1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2013, Joyent Inc. All rights reserved. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 164 * currently just max_lofi 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/strlog.h> 228 #include <sys/sysmacros.h> 229 #include <sys/callb.h> 230 #include <sys/vmparam.h> 231 #include <sys/corectl.h> 232 #include <sys/ipc_impl.h> 233 #include <sys/klpd.h> 234 235 #include <sys/door.h> 236 #include <sys/cpuvar.h> 237 #include <sys/sdt.h> 238 239 #include <sys/uadmin.h> 240 #include <sys/session.h> 241 #include <sys/cmn_err.h> 242 #include <sys/modhash.h> 243 #include <sys/sunddi.h> 244 #include <sys/nvpair.h> 245 #include <sys/rctl.h> 246 #include <sys/fss.h> 247 #include <sys/brand.h> 248 #include <sys/zone.h> 249 #include <net/if.h> 250 #include <sys/cpucaps.h> 251 #include <vm/seg.h> 252 #include <sys/mac.h> 253 254 /* 255 * This constant specifies the number of seconds that threads waiting for 256 * subsystems to release a zone's general-purpose references will wait before 257 * they log the zone's reference counts. The constant's value shouldn't 258 * be so small that reference counts are unnecessarily reported for zones 259 * whose references are slowly released. On the other hand, it shouldn't be so 260 * large that users reboot their systems out of frustration over hung zones 261 * before the system logs the zones' reference counts. 262 */ 263 #define ZONE_DESTROY_TIMEOUT_SECS 60 264 265 /* List of data link IDs which are accessible from the zone */ 266 typedef struct zone_dl { 267 datalink_id_t zdl_id; 268 nvlist_t *zdl_net; 269 list_node_t zdl_linkage; 270 } zone_dl_t; 271 272 /* 273 * cv used to signal that all references to the zone have been released. This 274 * needs to be global since there may be multiple waiters, and the first to 275 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 276 */ 277 static kcondvar_t zone_destroy_cv; 278 /* 279 * Lock used to serialize access to zone_cv. This could have been per-zone, 280 * but then we'd need another lock for zone_destroy_cv, and why bother? 281 */ 282 static kmutex_t zone_status_lock; 283 284 /* 285 * ZSD-related global variables. 286 */ 287 static kmutex_t zsd_key_lock; /* protects the following two */ 288 /* 289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 290 */ 291 static zone_key_t zsd_keyval = 0; 292 /* 293 * Global list of registered keys. We use this when a new zone is created. 294 */ 295 static list_t zsd_registered_keys; 296 297 int zone_hash_size = 256; 298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 299 static kmutex_t zonehash_lock; 300 static uint_t zonecount; 301 static id_space_t *zoneid_space; 302 303 /* 304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 305 * kernel proper runs, and which manages all other zones. 306 * 307 * Although not declared as static, the variable "zone0" should not be used 308 * except for by code that needs to reference the global zone early on in boot, 309 * before it is fully initialized. All other consumers should use 310 * 'global_zone'. 311 */ 312 zone_t zone0; 313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 314 315 /* 316 * List of active zones, protected by zonehash_lock. 317 */ 318 static list_t zone_active; 319 320 /* 321 * List of destroyed zones that still have outstanding cred references. 322 * Used for debugging. Uses a separate lock to avoid lock ordering 323 * problems in zone_free. 324 */ 325 static list_t zone_deathrow; 326 static kmutex_t zone_deathrow_lock; 327 328 /* number of zones is limited by virtual interface limit in IP */ 329 uint_t maxzones = 8192; 330 331 /* Event channel to sent zone state change notifications */ 332 evchan_t *zone_event_chan; 333 334 /* 335 * This table holds the mapping from kernel zone states to 336 * states visible in the state notification API. 337 * The idea is that we only expose "obvious" states and 338 * do not expose states which are just implementation details. 339 */ 340 const char *zone_status_table[] = { 341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 342 ZONE_EVENT_INITIALIZED, /* initialized */ 343 ZONE_EVENT_READY, /* ready */ 344 ZONE_EVENT_READY, /* booting */ 345 ZONE_EVENT_RUNNING, /* running */ 346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 347 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 348 ZONE_EVENT_SHUTTING_DOWN, /* down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 350 ZONE_EVENT_UNINITIALIZED, /* dead */ 351 }; 352 353 /* 354 * This array contains the names of the subsystems listed in zone_ref_subsys_t 355 * (see sys/zone.h). 356 */ 357 static char *zone_ref_subsys_names[] = { 358 "NFS", /* ZONE_REF_NFS */ 359 "NFSv4", /* ZONE_REF_NFSV4 */ 360 "SMBFS", /* ZONE_REF_SMBFS */ 361 "MNTFS", /* ZONE_REF_MNTFS */ 362 "LOFI", /* ZONE_REF_LOFI */ 363 "VFS", /* ZONE_REF_VFS */ 364 "IPC" /* ZONE_REF_IPC */ 365 }; 366 367 /* 368 * This isn't static so lint doesn't complain. 369 */ 370 rctl_hndl_t rc_zone_cpu_shares; 371 rctl_hndl_t rc_zone_locked_mem; 372 rctl_hndl_t rc_zone_max_swap; 373 rctl_hndl_t rc_zone_max_lofi; 374 rctl_hndl_t rc_zone_cpu_cap; 375 rctl_hndl_t rc_zone_nlwps; 376 rctl_hndl_t rc_zone_nprocs; 377 rctl_hndl_t rc_zone_shmmax; 378 rctl_hndl_t rc_zone_shmmni; 379 rctl_hndl_t rc_zone_semmni; 380 rctl_hndl_t rc_zone_msgmni; 381 /* 382 * Synchronization primitives used to synchronize between mounts and zone 383 * creation/destruction. 384 */ 385 static int mounts_in_progress; 386 static kcondvar_t mount_cv; 387 static kmutex_t mount_lock; 388 389 const char * const zone_default_initname = "/sbin/init"; 390 static char * const zone_prefix = "/zone/"; 391 static int zone_shutdown(zoneid_t zoneid); 392 static int zone_add_datalink(zoneid_t, datalink_id_t); 393 static int zone_remove_datalink(zoneid_t, datalink_id_t); 394 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 395 static int zone_set_network(zoneid_t, zone_net_data_t *); 396 static int zone_get_network(zoneid_t, zone_net_data_t *); 397 398 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 399 400 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 401 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 402 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 403 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 404 zone_key_t); 405 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 406 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 407 kmutex_t *); 408 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 409 kmutex_t *); 410 411 /* 412 * Bump this number when you alter the zone syscall interfaces; this is 413 * because we need to have support for previous API versions in libc 414 * to support patching; libc calls into the kernel to determine this number. 415 * 416 * Version 1 of the API is the version originally shipped with Solaris 10 417 * Version 2 alters the zone_create system call in order to support more 418 * arguments by moving the args into a structure; and to do better 419 * error reporting when zone_create() fails. 420 * Version 3 alters the zone_create system call in order to support the 421 * import of ZFS datasets to zones. 422 * Version 4 alters the zone_create system call in order to support 423 * Trusted Extensions. 424 * Version 5 alters the zone_boot system call, and converts its old 425 * bootargs parameter to be set by the zone_setattr API instead. 426 * Version 6 adds the flag argument to zone_create. 427 */ 428 static const int ZONE_SYSCALL_API_VERSION = 6; 429 430 /* 431 * Certain filesystems (such as NFS and autofs) need to know which zone 432 * the mount is being placed in. Because of this, we need to be able to 433 * ensure that a zone isn't in the process of being created such that 434 * nfs_mount() thinks it is in the global zone, while by the time it 435 * gets added the list of mounted zones, it ends up on zoneA's mount 436 * list. 437 * 438 * The following functions: block_mounts()/resume_mounts() and 439 * mount_in_progress()/mount_completed() are used by zones and the VFS 440 * layer (respectively) to synchronize zone creation and new mounts. 441 * 442 * The semantics are like a reader-reader lock such that there may 443 * either be multiple mounts (or zone creations, if that weren't 444 * serialized by zonehash_lock) in progress at the same time, but not 445 * both. 446 * 447 * We use cv's so the user can ctrl-C out of the operation if it's 448 * taking too long. 449 * 450 * The semantics are such that there is unfair bias towards the 451 * "current" operation. This means that zone creations may starve if 452 * there is a rapid succession of new mounts coming in to the system, or 453 * there is a remote possibility that zones will be created at such a 454 * rate that new mounts will not be able to proceed. 455 */ 456 /* 457 * Prevent new mounts from progressing to the point of calling 458 * VFS_MOUNT(). If there are already mounts in this "region", wait for 459 * them to complete. 460 */ 461 static int 462 block_mounts(void) 463 { 464 int retval = 0; 465 466 /* 467 * Since it may block for a long time, block_mounts() shouldn't be 468 * called with zonehash_lock held. 469 */ 470 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 471 mutex_enter(&mount_lock); 472 while (mounts_in_progress > 0) { 473 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 474 goto signaled; 475 } 476 /* 477 * A negative value of mounts_in_progress indicates that mounts 478 * have been blocked by (-mounts_in_progress) different callers. 479 */ 480 mounts_in_progress--; 481 retval = 1; 482 signaled: 483 mutex_exit(&mount_lock); 484 return (retval); 485 } 486 487 /* 488 * The VFS layer may progress with new mounts as far as we're concerned. 489 * Allow them to progress if we were the last obstacle. 490 */ 491 static void 492 resume_mounts(void) 493 { 494 mutex_enter(&mount_lock); 495 if (++mounts_in_progress == 0) 496 cv_broadcast(&mount_cv); 497 mutex_exit(&mount_lock); 498 } 499 500 /* 501 * The VFS layer is busy with a mount; zones should wait until all 502 * mounts are completed to progress. 503 */ 504 void 505 mount_in_progress(void) 506 { 507 mutex_enter(&mount_lock); 508 while (mounts_in_progress < 0) 509 cv_wait(&mount_cv, &mount_lock); 510 mounts_in_progress++; 511 mutex_exit(&mount_lock); 512 } 513 514 /* 515 * VFS is done with one mount; wake up any waiting block_mounts() 516 * callers if this is the last mount. 517 */ 518 void 519 mount_completed(void) 520 { 521 mutex_enter(&mount_lock); 522 if (--mounts_in_progress == 0) 523 cv_broadcast(&mount_cv); 524 mutex_exit(&mount_lock); 525 } 526 527 /* 528 * ZSD routines. 529 * 530 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 531 * defined by the pthread_key_create() and related interfaces. 532 * 533 * Kernel subsystems may register one or more data items and/or 534 * callbacks to be executed when a zone is created, shutdown, or 535 * destroyed. 536 * 537 * Unlike the thread counterpart, destructor callbacks will be executed 538 * even if the data pointer is NULL and/or there are no constructor 539 * callbacks, so it is the responsibility of such callbacks to check for 540 * NULL data values if necessary. 541 * 542 * The locking strategy and overall picture is as follows: 543 * 544 * When someone calls zone_key_create(), a template ZSD entry is added to the 545 * global list "zsd_registered_keys", protected by zsd_key_lock. While 546 * holding that lock all the existing zones are marked as 547 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 548 * zone_zsd list (protected by zone_lock). The global list is updated first 549 * (under zone_key_lock) to make sure that newly created zones use the 550 * most recent list of keys. Then under zonehash_lock we walk the zones 551 * and mark them. Similar locking is used in zone_key_delete(). 552 * 553 * The actual create, shutdown, and destroy callbacks are done without 554 * holding any lock. And zsd_flags are used to ensure that the operations 555 * completed so that when zone_key_create (and zone_create) is done, as well as 556 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 557 * are completed. 558 * 559 * When new zones are created constructor callbacks for all registered ZSD 560 * entries will be called. That also uses the above two phases of marking 561 * what needs to be done, and then running the callbacks without holding 562 * any locks. 563 * 564 * The framework does not provide any locking around zone_getspecific() and 565 * zone_setspecific() apart from that needed for internal consistency, so 566 * callers interested in atomic "test-and-set" semantics will need to provide 567 * their own locking. 568 */ 569 570 /* 571 * Helper function to find the zsd_entry associated with the key in the 572 * given list. 573 */ 574 static struct zsd_entry * 575 zsd_find(list_t *l, zone_key_t key) 576 { 577 struct zsd_entry *zsd; 578 579 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 580 if (zsd->zsd_key == key) { 581 return (zsd); 582 } 583 } 584 return (NULL); 585 } 586 587 /* 588 * Helper function to find the zsd_entry associated with the key in the 589 * given list. Move it to the front of the list. 590 */ 591 static struct zsd_entry * 592 zsd_find_mru(list_t *l, zone_key_t key) 593 { 594 struct zsd_entry *zsd; 595 596 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 597 if (zsd->zsd_key == key) { 598 /* 599 * Move to head of list to keep list in MRU order. 600 */ 601 if (zsd != list_head(l)) { 602 list_remove(l, zsd); 603 list_insert_head(l, zsd); 604 } 605 return (zsd); 606 } 607 } 608 return (NULL); 609 } 610 611 void 612 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 613 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 614 { 615 struct zsd_entry *zsdp; 616 struct zsd_entry *t; 617 struct zone *zone; 618 zone_key_t key; 619 620 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 621 zsdp->zsd_data = NULL; 622 zsdp->zsd_create = create; 623 zsdp->zsd_shutdown = shutdown; 624 zsdp->zsd_destroy = destroy; 625 626 /* 627 * Insert in global list of callbacks. Makes future zone creations 628 * see it. 629 */ 630 mutex_enter(&zsd_key_lock); 631 key = zsdp->zsd_key = ++zsd_keyval; 632 ASSERT(zsd_keyval != 0); 633 list_insert_tail(&zsd_registered_keys, zsdp); 634 mutex_exit(&zsd_key_lock); 635 636 /* 637 * Insert for all existing zones and mark them as needing 638 * a create callback. 639 */ 640 mutex_enter(&zonehash_lock); /* stop the world */ 641 for (zone = list_head(&zone_active); zone != NULL; 642 zone = list_next(&zone_active, zone)) { 643 zone_status_t status; 644 645 mutex_enter(&zone->zone_lock); 646 647 /* Skip zones that are on the way down or not yet up */ 648 status = zone_status_get(zone); 649 if (status >= ZONE_IS_DOWN || 650 status == ZONE_IS_UNINITIALIZED) { 651 mutex_exit(&zone->zone_lock); 652 continue; 653 } 654 655 t = zsd_find_mru(&zone->zone_zsd, key); 656 if (t != NULL) { 657 /* 658 * A zsd_configure already inserted it after 659 * we dropped zsd_key_lock above. 660 */ 661 mutex_exit(&zone->zone_lock); 662 continue; 663 } 664 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 665 t->zsd_key = key; 666 t->zsd_create = create; 667 t->zsd_shutdown = shutdown; 668 t->zsd_destroy = destroy; 669 if (create != NULL) { 670 t->zsd_flags = ZSD_CREATE_NEEDED; 671 DTRACE_PROBE2(zsd__create__needed, 672 zone_t *, zone, zone_key_t, key); 673 } 674 list_insert_tail(&zone->zone_zsd, t); 675 mutex_exit(&zone->zone_lock); 676 } 677 mutex_exit(&zonehash_lock); 678 679 if (create != NULL) { 680 /* Now call the create callback for this key */ 681 zsd_apply_all_zones(zsd_apply_create, key); 682 } 683 /* 684 * It is safe for consumers to use the key now, make it 685 * globally visible. Specifically zone_getspecific() will 686 * always successfully return the zone specific data associated 687 * with the key. 688 */ 689 *keyp = key; 690 691 } 692 693 /* 694 * Function called when a module is being unloaded, or otherwise wishes 695 * to unregister its ZSD key and callbacks. 696 * 697 * Remove from the global list and determine the functions that need to 698 * be called under a global lock. Then call the functions without 699 * holding any locks. Finally free up the zone_zsd entries. (The apply 700 * functions need to access the zone_zsd entries to find zsd_data etc.) 701 */ 702 int 703 zone_key_delete(zone_key_t key) 704 { 705 struct zsd_entry *zsdp = NULL; 706 zone_t *zone; 707 708 mutex_enter(&zsd_key_lock); 709 zsdp = zsd_find_mru(&zsd_registered_keys, key); 710 if (zsdp == NULL) { 711 mutex_exit(&zsd_key_lock); 712 return (-1); 713 } 714 list_remove(&zsd_registered_keys, zsdp); 715 mutex_exit(&zsd_key_lock); 716 717 mutex_enter(&zonehash_lock); 718 for (zone = list_head(&zone_active); zone != NULL; 719 zone = list_next(&zone_active, zone)) { 720 struct zsd_entry *del; 721 722 mutex_enter(&zone->zone_lock); 723 del = zsd_find_mru(&zone->zone_zsd, key); 724 if (del == NULL) { 725 /* 726 * Somebody else got here first e.g the zone going 727 * away. 728 */ 729 mutex_exit(&zone->zone_lock); 730 continue; 731 } 732 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 733 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 734 if (del->zsd_shutdown != NULL && 735 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 736 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 737 DTRACE_PROBE2(zsd__shutdown__needed, 738 zone_t *, zone, zone_key_t, key); 739 } 740 if (del->zsd_destroy != NULL && 741 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 742 del->zsd_flags |= ZSD_DESTROY_NEEDED; 743 DTRACE_PROBE2(zsd__destroy__needed, 744 zone_t *, zone, zone_key_t, key); 745 } 746 mutex_exit(&zone->zone_lock); 747 } 748 mutex_exit(&zonehash_lock); 749 kmem_free(zsdp, sizeof (*zsdp)); 750 751 /* Now call the shutdown and destroy callback for this key */ 752 zsd_apply_all_zones(zsd_apply_shutdown, key); 753 zsd_apply_all_zones(zsd_apply_destroy, key); 754 755 /* Now we can free up the zsdp structures in each zone */ 756 mutex_enter(&zonehash_lock); 757 for (zone = list_head(&zone_active); zone != NULL; 758 zone = list_next(&zone_active, zone)) { 759 struct zsd_entry *del; 760 761 mutex_enter(&zone->zone_lock); 762 del = zsd_find(&zone->zone_zsd, key); 763 if (del != NULL) { 764 list_remove(&zone->zone_zsd, del); 765 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 766 kmem_free(del, sizeof (*del)); 767 } 768 mutex_exit(&zone->zone_lock); 769 } 770 mutex_exit(&zonehash_lock); 771 772 return (0); 773 } 774 775 /* 776 * ZSD counterpart of pthread_setspecific(). 777 * 778 * Since all zsd callbacks, including those with no create function, 779 * have an entry in zone_zsd, if the key is registered it is part of 780 * the zone_zsd list. 781 * Return an error if the key wasn't registerd. 782 */ 783 int 784 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 785 { 786 struct zsd_entry *t; 787 788 mutex_enter(&zone->zone_lock); 789 t = zsd_find_mru(&zone->zone_zsd, key); 790 if (t != NULL) { 791 /* 792 * Replace old value with new 793 */ 794 t->zsd_data = (void *)data; 795 mutex_exit(&zone->zone_lock); 796 return (0); 797 } 798 mutex_exit(&zone->zone_lock); 799 return (-1); 800 } 801 802 /* 803 * ZSD counterpart of pthread_getspecific(). 804 */ 805 void * 806 zone_getspecific(zone_key_t key, zone_t *zone) 807 { 808 struct zsd_entry *t; 809 void *data; 810 811 mutex_enter(&zone->zone_lock); 812 t = zsd_find_mru(&zone->zone_zsd, key); 813 data = (t == NULL ? NULL : t->zsd_data); 814 mutex_exit(&zone->zone_lock); 815 return (data); 816 } 817 818 /* 819 * Function used to initialize a zone's list of ZSD callbacks and data 820 * when the zone is being created. The callbacks are initialized from 821 * the template list (zsd_registered_keys). The constructor callback is 822 * executed later (once the zone exists and with locks dropped). 823 */ 824 static void 825 zone_zsd_configure(zone_t *zone) 826 { 827 struct zsd_entry *zsdp; 828 struct zsd_entry *t; 829 830 ASSERT(MUTEX_HELD(&zonehash_lock)); 831 ASSERT(list_head(&zone->zone_zsd) == NULL); 832 mutex_enter(&zone->zone_lock); 833 mutex_enter(&zsd_key_lock); 834 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 835 zsdp = list_next(&zsd_registered_keys, zsdp)) { 836 /* 837 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 838 * should not have added anything to it. 839 */ 840 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 841 842 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 843 t->zsd_key = zsdp->zsd_key; 844 t->zsd_create = zsdp->zsd_create; 845 t->zsd_shutdown = zsdp->zsd_shutdown; 846 t->zsd_destroy = zsdp->zsd_destroy; 847 if (zsdp->zsd_create != NULL) { 848 t->zsd_flags = ZSD_CREATE_NEEDED; 849 DTRACE_PROBE2(zsd__create__needed, 850 zone_t *, zone, zone_key_t, zsdp->zsd_key); 851 } 852 list_insert_tail(&zone->zone_zsd, t); 853 } 854 mutex_exit(&zsd_key_lock); 855 mutex_exit(&zone->zone_lock); 856 } 857 858 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 859 860 /* 861 * Helper function to execute shutdown or destructor callbacks. 862 */ 863 static void 864 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 865 { 866 struct zsd_entry *t; 867 868 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 869 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 870 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 871 872 /* 873 * Run the callback solely based on what is registered for the zone 874 * in zone_zsd. The global list can change independently of this 875 * as keys are registered and unregistered and we don't register new 876 * callbacks for a zone that is in the process of going away. 877 */ 878 mutex_enter(&zone->zone_lock); 879 for (t = list_head(&zone->zone_zsd); t != NULL; 880 t = list_next(&zone->zone_zsd, t)) { 881 zone_key_t key = t->zsd_key; 882 883 /* Skip if no callbacks registered */ 884 885 if (ct == ZSD_SHUTDOWN) { 886 if (t->zsd_shutdown != NULL && 887 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 888 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 889 DTRACE_PROBE2(zsd__shutdown__needed, 890 zone_t *, zone, zone_key_t, key); 891 } 892 } else { 893 if (t->zsd_destroy != NULL && 894 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 895 t->zsd_flags |= ZSD_DESTROY_NEEDED; 896 DTRACE_PROBE2(zsd__destroy__needed, 897 zone_t *, zone, zone_key_t, key); 898 } 899 } 900 } 901 mutex_exit(&zone->zone_lock); 902 903 /* Now call the shutdown and destroy callback for this key */ 904 zsd_apply_all_keys(zsd_apply_shutdown, zone); 905 zsd_apply_all_keys(zsd_apply_destroy, zone); 906 907 } 908 909 /* 910 * Called when the zone is going away; free ZSD-related memory, and 911 * destroy the zone_zsd list. 912 */ 913 static void 914 zone_free_zsd(zone_t *zone) 915 { 916 struct zsd_entry *t, *next; 917 918 /* 919 * Free all the zsd_entry's we had on this zone. 920 */ 921 mutex_enter(&zone->zone_lock); 922 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 923 next = list_next(&zone->zone_zsd, t); 924 list_remove(&zone->zone_zsd, t); 925 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 926 kmem_free(t, sizeof (*t)); 927 } 928 list_destroy(&zone->zone_zsd); 929 mutex_exit(&zone->zone_lock); 930 931 } 932 933 /* 934 * Apply a function to all zones for particular key value. 935 * 936 * The applyfn has to drop zonehash_lock if it does some work, and 937 * then reacquire it before it returns. 938 * When the lock is dropped we don't follow list_next even 939 * if it is possible to do so without any hazards. This is 940 * because we want the design to allow for the list of zones 941 * to change in any arbitrary way during the time the 942 * lock was dropped. 943 * 944 * It is safe to restart the loop at list_head since the applyfn 945 * changes the zsd_flags as it does work, so a subsequent 946 * pass through will have no effect in applyfn, hence the loop will terminate 947 * in at worst O(N^2). 948 */ 949 static void 950 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 951 { 952 zone_t *zone; 953 954 mutex_enter(&zonehash_lock); 955 zone = list_head(&zone_active); 956 while (zone != NULL) { 957 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 958 /* Lock dropped - restart at head */ 959 zone = list_head(&zone_active); 960 } else { 961 zone = list_next(&zone_active, zone); 962 } 963 } 964 mutex_exit(&zonehash_lock); 965 } 966 967 /* 968 * Apply a function to all keys for a particular zone. 969 * 970 * The applyfn has to drop zonehash_lock if it does some work, and 971 * then reacquire it before it returns. 972 * When the lock is dropped we don't follow list_next even 973 * if it is possible to do so without any hazards. This is 974 * because we want the design to allow for the list of zsd callbacks 975 * to change in any arbitrary way during the time the 976 * lock was dropped. 977 * 978 * It is safe to restart the loop at list_head since the applyfn 979 * changes the zsd_flags as it does work, so a subsequent 980 * pass through will have no effect in applyfn, hence the loop will terminate 981 * in at worst O(N^2). 982 */ 983 static void 984 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 985 { 986 struct zsd_entry *t; 987 988 mutex_enter(&zone->zone_lock); 989 t = list_head(&zone->zone_zsd); 990 while (t != NULL) { 991 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 992 /* Lock dropped - restart at head */ 993 t = list_head(&zone->zone_zsd); 994 } else { 995 t = list_next(&zone->zone_zsd, t); 996 } 997 } 998 mutex_exit(&zone->zone_lock); 999 } 1000 1001 /* 1002 * Call the create function for the zone and key if CREATE_NEEDED 1003 * is set. 1004 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1005 * we wait for that thread to complete so that we can ensure that 1006 * all the callbacks are done when we've looped over all zones/keys. 1007 * 1008 * When we call the create function, we drop the global held by the 1009 * caller, and return true to tell the caller it needs to re-evalute the 1010 * state. 1011 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1012 * remains held on exit. 1013 */ 1014 static boolean_t 1015 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1016 zone_t *zone, zone_key_t key) 1017 { 1018 void *result; 1019 struct zsd_entry *t; 1020 boolean_t dropped; 1021 1022 if (lockp != NULL) { 1023 ASSERT(MUTEX_HELD(lockp)); 1024 } 1025 if (zone_lock_held) { 1026 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1027 } else { 1028 mutex_enter(&zone->zone_lock); 1029 } 1030 1031 t = zsd_find(&zone->zone_zsd, key); 1032 if (t == NULL) { 1033 /* 1034 * Somebody else got here first e.g the zone going 1035 * away. 1036 */ 1037 if (!zone_lock_held) 1038 mutex_exit(&zone->zone_lock); 1039 return (B_FALSE); 1040 } 1041 dropped = B_FALSE; 1042 if (zsd_wait_for_inprogress(zone, t, lockp)) 1043 dropped = B_TRUE; 1044 1045 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1046 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1047 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1048 DTRACE_PROBE2(zsd__create__inprogress, 1049 zone_t *, zone, zone_key_t, key); 1050 mutex_exit(&zone->zone_lock); 1051 if (lockp != NULL) 1052 mutex_exit(lockp); 1053 1054 dropped = B_TRUE; 1055 ASSERT(t->zsd_create != NULL); 1056 DTRACE_PROBE2(zsd__create__start, 1057 zone_t *, zone, zone_key_t, key); 1058 1059 result = (*t->zsd_create)(zone->zone_id); 1060 1061 DTRACE_PROBE2(zsd__create__end, 1062 zone_t *, zone, voidn *, result); 1063 1064 ASSERT(result != NULL); 1065 if (lockp != NULL) 1066 mutex_enter(lockp); 1067 mutex_enter(&zone->zone_lock); 1068 t->zsd_data = result; 1069 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1070 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1071 cv_broadcast(&t->zsd_cv); 1072 DTRACE_PROBE2(zsd__create__completed, 1073 zone_t *, zone, zone_key_t, key); 1074 } 1075 if (!zone_lock_held) 1076 mutex_exit(&zone->zone_lock); 1077 return (dropped); 1078 } 1079 1080 /* 1081 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1082 * is set. 1083 * If some other thread gets here first and sets *_INPROGRESS, then 1084 * we wait for that thread to complete so that we can ensure that 1085 * all the callbacks are done when we've looped over all zones/keys. 1086 * 1087 * When we call the shutdown function, we drop the global held by the 1088 * caller, and return true to tell the caller it needs to re-evalute the 1089 * state. 1090 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1091 * remains held on exit. 1092 */ 1093 static boolean_t 1094 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1095 zone_t *zone, zone_key_t key) 1096 { 1097 struct zsd_entry *t; 1098 void *data; 1099 boolean_t dropped; 1100 1101 if (lockp != NULL) { 1102 ASSERT(MUTEX_HELD(lockp)); 1103 } 1104 if (zone_lock_held) { 1105 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1106 } else { 1107 mutex_enter(&zone->zone_lock); 1108 } 1109 1110 t = zsd_find(&zone->zone_zsd, key); 1111 if (t == NULL) { 1112 /* 1113 * Somebody else got here first e.g the zone going 1114 * away. 1115 */ 1116 if (!zone_lock_held) 1117 mutex_exit(&zone->zone_lock); 1118 return (B_FALSE); 1119 } 1120 dropped = B_FALSE; 1121 if (zsd_wait_for_creator(zone, t, lockp)) 1122 dropped = B_TRUE; 1123 1124 if (zsd_wait_for_inprogress(zone, t, lockp)) 1125 dropped = B_TRUE; 1126 1127 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1128 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1129 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1130 DTRACE_PROBE2(zsd__shutdown__inprogress, 1131 zone_t *, zone, zone_key_t, key); 1132 mutex_exit(&zone->zone_lock); 1133 if (lockp != NULL) 1134 mutex_exit(lockp); 1135 dropped = B_TRUE; 1136 1137 ASSERT(t->zsd_shutdown != NULL); 1138 data = t->zsd_data; 1139 1140 DTRACE_PROBE2(zsd__shutdown__start, 1141 zone_t *, zone, zone_key_t, key); 1142 1143 (t->zsd_shutdown)(zone->zone_id, data); 1144 DTRACE_PROBE2(zsd__shutdown__end, 1145 zone_t *, zone, zone_key_t, key); 1146 1147 if (lockp != NULL) 1148 mutex_enter(lockp); 1149 mutex_enter(&zone->zone_lock); 1150 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1151 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1152 cv_broadcast(&t->zsd_cv); 1153 DTRACE_PROBE2(zsd__shutdown__completed, 1154 zone_t *, zone, zone_key_t, key); 1155 } 1156 if (!zone_lock_held) 1157 mutex_exit(&zone->zone_lock); 1158 return (dropped); 1159 } 1160 1161 /* 1162 * Call the destroy function for the zone and key if DESTROY_NEEDED 1163 * is set. 1164 * If some other thread gets here first and sets *_INPROGRESS, then 1165 * we wait for that thread to complete so that we can ensure that 1166 * all the callbacks are done when we've looped over all zones/keys. 1167 * 1168 * When we call the destroy function, we drop the global held by the 1169 * caller, and return true to tell the caller it needs to re-evalute the 1170 * state. 1171 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1172 * remains held on exit. 1173 */ 1174 static boolean_t 1175 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1176 zone_t *zone, zone_key_t key) 1177 { 1178 struct zsd_entry *t; 1179 void *data; 1180 boolean_t dropped; 1181 1182 if (lockp != NULL) { 1183 ASSERT(MUTEX_HELD(lockp)); 1184 } 1185 if (zone_lock_held) { 1186 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1187 } else { 1188 mutex_enter(&zone->zone_lock); 1189 } 1190 1191 t = zsd_find(&zone->zone_zsd, key); 1192 if (t == NULL) { 1193 /* 1194 * Somebody else got here first e.g the zone going 1195 * away. 1196 */ 1197 if (!zone_lock_held) 1198 mutex_exit(&zone->zone_lock); 1199 return (B_FALSE); 1200 } 1201 dropped = B_FALSE; 1202 if (zsd_wait_for_creator(zone, t, lockp)) 1203 dropped = B_TRUE; 1204 1205 if (zsd_wait_for_inprogress(zone, t, lockp)) 1206 dropped = B_TRUE; 1207 1208 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1209 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1210 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1211 DTRACE_PROBE2(zsd__destroy__inprogress, 1212 zone_t *, zone, zone_key_t, key); 1213 mutex_exit(&zone->zone_lock); 1214 if (lockp != NULL) 1215 mutex_exit(lockp); 1216 dropped = B_TRUE; 1217 1218 ASSERT(t->zsd_destroy != NULL); 1219 data = t->zsd_data; 1220 DTRACE_PROBE2(zsd__destroy__start, 1221 zone_t *, zone, zone_key_t, key); 1222 1223 (t->zsd_destroy)(zone->zone_id, data); 1224 DTRACE_PROBE2(zsd__destroy__end, 1225 zone_t *, zone, zone_key_t, key); 1226 1227 if (lockp != NULL) 1228 mutex_enter(lockp); 1229 mutex_enter(&zone->zone_lock); 1230 t->zsd_data = NULL; 1231 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1232 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1233 cv_broadcast(&t->zsd_cv); 1234 DTRACE_PROBE2(zsd__destroy__completed, 1235 zone_t *, zone, zone_key_t, key); 1236 } 1237 if (!zone_lock_held) 1238 mutex_exit(&zone->zone_lock); 1239 return (dropped); 1240 } 1241 1242 /* 1243 * Wait for any CREATE_NEEDED flag to be cleared. 1244 * Returns true if lockp was temporarily dropped while waiting. 1245 */ 1246 static boolean_t 1247 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1248 { 1249 boolean_t dropped = B_FALSE; 1250 1251 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1252 DTRACE_PROBE2(zsd__wait__for__creator, 1253 zone_t *, zone, struct zsd_entry *, t); 1254 if (lockp != NULL) { 1255 dropped = B_TRUE; 1256 mutex_exit(lockp); 1257 } 1258 cv_wait(&t->zsd_cv, &zone->zone_lock); 1259 if (lockp != NULL) { 1260 /* First drop zone_lock to preserve order */ 1261 mutex_exit(&zone->zone_lock); 1262 mutex_enter(lockp); 1263 mutex_enter(&zone->zone_lock); 1264 } 1265 } 1266 return (dropped); 1267 } 1268 1269 /* 1270 * Wait for any INPROGRESS flag to be cleared. 1271 * Returns true if lockp was temporarily dropped while waiting. 1272 */ 1273 static boolean_t 1274 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1275 { 1276 boolean_t dropped = B_FALSE; 1277 1278 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1279 DTRACE_PROBE2(zsd__wait__for__inprogress, 1280 zone_t *, zone, struct zsd_entry *, t); 1281 if (lockp != NULL) { 1282 dropped = B_TRUE; 1283 mutex_exit(lockp); 1284 } 1285 cv_wait(&t->zsd_cv, &zone->zone_lock); 1286 if (lockp != NULL) { 1287 /* First drop zone_lock to preserve order */ 1288 mutex_exit(&zone->zone_lock); 1289 mutex_enter(lockp); 1290 mutex_enter(&zone->zone_lock); 1291 } 1292 } 1293 return (dropped); 1294 } 1295 1296 /* 1297 * Frees memory associated with the zone dataset list. 1298 */ 1299 static void 1300 zone_free_datasets(zone_t *zone) 1301 { 1302 zone_dataset_t *t, *next; 1303 1304 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1305 next = list_next(&zone->zone_datasets, t); 1306 list_remove(&zone->zone_datasets, t); 1307 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1308 kmem_free(t, sizeof (*t)); 1309 } 1310 list_destroy(&zone->zone_datasets); 1311 } 1312 1313 /* 1314 * zone.cpu-shares resource control support. 1315 */ 1316 /*ARGSUSED*/ 1317 static rctl_qty_t 1318 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1319 { 1320 ASSERT(MUTEX_HELD(&p->p_lock)); 1321 return (p->p_zone->zone_shares); 1322 } 1323 1324 /*ARGSUSED*/ 1325 static int 1326 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1327 rctl_qty_t nv) 1328 { 1329 ASSERT(MUTEX_HELD(&p->p_lock)); 1330 ASSERT(e->rcep_t == RCENTITY_ZONE); 1331 if (e->rcep_p.zone == NULL) 1332 return (0); 1333 1334 e->rcep_p.zone->zone_shares = nv; 1335 return (0); 1336 } 1337 1338 static rctl_ops_t zone_cpu_shares_ops = { 1339 rcop_no_action, 1340 zone_cpu_shares_usage, 1341 zone_cpu_shares_set, 1342 rcop_no_test 1343 }; 1344 1345 /* 1346 * zone.cpu-cap resource control support. 1347 */ 1348 /*ARGSUSED*/ 1349 static rctl_qty_t 1350 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1351 { 1352 ASSERT(MUTEX_HELD(&p->p_lock)); 1353 return (cpucaps_zone_get(p->p_zone)); 1354 } 1355 1356 /*ARGSUSED*/ 1357 static int 1358 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1359 rctl_qty_t nv) 1360 { 1361 zone_t *zone = e->rcep_p.zone; 1362 1363 ASSERT(MUTEX_HELD(&p->p_lock)); 1364 ASSERT(e->rcep_t == RCENTITY_ZONE); 1365 1366 if (zone == NULL) 1367 return (0); 1368 1369 /* 1370 * set cap to the new value. 1371 */ 1372 return (cpucaps_zone_set(zone, nv)); 1373 } 1374 1375 static rctl_ops_t zone_cpu_cap_ops = { 1376 rcop_no_action, 1377 zone_cpu_cap_get, 1378 zone_cpu_cap_set, 1379 rcop_no_test 1380 }; 1381 1382 /*ARGSUSED*/ 1383 static rctl_qty_t 1384 zone_lwps_usage(rctl_t *r, proc_t *p) 1385 { 1386 rctl_qty_t nlwps; 1387 zone_t *zone = p->p_zone; 1388 1389 ASSERT(MUTEX_HELD(&p->p_lock)); 1390 1391 mutex_enter(&zone->zone_nlwps_lock); 1392 nlwps = zone->zone_nlwps; 1393 mutex_exit(&zone->zone_nlwps_lock); 1394 1395 return (nlwps); 1396 } 1397 1398 /*ARGSUSED*/ 1399 static int 1400 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1401 rctl_qty_t incr, uint_t flags) 1402 { 1403 rctl_qty_t nlwps; 1404 1405 ASSERT(MUTEX_HELD(&p->p_lock)); 1406 ASSERT(e->rcep_t == RCENTITY_ZONE); 1407 if (e->rcep_p.zone == NULL) 1408 return (0); 1409 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1410 nlwps = e->rcep_p.zone->zone_nlwps; 1411 1412 if (nlwps + incr > rcntl->rcv_value) 1413 return (1); 1414 1415 return (0); 1416 } 1417 1418 /*ARGSUSED*/ 1419 static int 1420 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1421 { 1422 ASSERT(MUTEX_HELD(&p->p_lock)); 1423 ASSERT(e->rcep_t == RCENTITY_ZONE); 1424 if (e->rcep_p.zone == NULL) 1425 return (0); 1426 e->rcep_p.zone->zone_nlwps_ctl = nv; 1427 return (0); 1428 } 1429 1430 static rctl_ops_t zone_lwps_ops = { 1431 rcop_no_action, 1432 zone_lwps_usage, 1433 zone_lwps_set, 1434 zone_lwps_test, 1435 }; 1436 1437 /*ARGSUSED*/ 1438 static rctl_qty_t 1439 zone_procs_usage(rctl_t *r, proc_t *p) 1440 { 1441 rctl_qty_t nprocs; 1442 zone_t *zone = p->p_zone; 1443 1444 ASSERT(MUTEX_HELD(&p->p_lock)); 1445 1446 mutex_enter(&zone->zone_nlwps_lock); 1447 nprocs = zone->zone_nprocs; 1448 mutex_exit(&zone->zone_nlwps_lock); 1449 1450 return (nprocs); 1451 } 1452 1453 /*ARGSUSED*/ 1454 static int 1455 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1456 rctl_qty_t incr, uint_t flags) 1457 { 1458 rctl_qty_t nprocs; 1459 1460 ASSERT(MUTEX_HELD(&p->p_lock)); 1461 ASSERT(e->rcep_t == RCENTITY_ZONE); 1462 if (e->rcep_p.zone == NULL) 1463 return (0); 1464 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1465 nprocs = e->rcep_p.zone->zone_nprocs; 1466 1467 if (nprocs + incr > rcntl->rcv_value) 1468 return (1); 1469 1470 return (0); 1471 } 1472 1473 /*ARGSUSED*/ 1474 static int 1475 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1476 { 1477 ASSERT(MUTEX_HELD(&p->p_lock)); 1478 ASSERT(e->rcep_t == RCENTITY_ZONE); 1479 if (e->rcep_p.zone == NULL) 1480 return (0); 1481 e->rcep_p.zone->zone_nprocs_ctl = nv; 1482 return (0); 1483 } 1484 1485 static rctl_ops_t zone_procs_ops = { 1486 rcop_no_action, 1487 zone_procs_usage, 1488 zone_procs_set, 1489 zone_procs_test, 1490 }; 1491 1492 /*ARGSUSED*/ 1493 static int 1494 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1495 rctl_qty_t incr, uint_t flags) 1496 { 1497 rctl_qty_t v; 1498 ASSERT(MUTEX_HELD(&p->p_lock)); 1499 ASSERT(e->rcep_t == RCENTITY_ZONE); 1500 v = e->rcep_p.zone->zone_shmmax + incr; 1501 if (v > rval->rcv_value) 1502 return (1); 1503 return (0); 1504 } 1505 1506 static rctl_ops_t zone_shmmax_ops = { 1507 rcop_no_action, 1508 rcop_no_usage, 1509 rcop_no_set, 1510 zone_shmmax_test 1511 }; 1512 1513 /*ARGSUSED*/ 1514 static int 1515 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1516 rctl_qty_t incr, uint_t flags) 1517 { 1518 rctl_qty_t v; 1519 ASSERT(MUTEX_HELD(&p->p_lock)); 1520 ASSERT(e->rcep_t == RCENTITY_ZONE); 1521 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1522 if (v > rval->rcv_value) 1523 return (1); 1524 return (0); 1525 } 1526 1527 static rctl_ops_t zone_shmmni_ops = { 1528 rcop_no_action, 1529 rcop_no_usage, 1530 rcop_no_set, 1531 zone_shmmni_test 1532 }; 1533 1534 /*ARGSUSED*/ 1535 static int 1536 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1537 rctl_qty_t incr, uint_t flags) 1538 { 1539 rctl_qty_t v; 1540 ASSERT(MUTEX_HELD(&p->p_lock)); 1541 ASSERT(e->rcep_t == RCENTITY_ZONE); 1542 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1543 if (v > rval->rcv_value) 1544 return (1); 1545 return (0); 1546 } 1547 1548 static rctl_ops_t zone_semmni_ops = { 1549 rcop_no_action, 1550 rcop_no_usage, 1551 rcop_no_set, 1552 zone_semmni_test 1553 }; 1554 1555 /*ARGSUSED*/ 1556 static int 1557 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1558 rctl_qty_t incr, uint_t flags) 1559 { 1560 rctl_qty_t v; 1561 ASSERT(MUTEX_HELD(&p->p_lock)); 1562 ASSERT(e->rcep_t == RCENTITY_ZONE); 1563 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1564 if (v > rval->rcv_value) 1565 return (1); 1566 return (0); 1567 } 1568 1569 static rctl_ops_t zone_msgmni_ops = { 1570 rcop_no_action, 1571 rcop_no_usage, 1572 rcop_no_set, 1573 zone_msgmni_test 1574 }; 1575 1576 /*ARGSUSED*/ 1577 static rctl_qty_t 1578 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1579 { 1580 rctl_qty_t q; 1581 ASSERT(MUTEX_HELD(&p->p_lock)); 1582 mutex_enter(&p->p_zone->zone_mem_lock); 1583 q = p->p_zone->zone_locked_mem; 1584 mutex_exit(&p->p_zone->zone_mem_lock); 1585 return (q); 1586 } 1587 1588 /*ARGSUSED*/ 1589 static int 1590 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1591 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1592 { 1593 rctl_qty_t q; 1594 zone_t *z; 1595 1596 z = e->rcep_p.zone; 1597 ASSERT(MUTEX_HELD(&p->p_lock)); 1598 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1599 q = z->zone_locked_mem; 1600 if (q + incr > rcntl->rcv_value) 1601 return (1); 1602 return (0); 1603 } 1604 1605 /*ARGSUSED*/ 1606 static int 1607 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1608 rctl_qty_t nv) 1609 { 1610 ASSERT(MUTEX_HELD(&p->p_lock)); 1611 ASSERT(e->rcep_t == RCENTITY_ZONE); 1612 if (e->rcep_p.zone == NULL) 1613 return (0); 1614 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1615 return (0); 1616 } 1617 1618 static rctl_ops_t zone_locked_mem_ops = { 1619 rcop_no_action, 1620 zone_locked_mem_usage, 1621 zone_locked_mem_set, 1622 zone_locked_mem_test 1623 }; 1624 1625 /*ARGSUSED*/ 1626 static rctl_qty_t 1627 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1628 { 1629 rctl_qty_t q; 1630 zone_t *z = p->p_zone; 1631 1632 ASSERT(MUTEX_HELD(&p->p_lock)); 1633 mutex_enter(&z->zone_mem_lock); 1634 q = z->zone_max_swap; 1635 mutex_exit(&z->zone_mem_lock); 1636 return (q); 1637 } 1638 1639 /*ARGSUSED*/ 1640 static int 1641 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1642 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1643 { 1644 rctl_qty_t q; 1645 zone_t *z; 1646 1647 z = e->rcep_p.zone; 1648 ASSERT(MUTEX_HELD(&p->p_lock)); 1649 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1650 q = z->zone_max_swap; 1651 if (q + incr > rcntl->rcv_value) 1652 return (1); 1653 return (0); 1654 } 1655 1656 /*ARGSUSED*/ 1657 static int 1658 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1659 rctl_qty_t nv) 1660 { 1661 ASSERT(MUTEX_HELD(&p->p_lock)); 1662 ASSERT(e->rcep_t == RCENTITY_ZONE); 1663 if (e->rcep_p.zone == NULL) 1664 return (0); 1665 e->rcep_p.zone->zone_max_swap_ctl = nv; 1666 return (0); 1667 } 1668 1669 static rctl_ops_t zone_max_swap_ops = { 1670 rcop_no_action, 1671 zone_max_swap_usage, 1672 zone_max_swap_set, 1673 zone_max_swap_test 1674 }; 1675 1676 /*ARGSUSED*/ 1677 static rctl_qty_t 1678 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1679 { 1680 rctl_qty_t q; 1681 zone_t *z = p->p_zone; 1682 1683 ASSERT(MUTEX_HELD(&p->p_lock)); 1684 mutex_enter(&z->zone_rctl_lock); 1685 q = z->zone_max_lofi; 1686 mutex_exit(&z->zone_rctl_lock); 1687 return (q); 1688 } 1689 1690 /*ARGSUSED*/ 1691 static int 1692 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1693 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1694 { 1695 rctl_qty_t q; 1696 zone_t *z; 1697 1698 z = e->rcep_p.zone; 1699 ASSERT(MUTEX_HELD(&p->p_lock)); 1700 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1701 q = z->zone_max_lofi; 1702 if (q + incr > rcntl->rcv_value) 1703 return (1); 1704 return (0); 1705 } 1706 1707 /*ARGSUSED*/ 1708 static int 1709 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1710 rctl_qty_t nv) 1711 { 1712 ASSERT(MUTEX_HELD(&p->p_lock)); 1713 ASSERT(e->rcep_t == RCENTITY_ZONE); 1714 if (e->rcep_p.zone == NULL) 1715 return (0); 1716 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1717 return (0); 1718 } 1719 1720 static rctl_ops_t zone_max_lofi_ops = { 1721 rcop_no_action, 1722 zone_max_lofi_usage, 1723 zone_max_lofi_set, 1724 zone_max_lofi_test 1725 }; 1726 1727 /* 1728 * Helper function to brand the zone with a unique ID. 1729 */ 1730 static void 1731 zone_uniqid(zone_t *zone) 1732 { 1733 static uint64_t uniqid = 0; 1734 1735 ASSERT(MUTEX_HELD(&zonehash_lock)); 1736 zone->zone_uniqid = uniqid++; 1737 } 1738 1739 /* 1740 * Returns a held pointer to the "kcred" for the specified zone. 1741 */ 1742 struct cred * 1743 zone_get_kcred(zoneid_t zoneid) 1744 { 1745 zone_t *zone; 1746 cred_t *cr; 1747 1748 if ((zone = zone_find_by_id(zoneid)) == NULL) 1749 return (NULL); 1750 cr = zone->zone_kcred; 1751 crhold(cr); 1752 zone_rele(zone); 1753 return (cr); 1754 } 1755 1756 static int 1757 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1758 { 1759 zone_t *zone = ksp->ks_private; 1760 zone_kstat_t *zk = ksp->ks_data; 1761 1762 if (rw == KSTAT_WRITE) 1763 return (EACCES); 1764 1765 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1766 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1767 return (0); 1768 } 1769 1770 static int 1771 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1772 { 1773 zone_t *zone = ksp->ks_private; 1774 zone_kstat_t *zk = ksp->ks_data; 1775 1776 if (rw == KSTAT_WRITE) 1777 return (EACCES); 1778 1779 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1780 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1781 return (0); 1782 } 1783 1784 static int 1785 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1786 { 1787 zone_t *zone = ksp->ks_private; 1788 zone_kstat_t *zk = ksp->ks_data; 1789 1790 if (rw == KSTAT_WRITE) 1791 return (EACCES); 1792 1793 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1794 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1795 return (0); 1796 } 1797 1798 static kstat_t * 1799 zone_kstat_create_common(zone_t *zone, char *name, 1800 int (*updatefunc) (kstat_t *, int)) 1801 { 1802 kstat_t *ksp; 1803 zone_kstat_t *zk; 1804 1805 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1806 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1807 KSTAT_FLAG_VIRTUAL); 1808 1809 if (ksp == NULL) 1810 return (NULL); 1811 1812 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1813 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1814 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1815 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1816 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1817 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1818 ksp->ks_update = updatefunc; 1819 ksp->ks_private = zone; 1820 kstat_install(ksp); 1821 return (ksp); 1822 } 1823 1824 static int 1825 zone_misc_kstat_update(kstat_t *ksp, int rw) 1826 { 1827 zone_t *zone = ksp->ks_private; 1828 zone_misc_kstat_t *zmp = ksp->ks_data; 1829 hrtime_t tmp; 1830 1831 if (rw == KSTAT_WRITE) 1832 return (EACCES); 1833 1834 tmp = zone->zone_utime; 1835 scalehrtime(&tmp); 1836 zmp->zm_utime.value.ui64 = tmp; 1837 tmp = zone->zone_stime; 1838 scalehrtime(&tmp); 1839 zmp->zm_stime.value.ui64 = tmp; 1840 tmp = zone->zone_wtime; 1841 scalehrtime(&tmp); 1842 zmp->zm_wtime.value.ui64 = tmp; 1843 1844 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1845 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1846 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1847 1848 return (0); 1849 } 1850 1851 static kstat_t * 1852 zone_misc_kstat_create(zone_t *zone) 1853 { 1854 kstat_t *ksp; 1855 zone_misc_kstat_t *zmp; 1856 1857 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1858 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1859 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1860 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1861 return (NULL); 1862 1863 if (zone->zone_id != GLOBAL_ZONEID) 1864 kstat_zone_add(ksp, GLOBAL_ZONEID); 1865 1866 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1867 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1868 ksp->ks_lock = &zone->zone_misc_lock; 1869 zone->zone_misc_stats = zmp; 1870 1871 /* The kstat "name" field is not large enough for a full zonename */ 1872 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1873 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1874 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1875 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1876 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1877 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1878 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1879 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1880 KSTAT_DATA_UINT32); 1881 1882 ksp->ks_update = zone_misc_kstat_update; 1883 ksp->ks_private = zone; 1884 1885 kstat_install(ksp); 1886 return (ksp); 1887 } 1888 1889 static void 1890 zone_kstat_create(zone_t *zone) 1891 { 1892 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1893 "lockedmem", zone_lockedmem_kstat_update); 1894 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1895 "swapresv", zone_swapresv_kstat_update); 1896 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 1897 "nprocs", zone_nprocs_kstat_update); 1898 1899 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 1900 zone->zone_misc_stats = kmem_zalloc( 1901 sizeof (zone_misc_kstat_t), KM_SLEEP); 1902 } 1903 } 1904 1905 static void 1906 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 1907 { 1908 void *data; 1909 1910 if (*pkstat != NULL) { 1911 data = (*pkstat)->ks_data; 1912 kstat_delete(*pkstat); 1913 kmem_free(data, datasz); 1914 *pkstat = NULL; 1915 } 1916 } 1917 1918 static void 1919 zone_kstat_delete(zone_t *zone) 1920 { 1921 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 1922 sizeof (zone_kstat_t)); 1923 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 1924 sizeof (zone_kstat_t)); 1925 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 1926 sizeof (zone_kstat_t)); 1927 zone_kstat_delete_common(&zone->zone_misc_ksp, 1928 sizeof (zone_misc_kstat_t)); 1929 } 1930 1931 /* 1932 * Called very early on in boot to initialize the ZSD list so that 1933 * zone_key_create() can be called before zone_init(). It also initializes 1934 * portions of zone0 which may be used before zone_init() is called. The 1935 * variable "global_zone" will be set when zone0 is fully initialized by 1936 * zone_init(). 1937 */ 1938 void 1939 zone_zsd_init(void) 1940 { 1941 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1942 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1943 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1944 offsetof(struct zsd_entry, zsd_linkage)); 1945 list_create(&zone_active, sizeof (zone_t), 1946 offsetof(zone_t, zone_linkage)); 1947 list_create(&zone_deathrow, sizeof (zone_t), 1948 offsetof(zone_t, zone_linkage)); 1949 1950 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1951 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1952 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1953 zone0.zone_shares = 1; 1954 zone0.zone_nlwps = 0; 1955 zone0.zone_nlwps_ctl = INT_MAX; 1956 zone0.zone_nprocs = 0; 1957 zone0.zone_nprocs_ctl = INT_MAX; 1958 zone0.zone_locked_mem = 0; 1959 zone0.zone_locked_mem_ctl = UINT64_MAX; 1960 ASSERT(zone0.zone_max_swap == 0); 1961 zone0.zone_max_swap_ctl = UINT64_MAX; 1962 zone0.zone_max_lofi = 0; 1963 zone0.zone_max_lofi_ctl = UINT64_MAX; 1964 zone0.zone_shmmax = 0; 1965 zone0.zone_ipc.ipcq_shmmni = 0; 1966 zone0.zone_ipc.ipcq_semmni = 0; 1967 zone0.zone_ipc.ipcq_msgmni = 0; 1968 zone0.zone_name = GLOBAL_ZONENAME; 1969 zone0.zone_nodename = utsname.nodename; 1970 zone0.zone_domain = srpc_domain; 1971 zone0.zone_hostid = HW_INVALID_HOSTID; 1972 zone0.zone_fs_allowed = NULL; 1973 zone0.zone_ref = 1; 1974 zone0.zone_id = GLOBAL_ZONEID; 1975 zone0.zone_status = ZONE_IS_RUNNING; 1976 zone0.zone_rootpath = "/"; 1977 zone0.zone_rootpathlen = 2; 1978 zone0.zone_psetid = ZONE_PS_INVAL; 1979 zone0.zone_ncpus = 0; 1980 zone0.zone_ncpus_online = 0; 1981 zone0.zone_proc_initpid = 1; 1982 zone0.zone_initname = initname; 1983 zone0.zone_lockedmem_kstat = NULL; 1984 zone0.zone_swapresv_kstat = NULL; 1985 zone0.zone_nprocs_kstat = NULL; 1986 1987 zone0.zone_stime = 0; 1988 zone0.zone_utime = 0; 1989 zone0.zone_wtime = 0; 1990 1991 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 1992 offsetof(zone_ref_t, zref_linkage)); 1993 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1994 offsetof(struct zsd_entry, zsd_linkage)); 1995 list_insert_head(&zone_active, &zone0); 1996 1997 /* 1998 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1999 * to anything meaningful. It is assigned to be 'rootdir' in 2000 * vfs_mountroot(). 2001 */ 2002 zone0.zone_rootvp = NULL; 2003 zone0.zone_vfslist = NULL; 2004 zone0.zone_bootargs = initargs; 2005 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2006 /* 2007 * The global zone has all privileges 2008 */ 2009 priv_fillset(zone0.zone_privset); 2010 /* 2011 * Add p0 to the global zone 2012 */ 2013 zone0.zone_zsched = &p0; 2014 p0.p_zone = &zone0; 2015 } 2016 2017 /* 2018 * Compute a hash value based on the contents of the label and the DOI. The 2019 * hash algorithm is somewhat arbitrary, but is based on the observation that 2020 * humans will likely pick labels that differ by amounts that work out to be 2021 * multiples of the number of hash chains, and thus stirring in some primes 2022 * should help. 2023 */ 2024 static uint_t 2025 hash_bylabel(void *hdata, mod_hash_key_t key) 2026 { 2027 const ts_label_t *lab = (ts_label_t *)key; 2028 const uint32_t *up, *ue; 2029 uint_t hash; 2030 int i; 2031 2032 _NOTE(ARGUNUSED(hdata)); 2033 2034 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2035 /* we depend on alignment of label, but not representation */ 2036 up = (const uint32_t *)&lab->tsl_label; 2037 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2038 i = 1; 2039 while (up < ue) { 2040 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2041 hash += *up + (*up << ((i % 16) + 1)); 2042 up++; 2043 i++; 2044 } 2045 return (hash); 2046 } 2047 2048 /* 2049 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2050 * equal). This may need to be changed if less than / greater than is ever 2051 * needed. 2052 */ 2053 static int 2054 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2055 { 2056 ts_label_t *lab1 = (ts_label_t *)key1; 2057 ts_label_t *lab2 = (ts_label_t *)key2; 2058 2059 return (label_equal(lab1, lab2) ? 0 : 1); 2060 } 2061 2062 /* 2063 * Called by main() to initialize the zones framework. 2064 */ 2065 void 2066 zone_init(void) 2067 { 2068 rctl_dict_entry_t *rde; 2069 rctl_val_t *dval; 2070 rctl_set_t *set; 2071 rctl_alloc_gp_t *gp; 2072 rctl_entity_p_t e; 2073 int res; 2074 2075 ASSERT(curproc == &p0); 2076 2077 /* 2078 * Create ID space for zone IDs. ID 0 is reserved for the 2079 * global zone. 2080 */ 2081 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2082 2083 /* 2084 * Initialize generic zone resource controls, if any. 2085 */ 2086 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2087 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2088 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2089 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2090 2091 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2092 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2093 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2094 RCTL_GLOBAL_INFINITE, 2095 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2096 2097 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2098 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2099 INT_MAX, INT_MAX, &zone_lwps_ops); 2100 2101 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2102 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2103 INT_MAX, INT_MAX, &zone_procs_ops); 2104 2105 /* 2106 * System V IPC resource controls 2107 */ 2108 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2109 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2110 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2111 2112 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2113 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2114 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2115 2116 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2117 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2118 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2119 2120 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2121 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2122 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2123 2124 /* 2125 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2126 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2127 */ 2128 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2129 bzero(dval, sizeof (rctl_val_t)); 2130 dval->rcv_value = 1; 2131 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2132 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2133 dval->rcv_action_recip_pid = -1; 2134 2135 rde = rctl_dict_lookup("zone.cpu-shares"); 2136 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2137 2138 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2139 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2140 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2141 &zone_locked_mem_ops); 2142 2143 rc_zone_max_swap = rctl_register("zone.max-swap", 2144 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2145 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2146 &zone_max_swap_ops); 2147 2148 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2149 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2150 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2151 &zone_max_lofi_ops); 2152 2153 /* 2154 * Initialize the ``global zone''. 2155 */ 2156 set = rctl_set_create(); 2157 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2158 mutex_enter(&p0.p_lock); 2159 e.rcep_p.zone = &zone0; 2160 e.rcep_t = RCENTITY_ZONE; 2161 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2162 gp); 2163 2164 zone0.zone_nlwps = p0.p_lwpcnt; 2165 zone0.zone_nprocs = 1; 2166 zone0.zone_ntasks = 1; 2167 mutex_exit(&p0.p_lock); 2168 zone0.zone_restart_init = B_TRUE; 2169 zone0.zone_brand = &native_brand; 2170 rctl_prealloc_destroy(gp); 2171 /* 2172 * pool_default hasn't been initialized yet, so we let pool_init() 2173 * take care of making sure the global zone is in the default pool. 2174 */ 2175 2176 /* 2177 * Initialize global zone kstats 2178 */ 2179 zone_kstat_create(&zone0); 2180 2181 /* 2182 * Initialize zone label. 2183 * mlp are initialized when tnzonecfg is loaded. 2184 */ 2185 zone0.zone_slabel = l_admin_low; 2186 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2187 label_hold(l_admin_low); 2188 2189 /* 2190 * Initialise the lock for the database structure used by mntfs. 2191 */ 2192 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2193 2194 mutex_enter(&zonehash_lock); 2195 zone_uniqid(&zone0); 2196 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2197 2198 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2199 mod_hash_null_valdtor); 2200 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2201 zone_hash_size, mod_hash_null_valdtor); 2202 /* 2203 * maintain zonehashbylabel only for labeled systems 2204 */ 2205 if (is_system_labeled()) 2206 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2207 zone_hash_size, mod_hash_null_keydtor, 2208 mod_hash_null_valdtor, hash_bylabel, NULL, 2209 hash_labelkey_cmp, KM_SLEEP); 2210 zonecount = 1; 2211 2212 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2213 (mod_hash_val_t)&zone0); 2214 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2215 (mod_hash_val_t)&zone0); 2216 if (is_system_labeled()) { 2217 zone0.zone_flags |= ZF_HASHED_LABEL; 2218 (void) mod_hash_insert(zonehashbylabel, 2219 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2220 } 2221 mutex_exit(&zonehash_lock); 2222 2223 /* 2224 * We avoid setting zone_kcred until now, since kcred is initialized 2225 * sometime after zone_zsd_init() and before zone_init(). 2226 */ 2227 zone0.zone_kcred = kcred; 2228 /* 2229 * The global zone is fully initialized (except for zone_rootvp which 2230 * will be set when the root filesystem is mounted). 2231 */ 2232 global_zone = &zone0; 2233 2234 /* 2235 * Setup an event channel to send zone status change notifications on 2236 */ 2237 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2238 EVCH_CREAT); 2239 2240 if (res) 2241 panic("Sysevent_evc_bind failed during zone setup.\n"); 2242 2243 } 2244 2245 static void 2246 zone_free(zone_t *zone) 2247 { 2248 ASSERT(zone != global_zone); 2249 ASSERT(zone->zone_ntasks == 0); 2250 ASSERT(zone->zone_nlwps == 0); 2251 ASSERT(zone->zone_nprocs == 0); 2252 ASSERT(zone->zone_cred_ref == 0); 2253 ASSERT(zone->zone_kcred == NULL); 2254 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2255 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2256 ASSERT(list_is_empty(&zone->zone_ref_list)); 2257 2258 /* 2259 * Remove any zone caps. 2260 */ 2261 cpucaps_zone_remove(zone); 2262 2263 ASSERT(zone->zone_cpucap == NULL); 2264 2265 /* remove from deathrow list */ 2266 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2267 ASSERT(zone->zone_ref == 0); 2268 mutex_enter(&zone_deathrow_lock); 2269 list_remove(&zone_deathrow, zone); 2270 mutex_exit(&zone_deathrow_lock); 2271 } 2272 2273 list_destroy(&zone->zone_ref_list); 2274 zone_free_zsd(zone); 2275 zone_free_datasets(zone); 2276 list_destroy(&zone->zone_dl_list); 2277 2278 if (zone->zone_rootvp != NULL) 2279 VN_RELE(zone->zone_rootvp); 2280 if (zone->zone_rootpath) 2281 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2282 if (zone->zone_name != NULL) 2283 kmem_free(zone->zone_name, ZONENAME_MAX); 2284 if (zone->zone_slabel != NULL) 2285 label_rele(zone->zone_slabel); 2286 if (zone->zone_nodename != NULL) 2287 kmem_free(zone->zone_nodename, _SYS_NMLN); 2288 if (zone->zone_domain != NULL) 2289 kmem_free(zone->zone_domain, _SYS_NMLN); 2290 if (zone->zone_privset != NULL) 2291 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2292 if (zone->zone_rctls != NULL) 2293 rctl_set_free(zone->zone_rctls); 2294 if (zone->zone_bootargs != NULL) 2295 strfree(zone->zone_bootargs); 2296 if (zone->zone_initname != NULL) 2297 strfree(zone->zone_initname); 2298 if (zone->zone_fs_allowed != NULL) 2299 strfree(zone->zone_fs_allowed); 2300 if (zone->zone_pfexecd != NULL) 2301 klpd_freelist(&zone->zone_pfexecd); 2302 id_free(zoneid_space, zone->zone_id); 2303 mutex_destroy(&zone->zone_lock); 2304 cv_destroy(&zone->zone_cv); 2305 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2306 rw_destroy(&zone->zone_mntfs_db_lock); 2307 kmem_free(zone, sizeof (zone_t)); 2308 } 2309 2310 /* 2311 * See block comment at the top of this file for information about zone 2312 * status values. 2313 */ 2314 /* 2315 * Convenience function for setting zone status. 2316 */ 2317 static void 2318 zone_status_set(zone_t *zone, zone_status_t status) 2319 { 2320 2321 nvlist_t *nvl = NULL; 2322 ASSERT(MUTEX_HELD(&zone_status_lock)); 2323 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2324 status >= zone_status_get(zone)); 2325 2326 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2327 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2328 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2329 zone_status_table[status]) || 2330 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2331 zone_status_table[zone->zone_status]) || 2332 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2333 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2334 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2335 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2336 #ifdef DEBUG 2337 (void) printf( 2338 "Failed to allocate and send zone state change event.\n"); 2339 #endif 2340 } 2341 nvlist_free(nvl); 2342 2343 zone->zone_status = status; 2344 2345 cv_broadcast(&zone->zone_cv); 2346 } 2347 2348 /* 2349 * Public function to retrieve the zone status. The zone status may 2350 * change after it is retrieved. 2351 */ 2352 zone_status_t 2353 zone_status_get(zone_t *zone) 2354 { 2355 return (zone->zone_status); 2356 } 2357 2358 static int 2359 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2360 { 2361 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2362 int err = 0; 2363 2364 ASSERT(zone != global_zone); 2365 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2366 goto done; /* EFAULT or ENAMETOOLONG */ 2367 2368 if (zone->zone_bootargs != NULL) 2369 strfree(zone->zone_bootargs); 2370 2371 zone->zone_bootargs = strdup(buf); 2372 2373 done: 2374 kmem_free(buf, BOOTARGS_MAX); 2375 return (err); 2376 } 2377 2378 static int 2379 zone_set_brand(zone_t *zone, const char *brand) 2380 { 2381 struct brand_attr *attrp; 2382 brand_t *bp; 2383 2384 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2385 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2386 kmem_free(attrp, sizeof (struct brand_attr)); 2387 return (EFAULT); 2388 } 2389 2390 bp = brand_register_zone(attrp); 2391 kmem_free(attrp, sizeof (struct brand_attr)); 2392 if (bp == NULL) 2393 return (EINVAL); 2394 2395 /* 2396 * This is the only place where a zone can change it's brand. 2397 * We already need to hold zone_status_lock to check the zone 2398 * status, so we'll just use that lock to serialize zone 2399 * branding requests as well. 2400 */ 2401 mutex_enter(&zone_status_lock); 2402 2403 /* Re-Branding is not allowed and the zone can't be booted yet */ 2404 if ((ZONE_IS_BRANDED(zone)) || 2405 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2406 mutex_exit(&zone_status_lock); 2407 brand_unregister_zone(bp); 2408 return (EINVAL); 2409 } 2410 2411 /* set up the brand specific data */ 2412 zone->zone_brand = bp; 2413 ZBROP(zone)->b_init_brand_data(zone); 2414 2415 mutex_exit(&zone_status_lock); 2416 return (0); 2417 } 2418 2419 static int 2420 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2421 { 2422 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2423 int err = 0; 2424 2425 ASSERT(zone != global_zone); 2426 if ((err = copyinstr(zone_fs_allowed, buf, 2427 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2428 goto done; 2429 2430 if (zone->zone_fs_allowed != NULL) 2431 strfree(zone->zone_fs_allowed); 2432 2433 zone->zone_fs_allowed = strdup(buf); 2434 2435 done: 2436 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2437 return (err); 2438 } 2439 2440 static int 2441 zone_set_initname(zone_t *zone, const char *zone_initname) 2442 { 2443 char initname[INITNAME_SZ]; 2444 size_t len; 2445 int err = 0; 2446 2447 ASSERT(zone != global_zone); 2448 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2449 return (err); /* EFAULT or ENAMETOOLONG */ 2450 2451 if (zone->zone_initname != NULL) 2452 strfree(zone->zone_initname); 2453 2454 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2455 (void) strcpy(zone->zone_initname, initname); 2456 return (0); 2457 } 2458 2459 static int 2460 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2461 { 2462 uint64_t mcap; 2463 int err = 0; 2464 2465 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2466 zone->zone_phys_mcap = mcap; 2467 2468 return (err); 2469 } 2470 2471 static int 2472 zone_set_sched_class(zone_t *zone, const char *new_class) 2473 { 2474 char sched_class[PC_CLNMSZ]; 2475 id_t classid; 2476 int err; 2477 2478 ASSERT(zone != global_zone); 2479 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2480 return (err); /* EFAULT or ENAMETOOLONG */ 2481 2482 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2483 return (set_errno(EINVAL)); 2484 zone->zone_defaultcid = classid; 2485 ASSERT(zone->zone_defaultcid > 0 && 2486 zone->zone_defaultcid < loaded_classes); 2487 2488 return (0); 2489 } 2490 2491 /* 2492 * Block indefinitely waiting for (zone_status >= status) 2493 */ 2494 void 2495 zone_status_wait(zone_t *zone, zone_status_t status) 2496 { 2497 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2498 2499 mutex_enter(&zone_status_lock); 2500 while (zone->zone_status < status) { 2501 cv_wait(&zone->zone_cv, &zone_status_lock); 2502 } 2503 mutex_exit(&zone_status_lock); 2504 } 2505 2506 /* 2507 * Private CPR-safe version of zone_status_wait(). 2508 */ 2509 static void 2510 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2511 { 2512 callb_cpr_t cprinfo; 2513 2514 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2515 2516 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2517 str); 2518 mutex_enter(&zone_status_lock); 2519 while (zone->zone_status < status) { 2520 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2521 cv_wait(&zone->zone_cv, &zone_status_lock); 2522 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2523 } 2524 /* 2525 * zone_status_lock is implicitly released by the following. 2526 */ 2527 CALLB_CPR_EXIT(&cprinfo); 2528 } 2529 2530 /* 2531 * Block until zone enters requested state or signal is received. Return (0) 2532 * if signaled, non-zero otherwise. 2533 */ 2534 int 2535 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2536 { 2537 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2538 2539 mutex_enter(&zone_status_lock); 2540 while (zone->zone_status < status) { 2541 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2542 mutex_exit(&zone_status_lock); 2543 return (0); 2544 } 2545 } 2546 mutex_exit(&zone_status_lock); 2547 return (1); 2548 } 2549 2550 /* 2551 * Block until the zone enters the requested state or the timeout expires, 2552 * whichever happens first. Return (-1) if operation timed out, time remaining 2553 * otherwise. 2554 */ 2555 clock_t 2556 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2557 { 2558 clock_t timeleft = 0; 2559 2560 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2561 2562 mutex_enter(&zone_status_lock); 2563 while (zone->zone_status < status && timeleft != -1) { 2564 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2565 } 2566 mutex_exit(&zone_status_lock); 2567 return (timeleft); 2568 } 2569 2570 /* 2571 * Block until the zone enters the requested state, the current process is 2572 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2573 * operation timed out, 0 if signaled, time remaining otherwise. 2574 */ 2575 clock_t 2576 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2577 { 2578 clock_t timeleft = tim - ddi_get_lbolt(); 2579 2580 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2581 2582 mutex_enter(&zone_status_lock); 2583 while (zone->zone_status < status) { 2584 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2585 tim); 2586 if (timeleft <= 0) 2587 break; 2588 } 2589 mutex_exit(&zone_status_lock); 2590 return (timeleft); 2591 } 2592 2593 /* 2594 * Zones have two reference counts: one for references from credential 2595 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2596 * This is so we can allow a zone to be rebooted while there are still 2597 * outstanding cred references, since certain drivers cache dblks (which 2598 * implicitly results in cached creds). We wait for zone_ref to drop to 2599 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2600 * later freed when the zone_cred_ref drops to 0, though nothing other 2601 * than the zone id and privilege set should be accessed once the zone 2602 * is "dead". 2603 * 2604 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2605 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2606 * to 0. This can be useful to flush out other sources of cached creds 2607 * that may be less innocuous than the driver case. 2608 * 2609 * Zones also provide a tracked reference counting mechanism in which zone 2610 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2611 * debuggers determine the sources of leaked zone references. See 2612 * zone_hold_ref() and zone_rele_ref() below for more information. 2613 */ 2614 2615 int zone_wait_for_cred = 0; 2616 2617 static void 2618 zone_hold_locked(zone_t *z) 2619 { 2620 ASSERT(MUTEX_HELD(&z->zone_lock)); 2621 z->zone_ref++; 2622 ASSERT(z->zone_ref != 0); 2623 } 2624 2625 /* 2626 * Increment the specified zone's reference count. The zone's zone_t structure 2627 * will not be freed as long as the zone's reference count is nonzero. 2628 * Decrement the zone's reference count via zone_rele(). 2629 * 2630 * NOTE: This function should only be used to hold zones for short periods of 2631 * time. Use zone_hold_ref() if the zone must be held for a long time. 2632 */ 2633 void 2634 zone_hold(zone_t *z) 2635 { 2636 mutex_enter(&z->zone_lock); 2637 zone_hold_locked(z); 2638 mutex_exit(&z->zone_lock); 2639 } 2640 2641 /* 2642 * If the non-cred ref count drops to 1 and either the cred ref count 2643 * is 0 or we aren't waiting for cred references, the zone is ready to 2644 * be destroyed. 2645 */ 2646 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2647 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2648 2649 /* 2650 * Common zone reference release function invoked by zone_rele() and 2651 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2652 * zone's subsystem-specific reference counters are not affected by the 2653 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2654 * removed from the specified zone's reference list. ref must be non-NULL iff 2655 * subsys is not ZONE_REF_NUM_SUBSYS. 2656 */ 2657 static void 2658 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2659 { 2660 boolean_t wakeup; 2661 2662 mutex_enter(&z->zone_lock); 2663 ASSERT(z->zone_ref != 0); 2664 z->zone_ref--; 2665 if (subsys != ZONE_REF_NUM_SUBSYS) { 2666 ASSERT(z->zone_subsys_ref[subsys] != 0); 2667 z->zone_subsys_ref[subsys]--; 2668 list_remove(&z->zone_ref_list, ref); 2669 } 2670 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2671 /* no more refs, free the structure */ 2672 mutex_exit(&z->zone_lock); 2673 zone_free(z); 2674 return; 2675 } 2676 /* signal zone_destroy so the zone can finish halting */ 2677 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2678 mutex_exit(&z->zone_lock); 2679 2680 if (wakeup) { 2681 /* 2682 * Grabbing zonehash_lock here effectively synchronizes with 2683 * zone_destroy() to avoid missed signals. 2684 */ 2685 mutex_enter(&zonehash_lock); 2686 cv_broadcast(&zone_destroy_cv); 2687 mutex_exit(&zonehash_lock); 2688 } 2689 } 2690 2691 /* 2692 * Decrement the specified zone's reference count. The specified zone will 2693 * cease to exist after this function returns if the reference count drops to 2694 * zero. This function should be paired with zone_hold(). 2695 */ 2696 void 2697 zone_rele(zone_t *z) 2698 { 2699 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2700 } 2701 2702 /* 2703 * Initialize a zone reference structure. This function must be invoked for 2704 * a reference structure before the structure is passed to zone_hold_ref(). 2705 */ 2706 void 2707 zone_init_ref(zone_ref_t *ref) 2708 { 2709 ref->zref_zone = NULL; 2710 list_link_init(&ref->zref_linkage); 2711 } 2712 2713 /* 2714 * Acquire a reference to zone z. The caller must specify the 2715 * zone_ref_subsys_t constant associated with its subsystem. The specified 2716 * zone_ref_t structure will represent a reference to the specified zone. Use 2717 * zone_rele_ref() to release the reference. 2718 * 2719 * The referenced zone_t structure will not be freed as long as the zone_t's 2720 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2721 * references. 2722 * 2723 * NOTE: The zone_ref_t structure must be initialized before it is used. 2724 * See zone_init_ref() above. 2725 */ 2726 void 2727 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2728 { 2729 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2730 2731 /* 2732 * Prevent consumers from reusing a reference structure before 2733 * releasing it. 2734 */ 2735 VERIFY(ref->zref_zone == NULL); 2736 2737 ref->zref_zone = z; 2738 mutex_enter(&z->zone_lock); 2739 zone_hold_locked(z); 2740 z->zone_subsys_ref[subsys]++; 2741 ASSERT(z->zone_subsys_ref[subsys] != 0); 2742 list_insert_head(&z->zone_ref_list, ref); 2743 mutex_exit(&z->zone_lock); 2744 } 2745 2746 /* 2747 * Release the zone reference represented by the specified zone_ref_t. 2748 * The reference is invalid after it's released; however, the zone_ref_t 2749 * structure can be reused without having to invoke zone_init_ref(). 2750 * subsys should be the same value that was passed to zone_hold_ref() 2751 * when the reference was acquired. 2752 */ 2753 void 2754 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2755 { 2756 zone_rele_common(ref->zref_zone, ref, subsys); 2757 2758 /* 2759 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2760 * when consumers dereference the reference. This helps us catch 2761 * consumers who use released references. Furthermore, this lets 2762 * consumers reuse the zone_ref_t structure without having to 2763 * invoke zone_init_ref(). 2764 */ 2765 ref->zref_zone = NULL; 2766 } 2767 2768 void 2769 zone_cred_hold(zone_t *z) 2770 { 2771 mutex_enter(&z->zone_lock); 2772 z->zone_cred_ref++; 2773 ASSERT(z->zone_cred_ref != 0); 2774 mutex_exit(&z->zone_lock); 2775 } 2776 2777 void 2778 zone_cred_rele(zone_t *z) 2779 { 2780 boolean_t wakeup; 2781 2782 mutex_enter(&z->zone_lock); 2783 ASSERT(z->zone_cred_ref != 0); 2784 z->zone_cred_ref--; 2785 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2786 /* no more refs, free the structure */ 2787 mutex_exit(&z->zone_lock); 2788 zone_free(z); 2789 return; 2790 } 2791 /* 2792 * If zone_destroy is waiting for the cred references to drain 2793 * out, and they have, signal it. 2794 */ 2795 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2796 zone_status_get(z) >= ZONE_IS_DEAD); 2797 mutex_exit(&z->zone_lock); 2798 2799 if (wakeup) { 2800 /* 2801 * Grabbing zonehash_lock here effectively synchronizes with 2802 * zone_destroy() to avoid missed signals. 2803 */ 2804 mutex_enter(&zonehash_lock); 2805 cv_broadcast(&zone_destroy_cv); 2806 mutex_exit(&zonehash_lock); 2807 } 2808 } 2809 2810 void 2811 zone_task_hold(zone_t *z) 2812 { 2813 mutex_enter(&z->zone_lock); 2814 z->zone_ntasks++; 2815 ASSERT(z->zone_ntasks != 0); 2816 mutex_exit(&z->zone_lock); 2817 } 2818 2819 void 2820 zone_task_rele(zone_t *zone) 2821 { 2822 uint_t refcnt; 2823 2824 mutex_enter(&zone->zone_lock); 2825 ASSERT(zone->zone_ntasks != 0); 2826 refcnt = --zone->zone_ntasks; 2827 if (refcnt > 1) { /* Common case */ 2828 mutex_exit(&zone->zone_lock); 2829 return; 2830 } 2831 zone_hold_locked(zone); /* so we can use the zone_t later */ 2832 mutex_exit(&zone->zone_lock); 2833 if (refcnt == 1) { 2834 /* 2835 * See if the zone is shutting down. 2836 */ 2837 mutex_enter(&zone_status_lock); 2838 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2839 goto out; 2840 } 2841 2842 /* 2843 * Make sure the ntasks didn't change since we 2844 * dropped zone_lock. 2845 */ 2846 mutex_enter(&zone->zone_lock); 2847 if (refcnt != zone->zone_ntasks) { 2848 mutex_exit(&zone->zone_lock); 2849 goto out; 2850 } 2851 mutex_exit(&zone->zone_lock); 2852 2853 /* 2854 * No more user processes in the zone. The zone is empty. 2855 */ 2856 zone_status_set(zone, ZONE_IS_EMPTY); 2857 goto out; 2858 } 2859 2860 ASSERT(refcnt == 0); 2861 /* 2862 * zsched has exited; the zone is dead. 2863 */ 2864 zone->zone_zsched = NULL; /* paranoia */ 2865 mutex_enter(&zone_status_lock); 2866 zone_status_set(zone, ZONE_IS_DEAD); 2867 out: 2868 mutex_exit(&zone_status_lock); 2869 zone_rele(zone); 2870 } 2871 2872 zoneid_t 2873 getzoneid(void) 2874 { 2875 return (curproc->p_zone->zone_id); 2876 } 2877 2878 /* 2879 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2880 * check the validity of a zone's state. 2881 */ 2882 static zone_t * 2883 zone_find_all_by_id(zoneid_t zoneid) 2884 { 2885 mod_hash_val_t hv; 2886 zone_t *zone = NULL; 2887 2888 ASSERT(MUTEX_HELD(&zonehash_lock)); 2889 2890 if (mod_hash_find(zonehashbyid, 2891 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2892 zone = (zone_t *)hv; 2893 return (zone); 2894 } 2895 2896 static zone_t * 2897 zone_find_all_by_label(const ts_label_t *label) 2898 { 2899 mod_hash_val_t hv; 2900 zone_t *zone = NULL; 2901 2902 ASSERT(MUTEX_HELD(&zonehash_lock)); 2903 2904 /* 2905 * zonehashbylabel is not maintained for unlabeled systems 2906 */ 2907 if (!is_system_labeled()) 2908 return (NULL); 2909 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2910 zone = (zone_t *)hv; 2911 return (zone); 2912 } 2913 2914 static zone_t * 2915 zone_find_all_by_name(char *name) 2916 { 2917 mod_hash_val_t hv; 2918 zone_t *zone = NULL; 2919 2920 ASSERT(MUTEX_HELD(&zonehash_lock)); 2921 2922 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2923 zone = (zone_t *)hv; 2924 return (zone); 2925 } 2926 2927 /* 2928 * Public interface for looking up a zone by zoneid. Only returns the zone if 2929 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2930 * Caller must call zone_rele() once it is done with the zone. 2931 * 2932 * The zone may begin the zone_destroy() sequence immediately after this 2933 * function returns, but may be safely used until zone_rele() is called. 2934 */ 2935 zone_t * 2936 zone_find_by_id(zoneid_t zoneid) 2937 { 2938 zone_t *zone; 2939 zone_status_t status; 2940 2941 mutex_enter(&zonehash_lock); 2942 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2943 mutex_exit(&zonehash_lock); 2944 return (NULL); 2945 } 2946 status = zone_status_get(zone); 2947 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2948 /* 2949 * For all practical purposes the zone doesn't exist. 2950 */ 2951 mutex_exit(&zonehash_lock); 2952 return (NULL); 2953 } 2954 zone_hold(zone); 2955 mutex_exit(&zonehash_lock); 2956 return (zone); 2957 } 2958 2959 /* 2960 * Similar to zone_find_by_id, but using zone label as the key. 2961 */ 2962 zone_t * 2963 zone_find_by_label(const ts_label_t *label) 2964 { 2965 zone_t *zone; 2966 zone_status_t status; 2967 2968 mutex_enter(&zonehash_lock); 2969 if ((zone = zone_find_all_by_label(label)) == NULL) { 2970 mutex_exit(&zonehash_lock); 2971 return (NULL); 2972 } 2973 2974 status = zone_status_get(zone); 2975 if (status > ZONE_IS_DOWN) { 2976 /* 2977 * For all practical purposes the zone doesn't exist. 2978 */ 2979 mutex_exit(&zonehash_lock); 2980 return (NULL); 2981 } 2982 zone_hold(zone); 2983 mutex_exit(&zonehash_lock); 2984 return (zone); 2985 } 2986 2987 /* 2988 * Similar to zone_find_by_id, but using zone name as the key. 2989 */ 2990 zone_t * 2991 zone_find_by_name(char *name) 2992 { 2993 zone_t *zone; 2994 zone_status_t status; 2995 2996 mutex_enter(&zonehash_lock); 2997 if ((zone = zone_find_all_by_name(name)) == NULL) { 2998 mutex_exit(&zonehash_lock); 2999 return (NULL); 3000 } 3001 status = zone_status_get(zone); 3002 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3003 /* 3004 * For all practical purposes the zone doesn't exist. 3005 */ 3006 mutex_exit(&zonehash_lock); 3007 return (NULL); 3008 } 3009 zone_hold(zone); 3010 mutex_exit(&zonehash_lock); 3011 return (zone); 3012 } 3013 3014 /* 3015 * Similar to zone_find_by_id(), using the path as a key. For instance, 3016 * if there is a zone "foo" rooted at /foo/root, and the path argument 3017 * is "/foo/root/proc", it will return the held zone_t corresponding to 3018 * zone "foo". 3019 * 3020 * zone_find_by_path() always returns a non-NULL value, since at the 3021 * very least every path will be contained in the global zone. 3022 * 3023 * As with the other zone_find_by_*() functions, the caller is 3024 * responsible for zone_rele()ing the return value of this function. 3025 */ 3026 zone_t * 3027 zone_find_by_path(const char *path) 3028 { 3029 zone_t *zone; 3030 zone_t *zret = NULL; 3031 zone_status_t status; 3032 3033 if (path == NULL) { 3034 /* 3035 * Call from rootconf(). 3036 */ 3037 zone_hold(global_zone); 3038 return (global_zone); 3039 } 3040 ASSERT(*path == '/'); 3041 mutex_enter(&zonehash_lock); 3042 for (zone = list_head(&zone_active); zone != NULL; 3043 zone = list_next(&zone_active, zone)) { 3044 if (ZONE_PATH_VISIBLE(path, zone)) 3045 zret = zone; 3046 } 3047 ASSERT(zret != NULL); 3048 status = zone_status_get(zret); 3049 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3050 /* 3051 * Zone practically doesn't exist. 3052 */ 3053 zret = global_zone; 3054 } 3055 zone_hold(zret); 3056 mutex_exit(&zonehash_lock); 3057 return (zret); 3058 } 3059 3060 /* 3061 * Public interface for updating per-zone load averages. Called once per 3062 * second. 3063 * 3064 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3065 */ 3066 void 3067 zone_loadavg_update() 3068 { 3069 zone_t *zp; 3070 zone_status_t status; 3071 struct loadavg_s *lavg; 3072 hrtime_t zone_total; 3073 int i; 3074 hrtime_t hr_avg; 3075 int nrun; 3076 static int64_t f[3] = { 135, 27, 9 }; 3077 int64_t q, r; 3078 3079 mutex_enter(&zonehash_lock); 3080 for (zp = list_head(&zone_active); zp != NULL; 3081 zp = list_next(&zone_active, zp)) { 3082 mutex_enter(&zp->zone_lock); 3083 3084 /* Skip zones that are on the way down or not yet up */ 3085 status = zone_status_get(zp); 3086 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3087 /* For all practical purposes the zone doesn't exist. */ 3088 mutex_exit(&zp->zone_lock); 3089 continue; 3090 } 3091 3092 /* 3093 * Update the 10 second moving average data in zone_loadavg. 3094 */ 3095 lavg = &zp->zone_loadavg; 3096 3097 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3098 scalehrtime(&zone_total); 3099 3100 /* The zone_total should always be increasing. */ 3101 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3102 zone_total - lavg->lg_total : 0; 3103 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3104 /* lg_total holds the prev. 1 sec. total */ 3105 lavg->lg_total = zone_total; 3106 3107 /* 3108 * To simplify the calculation, we don't calculate the load avg. 3109 * until the zone has been up for at least 10 seconds and our 3110 * moving average is thus full. 3111 */ 3112 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3113 lavg->lg_len++; 3114 mutex_exit(&zp->zone_lock); 3115 continue; 3116 } 3117 3118 /* Now calculate the 1min, 5min, 15 min load avg. */ 3119 hr_avg = 0; 3120 for (i = 0; i < S_LOADAVG_SZ; i++) 3121 hr_avg += lavg->lg_loads[i]; 3122 hr_avg = hr_avg / S_LOADAVG_SZ; 3123 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3124 3125 /* Compute load avg. See comment in calcloadavg() */ 3126 for (i = 0; i < 3; i++) { 3127 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3128 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3129 zp->zone_hp_avenrun[i] += 3130 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3131 3132 /* avenrun[] can only hold 31 bits of load avg. */ 3133 if (zp->zone_hp_avenrun[i] < 3134 ((uint64_t)1<<(31+16-FSHIFT))) 3135 zp->zone_avenrun[i] = (int32_t) 3136 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3137 else 3138 zp->zone_avenrun[i] = 0x7fffffff; 3139 } 3140 3141 mutex_exit(&zp->zone_lock); 3142 } 3143 mutex_exit(&zonehash_lock); 3144 } 3145 3146 /* 3147 * Get the number of cpus visible to this zone. The system-wide global 3148 * 'ncpus' is returned if pools are disabled, the caller is in the 3149 * global zone, or a NULL zone argument is passed in. 3150 */ 3151 int 3152 zone_ncpus_get(zone_t *zone) 3153 { 3154 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3155 3156 return (myncpus != 0 ? myncpus : ncpus); 3157 } 3158 3159 /* 3160 * Get the number of online cpus visible to this zone. The system-wide 3161 * global 'ncpus_online' is returned if pools are disabled, the caller 3162 * is in the global zone, or a NULL zone argument is passed in. 3163 */ 3164 int 3165 zone_ncpus_online_get(zone_t *zone) 3166 { 3167 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3168 3169 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3170 } 3171 3172 /* 3173 * Return the pool to which the zone is currently bound. 3174 */ 3175 pool_t * 3176 zone_pool_get(zone_t *zone) 3177 { 3178 ASSERT(pool_lock_held()); 3179 3180 return (zone->zone_pool); 3181 } 3182 3183 /* 3184 * Set the zone's pool pointer and update the zone's visibility to match 3185 * the resources in the new pool. 3186 */ 3187 void 3188 zone_pool_set(zone_t *zone, pool_t *pool) 3189 { 3190 ASSERT(pool_lock_held()); 3191 ASSERT(MUTEX_HELD(&cpu_lock)); 3192 3193 zone->zone_pool = pool; 3194 zone_pset_set(zone, pool->pool_pset->pset_id); 3195 } 3196 3197 /* 3198 * Return the cached value of the id of the processor set to which the 3199 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3200 * facility is disabled. 3201 */ 3202 psetid_t 3203 zone_pset_get(zone_t *zone) 3204 { 3205 ASSERT(MUTEX_HELD(&cpu_lock)); 3206 3207 return (zone->zone_psetid); 3208 } 3209 3210 /* 3211 * Set the cached value of the id of the processor set to which the zone 3212 * is currently bound. Also update the zone's visibility to match the 3213 * resources in the new processor set. 3214 */ 3215 void 3216 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3217 { 3218 psetid_t oldpsetid; 3219 3220 ASSERT(MUTEX_HELD(&cpu_lock)); 3221 oldpsetid = zone_pset_get(zone); 3222 3223 if (oldpsetid == newpsetid) 3224 return; 3225 /* 3226 * Global zone sees all. 3227 */ 3228 if (zone != global_zone) { 3229 zone->zone_psetid = newpsetid; 3230 if (newpsetid != ZONE_PS_INVAL) 3231 pool_pset_visibility_add(newpsetid, zone); 3232 if (oldpsetid != ZONE_PS_INVAL) 3233 pool_pset_visibility_remove(oldpsetid, zone); 3234 } 3235 /* 3236 * Disabling pools, so we should start using the global values 3237 * for ncpus and ncpus_online. 3238 */ 3239 if (newpsetid == ZONE_PS_INVAL) { 3240 zone->zone_ncpus = 0; 3241 zone->zone_ncpus_online = 0; 3242 } 3243 } 3244 3245 /* 3246 * Walk the list of active zones and issue the provided callback for 3247 * each of them. 3248 * 3249 * Caller must not be holding any locks that may be acquired under 3250 * zonehash_lock. See comment at the beginning of the file for a list of 3251 * common locks and their interactions with zones. 3252 */ 3253 int 3254 zone_walk(int (*cb)(zone_t *, void *), void *data) 3255 { 3256 zone_t *zone; 3257 int ret = 0; 3258 zone_status_t status; 3259 3260 mutex_enter(&zonehash_lock); 3261 for (zone = list_head(&zone_active); zone != NULL; 3262 zone = list_next(&zone_active, zone)) { 3263 /* 3264 * Skip zones that shouldn't be externally visible. 3265 */ 3266 status = zone_status_get(zone); 3267 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3268 continue; 3269 /* 3270 * Bail immediately if any callback invocation returns a 3271 * non-zero value. 3272 */ 3273 ret = (*cb)(zone, data); 3274 if (ret != 0) 3275 break; 3276 } 3277 mutex_exit(&zonehash_lock); 3278 return (ret); 3279 } 3280 3281 static int 3282 zone_set_root(zone_t *zone, const char *upath) 3283 { 3284 vnode_t *vp; 3285 int trycount; 3286 int error = 0; 3287 char *path; 3288 struct pathname upn, pn; 3289 size_t pathlen; 3290 3291 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3292 return (error); 3293 3294 pn_alloc(&pn); 3295 3296 /* prevent infinite loop */ 3297 trycount = 10; 3298 for (;;) { 3299 if (--trycount <= 0) { 3300 error = ESTALE; 3301 goto out; 3302 } 3303 3304 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3305 /* 3306 * VOP_ACCESS() may cover 'vp' with a new 3307 * filesystem, if 'vp' is an autoFS vnode. 3308 * Get the new 'vp' if so. 3309 */ 3310 if ((error = 3311 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3312 (!vn_ismntpt(vp) || 3313 (error = traverse(&vp)) == 0)) { 3314 pathlen = pn.pn_pathlen + 2; 3315 path = kmem_alloc(pathlen, KM_SLEEP); 3316 (void) strncpy(path, pn.pn_path, 3317 pn.pn_pathlen + 1); 3318 path[pathlen - 2] = '/'; 3319 path[pathlen - 1] = '\0'; 3320 pn_free(&pn); 3321 pn_free(&upn); 3322 3323 /* Success! */ 3324 break; 3325 } 3326 VN_RELE(vp); 3327 } 3328 if (error != ESTALE) 3329 goto out; 3330 } 3331 3332 ASSERT(error == 0); 3333 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3334 zone->zone_rootpath = path; 3335 zone->zone_rootpathlen = pathlen; 3336 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3337 zone->zone_flags |= ZF_IS_SCRATCH; 3338 return (0); 3339 3340 out: 3341 pn_free(&pn); 3342 pn_free(&upn); 3343 return (error); 3344 } 3345 3346 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3347 ((c) >= 'a' && (c) <= 'z') || \ 3348 ((c) >= 'A' && (c) <= 'Z')) 3349 3350 static int 3351 zone_set_name(zone_t *zone, const char *uname) 3352 { 3353 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3354 size_t len; 3355 int i, err; 3356 3357 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3358 kmem_free(kname, ZONENAME_MAX); 3359 return (err); /* EFAULT or ENAMETOOLONG */ 3360 } 3361 3362 /* must be less than ZONENAME_MAX */ 3363 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3364 kmem_free(kname, ZONENAME_MAX); 3365 return (EINVAL); 3366 } 3367 3368 /* 3369 * Name must start with an alphanumeric and must contain only 3370 * alphanumerics, '-', '_' and '.'. 3371 */ 3372 if (!isalnum(kname[0])) { 3373 kmem_free(kname, ZONENAME_MAX); 3374 return (EINVAL); 3375 } 3376 for (i = 1; i < len - 1; i++) { 3377 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3378 kname[i] != '.') { 3379 kmem_free(kname, ZONENAME_MAX); 3380 return (EINVAL); 3381 } 3382 } 3383 3384 zone->zone_name = kname; 3385 return (0); 3386 } 3387 3388 /* 3389 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3390 * is NULL or it points to a zone with no hostid emulation, then the machine's 3391 * hostid (i.e., the global zone's hostid) is returned. This function returns 3392 * zero if neither the zone nor the host machine (global zone) have hostids. It 3393 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3394 * hostid and the machine's hostid is invalid. 3395 */ 3396 uint32_t 3397 zone_get_hostid(zone_t *zonep) 3398 { 3399 unsigned long machine_hostid; 3400 3401 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3402 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3403 return (HW_INVALID_HOSTID); 3404 return ((uint32_t)machine_hostid); 3405 } 3406 return (zonep->zone_hostid); 3407 } 3408 3409 /* 3410 * Similar to thread_create(), but makes sure the thread is in the appropriate 3411 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3412 */ 3413 /*ARGSUSED*/ 3414 kthread_t * 3415 zthread_create( 3416 caddr_t stk, 3417 size_t stksize, 3418 void (*proc)(), 3419 void *arg, 3420 size_t len, 3421 pri_t pri) 3422 { 3423 kthread_t *t; 3424 zone_t *zone = curproc->p_zone; 3425 proc_t *pp = zone->zone_zsched; 3426 3427 zone_hold(zone); /* Reference to be dropped when thread exits */ 3428 3429 /* 3430 * No-one should be trying to create threads if the zone is shutting 3431 * down and there aren't any kernel threads around. See comment 3432 * in zthread_exit(). 3433 */ 3434 ASSERT(!(zone->zone_kthreads == NULL && 3435 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3436 /* 3437 * Create a thread, but don't let it run until we've finished setting 3438 * things up. 3439 */ 3440 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3441 ASSERT(t->t_forw == NULL); 3442 mutex_enter(&zone_status_lock); 3443 if (zone->zone_kthreads == NULL) { 3444 t->t_forw = t->t_back = t; 3445 } else { 3446 kthread_t *tx = zone->zone_kthreads; 3447 3448 t->t_forw = tx; 3449 t->t_back = tx->t_back; 3450 tx->t_back->t_forw = t; 3451 tx->t_back = t; 3452 } 3453 zone->zone_kthreads = t; 3454 mutex_exit(&zone_status_lock); 3455 3456 mutex_enter(&pp->p_lock); 3457 t->t_proc_flag |= TP_ZTHREAD; 3458 project_rele(t->t_proj); 3459 t->t_proj = project_hold(pp->p_task->tk_proj); 3460 3461 /* 3462 * Setup complete, let it run. 3463 */ 3464 thread_lock(t); 3465 t->t_schedflag |= TS_ALLSTART; 3466 setrun_locked(t); 3467 thread_unlock(t); 3468 3469 mutex_exit(&pp->p_lock); 3470 3471 return (t); 3472 } 3473 3474 /* 3475 * Similar to thread_exit(). Must be called by threads created via 3476 * zthread_exit(). 3477 */ 3478 void 3479 zthread_exit(void) 3480 { 3481 kthread_t *t = curthread; 3482 proc_t *pp = curproc; 3483 zone_t *zone = pp->p_zone; 3484 3485 mutex_enter(&zone_status_lock); 3486 3487 /* 3488 * Reparent to p0 3489 */ 3490 kpreempt_disable(); 3491 mutex_enter(&pp->p_lock); 3492 t->t_proc_flag &= ~TP_ZTHREAD; 3493 t->t_procp = &p0; 3494 hat_thread_exit(t); 3495 mutex_exit(&pp->p_lock); 3496 kpreempt_enable(); 3497 3498 if (t->t_back == t) { 3499 ASSERT(t->t_forw == t); 3500 /* 3501 * If the zone is empty, once the thread count 3502 * goes to zero no further kernel threads can be 3503 * created. This is because if the creator is a process 3504 * in the zone, then it must have exited before the zone 3505 * state could be set to ZONE_IS_EMPTY. 3506 * Otherwise, if the creator is a kernel thread in the 3507 * zone, the thread count is non-zero. 3508 * 3509 * This really means that non-zone kernel threads should 3510 * not create zone kernel threads. 3511 */ 3512 zone->zone_kthreads = NULL; 3513 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3514 zone_status_set(zone, ZONE_IS_DOWN); 3515 /* 3516 * Remove any CPU caps on this zone. 3517 */ 3518 cpucaps_zone_remove(zone); 3519 } 3520 } else { 3521 t->t_forw->t_back = t->t_back; 3522 t->t_back->t_forw = t->t_forw; 3523 if (zone->zone_kthreads == t) 3524 zone->zone_kthreads = t->t_forw; 3525 } 3526 mutex_exit(&zone_status_lock); 3527 zone_rele(zone); 3528 thread_exit(); 3529 /* NOTREACHED */ 3530 } 3531 3532 static void 3533 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3534 { 3535 vnode_t *oldvp; 3536 3537 /* we're going to hold a reference here to the directory */ 3538 VN_HOLD(vp); 3539 3540 /* update abs cwd/root path see c2/audit.c */ 3541 if (AU_AUDITING()) 3542 audit_chdirec(vp, vpp); 3543 3544 mutex_enter(&pp->p_lock); 3545 oldvp = *vpp; 3546 *vpp = vp; 3547 mutex_exit(&pp->p_lock); 3548 if (oldvp != NULL) 3549 VN_RELE(oldvp); 3550 } 3551 3552 /* 3553 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3554 */ 3555 static int 3556 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3557 { 3558 nvpair_t *nvp = NULL; 3559 boolean_t priv_set = B_FALSE; 3560 boolean_t limit_set = B_FALSE; 3561 boolean_t action_set = B_FALSE; 3562 3563 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3564 const char *name; 3565 uint64_t ui64; 3566 3567 name = nvpair_name(nvp); 3568 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3569 return (EINVAL); 3570 (void) nvpair_value_uint64(nvp, &ui64); 3571 if (strcmp(name, "privilege") == 0) { 3572 /* 3573 * Currently only privileged values are allowed, but 3574 * this may change in the future. 3575 */ 3576 if (ui64 != RCPRIV_PRIVILEGED) 3577 return (EINVAL); 3578 rv->rcv_privilege = ui64; 3579 priv_set = B_TRUE; 3580 } else if (strcmp(name, "limit") == 0) { 3581 rv->rcv_value = ui64; 3582 limit_set = B_TRUE; 3583 } else if (strcmp(name, "action") == 0) { 3584 if (ui64 != RCTL_LOCAL_NOACTION && 3585 ui64 != RCTL_LOCAL_DENY) 3586 return (EINVAL); 3587 rv->rcv_flagaction = ui64; 3588 action_set = B_TRUE; 3589 } else { 3590 return (EINVAL); 3591 } 3592 } 3593 3594 if (!(priv_set && limit_set && action_set)) 3595 return (EINVAL); 3596 rv->rcv_action_signal = 0; 3597 rv->rcv_action_recipient = NULL; 3598 rv->rcv_action_recip_pid = -1; 3599 rv->rcv_firing_time = 0; 3600 3601 return (0); 3602 } 3603 3604 /* 3605 * Non-global zone version of start_init. 3606 */ 3607 void 3608 zone_start_init(void) 3609 { 3610 proc_t *p = ttoproc(curthread); 3611 zone_t *z = p->p_zone; 3612 3613 ASSERT(!INGLOBALZONE(curproc)); 3614 3615 /* 3616 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3617 * storing just the pid of init is sufficient. 3618 */ 3619 z->zone_proc_initpid = p->p_pid; 3620 3621 /* 3622 * We maintain zone_boot_err so that we can return the cause of the 3623 * failure back to the caller of the zone_boot syscall. 3624 */ 3625 p->p_zone->zone_boot_err = start_init_common(); 3626 3627 /* 3628 * We will prevent booting zones from becoming running zones if the 3629 * global zone is shutting down. 3630 */ 3631 mutex_enter(&zone_status_lock); 3632 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3633 ZONE_IS_SHUTTING_DOWN) { 3634 /* 3635 * Make sure we are still in the booting state-- we could have 3636 * raced and already be shutting down, or even further along. 3637 */ 3638 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3639 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3640 } 3641 mutex_exit(&zone_status_lock); 3642 /* It's gone bad, dispose of the process */ 3643 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3644 mutex_enter(&p->p_lock); 3645 ASSERT(p->p_flag & SEXITLWPS); 3646 lwp_exit(); 3647 } 3648 } else { 3649 if (zone_status_get(z) == ZONE_IS_BOOTING) 3650 zone_status_set(z, ZONE_IS_RUNNING); 3651 mutex_exit(&zone_status_lock); 3652 /* cause the process to return to userland. */ 3653 lwp_rtt(); 3654 } 3655 } 3656 3657 struct zsched_arg { 3658 zone_t *zone; 3659 nvlist_t *nvlist; 3660 }; 3661 3662 /* 3663 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3664 * anything to do with scheduling, but rather with the fact that 3665 * per-zone kernel threads are parented to zsched, just like regular 3666 * kernel threads are parented to sched (p0). 3667 * 3668 * zsched is also responsible for launching init for the zone. 3669 */ 3670 static void 3671 zsched(void *arg) 3672 { 3673 struct zsched_arg *za = arg; 3674 proc_t *pp = curproc; 3675 proc_t *initp = proc_init; 3676 zone_t *zone = za->zone; 3677 cred_t *cr, *oldcred; 3678 rctl_set_t *set; 3679 rctl_alloc_gp_t *gp; 3680 contract_t *ct = NULL; 3681 task_t *tk, *oldtk; 3682 rctl_entity_p_t e; 3683 kproject_t *pj; 3684 3685 nvlist_t *nvl = za->nvlist; 3686 nvpair_t *nvp = NULL; 3687 3688 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3689 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3690 PTOU(pp)->u_argc = 0; 3691 PTOU(pp)->u_argv = NULL; 3692 PTOU(pp)->u_envp = NULL; 3693 closeall(P_FINFO(pp)); 3694 3695 /* 3696 * We are this zone's "zsched" process. As the zone isn't generally 3697 * visible yet we don't need to grab any locks before initializing its 3698 * zone_proc pointer. 3699 */ 3700 zone_hold(zone); /* this hold is released by zone_destroy() */ 3701 zone->zone_zsched = pp; 3702 mutex_enter(&pp->p_lock); 3703 pp->p_zone = zone; 3704 mutex_exit(&pp->p_lock); 3705 3706 /* 3707 * Disassociate process from its 'parent'; parent ourselves to init 3708 * (pid 1) and change other values as needed. 3709 */ 3710 sess_create(); 3711 3712 mutex_enter(&pidlock); 3713 proc_detach(pp); 3714 pp->p_ppid = 1; 3715 pp->p_flag |= SZONETOP; 3716 pp->p_ancpid = 1; 3717 pp->p_parent = initp; 3718 pp->p_psibling = NULL; 3719 if (initp->p_child) 3720 initp->p_child->p_psibling = pp; 3721 pp->p_sibling = initp->p_child; 3722 initp->p_child = pp; 3723 3724 /* Decrement what newproc() incremented. */ 3725 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3726 /* 3727 * Our credentials are about to become kcred-like, so we don't care 3728 * about the caller's ruid. 3729 */ 3730 upcount_inc(crgetruid(kcred), zone->zone_id); 3731 mutex_exit(&pidlock); 3732 3733 /* 3734 * getting out of global zone, so decrement lwp and process counts 3735 */ 3736 pj = pp->p_task->tk_proj; 3737 mutex_enter(&global_zone->zone_nlwps_lock); 3738 pj->kpj_nlwps -= pp->p_lwpcnt; 3739 global_zone->zone_nlwps -= pp->p_lwpcnt; 3740 pj->kpj_nprocs--; 3741 global_zone->zone_nprocs--; 3742 mutex_exit(&global_zone->zone_nlwps_lock); 3743 3744 /* 3745 * Decrement locked memory counts on old zone and project. 3746 */ 3747 mutex_enter(&global_zone->zone_mem_lock); 3748 global_zone->zone_locked_mem -= pp->p_locked_mem; 3749 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3750 mutex_exit(&global_zone->zone_mem_lock); 3751 3752 /* 3753 * Create and join a new task in project '0' of this zone. 3754 * 3755 * We don't need to call holdlwps() since we know we're the only lwp in 3756 * this process. 3757 * 3758 * task_join() returns with p_lock held. 3759 */ 3760 tk = task_create(0, zone); 3761 mutex_enter(&cpu_lock); 3762 oldtk = task_join(tk, 0); 3763 3764 pj = pp->p_task->tk_proj; 3765 3766 mutex_enter(&zone->zone_mem_lock); 3767 zone->zone_locked_mem += pp->p_locked_mem; 3768 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3769 mutex_exit(&zone->zone_mem_lock); 3770 3771 /* 3772 * add lwp and process counts to zsched's zone, and increment 3773 * project's task and process count due to the task created in 3774 * the above task_create. 3775 */ 3776 mutex_enter(&zone->zone_nlwps_lock); 3777 pj->kpj_nlwps += pp->p_lwpcnt; 3778 pj->kpj_ntasks += 1; 3779 zone->zone_nlwps += pp->p_lwpcnt; 3780 pj->kpj_nprocs++; 3781 zone->zone_nprocs++; 3782 mutex_exit(&zone->zone_nlwps_lock); 3783 3784 mutex_exit(&curproc->p_lock); 3785 mutex_exit(&cpu_lock); 3786 task_rele(oldtk); 3787 3788 /* 3789 * The process was created by a process in the global zone, hence the 3790 * credentials are wrong. We might as well have kcred-ish credentials. 3791 */ 3792 cr = zone->zone_kcred; 3793 crhold(cr); 3794 mutex_enter(&pp->p_crlock); 3795 oldcred = pp->p_cred; 3796 pp->p_cred = cr; 3797 mutex_exit(&pp->p_crlock); 3798 crfree(oldcred); 3799 3800 /* 3801 * Hold credentials again (for thread) 3802 */ 3803 crhold(cr); 3804 3805 /* 3806 * p_lwpcnt can't change since this is a kernel process. 3807 */ 3808 crset(pp, cr); 3809 3810 /* 3811 * Chroot 3812 */ 3813 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3814 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3815 3816 /* 3817 * Initialize zone's rctl set. 3818 */ 3819 set = rctl_set_create(); 3820 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3821 mutex_enter(&pp->p_lock); 3822 e.rcep_p.zone = zone; 3823 e.rcep_t = RCENTITY_ZONE; 3824 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3825 mutex_exit(&pp->p_lock); 3826 rctl_prealloc_destroy(gp); 3827 3828 /* 3829 * Apply the rctls passed in to zone_create(). This is basically a list 3830 * assignment: all of the old values are removed and the new ones 3831 * inserted. That is, if an empty list is passed in, all values are 3832 * removed. 3833 */ 3834 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3835 rctl_dict_entry_t *rde; 3836 rctl_hndl_t hndl; 3837 char *name; 3838 nvlist_t **nvlarray; 3839 uint_t i, nelem; 3840 int error; /* For ASSERT()s */ 3841 3842 name = nvpair_name(nvp); 3843 hndl = rctl_hndl_lookup(name); 3844 ASSERT(hndl != -1); 3845 rde = rctl_dict_lookup_hndl(hndl); 3846 ASSERT(rde != NULL); 3847 3848 for (; /* ever */; ) { 3849 rctl_val_t oval; 3850 3851 mutex_enter(&pp->p_lock); 3852 error = rctl_local_get(hndl, NULL, &oval, pp); 3853 mutex_exit(&pp->p_lock); 3854 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3855 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3856 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3857 break; 3858 mutex_enter(&pp->p_lock); 3859 error = rctl_local_delete(hndl, &oval, pp); 3860 mutex_exit(&pp->p_lock); 3861 ASSERT(error == 0); 3862 } 3863 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3864 ASSERT(error == 0); 3865 for (i = 0; i < nelem; i++) { 3866 rctl_val_t *nvalp; 3867 3868 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3869 error = nvlist2rctlval(nvlarray[i], nvalp); 3870 ASSERT(error == 0); 3871 /* 3872 * rctl_local_insert can fail if the value being 3873 * inserted is a duplicate; this is OK. 3874 */ 3875 mutex_enter(&pp->p_lock); 3876 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3877 kmem_cache_free(rctl_val_cache, nvalp); 3878 mutex_exit(&pp->p_lock); 3879 } 3880 } 3881 /* 3882 * Tell the world that we're done setting up. 3883 * 3884 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3885 * and atomically set the zone's processor set visibility. Once 3886 * we drop pool_lock() this zone will automatically get updated 3887 * to reflect any future changes to the pools configuration. 3888 * 3889 * Note that after we drop the locks below (zonehash_lock in 3890 * particular) other operations such as a zone_getattr call can 3891 * now proceed and observe the zone. That is the reason for doing a 3892 * state transition to the INITIALIZED state. 3893 */ 3894 pool_lock(); 3895 mutex_enter(&cpu_lock); 3896 mutex_enter(&zonehash_lock); 3897 zone_uniqid(zone); 3898 zone_zsd_configure(zone); 3899 if (pool_state == POOL_ENABLED) 3900 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3901 mutex_enter(&zone_status_lock); 3902 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3903 zone_status_set(zone, ZONE_IS_INITIALIZED); 3904 mutex_exit(&zone_status_lock); 3905 mutex_exit(&zonehash_lock); 3906 mutex_exit(&cpu_lock); 3907 pool_unlock(); 3908 3909 /* Now call the create callback for this key */ 3910 zsd_apply_all_keys(zsd_apply_create, zone); 3911 3912 /* The callbacks are complete. Mark ZONE_IS_READY */ 3913 mutex_enter(&zone_status_lock); 3914 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3915 zone_status_set(zone, ZONE_IS_READY); 3916 mutex_exit(&zone_status_lock); 3917 3918 /* 3919 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3920 * we launch init, and set the state to running. 3921 */ 3922 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3923 3924 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3925 id_t cid; 3926 3927 /* 3928 * Ok, this is a little complicated. We need to grab the 3929 * zone's pool's scheduling class ID; note that by now, we 3930 * are already bound to a pool if we need to be (zoneadmd 3931 * will have done that to us while we're in the READY 3932 * state). *But* the scheduling class for the zone's 'init' 3933 * must be explicitly passed to newproc, which doesn't 3934 * respect pool bindings. 3935 * 3936 * We hold the pool_lock across the call to newproc() to 3937 * close the obvious race: the pool's scheduling class 3938 * could change before we manage to create the LWP with 3939 * classid 'cid'. 3940 */ 3941 pool_lock(); 3942 if (zone->zone_defaultcid > 0) 3943 cid = zone->zone_defaultcid; 3944 else 3945 cid = pool_get_class(zone->zone_pool); 3946 if (cid == -1) 3947 cid = defaultcid; 3948 3949 /* 3950 * If this fails, zone_boot will ultimately fail. The 3951 * state of the zone will be set to SHUTTING_DOWN-- userland 3952 * will have to tear down the zone, and fail, or try again. 3953 */ 3954 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3955 minclsyspri - 1, &ct, 0)) != 0) { 3956 mutex_enter(&zone_status_lock); 3957 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3958 mutex_exit(&zone_status_lock); 3959 } else { 3960 zone->zone_boot_time = gethrestime_sec(); 3961 } 3962 3963 pool_unlock(); 3964 } 3965 3966 /* 3967 * Wait for zone_destroy() to be called. This is what we spend 3968 * most of our life doing. 3969 */ 3970 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3971 3972 if (ct) 3973 /* 3974 * At this point the process contract should be empty. 3975 * (Though if it isn't, it's not the end of the world.) 3976 */ 3977 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3978 3979 /* 3980 * Allow kcred to be freed when all referring processes 3981 * (including this one) go away. We can't just do this in 3982 * zone_free because we need to wait for the zone_cred_ref to 3983 * drop to 0 before calling zone_free, and the existence of 3984 * zone_kcred will prevent that. Thus, we call crfree here to 3985 * balance the crdup in zone_create. The crhold calls earlier 3986 * in zsched will be dropped when the thread and process exit. 3987 */ 3988 crfree(zone->zone_kcred); 3989 zone->zone_kcred = NULL; 3990 3991 exit(CLD_EXITED, 0); 3992 } 3993 3994 /* 3995 * Helper function to determine if there are any submounts of the 3996 * provided path. Used to make sure the zone doesn't "inherit" any 3997 * mounts from before it is created. 3998 */ 3999 static uint_t 4000 zone_mount_count(const char *rootpath) 4001 { 4002 vfs_t *vfsp; 4003 uint_t count = 0; 4004 size_t rootpathlen = strlen(rootpath); 4005 4006 /* 4007 * Holding zonehash_lock prevents race conditions with 4008 * vfs_list_add()/vfs_list_remove() since we serialize with 4009 * zone_find_by_path(). 4010 */ 4011 ASSERT(MUTEX_HELD(&zonehash_lock)); 4012 /* 4013 * The rootpath must end with a '/' 4014 */ 4015 ASSERT(rootpath[rootpathlen - 1] == '/'); 4016 4017 /* 4018 * This intentionally does not count the rootpath itself if that 4019 * happens to be a mount point. 4020 */ 4021 vfs_list_read_lock(); 4022 vfsp = rootvfs; 4023 do { 4024 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4025 rootpathlen) == 0) 4026 count++; 4027 vfsp = vfsp->vfs_next; 4028 } while (vfsp != rootvfs); 4029 vfs_list_unlock(); 4030 return (count); 4031 } 4032 4033 /* 4034 * Helper function to make sure that a zone created on 'rootpath' 4035 * wouldn't end up containing other zones' rootpaths. 4036 */ 4037 static boolean_t 4038 zone_is_nested(const char *rootpath) 4039 { 4040 zone_t *zone; 4041 size_t rootpathlen = strlen(rootpath); 4042 size_t len; 4043 4044 ASSERT(MUTEX_HELD(&zonehash_lock)); 4045 4046 /* 4047 * zone_set_root() appended '/' and '\0' at the end of rootpath 4048 */ 4049 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4050 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4051 return (B_TRUE); 4052 4053 for (zone = list_head(&zone_active); zone != NULL; 4054 zone = list_next(&zone_active, zone)) { 4055 if (zone == global_zone) 4056 continue; 4057 len = strlen(zone->zone_rootpath); 4058 if (strncmp(rootpath, zone->zone_rootpath, 4059 MIN(rootpathlen, len)) == 0) 4060 return (B_TRUE); 4061 } 4062 return (B_FALSE); 4063 } 4064 4065 static int 4066 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4067 size_t zone_privssz) 4068 { 4069 priv_set_t *privs; 4070 4071 if (zone_privssz < sizeof (priv_set_t)) 4072 return (ENOMEM); 4073 4074 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4075 4076 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4077 kmem_free(privs, sizeof (priv_set_t)); 4078 return (EFAULT); 4079 } 4080 4081 zone->zone_privset = privs; 4082 return (0); 4083 } 4084 4085 /* 4086 * We make creative use of nvlists to pass in rctls from userland. The list is 4087 * a list of the following structures: 4088 * 4089 * (name = rctl_name, value = nvpair_list_array) 4090 * 4091 * Where each element of the nvpair_list_array is of the form: 4092 * 4093 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4094 * (name = "limit", value = uint64_t), 4095 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4096 */ 4097 static int 4098 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4099 { 4100 nvpair_t *nvp = NULL; 4101 nvlist_t *nvl = NULL; 4102 char *kbuf; 4103 int error; 4104 rctl_val_t rv; 4105 4106 *nvlp = NULL; 4107 4108 if (buflen == 0) 4109 return (0); 4110 4111 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4112 return (ENOMEM); 4113 if (copyin(ubuf, kbuf, buflen)) { 4114 error = EFAULT; 4115 goto out; 4116 } 4117 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4118 /* 4119 * nvl may have been allocated/free'd, but the value set to 4120 * non-NULL, so we reset it here. 4121 */ 4122 nvl = NULL; 4123 error = EINVAL; 4124 goto out; 4125 } 4126 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4127 rctl_dict_entry_t *rde; 4128 rctl_hndl_t hndl; 4129 nvlist_t **nvlarray; 4130 uint_t i, nelem; 4131 char *name; 4132 4133 error = EINVAL; 4134 name = nvpair_name(nvp); 4135 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4136 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4137 goto out; 4138 } 4139 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4140 goto out; 4141 } 4142 rde = rctl_dict_lookup_hndl(hndl); 4143 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4144 ASSERT(error == 0); 4145 for (i = 0; i < nelem; i++) { 4146 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4147 goto out; 4148 } 4149 if (rctl_invalid_value(rde, &rv)) { 4150 error = EINVAL; 4151 goto out; 4152 } 4153 } 4154 error = 0; 4155 *nvlp = nvl; 4156 out: 4157 kmem_free(kbuf, buflen); 4158 if (error && nvl != NULL) 4159 nvlist_free(nvl); 4160 return (error); 4161 } 4162 4163 int 4164 zone_create_error(int er_error, int er_ext, int *er_out) { 4165 if (er_out != NULL) { 4166 if (copyout(&er_ext, er_out, sizeof (int))) { 4167 return (set_errno(EFAULT)); 4168 } 4169 } 4170 return (set_errno(er_error)); 4171 } 4172 4173 static int 4174 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4175 { 4176 ts_label_t *tsl; 4177 bslabel_t blab; 4178 4179 /* Get label from user */ 4180 if (copyin(lab, &blab, sizeof (blab)) != 0) 4181 return (EFAULT); 4182 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4183 if (tsl == NULL) 4184 return (ENOMEM); 4185 4186 zone->zone_slabel = tsl; 4187 return (0); 4188 } 4189 4190 /* 4191 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4192 */ 4193 static int 4194 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4195 { 4196 char *kbuf; 4197 char *dataset, *next; 4198 zone_dataset_t *zd; 4199 size_t len; 4200 4201 if (ubuf == NULL || buflen == 0) 4202 return (0); 4203 4204 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4205 return (ENOMEM); 4206 4207 if (copyin(ubuf, kbuf, buflen) != 0) { 4208 kmem_free(kbuf, buflen); 4209 return (EFAULT); 4210 } 4211 4212 dataset = next = kbuf; 4213 for (;;) { 4214 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4215 4216 next = strchr(dataset, ','); 4217 4218 if (next == NULL) 4219 len = strlen(dataset); 4220 else 4221 len = next - dataset; 4222 4223 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4224 bcopy(dataset, zd->zd_dataset, len); 4225 zd->zd_dataset[len] = '\0'; 4226 4227 list_insert_head(&zone->zone_datasets, zd); 4228 4229 if (next == NULL) 4230 break; 4231 4232 dataset = next + 1; 4233 } 4234 4235 kmem_free(kbuf, buflen); 4236 return (0); 4237 } 4238 4239 /* 4240 * System call to create/initialize a new zone named 'zone_name', rooted 4241 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4242 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4243 * with labeling set by 'match', 'doi', and 'label'. 4244 * 4245 * If extended error is non-null, we may use it to return more detailed 4246 * error information. 4247 */ 4248 static zoneid_t 4249 zone_create(const char *zone_name, const char *zone_root, 4250 const priv_set_t *zone_privs, size_t zone_privssz, 4251 caddr_t rctlbuf, size_t rctlbufsz, 4252 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4253 int match, uint32_t doi, const bslabel_t *label, 4254 int flags) 4255 { 4256 struct zsched_arg zarg; 4257 nvlist_t *rctls = NULL; 4258 proc_t *pp = curproc; 4259 zone_t *zone, *ztmp; 4260 zoneid_t zoneid; 4261 int error; 4262 int error2 = 0; 4263 char *str; 4264 cred_t *zkcr; 4265 boolean_t insert_label_hash; 4266 4267 if (secpolicy_zone_config(CRED()) != 0) 4268 return (set_errno(EPERM)); 4269 4270 /* can't boot zone from within chroot environment */ 4271 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4272 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4273 extended_error)); 4274 4275 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4276 zoneid = zone->zone_id = id_alloc(zoneid_space); 4277 zone->zone_status = ZONE_IS_UNINITIALIZED; 4278 zone->zone_pool = pool_default; 4279 zone->zone_pool_mod = gethrtime(); 4280 zone->zone_psetid = ZONE_PS_INVAL; 4281 zone->zone_ncpus = 0; 4282 zone->zone_ncpus_online = 0; 4283 zone->zone_restart_init = B_TRUE; 4284 zone->zone_brand = &native_brand; 4285 zone->zone_initname = NULL; 4286 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4287 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4288 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4289 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4290 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4291 offsetof(zone_ref_t, zref_linkage)); 4292 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4293 offsetof(struct zsd_entry, zsd_linkage)); 4294 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4295 offsetof(zone_dataset_t, zd_linkage)); 4296 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4297 offsetof(zone_dl_t, zdl_linkage)); 4298 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4299 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4300 4301 if (flags & ZCF_NET_EXCL) { 4302 zone->zone_flags |= ZF_NET_EXCL; 4303 } 4304 4305 if ((error = zone_set_name(zone, zone_name)) != 0) { 4306 zone_free(zone); 4307 return (zone_create_error(error, 0, extended_error)); 4308 } 4309 4310 if ((error = zone_set_root(zone, zone_root)) != 0) { 4311 zone_free(zone); 4312 return (zone_create_error(error, 0, extended_error)); 4313 } 4314 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4315 zone_free(zone); 4316 return (zone_create_error(error, 0, extended_error)); 4317 } 4318 4319 /* initialize node name to be the same as zone name */ 4320 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4321 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4322 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4323 4324 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4325 zone->zone_domain[0] = '\0'; 4326 zone->zone_hostid = HW_INVALID_HOSTID; 4327 zone->zone_shares = 1; 4328 zone->zone_shmmax = 0; 4329 zone->zone_ipc.ipcq_shmmni = 0; 4330 zone->zone_ipc.ipcq_semmni = 0; 4331 zone->zone_ipc.ipcq_msgmni = 0; 4332 zone->zone_bootargs = NULL; 4333 zone->zone_fs_allowed = NULL; 4334 zone->zone_initname = 4335 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4336 (void) strcpy(zone->zone_initname, zone_default_initname); 4337 zone->zone_nlwps = 0; 4338 zone->zone_nlwps_ctl = INT_MAX; 4339 zone->zone_nprocs = 0; 4340 zone->zone_nprocs_ctl = INT_MAX; 4341 zone->zone_locked_mem = 0; 4342 zone->zone_locked_mem_ctl = UINT64_MAX; 4343 zone->zone_max_swap = 0; 4344 zone->zone_max_swap_ctl = UINT64_MAX; 4345 zone->zone_max_lofi = 0; 4346 zone->zone_max_lofi_ctl = UINT64_MAX; 4347 zone0.zone_lockedmem_kstat = NULL; 4348 zone0.zone_swapresv_kstat = NULL; 4349 4350 /* 4351 * Zsched initializes the rctls. 4352 */ 4353 zone->zone_rctls = NULL; 4354 4355 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4356 zone_free(zone); 4357 return (zone_create_error(error, 0, extended_error)); 4358 } 4359 4360 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4361 zone_free(zone); 4362 return (set_errno(error)); 4363 } 4364 4365 /* 4366 * Read in the trusted system parameters: 4367 * match flag and sensitivity label. 4368 */ 4369 zone->zone_match = match; 4370 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4371 /* Fail if requested to set doi to anything but system's doi */ 4372 if (doi != 0 && doi != default_doi) { 4373 zone_free(zone); 4374 return (set_errno(EINVAL)); 4375 } 4376 /* Always apply system's doi to the zone */ 4377 error = zone_set_label(zone, label, default_doi); 4378 if (error != 0) { 4379 zone_free(zone); 4380 return (set_errno(error)); 4381 } 4382 insert_label_hash = B_TRUE; 4383 } else { 4384 /* all zones get an admin_low label if system is not labeled */ 4385 zone->zone_slabel = l_admin_low; 4386 label_hold(l_admin_low); 4387 insert_label_hash = B_FALSE; 4388 } 4389 4390 /* 4391 * Stop all lwps since that's what normally happens as part of fork(). 4392 * This needs to happen before we grab any locks to avoid deadlock 4393 * (another lwp in the process could be waiting for the held lock). 4394 */ 4395 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4396 zone_free(zone); 4397 if (rctls) 4398 nvlist_free(rctls); 4399 return (zone_create_error(error, 0, extended_error)); 4400 } 4401 4402 if (block_mounts() == 0) { 4403 mutex_enter(&pp->p_lock); 4404 if (curthread != pp->p_agenttp) 4405 continuelwps(pp); 4406 mutex_exit(&pp->p_lock); 4407 zone_free(zone); 4408 if (rctls) 4409 nvlist_free(rctls); 4410 return (zone_create_error(error, 0, extended_error)); 4411 } 4412 4413 /* 4414 * Set up credential for kernel access. After this, any errors 4415 * should go through the dance in errout rather than calling 4416 * zone_free directly. 4417 */ 4418 zone->zone_kcred = crdup(kcred); 4419 crsetzone(zone->zone_kcred, zone); 4420 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4421 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4422 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4423 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4424 4425 mutex_enter(&zonehash_lock); 4426 /* 4427 * Make sure zone doesn't already exist. 4428 * 4429 * If the system and zone are labeled, 4430 * make sure no other zone exists that has the same label. 4431 */ 4432 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4433 (insert_label_hash && 4434 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4435 zone_status_t status; 4436 4437 status = zone_status_get(ztmp); 4438 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4439 error = EEXIST; 4440 else 4441 error = EBUSY; 4442 4443 if (insert_label_hash) 4444 error2 = ZE_LABELINUSE; 4445 4446 goto errout; 4447 } 4448 4449 /* 4450 * Don't allow zone creations which would cause one zone's rootpath to 4451 * be accessible from that of another (non-global) zone. 4452 */ 4453 if (zone_is_nested(zone->zone_rootpath)) { 4454 error = EBUSY; 4455 goto errout; 4456 } 4457 4458 ASSERT(zonecount != 0); /* check for leaks */ 4459 if (zonecount + 1 > maxzones) { 4460 error = ENOMEM; 4461 goto errout; 4462 } 4463 4464 if (zone_mount_count(zone->zone_rootpath) != 0) { 4465 error = EBUSY; 4466 error2 = ZE_AREMOUNTS; 4467 goto errout; 4468 } 4469 4470 /* 4471 * Zone is still incomplete, but we need to drop all locks while 4472 * zsched() initializes this zone's kernel process. We 4473 * optimistically add the zone to the hashtable and associated 4474 * lists so a parallel zone_create() doesn't try to create the 4475 * same zone. 4476 */ 4477 zonecount++; 4478 (void) mod_hash_insert(zonehashbyid, 4479 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4480 (mod_hash_val_t)(uintptr_t)zone); 4481 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4482 (void) strcpy(str, zone->zone_name); 4483 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4484 (mod_hash_val_t)(uintptr_t)zone); 4485 if (insert_label_hash) { 4486 (void) mod_hash_insert(zonehashbylabel, 4487 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4488 zone->zone_flags |= ZF_HASHED_LABEL; 4489 } 4490 4491 /* 4492 * Insert into active list. At this point there are no 'hold's 4493 * on the zone, but everyone else knows not to use it, so we can 4494 * continue to use it. zsched() will do a zone_hold() if the 4495 * newproc() is successful. 4496 */ 4497 list_insert_tail(&zone_active, zone); 4498 mutex_exit(&zonehash_lock); 4499 4500 zarg.zone = zone; 4501 zarg.nvlist = rctls; 4502 /* 4503 * The process, task, and project rctls are probably wrong; 4504 * we need an interface to get the default values of all rctls, 4505 * and initialize zsched appropriately. I'm not sure that that 4506 * makes much of a difference, though. 4507 */ 4508 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4509 if (error != 0) { 4510 /* 4511 * We need to undo all globally visible state. 4512 */ 4513 mutex_enter(&zonehash_lock); 4514 list_remove(&zone_active, zone); 4515 if (zone->zone_flags & ZF_HASHED_LABEL) { 4516 ASSERT(zone->zone_slabel != NULL); 4517 (void) mod_hash_destroy(zonehashbylabel, 4518 (mod_hash_key_t)zone->zone_slabel); 4519 } 4520 (void) mod_hash_destroy(zonehashbyname, 4521 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4522 (void) mod_hash_destroy(zonehashbyid, 4523 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4524 ASSERT(zonecount > 1); 4525 zonecount--; 4526 goto errout; 4527 } 4528 4529 /* 4530 * Zone creation can't fail from now on. 4531 */ 4532 4533 /* 4534 * Create zone kstats 4535 */ 4536 zone_kstat_create(zone); 4537 4538 /* 4539 * Let the other lwps continue. 4540 */ 4541 mutex_enter(&pp->p_lock); 4542 if (curthread != pp->p_agenttp) 4543 continuelwps(pp); 4544 mutex_exit(&pp->p_lock); 4545 4546 /* 4547 * Wait for zsched to finish initializing the zone. 4548 */ 4549 zone_status_wait(zone, ZONE_IS_READY); 4550 /* 4551 * The zone is fully visible, so we can let mounts progress. 4552 */ 4553 resume_mounts(); 4554 if (rctls) 4555 nvlist_free(rctls); 4556 4557 return (zoneid); 4558 4559 errout: 4560 mutex_exit(&zonehash_lock); 4561 /* 4562 * Let the other lwps continue. 4563 */ 4564 mutex_enter(&pp->p_lock); 4565 if (curthread != pp->p_agenttp) 4566 continuelwps(pp); 4567 mutex_exit(&pp->p_lock); 4568 4569 resume_mounts(); 4570 if (rctls) 4571 nvlist_free(rctls); 4572 /* 4573 * There is currently one reference to the zone, a cred_ref from 4574 * zone_kcred. To free the zone, we call crfree, which will call 4575 * zone_cred_rele, which will call zone_free. 4576 */ 4577 ASSERT(zone->zone_cred_ref == 1); 4578 ASSERT(zone->zone_kcred->cr_ref == 1); 4579 ASSERT(zone->zone_ref == 0); 4580 zkcr = zone->zone_kcred; 4581 zone->zone_kcred = NULL; 4582 crfree(zkcr); /* triggers call to zone_free */ 4583 return (zone_create_error(error, error2, extended_error)); 4584 } 4585 4586 /* 4587 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4588 * the heavy lifting. initname is the path to the program to launch 4589 * at the "top" of the zone; if this is NULL, we use the system default, 4590 * which is stored at zone_default_initname. 4591 */ 4592 static int 4593 zone_boot(zoneid_t zoneid) 4594 { 4595 int err; 4596 zone_t *zone; 4597 4598 if (secpolicy_zone_config(CRED()) != 0) 4599 return (set_errno(EPERM)); 4600 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4601 return (set_errno(EINVAL)); 4602 4603 mutex_enter(&zonehash_lock); 4604 /* 4605 * Look for zone under hash lock to prevent races with calls to 4606 * zone_shutdown, zone_destroy, etc. 4607 */ 4608 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4609 mutex_exit(&zonehash_lock); 4610 return (set_errno(EINVAL)); 4611 } 4612 4613 mutex_enter(&zone_status_lock); 4614 if (zone_status_get(zone) != ZONE_IS_READY) { 4615 mutex_exit(&zone_status_lock); 4616 mutex_exit(&zonehash_lock); 4617 return (set_errno(EINVAL)); 4618 } 4619 zone_status_set(zone, ZONE_IS_BOOTING); 4620 mutex_exit(&zone_status_lock); 4621 4622 zone_hold(zone); /* so we can use the zone_t later */ 4623 mutex_exit(&zonehash_lock); 4624 4625 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4626 zone_rele(zone); 4627 return (set_errno(EINTR)); 4628 } 4629 4630 /* 4631 * Boot (starting init) might have failed, in which case the zone 4632 * will go to the SHUTTING_DOWN state; an appropriate errno will 4633 * be placed in zone->zone_boot_err, and so we return that. 4634 */ 4635 err = zone->zone_boot_err; 4636 zone_rele(zone); 4637 return (err ? set_errno(err) : 0); 4638 } 4639 4640 /* 4641 * Kills all user processes in the zone, waiting for them all to exit 4642 * before returning. 4643 */ 4644 static int 4645 zone_empty(zone_t *zone) 4646 { 4647 int waitstatus; 4648 4649 /* 4650 * We need to drop zonehash_lock before killing all 4651 * processes, otherwise we'll deadlock with zone_find_* 4652 * which can be called from the exit path. 4653 */ 4654 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4655 while ((waitstatus = zone_status_timedwait_sig(zone, 4656 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4657 killall(zone->zone_id); 4658 } 4659 /* 4660 * return EINTR if we were signaled 4661 */ 4662 if (waitstatus == 0) 4663 return (EINTR); 4664 return (0); 4665 } 4666 4667 /* 4668 * This function implements the policy for zone visibility. 4669 * 4670 * In standard Solaris, a non-global zone can only see itself. 4671 * 4672 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4673 * it dominates. For this test, the label of the global zone is treated as 4674 * admin_high so it is special-cased instead of being checked for dominance. 4675 * 4676 * Returns true if zone attributes are viewable, false otherwise. 4677 */ 4678 static boolean_t 4679 zone_list_access(zone_t *zone) 4680 { 4681 4682 if (curproc->p_zone == global_zone || 4683 curproc->p_zone == zone) { 4684 return (B_TRUE); 4685 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4686 bslabel_t *curproc_label; 4687 bslabel_t *zone_label; 4688 4689 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4690 zone_label = label2bslabel(zone->zone_slabel); 4691 4692 if (zone->zone_id != GLOBAL_ZONEID && 4693 bldominates(curproc_label, zone_label)) { 4694 return (B_TRUE); 4695 } else { 4696 return (B_FALSE); 4697 } 4698 } else { 4699 return (B_FALSE); 4700 } 4701 } 4702 4703 /* 4704 * Systemcall to start the zone's halt sequence. By the time this 4705 * function successfully returns, all user processes and kernel threads 4706 * executing in it will have exited, ZSD shutdown callbacks executed, 4707 * and the zone status set to ZONE_IS_DOWN. 4708 * 4709 * It is possible that the call will interrupt itself if the caller is the 4710 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4711 */ 4712 static int 4713 zone_shutdown(zoneid_t zoneid) 4714 { 4715 int error; 4716 zone_t *zone; 4717 zone_status_t status; 4718 4719 if (secpolicy_zone_config(CRED()) != 0) 4720 return (set_errno(EPERM)); 4721 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4722 return (set_errno(EINVAL)); 4723 4724 /* 4725 * Block mounts so that VFS_MOUNT() can get an accurate view of 4726 * the zone's status with regards to ZONE_IS_SHUTTING down. 4727 * 4728 * e.g. NFS can fail the mount if it determines that the zone 4729 * has already begun the shutdown sequence. 4730 */ 4731 if (block_mounts() == 0) 4732 return (set_errno(EINTR)); 4733 mutex_enter(&zonehash_lock); 4734 /* 4735 * Look for zone under hash lock to prevent races with other 4736 * calls to zone_shutdown and zone_destroy. 4737 */ 4738 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4739 mutex_exit(&zonehash_lock); 4740 resume_mounts(); 4741 return (set_errno(EINVAL)); 4742 } 4743 mutex_enter(&zone_status_lock); 4744 status = zone_status_get(zone); 4745 /* 4746 * Fail if the zone isn't fully initialized yet. 4747 */ 4748 if (status < ZONE_IS_READY) { 4749 mutex_exit(&zone_status_lock); 4750 mutex_exit(&zonehash_lock); 4751 resume_mounts(); 4752 return (set_errno(EINVAL)); 4753 } 4754 /* 4755 * If conditions required for zone_shutdown() to return have been met, 4756 * return success. 4757 */ 4758 if (status >= ZONE_IS_DOWN) { 4759 mutex_exit(&zone_status_lock); 4760 mutex_exit(&zonehash_lock); 4761 resume_mounts(); 4762 return (0); 4763 } 4764 /* 4765 * If zone_shutdown() hasn't been called before, go through the motions. 4766 * If it has, there's nothing to do but wait for the kernel threads to 4767 * drain. 4768 */ 4769 if (status < ZONE_IS_EMPTY) { 4770 uint_t ntasks; 4771 4772 mutex_enter(&zone->zone_lock); 4773 if ((ntasks = zone->zone_ntasks) != 1) { 4774 /* 4775 * There's still stuff running. 4776 */ 4777 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4778 } 4779 mutex_exit(&zone->zone_lock); 4780 if (ntasks == 1) { 4781 /* 4782 * The only way to create another task is through 4783 * zone_enter(), which will block until we drop 4784 * zonehash_lock. The zone is empty. 4785 */ 4786 if (zone->zone_kthreads == NULL) { 4787 /* 4788 * Skip ahead to ZONE_IS_DOWN 4789 */ 4790 zone_status_set(zone, ZONE_IS_DOWN); 4791 } else { 4792 zone_status_set(zone, ZONE_IS_EMPTY); 4793 } 4794 } 4795 } 4796 zone_hold(zone); /* so we can use the zone_t later */ 4797 mutex_exit(&zone_status_lock); 4798 mutex_exit(&zonehash_lock); 4799 resume_mounts(); 4800 4801 if (error = zone_empty(zone)) { 4802 zone_rele(zone); 4803 return (set_errno(error)); 4804 } 4805 /* 4806 * After the zone status goes to ZONE_IS_DOWN this zone will no 4807 * longer be notified of changes to the pools configuration, so 4808 * in order to not end up with a stale pool pointer, we point 4809 * ourselves at the default pool and remove all resource 4810 * visibility. This is especially important as the zone_t may 4811 * languish on the deathrow for a very long time waiting for 4812 * cred's to drain out. 4813 * 4814 * This rebinding of the zone can happen multiple times 4815 * (presumably due to interrupted or parallel systemcalls) 4816 * without any adverse effects. 4817 */ 4818 if (pool_lock_intr() != 0) { 4819 zone_rele(zone); 4820 return (set_errno(EINTR)); 4821 } 4822 if (pool_state == POOL_ENABLED) { 4823 mutex_enter(&cpu_lock); 4824 zone_pool_set(zone, pool_default); 4825 /* 4826 * The zone no longer needs to be able to see any cpus. 4827 */ 4828 zone_pset_set(zone, ZONE_PS_INVAL); 4829 mutex_exit(&cpu_lock); 4830 } 4831 pool_unlock(); 4832 4833 /* 4834 * ZSD shutdown callbacks can be executed multiple times, hence 4835 * it is safe to not be holding any locks across this call. 4836 */ 4837 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4838 4839 mutex_enter(&zone_status_lock); 4840 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4841 zone_status_set(zone, ZONE_IS_DOWN); 4842 mutex_exit(&zone_status_lock); 4843 4844 /* 4845 * Wait for kernel threads to drain. 4846 */ 4847 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4848 zone_rele(zone); 4849 return (set_errno(EINTR)); 4850 } 4851 4852 /* 4853 * Zone can be become down/destroyable even if the above wait 4854 * returns EINTR, so any code added here may never execute. 4855 * (i.e. don't add code here) 4856 */ 4857 4858 zone_rele(zone); 4859 return (0); 4860 } 4861 4862 /* 4863 * Log the specified zone's reference counts. The caller should not be 4864 * holding the zone's zone_lock. 4865 */ 4866 static void 4867 zone_log_refcounts(zone_t *zone) 4868 { 4869 char *buffer; 4870 char *buffer_position; 4871 uint32_t buffer_size; 4872 uint32_t index; 4873 uint_t ref; 4874 uint_t cred_ref; 4875 4876 /* 4877 * Construct a string representing the subsystem-specific reference 4878 * counts. The counts are printed in ascending order by index into the 4879 * zone_t::zone_subsys_ref array. The list will be surrounded by 4880 * square brackets [] and will only contain nonzero reference counts. 4881 * 4882 * The buffer will hold two square bracket characters plus ten digits, 4883 * one colon, one space, one comma, and some characters for a 4884 * subsystem name per subsystem-specific reference count. (Unsigned 32- 4885 * bit integers have at most ten decimal digits.) The last 4886 * reference count's comma is replaced by the closing square 4887 * bracket and a NULL character to terminate the string. 4888 * 4889 * NOTE: We have to grab the zone's zone_lock to create a consistent 4890 * snapshot of the zone's reference counters. 4891 * 4892 * First, figure out how much space the string buffer will need. 4893 * The buffer's size is stored in buffer_size. 4894 */ 4895 buffer_size = 2; /* for the square brackets */ 4896 mutex_enter(&zone->zone_lock); 4897 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 4898 ref = zone->zone_ref; 4899 cred_ref = zone->zone_cred_ref; 4900 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 4901 if (zone->zone_subsys_ref[index] != 0) 4902 buffer_size += strlen(zone_ref_subsys_names[index]) + 4903 13; 4904 if (buffer_size == 2) { 4905 /* 4906 * No subsystems had nonzero reference counts. Don't bother 4907 * with allocating a buffer; just log the general-purpose and 4908 * credential reference counts. 4909 */ 4910 mutex_exit(&zone->zone_lock); 4911 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4912 "Zone '%s' (ID: %d) is shutting down, but %u zone " 4913 "references and %u credential references are still extant", 4914 zone->zone_name, zone->zone_id, ref, cred_ref); 4915 return; 4916 } 4917 4918 /* 4919 * buffer_size contains the exact number of characters that the 4920 * buffer will need. Allocate the buffer and fill it with nonzero 4921 * subsystem-specific reference counts. Surround the results with 4922 * square brackets afterwards. 4923 */ 4924 buffer = kmem_alloc(buffer_size, KM_SLEEP); 4925 buffer_position = &buffer[1]; 4926 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 4927 /* 4928 * NOTE: The DDI's version of sprintf() returns a pointer to 4929 * the modified buffer rather than the number of bytes written 4930 * (as in snprintf(3C)). This is unfortunate and annoying. 4931 * Therefore, we'll use snprintf() with INT_MAX to get the 4932 * number of bytes written. Using INT_MAX is safe because 4933 * the buffer is perfectly sized for the data: we'll never 4934 * overrun the buffer. 4935 */ 4936 if (zone->zone_subsys_ref[index] != 0) 4937 buffer_position += snprintf(buffer_position, INT_MAX, 4938 "%s: %u,", zone_ref_subsys_names[index], 4939 zone->zone_subsys_ref[index]); 4940 } 4941 mutex_exit(&zone->zone_lock); 4942 buffer[0] = '['; 4943 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 4944 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 4945 buffer_position[-1] = ']'; 4946 4947 /* 4948 * Log the reference counts and free the message buffer. 4949 */ 4950 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4951 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 4952 "%u credential references are still extant %s", zone->zone_name, 4953 zone->zone_id, ref, cred_ref, buffer); 4954 kmem_free(buffer, buffer_size); 4955 } 4956 4957 /* 4958 * Systemcall entry point to finalize the zone halt process. The caller 4959 * must have already successfully called zone_shutdown(). 4960 * 4961 * Upon successful completion, the zone will have been fully destroyed: 4962 * zsched will have exited, destructor callbacks executed, and the zone 4963 * removed from the list of active zones. 4964 */ 4965 static int 4966 zone_destroy(zoneid_t zoneid) 4967 { 4968 uint64_t uniqid; 4969 zone_t *zone; 4970 zone_status_t status; 4971 clock_t wait_time; 4972 boolean_t log_refcounts; 4973 4974 if (secpolicy_zone_config(CRED()) != 0) 4975 return (set_errno(EPERM)); 4976 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4977 return (set_errno(EINVAL)); 4978 4979 mutex_enter(&zonehash_lock); 4980 /* 4981 * Look for zone under hash lock to prevent races with other 4982 * calls to zone_destroy. 4983 */ 4984 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4985 mutex_exit(&zonehash_lock); 4986 return (set_errno(EINVAL)); 4987 } 4988 4989 if (zone_mount_count(zone->zone_rootpath) != 0) { 4990 mutex_exit(&zonehash_lock); 4991 return (set_errno(EBUSY)); 4992 } 4993 mutex_enter(&zone_status_lock); 4994 status = zone_status_get(zone); 4995 if (status < ZONE_IS_DOWN) { 4996 mutex_exit(&zone_status_lock); 4997 mutex_exit(&zonehash_lock); 4998 return (set_errno(EBUSY)); 4999 } else if (status == ZONE_IS_DOWN) { 5000 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5001 } 5002 mutex_exit(&zone_status_lock); 5003 zone_hold(zone); 5004 mutex_exit(&zonehash_lock); 5005 5006 /* 5007 * wait for zsched to exit 5008 */ 5009 zone_status_wait(zone, ZONE_IS_DEAD); 5010 zone_zsd_callbacks(zone, ZSD_DESTROY); 5011 zone->zone_netstack = NULL; 5012 uniqid = zone->zone_uniqid; 5013 zone_rele(zone); 5014 zone = NULL; /* potentially free'd */ 5015 5016 log_refcounts = B_FALSE; 5017 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5018 mutex_enter(&zonehash_lock); 5019 for (; /* ever */; ) { 5020 boolean_t unref; 5021 boolean_t refs_have_been_logged; 5022 5023 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5024 zone->zone_uniqid != uniqid) { 5025 /* 5026 * The zone has gone away. Necessary conditions 5027 * are met, so we return success. 5028 */ 5029 mutex_exit(&zonehash_lock); 5030 return (0); 5031 } 5032 mutex_enter(&zone->zone_lock); 5033 unref = ZONE_IS_UNREF(zone); 5034 refs_have_been_logged = (zone->zone_flags & 5035 ZF_REFCOUNTS_LOGGED); 5036 mutex_exit(&zone->zone_lock); 5037 if (unref) { 5038 /* 5039 * There is only one reference to the zone -- that 5040 * added when the zone was added to the hashtables -- 5041 * and things will remain this way until we drop 5042 * zonehash_lock... we can go ahead and cleanup the 5043 * zone. 5044 */ 5045 break; 5046 } 5047 5048 /* 5049 * Wait for zone_rele_common() or zone_cred_rele() to signal 5050 * zone_destroy_cv. zone_destroy_cv is signaled only when 5051 * some zone's general-purpose reference count reaches one. 5052 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5053 * on zone_destroy_cv, then log the zone's reference counts and 5054 * continue to wait for zone_rele() and zone_cred_rele(). 5055 */ 5056 if (!refs_have_been_logged) { 5057 if (!log_refcounts) { 5058 /* 5059 * This thread hasn't timed out waiting on 5060 * zone_destroy_cv yet. Wait wait_time clock 5061 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5062 * seconds) for the zone's references to clear. 5063 */ 5064 ASSERT(wait_time > 0); 5065 wait_time = cv_reltimedwait_sig( 5066 &zone_destroy_cv, &zonehash_lock, wait_time, 5067 TR_SEC); 5068 if (wait_time > 0) { 5069 /* 5070 * A thread in zone_rele() or 5071 * zone_cred_rele() signaled 5072 * zone_destroy_cv before this thread's 5073 * wait timed out. The zone might have 5074 * only one reference left; find out! 5075 */ 5076 continue; 5077 } else if (wait_time == 0) { 5078 /* The thread's process was signaled. */ 5079 mutex_exit(&zonehash_lock); 5080 return (set_errno(EINTR)); 5081 } 5082 5083 /* 5084 * The thread timed out while waiting on 5085 * zone_destroy_cv. Even though the thread 5086 * timed out, it has to check whether another 5087 * thread woke up from zone_destroy_cv and 5088 * destroyed the zone. 5089 * 5090 * If the zone still exists and has more than 5091 * one unreleased general-purpose reference, 5092 * then log the zone's reference counts. 5093 */ 5094 log_refcounts = B_TRUE; 5095 continue; 5096 } 5097 5098 /* 5099 * The thread already timed out on zone_destroy_cv while 5100 * waiting for subsystems to release the zone's last 5101 * general-purpose references. Log the zone's reference 5102 * counts and wait indefinitely on zone_destroy_cv. 5103 */ 5104 zone_log_refcounts(zone); 5105 } 5106 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5107 /* The thread's process was signaled. */ 5108 mutex_exit(&zonehash_lock); 5109 return (set_errno(EINTR)); 5110 } 5111 } 5112 5113 /* 5114 * Remove CPU cap for this zone now since we're not going to 5115 * fail below this point. 5116 */ 5117 cpucaps_zone_remove(zone); 5118 5119 /* Get rid of the zone's kstats */ 5120 zone_kstat_delete(zone); 5121 5122 /* remove the pfexecd doors */ 5123 if (zone->zone_pfexecd != NULL) { 5124 klpd_freelist(&zone->zone_pfexecd); 5125 zone->zone_pfexecd = NULL; 5126 } 5127 5128 /* free brand specific data */ 5129 if (ZONE_IS_BRANDED(zone)) 5130 ZBROP(zone)->b_free_brand_data(zone); 5131 5132 /* Say goodbye to brand framework. */ 5133 brand_unregister_zone(zone->zone_brand); 5134 5135 /* 5136 * It is now safe to let the zone be recreated; remove it from the 5137 * lists. The memory will not be freed until the last cred 5138 * reference goes away. 5139 */ 5140 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5141 zonecount--; 5142 /* remove from active list and hash tables */ 5143 list_remove(&zone_active, zone); 5144 (void) mod_hash_destroy(zonehashbyname, 5145 (mod_hash_key_t)zone->zone_name); 5146 (void) mod_hash_destroy(zonehashbyid, 5147 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5148 if (zone->zone_flags & ZF_HASHED_LABEL) 5149 (void) mod_hash_destroy(zonehashbylabel, 5150 (mod_hash_key_t)zone->zone_slabel); 5151 mutex_exit(&zonehash_lock); 5152 5153 /* 5154 * Release the root vnode; we're not using it anymore. Nor should any 5155 * other thread that might access it exist. 5156 */ 5157 if (zone->zone_rootvp != NULL) { 5158 VN_RELE(zone->zone_rootvp); 5159 zone->zone_rootvp = NULL; 5160 } 5161 5162 /* add to deathrow list */ 5163 mutex_enter(&zone_deathrow_lock); 5164 list_insert_tail(&zone_deathrow, zone); 5165 mutex_exit(&zone_deathrow_lock); 5166 5167 /* 5168 * Drop last reference (which was added by zsched()), this will 5169 * free the zone unless there are outstanding cred references. 5170 */ 5171 zone_rele(zone); 5172 return (0); 5173 } 5174 5175 /* 5176 * Systemcall entry point for zone_getattr(2). 5177 */ 5178 static ssize_t 5179 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5180 { 5181 size_t size; 5182 int error = 0, err; 5183 zone_t *zone; 5184 char *zonepath; 5185 char *outstr; 5186 zone_status_t zone_status; 5187 pid_t initpid; 5188 boolean_t global = (curzone == global_zone); 5189 boolean_t inzone = (curzone->zone_id == zoneid); 5190 ushort_t flags; 5191 zone_net_data_t *zbuf; 5192 5193 mutex_enter(&zonehash_lock); 5194 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5195 mutex_exit(&zonehash_lock); 5196 return (set_errno(EINVAL)); 5197 } 5198 zone_status = zone_status_get(zone); 5199 if (zone_status < ZONE_IS_INITIALIZED) { 5200 mutex_exit(&zonehash_lock); 5201 return (set_errno(EINVAL)); 5202 } 5203 zone_hold(zone); 5204 mutex_exit(&zonehash_lock); 5205 5206 /* 5207 * If not in the global zone, don't show information about other zones, 5208 * unless the system is labeled and the local zone's label dominates 5209 * the other zone. 5210 */ 5211 if (!zone_list_access(zone)) { 5212 zone_rele(zone); 5213 return (set_errno(EINVAL)); 5214 } 5215 5216 switch (attr) { 5217 case ZONE_ATTR_ROOT: 5218 if (global) { 5219 /* 5220 * Copy the path to trim the trailing "/" (except for 5221 * the global zone). 5222 */ 5223 if (zone != global_zone) 5224 size = zone->zone_rootpathlen - 1; 5225 else 5226 size = zone->zone_rootpathlen; 5227 zonepath = kmem_alloc(size, KM_SLEEP); 5228 bcopy(zone->zone_rootpath, zonepath, size); 5229 zonepath[size - 1] = '\0'; 5230 } else { 5231 if (inzone || !is_system_labeled()) { 5232 /* 5233 * Caller is not in the global zone. 5234 * if the query is on the current zone 5235 * or the system is not labeled, 5236 * just return faked-up path for current zone. 5237 */ 5238 zonepath = "/"; 5239 size = 2; 5240 } else { 5241 /* 5242 * Return related path for current zone. 5243 */ 5244 int prefix_len = strlen(zone_prefix); 5245 int zname_len = strlen(zone->zone_name); 5246 5247 size = prefix_len + zname_len + 1; 5248 zonepath = kmem_alloc(size, KM_SLEEP); 5249 bcopy(zone_prefix, zonepath, prefix_len); 5250 bcopy(zone->zone_name, zonepath + 5251 prefix_len, zname_len); 5252 zonepath[size - 1] = '\0'; 5253 } 5254 } 5255 if (bufsize > size) 5256 bufsize = size; 5257 if (buf != NULL) { 5258 err = copyoutstr(zonepath, buf, bufsize, NULL); 5259 if (err != 0 && err != ENAMETOOLONG) 5260 error = EFAULT; 5261 } 5262 if (global || (is_system_labeled() && !inzone)) 5263 kmem_free(zonepath, size); 5264 break; 5265 5266 case ZONE_ATTR_NAME: 5267 size = strlen(zone->zone_name) + 1; 5268 if (bufsize > size) 5269 bufsize = size; 5270 if (buf != NULL) { 5271 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5272 if (err != 0 && err != ENAMETOOLONG) 5273 error = EFAULT; 5274 } 5275 break; 5276 5277 case ZONE_ATTR_STATUS: 5278 /* 5279 * Since we're not holding zonehash_lock, the zone status 5280 * may be anything; leave it up to userland to sort it out. 5281 */ 5282 size = sizeof (zone_status); 5283 if (bufsize > size) 5284 bufsize = size; 5285 zone_status = zone_status_get(zone); 5286 if (buf != NULL && 5287 copyout(&zone_status, buf, bufsize) != 0) 5288 error = EFAULT; 5289 break; 5290 case ZONE_ATTR_FLAGS: 5291 size = sizeof (zone->zone_flags); 5292 if (bufsize > size) 5293 bufsize = size; 5294 flags = zone->zone_flags; 5295 if (buf != NULL && 5296 copyout(&flags, buf, bufsize) != 0) 5297 error = EFAULT; 5298 break; 5299 case ZONE_ATTR_PRIVSET: 5300 size = sizeof (priv_set_t); 5301 if (bufsize > size) 5302 bufsize = size; 5303 if (buf != NULL && 5304 copyout(zone->zone_privset, buf, bufsize) != 0) 5305 error = EFAULT; 5306 break; 5307 case ZONE_ATTR_UNIQID: 5308 size = sizeof (zone->zone_uniqid); 5309 if (bufsize > size) 5310 bufsize = size; 5311 if (buf != NULL && 5312 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5313 error = EFAULT; 5314 break; 5315 case ZONE_ATTR_POOLID: 5316 { 5317 pool_t *pool; 5318 poolid_t poolid; 5319 5320 if (pool_lock_intr() != 0) { 5321 error = EINTR; 5322 break; 5323 } 5324 pool = zone_pool_get(zone); 5325 poolid = pool->pool_id; 5326 pool_unlock(); 5327 size = sizeof (poolid); 5328 if (bufsize > size) 5329 bufsize = size; 5330 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5331 error = EFAULT; 5332 } 5333 break; 5334 case ZONE_ATTR_SLBL: 5335 size = sizeof (bslabel_t); 5336 if (bufsize > size) 5337 bufsize = size; 5338 if (zone->zone_slabel == NULL) 5339 error = EINVAL; 5340 else if (buf != NULL && 5341 copyout(label2bslabel(zone->zone_slabel), buf, 5342 bufsize) != 0) 5343 error = EFAULT; 5344 break; 5345 case ZONE_ATTR_INITPID: 5346 size = sizeof (initpid); 5347 if (bufsize > size) 5348 bufsize = size; 5349 initpid = zone->zone_proc_initpid; 5350 if (initpid == -1) { 5351 error = ESRCH; 5352 break; 5353 } 5354 if (buf != NULL && 5355 copyout(&initpid, buf, bufsize) != 0) 5356 error = EFAULT; 5357 break; 5358 case ZONE_ATTR_BRAND: 5359 size = strlen(zone->zone_brand->b_name) + 1; 5360 5361 if (bufsize > size) 5362 bufsize = size; 5363 if (buf != NULL) { 5364 err = copyoutstr(zone->zone_brand->b_name, buf, 5365 bufsize, NULL); 5366 if (err != 0 && err != ENAMETOOLONG) 5367 error = EFAULT; 5368 } 5369 break; 5370 case ZONE_ATTR_INITNAME: 5371 size = strlen(zone->zone_initname) + 1; 5372 if (bufsize > size) 5373 bufsize = size; 5374 if (buf != NULL) { 5375 err = copyoutstr(zone->zone_initname, buf, bufsize, 5376 NULL); 5377 if (err != 0 && err != ENAMETOOLONG) 5378 error = EFAULT; 5379 } 5380 break; 5381 case ZONE_ATTR_BOOTARGS: 5382 if (zone->zone_bootargs == NULL) 5383 outstr = ""; 5384 else 5385 outstr = zone->zone_bootargs; 5386 size = strlen(outstr) + 1; 5387 if (bufsize > size) 5388 bufsize = size; 5389 if (buf != NULL) { 5390 err = copyoutstr(outstr, buf, bufsize, NULL); 5391 if (err != 0 && err != ENAMETOOLONG) 5392 error = EFAULT; 5393 } 5394 break; 5395 case ZONE_ATTR_PHYS_MCAP: 5396 size = sizeof (zone->zone_phys_mcap); 5397 if (bufsize > size) 5398 bufsize = size; 5399 if (buf != NULL && 5400 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5401 error = EFAULT; 5402 break; 5403 case ZONE_ATTR_SCHED_CLASS: 5404 mutex_enter(&class_lock); 5405 5406 if (zone->zone_defaultcid >= loaded_classes) 5407 outstr = ""; 5408 else 5409 outstr = sclass[zone->zone_defaultcid].cl_name; 5410 size = strlen(outstr) + 1; 5411 if (bufsize > size) 5412 bufsize = size; 5413 if (buf != NULL) { 5414 err = copyoutstr(outstr, buf, bufsize, NULL); 5415 if (err != 0 && err != ENAMETOOLONG) 5416 error = EFAULT; 5417 } 5418 5419 mutex_exit(&class_lock); 5420 break; 5421 case ZONE_ATTR_HOSTID: 5422 if (zone->zone_hostid != HW_INVALID_HOSTID && 5423 bufsize == sizeof (zone->zone_hostid)) { 5424 size = sizeof (zone->zone_hostid); 5425 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5426 bufsize) != 0) 5427 error = EFAULT; 5428 } else { 5429 error = EINVAL; 5430 } 5431 break; 5432 case ZONE_ATTR_FS_ALLOWED: 5433 if (zone->zone_fs_allowed == NULL) 5434 outstr = ""; 5435 else 5436 outstr = zone->zone_fs_allowed; 5437 size = strlen(outstr) + 1; 5438 if (bufsize > size) 5439 bufsize = size; 5440 if (buf != NULL) { 5441 err = copyoutstr(outstr, buf, bufsize, NULL); 5442 if (err != 0 && err != ENAMETOOLONG) 5443 error = EFAULT; 5444 } 5445 break; 5446 case ZONE_ATTR_NETWORK: 5447 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5448 if (copyin(buf, zbuf, bufsize) != 0) { 5449 error = EFAULT; 5450 } else { 5451 error = zone_get_network(zoneid, zbuf); 5452 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5453 error = EFAULT; 5454 } 5455 kmem_free(zbuf, bufsize); 5456 break; 5457 default: 5458 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5459 size = bufsize; 5460 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5461 } else { 5462 error = EINVAL; 5463 } 5464 } 5465 zone_rele(zone); 5466 5467 if (error) 5468 return (set_errno(error)); 5469 return ((ssize_t)size); 5470 } 5471 5472 /* 5473 * Systemcall entry point for zone_setattr(2). 5474 */ 5475 /*ARGSUSED*/ 5476 static int 5477 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5478 { 5479 zone_t *zone; 5480 zone_status_t zone_status; 5481 int err = -1; 5482 zone_net_data_t *zbuf; 5483 5484 if (secpolicy_zone_config(CRED()) != 0) 5485 return (set_errno(EPERM)); 5486 5487 /* 5488 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5489 * global zone. 5490 */ 5491 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5492 return (set_errno(EINVAL)); 5493 } 5494 5495 mutex_enter(&zonehash_lock); 5496 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5497 mutex_exit(&zonehash_lock); 5498 return (set_errno(EINVAL)); 5499 } 5500 zone_hold(zone); 5501 mutex_exit(&zonehash_lock); 5502 5503 /* 5504 * At present most attributes can only be set on non-running, 5505 * non-global zones. 5506 */ 5507 zone_status = zone_status_get(zone); 5508 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5509 err = EINVAL; 5510 goto done; 5511 } 5512 5513 switch (attr) { 5514 case ZONE_ATTR_INITNAME: 5515 err = zone_set_initname(zone, (const char *)buf); 5516 break; 5517 case ZONE_ATTR_BOOTARGS: 5518 err = zone_set_bootargs(zone, (const char *)buf); 5519 break; 5520 case ZONE_ATTR_BRAND: 5521 err = zone_set_brand(zone, (const char *)buf); 5522 break; 5523 case ZONE_ATTR_FS_ALLOWED: 5524 err = zone_set_fs_allowed(zone, (const char *)buf); 5525 break; 5526 case ZONE_ATTR_PHYS_MCAP: 5527 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5528 break; 5529 case ZONE_ATTR_SCHED_CLASS: 5530 err = zone_set_sched_class(zone, (const char *)buf); 5531 break; 5532 case ZONE_ATTR_HOSTID: 5533 if (bufsize == sizeof (zone->zone_hostid)) { 5534 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5535 err = 0; 5536 else 5537 err = EFAULT; 5538 } else { 5539 err = EINVAL; 5540 } 5541 break; 5542 case ZONE_ATTR_NETWORK: 5543 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5544 err = EINVAL; 5545 break; 5546 } 5547 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5548 if (copyin(buf, zbuf, bufsize) != 0) { 5549 kmem_free(zbuf, bufsize); 5550 err = EFAULT; 5551 break; 5552 } 5553 err = zone_set_network(zoneid, zbuf); 5554 kmem_free(zbuf, bufsize); 5555 break; 5556 default: 5557 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5558 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5559 else 5560 err = EINVAL; 5561 } 5562 5563 done: 5564 zone_rele(zone); 5565 ASSERT(err != -1); 5566 return (err != 0 ? set_errno(err) : 0); 5567 } 5568 5569 /* 5570 * Return zero if the process has at least one vnode mapped in to its 5571 * address space which shouldn't be allowed to change zones. 5572 * 5573 * Also return zero if the process has any shared mappings which reserve 5574 * swap. This is because the counting for zone.max-swap does not allow swap 5575 * reservation to be shared between zones. zone swap reservation is counted 5576 * on zone->zone_max_swap. 5577 */ 5578 static int 5579 as_can_change_zones(void) 5580 { 5581 proc_t *pp = curproc; 5582 struct seg *seg; 5583 struct as *as = pp->p_as; 5584 vnode_t *vp; 5585 int allow = 1; 5586 5587 ASSERT(pp->p_as != &kas); 5588 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 5589 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5590 5591 /* 5592 * Cannot enter zone with shared anon memory which 5593 * reserves swap. See comment above. 5594 */ 5595 if (seg_can_change_zones(seg) == B_FALSE) { 5596 allow = 0; 5597 break; 5598 } 5599 /* 5600 * if we can't get a backing vnode for this segment then skip 5601 * it. 5602 */ 5603 vp = NULL; 5604 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5605 continue; 5606 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5607 allow = 0; 5608 break; 5609 } 5610 } 5611 AS_LOCK_EXIT(as, &as->a_lock); 5612 return (allow); 5613 } 5614 5615 /* 5616 * Count swap reserved by curproc's address space 5617 */ 5618 static size_t 5619 as_swresv(void) 5620 { 5621 proc_t *pp = curproc; 5622 struct seg *seg; 5623 struct as *as = pp->p_as; 5624 size_t swap = 0; 5625 5626 ASSERT(pp->p_as != &kas); 5627 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 5628 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5629 swap += seg_swresv(seg); 5630 5631 return (swap); 5632 } 5633 5634 /* 5635 * Systemcall entry point for zone_enter(). 5636 * 5637 * The current process is injected into said zone. In the process 5638 * it will change its project membership, privileges, rootdir/cwd, 5639 * zone-wide rctls, and pool association to match those of the zone. 5640 * 5641 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5642 * state will transition it to ZONE_IS_RUNNING. Processes may only 5643 * enter a zone that is "ready" or "running". 5644 */ 5645 static int 5646 zone_enter(zoneid_t zoneid) 5647 { 5648 zone_t *zone; 5649 vnode_t *vp; 5650 proc_t *pp = curproc; 5651 contract_t *ct; 5652 cont_process_t *ctp; 5653 task_t *tk, *oldtk; 5654 kproject_t *zone_proj0; 5655 cred_t *cr, *newcr; 5656 pool_t *oldpool, *newpool; 5657 sess_t *sp; 5658 uid_t uid; 5659 zone_status_t status; 5660 int err = 0; 5661 rctl_entity_p_t e; 5662 size_t swap; 5663 kthread_id_t t; 5664 5665 if (secpolicy_zone_config(CRED()) != 0) 5666 return (set_errno(EPERM)); 5667 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5668 return (set_errno(EINVAL)); 5669 5670 /* 5671 * Stop all lwps so we don't need to hold a lock to look at 5672 * curproc->p_zone. This needs to happen before we grab any 5673 * locks to avoid deadlock (another lwp in the process could 5674 * be waiting for the held lock). 5675 */ 5676 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5677 return (set_errno(EINTR)); 5678 5679 /* 5680 * Make sure we're not changing zones with files open or mapped in 5681 * to our address space which shouldn't be changing zones. 5682 */ 5683 if (!files_can_change_zones()) { 5684 err = EBADF; 5685 goto out; 5686 } 5687 if (!as_can_change_zones()) { 5688 err = EFAULT; 5689 goto out; 5690 } 5691 5692 mutex_enter(&zonehash_lock); 5693 if (pp->p_zone != global_zone) { 5694 mutex_exit(&zonehash_lock); 5695 err = EINVAL; 5696 goto out; 5697 } 5698 5699 zone = zone_find_all_by_id(zoneid); 5700 if (zone == NULL) { 5701 mutex_exit(&zonehash_lock); 5702 err = EINVAL; 5703 goto out; 5704 } 5705 5706 /* 5707 * To prevent processes in a zone from holding contracts on 5708 * extrazonal resources, and to avoid process contract 5709 * memberships which span zones, contract holders and processes 5710 * which aren't the sole members of their encapsulating process 5711 * contracts are not allowed to zone_enter. 5712 */ 5713 ctp = pp->p_ct_process; 5714 ct = &ctp->conp_contract; 5715 mutex_enter(&ct->ct_lock); 5716 mutex_enter(&pp->p_lock); 5717 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5718 mutex_exit(&pp->p_lock); 5719 mutex_exit(&ct->ct_lock); 5720 mutex_exit(&zonehash_lock); 5721 err = EINVAL; 5722 goto out; 5723 } 5724 5725 /* 5726 * Moreover, we don't allow processes whose encapsulating 5727 * process contracts have inherited extrazonal contracts. 5728 * While it would be easier to eliminate all process contracts 5729 * with inherited contracts, we need to be able to give a 5730 * restarted init (or other zone-penetrating process) its 5731 * predecessor's contracts. 5732 */ 5733 if (ctp->conp_ninherited != 0) { 5734 contract_t *next; 5735 for (next = list_head(&ctp->conp_inherited); next; 5736 next = list_next(&ctp->conp_inherited, next)) { 5737 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5738 mutex_exit(&pp->p_lock); 5739 mutex_exit(&ct->ct_lock); 5740 mutex_exit(&zonehash_lock); 5741 err = EINVAL; 5742 goto out; 5743 } 5744 } 5745 } 5746 5747 mutex_exit(&pp->p_lock); 5748 mutex_exit(&ct->ct_lock); 5749 5750 status = zone_status_get(zone); 5751 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5752 /* 5753 * Can't join 5754 */ 5755 mutex_exit(&zonehash_lock); 5756 err = EINVAL; 5757 goto out; 5758 } 5759 5760 /* 5761 * Make sure new priv set is within the permitted set for caller 5762 */ 5763 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5764 mutex_exit(&zonehash_lock); 5765 err = EPERM; 5766 goto out; 5767 } 5768 /* 5769 * We want to momentarily drop zonehash_lock while we optimistically 5770 * bind curproc to the pool it should be running in. This is safe 5771 * since the zone can't disappear (we have a hold on it). 5772 */ 5773 zone_hold(zone); 5774 mutex_exit(&zonehash_lock); 5775 5776 /* 5777 * Grab pool_lock to keep the pools configuration from changing 5778 * and to stop ourselves from getting rebound to another pool 5779 * until we join the zone. 5780 */ 5781 if (pool_lock_intr() != 0) { 5782 zone_rele(zone); 5783 err = EINTR; 5784 goto out; 5785 } 5786 ASSERT(secpolicy_pool(CRED()) == 0); 5787 /* 5788 * Bind ourselves to the pool currently associated with the zone. 5789 */ 5790 oldpool = curproc->p_pool; 5791 newpool = zone_pool_get(zone); 5792 if (pool_state == POOL_ENABLED && newpool != oldpool && 5793 (err = pool_do_bind(newpool, P_PID, P_MYID, 5794 POOL_BIND_ALL)) != 0) { 5795 pool_unlock(); 5796 zone_rele(zone); 5797 goto out; 5798 } 5799 5800 /* 5801 * Grab cpu_lock now; we'll need it later when we call 5802 * task_join(). 5803 */ 5804 mutex_enter(&cpu_lock); 5805 mutex_enter(&zonehash_lock); 5806 /* 5807 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5808 */ 5809 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5810 /* 5811 * Can't join anymore. 5812 */ 5813 mutex_exit(&zonehash_lock); 5814 mutex_exit(&cpu_lock); 5815 if (pool_state == POOL_ENABLED && 5816 newpool != oldpool) 5817 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5818 POOL_BIND_ALL); 5819 pool_unlock(); 5820 zone_rele(zone); 5821 err = EINVAL; 5822 goto out; 5823 } 5824 5825 /* 5826 * a_lock must be held while transfering locked memory and swap 5827 * reservation from the global zone to the non global zone because 5828 * asynchronous faults on the processes' address space can lock 5829 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5830 * segments respectively. 5831 */ 5832 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5833 swap = as_swresv(); 5834 mutex_enter(&pp->p_lock); 5835 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5836 /* verify that we do not exceed and task or lwp limits */ 5837 mutex_enter(&zone->zone_nlwps_lock); 5838 /* add new lwps to zone and zone's proj0 */ 5839 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5840 zone->zone_nlwps += pp->p_lwpcnt; 5841 /* add 1 task to zone's proj0 */ 5842 zone_proj0->kpj_ntasks += 1; 5843 5844 zone_proj0->kpj_nprocs++; 5845 zone->zone_nprocs++; 5846 mutex_exit(&zone->zone_nlwps_lock); 5847 5848 mutex_enter(&zone->zone_mem_lock); 5849 zone->zone_locked_mem += pp->p_locked_mem; 5850 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5851 zone->zone_max_swap += swap; 5852 mutex_exit(&zone->zone_mem_lock); 5853 5854 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5855 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5856 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5857 5858 /* remove lwps and process from proc's old zone and old project */ 5859 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5860 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5861 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5862 pp->p_task->tk_proj->kpj_nprocs--; 5863 pp->p_zone->zone_nprocs--; 5864 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5865 5866 mutex_enter(&pp->p_zone->zone_mem_lock); 5867 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5868 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5869 pp->p_zone->zone_max_swap -= swap; 5870 mutex_exit(&pp->p_zone->zone_mem_lock); 5871 5872 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5873 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5874 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5875 5876 pp->p_flag |= SZONETOP; 5877 pp->p_zone = zone; 5878 mutex_exit(&pp->p_lock); 5879 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5880 5881 /* 5882 * Joining the zone cannot fail from now on. 5883 * 5884 * This means that a lot of the following code can be commonized and 5885 * shared with zsched(). 5886 */ 5887 5888 /* 5889 * If the process contract fmri was inherited, we need to 5890 * flag this so that any contract status will not leak 5891 * extra zone information, svc_fmri in this case 5892 */ 5893 if (ctp->conp_svc_ctid != ct->ct_id) { 5894 mutex_enter(&ct->ct_lock); 5895 ctp->conp_svc_zone_enter = ct->ct_id; 5896 mutex_exit(&ct->ct_lock); 5897 } 5898 5899 /* 5900 * Reset the encapsulating process contract's zone. 5901 */ 5902 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5903 contract_setzuniqid(ct, zone->zone_uniqid); 5904 5905 /* 5906 * Create a new task and associate the process with the project keyed 5907 * by (projid,zoneid). 5908 * 5909 * We might as well be in project 0; the global zone's projid doesn't 5910 * make much sense in a zone anyhow. 5911 * 5912 * This also increments zone_ntasks, and returns with p_lock held. 5913 */ 5914 tk = task_create(0, zone); 5915 oldtk = task_join(tk, 0); 5916 mutex_exit(&cpu_lock); 5917 5918 /* 5919 * call RCTLOP_SET functions on this proc 5920 */ 5921 e.rcep_p.zone = zone; 5922 e.rcep_t = RCENTITY_ZONE; 5923 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5924 RCD_CALLBACK); 5925 mutex_exit(&pp->p_lock); 5926 5927 /* 5928 * We don't need to hold any of zsched's locks here; not only do we know 5929 * the process and zone aren't going away, we know its session isn't 5930 * changing either. 5931 * 5932 * By joining zsched's session here, we mimic the behavior in the 5933 * global zone of init's sid being the pid of sched. We extend this 5934 * to all zlogin-like zone_enter()'ing processes as well. 5935 */ 5936 mutex_enter(&pidlock); 5937 sp = zone->zone_zsched->p_sessp; 5938 sess_hold(zone->zone_zsched); 5939 mutex_enter(&pp->p_lock); 5940 pgexit(pp); 5941 sess_rele(pp->p_sessp, B_TRUE); 5942 pp->p_sessp = sp; 5943 pgjoin(pp, zone->zone_zsched->p_pidp); 5944 5945 /* 5946 * If any threads are scheduled to be placed on zone wait queue they 5947 * should abandon the idea since the wait queue is changing. 5948 * We need to be holding pidlock & p_lock to do this. 5949 */ 5950 if ((t = pp->p_tlist) != NULL) { 5951 do { 5952 thread_lock(t); 5953 /* 5954 * Kick this thread so that he doesn't sit 5955 * on a wrong wait queue. 5956 */ 5957 if (ISWAITING(t)) 5958 setrun_locked(t); 5959 5960 if (t->t_schedflag & TS_ANYWAITQ) 5961 t->t_schedflag &= ~ TS_ANYWAITQ; 5962 5963 thread_unlock(t); 5964 } while ((t = t->t_forw) != pp->p_tlist); 5965 } 5966 5967 /* 5968 * If there is a default scheduling class for the zone and it is not 5969 * the class we are currently in, change all of the threads in the 5970 * process to the new class. We need to be holding pidlock & p_lock 5971 * when we call parmsset so this is a good place to do it. 5972 */ 5973 if (zone->zone_defaultcid > 0 && 5974 zone->zone_defaultcid != curthread->t_cid) { 5975 pcparms_t pcparms; 5976 5977 pcparms.pc_cid = zone->zone_defaultcid; 5978 pcparms.pc_clparms[0] = 0; 5979 5980 /* 5981 * If setting the class fails, we still want to enter the zone. 5982 */ 5983 if ((t = pp->p_tlist) != NULL) { 5984 do { 5985 (void) parmsset(&pcparms, t); 5986 } while ((t = t->t_forw) != pp->p_tlist); 5987 } 5988 } 5989 5990 mutex_exit(&pp->p_lock); 5991 mutex_exit(&pidlock); 5992 5993 mutex_exit(&zonehash_lock); 5994 /* 5995 * We're firmly in the zone; let pools progress. 5996 */ 5997 pool_unlock(); 5998 task_rele(oldtk); 5999 /* 6000 * We don't need to retain a hold on the zone since we already 6001 * incremented zone_ntasks, so the zone isn't going anywhere. 6002 */ 6003 zone_rele(zone); 6004 6005 /* 6006 * Chroot 6007 */ 6008 vp = zone->zone_rootvp; 6009 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6010 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6011 6012 /* 6013 * Change process credentials 6014 */ 6015 newcr = cralloc(); 6016 mutex_enter(&pp->p_crlock); 6017 cr = pp->p_cred; 6018 crcopy_to(cr, newcr); 6019 crsetzone(newcr, zone); 6020 pp->p_cred = newcr; 6021 6022 /* 6023 * Restrict all process privilege sets to zone limit 6024 */ 6025 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6026 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6027 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6028 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6029 mutex_exit(&pp->p_crlock); 6030 crset(pp, newcr); 6031 6032 /* 6033 * Adjust upcount to reflect zone entry. 6034 */ 6035 uid = crgetruid(newcr); 6036 mutex_enter(&pidlock); 6037 upcount_dec(uid, GLOBAL_ZONEID); 6038 upcount_inc(uid, zoneid); 6039 mutex_exit(&pidlock); 6040 6041 /* 6042 * Set up core file path and content. 6043 */ 6044 set_core_defaults(); 6045 6046 out: 6047 /* 6048 * Let the other lwps continue. 6049 */ 6050 mutex_enter(&pp->p_lock); 6051 if (curthread != pp->p_agenttp) 6052 continuelwps(pp); 6053 mutex_exit(&pp->p_lock); 6054 6055 return (err != 0 ? set_errno(err) : 0); 6056 } 6057 6058 /* 6059 * Systemcall entry point for zone_list(2). 6060 * 6061 * Processes running in a (non-global) zone only see themselves. 6062 * On labeled systems, they see all zones whose label they dominate. 6063 */ 6064 static int 6065 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6066 { 6067 zoneid_t *zoneids; 6068 zone_t *zone, *myzone; 6069 uint_t user_nzones, real_nzones; 6070 uint_t domi_nzones; 6071 int error; 6072 6073 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6074 return (set_errno(EFAULT)); 6075 6076 myzone = curproc->p_zone; 6077 if (myzone != global_zone) { 6078 bslabel_t *mybslab; 6079 6080 if (!is_system_labeled()) { 6081 /* just return current zone */ 6082 real_nzones = domi_nzones = 1; 6083 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6084 zoneids[0] = myzone->zone_id; 6085 } else { 6086 /* return all zones that are dominated */ 6087 mutex_enter(&zonehash_lock); 6088 real_nzones = zonecount; 6089 domi_nzones = 0; 6090 if (real_nzones > 0) { 6091 zoneids = kmem_alloc(real_nzones * 6092 sizeof (zoneid_t), KM_SLEEP); 6093 mybslab = label2bslabel(myzone->zone_slabel); 6094 for (zone = list_head(&zone_active); 6095 zone != NULL; 6096 zone = list_next(&zone_active, zone)) { 6097 if (zone->zone_id == GLOBAL_ZONEID) 6098 continue; 6099 if (zone != myzone && 6100 (zone->zone_flags & ZF_IS_SCRATCH)) 6101 continue; 6102 /* 6103 * Note that a label always dominates 6104 * itself, so myzone is always included 6105 * in the list. 6106 */ 6107 if (bldominates(mybslab, 6108 label2bslabel(zone->zone_slabel))) { 6109 zoneids[domi_nzones++] = 6110 zone->zone_id; 6111 } 6112 } 6113 } 6114 mutex_exit(&zonehash_lock); 6115 } 6116 } else { 6117 mutex_enter(&zonehash_lock); 6118 real_nzones = zonecount; 6119 domi_nzones = 0; 6120 if (real_nzones > 0) { 6121 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6122 KM_SLEEP); 6123 for (zone = list_head(&zone_active); zone != NULL; 6124 zone = list_next(&zone_active, zone)) 6125 zoneids[domi_nzones++] = zone->zone_id; 6126 ASSERT(domi_nzones == real_nzones); 6127 } 6128 mutex_exit(&zonehash_lock); 6129 } 6130 6131 /* 6132 * If user has allocated space for fewer entries than we found, then 6133 * return only up to his limit. Either way, tell him exactly how many 6134 * we found. 6135 */ 6136 if (domi_nzones < user_nzones) 6137 user_nzones = domi_nzones; 6138 error = 0; 6139 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6140 error = EFAULT; 6141 } else if (zoneidlist != NULL && user_nzones != 0) { 6142 if (copyout(zoneids, zoneidlist, 6143 user_nzones * sizeof (zoneid_t)) != 0) 6144 error = EFAULT; 6145 } 6146 6147 if (real_nzones > 0) 6148 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6149 6150 if (error != 0) 6151 return (set_errno(error)); 6152 else 6153 return (0); 6154 } 6155 6156 /* 6157 * Systemcall entry point for zone_lookup(2). 6158 * 6159 * Non-global zones are only able to see themselves and (on labeled systems) 6160 * the zones they dominate. 6161 */ 6162 static zoneid_t 6163 zone_lookup(const char *zone_name) 6164 { 6165 char *kname; 6166 zone_t *zone; 6167 zoneid_t zoneid; 6168 int err; 6169 6170 if (zone_name == NULL) { 6171 /* return caller's zone id */ 6172 return (getzoneid()); 6173 } 6174 6175 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6176 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6177 kmem_free(kname, ZONENAME_MAX); 6178 return (set_errno(err)); 6179 } 6180 6181 mutex_enter(&zonehash_lock); 6182 zone = zone_find_all_by_name(kname); 6183 kmem_free(kname, ZONENAME_MAX); 6184 /* 6185 * In a non-global zone, can only lookup global and own name. 6186 * In Trusted Extensions zone label dominance rules apply. 6187 */ 6188 if (zone == NULL || 6189 zone_status_get(zone) < ZONE_IS_READY || 6190 !zone_list_access(zone)) { 6191 mutex_exit(&zonehash_lock); 6192 return (set_errno(EINVAL)); 6193 } else { 6194 zoneid = zone->zone_id; 6195 mutex_exit(&zonehash_lock); 6196 return (zoneid); 6197 } 6198 } 6199 6200 static int 6201 zone_version(int *version_arg) 6202 { 6203 int version = ZONE_SYSCALL_API_VERSION; 6204 6205 if (copyout(&version, version_arg, sizeof (int)) != 0) 6206 return (set_errno(EFAULT)); 6207 return (0); 6208 } 6209 6210 /* ARGSUSED */ 6211 long 6212 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6213 { 6214 zone_def zs; 6215 int err; 6216 6217 switch (cmd) { 6218 case ZONE_CREATE: 6219 if (get_udatamodel() == DATAMODEL_NATIVE) { 6220 if (copyin(arg1, &zs, sizeof (zone_def))) { 6221 return (set_errno(EFAULT)); 6222 } 6223 } else { 6224 #ifdef _SYSCALL32_IMPL 6225 zone_def32 zs32; 6226 6227 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6228 return (set_errno(EFAULT)); 6229 } 6230 zs.zone_name = 6231 (const char *)(unsigned long)zs32.zone_name; 6232 zs.zone_root = 6233 (const char *)(unsigned long)zs32.zone_root; 6234 zs.zone_privs = 6235 (const struct priv_set *) 6236 (unsigned long)zs32.zone_privs; 6237 zs.zone_privssz = zs32.zone_privssz; 6238 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6239 zs.rctlbufsz = zs32.rctlbufsz; 6240 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6241 zs.zfsbufsz = zs32.zfsbufsz; 6242 zs.extended_error = 6243 (int *)(unsigned long)zs32.extended_error; 6244 zs.match = zs32.match; 6245 zs.doi = zs32.doi; 6246 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6247 zs.flags = zs32.flags; 6248 #else 6249 panic("get_udatamodel() returned bogus result\n"); 6250 #endif 6251 } 6252 6253 return (zone_create(zs.zone_name, zs.zone_root, 6254 zs.zone_privs, zs.zone_privssz, 6255 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6256 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6257 zs.extended_error, zs.match, zs.doi, 6258 zs.label, zs.flags)); 6259 case ZONE_BOOT: 6260 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6261 case ZONE_DESTROY: 6262 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6263 case ZONE_GETATTR: 6264 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6265 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6266 case ZONE_SETATTR: 6267 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6268 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6269 case ZONE_ENTER: 6270 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6271 case ZONE_LIST: 6272 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6273 case ZONE_SHUTDOWN: 6274 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6275 case ZONE_LOOKUP: 6276 return (zone_lookup((const char *)arg1)); 6277 case ZONE_VERSION: 6278 return (zone_version((int *)arg1)); 6279 case ZONE_ADD_DATALINK: 6280 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6281 (datalink_id_t)(uintptr_t)arg2)); 6282 case ZONE_DEL_DATALINK: 6283 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6284 (datalink_id_t)(uintptr_t)arg2)); 6285 case ZONE_CHECK_DATALINK: { 6286 zoneid_t zoneid; 6287 boolean_t need_copyout; 6288 6289 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6290 return (EFAULT); 6291 need_copyout = (zoneid == ALL_ZONES); 6292 err = zone_check_datalink(&zoneid, 6293 (datalink_id_t)(uintptr_t)arg2); 6294 if (err == 0 && need_copyout) { 6295 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6296 err = EFAULT; 6297 } 6298 return (err == 0 ? 0 : set_errno(err)); 6299 } 6300 case ZONE_LIST_DATALINK: 6301 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6302 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6303 default: 6304 return (set_errno(EINVAL)); 6305 } 6306 } 6307 6308 struct zarg { 6309 zone_t *zone; 6310 zone_cmd_arg_t arg; 6311 }; 6312 6313 static int 6314 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6315 { 6316 char *buf; 6317 size_t buflen; 6318 int error; 6319 6320 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6321 buf = kmem_alloc(buflen, KM_SLEEP); 6322 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6323 error = door_ki_open(buf, doorp); 6324 kmem_free(buf, buflen); 6325 return (error); 6326 } 6327 6328 static void 6329 zone_release_door(door_handle_t *doorp) 6330 { 6331 door_ki_rele(*doorp); 6332 *doorp = NULL; 6333 } 6334 6335 static void 6336 zone_ki_call_zoneadmd(struct zarg *zargp) 6337 { 6338 door_handle_t door = NULL; 6339 door_arg_t darg, save_arg; 6340 char *zone_name; 6341 size_t zone_namelen; 6342 zoneid_t zoneid; 6343 zone_t *zone; 6344 zone_cmd_arg_t arg; 6345 uint64_t uniqid; 6346 size_t size; 6347 int error; 6348 int retry; 6349 6350 zone = zargp->zone; 6351 arg = zargp->arg; 6352 kmem_free(zargp, sizeof (*zargp)); 6353 6354 zone_namelen = strlen(zone->zone_name) + 1; 6355 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6356 bcopy(zone->zone_name, zone_name, zone_namelen); 6357 zoneid = zone->zone_id; 6358 uniqid = zone->zone_uniqid; 6359 /* 6360 * zoneadmd may be down, but at least we can empty out the zone. 6361 * We can ignore the return value of zone_empty() since we're called 6362 * from a kernel thread and know we won't be delivered any signals. 6363 */ 6364 ASSERT(curproc == &p0); 6365 (void) zone_empty(zone); 6366 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6367 zone_rele(zone); 6368 6369 size = sizeof (arg); 6370 darg.rbuf = (char *)&arg; 6371 darg.data_ptr = (char *)&arg; 6372 darg.rsize = size; 6373 darg.data_size = size; 6374 darg.desc_ptr = NULL; 6375 darg.desc_num = 0; 6376 6377 save_arg = darg; 6378 /* 6379 * Since we're not holding a reference to the zone, any number of 6380 * things can go wrong, including the zone disappearing before we get a 6381 * chance to talk to zoneadmd. 6382 */ 6383 for (retry = 0; /* forever */; retry++) { 6384 if (door == NULL && 6385 (error = zone_lookup_door(zone_name, &door)) != 0) { 6386 goto next; 6387 } 6388 ASSERT(door != NULL); 6389 6390 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6391 SIZE_MAX, 0)) == 0) { 6392 break; 6393 } 6394 switch (error) { 6395 case EINTR: 6396 /* FALLTHROUGH */ 6397 case EAGAIN: /* process may be forking */ 6398 /* 6399 * Back off for a bit 6400 */ 6401 break; 6402 case EBADF: 6403 zone_release_door(&door); 6404 if (zone_lookup_door(zone_name, &door) != 0) { 6405 /* 6406 * zoneadmd may be dead, but it may come back to 6407 * life later. 6408 */ 6409 break; 6410 } 6411 break; 6412 default: 6413 cmn_err(CE_WARN, 6414 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6415 error); 6416 goto out; 6417 } 6418 next: 6419 /* 6420 * If this isn't the same zone_t that we originally had in mind, 6421 * then this is the same as if two kadmin requests come in at 6422 * the same time: the first one wins. This means we lose, so we 6423 * bail. 6424 */ 6425 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6426 /* 6427 * Problem is solved. 6428 */ 6429 break; 6430 } 6431 if (zone->zone_uniqid != uniqid) { 6432 /* 6433 * zoneid recycled 6434 */ 6435 zone_rele(zone); 6436 break; 6437 } 6438 /* 6439 * We could zone_status_timedwait(), but there doesn't seem to 6440 * be much point in doing that (plus, it would mean that 6441 * zone_free() isn't called until this thread exits). 6442 */ 6443 zone_rele(zone); 6444 delay(hz); 6445 darg = save_arg; 6446 } 6447 out: 6448 if (door != NULL) { 6449 zone_release_door(&door); 6450 } 6451 kmem_free(zone_name, zone_namelen); 6452 thread_exit(); 6453 } 6454 6455 /* 6456 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6457 * kadmin(). The caller is a process in the zone. 6458 * 6459 * In order to shutdown the zone, we will hand off control to zoneadmd 6460 * (running in the global zone) via a door. We do a half-hearted job at 6461 * killing all processes in the zone, create a kernel thread to contact 6462 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6463 * a form of generation number used to let zoneadmd (as well as 6464 * zone_destroy()) know exactly which zone they're re talking about. 6465 */ 6466 int 6467 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6468 { 6469 struct zarg *zargp; 6470 zone_cmd_t zcmd; 6471 zone_t *zone; 6472 6473 zone = curproc->p_zone; 6474 ASSERT(getzoneid() != GLOBAL_ZONEID); 6475 6476 switch (cmd) { 6477 case A_SHUTDOWN: 6478 switch (fcn) { 6479 case AD_HALT: 6480 case AD_POWEROFF: 6481 zcmd = Z_HALT; 6482 break; 6483 case AD_BOOT: 6484 zcmd = Z_REBOOT; 6485 break; 6486 case AD_IBOOT: 6487 case AD_SBOOT: 6488 case AD_SIBOOT: 6489 case AD_NOSYNC: 6490 return (ENOTSUP); 6491 default: 6492 return (EINVAL); 6493 } 6494 break; 6495 case A_REBOOT: 6496 zcmd = Z_REBOOT; 6497 break; 6498 case A_FTRACE: 6499 case A_REMOUNT: 6500 case A_FREEZE: 6501 case A_DUMP: 6502 case A_CONFIG: 6503 return (ENOTSUP); 6504 default: 6505 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6506 return (EINVAL); 6507 } 6508 6509 if (secpolicy_zone_admin(credp, B_FALSE)) 6510 return (EPERM); 6511 mutex_enter(&zone_status_lock); 6512 6513 /* 6514 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6515 * is in the zone. 6516 */ 6517 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6518 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6519 /* 6520 * This zone is already on its way down. 6521 */ 6522 mutex_exit(&zone_status_lock); 6523 return (0); 6524 } 6525 /* 6526 * Prevent future zone_enter()s 6527 */ 6528 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6529 mutex_exit(&zone_status_lock); 6530 6531 /* 6532 * Kill everyone now and call zoneadmd later. 6533 * zone_ki_call_zoneadmd() will do a more thorough job of this 6534 * later. 6535 */ 6536 killall(zone->zone_id); 6537 /* 6538 * Now, create the thread to contact zoneadmd and do the rest of the 6539 * work. This thread can't be created in our zone otherwise 6540 * zone_destroy() would deadlock. 6541 */ 6542 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6543 zargp->arg.cmd = zcmd; 6544 zargp->arg.uniqid = zone->zone_uniqid; 6545 zargp->zone = zone; 6546 (void) strcpy(zargp->arg.locale, "C"); 6547 /* mdep was already copied in for us by uadmin */ 6548 if (mdep != NULL) 6549 (void) strlcpy(zargp->arg.bootbuf, mdep, 6550 sizeof (zargp->arg.bootbuf)); 6551 zone_hold(zone); 6552 6553 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6554 TS_RUN, minclsyspri); 6555 exit(CLD_EXITED, 0); 6556 6557 return (EINVAL); 6558 } 6559 6560 /* 6561 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6562 * status to ZONE_IS_SHUTTING_DOWN. 6563 * 6564 * This function also shuts down all running zones to ensure that they won't 6565 * fork new processes. 6566 */ 6567 void 6568 zone_shutdown_global(void) 6569 { 6570 zone_t *current_zonep; 6571 6572 ASSERT(INGLOBALZONE(curproc)); 6573 mutex_enter(&zonehash_lock); 6574 mutex_enter(&zone_status_lock); 6575 6576 /* Modify the global zone's status first. */ 6577 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6578 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6579 6580 /* 6581 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6582 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6583 * could cause assertions to fail (e.g., assertions about a zone's 6584 * state during initialization, readying, or booting) or produce races. 6585 * We'll let threads continue to initialize and ready new zones: they'll 6586 * fail to boot the new zones when they see that the global zone is 6587 * shutting down. 6588 */ 6589 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6590 current_zonep = list_next(&zone_active, current_zonep)) { 6591 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6592 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6593 } 6594 mutex_exit(&zone_status_lock); 6595 mutex_exit(&zonehash_lock); 6596 } 6597 6598 /* 6599 * Returns true if the named dataset is visible in the current zone. 6600 * The 'write' parameter is set to 1 if the dataset is also writable. 6601 */ 6602 int 6603 zone_dataset_visible(const char *dataset, int *write) 6604 { 6605 static int zfstype = -1; 6606 zone_dataset_t *zd; 6607 size_t len; 6608 zone_t *zone = curproc->p_zone; 6609 const char *name = NULL; 6610 vfs_t *vfsp = NULL; 6611 6612 if (dataset[0] == '\0') 6613 return (0); 6614 6615 /* 6616 * Walk the list once, looking for datasets which match exactly, or 6617 * specify a dataset underneath an exported dataset. If found, return 6618 * true and note that it is writable. 6619 */ 6620 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6621 zd = list_next(&zone->zone_datasets, zd)) { 6622 6623 len = strlen(zd->zd_dataset); 6624 if (strlen(dataset) >= len && 6625 bcmp(dataset, zd->zd_dataset, len) == 0 && 6626 (dataset[len] == '\0' || dataset[len] == '/' || 6627 dataset[len] == '@')) { 6628 if (write) 6629 *write = 1; 6630 return (1); 6631 } 6632 } 6633 6634 /* 6635 * Walk the list a second time, searching for datasets which are parents 6636 * of exported datasets. These should be visible, but read-only. 6637 * 6638 * Note that we also have to support forms such as 'pool/dataset/', with 6639 * a trailing slash. 6640 */ 6641 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6642 zd = list_next(&zone->zone_datasets, zd)) { 6643 6644 len = strlen(dataset); 6645 if (dataset[len - 1] == '/') 6646 len--; /* Ignore trailing slash */ 6647 if (len < strlen(zd->zd_dataset) && 6648 bcmp(dataset, zd->zd_dataset, len) == 0 && 6649 zd->zd_dataset[len] == '/') { 6650 if (write) 6651 *write = 0; 6652 return (1); 6653 } 6654 } 6655 6656 /* 6657 * We reach here if the given dataset is not found in the zone_dataset 6658 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6659 * instead of delegation. For this we search for the dataset in the 6660 * zone_vfslist of this zone. If found, return true and note that it is 6661 * not writable. 6662 */ 6663 6664 /* 6665 * Initialize zfstype if it is not initialized yet. 6666 */ 6667 if (zfstype == -1) { 6668 struct vfssw *vswp = vfs_getvfssw("zfs"); 6669 zfstype = vswp - vfssw; 6670 vfs_unrefvfssw(vswp); 6671 } 6672 6673 vfs_list_read_lock(); 6674 vfsp = zone->zone_vfslist; 6675 do { 6676 ASSERT(vfsp); 6677 if (vfsp->vfs_fstype == zfstype) { 6678 name = refstr_value(vfsp->vfs_resource); 6679 6680 /* 6681 * Check if we have an exact match. 6682 */ 6683 if (strcmp(dataset, name) == 0) { 6684 vfs_list_unlock(); 6685 if (write) 6686 *write = 0; 6687 return (1); 6688 } 6689 /* 6690 * We need to check if we are looking for parents of 6691 * a dataset. These should be visible, but read-only. 6692 */ 6693 len = strlen(dataset); 6694 if (dataset[len - 1] == '/') 6695 len--; 6696 6697 if (len < strlen(name) && 6698 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6699 vfs_list_unlock(); 6700 if (write) 6701 *write = 0; 6702 return (1); 6703 } 6704 } 6705 vfsp = vfsp->vfs_zone_next; 6706 } while (vfsp != zone->zone_vfslist); 6707 6708 vfs_list_unlock(); 6709 return (0); 6710 } 6711 6712 /* 6713 * zone_find_by_any_path() - 6714 * 6715 * kernel-private routine similar to zone_find_by_path(), but which 6716 * effectively compares against zone paths rather than zonerootpath 6717 * (i.e., the last component of zonerootpaths, which should be "root/", 6718 * are not compared.) This is done in order to accurately identify all 6719 * paths, whether zone-visible or not, including those which are parallel 6720 * to /root/, such as /dev/, /home/, etc... 6721 * 6722 * If the specified path does not fall under any zone path then global 6723 * zone is returned. 6724 * 6725 * The treat_abs parameter indicates whether the path should be treated as 6726 * an absolute path although it does not begin with "/". (This supports 6727 * nfs mount syntax such as host:any/path.) 6728 * 6729 * The caller is responsible for zone_rele of the returned zone. 6730 */ 6731 zone_t * 6732 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6733 { 6734 zone_t *zone; 6735 int path_offset = 0; 6736 6737 if (path == NULL) { 6738 zone_hold(global_zone); 6739 return (global_zone); 6740 } 6741 6742 if (*path != '/') { 6743 ASSERT(treat_abs); 6744 path_offset = 1; 6745 } 6746 6747 mutex_enter(&zonehash_lock); 6748 for (zone = list_head(&zone_active); zone != NULL; 6749 zone = list_next(&zone_active, zone)) { 6750 char *c; 6751 size_t pathlen; 6752 char *rootpath_start; 6753 6754 if (zone == global_zone) /* skip global zone */ 6755 continue; 6756 6757 /* scan backwards to find start of last component */ 6758 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6759 do { 6760 c--; 6761 } while (*c != '/'); 6762 6763 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6764 rootpath_start = (zone->zone_rootpath + path_offset); 6765 if (strncmp(path, rootpath_start, pathlen) == 0) 6766 break; 6767 } 6768 if (zone == NULL) 6769 zone = global_zone; 6770 zone_hold(zone); 6771 mutex_exit(&zonehash_lock); 6772 return (zone); 6773 } 6774 6775 /* 6776 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6777 * zone_dl_t pointer if found, and NULL otherwise. 6778 */ 6779 static zone_dl_t * 6780 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6781 { 6782 zone_dl_t *zdl; 6783 6784 ASSERT(mutex_owned(&zone->zone_lock)); 6785 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6786 zdl = list_next(&zone->zone_dl_list, zdl)) { 6787 if (zdl->zdl_id == linkid) 6788 break; 6789 } 6790 return (zdl); 6791 } 6792 6793 static boolean_t 6794 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6795 { 6796 boolean_t exists; 6797 6798 mutex_enter(&zone->zone_lock); 6799 exists = (zone_find_dl(zone, linkid) != NULL); 6800 mutex_exit(&zone->zone_lock); 6801 return (exists); 6802 } 6803 6804 /* 6805 * Add an data link name for the zone. 6806 */ 6807 static int 6808 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6809 { 6810 zone_dl_t *zdl; 6811 zone_t *zone; 6812 zone_t *thiszone; 6813 6814 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6815 return (set_errno(ENXIO)); 6816 6817 /* Verify that the datalink ID doesn't already belong to a zone. */ 6818 mutex_enter(&zonehash_lock); 6819 for (zone = list_head(&zone_active); zone != NULL; 6820 zone = list_next(&zone_active, zone)) { 6821 if (zone_dl_exists(zone, linkid)) { 6822 mutex_exit(&zonehash_lock); 6823 zone_rele(thiszone); 6824 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6825 } 6826 } 6827 6828 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6829 zdl->zdl_id = linkid; 6830 zdl->zdl_net = NULL; 6831 mutex_enter(&thiszone->zone_lock); 6832 list_insert_head(&thiszone->zone_dl_list, zdl); 6833 mutex_exit(&thiszone->zone_lock); 6834 mutex_exit(&zonehash_lock); 6835 zone_rele(thiszone); 6836 return (0); 6837 } 6838 6839 static int 6840 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6841 { 6842 zone_dl_t *zdl; 6843 zone_t *zone; 6844 int err = 0; 6845 6846 if ((zone = zone_find_by_id(zoneid)) == NULL) 6847 return (set_errno(EINVAL)); 6848 6849 mutex_enter(&zone->zone_lock); 6850 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6851 err = ENXIO; 6852 } else { 6853 list_remove(&zone->zone_dl_list, zdl); 6854 if (zdl->zdl_net != NULL) 6855 nvlist_free(zdl->zdl_net); 6856 kmem_free(zdl, sizeof (zone_dl_t)); 6857 } 6858 mutex_exit(&zone->zone_lock); 6859 zone_rele(zone); 6860 return (err == 0 ? 0 : set_errno(err)); 6861 } 6862 6863 /* 6864 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6865 * the linkid. Otherwise we just check if the specified zoneidp has been 6866 * assigned the supplied linkid. 6867 */ 6868 int 6869 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6870 { 6871 zone_t *zone; 6872 int err = ENXIO; 6873 6874 if (*zoneidp != ALL_ZONES) { 6875 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6876 if (zone_dl_exists(zone, linkid)) 6877 err = 0; 6878 zone_rele(zone); 6879 } 6880 return (err); 6881 } 6882 6883 mutex_enter(&zonehash_lock); 6884 for (zone = list_head(&zone_active); zone != NULL; 6885 zone = list_next(&zone_active, zone)) { 6886 if (zone_dl_exists(zone, linkid)) { 6887 *zoneidp = zone->zone_id; 6888 err = 0; 6889 break; 6890 } 6891 } 6892 mutex_exit(&zonehash_lock); 6893 return (err); 6894 } 6895 6896 /* 6897 * Get the list of datalink IDs assigned to a zone. 6898 * 6899 * On input, *nump is the number of datalink IDs that can fit in the supplied 6900 * idarray. Upon return, *nump is either set to the number of datalink IDs 6901 * that were placed in the array if the array was large enough, or to the 6902 * number of datalink IDs that the function needs to place in the array if the 6903 * array is too small. 6904 */ 6905 static int 6906 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6907 { 6908 uint_t num, dlcount; 6909 zone_t *zone; 6910 zone_dl_t *zdl; 6911 datalink_id_t *idptr = idarray; 6912 6913 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6914 return (set_errno(EFAULT)); 6915 if ((zone = zone_find_by_id(zoneid)) == NULL) 6916 return (set_errno(ENXIO)); 6917 6918 num = 0; 6919 mutex_enter(&zone->zone_lock); 6920 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6921 zdl = list_next(&zone->zone_dl_list, zdl)) { 6922 /* 6923 * If the list is bigger than what the caller supplied, just 6924 * count, don't do copyout. 6925 */ 6926 if (++num > dlcount) 6927 continue; 6928 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6929 mutex_exit(&zone->zone_lock); 6930 zone_rele(zone); 6931 return (set_errno(EFAULT)); 6932 } 6933 idptr++; 6934 } 6935 mutex_exit(&zone->zone_lock); 6936 zone_rele(zone); 6937 6938 /* Increased or decreased, caller should be notified. */ 6939 if (num != dlcount) { 6940 if (copyout(&num, nump, sizeof (num)) != 0) 6941 return (set_errno(EFAULT)); 6942 } 6943 return (0); 6944 } 6945 6946 /* 6947 * Public interface for looking up a zone by zoneid. It's a customized version 6948 * for netstack_zone_create(). It can only be called from the zsd create 6949 * callbacks, since it doesn't have reference on the zone structure hence if 6950 * it is called elsewhere the zone could disappear after the zonehash_lock 6951 * is dropped. 6952 * 6953 * Furthermore it 6954 * 1. Doesn't check the status of the zone. 6955 * 2. It will be called even before zone_init is called, in that case the 6956 * address of zone0 is returned directly, and netstack_zone_create() 6957 * will only assign a value to zone0.zone_netstack, won't break anything. 6958 * 3. Returns without the zone being held. 6959 */ 6960 zone_t * 6961 zone_find_by_id_nolock(zoneid_t zoneid) 6962 { 6963 zone_t *zone; 6964 6965 mutex_enter(&zonehash_lock); 6966 if (zonehashbyid == NULL) 6967 zone = &zone0; 6968 else 6969 zone = zone_find_all_by_id(zoneid); 6970 mutex_exit(&zonehash_lock); 6971 return (zone); 6972 } 6973 6974 /* 6975 * Walk the datalinks for a given zone 6976 */ 6977 int 6978 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 6979 void *data) 6980 { 6981 zone_t *zone; 6982 zone_dl_t *zdl; 6983 datalink_id_t *idarray; 6984 uint_t idcount = 0; 6985 int i, ret = 0; 6986 6987 if ((zone = zone_find_by_id(zoneid)) == NULL) 6988 return (ENOENT); 6989 6990 /* 6991 * We first build an array of linkid's so that we can walk these and 6992 * execute the callback with the zone_lock dropped. 6993 */ 6994 mutex_enter(&zone->zone_lock); 6995 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6996 zdl = list_next(&zone->zone_dl_list, zdl)) { 6997 idcount++; 6998 } 6999 7000 if (idcount == 0) { 7001 mutex_exit(&zone->zone_lock); 7002 zone_rele(zone); 7003 return (0); 7004 } 7005 7006 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7007 if (idarray == NULL) { 7008 mutex_exit(&zone->zone_lock); 7009 zone_rele(zone); 7010 return (ENOMEM); 7011 } 7012 7013 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7014 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7015 idarray[i] = zdl->zdl_id; 7016 } 7017 7018 mutex_exit(&zone->zone_lock); 7019 7020 for (i = 0; i < idcount && ret == 0; i++) { 7021 if ((ret = (*cb)(idarray[i], data)) != 0) 7022 break; 7023 } 7024 7025 zone_rele(zone); 7026 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7027 return (ret); 7028 } 7029 7030 static char * 7031 zone_net_type2name(int type) 7032 { 7033 switch (type) { 7034 case ZONE_NETWORK_ADDRESS: 7035 return (ZONE_NET_ADDRNAME); 7036 case ZONE_NETWORK_DEFROUTER: 7037 return (ZONE_NET_RTRNAME); 7038 default: 7039 return (NULL); 7040 } 7041 } 7042 7043 static int 7044 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7045 { 7046 zone_t *zone; 7047 zone_dl_t *zdl; 7048 nvlist_t *nvl; 7049 int err = 0; 7050 uint8_t *new = NULL; 7051 char *nvname; 7052 int bufsize; 7053 datalink_id_t linkid = znbuf->zn_linkid; 7054 7055 if (secpolicy_zone_config(CRED()) != 0) 7056 return (set_errno(EPERM)); 7057 7058 if (zoneid == GLOBAL_ZONEID) 7059 return (set_errno(EINVAL)); 7060 7061 nvname = zone_net_type2name(znbuf->zn_type); 7062 bufsize = znbuf->zn_len; 7063 new = znbuf->zn_val; 7064 if (nvname == NULL) 7065 return (set_errno(EINVAL)); 7066 7067 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7068 return (set_errno(EINVAL)); 7069 } 7070 7071 mutex_enter(&zone->zone_lock); 7072 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7073 err = ENXIO; 7074 goto done; 7075 } 7076 if ((nvl = zdl->zdl_net) == NULL) { 7077 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7078 err = ENOMEM; 7079 goto done; 7080 } else { 7081 zdl->zdl_net = nvl; 7082 } 7083 } 7084 if (nvlist_exists(nvl, nvname)) { 7085 err = EINVAL; 7086 goto done; 7087 } 7088 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7089 ASSERT(err == 0); 7090 done: 7091 mutex_exit(&zone->zone_lock); 7092 zone_rele(zone); 7093 if (err != 0) 7094 return (set_errno(err)); 7095 else 7096 return (0); 7097 } 7098 7099 static int 7100 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7101 { 7102 zone_t *zone; 7103 zone_dl_t *zdl; 7104 nvlist_t *nvl; 7105 uint8_t *ptr; 7106 uint_t psize; 7107 int err = 0; 7108 char *nvname; 7109 int bufsize; 7110 void *buf; 7111 datalink_id_t linkid = znbuf->zn_linkid; 7112 7113 if (zoneid == GLOBAL_ZONEID) 7114 return (set_errno(EINVAL)); 7115 7116 nvname = zone_net_type2name(znbuf->zn_type); 7117 bufsize = znbuf->zn_len; 7118 buf = znbuf->zn_val; 7119 7120 if (nvname == NULL) 7121 return (set_errno(EINVAL)); 7122 if ((zone = zone_find_by_id(zoneid)) == NULL) 7123 return (set_errno(EINVAL)); 7124 7125 mutex_enter(&zone->zone_lock); 7126 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7127 err = ENXIO; 7128 goto done; 7129 } 7130 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7131 err = ENOENT; 7132 goto done; 7133 } 7134 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7135 ASSERT(err == 0); 7136 7137 if (psize > bufsize) { 7138 err = ENOBUFS; 7139 goto done; 7140 } 7141 znbuf->zn_len = psize; 7142 bcopy(ptr, buf, psize); 7143 done: 7144 mutex_exit(&zone->zone_lock); 7145 zone_rele(zone); 7146 if (err != 0) 7147 return (set_errno(err)); 7148 else 7149 return (0); 7150 } 7151