneids[domi_nzones++] = zone->zone_id; 5436 ASSERT(domi_nzones == real_nzones); 5437 } 5438 mutex_exit(&zonehash_lock); 5439 } 5440 5441 /* 5442 * If user has allocated space for fewer entries than we found, then 5443 * return only up to his limit. Either way, tell him exactly how many 5444 * we found. 5445 */ 5446 if (domi_nzones < user_nzones) 5447 user_nzones = domi_nzones; 5448 error = 0; 5449 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 5450 error = EFAULT; 5451 } else if (zoneidlist != NULL && user_nzones != 0) { 5452 if (copyout(zoneids, zoneidlist, 5453 user_nzones * sizeof (zoneid_t)) != 0) 5454 error = EFAULT; 5455 } 5456 5457 if (real_nzones > 0) 5458 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 5459 5460 if (error != 0) 5461 return (set_errno(error)); 5462 else 5463 return (0); 5464 } 5465 5466 /* 5467 * Systemcall entry point for zone_lookup(2). 5468 * 5469 * Non-global zones are only able to see themselves and (on labeled systems) 5470 * the zones they dominate. 5471 */ 5472 static zoneid_t 5473 zone_lookup(const char *zone_name) 5474 { 5475 char *kname; 5476 zone_t *zone; 5477 zoneid_t zoneid; 5478 int err; 5479 5480 if (zone_name == NULL) { 5481 /* return caller's zone id */ 5482 return (getzoneid()); 5483 } 5484 5485 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 5486 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 5487 kmem_free(kname, ZONENAME_MAX); 5488 return (set_errno(err)); 5489 } 5490 5491 mutex_enter(&zonehash_lock); 5492 zone = zone_find_all_by_name(kname); 5493 kmem_free(kname, ZONENAME_MAX); 5494 /* 5495 * In a non-global zone, can only lookup global and own name. 5496 * In Trusted Extensions zone label dominance rules apply. 5497 */ 5498 if (zone == NULL || 5499 zone_status_get(zone) < ZONE_IS_READY || 5500 !zone_list_access(zone)) { 5501 mutex_exit(&zonehash_lock); 5502 return (set_errno(EINVAL)); 5503 } else { 5504 zoneid = zone->zone_id; 5505 mutex_exit(&zonehash_lock); 5506 return (zoneid); 5507 } 5508 } 5509 5510 static int 5511 zone_version(int *version_arg) 5512 { 5513 int version = ZONE_SYSCALL_API_VERSION; 5514 5515 if (copyout(&version, version_arg, sizeof (int)) != 0) 5516 return (set_errno(EFAULT)); 5517 return (0); 5518 } 5519 5520 /* ARGSUSED */ 5521 long 5522 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 5523 { 5524 zone_def zs; 5525 int err; 5526 5527 switch (cmd) { 5528 case ZONE_CREATE: 5529 if (get_udatamodel() == DATAMODEL_NATIVE) { 5530 if (copyin(arg1, &zs, sizeof (zone_def))) { 5531 return (set_errno(EFAULT)); 5532 } 5533 } else { 5534 #ifdef _SYSCALL32_IMPL 5535 zone_def32 zs32; 5536 5537 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 5538 return (set_errno(EFAULT)); 5539 } 5540 zs.zone_name = 5541 (const char *)(unsigned long)zs32.zone_name; 5542 zs.zone_root = 5543 (const char *)(unsigned long)zs32.zone_root; 5544 zs.zone_privs = 5545 (const struct priv_set *) 5546 (unsigned long)zs32.zone_privs; 5547 zs.zone_privssz = zs32.zone_privssz; 5548 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 5549 zs.rctlbufsz = zs32.rctlbufsz; 5550 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 5551 zs.zfsbufsz = zs32.zfsbufsz; 5552 zs.extended_error = 5553 (int *)(unsigned long)zs32.extended_error; 5554 zs.match = zs32.match; 5555 zs.doi = zs32.doi; 5556 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 5557 zs.flags = zs32.flags; 5558 #else 5559 panic("get_udatamodel() returned bogus result\n"); 5560 #endif 5561 } 5562 5563 return (zone_create(zs.zone_name, zs.zone_root, 5564 zs.zone_privs, zs.zone_privssz, 5565 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 5566 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 5567 zs.extended_error, zs.match, zs.doi, 5568 zs.label, zs.flags)); 5569 case ZONE_BOOT: 5570 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 5571 case ZONE_DESTROY: 5572 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 5573 case ZONE_GETATTR: 5574 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 5575 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5576 case ZONE_SETATTR: 5577 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 5578 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5579 case ZONE_ENTER: 5580 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 5581 case ZONE_LIST: 5582 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 5583 case ZONE_SHUTDOWN: 5584 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 5585 case ZONE_LOOKUP: 5586 return (zone_lookup((const char *)arg1)); 5587 case ZONE_VERSION: 5588 return (zone_version((int *)arg1)); 5589 case ZONE_ADD_DATALINK: 5590 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 5591 (datalink_id_t)(uintptr_t)arg2)); 5592 case ZONE_DEL_DATALINK: 5593 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 5594 (datalink_id_t)(uintptr_t)arg2)); 5595 case ZONE_CHECK_DATALINK: { 5596 zoneid_t zoneid; 5597 boolean_t need_copyout; 5598 5599 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 5600 return (EFAULT); 5601 need_copyout = (zoneid == ALL_ZONES); 5602 err = zone_check_datalink(&zoneid, 5603 (datalink_id_t)(uintptr_t)arg2); 5604 if (err == 0 && need_copyout) { 5605 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 5606 err = EFAULT; 5607 } 5608 return (err == 0 ? 0 : set_errno(err)); 5609 } 5610 case ZONE_LIST_DATALINK: 5611 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 5612 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 5613 default: 5614 return (set_errno(EINVAL)); 5615 } 5616 } 5617 5618 struct zarg { 5619 zone_t *zone; 5620 zone_cmd_arg_t arg; 5621 }; 5622 5623 static int 5624 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 5625 { 5626 char *buf; 5627 size_t buflen; 5628 int error; 5629 5630 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 5631 buf = kmem_alloc(buflen, KM_SLEEP); 5632 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 5633 error = door_ki_open(buf, doorp); 5634 kmem_free(buf, buflen); 5635 return (error); 5636 } 5637 5638 static void 5639 zone_release_door(door_handle_t *doorp) 5640 { 5641 door_ki_rele(*doorp); 5642 *doorp = NULL; 5643 } 5644 5645 static void 5646 zone_ki_call_zoneadmd(struct zarg *zargp) 5647 { 5648 door_handle_t door = NULL; 5649 door_arg_t darg, save_arg; 5650 char *zone_name; 5651 size_t zone_namelen; 5652 zoneid_t zoneid; 5653 zone_t *zone; 5654 zone_cmd_arg_t arg; 5655 uint64_t uniqid; 5656 size_t size; 5657 int error; 5658 int retry; 5659 5660 zone = zargp->zone; 5661 arg = zargp->arg; 5662 kmem_free(zargp, sizeof (*zargp)); 5663 5664 zone_namelen = strlen(zone->zone_name) + 1; 5665 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 5666 bcopy(zone->zone_name, zone_name, zone_namelen); 5667 zoneid = zone->zone_id; 5668 uniqid = zone->zone_uniqid; 5669 /* 5670 * zoneadmd may be down, but at least we can empty out the zone. 5671 * We can ignore the return value of zone_empty() since we're called 5672 * from a kernel thread and know we won't be delivered any signals. 5673 */ 5674 ASSERT(curproc == &p0); 5675 (void) zone_empty(zone); 5676 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 5677 zone_rele(zone); 5678 5679 size = sizeof (arg); 5680 darg.rbuf = (char *)&arg; 5681 darg.data_ptr = (char *)&arg; 5682 darg.rsize = size; 5683 darg.data_size = size; 5684 darg.desc_ptr = NULL; 5685 darg.desc_num = 0; 5686 5687 save_arg = darg; 5688 /* 5689 * Since we're not holding a reference to the zone, any number of 5690 * things can go wrong, including the zone disappearing before we get a 5691 * chance to talk to zoneadmd. 5692 */ 5693 for (retry = 0; /* forever */; retry++) { 5694 if (door == NULL && 5695 (error = zone_lookup_door(zone_name, &door)) != 0) { 5696 goto next; 5697 } 5698 ASSERT(door != NULL); 5699 5700 if ((error = door_ki_upcall_limited(door, &darg, NULL, 5701 SIZE_MAX, 0)) == 0) { 5702 break; 5703 } 5704 switch (error) { 5705 case EINTR: 5706 /* FALLTHROUGH */ 5707 case EAGAIN: /* process may be forking */ 5708 /* 5709 * Back off for a bit 5710 */ 5711 break; 5712 case EBADF: 5713 zone_release_door(&door); 5714 if (zone_lookup_door(zone_name, &door) != 0) { 5715 /* 5716 * zoneadmd may be dead, but it may come back to 5717 * life later. 5718 */ 5719 break; 5720 } 5721 break; 5722 default: 5723 cmn_err(CE_WARN, 5724 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 5725 error); 5726 goto out; 5727 } 5728 next: 5729 /* 5730 * If this isn't the same zone_t that we originally had in mind, 5731 * then this is the same as if two kadmin requests come in at 5732 * the same time: the first one wins. This means we lose, so we 5733 * bail. 5734 */ 5735 if ((zone = zone_find_by_id(zoneid)) == NULL) { 5736 /* 5737 * Problem is solved. 5738 */ 5739 break; 5740 } 5741 if (zone->zone_uniqid != uniqid) { 5742 /* 5743 * zoneid recycled 5744 */ 5745 zone_rele(zone); 5746 break; 5747 } 5748 /* 5749 * We could zone_status_timedwait(), but there doesn't seem to 5750 * be much point in doing that (plus, it would mean that 5751 * zone_free() isn't called until this thread exits). 5752 */ 5753 zone_rele(zone); 5754 delay(hz); 5755 darg = save_arg; 5756 } 5757 out: 5758 if (door != NULL) { 5759 zone_release_door(&door); 5760 } 5761 kmem_free(zone_name, zone_namelen); 5762 thread_exit(); 5763 } 5764 5765 /* 5766 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 5767 * kadmin(). The caller is a process in the zone. 5768 * 5769 * In order to shutdown the zone, we will hand off control to zoneadmd 5770 * (running in the global zone) via a door. We do a half-hearted job at 5771 * killing all processes in the zone, create a kernel thread to contact 5772 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 5773 * a form of generation number used to let zoneadmd (as well as 5774 * zone_destroy()) know exactly which zone they're re talking about. 5775 */ 5776 int 5777 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 5778 { 5779 struct zarg *zargp; 5780 zone_cmd_t zcmd; 5781 zone_t *zone; 5782 5783 zone = curproc->p_zone; 5784 ASSERT(getzoneid() != GLOBAL_ZONEID); 5785 5786 switch (cmd) { 5787 case A_SHUTDOWN: 5788 switch (fcn) { 5789 case AD_HALT: 5790 case AD_POWEROFF: 5791 zcmd = Z_HALT; 5792 break; 5793 case AD_BOOT: 5794 zcmd = Z_REBOOT; 5795 break; 5796 case AD_IBOOT: 5797 case AD_SBOOT: 5798 case AD_SIBOOT: 5799 case AD_NOSYNC: 5800 return (ENOTSUP); 5801 default: 5802 return (EINVAL); 5803 } 5804 break; 5805 case A_REBOOT: 5806 zcmd = Z_REBOOT; 5807 break; 5808 case A_FTRACE: 5809 case A_REMOUNT: 5810 case A_FREEZE: 5811 case A_DUMP: 5812 case A_CONFIG: 5813 return (ENOTSUP); 5814 default: 5815 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 5816 return (EINVAL); 5817 } 5818 5819 if (secpolicy_zone_admin(credp, B_FALSE)) 5820 return (EPERM); 5821 mutex_enter(&zone_status_lock); 5822 5823 /* 5824 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 5825 * is in the zone. 5826 */ 5827 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 5828 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 5829 /* 5830 * This zone is already on its way down. 5831 */ 5832 mutex_exit(&zone_status_lock); 5833 return (0); 5834 } 5835 /* 5836 * Prevent future zone_enter()s 5837 */ 5838 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5839 mutex_exit(&zone_status_lock); 5840 5841 /* 5842 * Kill everyone now and call zoneadmd later. 5843 * zone_ki_call_zoneadmd() will do a more thorough job of this 5844 * later. 5845 */ 5846 killall(zone->zone_id); 5847 /* 5848 * Now, create the thread to contact zoneadmd and do the rest of the 5849 * work. This thread can't be created in our zone otherwise 5850 * zone_destroy() would deadlock. 5851 */ 5852 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 5853 zargp->arg.cmd = zcmd; 5854 zargp->arg.uniqid = zone->zone_uniqid; 5855 zargp->zone = zone; 5856 (void) strcpy(zargp->arg.locale, "C"); 5857 /* mdep was already copied in for us by uadmin */ 5858 if (mdep != NULL) 5859 (void) strlcpy(zargp->arg.bootbuf, mdep, 5860 sizeof (zargp->arg.bootbuf)); 5861 zone_hold(zone); 5862 5863 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 5864 TS_RUN, minclsyspri); 5865 exit(CLD_EXITED, 0); 5866 5867 return (EINVAL); 5868 } 5869 5870 /* 5871 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 5872 * status to ZONE_IS_SHUTTING_DOWN. 5873 * 5874 * This function also shuts down all running zones to ensure that they won't 5875 * fork new processes. 5876 */ 5877 void 5878 zone_shutdown_global(void) 5879 { 5880 zone_t *current_zonep; 5881 5882 ASSERT(INGLOBALZONE(curproc)); 5883 mutex_enter(&zonehash_lock); 5884 mutex_enter(&zone_status_lock); 5885 5886 /* Modify the global zone's status first. */ 5887 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 5888 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 5889 5890 /* 5891 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 5892 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 5893 * could cause assertions to fail (e.g., assertions about a zone's 5894 * state during initialization, readying, or booting) or produce races. 5895 * We'll let threads continue to initialize and ready new zones: they'll 5896 * fail to boot the new zones when they see that the global zone is 5897 * shutting down. 5898 */ 5899 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 5900 current_zonep = list_next(&zone_active, current_zonep)) { 5901 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 5902 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 5903 } 5904 mutex_exit(&zone_status_lock); 5905 mutex_exit(&zonehash_lock); 5906 } 5907 5908 /* 5909 * Returns true if the named dataset is visible in the current zone. 5910 * The 'write' parameter is set to 1 if the dataset is also writable. 5911 */ 5912 int 5913 zone_dataset_visible(const char *dataset, int *write) 5914 { 5915 static int zfstype = -1; 5916 zone_dataset_t *zd; 5917 size_t len; 5918 zone_t *zone = curproc->p_zone; 5919 const char *name = NULL; 5920 vfs_t *vfsp = NULL; 5921 5922 if (dataset[0] == '\0') 5923 return (0); 5924 5925 /* 5926 * Walk the list once, looking for datasets which match exactly, or 5927 * specify a dataset underneath an exported dataset. If found, return 5928 * true and note that it is writable. 5929 */ 5930 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5931 zd = list_next(&zone->zone_datasets, zd)) { 5932 5933 len = strlen(zd->zd_dataset); 5934 if (strlen(dataset) >= len && 5935 bcmp(dataset, zd->zd_dataset, len) == 0 && 5936 (dataset[len] == '\0' || dataset[len] == '/' || 5937 dataset[len] == '@')) { 5938 if (write) 5939 *write = 1; 5940 return (1); 5941 } 5942 } 5943 5944 /* 5945 * Walk the list a second time, searching for datasets which are parents 5946 * of exported datasets. These should be visible, but read-only. 5947 * 5948 * Note that we also have to support forms such as 'pool/dataset/', with 5949 * a trailing slash. 5950 */ 5951 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5952 zd = list_next(&zone->zone_datasets, zd)) { 5953 5954 len = strlen(dataset); 5955 if (dataset[len - 1] == '/') 5956 len--; /* Ignore trailing slash */ 5957 if (len < strlen(zd->zd_dataset) && 5958 bcmp(dataset, zd->zd_dataset, len) == 0 && 5959 zd->zd_dataset[len] == '/') { 5960 if (write) 5961 *write = 0; 5962 return (1); 5963 } 5964 } 5965 5966 /* 5967 * We reach here if the given dataset is not found in the zone_dataset 5968 * list. Check if this dataset was added as a filesystem (ie. "add fs") 5969 * instead of delegation. For this we search for the dataset in the 5970 * zone_vfslist of this zone. If found, return true and note that it is 5971 * not writable. 5972 */ 5973 5974 /* 5975 * Initialize zfstype if it is not initialized yet. 5976 */ 5977 if (zfstype == -1) { 5978 struct vfssw *vswp = vfs_getvfssw("zfs"); 5979 zfstype = vswp - vfssw; 5980 vfs_unrefvfssw(vswp); 5981 } 5982 5983 vfs_list_read_lock(); 5984 vfsp = zone->zone_vfslist; 5985 do { 5986 ASSERT(vfsp); 5987 if (vfsp->vfs_fstype == zfstype) { 5988 name = refstr_value(vfsp->vfs_resource); 5989 5990 /* 5991 * Check if we have an exact match. 5992 */ 5993 if (strcmp(dataset, name) == 0) { 5994 vfs_list_unlock(); 5995 if (write) 5996 *write = 0; 5997 return (1); 5998 } 5999 /* 6000 * We need to check if we are looking for parents of 6001 * a dataset. These should be visible, but read-only. 6002 */ 6003 len = strlen(dataset); 6004 if (dataset[len - 1] == '/') 6005 len--; 6006 6007 if (len < strlen(name) && 6008 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6009 vfs_list_unlock(); 6010 if (write) 6011 *write = 0; 6012 return (1); 6013 } 6014 } 6015 vfsp = vfsp->vfs_zone_next; 6016 } while (vfsp != zone->zone_vfslist); 6017 6018 vfs_list_unlock(); 6019 return (0); 6020 } 6021 6022 /* 6023 * zone_find_by_any_path() - 6024 * 6025 * kernel-private routine similar to zone_find_by_path(), but which 6026 * effectively compares against zone paths rather than zonerootpath 6027 * (i.e., the last component of zonerootpaths, which should be "root/", 6028 * are not compared.) This is done in order to accurately identify all 6029 * paths, whether zone-visible or not, including those which are parallel 6030 * to /root/, such as /dev/, /home/, etc... 6031 * 6032 * If the specified path does not fall under any zone path then global 6033 * zone is returned. 6034 * 6035 * The treat_abs parameter indicates whether the path should be treated as 6036 * an absolute path although it does not begin with "/". (This supports 6037 * nfs mount syntax such as host:any/path.) 6038 * 6039 * The caller is responsible for zone_rele of the returned zone. 6040 */ 6041 zone_t * 6042 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6043 { 6044 zone_t *zone; 6045 int path_offset = 0; 6046 6047 if (path == NULL) { 6048 zone_hold(global_zone); 6049 return (global_zone); 6050 } 6051 6052 if (*path != '/') { 6053 ASSERT(treat_abs); 6054 path_offset = 1; 6055 } 6056 6057 mutex_enter(&zonehash_lock); 6058 for (zone = list_head(&zone_active); zone != NULL; 6059 zone = list_next(&zone_active, zone)) { 6060 char *c; 6061 size_t pathlen; 6062 char *rootpath_start; 6063 6064 if (zone == global_zone) /* skip global zone */ 6065 continue; 6066 6067 /* scan backwards to find start of last component */ 6068 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6069 do { 6070 c--; 6071 } while (*c != '/'); 6072 6073 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6074 rootpath_start = (zone->zone_rootpath + path_offset); 6075 if (strncmp(path, rootpath_start, pathlen) == 0) 6076 break; 6077 } 6078 if (zone == NULL) 6079 zone = global_zone; 6080 zone_hold(zone); 6081 mutex_exit(&zonehash_lock); 6082 return (zone); 6083 } 6084 6085 /* 6086 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6087 * zone_dl_t pointer if found, and NULL otherwise. 6088 */ 6089 static zone_dl_t * 6090 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6091 { 6092 zone_dl_t *zdl; 6093 6094 ASSERT(mutex_owned(&zone->zone_lock)); 6095 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6096 zdl = list_next(&zone->zone_dl_list, zdl)) { 6097 if (zdl->zdl_id == linkid) 6098 break; 6099 } 6100 return (zdl); 6101 } 6102 6103 static boolean_t 6104 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6105 { 6106 boolean_t exists; 6107 6108 mutex_enter(&zone->zone_lock); 6109 exists = (zone_find_dl(zone, linkid) != NULL); 6110 mutex_exit(&zone->zone_lock); 6111 return (exists); 6112 } 6113 6114 /* 6115 * Add an data link name for the zone. 6116 */ 6117 static int 6118 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6119 { 6120 zone_dl_t *zdl; 6121 zone_t *zone; 6122 zone_t *thiszone; 6123 6124 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6125 return (set_errno(ENXIO)); 6126 6127 /* Verify that the datalink ID doesn't already belong to a zone. */ 6128 mutex_enter(&zonehash_lock); 6129 for (zone = list_head(&zone_active); zone != NULL; 6130 zone = list_next(&zone_active, zone)) { 6131 if (zone_dl_exists(zone, linkid)) { 6132 mutex_exit(&zonehash_lock); 6133 zone_rele(thiszone); 6134 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6135 } 6136 } 6137 6138 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6139 zdl->zdl_id = linkid; 6140 mutex_enter(&thiszone->zone_lock); 6141 list_insert_head(&thiszone->zone_dl_list, zdl); 6142 mutex_exit(&thiszone->zone_lock); 6143 mutex_exit(&zonehash_lock); 6144 zone_rele(thiszone); 6145 return (0); 6146 } 6147 6148 static int 6149 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6150 { 6151 zone_dl_t *zdl; 6152 zone_t *zone; 6153 int err = 0; 6154 6155 if ((zone = zone_find_by_id(zoneid)) == NULL) 6156 return (set_errno(EINVAL)); 6157 6158 mutex_enter(&zone->zone_lock); 6159 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6160 err = ENXIO; 6161 } else { 6162 list_remove(&zone->zone_dl_list, zdl); 6163 kmem_free(zdl, sizeof (zone_dl_t)); 6164 } 6165 mutex_exit(&zone->zone_lock); 6166 zone_rele(zone); 6167 return (err == 0 ? 0 : set_errno(err)); 6168 } 6169 6170 /* 6171 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6172 * the linkid. Otherwise we just check if the specified zoneidp has been 6173 * assigned the supplied linkid. 6174 */ 6175 int 6176 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6177 { 6178 zone_t *zone; 6179 int err = ENXIO; 6180 6181 if (*zoneidp != ALL_ZONES) { 6182 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6183 if (zone_dl_exists(zone, linkid)) 6184 err = 0; 6185 zone_rele(zone); 6186 } 6187 return (err); 6188 } 6189 6190 mutex_enter(&zonehash_lock); 6191 for (zone = list_head(&zone_active); zone != NULL; 6192 zone = list_next(&zone_active, zone)) { 6193 if (zone_dl_exists(zone, linkid)) { 6194 *zoneidp = zone->zone_id; 6195 err = 0; 6196 break; 6197 } 6198 } 6199 mutex_exit(&zonehash_lock); 6200 return (err); 6201 } 6202 6203 /* 6204 * Get the list of datalink IDs assigned to a zone. 6205 * 6206 * On input, *nump is the number of datalink IDs that can fit in the supplied 6207 * idarray. Upon return, *nump is either set to the number of datalink IDs 6208 * that were placed in the array if the array was large enough, or to the 6209 * number of datalink IDs that the function needs to place in the array if the 6210 * array is too small. 6211 */ 6212 static int 6213 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6214 { 6215 uint_t num, dlcount; 6216 zone_t *zone; 6217 zone_dl_t *zdl; 6218 datalink_id_t *idptr = idarray; 6219 6220 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6221 return (set_errno(EFAULT)); 6222 if ((zone = zone_find_by_id(zoneid)) == NULL) 6223 return (set_errno(ENXIO)); 6224 6225 num = 0; 6226 mutex_enter(&zone->zone_lock); 6227 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6228 zdl = list_next(&zone->zone_dl_list, zdl)) { 6229 /* 6230 * If the list is bigger than what the caller supplied, just 6231 * count, don't do copyout. 6232 */ 6233 if (++num > dlcount) 6234 continue; 6235 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6236 mutex_exit(&zone->zone_lock); 6237 zone_rele(zone); 6238 return (set_errno(EFAULT)); 6239 } 6240 idptr++; 6241 } 6242 mutex_exit(&zone->zone_lock); 6243 zone_rele(zone); 6244 6245 /* Increased or decreased, caller should be notified. */ 6246 if (num != dlcount) { 6247 if (copyout(&num, nump, sizeof (num)) != 0) 6248 return (set_errno(EFAULT)); 6249 } 6250 return (0); 6251 } 6252 6253 /* 6254 * Public interface for looking up a zone by zoneid. It's a customized version 6255 * for netstack_zone_create(). It can only be called from the zsd create 6256 * callbacks, since it doesn't have reference on the zone structure hence if 6257 * it is called elsewhere the zone could disappear after the zonehash_lock 6258 * is dropped. 6259 * 6260 * Furthermore it 6261 * 1. Doesn't check the status of the zone. 6262 * 2. It will be called even before zone_init is called, in that case the 6263 * address of zone0 is returned directly, and netstack_zone_create() 6264 * will only assign a value to zone0.zone_netstack, won't break anything. 6265 * 3. Returns without the zone being held. 6266 */ 6267 zone_t * 6268 zone_find_by_id_nolock(zoneid_t zoneid) 6269 { 6270 zone_t *zone; 6271 6272 mutex_enter(&zonehash_lock); 6273 if (zonehashbyid == NULL) 6274 zone = &zone0; 6275 else 6276 zone = zone_find_all_by_id(zoneid); 6277 mutex_exit(&zonehash_lock); 6278 return (zone); 6279 } 6280 6281 /* 6282 * Walk the datalinks for a given zone 6283 */ 6284 int 6285 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 6286 void *data) 6287 { 6288 zone_t *zone; 6289 zone_dl_t *zdl; 6290 datalink_id_t *idarray; 6291 uint_t idcount = 0; 6292 int i, ret = 0; 6293 6294 if ((zone = zone_find_by_id(zoneid)) == NULL) 6295 return (ENOENT); 6296 6297 /* 6298 * We first build an array of linkid's so that we can walk these and 6299 * execute the callback with the zone_lock dropped. 6300 */ 6301 mutex_enter(&zone->zone_lock); 6302 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6303 zdl = list_next(&zone->zone_dl_list, zdl)) { 6304 idcount++; 6305 } 6306 6307 if (idcount == 0) { 6308 mutex_exit(&zone->zone_lock); 6309 zone_rele(zone); 6310 return (0); 6311 } 6312 6313 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 6314 if (idarray == NULL) { 6315 mutex_exit(&zone->zone_lock); 6316 zone_rele(zone); 6317 return (ENOMEM); 6318 } 6319 6320 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6321 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 6322 idarray[i] = zdl->zdl_id; 6323 } 6324 6325 mutex_exit(&zone->zone_lock); 6326 6327 for (i = 0; i < idcount && ret == 0; i++) { 6328 if ((ret = (*cb)(idarray[i], data)) != 0) 6329 break; 6330 } 6331 6332 zone_rele(zone); 6333 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 6334 return (ret); 6335 } 6336