1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 164 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 165 * list (a list of zones in the ZONE_IS_DEAD state). 166 * 167 * Ordering requirements: 168 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 169 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 170 * 171 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 172 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 173 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 174 * 175 * Blocking memory allocations are permitted while holding any of the 176 * zone locks. 177 * 178 * 179 * System Call Interface: 180 * 181 * The zone subsystem can be managed and queried from user level with 182 * the following system calls (all subcodes of the primary "zone" 183 * system call): 184 * - zone_create: creates a zone with selected attributes (name, 185 * root path, privileges, resource controls, ZFS datasets) 186 * - zone_enter: allows the current process to enter a zone 187 * - zone_getattr: reports attributes of a zone 188 * - zone_setattr: set attributes of a zone 189 * - zone_boot: set 'init' running for the zone 190 * - zone_list: lists all zones active in the system 191 * - zone_lookup: looks up zone id based on name 192 * - zone_shutdown: initiates shutdown process (see states above) 193 * - zone_destroy: completes shutdown process (see states above) 194 * 195 */ 196 197 #include <sys/priv_impl.h> 198 #include <sys/cred.h> 199 #include <c2/audit.h> 200 #include <sys/debug.h> 201 #include <sys/file.h> 202 #include <sys/kmem.h> 203 #include <sys/kstat.h> 204 #include <sys/mutex.h> 205 #include <sys/note.h> 206 #include <sys/pathname.h> 207 #include <sys/proc.h> 208 #include <sys/project.h> 209 #include <sys/sysevent.h> 210 #include <sys/task.h> 211 #include <sys/systm.h> 212 #include <sys/types.h> 213 #include <sys/utsname.h> 214 #include <sys/vnode.h> 215 #include <sys/vfs.h> 216 #include <sys/systeminfo.h> 217 #include <sys/policy.h> 218 #include <sys/cred_impl.h> 219 #include <sys/contract_impl.h> 220 #include <sys/contract/process_impl.h> 221 #include <sys/class.h> 222 #include <sys/pool.h> 223 #include <sys/pool_pset.h> 224 #include <sys/pset.h> 225 #include <sys/sysmacros.h> 226 #include <sys/callb.h> 227 #include <sys/vmparam.h> 228 #include <sys/corectl.h> 229 #include <sys/ipc_impl.h> 230 231 #include <sys/door.h> 232 #include <sys/cpuvar.h> 233 #include <sys/sdt.h> 234 235 #include <sys/uadmin.h> 236 #include <sys/session.h> 237 #include <sys/cmn_err.h> 238 #include <sys/modhash.h> 239 #include <sys/sunddi.h> 240 #include <sys/nvpair.h> 241 #include <sys/rctl.h> 242 #include <sys/fss.h> 243 #include <sys/brand.h> 244 #include <sys/zone.h> 245 #include <net/if.h> 246 #include <sys/cpucaps.h> 247 #include <vm/seg.h> 248 249 /* 250 * cv used to signal that all references to the zone have been released. This 251 * needs to be global since there may be multiple waiters, and the first to 252 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 253 */ 254 static kcondvar_t zone_destroy_cv; 255 /* 256 * Lock used to serialize access to zone_cv. This could have been per-zone, 257 * but then we'd need another lock for zone_destroy_cv, and why bother? 258 */ 259 static kmutex_t zone_status_lock; 260 261 /* 262 * ZSD-related global variables. 263 */ 264 static kmutex_t zsd_key_lock; /* protects the following two */ 265 /* 266 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 267 */ 268 static zone_key_t zsd_keyval = 0; 269 /* 270 * Global list of registered keys. We use this when a new zone is created. 271 */ 272 static list_t zsd_registered_keys; 273 274 int zone_hash_size = 256; 275 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 276 static kmutex_t zonehash_lock; 277 static uint_t zonecount; 278 static id_space_t *zoneid_space; 279 280 /* 281 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 282 * kernel proper runs, and which manages all other zones. 283 * 284 * Although not declared as static, the variable "zone0" should not be used 285 * except for by code that needs to reference the global zone early on in boot, 286 * before it is fully initialized. All other consumers should use 287 * 'global_zone'. 288 */ 289 zone_t zone0; 290 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 291 292 /* 293 * List of active zones, protected by zonehash_lock. 294 */ 295 static list_t zone_active; 296 297 /* 298 * List of destroyed zones that still have outstanding cred references. 299 * Used for debugging. Uses a separate lock to avoid lock ordering 300 * problems in zone_free. 301 */ 302 static list_t zone_deathrow; 303 static kmutex_t zone_deathrow_lock; 304 305 /* number of zones is limited by virtual interface limit in IP */ 306 uint_t maxzones = 8192; 307 308 /* Event channel to sent zone state change notifications */ 309 evchan_t *zone_event_chan; 310 311 /* 312 * This table holds the mapping from kernel zone states to 313 * states visible in the state notification API. 314 * The idea is that we only expose "obvious" states and 315 * do not expose states which are just implementation details. 316 */ 317 const char *zone_status_table[] = { 318 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 319 ZONE_EVENT_INITIALIZED, /* initialized */ 320 ZONE_EVENT_READY, /* ready */ 321 ZONE_EVENT_READY, /* booting */ 322 ZONE_EVENT_RUNNING, /* running */ 323 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 324 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 325 ZONE_EVENT_SHUTTING_DOWN, /* down */ 326 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 327 ZONE_EVENT_UNINITIALIZED, /* dead */ 328 }; 329 330 /* 331 * This isn't static so lint doesn't complain. 332 */ 333 rctl_hndl_t rc_zone_cpu_shares; 334 rctl_hndl_t rc_zone_locked_mem; 335 rctl_hndl_t rc_zone_max_swap; 336 rctl_hndl_t rc_zone_cpu_cap; 337 rctl_hndl_t rc_zone_nlwps; 338 rctl_hndl_t rc_zone_shmmax; 339 rctl_hndl_t rc_zone_shmmni; 340 rctl_hndl_t rc_zone_semmni; 341 rctl_hndl_t rc_zone_msgmni; 342 /* 343 * Synchronization primitives used to synchronize between mounts and zone 344 * creation/destruction. 345 */ 346 static int mounts_in_progress; 347 static kcondvar_t mount_cv; 348 static kmutex_t mount_lock; 349 350 const char * const zone_default_initname = "/sbin/init"; 351 static char * const zone_prefix = "/zone/"; 352 static int zone_shutdown(zoneid_t zoneid); 353 static int zone_add_datalink(zoneid_t, char *); 354 static int zone_remove_datalink(zoneid_t, char *); 355 static int zone_check_datalink(zoneid_t *, char *); 356 static int zone_list_datalink(zoneid_t, int *, char *); 357 358 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 359 360 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 361 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 362 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 363 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 364 zone_key_t); 365 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 366 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 367 kmutex_t *); 368 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 369 kmutex_t *); 370 371 /* 372 * Bump this number when you alter the zone syscall interfaces; this is 373 * because we need to have support for previous API versions in libc 374 * to support patching; libc calls into the kernel to determine this number. 375 * 376 * Version 1 of the API is the version originally shipped with Solaris 10 377 * Version 2 alters the zone_create system call in order to support more 378 * arguments by moving the args into a structure; and to do better 379 * error reporting when zone_create() fails. 380 * Version 3 alters the zone_create system call in order to support the 381 * import of ZFS datasets to zones. 382 * Version 4 alters the zone_create system call in order to support 383 * Trusted Extensions. 384 * Version 5 alters the zone_boot system call, and converts its old 385 * bootargs parameter to be set by the zone_setattr API instead. 386 * Version 6 adds the flag argument to zone_create. 387 */ 388 static const int ZONE_SYSCALL_API_VERSION = 6; 389 390 /* 391 * Certain filesystems (such as NFS and autofs) need to know which zone 392 * the mount is being placed in. Because of this, we need to be able to 393 * ensure that a zone isn't in the process of being created such that 394 * nfs_mount() thinks it is in the global zone, while by the time it 395 * gets added the list of mounted zones, it ends up on zoneA's mount 396 * list. 397 * 398 * The following functions: block_mounts()/resume_mounts() and 399 * mount_in_progress()/mount_completed() are used by zones and the VFS 400 * layer (respectively) to synchronize zone creation and new mounts. 401 * 402 * The semantics are like a reader-reader lock such that there may 403 * either be multiple mounts (or zone creations, if that weren't 404 * serialized by zonehash_lock) in progress at the same time, but not 405 * both. 406 * 407 * We use cv's so the user can ctrl-C out of the operation if it's 408 * taking too long. 409 * 410 * The semantics are such that there is unfair bias towards the 411 * "current" operation. This means that zone creations may starve if 412 * there is a rapid succession of new mounts coming in to the system, or 413 * there is a remote possibility that zones will be created at such a 414 * rate that new mounts will not be able to proceed. 415 */ 416 /* 417 * Prevent new mounts from progressing to the point of calling 418 * VFS_MOUNT(). If there are already mounts in this "region", wait for 419 * them to complete. 420 */ 421 static int 422 block_mounts(void) 423 { 424 int retval = 0; 425 426 /* 427 * Since it may block for a long time, block_mounts() shouldn't be 428 * called with zonehash_lock held. 429 */ 430 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 431 mutex_enter(&mount_lock); 432 while (mounts_in_progress > 0) { 433 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 434 goto signaled; 435 } 436 /* 437 * A negative value of mounts_in_progress indicates that mounts 438 * have been blocked by (-mounts_in_progress) different callers. 439 */ 440 mounts_in_progress--; 441 retval = 1; 442 signaled: 443 mutex_exit(&mount_lock); 444 return (retval); 445 } 446 447 /* 448 * The VFS layer may progress with new mounts as far as we're concerned. 449 * Allow them to progress if we were the last obstacle. 450 */ 451 static void 452 resume_mounts(void) 453 { 454 mutex_enter(&mount_lock); 455 if (++mounts_in_progress == 0) 456 cv_broadcast(&mount_cv); 457 mutex_exit(&mount_lock); 458 } 459 460 /* 461 * The VFS layer is busy with a mount; zones should wait until all 462 * mounts are completed to progress. 463 */ 464 void 465 mount_in_progress(void) 466 { 467 mutex_enter(&mount_lock); 468 while (mounts_in_progress < 0) 469 cv_wait(&mount_cv, &mount_lock); 470 mounts_in_progress++; 471 mutex_exit(&mount_lock); 472 } 473 474 /* 475 * VFS is done with one mount; wake up any waiting block_mounts() 476 * callers if this is the last mount. 477 */ 478 void 479 mount_completed(void) 480 { 481 mutex_enter(&mount_lock); 482 if (--mounts_in_progress == 0) 483 cv_broadcast(&mount_cv); 484 mutex_exit(&mount_lock); 485 } 486 487 /* 488 * ZSD routines. 489 * 490 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 491 * defined by the pthread_key_create() and related interfaces. 492 * 493 * Kernel subsystems may register one or more data items and/or 494 * callbacks to be executed when a zone is created, shutdown, or 495 * destroyed. 496 * 497 * Unlike the thread counterpart, destructor callbacks will be executed 498 * even if the data pointer is NULL and/or there are no constructor 499 * callbacks, so it is the responsibility of such callbacks to check for 500 * NULL data values if necessary. 501 * 502 * The locking strategy and overall picture is as follows: 503 * 504 * When someone calls zone_key_create(), a template ZSD entry is added to the 505 * global list "zsd_registered_keys", protected by zsd_key_lock. While 506 * holding that lock all the existing zones are marked as 507 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 508 * zone_zsd list (protected by zone_lock). The global list is updated first 509 * (under zone_key_lock) to make sure that newly created zones use the 510 * most recent list of keys. Then under zonehash_lock we walk the zones 511 * and mark them. Similar locking is used in zone_key_delete(). 512 * 513 * The actual create, shutdown, and destroy callbacks are done without 514 * holding any lock. And zsd_flags are used to ensure that the operations 515 * completed so that when zone_key_create (and zone_create) is done, as well as 516 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 517 * are completed. 518 * 519 * When new zones are created constructor callbacks for all registered ZSD 520 * entries will be called. That also uses the above two phases of marking 521 * what needs to be done, and then running the callbacks without holding 522 * any locks. 523 * 524 * The framework does not provide any locking around zone_getspecific() and 525 * zone_setspecific() apart from that needed for internal consistency, so 526 * callers interested in atomic "test-and-set" semantics will need to provide 527 * their own locking. 528 */ 529 530 /* 531 * Helper function to find the zsd_entry associated with the key in the 532 * given list. 533 */ 534 static struct zsd_entry * 535 zsd_find(list_t *l, zone_key_t key) 536 { 537 struct zsd_entry *zsd; 538 539 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 540 if (zsd->zsd_key == key) { 541 return (zsd); 542 } 543 } 544 return (NULL); 545 } 546 547 /* 548 * Helper function to find the zsd_entry associated with the key in the 549 * given list. Move it to the front of the list. 550 */ 551 static struct zsd_entry * 552 zsd_find_mru(list_t *l, zone_key_t key) 553 { 554 struct zsd_entry *zsd; 555 556 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 557 if (zsd->zsd_key == key) { 558 /* 559 * Move to head of list to keep list in MRU order. 560 */ 561 if (zsd != list_head(l)) { 562 list_remove(l, zsd); 563 list_insert_head(l, zsd); 564 } 565 return (zsd); 566 } 567 } 568 return (NULL); 569 } 570 571 void 572 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 573 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 574 { 575 struct zsd_entry *zsdp; 576 struct zsd_entry *t; 577 struct zone *zone; 578 zone_key_t key; 579 580 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 581 zsdp->zsd_data = NULL; 582 zsdp->zsd_create = create; 583 zsdp->zsd_shutdown = shutdown; 584 zsdp->zsd_destroy = destroy; 585 586 /* 587 * Insert in global list of callbacks. Makes future zone creations 588 * see it. 589 */ 590 mutex_enter(&zsd_key_lock); 591 *keyp = key = zsdp->zsd_key = ++zsd_keyval; 592 ASSERT(zsd_keyval != 0); 593 list_insert_tail(&zsd_registered_keys, zsdp); 594 mutex_exit(&zsd_key_lock); 595 596 /* 597 * Insert for all existing zones and mark them as needing 598 * a create callback. 599 */ 600 mutex_enter(&zonehash_lock); /* stop the world */ 601 for (zone = list_head(&zone_active); zone != NULL; 602 zone = list_next(&zone_active, zone)) { 603 zone_status_t status; 604 605 mutex_enter(&zone->zone_lock); 606 607 /* Skip zones that are on the way down or not yet up */ 608 status = zone_status_get(zone); 609 if (status >= ZONE_IS_DOWN || 610 status == ZONE_IS_UNINITIALIZED) { 611 mutex_exit(&zone->zone_lock); 612 continue; 613 } 614 615 t = zsd_find_mru(&zone->zone_zsd, key); 616 if (t != NULL) { 617 /* 618 * A zsd_configure already inserted it after 619 * we dropped zsd_key_lock above. 620 */ 621 mutex_exit(&zone->zone_lock); 622 continue; 623 } 624 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 625 t->zsd_key = key; 626 t->zsd_create = create; 627 t->zsd_shutdown = shutdown; 628 t->zsd_destroy = destroy; 629 if (create != NULL) { 630 t->zsd_flags = ZSD_CREATE_NEEDED; 631 DTRACE_PROBE2(zsd__create__needed, 632 zone_t *, zone, zone_key_t, key); 633 } 634 list_insert_tail(&zone->zone_zsd, t); 635 mutex_exit(&zone->zone_lock); 636 } 637 mutex_exit(&zonehash_lock); 638 639 if (create != NULL) { 640 /* Now call the create callback for this key */ 641 zsd_apply_all_zones(zsd_apply_create, key); 642 } 643 } 644 645 /* 646 * Function called when a module is being unloaded, or otherwise wishes 647 * to unregister its ZSD key and callbacks. 648 * 649 * Remove from the global list and determine the functions that need to 650 * be called under a global lock. Then call the functions without 651 * holding any locks. Finally free up the zone_zsd entries. (The apply 652 * functions need to access the zone_zsd entries to find zsd_data etc.) 653 */ 654 int 655 zone_key_delete(zone_key_t key) 656 { 657 struct zsd_entry *zsdp = NULL; 658 zone_t *zone; 659 660 mutex_enter(&zsd_key_lock); 661 zsdp = zsd_find_mru(&zsd_registered_keys, key); 662 if (zsdp == NULL) { 663 mutex_exit(&zsd_key_lock); 664 return (-1); 665 } 666 list_remove(&zsd_registered_keys, zsdp); 667 mutex_exit(&zsd_key_lock); 668 669 mutex_enter(&zonehash_lock); 670 for (zone = list_head(&zone_active); zone != NULL; 671 zone = list_next(&zone_active, zone)) { 672 struct zsd_entry *del; 673 674 mutex_enter(&zone->zone_lock); 675 del = zsd_find_mru(&zone->zone_zsd, key); 676 if (del == NULL) { 677 /* 678 * Somebody else got here first e.g the zone going 679 * away. 680 */ 681 mutex_exit(&zone->zone_lock); 682 continue; 683 } 684 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 685 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 686 if (del->zsd_shutdown != NULL && 687 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 688 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 689 DTRACE_PROBE2(zsd__shutdown__needed, 690 zone_t *, zone, zone_key_t, key); 691 } 692 if (del->zsd_destroy != NULL && 693 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 694 del->zsd_flags |= ZSD_DESTROY_NEEDED; 695 DTRACE_PROBE2(zsd__destroy__needed, 696 zone_t *, zone, zone_key_t, key); 697 } 698 mutex_exit(&zone->zone_lock); 699 } 700 mutex_exit(&zonehash_lock); 701 kmem_free(zsdp, sizeof (*zsdp)); 702 703 /* Now call the shutdown and destroy callback for this key */ 704 zsd_apply_all_zones(zsd_apply_shutdown, key); 705 zsd_apply_all_zones(zsd_apply_destroy, key); 706 707 /* Now we can free up the zsdp structures in each zone */ 708 mutex_enter(&zonehash_lock); 709 for (zone = list_head(&zone_active); zone != NULL; 710 zone = list_next(&zone_active, zone)) { 711 struct zsd_entry *del; 712 713 mutex_enter(&zone->zone_lock); 714 del = zsd_find(&zone->zone_zsd, key); 715 if (del != NULL) { 716 list_remove(&zone->zone_zsd, del); 717 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 718 kmem_free(del, sizeof (*del)); 719 } 720 mutex_exit(&zone->zone_lock); 721 } 722 mutex_exit(&zonehash_lock); 723 724 return (0); 725 } 726 727 /* 728 * ZSD counterpart of pthread_setspecific(). 729 * 730 * Since all zsd callbacks, including those with no create function, 731 * have an entry in zone_zsd, if the key is registered it is part of 732 * the zone_zsd list. 733 * Return an error if the key wasn't registerd. 734 */ 735 int 736 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 737 { 738 struct zsd_entry *t; 739 740 mutex_enter(&zone->zone_lock); 741 t = zsd_find_mru(&zone->zone_zsd, key); 742 if (t != NULL) { 743 /* 744 * Replace old value with new 745 */ 746 t->zsd_data = (void *)data; 747 mutex_exit(&zone->zone_lock); 748 return (0); 749 } 750 mutex_exit(&zone->zone_lock); 751 return (-1); 752 } 753 754 /* 755 * ZSD counterpart of pthread_getspecific(). 756 */ 757 void * 758 zone_getspecific(zone_key_t key, zone_t *zone) 759 { 760 struct zsd_entry *t; 761 void *data; 762 763 mutex_enter(&zone->zone_lock); 764 t = zsd_find_mru(&zone->zone_zsd, key); 765 data = (t == NULL ? NULL : t->zsd_data); 766 mutex_exit(&zone->zone_lock); 767 return (data); 768 } 769 770 /* 771 * Function used to initialize a zone's list of ZSD callbacks and data 772 * when the zone is being created. The callbacks are initialized from 773 * the template list (zsd_registered_keys). The constructor callback is 774 * executed later (once the zone exists and with locks dropped). 775 */ 776 static void 777 zone_zsd_configure(zone_t *zone) 778 { 779 struct zsd_entry *zsdp; 780 struct zsd_entry *t; 781 782 ASSERT(MUTEX_HELD(&zonehash_lock)); 783 ASSERT(list_head(&zone->zone_zsd) == NULL); 784 mutex_enter(&zone->zone_lock); 785 mutex_enter(&zsd_key_lock); 786 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 787 zsdp = list_next(&zsd_registered_keys, zsdp)) { 788 /* 789 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 790 * should not have added anything to it. 791 */ 792 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 793 794 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 795 t->zsd_key = zsdp->zsd_key; 796 t->zsd_create = zsdp->zsd_create; 797 t->zsd_shutdown = zsdp->zsd_shutdown; 798 t->zsd_destroy = zsdp->zsd_destroy; 799 if (zsdp->zsd_create != NULL) { 800 t->zsd_flags = ZSD_CREATE_NEEDED; 801 DTRACE_PROBE2(zsd__create__needed, 802 zone_t *, zone, zone_key_t, zsdp->zsd_key); 803 } 804 list_insert_tail(&zone->zone_zsd, t); 805 } 806 mutex_exit(&zsd_key_lock); 807 mutex_exit(&zone->zone_lock); 808 } 809 810 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 811 812 /* 813 * Helper function to execute shutdown or destructor callbacks. 814 */ 815 static void 816 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 817 { 818 struct zsd_entry *t; 819 820 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 821 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 822 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 823 824 /* 825 * Run the callback solely based on what is registered for the zone 826 * in zone_zsd. The global list can change independently of this 827 * as keys are registered and unregistered and we don't register new 828 * callbacks for a zone that is in the process of going away. 829 */ 830 mutex_enter(&zone->zone_lock); 831 for (t = list_head(&zone->zone_zsd); t != NULL; 832 t = list_next(&zone->zone_zsd, t)) { 833 zone_key_t key = t->zsd_key; 834 835 /* Skip if no callbacks registered */ 836 837 if (ct == ZSD_SHUTDOWN) { 838 if (t->zsd_shutdown != NULL && 839 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 840 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 841 DTRACE_PROBE2(zsd__shutdown__needed, 842 zone_t *, zone, zone_key_t, key); 843 } 844 } else { 845 if (t->zsd_destroy != NULL && 846 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 847 t->zsd_flags |= ZSD_DESTROY_NEEDED; 848 DTRACE_PROBE2(zsd__destroy__needed, 849 zone_t *, zone, zone_key_t, key); 850 } 851 } 852 } 853 mutex_exit(&zone->zone_lock); 854 855 /* Now call the shutdown and destroy callback for this key */ 856 zsd_apply_all_keys(zsd_apply_shutdown, zone); 857 zsd_apply_all_keys(zsd_apply_destroy, zone); 858 859 } 860 861 /* 862 * Called when the zone is going away; free ZSD-related memory, and 863 * destroy the zone_zsd list. 864 */ 865 static void 866 zone_free_zsd(zone_t *zone) 867 { 868 struct zsd_entry *t, *next; 869 870 /* 871 * Free all the zsd_entry's we had on this zone. 872 */ 873 mutex_enter(&zone->zone_lock); 874 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 875 next = list_next(&zone->zone_zsd, t); 876 list_remove(&zone->zone_zsd, t); 877 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 878 kmem_free(t, sizeof (*t)); 879 } 880 list_destroy(&zone->zone_zsd); 881 mutex_exit(&zone->zone_lock); 882 883 } 884 885 /* 886 * Apply a function to all zones for particular key value. 887 * 888 * The applyfn has to drop zonehash_lock if it does some work, and 889 * then reacquire it before it returns. 890 * When the lock is dropped we don't follow list_next even 891 * if it is possible to do so without any hazards. This is 892 * because we want the design to allow for the list of zones 893 * to change in any arbitrary way during the time the 894 * lock was dropped. 895 * 896 * It is safe to restart the loop at list_head since the applyfn 897 * changes the zsd_flags as it does work, so a subsequent 898 * pass through will have no effect in applyfn, hence the loop will terminate 899 * in at worst O(N^2). 900 */ 901 static void 902 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 903 { 904 zone_t *zone; 905 906 mutex_enter(&zonehash_lock); 907 zone = list_head(&zone_active); 908 while (zone != NULL) { 909 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 910 /* Lock dropped - restart at head */ 911 zone = list_head(&zone_active); 912 } else { 913 zone = list_next(&zone_active, zone); 914 } 915 } 916 mutex_exit(&zonehash_lock); 917 } 918 919 /* 920 * Apply a function to all keys for a particular zone. 921 * 922 * The applyfn has to drop zonehash_lock if it does some work, and 923 * then reacquire it before it returns. 924 * When the lock is dropped we don't follow list_next even 925 * if it is possible to do so without any hazards. This is 926 * because we want the design to allow for the list of zsd callbacks 927 * to change in any arbitrary way during the time the 928 * lock was dropped. 929 * 930 * It is safe to restart the loop at list_head since the applyfn 931 * changes the zsd_flags as it does work, so a subsequent 932 * pass through will have no effect in applyfn, hence the loop will terminate 933 * in at worst O(N^2). 934 */ 935 static void 936 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 937 { 938 struct zsd_entry *t; 939 940 mutex_enter(&zone->zone_lock); 941 t = list_head(&zone->zone_zsd); 942 while (t != NULL) { 943 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 944 /* Lock dropped - restart at head */ 945 t = list_head(&zone->zone_zsd); 946 } else { 947 t = list_next(&zone->zone_zsd, t); 948 } 949 } 950 mutex_exit(&zone->zone_lock); 951 } 952 953 /* 954 * Call the create function for the zone and key if CREATE_NEEDED 955 * is set. 956 * If some other thread gets here first and sets CREATE_INPROGRESS, then 957 * we wait for that thread to complete so that we can ensure that 958 * all the callbacks are done when we've looped over all zones/keys. 959 * 960 * When we call the create function, we drop the global held by the 961 * caller, and return true to tell the caller it needs to re-evalute the 962 * state. 963 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 964 * remains held on exit. 965 */ 966 static boolean_t 967 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 968 zone_t *zone, zone_key_t key) 969 { 970 void *result; 971 struct zsd_entry *t; 972 boolean_t dropped; 973 974 if (lockp != NULL) { 975 ASSERT(MUTEX_HELD(lockp)); 976 } 977 if (zone_lock_held) { 978 ASSERT(MUTEX_HELD(&zone->zone_lock)); 979 } else { 980 mutex_enter(&zone->zone_lock); 981 } 982 983 t = zsd_find(&zone->zone_zsd, key); 984 if (t == NULL) { 985 /* 986 * Somebody else got here first e.g the zone going 987 * away. 988 */ 989 if (!zone_lock_held) 990 mutex_exit(&zone->zone_lock); 991 return (B_FALSE); 992 } 993 dropped = B_FALSE; 994 if (zsd_wait_for_inprogress(zone, t, lockp)) 995 dropped = B_TRUE; 996 997 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 998 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 999 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1000 DTRACE_PROBE2(zsd__create__inprogress, 1001 zone_t *, zone, zone_key_t, key); 1002 mutex_exit(&zone->zone_lock); 1003 if (lockp != NULL) 1004 mutex_exit(lockp); 1005 1006 dropped = B_TRUE; 1007 ASSERT(t->zsd_create != NULL); 1008 DTRACE_PROBE2(zsd__create__start, 1009 zone_t *, zone, zone_key_t, key); 1010 1011 result = (*t->zsd_create)(zone->zone_id); 1012 1013 DTRACE_PROBE2(zsd__create__end, 1014 zone_t *, zone, voidn *, result); 1015 1016 ASSERT(result != NULL); 1017 if (lockp != NULL) 1018 mutex_enter(lockp); 1019 mutex_enter(&zone->zone_lock); 1020 t->zsd_data = result; 1021 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1022 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1023 cv_broadcast(&t->zsd_cv); 1024 DTRACE_PROBE2(zsd__create__completed, 1025 zone_t *, zone, zone_key_t, key); 1026 } 1027 if (!zone_lock_held) 1028 mutex_exit(&zone->zone_lock); 1029 return (dropped); 1030 } 1031 1032 /* 1033 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1034 * is set. 1035 * If some other thread gets here first and sets *_INPROGRESS, then 1036 * we wait for that thread to complete so that we can ensure that 1037 * all the callbacks are done when we've looped over all zones/keys. 1038 * 1039 * When we call the shutdown function, we drop the global held by the 1040 * caller, and return true to tell the caller it needs to re-evalute the 1041 * state. 1042 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1043 * remains held on exit. 1044 */ 1045 static boolean_t 1046 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1047 zone_t *zone, zone_key_t key) 1048 { 1049 struct zsd_entry *t; 1050 void *data; 1051 boolean_t dropped; 1052 1053 if (lockp != NULL) { 1054 ASSERT(MUTEX_HELD(lockp)); 1055 } 1056 if (zone_lock_held) { 1057 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1058 } else { 1059 mutex_enter(&zone->zone_lock); 1060 } 1061 1062 t = zsd_find(&zone->zone_zsd, key); 1063 if (t == NULL) { 1064 /* 1065 * Somebody else got here first e.g the zone going 1066 * away. 1067 */ 1068 if (!zone_lock_held) 1069 mutex_exit(&zone->zone_lock); 1070 return (B_FALSE); 1071 } 1072 dropped = B_FALSE; 1073 if (zsd_wait_for_creator(zone, t, lockp)) 1074 dropped = B_TRUE; 1075 1076 if (zsd_wait_for_inprogress(zone, t, lockp)) 1077 dropped = B_TRUE; 1078 1079 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1080 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1081 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1082 DTRACE_PROBE2(zsd__shutdown__inprogress, 1083 zone_t *, zone, zone_key_t, key); 1084 mutex_exit(&zone->zone_lock); 1085 if (lockp != NULL) 1086 mutex_exit(lockp); 1087 dropped = B_TRUE; 1088 1089 ASSERT(t->zsd_shutdown != NULL); 1090 data = t->zsd_data; 1091 1092 DTRACE_PROBE2(zsd__shutdown__start, 1093 zone_t *, zone, zone_key_t, key); 1094 1095 (t->zsd_shutdown)(zone->zone_id, data); 1096 DTRACE_PROBE2(zsd__shutdown__end, 1097 zone_t *, zone, zone_key_t, key); 1098 1099 if (lockp != NULL) 1100 mutex_enter(lockp); 1101 mutex_enter(&zone->zone_lock); 1102 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1103 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1104 cv_broadcast(&t->zsd_cv); 1105 DTRACE_PROBE2(zsd__shutdown__completed, 1106 zone_t *, zone, zone_key_t, key); 1107 } 1108 if (!zone_lock_held) 1109 mutex_exit(&zone->zone_lock); 1110 return (dropped); 1111 } 1112 1113 /* 1114 * Call the destroy function for the zone and key if DESTROY_NEEDED 1115 * is set. 1116 * If some other thread gets here first and sets *_INPROGRESS, then 1117 * we wait for that thread to complete so that we can ensure that 1118 * all the callbacks are done when we've looped over all zones/keys. 1119 * 1120 * When we call the destroy function, we drop the global held by the 1121 * caller, and return true to tell the caller it needs to re-evalute the 1122 * state. 1123 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1124 * remains held on exit. 1125 */ 1126 static boolean_t 1127 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1128 zone_t *zone, zone_key_t key) 1129 { 1130 struct zsd_entry *t; 1131 void *data; 1132 boolean_t dropped; 1133 1134 if (lockp != NULL) { 1135 ASSERT(MUTEX_HELD(lockp)); 1136 } 1137 if (zone_lock_held) { 1138 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1139 } else { 1140 mutex_enter(&zone->zone_lock); 1141 } 1142 1143 t = zsd_find(&zone->zone_zsd, key); 1144 if (t == NULL) { 1145 /* 1146 * Somebody else got here first e.g the zone going 1147 * away. 1148 */ 1149 if (!zone_lock_held) 1150 mutex_exit(&zone->zone_lock); 1151 return (B_FALSE); 1152 } 1153 dropped = B_FALSE; 1154 if (zsd_wait_for_creator(zone, t, lockp)) 1155 dropped = B_TRUE; 1156 1157 if (zsd_wait_for_inprogress(zone, t, lockp)) 1158 dropped = B_TRUE; 1159 1160 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1161 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1162 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1163 DTRACE_PROBE2(zsd__destroy__inprogress, 1164 zone_t *, zone, zone_key_t, key); 1165 mutex_exit(&zone->zone_lock); 1166 if (lockp != NULL) 1167 mutex_exit(lockp); 1168 dropped = B_TRUE; 1169 1170 ASSERT(t->zsd_destroy != NULL); 1171 data = t->zsd_data; 1172 DTRACE_PROBE2(zsd__destroy__start, 1173 zone_t *, zone, zone_key_t, key); 1174 1175 (t->zsd_destroy)(zone->zone_id, data); 1176 DTRACE_PROBE2(zsd__destroy__end, 1177 zone_t *, zone, zone_key_t, key); 1178 1179 if (lockp != NULL) 1180 mutex_enter(lockp); 1181 mutex_enter(&zone->zone_lock); 1182 t->zsd_data = NULL; 1183 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1184 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1185 cv_broadcast(&t->zsd_cv); 1186 DTRACE_PROBE2(zsd__destroy__completed, 1187 zone_t *, zone, zone_key_t, key); 1188 } 1189 if (!zone_lock_held) 1190 mutex_exit(&zone->zone_lock); 1191 return (dropped); 1192 } 1193 1194 /* 1195 * Wait for any CREATE_NEEDED flag to be cleared. 1196 * Returns true if lockp was temporarily dropped while waiting. 1197 */ 1198 static boolean_t 1199 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1200 { 1201 boolean_t dropped = B_FALSE; 1202 1203 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1204 DTRACE_PROBE2(zsd__wait__for__creator, 1205 zone_t *, zone, struct zsd_entry *, t); 1206 if (lockp != NULL) { 1207 dropped = B_TRUE; 1208 mutex_exit(lockp); 1209 } 1210 cv_wait(&t->zsd_cv, &zone->zone_lock); 1211 if (lockp != NULL) { 1212 /* First drop zone_lock to preserve order */ 1213 mutex_exit(&zone->zone_lock); 1214 mutex_enter(lockp); 1215 mutex_enter(&zone->zone_lock); 1216 } 1217 } 1218 return (dropped); 1219 } 1220 1221 /* 1222 * Wait for any INPROGRESS flag to be cleared. 1223 * Returns true if lockp was temporarily dropped while waiting. 1224 */ 1225 static boolean_t 1226 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1227 { 1228 boolean_t dropped = B_FALSE; 1229 1230 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1231 DTRACE_PROBE2(zsd__wait__for__inprogress, 1232 zone_t *, zone, struct zsd_entry *, t); 1233 if (lockp != NULL) { 1234 dropped = B_TRUE; 1235 mutex_exit(lockp); 1236 } 1237 cv_wait(&t->zsd_cv, &zone->zone_lock); 1238 if (lockp != NULL) { 1239 /* First drop zone_lock to preserve order */ 1240 mutex_exit(&zone->zone_lock); 1241 mutex_enter(lockp); 1242 mutex_enter(&zone->zone_lock); 1243 } 1244 } 1245 return (dropped); 1246 } 1247 1248 /* 1249 * Frees memory associated with the zone dataset list. 1250 */ 1251 static void 1252 zone_free_datasets(zone_t *zone) 1253 { 1254 zone_dataset_t *t, *next; 1255 1256 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1257 next = list_next(&zone->zone_datasets, t); 1258 list_remove(&zone->zone_datasets, t); 1259 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1260 kmem_free(t, sizeof (*t)); 1261 } 1262 list_destroy(&zone->zone_datasets); 1263 } 1264 1265 /* 1266 * zone.cpu-shares resource control support. 1267 */ 1268 /*ARGSUSED*/ 1269 static rctl_qty_t 1270 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1271 { 1272 ASSERT(MUTEX_HELD(&p->p_lock)); 1273 return (p->p_zone->zone_shares); 1274 } 1275 1276 /*ARGSUSED*/ 1277 static int 1278 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1279 rctl_qty_t nv) 1280 { 1281 ASSERT(MUTEX_HELD(&p->p_lock)); 1282 ASSERT(e->rcep_t == RCENTITY_ZONE); 1283 if (e->rcep_p.zone == NULL) 1284 return (0); 1285 1286 e->rcep_p.zone->zone_shares = nv; 1287 return (0); 1288 } 1289 1290 static rctl_ops_t zone_cpu_shares_ops = { 1291 rcop_no_action, 1292 zone_cpu_shares_usage, 1293 zone_cpu_shares_set, 1294 rcop_no_test 1295 }; 1296 1297 /* 1298 * zone.cpu-cap resource control support. 1299 */ 1300 /*ARGSUSED*/ 1301 static rctl_qty_t 1302 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1303 { 1304 ASSERT(MUTEX_HELD(&p->p_lock)); 1305 return (cpucaps_zone_get(p->p_zone)); 1306 } 1307 1308 /*ARGSUSED*/ 1309 static int 1310 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1311 rctl_qty_t nv) 1312 { 1313 zone_t *zone = e->rcep_p.zone; 1314 1315 ASSERT(MUTEX_HELD(&p->p_lock)); 1316 ASSERT(e->rcep_t == RCENTITY_ZONE); 1317 1318 if (zone == NULL) 1319 return (0); 1320 1321 /* 1322 * set cap to the new value. 1323 */ 1324 return (cpucaps_zone_set(zone, nv)); 1325 } 1326 1327 static rctl_ops_t zone_cpu_cap_ops = { 1328 rcop_no_action, 1329 zone_cpu_cap_get, 1330 zone_cpu_cap_set, 1331 rcop_no_test 1332 }; 1333 1334 /*ARGSUSED*/ 1335 static rctl_qty_t 1336 zone_lwps_usage(rctl_t *r, proc_t *p) 1337 { 1338 rctl_qty_t nlwps; 1339 zone_t *zone = p->p_zone; 1340 1341 ASSERT(MUTEX_HELD(&p->p_lock)); 1342 1343 mutex_enter(&zone->zone_nlwps_lock); 1344 nlwps = zone->zone_nlwps; 1345 mutex_exit(&zone->zone_nlwps_lock); 1346 1347 return (nlwps); 1348 } 1349 1350 /*ARGSUSED*/ 1351 static int 1352 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1353 rctl_qty_t incr, uint_t flags) 1354 { 1355 rctl_qty_t nlwps; 1356 1357 ASSERT(MUTEX_HELD(&p->p_lock)); 1358 ASSERT(e->rcep_t == RCENTITY_ZONE); 1359 if (e->rcep_p.zone == NULL) 1360 return (0); 1361 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1362 nlwps = e->rcep_p.zone->zone_nlwps; 1363 1364 if (nlwps + incr > rcntl->rcv_value) 1365 return (1); 1366 1367 return (0); 1368 } 1369 1370 /*ARGSUSED*/ 1371 static int 1372 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1373 { 1374 ASSERT(MUTEX_HELD(&p->p_lock)); 1375 ASSERT(e->rcep_t == RCENTITY_ZONE); 1376 if (e->rcep_p.zone == NULL) 1377 return (0); 1378 e->rcep_p.zone->zone_nlwps_ctl = nv; 1379 return (0); 1380 } 1381 1382 static rctl_ops_t zone_lwps_ops = { 1383 rcop_no_action, 1384 zone_lwps_usage, 1385 zone_lwps_set, 1386 zone_lwps_test, 1387 }; 1388 1389 /*ARGSUSED*/ 1390 static int 1391 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1392 rctl_qty_t incr, uint_t flags) 1393 { 1394 rctl_qty_t v; 1395 ASSERT(MUTEX_HELD(&p->p_lock)); 1396 ASSERT(e->rcep_t == RCENTITY_ZONE); 1397 v = e->rcep_p.zone->zone_shmmax + incr; 1398 if (v > rval->rcv_value) 1399 return (1); 1400 return (0); 1401 } 1402 1403 static rctl_ops_t zone_shmmax_ops = { 1404 rcop_no_action, 1405 rcop_no_usage, 1406 rcop_no_set, 1407 zone_shmmax_test 1408 }; 1409 1410 /*ARGSUSED*/ 1411 static int 1412 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1413 rctl_qty_t incr, uint_t flags) 1414 { 1415 rctl_qty_t v; 1416 ASSERT(MUTEX_HELD(&p->p_lock)); 1417 ASSERT(e->rcep_t == RCENTITY_ZONE); 1418 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1419 if (v > rval->rcv_value) 1420 return (1); 1421 return (0); 1422 } 1423 1424 static rctl_ops_t zone_shmmni_ops = { 1425 rcop_no_action, 1426 rcop_no_usage, 1427 rcop_no_set, 1428 zone_shmmni_test 1429 }; 1430 1431 /*ARGSUSED*/ 1432 static int 1433 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1434 rctl_qty_t incr, uint_t flags) 1435 { 1436 rctl_qty_t v; 1437 ASSERT(MUTEX_HELD(&p->p_lock)); 1438 ASSERT(e->rcep_t == RCENTITY_ZONE); 1439 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1440 if (v > rval->rcv_value) 1441 return (1); 1442 return (0); 1443 } 1444 1445 static rctl_ops_t zone_semmni_ops = { 1446 rcop_no_action, 1447 rcop_no_usage, 1448 rcop_no_set, 1449 zone_semmni_test 1450 }; 1451 1452 /*ARGSUSED*/ 1453 static int 1454 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1455 rctl_qty_t incr, uint_t flags) 1456 { 1457 rctl_qty_t v; 1458 ASSERT(MUTEX_HELD(&p->p_lock)); 1459 ASSERT(e->rcep_t == RCENTITY_ZONE); 1460 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1461 if (v > rval->rcv_value) 1462 return (1); 1463 return (0); 1464 } 1465 1466 static rctl_ops_t zone_msgmni_ops = { 1467 rcop_no_action, 1468 rcop_no_usage, 1469 rcop_no_set, 1470 zone_msgmni_test 1471 }; 1472 1473 /*ARGSUSED*/ 1474 static rctl_qty_t 1475 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1476 { 1477 rctl_qty_t q; 1478 ASSERT(MUTEX_HELD(&p->p_lock)); 1479 mutex_enter(&p->p_zone->zone_mem_lock); 1480 q = p->p_zone->zone_locked_mem; 1481 mutex_exit(&p->p_zone->zone_mem_lock); 1482 return (q); 1483 } 1484 1485 /*ARGSUSED*/ 1486 static int 1487 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1488 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1489 { 1490 rctl_qty_t q; 1491 zone_t *z; 1492 1493 z = e->rcep_p.zone; 1494 ASSERT(MUTEX_HELD(&p->p_lock)); 1495 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1496 q = z->zone_locked_mem; 1497 if (q + incr > rcntl->rcv_value) 1498 return (1); 1499 return (0); 1500 } 1501 1502 /*ARGSUSED*/ 1503 static int 1504 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1505 rctl_qty_t nv) 1506 { 1507 ASSERT(MUTEX_HELD(&p->p_lock)); 1508 ASSERT(e->rcep_t == RCENTITY_ZONE); 1509 if (e->rcep_p.zone == NULL) 1510 return (0); 1511 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1512 return (0); 1513 } 1514 1515 static rctl_ops_t zone_locked_mem_ops = { 1516 rcop_no_action, 1517 zone_locked_mem_usage, 1518 zone_locked_mem_set, 1519 zone_locked_mem_test 1520 }; 1521 1522 /*ARGSUSED*/ 1523 static rctl_qty_t 1524 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1525 { 1526 rctl_qty_t q; 1527 zone_t *z = p->p_zone; 1528 1529 ASSERT(MUTEX_HELD(&p->p_lock)); 1530 mutex_enter(&z->zone_mem_lock); 1531 q = z->zone_max_swap; 1532 mutex_exit(&z->zone_mem_lock); 1533 return (q); 1534 } 1535 1536 /*ARGSUSED*/ 1537 static int 1538 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1539 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1540 { 1541 rctl_qty_t q; 1542 zone_t *z; 1543 1544 z = e->rcep_p.zone; 1545 ASSERT(MUTEX_HELD(&p->p_lock)); 1546 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1547 q = z->zone_max_swap; 1548 if (q + incr > rcntl->rcv_value) 1549 return (1); 1550 return (0); 1551 } 1552 1553 /*ARGSUSED*/ 1554 static int 1555 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1556 rctl_qty_t nv) 1557 { 1558 ASSERT(MUTEX_HELD(&p->p_lock)); 1559 ASSERT(e->rcep_t == RCENTITY_ZONE); 1560 if (e->rcep_p.zone == NULL) 1561 return (0); 1562 e->rcep_p.zone->zone_max_swap_ctl = nv; 1563 return (0); 1564 } 1565 1566 static rctl_ops_t zone_max_swap_ops = { 1567 rcop_no_action, 1568 zone_max_swap_usage, 1569 zone_max_swap_set, 1570 zone_max_swap_test 1571 }; 1572 1573 /* 1574 * Helper function to brand the zone with a unique ID. 1575 */ 1576 static void 1577 zone_uniqid(zone_t *zone) 1578 { 1579 static uint64_t uniqid = 0; 1580 1581 ASSERT(MUTEX_HELD(&zonehash_lock)); 1582 zone->zone_uniqid = uniqid++; 1583 } 1584 1585 /* 1586 * Returns a held pointer to the "kcred" for the specified zone. 1587 */ 1588 struct cred * 1589 zone_get_kcred(zoneid_t zoneid) 1590 { 1591 zone_t *zone; 1592 cred_t *cr; 1593 1594 if ((zone = zone_find_by_id(zoneid)) == NULL) 1595 return (NULL); 1596 cr = zone->zone_kcred; 1597 crhold(cr); 1598 zone_rele(zone); 1599 return (cr); 1600 } 1601 1602 static int 1603 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1604 { 1605 zone_t *zone = ksp->ks_private; 1606 zone_kstat_t *zk = ksp->ks_data; 1607 1608 if (rw == KSTAT_WRITE) 1609 return (EACCES); 1610 1611 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1612 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1613 return (0); 1614 } 1615 1616 static int 1617 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1618 { 1619 zone_t *zone = ksp->ks_private; 1620 zone_kstat_t *zk = ksp->ks_data; 1621 1622 if (rw == KSTAT_WRITE) 1623 return (EACCES); 1624 1625 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1626 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1627 return (0); 1628 } 1629 1630 static void 1631 zone_kstat_create(zone_t *zone) 1632 { 1633 kstat_t *ksp; 1634 zone_kstat_t *zk; 1635 1636 ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED, 1637 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1638 KSTAT_FLAG_VIRTUAL); 1639 1640 if (ksp == NULL) 1641 return; 1642 1643 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1644 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1645 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1646 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1647 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1648 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1649 ksp->ks_update = zone_lockedmem_kstat_update; 1650 ksp->ks_private = zone; 1651 kstat_install(ksp); 1652 1653 zone->zone_lockedmem_kstat = ksp; 1654 1655 ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED, 1656 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1657 KSTAT_FLAG_VIRTUAL); 1658 1659 if (ksp == NULL) 1660 return; 1661 1662 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1663 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1664 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1665 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1666 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1667 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1668 ksp->ks_update = zone_swapresv_kstat_update; 1669 ksp->ks_private = zone; 1670 kstat_install(ksp); 1671 1672 zone->zone_swapresv_kstat = ksp; 1673 } 1674 1675 static void 1676 zone_kstat_delete(zone_t *zone) 1677 { 1678 void *data; 1679 1680 if (zone->zone_lockedmem_kstat != NULL) { 1681 data = zone->zone_lockedmem_kstat->ks_data; 1682 kstat_delete(zone->zone_lockedmem_kstat); 1683 kmem_free(data, sizeof (zone_kstat_t)); 1684 } 1685 if (zone->zone_swapresv_kstat != NULL) { 1686 data = zone->zone_swapresv_kstat->ks_data; 1687 kstat_delete(zone->zone_swapresv_kstat); 1688 kmem_free(data, sizeof (zone_kstat_t)); 1689 } 1690 } 1691 1692 /* 1693 * Called very early on in boot to initialize the ZSD list so that 1694 * zone_key_create() can be called before zone_init(). It also initializes 1695 * portions of zone0 which may be used before zone_init() is called. The 1696 * variable "global_zone" will be set when zone0 is fully initialized by 1697 * zone_init(). 1698 */ 1699 void 1700 zone_zsd_init(void) 1701 { 1702 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1703 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1704 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1705 offsetof(struct zsd_entry, zsd_linkage)); 1706 list_create(&zone_active, sizeof (zone_t), 1707 offsetof(zone_t, zone_linkage)); 1708 list_create(&zone_deathrow, sizeof (zone_t), 1709 offsetof(zone_t, zone_linkage)); 1710 1711 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1712 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1713 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1714 zone0.zone_shares = 1; 1715 zone0.zone_nlwps = 0; 1716 zone0.zone_nlwps_ctl = INT_MAX; 1717 zone0.zone_locked_mem = 0; 1718 zone0.zone_locked_mem_ctl = UINT64_MAX; 1719 ASSERT(zone0.zone_max_swap == 0); 1720 zone0.zone_max_swap_ctl = UINT64_MAX; 1721 zone0.zone_shmmax = 0; 1722 zone0.zone_ipc.ipcq_shmmni = 0; 1723 zone0.zone_ipc.ipcq_semmni = 0; 1724 zone0.zone_ipc.ipcq_msgmni = 0; 1725 zone0.zone_name = GLOBAL_ZONENAME; 1726 zone0.zone_nodename = utsname.nodename; 1727 zone0.zone_domain = srpc_domain; 1728 zone0.zone_ref = 1; 1729 zone0.zone_id = GLOBAL_ZONEID; 1730 zone0.zone_status = ZONE_IS_RUNNING; 1731 zone0.zone_rootpath = "/"; 1732 zone0.zone_rootpathlen = 2; 1733 zone0.zone_psetid = ZONE_PS_INVAL; 1734 zone0.zone_ncpus = 0; 1735 zone0.zone_ncpus_online = 0; 1736 zone0.zone_proc_initpid = 1; 1737 zone0.zone_initname = initname; 1738 zone0.zone_lockedmem_kstat = NULL; 1739 zone0.zone_swapresv_kstat = NULL; 1740 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1741 offsetof(struct zsd_entry, zsd_linkage)); 1742 list_insert_head(&zone_active, &zone0); 1743 1744 /* 1745 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1746 * to anything meaningful. It is assigned to be 'rootdir' in 1747 * vfs_mountroot(). 1748 */ 1749 zone0.zone_rootvp = NULL; 1750 zone0.zone_vfslist = NULL; 1751 zone0.zone_bootargs = initargs; 1752 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1753 /* 1754 * The global zone has all privileges 1755 */ 1756 priv_fillset(zone0.zone_privset); 1757 /* 1758 * Add p0 to the global zone 1759 */ 1760 zone0.zone_zsched = &p0; 1761 p0.p_zone = &zone0; 1762 } 1763 1764 /* 1765 * Compute a hash value based on the contents of the label and the DOI. The 1766 * hash algorithm is somewhat arbitrary, but is based on the observation that 1767 * humans will likely pick labels that differ by amounts that work out to be 1768 * multiples of the number of hash chains, and thus stirring in some primes 1769 * should help. 1770 */ 1771 static uint_t 1772 hash_bylabel(void *hdata, mod_hash_key_t key) 1773 { 1774 const ts_label_t *lab = (ts_label_t *)key; 1775 const uint32_t *up, *ue; 1776 uint_t hash; 1777 int i; 1778 1779 _NOTE(ARGUNUSED(hdata)); 1780 1781 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1782 /* we depend on alignment of label, but not representation */ 1783 up = (const uint32_t *)&lab->tsl_label; 1784 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1785 i = 1; 1786 while (up < ue) { 1787 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1788 hash += *up + (*up << ((i % 16) + 1)); 1789 up++; 1790 i++; 1791 } 1792 return (hash); 1793 } 1794 1795 /* 1796 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1797 * equal). This may need to be changed if less than / greater than is ever 1798 * needed. 1799 */ 1800 static int 1801 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1802 { 1803 ts_label_t *lab1 = (ts_label_t *)key1; 1804 ts_label_t *lab2 = (ts_label_t *)key2; 1805 1806 return (label_equal(lab1, lab2) ? 0 : 1); 1807 } 1808 1809 /* 1810 * Called by main() to initialize the zones framework. 1811 */ 1812 void 1813 zone_init(void) 1814 { 1815 rctl_dict_entry_t *rde; 1816 rctl_val_t *dval; 1817 rctl_set_t *set; 1818 rctl_alloc_gp_t *gp; 1819 rctl_entity_p_t e; 1820 int res; 1821 1822 ASSERT(curproc == &p0); 1823 1824 /* 1825 * Create ID space for zone IDs. ID 0 is reserved for the 1826 * global zone. 1827 */ 1828 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1829 1830 /* 1831 * Initialize generic zone resource controls, if any. 1832 */ 1833 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1834 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1835 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1836 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 1837 1838 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 1839 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 1840 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 1841 RCTL_GLOBAL_INFINITE, 1842 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 1843 1844 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1845 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1846 INT_MAX, INT_MAX, &zone_lwps_ops); 1847 /* 1848 * System V IPC resource controls 1849 */ 1850 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1851 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1852 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1853 1854 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1855 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1856 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1857 1858 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1859 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1860 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1861 1862 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1863 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1864 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1865 1866 /* 1867 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1868 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1869 */ 1870 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1871 bzero(dval, sizeof (rctl_val_t)); 1872 dval->rcv_value = 1; 1873 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1874 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1875 dval->rcv_action_recip_pid = -1; 1876 1877 rde = rctl_dict_lookup("zone.cpu-shares"); 1878 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1879 1880 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 1881 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1882 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1883 &zone_locked_mem_ops); 1884 1885 rc_zone_max_swap = rctl_register("zone.max-swap", 1886 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1887 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1888 &zone_max_swap_ops); 1889 1890 /* 1891 * Initialize the ``global zone''. 1892 */ 1893 set = rctl_set_create(); 1894 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1895 mutex_enter(&p0.p_lock); 1896 e.rcep_p.zone = &zone0; 1897 e.rcep_t = RCENTITY_ZONE; 1898 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1899 gp); 1900 1901 zone0.zone_nlwps = p0.p_lwpcnt; 1902 zone0.zone_ntasks = 1; 1903 mutex_exit(&p0.p_lock); 1904 zone0.zone_restart_init = B_TRUE; 1905 zone0.zone_brand = &native_brand; 1906 rctl_prealloc_destroy(gp); 1907 /* 1908 * pool_default hasn't been initialized yet, so we let pool_init() 1909 * take care of making sure the global zone is in the default pool. 1910 */ 1911 1912 /* 1913 * Initialize global zone kstats 1914 */ 1915 zone_kstat_create(&zone0); 1916 1917 /* 1918 * Initialize zone label. 1919 * mlp are initialized when tnzonecfg is loaded. 1920 */ 1921 zone0.zone_slabel = l_admin_low; 1922 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1923 label_hold(l_admin_low); 1924 1925 mutex_enter(&zonehash_lock); 1926 zone_uniqid(&zone0); 1927 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1928 1929 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1930 mod_hash_null_valdtor); 1931 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1932 zone_hash_size, mod_hash_null_valdtor); 1933 /* 1934 * maintain zonehashbylabel only for labeled systems 1935 */ 1936 if (is_system_labeled()) 1937 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1938 zone_hash_size, mod_hash_null_keydtor, 1939 mod_hash_null_valdtor, hash_bylabel, NULL, 1940 hash_labelkey_cmp, KM_SLEEP); 1941 zonecount = 1; 1942 1943 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1944 (mod_hash_val_t)&zone0); 1945 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1946 (mod_hash_val_t)&zone0); 1947 if (is_system_labeled()) { 1948 zone0.zone_flags |= ZF_HASHED_LABEL; 1949 (void) mod_hash_insert(zonehashbylabel, 1950 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1951 } 1952 mutex_exit(&zonehash_lock); 1953 1954 /* 1955 * We avoid setting zone_kcred until now, since kcred is initialized 1956 * sometime after zone_zsd_init() and before zone_init(). 1957 */ 1958 zone0.zone_kcred = kcred; 1959 /* 1960 * The global zone is fully initialized (except for zone_rootvp which 1961 * will be set when the root filesystem is mounted). 1962 */ 1963 global_zone = &zone0; 1964 1965 /* 1966 * Setup an event channel to send zone status change notifications on 1967 */ 1968 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1969 EVCH_CREAT); 1970 1971 if (res) 1972 panic("Sysevent_evc_bind failed during zone setup.\n"); 1973 1974 } 1975 1976 static void 1977 zone_free(zone_t *zone) 1978 { 1979 ASSERT(zone != global_zone); 1980 ASSERT(zone->zone_ntasks == 0); 1981 ASSERT(zone->zone_nlwps == 0); 1982 ASSERT(zone->zone_cred_ref == 0); 1983 ASSERT(zone->zone_kcred == NULL); 1984 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1985 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1986 1987 /* 1988 * Remove any zone caps. 1989 */ 1990 cpucaps_zone_remove(zone); 1991 1992 ASSERT(zone->zone_cpucap == NULL); 1993 1994 /* remove from deathrow list */ 1995 if (zone_status_get(zone) == ZONE_IS_DEAD) { 1996 ASSERT(zone->zone_ref == 0); 1997 mutex_enter(&zone_deathrow_lock); 1998 list_remove(&zone_deathrow, zone); 1999 mutex_exit(&zone_deathrow_lock); 2000 } 2001 2002 zone_free_zsd(zone); 2003 zone_free_datasets(zone); 2004 2005 if (zone->zone_rootvp != NULL) 2006 VN_RELE(zone->zone_rootvp); 2007 if (zone->zone_rootpath) 2008 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2009 if (zone->zone_name != NULL) 2010 kmem_free(zone->zone_name, ZONENAME_MAX); 2011 if (zone->zone_slabel != NULL) 2012 label_rele(zone->zone_slabel); 2013 if (zone->zone_nodename != NULL) 2014 kmem_free(zone->zone_nodename, _SYS_NMLN); 2015 if (zone->zone_domain != NULL) 2016 kmem_free(zone->zone_domain, _SYS_NMLN); 2017 if (zone->zone_privset != NULL) 2018 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2019 if (zone->zone_rctls != NULL) 2020 rctl_set_free(zone->zone_rctls); 2021 if (zone->zone_bootargs != NULL) 2022 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2023 if (zone->zone_initname != NULL) 2024 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2025 id_free(zoneid_space, zone->zone_id); 2026 mutex_destroy(&zone->zone_lock); 2027 cv_destroy(&zone->zone_cv); 2028 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2029 kmem_free(zone, sizeof (zone_t)); 2030 } 2031 2032 /* 2033 * See block comment at the top of this file for information about zone 2034 * status values. 2035 */ 2036 /* 2037 * Convenience function for setting zone status. 2038 */ 2039 static void 2040 zone_status_set(zone_t *zone, zone_status_t status) 2041 { 2042 2043 nvlist_t *nvl = NULL; 2044 ASSERT(MUTEX_HELD(&zone_status_lock)); 2045 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2046 status >= zone_status_get(zone)); 2047 2048 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2049 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2050 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2051 zone_status_table[status]) || 2052 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2053 zone_status_table[zone->zone_status]) || 2054 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2055 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2056 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2057 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2058 #ifdef DEBUG 2059 (void) printf( 2060 "Failed to allocate and send zone state change event.\n"); 2061 #endif 2062 } 2063 nvlist_free(nvl); 2064 2065 zone->zone_status = status; 2066 2067 cv_broadcast(&zone->zone_cv); 2068 } 2069 2070 /* 2071 * Public function to retrieve the zone status. The zone status may 2072 * change after it is retrieved. 2073 */ 2074 zone_status_t 2075 zone_status_get(zone_t *zone) 2076 { 2077 return (zone->zone_status); 2078 } 2079 2080 static int 2081 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2082 { 2083 char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2084 int err = 0; 2085 2086 ASSERT(zone != global_zone); 2087 if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0) 2088 goto done; /* EFAULT or ENAMETOOLONG */ 2089 2090 if (zone->zone_bootargs != NULL) 2091 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2092 2093 zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP); 2094 (void) strcpy(zone->zone_bootargs, bootargs); 2095 2096 done: 2097 kmem_free(bootargs, BOOTARGS_MAX); 2098 return (err); 2099 } 2100 2101 static int 2102 zone_set_brand(zone_t *zone, const char *brand) 2103 { 2104 struct brand_attr *attrp; 2105 brand_t *bp; 2106 2107 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2108 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2109 kmem_free(attrp, sizeof (struct brand_attr)); 2110 return (EFAULT); 2111 } 2112 2113 bp = brand_register_zone(attrp); 2114 kmem_free(attrp, sizeof (struct brand_attr)); 2115 if (bp == NULL) 2116 return (EINVAL); 2117 2118 /* 2119 * This is the only place where a zone can change it's brand. 2120 * We already need to hold zone_status_lock to check the zone 2121 * status, so we'll just use that lock to serialize zone 2122 * branding requests as well. 2123 */ 2124 mutex_enter(&zone_status_lock); 2125 2126 /* Re-Branding is not allowed and the zone can't be booted yet */ 2127 if ((ZONE_IS_BRANDED(zone)) || 2128 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2129 mutex_exit(&zone_status_lock); 2130 brand_unregister_zone(bp); 2131 return (EINVAL); 2132 } 2133 2134 if (is_system_labeled() && 2135 strncmp(attrp->ba_brandname, NATIVE_BRAND_NAME, MAXNAMELEN) != 0) { 2136 mutex_exit(&zone_status_lock); 2137 brand_unregister_zone(bp); 2138 return (EPERM); 2139 } 2140 2141 /* set up the brand specific data */ 2142 zone->zone_brand = bp; 2143 ZBROP(zone)->b_init_brand_data(zone); 2144 2145 mutex_exit(&zone_status_lock); 2146 return (0); 2147 } 2148 2149 static int 2150 zone_set_initname(zone_t *zone, const char *zone_initname) 2151 { 2152 char initname[INITNAME_SZ]; 2153 size_t len; 2154 int err = 0; 2155 2156 ASSERT(zone != global_zone); 2157 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2158 return (err); /* EFAULT or ENAMETOOLONG */ 2159 2160 if (zone->zone_initname != NULL) 2161 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2162 2163 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2164 (void) strcpy(zone->zone_initname, initname); 2165 return (0); 2166 } 2167 2168 static int 2169 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2170 { 2171 uint64_t mcap; 2172 int err = 0; 2173 2174 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2175 zone->zone_phys_mcap = mcap; 2176 2177 return (err); 2178 } 2179 2180 static int 2181 zone_set_sched_class(zone_t *zone, const char *new_class) 2182 { 2183 char sched_class[PC_CLNMSZ]; 2184 id_t classid; 2185 int err; 2186 2187 ASSERT(zone != global_zone); 2188 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2189 return (err); /* EFAULT or ENAMETOOLONG */ 2190 2191 if (getcid(sched_class, &classid) != 0 || classid == syscid) 2192 return (set_errno(EINVAL)); 2193 zone->zone_defaultcid = classid; 2194 ASSERT(zone->zone_defaultcid > 0 && 2195 zone->zone_defaultcid < loaded_classes); 2196 2197 return (0); 2198 } 2199 2200 /* 2201 * Block indefinitely waiting for (zone_status >= status) 2202 */ 2203 void 2204 zone_status_wait(zone_t *zone, zone_status_t status) 2205 { 2206 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2207 2208 mutex_enter(&zone_status_lock); 2209 while (zone->zone_status < status) { 2210 cv_wait(&zone->zone_cv, &zone_status_lock); 2211 } 2212 mutex_exit(&zone_status_lock); 2213 } 2214 2215 /* 2216 * Private CPR-safe version of zone_status_wait(). 2217 */ 2218 static void 2219 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2220 { 2221 callb_cpr_t cprinfo; 2222 2223 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2224 2225 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2226 str); 2227 mutex_enter(&zone_status_lock); 2228 while (zone->zone_status < status) { 2229 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2230 cv_wait(&zone->zone_cv, &zone_status_lock); 2231 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2232 } 2233 /* 2234 * zone_status_lock is implicitly released by the following. 2235 */ 2236 CALLB_CPR_EXIT(&cprinfo); 2237 } 2238 2239 /* 2240 * Block until zone enters requested state or signal is received. Return (0) 2241 * if signaled, non-zero otherwise. 2242 */ 2243 int 2244 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2245 { 2246 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2247 2248 mutex_enter(&zone_status_lock); 2249 while (zone->zone_status < status) { 2250 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2251 mutex_exit(&zone_status_lock); 2252 return (0); 2253 } 2254 } 2255 mutex_exit(&zone_status_lock); 2256 return (1); 2257 } 2258 2259 /* 2260 * Block until the zone enters the requested state or the timeout expires, 2261 * whichever happens first. Return (-1) if operation timed out, time remaining 2262 * otherwise. 2263 */ 2264 clock_t 2265 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2266 { 2267 clock_t timeleft = 0; 2268 2269 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2270 2271 mutex_enter(&zone_status_lock); 2272 while (zone->zone_status < status && timeleft != -1) { 2273 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2274 } 2275 mutex_exit(&zone_status_lock); 2276 return (timeleft); 2277 } 2278 2279 /* 2280 * Block until the zone enters the requested state, the current process is 2281 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2282 * operation timed out, 0 if signaled, time remaining otherwise. 2283 */ 2284 clock_t 2285 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2286 { 2287 clock_t timeleft = tim - lbolt; 2288 2289 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2290 2291 mutex_enter(&zone_status_lock); 2292 while (zone->zone_status < status) { 2293 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2294 tim); 2295 if (timeleft <= 0) 2296 break; 2297 } 2298 mutex_exit(&zone_status_lock); 2299 return (timeleft); 2300 } 2301 2302 /* 2303 * Zones have two reference counts: one for references from credential 2304 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2305 * This is so we can allow a zone to be rebooted while there are still 2306 * outstanding cred references, since certain drivers cache dblks (which 2307 * implicitly results in cached creds). We wait for zone_ref to drop to 2308 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2309 * later freed when the zone_cred_ref drops to 0, though nothing other 2310 * than the zone id and privilege set should be accessed once the zone 2311 * is "dead". 2312 * 2313 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2314 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2315 * to 0. This can be useful to flush out other sources of cached creds 2316 * that may be less innocuous than the driver case. 2317 */ 2318 2319 int zone_wait_for_cred = 0; 2320 2321 static void 2322 zone_hold_locked(zone_t *z) 2323 { 2324 ASSERT(MUTEX_HELD(&z->zone_lock)); 2325 z->zone_ref++; 2326 ASSERT(z->zone_ref != 0); 2327 } 2328 2329 void 2330 zone_hold(zone_t *z) 2331 { 2332 mutex_enter(&z->zone_lock); 2333 zone_hold_locked(z); 2334 mutex_exit(&z->zone_lock); 2335 } 2336 2337 /* 2338 * If the non-cred ref count drops to 1 and either the cred ref count 2339 * is 0 or we aren't waiting for cred references, the zone is ready to 2340 * be destroyed. 2341 */ 2342 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2343 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2344 2345 void 2346 zone_rele(zone_t *z) 2347 { 2348 boolean_t wakeup; 2349 2350 mutex_enter(&z->zone_lock); 2351 ASSERT(z->zone_ref != 0); 2352 z->zone_ref--; 2353 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2354 /* no more refs, free the structure */ 2355 mutex_exit(&z->zone_lock); 2356 zone_free(z); 2357 return; 2358 } 2359 /* signal zone_destroy so the zone can finish halting */ 2360 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2361 mutex_exit(&z->zone_lock); 2362 2363 if (wakeup) { 2364 /* 2365 * Grabbing zonehash_lock here effectively synchronizes with 2366 * zone_destroy() to avoid missed signals. 2367 */ 2368 mutex_enter(&zonehash_lock); 2369 cv_broadcast(&zone_destroy_cv); 2370 mutex_exit(&zonehash_lock); 2371 } 2372 } 2373 2374 void 2375 zone_cred_hold(zone_t *z) 2376 { 2377 mutex_enter(&z->zone_lock); 2378 z->zone_cred_ref++; 2379 ASSERT(z->zone_cred_ref != 0); 2380 mutex_exit(&z->zone_lock); 2381 } 2382 2383 void 2384 zone_cred_rele(zone_t *z) 2385 { 2386 boolean_t wakeup; 2387 2388 mutex_enter(&z->zone_lock); 2389 ASSERT(z->zone_cred_ref != 0); 2390 z->zone_cred_ref--; 2391 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2392 /* no more refs, free the structure */ 2393 mutex_exit(&z->zone_lock); 2394 zone_free(z); 2395 return; 2396 } 2397 /* 2398 * If zone_destroy is waiting for the cred references to drain 2399 * out, and they have, signal it. 2400 */ 2401 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2402 zone_status_get(z) >= ZONE_IS_DEAD); 2403 mutex_exit(&z->zone_lock); 2404 2405 if (wakeup) { 2406 /* 2407 * Grabbing zonehash_lock here effectively synchronizes with 2408 * zone_destroy() to avoid missed signals. 2409 */ 2410 mutex_enter(&zonehash_lock); 2411 cv_broadcast(&zone_destroy_cv); 2412 mutex_exit(&zonehash_lock); 2413 } 2414 } 2415 2416 void 2417 zone_task_hold(zone_t *z) 2418 { 2419 mutex_enter(&z->zone_lock); 2420 z->zone_ntasks++; 2421 ASSERT(z->zone_ntasks != 0); 2422 mutex_exit(&z->zone_lock); 2423 } 2424 2425 void 2426 zone_task_rele(zone_t *zone) 2427 { 2428 uint_t refcnt; 2429 2430 mutex_enter(&zone->zone_lock); 2431 ASSERT(zone->zone_ntasks != 0); 2432 refcnt = --zone->zone_ntasks; 2433 if (refcnt > 1) { /* Common case */ 2434 mutex_exit(&zone->zone_lock); 2435 return; 2436 } 2437 zone_hold_locked(zone); /* so we can use the zone_t later */ 2438 mutex_exit(&zone->zone_lock); 2439 if (refcnt == 1) { 2440 /* 2441 * See if the zone is shutting down. 2442 */ 2443 mutex_enter(&zone_status_lock); 2444 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2445 goto out; 2446 } 2447 2448 /* 2449 * Make sure the ntasks didn't change since we 2450 * dropped zone_lock. 2451 */ 2452 mutex_enter(&zone->zone_lock); 2453 if (refcnt != zone->zone_ntasks) { 2454 mutex_exit(&zone->zone_lock); 2455 goto out; 2456 } 2457 mutex_exit(&zone->zone_lock); 2458 2459 /* 2460 * No more user processes in the zone. The zone is empty. 2461 */ 2462 zone_status_set(zone, ZONE_IS_EMPTY); 2463 goto out; 2464 } 2465 2466 ASSERT(refcnt == 0); 2467 /* 2468 * zsched has exited; the zone is dead. 2469 */ 2470 zone->zone_zsched = NULL; /* paranoia */ 2471 mutex_enter(&zone_status_lock); 2472 zone_status_set(zone, ZONE_IS_DEAD); 2473 out: 2474 mutex_exit(&zone_status_lock); 2475 zone_rele(zone); 2476 } 2477 2478 zoneid_t 2479 getzoneid(void) 2480 { 2481 return (curproc->p_zone->zone_id); 2482 } 2483 2484 /* 2485 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2486 * check the validity of a zone's state. 2487 */ 2488 static zone_t * 2489 zone_find_all_by_id(zoneid_t zoneid) 2490 { 2491 mod_hash_val_t hv; 2492 zone_t *zone = NULL; 2493 2494 ASSERT(MUTEX_HELD(&zonehash_lock)); 2495 2496 if (mod_hash_find(zonehashbyid, 2497 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2498 zone = (zone_t *)hv; 2499 return (zone); 2500 } 2501 2502 static zone_t * 2503 zone_find_all_by_label(const ts_label_t *label) 2504 { 2505 mod_hash_val_t hv; 2506 zone_t *zone = NULL; 2507 2508 ASSERT(MUTEX_HELD(&zonehash_lock)); 2509 2510 /* 2511 * zonehashbylabel is not maintained for unlabeled systems 2512 */ 2513 if (!is_system_labeled()) 2514 return (NULL); 2515 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2516 zone = (zone_t *)hv; 2517 return (zone); 2518 } 2519 2520 static zone_t * 2521 zone_find_all_by_name(char *name) 2522 { 2523 mod_hash_val_t hv; 2524 zone_t *zone = NULL; 2525 2526 ASSERT(MUTEX_HELD(&zonehash_lock)); 2527 2528 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2529 zone = (zone_t *)hv; 2530 return (zone); 2531 } 2532 2533 /* 2534 * Public interface for looking up a zone by zoneid. Only returns the zone if 2535 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2536 * Caller must call zone_rele() once it is done with the zone. 2537 * 2538 * The zone may begin the zone_destroy() sequence immediately after this 2539 * function returns, but may be safely used until zone_rele() is called. 2540 */ 2541 zone_t * 2542 zone_find_by_id(zoneid_t zoneid) 2543 { 2544 zone_t *zone; 2545 zone_status_t status; 2546 2547 mutex_enter(&zonehash_lock); 2548 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2549 mutex_exit(&zonehash_lock); 2550 return (NULL); 2551 } 2552 status = zone_status_get(zone); 2553 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2554 /* 2555 * For all practical purposes the zone doesn't exist. 2556 */ 2557 mutex_exit(&zonehash_lock); 2558 return (NULL); 2559 } 2560 zone_hold(zone); 2561 mutex_exit(&zonehash_lock); 2562 return (zone); 2563 } 2564 2565 /* 2566 * Similar to zone_find_by_id, but using zone label as the key. 2567 */ 2568 zone_t * 2569 zone_find_by_label(const ts_label_t *label) 2570 { 2571 zone_t *zone; 2572 zone_status_t status; 2573 2574 mutex_enter(&zonehash_lock); 2575 if ((zone = zone_find_all_by_label(label)) == NULL) { 2576 mutex_exit(&zonehash_lock); 2577 return (NULL); 2578 } 2579 2580 status = zone_status_get(zone); 2581 if (status > ZONE_IS_DOWN) { 2582 /* 2583 * For all practical purposes the zone doesn't exist. 2584 */ 2585 mutex_exit(&zonehash_lock); 2586 return (NULL); 2587 } 2588 zone_hold(zone); 2589 mutex_exit(&zonehash_lock); 2590 return (zone); 2591 } 2592 2593 /* 2594 * Similar to zone_find_by_id, but using zone name as the key. 2595 */ 2596 zone_t * 2597 zone_find_by_name(char *name) 2598 { 2599 zone_t *zone; 2600 zone_status_t status; 2601 2602 mutex_enter(&zonehash_lock); 2603 if ((zone = zone_find_all_by_name(name)) == NULL) { 2604 mutex_exit(&zonehash_lock); 2605 return (NULL); 2606 } 2607 status = zone_status_get(zone); 2608 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2609 /* 2610 * For all practical purposes the zone doesn't exist. 2611 */ 2612 mutex_exit(&zonehash_lock); 2613 return (NULL); 2614 } 2615 zone_hold(zone); 2616 mutex_exit(&zonehash_lock); 2617 return (zone); 2618 } 2619 2620 /* 2621 * Similar to zone_find_by_id(), using the path as a key. For instance, 2622 * if there is a zone "foo" rooted at /foo/root, and the path argument 2623 * is "/foo/root/proc", it will return the held zone_t corresponding to 2624 * zone "foo". 2625 * 2626 * zone_find_by_path() always returns a non-NULL value, since at the 2627 * very least every path will be contained in the global zone. 2628 * 2629 * As with the other zone_find_by_*() functions, the caller is 2630 * responsible for zone_rele()ing the return value of this function. 2631 */ 2632 zone_t * 2633 zone_find_by_path(const char *path) 2634 { 2635 zone_t *zone; 2636 zone_t *zret = NULL; 2637 zone_status_t status; 2638 2639 if (path == NULL) { 2640 /* 2641 * Call from rootconf(). 2642 */ 2643 zone_hold(global_zone); 2644 return (global_zone); 2645 } 2646 ASSERT(*path == '/'); 2647 mutex_enter(&zonehash_lock); 2648 for (zone = list_head(&zone_active); zone != NULL; 2649 zone = list_next(&zone_active, zone)) { 2650 if (ZONE_PATH_VISIBLE(path, zone)) 2651 zret = zone; 2652 } 2653 ASSERT(zret != NULL); 2654 status = zone_status_get(zret); 2655 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2656 /* 2657 * Zone practically doesn't exist. 2658 */ 2659 zret = global_zone; 2660 } 2661 zone_hold(zret); 2662 mutex_exit(&zonehash_lock); 2663 return (zret); 2664 } 2665 2666 /* 2667 * Get the number of cpus visible to this zone. The system-wide global 2668 * 'ncpus' is returned if pools are disabled, the caller is in the 2669 * global zone, or a NULL zone argument is passed in. 2670 */ 2671 int 2672 zone_ncpus_get(zone_t *zone) 2673 { 2674 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2675 2676 return (myncpus != 0 ? myncpus : ncpus); 2677 } 2678 2679 /* 2680 * Get the number of online cpus visible to this zone. The system-wide 2681 * global 'ncpus_online' is returned if pools are disabled, the caller 2682 * is in the global zone, or a NULL zone argument is passed in. 2683 */ 2684 int 2685 zone_ncpus_online_get(zone_t *zone) 2686 { 2687 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 2688 2689 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 2690 } 2691 2692 /* 2693 * Return the pool to which the zone is currently bound. 2694 */ 2695 pool_t * 2696 zone_pool_get(zone_t *zone) 2697 { 2698 ASSERT(pool_lock_held()); 2699 2700 return (zone->zone_pool); 2701 } 2702 2703 /* 2704 * Set the zone's pool pointer and update the zone's visibility to match 2705 * the resources in the new pool. 2706 */ 2707 void 2708 zone_pool_set(zone_t *zone, pool_t *pool) 2709 { 2710 ASSERT(pool_lock_held()); 2711 ASSERT(MUTEX_HELD(&cpu_lock)); 2712 2713 zone->zone_pool = pool; 2714 zone_pset_set(zone, pool->pool_pset->pset_id); 2715 } 2716 2717 /* 2718 * Return the cached value of the id of the processor set to which the 2719 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 2720 * facility is disabled. 2721 */ 2722 psetid_t 2723 zone_pset_get(zone_t *zone) 2724 { 2725 ASSERT(MUTEX_HELD(&cpu_lock)); 2726 2727 return (zone->zone_psetid); 2728 } 2729 2730 /* 2731 * Set the cached value of the id of the processor set to which the zone 2732 * is currently bound. Also update the zone's visibility to match the 2733 * resources in the new processor set. 2734 */ 2735 void 2736 zone_pset_set(zone_t *zone, psetid_t newpsetid) 2737 { 2738 psetid_t oldpsetid; 2739 2740 ASSERT(MUTEX_HELD(&cpu_lock)); 2741 oldpsetid = zone_pset_get(zone); 2742 2743 if (oldpsetid == newpsetid) 2744 return; 2745 /* 2746 * Global zone sees all. 2747 */ 2748 if (zone != global_zone) { 2749 zone->zone_psetid = newpsetid; 2750 if (newpsetid != ZONE_PS_INVAL) 2751 pool_pset_visibility_add(newpsetid, zone); 2752 if (oldpsetid != ZONE_PS_INVAL) 2753 pool_pset_visibility_remove(oldpsetid, zone); 2754 } 2755 /* 2756 * Disabling pools, so we should start using the global values 2757 * for ncpus and ncpus_online. 2758 */ 2759 if (newpsetid == ZONE_PS_INVAL) { 2760 zone->zone_ncpus = 0; 2761 zone->zone_ncpus_online = 0; 2762 } 2763 } 2764 2765 /* 2766 * Walk the list of active zones and issue the provided callback for 2767 * each of them. 2768 * 2769 * Caller must not be holding any locks that may be acquired under 2770 * zonehash_lock. See comment at the beginning of the file for a list of 2771 * common locks and their interactions with zones. 2772 */ 2773 int 2774 zone_walk(int (*cb)(zone_t *, void *), void *data) 2775 { 2776 zone_t *zone; 2777 int ret = 0; 2778 zone_status_t status; 2779 2780 mutex_enter(&zonehash_lock); 2781 for (zone = list_head(&zone_active); zone != NULL; 2782 zone = list_next(&zone_active, zone)) { 2783 /* 2784 * Skip zones that shouldn't be externally visible. 2785 */ 2786 status = zone_status_get(zone); 2787 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2788 continue; 2789 /* 2790 * Bail immediately if any callback invocation returns a 2791 * non-zero value. 2792 */ 2793 ret = (*cb)(zone, data); 2794 if (ret != 0) 2795 break; 2796 } 2797 mutex_exit(&zonehash_lock); 2798 return (ret); 2799 } 2800 2801 static int 2802 zone_set_root(zone_t *zone, const char *upath) 2803 { 2804 vnode_t *vp; 2805 int trycount; 2806 int error = 0; 2807 char *path; 2808 struct pathname upn, pn; 2809 size_t pathlen; 2810 2811 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2812 return (error); 2813 2814 pn_alloc(&pn); 2815 2816 /* prevent infinite loop */ 2817 trycount = 10; 2818 for (;;) { 2819 if (--trycount <= 0) { 2820 error = ESTALE; 2821 goto out; 2822 } 2823 2824 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2825 /* 2826 * VOP_ACCESS() may cover 'vp' with a new 2827 * filesystem, if 'vp' is an autoFS vnode. 2828 * Get the new 'vp' if so. 2829 */ 2830 if ((error = 2831 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 2832 (!vn_ismntpt(vp) || 2833 (error = traverse(&vp)) == 0)) { 2834 pathlen = pn.pn_pathlen + 2; 2835 path = kmem_alloc(pathlen, KM_SLEEP); 2836 (void) strncpy(path, pn.pn_path, 2837 pn.pn_pathlen + 1); 2838 path[pathlen - 2] = '/'; 2839 path[pathlen - 1] = '\0'; 2840 pn_free(&pn); 2841 pn_free(&upn); 2842 2843 /* Success! */ 2844 break; 2845 } 2846 VN_RELE(vp); 2847 } 2848 if (error != ESTALE) 2849 goto out; 2850 } 2851 2852 ASSERT(error == 0); 2853 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2854 zone->zone_rootpath = path; 2855 zone->zone_rootpathlen = pathlen; 2856 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2857 zone->zone_flags |= ZF_IS_SCRATCH; 2858 return (0); 2859 2860 out: 2861 pn_free(&pn); 2862 pn_free(&upn); 2863 return (error); 2864 } 2865 2866 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2867 ((c) >= 'a' && (c) <= 'z') || \ 2868 ((c) >= 'A' && (c) <= 'Z')) 2869 2870 static int 2871 zone_set_name(zone_t *zone, const char *uname) 2872 { 2873 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2874 size_t len; 2875 int i, err; 2876 2877 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2878 kmem_free(kname, ZONENAME_MAX); 2879 return (err); /* EFAULT or ENAMETOOLONG */ 2880 } 2881 2882 /* must be less than ZONENAME_MAX */ 2883 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2884 kmem_free(kname, ZONENAME_MAX); 2885 return (EINVAL); 2886 } 2887 2888 /* 2889 * Name must start with an alphanumeric and must contain only 2890 * alphanumerics, '-', '_' and '.'. 2891 */ 2892 if (!isalnum(kname[0])) { 2893 kmem_free(kname, ZONENAME_MAX); 2894 return (EINVAL); 2895 } 2896 for (i = 1; i < len - 1; i++) { 2897 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2898 kname[i] != '.') { 2899 kmem_free(kname, ZONENAME_MAX); 2900 return (EINVAL); 2901 } 2902 } 2903 2904 zone->zone_name = kname; 2905 return (0); 2906 } 2907 2908 /* 2909 * Similar to thread_create(), but makes sure the thread is in the appropriate 2910 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 2911 */ 2912 /*ARGSUSED*/ 2913 kthread_t * 2914 zthread_create( 2915 caddr_t stk, 2916 size_t stksize, 2917 void (*proc)(), 2918 void *arg, 2919 size_t len, 2920 pri_t pri) 2921 { 2922 kthread_t *t; 2923 zone_t *zone = curproc->p_zone; 2924 proc_t *pp = zone->zone_zsched; 2925 2926 zone_hold(zone); /* Reference to be dropped when thread exits */ 2927 2928 /* 2929 * No-one should be trying to create threads if the zone is shutting 2930 * down and there aren't any kernel threads around. See comment 2931 * in zthread_exit(). 2932 */ 2933 ASSERT(!(zone->zone_kthreads == NULL && 2934 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2935 /* 2936 * Create a thread, but don't let it run until we've finished setting 2937 * things up. 2938 */ 2939 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2940 ASSERT(t->t_forw == NULL); 2941 mutex_enter(&zone_status_lock); 2942 if (zone->zone_kthreads == NULL) { 2943 t->t_forw = t->t_back = t; 2944 } else { 2945 kthread_t *tx = zone->zone_kthreads; 2946 2947 t->t_forw = tx; 2948 t->t_back = tx->t_back; 2949 tx->t_back->t_forw = t; 2950 tx->t_back = t; 2951 } 2952 zone->zone_kthreads = t; 2953 mutex_exit(&zone_status_lock); 2954 2955 mutex_enter(&pp->p_lock); 2956 t->t_proc_flag |= TP_ZTHREAD; 2957 project_rele(t->t_proj); 2958 t->t_proj = project_hold(pp->p_task->tk_proj); 2959 2960 /* 2961 * Setup complete, let it run. 2962 */ 2963 thread_lock(t); 2964 t->t_schedflag |= TS_ALLSTART; 2965 setrun_locked(t); 2966 thread_unlock(t); 2967 2968 mutex_exit(&pp->p_lock); 2969 2970 return (t); 2971 } 2972 2973 /* 2974 * Similar to thread_exit(). Must be called by threads created via 2975 * zthread_exit(). 2976 */ 2977 void 2978 zthread_exit(void) 2979 { 2980 kthread_t *t = curthread; 2981 proc_t *pp = curproc; 2982 zone_t *zone = pp->p_zone; 2983 2984 mutex_enter(&zone_status_lock); 2985 2986 /* 2987 * Reparent to p0 2988 */ 2989 kpreempt_disable(); 2990 mutex_enter(&pp->p_lock); 2991 t->t_proc_flag &= ~TP_ZTHREAD; 2992 t->t_procp = &p0; 2993 hat_thread_exit(t); 2994 mutex_exit(&pp->p_lock); 2995 kpreempt_enable(); 2996 2997 if (t->t_back == t) { 2998 ASSERT(t->t_forw == t); 2999 /* 3000 * If the zone is empty, once the thread count 3001 * goes to zero no further kernel threads can be 3002 * created. This is because if the creator is a process 3003 * in the zone, then it must have exited before the zone 3004 * state could be set to ZONE_IS_EMPTY. 3005 * Otherwise, if the creator is a kernel thread in the 3006 * zone, the thread count is non-zero. 3007 * 3008 * This really means that non-zone kernel threads should 3009 * not create zone kernel threads. 3010 */ 3011 zone->zone_kthreads = NULL; 3012 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3013 zone_status_set(zone, ZONE_IS_DOWN); 3014 /* 3015 * Remove any CPU caps on this zone. 3016 */ 3017 cpucaps_zone_remove(zone); 3018 } 3019 } else { 3020 t->t_forw->t_back = t->t_back; 3021 t->t_back->t_forw = t->t_forw; 3022 if (zone->zone_kthreads == t) 3023 zone->zone_kthreads = t->t_forw; 3024 } 3025 mutex_exit(&zone_status_lock); 3026 zone_rele(zone); 3027 thread_exit(); 3028 /* NOTREACHED */ 3029 } 3030 3031 static void 3032 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3033 { 3034 vnode_t *oldvp; 3035 3036 /* we're going to hold a reference here to the directory */ 3037 VN_HOLD(vp); 3038 3039 if (audit_active) /* update abs cwd/root path see c2audit.c */ 3040 audit_chdirec(vp, vpp); 3041 3042 mutex_enter(&pp->p_lock); 3043 oldvp = *vpp; 3044 *vpp = vp; 3045 mutex_exit(&pp->p_lock); 3046 if (oldvp != NULL) 3047 VN_RELE(oldvp); 3048 } 3049 3050 /* 3051 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3052 */ 3053 static int 3054 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3055 { 3056 nvpair_t *nvp = NULL; 3057 boolean_t priv_set = B_FALSE; 3058 boolean_t limit_set = B_FALSE; 3059 boolean_t action_set = B_FALSE; 3060 3061 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3062 const char *name; 3063 uint64_t ui64; 3064 3065 name = nvpair_name(nvp); 3066 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3067 return (EINVAL); 3068 (void) nvpair_value_uint64(nvp, &ui64); 3069 if (strcmp(name, "privilege") == 0) { 3070 /* 3071 * Currently only privileged values are allowed, but 3072 * this may change in the future. 3073 */ 3074 if (ui64 != RCPRIV_PRIVILEGED) 3075 return (EINVAL); 3076 rv->rcv_privilege = ui64; 3077 priv_set = B_TRUE; 3078 } else if (strcmp(name, "limit") == 0) { 3079 rv->rcv_value = ui64; 3080 limit_set = B_TRUE; 3081 } else if (strcmp(name, "action") == 0) { 3082 if (ui64 != RCTL_LOCAL_NOACTION && 3083 ui64 != RCTL_LOCAL_DENY) 3084 return (EINVAL); 3085 rv->rcv_flagaction = ui64; 3086 action_set = B_TRUE; 3087 } else { 3088 return (EINVAL); 3089 } 3090 } 3091 3092 if (!(priv_set && limit_set && action_set)) 3093 return (EINVAL); 3094 rv->rcv_action_signal = 0; 3095 rv->rcv_action_recipient = NULL; 3096 rv->rcv_action_recip_pid = -1; 3097 rv->rcv_firing_time = 0; 3098 3099 return (0); 3100 } 3101 3102 /* 3103 * Non-global zone version of start_init. 3104 */ 3105 void 3106 zone_start_init(void) 3107 { 3108 proc_t *p = ttoproc(curthread); 3109 zone_t *z = p->p_zone; 3110 3111 ASSERT(!INGLOBALZONE(curproc)); 3112 3113 /* 3114 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3115 * storing just the pid of init is sufficient. 3116 */ 3117 z->zone_proc_initpid = p->p_pid; 3118 3119 /* 3120 * We maintain zone_boot_err so that we can return the cause of the 3121 * failure back to the caller of the zone_boot syscall. 3122 */ 3123 p->p_zone->zone_boot_err = start_init_common(); 3124 3125 /* 3126 * We will prevent booting zones from becoming running zones if the 3127 * global zone is shutting down. 3128 */ 3129 mutex_enter(&zone_status_lock); 3130 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3131 ZONE_IS_SHUTTING_DOWN) { 3132 /* 3133 * Make sure we are still in the booting state-- we could have 3134 * raced and already be shutting down, or even further along. 3135 */ 3136 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3137 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3138 } 3139 mutex_exit(&zone_status_lock); 3140 /* It's gone bad, dispose of the process */ 3141 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3142 mutex_enter(&p->p_lock); 3143 ASSERT(p->p_flag & SEXITLWPS); 3144 lwp_exit(); 3145 } 3146 } else { 3147 if (zone_status_get(z) == ZONE_IS_BOOTING) 3148 zone_status_set(z, ZONE_IS_RUNNING); 3149 mutex_exit(&zone_status_lock); 3150 /* cause the process to return to userland. */ 3151 lwp_rtt(); 3152 } 3153 } 3154 3155 struct zsched_arg { 3156 zone_t *zone; 3157 nvlist_t *nvlist; 3158 }; 3159 3160 /* 3161 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3162 * anything to do with scheduling, but rather with the fact that 3163 * per-zone kernel threads are parented to zsched, just like regular 3164 * kernel threads are parented to sched (p0). 3165 * 3166 * zsched is also responsible for launching init for the zone. 3167 */ 3168 static void 3169 zsched(void *arg) 3170 { 3171 struct zsched_arg *za = arg; 3172 proc_t *pp = curproc; 3173 proc_t *initp = proc_init; 3174 zone_t *zone = za->zone; 3175 cred_t *cr, *oldcred; 3176 rctl_set_t *set; 3177 rctl_alloc_gp_t *gp; 3178 contract_t *ct = NULL; 3179 task_t *tk, *oldtk; 3180 rctl_entity_p_t e; 3181 kproject_t *pj; 3182 3183 nvlist_t *nvl = za->nvlist; 3184 nvpair_t *nvp = NULL; 3185 3186 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3187 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3188 PTOU(pp)->u_argc = 0; 3189 PTOU(pp)->u_argv = NULL; 3190 PTOU(pp)->u_envp = NULL; 3191 closeall(P_FINFO(pp)); 3192 3193 /* 3194 * We are this zone's "zsched" process. As the zone isn't generally 3195 * visible yet we don't need to grab any locks before initializing its 3196 * zone_proc pointer. 3197 */ 3198 zone_hold(zone); /* this hold is released by zone_destroy() */ 3199 zone->zone_zsched = pp; 3200 mutex_enter(&pp->p_lock); 3201 pp->p_zone = zone; 3202 mutex_exit(&pp->p_lock); 3203 3204 /* 3205 * Disassociate process from its 'parent'; parent ourselves to init 3206 * (pid 1) and change other values as needed. 3207 */ 3208 sess_create(); 3209 3210 mutex_enter(&pidlock); 3211 proc_detach(pp); 3212 pp->p_ppid = 1; 3213 pp->p_flag |= SZONETOP; 3214 pp->p_ancpid = 1; 3215 pp->p_parent = initp; 3216 pp->p_psibling = NULL; 3217 if (initp->p_child) 3218 initp->p_child->p_psibling = pp; 3219 pp->p_sibling = initp->p_child; 3220 initp->p_child = pp; 3221 3222 /* Decrement what newproc() incremented. */ 3223 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3224 /* 3225 * Our credentials are about to become kcred-like, so we don't care 3226 * about the caller's ruid. 3227 */ 3228 upcount_inc(crgetruid(kcred), zone->zone_id); 3229 mutex_exit(&pidlock); 3230 3231 /* 3232 * getting out of global zone, so decrement lwp counts 3233 */ 3234 pj = pp->p_task->tk_proj; 3235 mutex_enter(&global_zone->zone_nlwps_lock); 3236 pj->kpj_nlwps -= pp->p_lwpcnt; 3237 global_zone->zone_nlwps -= pp->p_lwpcnt; 3238 mutex_exit(&global_zone->zone_nlwps_lock); 3239 3240 /* 3241 * Decrement locked memory counts on old zone and project. 3242 */ 3243 mutex_enter(&global_zone->zone_mem_lock); 3244 global_zone->zone_locked_mem -= pp->p_locked_mem; 3245 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3246 mutex_exit(&global_zone->zone_mem_lock); 3247 3248 /* 3249 * Create and join a new task in project '0' of this zone. 3250 * 3251 * We don't need to call holdlwps() since we know we're the only lwp in 3252 * this process. 3253 * 3254 * task_join() returns with p_lock held. 3255 */ 3256 tk = task_create(0, zone); 3257 mutex_enter(&cpu_lock); 3258 oldtk = task_join(tk, 0); 3259 3260 pj = pp->p_task->tk_proj; 3261 3262 mutex_enter(&zone->zone_mem_lock); 3263 zone->zone_locked_mem += pp->p_locked_mem; 3264 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3265 mutex_exit(&zone->zone_mem_lock); 3266 3267 /* 3268 * add lwp counts to zsched's zone, and increment project's task count 3269 * due to the task created in the above tasksys_settaskid 3270 */ 3271 3272 mutex_enter(&zone->zone_nlwps_lock); 3273 pj->kpj_nlwps += pp->p_lwpcnt; 3274 pj->kpj_ntasks += 1; 3275 zone->zone_nlwps += pp->p_lwpcnt; 3276 mutex_exit(&zone->zone_nlwps_lock); 3277 3278 mutex_exit(&curproc->p_lock); 3279 mutex_exit(&cpu_lock); 3280 task_rele(oldtk); 3281 3282 /* 3283 * The process was created by a process in the global zone, hence the 3284 * credentials are wrong. We might as well have kcred-ish credentials. 3285 */ 3286 cr = zone->zone_kcred; 3287 crhold(cr); 3288 mutex_enter(&pp->p_crlock); 3289 oldcred = pp->p_cred; 3290 pp->p_cred = cr; 3291 mutex_exit(&pp->p_crlock); 3292 crfree(oldcred); 3293 3294 /* 3295 * Hold credentials again (for thread) 3296 */ 3297 crhold(cr); 3298 3299 /* 3300 * p_lwpcnt can't change since this is a kernel process. 3301 */ 3302 crset(pp, cr); 3303 3304 /* 3305 * Chroot 3306 */ 3307 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3308 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3309 3310 /* 3311 * Initialize zone's rctl set. 3312 */ 3313 set = rctl_set_create(); 3314 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3315 mutex_enter(&pp->p_lock); 3316 e.rcep_p.zone = zone; 3317 e.rcep_t = RCENTITY_ZONE; 3318 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3319 mutex_exit(&pp->p_lock); 3320 rctl_prealloc_destroy(gp); 3321 3322 /* 3323 * Apply the rctls passed in to zone_create(). This is basically a list 3324 * assignment: all of the old values are removed and the new ones 3325 * inserted. That is, if an empty list is passed in, all values are 3326 * removed. 3327 */ 3328 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3329 rctl_dict_entry_t *rde; 3330 rctl_hndl_t hndl; 3331 char *name; 3332 nvlist_t **nvlarray; 3333 uint_t i, nelem; 3334 int error; /* For ASSERT()s */ 3335 3336 name = nvpair_name(nvp); 3337 hndl = rctl_hndl_lookup(name); 3338 ASSERT(hndl != -1); 3339 rde = rctl_dict_lookup_hndl(hndl); 3340 ASSERT(rde != NULL); 3341 3342 for (; /* ever */; ) { 3343 rctl_val_t oval; 3344 3345 mutex_enter(&pp->p_lock); 3346 error = rctl_local_get(hndl, NULL, &oval, pp); 3347 mutex_exit(&pp->p_lock); 3348 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3349 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3350 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3351 break; 3352 mutex_enter(&pp->p_lock); 3353 error = rctl_local_delete(hndl, &oval, pp); 3354 mutex_exit(&pp->p_lock); 3355 ASSERT(error == 0); 3356 } 3357 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3358 ASSERT(error == 0); 3359 for (i = 0; i < nelem; i++) { 3360 rctl_val_t *nvalp; 3361 3362 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3363 error = nvlist2rctlval(nvlarray[i], nvalp); 3364 ASSERT(error == 0); 3365 /* 3366 * rctl_local_insert can fail if the value being 3367 * inserted is a duplicate; this is OK. 3368 */ 3369 mutex_enter(&pp->p_lock); 3370 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3371 kmem_cache_free(rctl_val_cache, nvalp); 3372 mutex_exit(&pp->p_lock); 3373 } 3374 } 3375 /* 3376 * Tell the world that we're done setting up. 3377 * 3378 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3379 * and atomically set the zone's processor set visibility. Once 3380 * we drop pool_lock() this zone will automatically get updated 3381 * to reflect any future changes to the pools configuration. 3382 * 3383 * Note that after we drop the locks below (zonehash_lock in 3384 * particular) other operations such as a zone_getattr call can 3385 * now proceed and observe the zone. That is the reason for doing a 3386 * state transition to the INITIALIZED state. 3387 */ 3388 pool_lock(); 3389 mutex_enter(&cpu_lock); 3390 mutex_enter(&zonehash_lock); 3391 zone_uniqid(zone); 3392 zone_zsd_configure(zone); 3393 if (pool_state == POOL_ENABLED) 3394 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3395 mutex_enter(&zone_status_lock); 3396 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3397 zone_status_set(zone, ZONE_IS_INITIALIZED); 3398 mutex_exit(&zone_status_lock); 3399 mutex_exit(&zonehash_lock); 3400 mutex_exit(&cpu_lock); 3401 pool_unlock(); 3402 3403 /* Now call the create callback for this key */ 3404 zsd_apply_all_keys(zsd_apply_create, zone); 3405 3406 /* The callbacks are complete. Mark ZONE_IS_READY */ 3407 mutex_enter(&zone_status_lock); 3408 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3409 zone_status_set(zone, ZONE_IS_READY); 3410 mutex_exit(&zone_status_lock); 3411 3412 /* 3413 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3414 * we launch init, and set the state to running. 3415 */ 3416 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3417 3418 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3419 id_t cid; 3420 3421 /* 3422 * Ok, this is a little complicated. We need to grab the 3423 * zone's pool's scheduling class ID; note that by now, we 3424 * are already bound to a pool if we need to be (zoneadmd 3425 * will have done that to us while we're in the READY 3426 * state). *But* the scheduling class for the zone's 'init' 3427 * must be explicitly passed to newproc, which doesn't 3428 * respect pool bindings. 3429 * 3430 * We hold the pool_lock across the call to newproc() to 3431 * close the obvious race: the pool's scheduling class 3432 * could change before we manage to create the LWP with 3433 * classid 'cid'. 3434 */ 3435 pool_lock(); 3436 if (zone->zone_defaultcid > 0) 3437 cid = zone->zone_defaultcid; 3438 else 3439 cid = pool_get_class(zone->zone_pool); 3440 if (cid == -1) 3441 cid = defaultcid; 3442 3443 /* 3444 * If this fails, zone_boot will ultimately fail. The 3445 * state of the zone will be set to SHUTTING_DOWN-- userland 3446 * will have to tear down the zone, and fail, or try again. 3447 */ 3448 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3449 minclsyspri - 1, &ct)) != 0) { 3450 mutex_enter(&zone_status_lock); 3451 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3452 mutex_exit(&zone_status_lock); 3453 } 3454 pool_unlock(); 3455 } 3456 3457 /* 3458 * Wait for zone_destroy() to be called. This is what we spend 3459 * most of our life doing. 3460 */ 3461 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3462 3463 if (ct) 3464 /* 3465 * At this point the process contract should be empty. 3466 * (Though if it isn't, it's not the end of the world.) 3467 */ 3468 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3469 3470 /* 3471 * Allow kcred to be freed when all referring processes 3472 * (including this one) go away. We can't just do this in 3473 * zone_free because we need to wait for the zone_cred_ref to 3474 * drop to 0 before calling zone_free, and the existence of 3475 * zone_kcred will prevent that. Thus, we call crfree here to 3476 * balance the crdup in zone_create. The crhold calls earlier 3477 * in zsched will be dropped when the thread and process exit. 3478 */ 3479 crfree(zone->zone_kcred); 3480 zone->zone_kcred = NULL; 3481 3482 exit(CLD_EXITED, 0); 3483 } 3484 3485 /* 3486 * Helper function to determine if there are any submounts of the 3487 * provided path. Used to make sure the zone doesn't "inherit" any 3488 * mounts from before it is created. 3489 */ 3490 static uint_t 3491 zone_mount_count(const char *rootpath) 3492 { 3493 vfs_t *vfsp; 3494 uint_t count = 0; 3495 size_t rootpathlen = strlen(rootpath); 3496 3497 /* 3498 * Holding zonehash_lock prevents race conditions with 3499 * vfs_list_add()/vfs_list_remove() since we serialize with 3500 * zone_find_by_path(). 3501 */ 3502 ASSERT(MUTEX_HELD(&zonehash_lock)); 3503 /* 3504 * The rootpath must end with a '/' 3505 */ 3506 ASSERT(rootpath[rootpathlen - 1] == '/'); 3507 3508 /* 3509 * This intentionally does not count the rootpath itself if that 3510 * happens to be a mount point. 3511 */ 3512 vfs_list_read_lock(); 3513 vfsp = rootvfs; 3514 do { 3515 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3516 rootpathlen) == 0) 3517 count++; 3518 vfsp = vfsp->vfs_next; 3519 } while (vfsp != rootvfs); 3520 vfs_list_unlock(); 3521 return (count); 3522 } 3523 3524 /* 3525 * Helper function to make sure that a zone created on 'rootpath' 3526 * wouldn't end up containing other zones' rootpaths. 3527 */ 3528 static boolean_t 3529 zone_is_nested(const char *rootpath) 3530 { 3531 zone_t *zone; 3532 size_t rootpathlen = strlen(rootpath); 3533 size_t len; 3534 3535 ASSERT(MUTEX_HELD(&zonehash_lock)); 3536 3537 for (zone = list_head(&zone_active); zone != NULL; 3538 zone = list_next(&zone_active, zone)) { 3539 if (zone == global_zone) 3540 continue; 3541 len = strlen(zone->zone_rootpath); 3542 if (strncmp(rootpath, zone->zone_rootpath, 3543 MIN(rootpathlen, len)) == 0) 3544 return (B_TRUE); 3545 } 3546 return (B_FALSE); 3547 } 3548 3549 static int 3550 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3551 size_t zone_privssz) 3552 { 3553 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3554 3555 if (zone_privssz < sizeof (priv_set_t)) 3556 return (set_errno(ENOMEM)); 3557 3558 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3559 kmem_free(privs, sizeof (priv_set_t)); 3560 return (EFAULT); 3561 } 3562 3563 zone->zone_privset = privs; 3564 return (0); 3565 } 3566 3567 /* 3568 * We make creative use of nvlists to pass in rctls from userland. The list is 3569 * a list of the following structures: 3570 * 3571 * (name = rctl_name, value = nvpair_list_array) 3572 * 3573 * Where each element of the nvpair_list_array is of the form: 3574 * 3575 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3576 * (name = "limit", value = uint64_t), 3577 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3578 */ 3579 static int 3580 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3581 { 3582 nvpair_t *nvp = NULL; 3583 nvlist_t *nvl = NULL; 3584 char *kbuf; 3585 int error; 3586 rctl_val_t rv; 3587 3588 *nvlp = NULL; 3589 3590 if (buflen == 0) 3591 return (0); 3592 3593 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3594 return (ENOMEM); 3595 if (copyin(ubuf, kbuf, buflen)) { 3596 error = EFAULT; 3597 goto out; 3598 } 3599 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3600 /* 3601 * nvl may have been allocated/free'd, but the value set to 3602 * non-NULL, so we reset it here. 3603 */ 3604 nvl = NULL; 3605 error = EINVAL; 3606 goto out; 3607 } 3608 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3609 rctl_dict_entry_t *rde; 3610 rctl_hndl_t hndl; 3611 nvlist_t **nvlarray; 3612 uint_t i, nelem; 3613 char *name; 3614 3615 error = EINVAL; 3616 name = nvpair_name(nvp); 3617 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3618 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3619 goto out; 3620 } 3621 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3622 goto out; 3623 } 3624 rde = rctl_dict_lookup_hndl(hndl); 3625 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3626 ASSERT(error == 0); 3627 for (i = 0; i < nelem; i++) { 3628 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3629 goto out; 3630 } 3631 if (rctl_invalid_value(rde, &rv)) { 3632 error = EINVAL; 3633 goto out; 3634 } 3635 } 3636 error = 0; 3637 *nvlp = nvl; 3638 out: 3639 kmem_free(kbuf, buflen); 3640 if (error && nvl != NULL) 3641 nvlist_free(nvl); 3642 return (error); 3643 } 3644 3645 int 3646 zone_create_error(int er_error, int er_ext, int *er_out) { 3647 if (er_out != NULL) { 3648 if (copyout(&er_ext, er_out, sizeof (int))) { 3649 return (set_errno(EFAULT)); 3650 } 3651 } 3652 return (set_errno(er_error)); 3653 } 3654 3655 static int 3656 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 3657 { 3658 ts_label_t *tsl; 3659 bslabel_t blab; 3660 3661 /* Get label from user */ 3662 if (copyin(lab, &blab, sizeof (blab)) != 0) 3663 return (EFAULT); 3664 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 3665 if (tsl == NULL) 3666 return (ENOMEM); 3667 3668 zone->zone_slabel = tsl; 3669 return (0); 3670 } 3671 3672 /* 3673 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 3674 */ 3675 static int 3676 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 3677 { 3678 char *kbuf; 3679 char *dataset, *next; 3680 zone_dataset_t *zd; 3681 size_t len; 3682 3683 if (ubuf == NULL || buflen == 0) 3684 return (0); 3685 3686 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3687 return (ENOMEM); 3688 3689 if (copyin(ubuf, kbuf, buflen) != 0) { 3690 kmem_free(kbuf, buflen); 3691 return (EFAULT); 3692 } 3693 3694 dataset = next = kbuf; 3695 for (;;) { 3696 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 3697 3698 next = strchr(dataset, ','); 3699 3700 if (next == NULL) 3701 len = strlen(dataset); 3702 else 3703 len = next - dataset; 3704 3705 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 3706 bcopy(dataset, zd->zd_dataset, len); 3707 zd->zd_dataset[len] = '\0'; 3708 3709 list_insert_head(&zone->zone_datasets, zd); 3710 3711 if (next == NULL) 3712 break; 3713 3714 dataset = next + 1; 3715 } 3716 3717 kmem_free(kbuf, buflen); 3718 return (0); 3719 } 3720 3721 /* 3722 * System call to create/initialize a new zone named 'zone_name', rooted 3723 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 3724 * and initialized with the zone-wide rctls described in 'rctlbuf', and 3725 * with labeling set by 'match', 'doi', and 'label'. 3726 * 3727 * If extended error is non-null, we may use it to return more detailed 3728 * error information. 3729 */ 3730 static zoneid_t 3731 zone_create(const char *zone_name, const char *zone_root, 3732 const priv_set_t *zone_privs, size_t zone_privssz, 3733 caddr_t rctlbuf, size_t rctlbufsz, 3734 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 3735 int match, uint32_t doi, const bslabel_t *label, 3736 int flags) 3737 { 3738 struct zsched_arg zarg; 3739 nvlist_t *rctls = NULL; 3740 proc_t *pp = curproc; 3741 zone_t *zone, *ztmp; 3742 zoneid_t zoneid; 3743 int error; 3744 int error2 = 0; 3745 char *str; 3746 cred_t *zkcr; 3747 boolean_t insert_label_hash; 3748 3749 if (secpolicy_zone_config(CRED()) != 0) 3750 return (set_errno(EPERM)); 3751 3752 /* can't boot zone from within chroot environment */ 3753 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 3754 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 3755 extended_error)); 3756 3757 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 3758 zoneid = zone->zone_id = id_alloc(zoneid_space); 3759 zone->zone_status = ZONE_IS_UNINITIALIZED; 3760 zone->zone_pool = pool_default; 3761 zone->zone_pool_mod = gethrtime(); 3762 zone->zone_psetid = ZONE_PS_INVAL; 3763 zone->zone_ncpus = 0; 3764 zone->zone_ncpus_online = 0; 3765 zone->zone_restart_init = B_TRUE; 3766 zone->zone_brand = &native_brand; 3767 zone->zone_initname = NULL; 3768 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 3769 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 3770 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 3771 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 3772 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 3773 offsetof(struct zsd_entry, zsd_linkage)); 3774 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 3775 offsetof(zone_dataset_t, zd_linkage)); 3776 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 3777 3778 if (flags & ZCF_NET_EXCL) { 3779 zone->zone_flags |= ZF_NET_EXCL; 3780 } 3781 3782 if ((error = zone_set_name(zone, zone_name)) != 0) { 3783 zone_free(zone); 3784 return (zone_create_error(error, 0, extended_error)); 3785 } 3786 3787 if ((error = zone_set_root(zone, zone_root)) != 0) { 3788 zone_free(zone); 3789 return (zone_create_error(error, 0, extended_error)); 3790 } 3791 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 3792 zone_free(zone); 3793 return (zone_create_error(error, 0, extended_error)); 3794 } 3795 3796 /* initialize node name to be the same as zone name */ 3797 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3798 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 3799 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 3800 3801 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3802 zone->zone_domain[0] = '\0'; 3803 zone->zone_shares = 1; 3804 zone->zone_shmmax = 0; 3805 zone->zone_ipc.ipcq_shmmni = 0; 3806 zone->zone_ipc.ipcq_semmni = 0; 3807 zone->zone_ipc.ipcq_msgmni = 0; 3808 zone->zone_bootargs = NULL; 3809 zone->zone_initname = 3810 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 3811 (void) strcpy(zone->zone_initname, zone_default_initname); 3812 zone->zone_nlwps = 0; 3813 zone->zone_nlwps_ctl = INT_MAX; 3814 zone->zone_locked_mem = 0; 3815 zone->zone_locked_mem_ctl = UINT64_MAX; 3816 zone->zone_max_swap = 0; 3817 zone->zone_max_swap_ctl = UINT64_MAX; 3818 zone0.zone_lockedmem_kstat = NULL; 3819 zone0.zone_swapresv_kstat = NULL; 3820 3821 /* 3822 * Zsched initializes the rctls. 3823 */ 3824 zone->zone_rctls = NULL; 3825 3826 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 3827 zone_free(zone); 3828 return (zone_create_error(error, 0, extended_error)); 3829 } 3830 3831 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 3832 zone_free(zone); 3833 return (set_errno(error)); 3834 } 3835 3836 /* 3837 * Read in the trusted system parameters: 3838 * match flag and sensitivity label. 3839 */ 3840 zone->zone_match = match; 3841 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3842 /* Fail if requested to set doi to anything but system's doi */ 3843 if (doi != 0 && doi != default_doi) { 3844 zone_free(zone); 3845 return (set_errno(EINVAL)); 3846 } 3847 /* Always apply system's doi to the zone */ 3848 error = zone_set_label(zone, label, default_doi); 3849 if (error != 0) { 3850 zone_free(zone); 3851 return (set_errno(error)); 3852 } 3853 insert_label_hash = B_TRUE; 3854 } else { 3855 /* all zones get an admin_low label if system is not labeled */ 3856 zone->zone_slabel = l_admin_low; 3857 label_hold(l_admin_low); 3858 insert_label_hash = B_FALSE; 3859 } 3860 3861 /* 3862 * Stop all lwps since that's what normally happens as part of fork(). 3863 * This needs to happen before we grab any locks to avoid deadlock 3864 * (another lwp in the process could be waiting for the held lock). 3865 */ 3866 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 3867 zone_free(zone); 3868 if (rctls) 3869 nvlist_free(rctls); 3870 return (zone_create_error(error, 0, extended_error)); 3871 } 3872 3873 if (block_mounts() == 0) { 3874 mutex_enter(&pp->p_lock); 3875 if (curthread != pp->p_agenttp) 3876 continuelwps(pp); 3877 mutex_exit(&pp->p_lock); 3878 zone_free(zone); 3879 if (rctls) 3880 nvlist_free(rctls); 3881 return (zone_create_error(error, 0, extended_error)); 3882 } 3883 3884 /* 3885 * Set up credential for kernel access. After this, any errors 3886 * should go through the dance in errout rather than calling 3887 * zone_free directly. 3888 */ 3889 zone->zone_kcred = crdup(kcred); 3890 crsetzone(zone->zone_kcred, zone); 3891 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 3892 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 3893 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 3894 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 3895 3896 mutex_enter(&zonehash_lock); 3897 /* 3898 * Make sure zone doesn't already exist. 3899 * 3900 * If the system and zone are labeled, 3901 * make sure no other zone exists that has the same label. 3902 */ 3903 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 3904 (insert_label_hash && 3905 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 3906 zone_status_t status; 3907 3908 status = zone_status_get(ztmp); 3909 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 3910 error = EEXIST; 3911 else 3912 error = EBUSY; 3913 3914 if (insert_label_hash) 3915 error2 = ZE_LABELINUSE; 3916 3917 goto errout; 3918 } 3919 3920 /* 3921 * Don't allow zone creations which would cause one zone's rootpath to 3922 * be accessible from that of another (non-global) zone. 3923 */ 3924 if (zone_is_nested(zone->zone_rootpath)) { 3925 error = EBUSY; 3926 goto errout; 3927 } 3928 3929 ASSERT(zonecount != 0); /* check for leaks */ 3930 if (zonecount + 1 > maxzones) { 3931 error = ENOMEM; 3932 goto errout; 3933 } 3934 3935 if (zone_mount_count(zone->zone_rootpath) != 0) { 3936 error = EBUSY; 3937 error2 = ZE_AREMOUNTS; 3938 goto errout; 3939 } 3940 3941 /* 3942 * Zone is still incomplete, but we need to drop all locks while 3943 * zsched() initializes this zone's kernel process. We 3944 * optimistically add the zone to the hashtable and associated 3945 * lists so a parallel zone_create() doesn't try to create the 3946 * same zone. 3947 */ 3948 zonecount++; 3949 (void) mod_hash_insert(zonehashbyid, 3950 (mod_hash_key_t)(uintptr_t)zone->zone_id, 3951 (mod_hash_val_t)(uintptr_t)zone); 3952 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 3953 (void) strcpy(str, zone->zone_name); 3954 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 3955 (mod_hash_val_t)(uintptr_t)zone); 3956 if (insert_label_hash) { 3957 (void) mod_hash_insert(zonehashbylabel, 3958 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 3959 zone->zone_flags |= ZF_HASHED_LABEL; 3960 } 3961 3962 /* 3963 * Insert into active list. At this point there are no 'hold's 3964 * on the zone, but everyone else knows not to use it, so we can 3965 * continue to use it. zsched() will do a zone_hold() if the 3966 * newproc() is successful. 3967 */ 3968 list_insert_tail(&zone_active, zone); 3969 mutex_exit(&zonehash_lock); 3970 3971 zarg.zone = zone; 3972 zarg.nvlist = rctls; 3973 /* 3974 * The process, task, and project rctls are probably wrong; 3975 * we need an interface to get the default values of all rctls, 3976 * and initialize zsched appropriately. I'm not sure that that 3977 * makes much of a difference, though. 3978 */ 3979 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 3980 /* 3981 * We need to undo all globally visible state. 3982 */ 3983 mutex_enter(&zonehash_lock); 3984 list_remove(&zone_active, zone); 3985 if (zone->zone_flags & ZF_HASHED_LABEL) { 3986 ASSERT(zone->zone_slabel != NULL); 3987 (void) mod_hash_destroy(zonehashbylabel, 3988 (mod_hash_key_t)zone->zone_slabel); 3989 } 3990 (void) mod_hash_destroy(zonehashbyname, 3991 (mod_hash_key_t)(uintptr_t)zone->zone_name); 3992 (void) mod_hash_destroy(zonehashbyid, 3993 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3994 ASSERT(zonecount > 1); 3995 zonecount--; 3996 goto errout; 3997 } 3998 3999 /* 4000 * Zone creation can't fail from now on. 4001 */ 4002 4003 /* 4004 * Create zone kstats 4005 */ 4006 zone_kstat_create(zone); 4007 4008 /* 4009 * Let the other lwps continue. 4010 */ 4011 mutex_enter(&pp->p_lock); 4012 if (curthread != pp->p_agenttp) 4013 continuelwps(pp); 4014 mutex_exit(&pp->p_lock); 4015 4016 /* 4017 * Wait for zsched to finish initializing the zone. 4018 */ 4019 zone_status_wait(zone, ZONE_IS_READY); 4020 /* 4021 * The zone is fully visible, so we can let mounts progress. 4022 */ 4023 resume_mounts(); 4024 if (rctls) 4025 nvlist_free(rctls); 4026 4027 return (zoneid); 4028 4029 errout: 4030 mutex_exit(&zonehash_lock); 4031 /* 4032 * Let the other lwps continue. 4033 */ 4034 mutex_enter(&pp->p_lock); 4035 if (curthread != pp->p_agenttp) 4036 continuelwps(pp); 4037 mutex_exit(&pp->p_lock); 4038 4039 resume_mounts(); 4040 if (rctls) 4041 nvlist_free(rctls); 4042 /* 4043 * There is currently one reference to the zone, a cred_ref from 4044 * zone_kcred. To free the zone, we call crfree, which will call 4045 * zone_cred_rele, which will call zone_free. 4046 */ 4047 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 4048 ASSERT(zone->zone_kcred->cr_ref == 1); 4049 ASSERT(zone->zone_ref == 0); 4050 zkcr = zone->zone_kcred; 4051 zone->zone_kcred = NULL; 4052 crfree(zkcr); /* triggers call to zone_free */ 4053 return (zone_create_error(error, error2, extended_error)); 4054 } 4055 4056 /* 4057 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4058 * the heavy lifting. initname is the path to the program to launch 4059 * at the "top" of the zone; if this is NULL, we use the system default, 4060 * which is stored at zone_default_initname. 4061 */ 4062 static int 4063 zone_boot(zoneid_t zoneid) 4064 { 4065 int err; 4066 zone_t *zone; 4067 4068 if (secpolicy_zone_config(CRED()) != 0) 4069 return (set_errno(EPERM)); 4070 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4071 return (set_errno(EINVAL)); 4072 4073 mutex_enter(&zonehash_lock); 4074 /* 4075 * Look for zone under hash lock to prevent races with calls to 4076 * zone_shutdown, zone_destroy, etc. 4077 */ 4078 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4079 mutex_exit(&zonehash_lock); 4080 return (set_errno(EINVAL)); 4081 } 4082 4083 mutex_enter(&zone_status_lock); 4084 if (zone_status_get(zone) != ZONE_IS_READY) { 4085 mutex_exit(&zone_status_lock); 4086 mutex_exit(&zonehash_lock); 4087 return (set_errno(EINVAL)); 4088 } 4089 zone_status_set(zone, ZONE_IS_BOOTING); 4090 mutex_exit(&zone_status_lock); 4091 4092 zone_hold(zone); /* so we can use the zone_t later */ 4093 mutex_exit(&zonehash_lock); 4094 4095 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4096 zone_rele(zone); 4097 return (set_errno(EINTR)); 4098 } 4099 4100 /* 4101 * Boot (starting init) might have failed, in which case the zone 4102 * will go to the SHUTTING_DOWN state; an appropriate errno will 4103 * be placed in zone->zone_boot_err, and so we return that. 4104 */ 4105 err = zone->zone_boot_err; 4106 zone_rele(zone); 4107 return (err ? set_errno(err) : 0); 4108 } 4109 4110 /* 4111 * Kills all user processes in the zone, waiting for them all to exit 4112 * before returning. 4113 */ 4114 static int 4115 zone_empty(zone_t *zone) 4116 { 4117 int waitstatus; 4118 4119 /* 4120 * We need to drop zonehash_lock before killing all 4121 * processes, otherwise we'll deadlock with zone_find_* 4122 * which can be called from the exit path. 4123 */ 4124 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4125 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 4126 ZONE_IS_EMPTY)) == -1) { 4127 killall(zone->zone_id); 4128 } 4129 /* 4130 * return EINTR if we were signaled 4131 */ 4132 if (waitstatus == 0) 4133 return (EINTR); 4134 return (0); 4135 } 4136 4137 /* 4138 * This function implements the policy for zone visibility. 4139 * 4140 * In standard Solaris, a non-global zone can only see itself. 4141 * 4142 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4143 * it dominates. For this test, the label of the global zone is treated as 4144 * admin_high so it is special-cased instead of being checked for dominance. 4145 * 4146 * Returns true if zone attributes are viewable, false otherwise. 4147 */ 4148 static boolean_t 4149 zone_list_access(zone_t *zone) 4150 { 4151 4152 if (curproc->p_zone == global_zone || 4153 curproc->p_zone == zone) { 4154 return (B_TRUE); 4155 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4156 bslabel_t *curproc_label; 4157 bslabel_t *zone_label; 4158 4159 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4160 zone_label = label2bslabel(zone->zone_slabel); 4161 4162 if (zone->zone_id != GLOBAL_ZONEID && 4163 bldominates(curproc_label, zone_label)) { 4164 return (B_TRUE); 4165 } else { 4166 return (B_FALSE); 4167 } 4168 } else { 4169 return (B_FALSE); 4170 } 4171 } 4172 4173 /* 4174 * Systemcall to start the zone's halt sequence. By the time this 4175 * function successfully returns, all user processes and kernel threads 4176 * executing in it will have exited, ZSD shutdown callbacks executed, 4177 * and the zone status set to ZONE_IS_DOWN. 4178 * 4179 * It is possible that the call will interrupt itself if the caller is the 4180 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4181 */ 4182 static int 4183 zone_shutdown(zoneid_t zoneid) 4184 { 4185 int error; 4186 zone_t *zone; 4187 zone_status_t status; 4188 4189 if (secpolicy_zone_config(CRED()) != 0) 4190 return (set_errno(EPERM)); 4191 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4192 return (set_errno(EINVAL)); 4193 4194 /* 4195 * Block mounts so that VFS_MOUNT() can get an accurate view of 4196 * the zone's status with regards to ZONE_IS_SHUTTING down. 4197 * 4198 * e.g. NFS can fail the mount if it determines that the zone 4199 * has already begun the shutdown sequence. 4200 */ 4201 if (block_mounts() == 0) 4202 return (set_errno(EINTR)); 4203 mutex_enter(&zonehash_lock); 4204 /* 4205 * Look for zone under hash lock to prevent races with other 4206 * calls to zone_shutdown and zone_destroy. 4207 */ 4208 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4209 mutex_exit(&zonehash_lock); 4210 resume_mounts(); 4211 return (set_errno(EINVAL)); 4212 } 4213 mutex_enter(&zone_status_lock); 4214 status = zone_status_get(zone); 4215 /* 4216 * Fail if the zone isn't fully initialized yet. 4217 */ 4218 if (status < ZONE_IS_READY) { 4219 mutex_exit(&zone_status_lock); 4220 mutex_exit(&zonehash_lock); 4221 resume_mounts(); 4222 return (set_errno(EINVAL)); 4223 } 4224 /* 4225 * If conditions required for zone_shutdown() to return have been met, 4226 * return success. 4227 */ 4228 if (status >= ZONE_IS_DOWN) { 4229 mutex_exit(&zone_status_lock); 4230 mutex_exit(&zonehash_lock); 4231 resume_mounts(); 4232 return (0); 4233 } 4234 /* 4235 * If zone_shutdown() hasn't been called before, go through the motions. 4236 * If it has, there's nothing to do but wait for the kernel threads to 4237 * drain. 4238 */ 4239 if (status < ZONE_IS_EMPTY) { 4240 uint_t ntasks; 4241 4242 mutex_enter(&zone->zone_lock); 4243 if ((ntasks = zone->zone_ntasks) != 1) { 4244 /* 4245 * There's still stuff running. 4246 */ 4247 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4248 } 4249 mutex_exit(&zone->zone_lock); 4250 if (ntasks == 1) { 4251 /* 4252 * The only way to create another task is through 4253 * zone_enter(), which will block until we drop 4254 * zonehash_lock. The zone is empty. 4255 */ 4256 if (zone->zone_kthreads == NULL) { 4257 /* 4258 * Skip ahead to ZONE_IS_DOWN 4259 */ 4260 zone_status_set(zone, ZONE_IS_DOWN); 4261 } else { 4262 zone_status_set(zone, ZONE_IS_EMPTY); 4263 } 4264 } 4265 } 4266 zone_hold(zone); /* so we can use the zone_t later */ 4267 mutex_exit(&zone_status_lock); 4268 mutex_exit(&zonehash_lock); 4269 resume_mounts(); 4270 4271 if (error = zone_empty(zone)) { 4272 zone_rele(zone); 4273 return (set_errno(error)); 4274 } 4275 /* 4276 * After the zone status goes to ZONE_IS_DOWN this zone will no 4277 * longer be notified of changes to the pools configuration, so 4278 * in order to not end up with a stale pool pointer, we point 4279 * ourselves at the default pool and remove all resource 4280 * visibility. This is especially important as the zone_t may 4281 * languish on the deathrow for a very long time waiting for 4282 * cred's to drain out. 4283 * 4284 * This rebinding of the zone can happen multiple times 4285 * (presumably due to interrupted or parallel systemcalls) 4286 * without any adverse effects. 4287 */ 4288 if (pool_lock_intr() != 0) { 4289 zone_rele(zone); 4290 return (set_errno(EINTR)); 4291 } 4292 if (pool_state == POOL_ENABLED) { 4293 mutex_enter(&cpu_lock); 4294 zone_pool_set(zone, pool_default); 4295 /* 4296 * The zone no longer needs to be able to see any cpus. 4297 */ 4298 zone_pset_set(zone, ZONE_PS_INVAL); 4299 mutex_exit(&cpu_lock); 4300 } 4301 pool_unlock(); 4302 4303 /* 4304 * ZSD shutdown callbacks can be executed multiple times, hence 4305 * it is safe to not be holding any locks across this call. 4306 */ 4307 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4308 4309 mutex_enter(&zone_status_lock); 4310 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4311 zone_status_set(zone, ZONE_IS_DOWN); 4312 mutex_exit(&zone_status_lock); 4313 4314 /* 4315 * Wait for kernel threads to drain. 4316 */ 4317 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4318 zone_rele(zone); 4319 return (set_errno(EINTR)); 4320 } 4321 4322 /* 4323 * Zone can be become down/destroyable even if the above wait 4324 * returns EINTR, so any code added here may never execute. 4325 * (i.e. don't add code here) 4326 */ 4327 4328 zone_rele(zone); 4329 return (0); 4330 } 4331 4332 /* 4333 * Systemcall entry point to finalize the zone halt process. The caller 4334 * must have already successfully called zone_shutdown(). 4335 * 4336 * Upon successful completion, the zone will have been fully destroyed: 4337 * zsched will have exited, destructor callbacks executed, and the zone 4338 * removed from the list of active zones. 4339 */ 4340 static int 4341 zone_destroy(zoneid_t zoneid) 4342 { 4343 uint64_t uniqid; 4344 zone_t *zone; 4345 zone_status_t status; 4346 4347 if (secpolicy_zone_config(CRED()) != 0) 4348 return (set_errno(EPERM)); 4349 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4350 return (set_errno(EINVAL)); 4351 4352 mutex_enter(&zonehash_lock); 4353 /* 4354 * Look for zone under hash lock to prevent races with other 4355 * calls to zone_destroy. 4356 */ 4357 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4358 mutex_exit(&zonehash_lock); 4359 return (set_errno(EINVAL)); 4360 } 4361 4362 if (zone_mount_count(zone->zone_rootpath) != 0) { 4363 mutex_exit(&zonehash_lock); 4364 return (set_errno(EBUSY)); 4365 } 4366 mutex_enter(&zone_status_lock); 4367 status = zone_status_get(zone); 4368 if (status < ZONE_IS_DOWN) { 4369 mutex_exit(&zone_status_lock); 4370 mutex_exit(&zonehash_lock); 4371 return (set_errno(EBUSY)); 4372 } else if (status == ZONE_IS_DOWN) { 4373 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 4374 } 4375 mutex_exit(&zone_status_lock); 4376 zone_hold(zone); 4377 mutex_exit(&zonehash_lock); 4378 4379 /* 4380 * wait for zsched to exit 4381 */ 4382 zone_status_wait(zone, ZONE_IS_DEAD); 4383 zone_zsd_callbacks(zone, ZSD_DESTROY); 4384 zone->zone_netstack = NULL; 4385 uniqid = zone->zone_uniqid; 4386 zone_rele(zone); 4387 zone = NULL; /* potentially free'd */ 4388 4389 mutex_enter(&zonehash_lock); 4390 for (; /* ever */; ) { 4391 boolean_t unref; 4392 4393 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 4394 zone->zone_uniqid != uniqid) { 4395 /* 4396 * The zone has gone away. Necessary conditions 4397 * are met, so we return success. 4398 */ 4399 mutex_exit(&zonehash_lock); 4400 return (0); 4401 } 4402 mutex_enter(&zone->zone_lock); 4403 unref = ZONE_IS_UNREF(zone); 4404 mutex_exit(&zone->zone_lock); 4405 if (unref) { 4406 /* 4407 * There is only one reference to the zone -- that 4408 * added when the zone was added to the hashtables -- 4409 * and things will remain this way until we drop 4410 * zonehash_lock... we can go ahead and cleanup the 4411 * zone. 4412 */ 4413 break; 4414 } 4415 4416 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 4417 /* Signaled */ 4418 mutex_exit(&zonehash_lock); 4419 return (set_errno(EINTR)); 4420 } 4421 4422 } 4423 4424 /* 4425 * Remove CPU cap for this zone now since we're not going to 4426 * fail below this point. 4427 */ 4428 cpucaps_zone_remove(zone); 4429 4430 /* Get rid of the zone's kstats */ 4431 zone_kstat_delete(zone); 4432 4433 /* free brand specific data */ 4434 if (ZONE_IS_BRANDED(zone)) 4435 ZBROP(zone)->b_free_brand_data(zone); 4436 4437 /* Say goodbye to brand framework. */ 4438 brand_unregister_zone(zone->zone_brand); 4439 4440 /* 4441 * It is now safe to let the zone be recreated; remove it from the 4442 * lists. The memory will not be freed until the last cred 4443 * reference goes away. 4444 */ 4445 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 4446 zonecount--; 4447 /* remove from active list and hash tables */ 4448 list_remove(&zone_active, zone); 4449 (void) mod_hash_destroy(zonehashbyname, 4450 (mod_hash_key_t)zone->zone_name); 4451 (void) mod_hash_destroy(zonehashbyid, 4452 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4453 if (zone->zone_flags & ZF_HASHED_LABEL) 4454 (void) mod_hash_destroy(zonehashbylabel, 4455 (mod_hash_key_t)zone->zone_slabel); 4456 mutex_exit(&zonehash_lock); 4457 4458 /* 4459 * Release the root vnode; we're not using it anymore. Nor should any 4460 * other thread that might access it exist. 4461 */ 4462 if (zone->zone_rootvp != NULL) { 4463 VN_RELE(zone->zone_rootvp); 4464 zone->zone_rootvp = NULL; 4465 } 4466 4467 /* add to deathrow list */ 4468 mutex_enter(&zone_deathrow_lock); 4469 list_insert_tail(&zone_deathrow, zone); 4470 mutex_exit(&zone_deathrow_lock); 4471 4472 /* 4473 * Drop last reference (which was added by zsched()), this will 4474 * free the zone unless there are outstanding cred references. 4475 */ 4476 zone_rele(zone); 4477 return (0); 4478 } 4479 4480 /* 4481 * Systemcall entry point for zone_getattr(2). 4482 */ 4483 static ssize_t 4484 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4485 { 4486 size_t size; 4487 int error = 0, err; 4488 zone_t *zone; 4489 char *zonepath; 4490 char *outstr; 4491 zone_status_t zone_status; 4492 pid_t initpid; 4493 boolean_t global = (curzone == global_zone); 4494 boolean_t inzone = (curzone->zone_id == zoneid); 4495 ushort_t flags; 4496 4497 mutex_enter(&zonehash_lock); 4498 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4499 mutex_exit(&zonehash_lock); 4500 return (set_errno(EINVAL)); 4501 } 4502 zone_status = zone_status_get(zone); 4503 if (zone_status < ZONE_IS_INITIALIZED) { 4504 mutex_exit(&zonehash_lock); 4505 return (set_errno(EINVAL)); 4506 } 4507 zone_hold(zone); 4508 mutex_exit(&zonehash_lock); 4509 4510 /* 4511 * If not in the global zone, don't show information about other zones, 4512 * unless the system is labeled and the local zone's label dominates 4513 * the other zone. 4514 */ 4515 if (!zone_list_access(zone)) { 4516 zone_rele(zone); 4517 return (set_errno(EINVAL)); 4518 } 4519 4520 switch (attr) { 4521 case ZONE_ATTR_ROOT: 4522 if (global) { 4523 /* 4524 * Copy the path to trim the trailing "/" (except for 4525 * the global zone). 4526 */ 4527 if (zone != global_zone) 4528 size = zone->zone_rootpathlen - 1; 4529 else 4530 size = zone->zone_rootpathlen; 4531 zonepath = kmem_alloc(size, KM_SLEEP); 4532 bcopy(zone->zone_rootpath, zonepath, size); 4533 zonepath[size - 1] = '\0'; 4534 } else { 4535 if (inzone || !is_system_labeled()) { 4536 /* 4537 * Caller is not in the global zone. 4538 * if the query is on the current zone 4539 * or the system is not labeled, 4540 * just return faked-up path for current zone. 4541 */ 4542 zonepath = "/"; 4543 size = 2; 4544 } else { 4545 /* 4546 * Return related path for current zone. 4547 */ 4548 int prefix_len = strlen(zone_prefix); 4549 int zname_len = strlen(zone->zone_name); 4550 4551 size = prefix_len + zname_len + 1; 4552 zonepath = kmem_alloc(size, KM_SLEEP); 4553 bcopy(zone_prefix, zonepath, prefix_len); 4554 bcopy(zone->zone_name, zonepath + 4555 prefix_len, zname_len); 4556 zonepath[size - 1] = '\0'; 4557 } 4558 } 4559 if (bufsize > size) 4560 bufsize = size; 4561 if (buf != NULL) { 4562 err = copyoutstr(zonepath, buf, bufsize, NULL); 4563 if (err != 0 && err != ENAMETOOLONG) 4564 error = EFAULT; 4565 } 4566 if (global || (is_system_labeled() && !inzone)) 4567 kmem_free(zonepath, size); 4568 break; 4569 4570 case ZONE_ATTR_NAME: 4571 size = strlen(zone->zone_name) + 1; 4572 if (bufsize > size) 4573 bufsize = size; 4574 if (buf != NULL) { 4575 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 4576 if (err != 0 && err != ENAMETOOLONG) 4577 error = EFAULT; 4578 } 4579 break; 4580 4581 case ZONE_ATTR_STATUS: 4582 /* 4583 * Since we're not holding zonehash_lock, the zone status 4584 * may be anything; leave it up to userland to sort it out. 4585 */ 4586 size = sizeof (zone_status); 4587 if (bufsize > size) 4588 bufsize = size; 4589 zone_status = zone_status_get(zone); 4590 if (buf != NULL && 4591 copyout(&zone_status, buf, bufsize) != 0) 4592 error = EFAULT; 4593 break; 4594 case ZONE_ATTR_FLAGS: 4595 size = sizeof (zone->zone_flags); 4596 if (bufsize > size) 4597 bufsize = size; 4598 flags = zone->zone_flags; 4599 if (buf != NULL && 4600 copyout(&flags, buf, bufsize) != 0) 4601 error = EFAULT; 4602 break; 4603 case ZONE_ATTR_PRIVSET: 4604 size = sizeof (priv_set_t); 4605 if (bufsize > size) 4606 bufsize = size; 4607 if (buf != NULL && 4608 copyout(zone->zone_privset, buf, bufsize) != 0) 4609 error = EFAULT; 4610 break; 4611 case ZONE_ATTR_UNIQID: 4612 size = sizeof (zone->zone_uniqid); 4613 if (bufsize > size) 4614 bufsize = size; 4615 if (buf != NULL && 4616 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 4617 error = EFAULT; 4618 break; 4619 case ZONE_ATTR_POOLID: 4620 { 4621 pool_t *pool; 4622 poolid_t poolid; 4623 4624 if (pool_lock_intr() != 0) { 4625 error = EINTR; 4626 break; 4627 } 4628 pool = zone_pool_get(zone); 4629 poolid = pool->pool_id; 4630 pool_unlock(); 4631 size = sizeof (poolid); 4632 if (bufsize > size) 4633 bufsize = size; 4634 if (buf != NULL && copyout(&poolid, buf, size) != 0) 4635 error = EFAULT; 4636 } 4637 break; 4638 case ZONE_ATTR_SLBL: 4639 size = sizeof (bslabel_t); 4640 if (bufsize > size) 4641 bufsize = size; 4642 if (zone->zone_slabel == NULL) 4643 error = EINVAL; 4644 else if (buf != NULL && 4645 copyout(label2bslabel(zone->zone_slabel), buf, 4646 bufsize) != 0) 4647 error = EFAULT; 4648 break; 4649 case ZONE_ATTR_INITPID: 4650 size = sizeof (initpid); 4651 if (bufsize > size) 4652 bufsize = size; 4653 initpid = zone->zone_proc_initpid; 4654 if (initpid == -1) { 4655 error = ESRCH; 4656 break; 4657 } 4658 if (buf != NULL && 4659 copyout(&initpid, buf, bufsize) != 0) 4660 error = EFAULT; 4661 break; 4662 case ZONE_ATTR_BRAND: 4663 size = strlen(zone->zone_brand->b_name) + 1; 4664 4665 if (bufsize > size) 4666 bufsize = size; 4667 if (buf != NULL) { 4668 err = copyoutstr(zone->zone_brand->b_name, buf, 4669 bufsize, NULL); 4670 if (err != 0 && err != ENAMETOOLONG) 4671 error = EFAULT; 4672 } 4673 break; 4674 case ZONE_ATTR_INITNAME: 4675 size = strlen(zone->zone_initname) + 1; 4676 if (bufsize > size) 4677 bufsize = size; 4678 if (buf != NULL) { 4679 err = copyoutstr(zone->zone_initname, buf, bufsize, 4680 NULL); 4681 if (err != 0 && err != ENAMETOOLONG) 4682 error = EFAULT; 4683 } 4684 break; 4685 case ZONE_ATTR_BOOTARGS: 4686 if (zone->zone_bootargs == NULL) 4687 outstr = ""; 4688 else 4689 outstr = zone->zone_bootargs; 4690 size = strlen(outstr) + 1; 4691 if (bufsize > size) 4692 bufsize = size; 4693 if (buf != NULL) { 4694 err = copyoutstr(outstr, buf, bufsize, NULL); 4695 if (err != 0 && err != ENAMETOOLONG) 4696 error = EFAULT; 4697 } 4698 break; 4699 case ZONE_ATTR_PHYS_MCAP: 4700 size = sizeof (zone->zone_phys_mcap); 4701 if (bufsize > size) 4702 bufsize = size; 4703 if (buf != NULL && 4704 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 4705 error = EFAULT; 4706 break; 4707 case ZONE_ATTR_SCHED_CLASS: 4708 mutex_enter(&class_lock); 4709 4710 if (zone->zone_defaultcid >= loaded_classes) 4711 outstr = ""; 4712 else 4713 outstr = sclass[zone->zone_defaultcid].cl_name; 4714 size = strlen(outstr) + 1; 4715 if (bufsize > size) 4716 bufsize = size; 4717 if (buf != NULL) { 4718 err = copyoutstr(outstr, buf, bufsize, NULL); 4719 if (err != 0 && err != ENAMETOOLONG) 4720 error = EFAULT; 4721 } 4722 4723 mutex_exit(&class_lock); 4724 break; 4725 default: 4726 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 4727 size = bufsize; 4728 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 4729 } else { 4730 error = EINVAL; 4731 } 4732 } 4733 zone_rele(zone); 4734 4735 if (error) 4736 return (set_errno(error)); 4737 return ((ssize_t)size); 4738 } 4739 4740 /* 4741 * Systemcall entry point for zone_setattr(2). 4742 */ 4743 /*ARGSUSED*/ 4744 static int 4745 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4746 { 4747 zone_t *zone; 4748 zone_status_t zone_status; 4749 int err; 4750 4751 if (secpolicy_zone_config(CRED()) != 0) 4752 return (set_errno(EPERM)); 4753 4754 /* 4755 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 4756 * global zone. 4757 */ 4758 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 4759 return (set_errno(EINVAL)); 4760 } 4761 4762 mutex_enter(&zonehash_lock); 4763 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4764 mutex_exit(&zonehash_lock); 4765 return (set_errno(EINVAL)); 4766 } 4767 zone_hold(zone); 4768 mutex_exit(&zonehash_lock); 4769 4770 /* 4771 * At present most attributes can only be set on non-running, 4772 * non-global zones. 4773 */ 4774 zone_status = zone_status_get(zone); 4775 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) 4776 goto done; 4777 4778 switch (attr) { 4779 case ZONE_ATTR_INITNAME: 4780 err = zone_set_initname(zone, (const char *)buf); 4781 break; 4782 case ZONE_ATTR_BOOTARGS: 4783 err = zone_set_bootargs(zone, (const char *)buf); 4784 break; 4785 case ZONE_ATTR_BRAND: 4786 err = zone_set_brand(zone, (const char *)buf); 4787 break; 4788 case ZONE_ATTR_PHYS_MCAP: 4789 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 4790 break; 4791 case ZONE_ATTR_SCHED_CLASS: 4792 err = zone_set_sched_class(zone, (const char *)buf); 4793 break; 4794 default: 4795 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 4796 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 4797 else 4798 err = EINVAL; 4799 } 4800 4801 done: 4802 zone_rele(zone); 4803 return (err != 0 ? set_errno(err) : 0); 4804 } 4805 4806 /* 4807 * Return zero if the process has at least one vnode mapped in to its 4808 * address space which shouldn't be allowed to change zones. 4809 * 4810 * Also return zero if the process has any shared mappings which reserve 4811 * swap. This is because the counting for zone.max-swap does not allow swap 4812 * reservation to be shared between zones. zone swap reservation is counted 4813 * on zone->zone_max_swap. 4814 */ 4815 static int 4816 as_can_change_zones(void) 4817 { 4818 proc_t *pp = curproc; 4819 struct seg *seg; 4820 struct as *as = pp->p_as; 4821 vnode_t *vp; 4822 int allow = 1; 4823 4824 ASSERT(pp->p_as != &kas); 4825 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 4826 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 4827 4828 /* 4829 * Cannot enter zone with shared anon memory which 4830 * reserves swap. See comment above. 4831 */ 4832 if (seg_can_change_zones(seg) == B_FALSE) { 4833 allow = 0; 4834 break; 4835 } 4836 /* 4837 * if we can't get a backing vnode for this segment then skip 4838 * it. 4839 */ 4840 vp = NULL; 4841 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 4842 continue; 4843 if (!vn_can_change_zones(vp)) { /* bail on first match */ 4844 allow = 0; 4845 break; 4846 } 4847 } 4848 AS_LOCK_EXIT(as, &as->a_lock); 4849 return (allow); 4850 } 4851 4852 /* 4853 * Count swap reserved by curproc's address space 4854 */ 4855 static size_t 4856 as_swresv(void) 4857 { 4858 proc_t *pp = curproc; 4859 struct seg *seg; 4860 struct as *as = pp->p_as; 4861 size_t swap = 0; 4862 4863 ASSERT(pp->p_as != &kas); 4864 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 4865 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 4866 swap += seg_swresv(seg); 4867 4868 return (swap); 4869 } 4870 4871 /* 4872 * Systemcall entry point for zone_enter(). 4873 * 4874 * The current process is injected into said zone. In the process 4875 * it will change its project membership, privileges, rootdir/cwd, 4876 * zone-wide rctls, and pool association to match those of the zone. 4877 * 4878 * The first zone_enter() called while the zone is in the ZONE_IS_READY 4879 * state will transition it to ZONE_IS_RUNNING. Processes may only 4880 * enter a zone that is "ready" or "running". 4881 */ 4882 static int 4883 zone_enter(zoneid_t zoneid) 4884 { 4885 zone_t *zone; 4886 vnode_t *vp; 4887 proc_t *pp = curproc; 4888 contract_t *ct; 4889 cont_process_t *ctp; 4890 task_t *tk, *oldtk; 4891 kproject_t *zone_proj0; 4892 cred_t *cr, *newcr; 4893 pool_t *oldpool, *newpool; 4894 sess_t *sp; 4895 uid_t uid; 4896 zone_status_t status; 4897 int err = 0; 4898 rctl_entity_p_t e; 4899 size_t swap; 4900 kthread_id_t t; 4901 4902 if (secpolicy_zone_config(CRED()) != 0) 4903 return (set_errno(EPERM)); 4904 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4905 return (set_errno(EINVAL)); 4906 4907 /* 4908 * Stop all lwps so we don't need to hold a lock to look at 4909 * curproc->p_zone. This needs to happen before we grab any 4910 * locks to avoid deadlock (another lwp in the process could 4911 * be waiting for the held lock). 4912 */ 4913 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 4914 return (set_errno(EINTR)); 4915 4916 /* 4917 * Make sure we're not changing zones with files open or mapped in 4918 * to our address space which shouldn't be changing zones. 4919 */ 4920 if (!files_can_change_zones()) { 4921 err = EBADF; 4922 goto out; 4923 } 4924 if (!as_can_change_zones()) { 4925 err = EFAULT; 4926 goto out; 4927 } 4928 4929 mutex_enter(&zonehash_lock); 4930 if (pp->p_zone != global_zone) { 4931 mutex_exit(&zonehash_lock); 4932 err = EINVAL; 4933 goto out; 4934 } 4935 4936 zone = zone_find_all_by_id(zoneid); 4937 if (zone == NULL) { 4938 mutex_exit(&zonehash_lock); 4939 err = EINVAL; 4940 goto out; 4941 } 4942 4943 /* 4944 * To prevent processes in a zone from holding contracts on 4945 * extrazonal resources, and to avoid process contract 4946 * memberships which span zones, contract holders and processes 4947 * which aren't the sole members of their encapsulating process 4948 * contracts are not allowed to zone_enter. 4949 */ 4950 ctp = pp->p_ct_process; 4951 ct = &ctp->conp_contract; 4952 mutex_enter(&ct->ct_lock); 4953 mutex_enter(&pp->p_lock); 4954 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 4955 mutex_exit(&pp->p_lock); 4956 mutex_exit(&ct->ct_lock); 4957 mutex_exit(&zonehash_lock); 4958 err = EINVAL; 4959 goto out; 4960 } 4961 4962 /* 4963 * Moreover, we don't allow processes whose encapsulating 4964 * process contracts have inherited extrazonal contracts. 4965 * While it would be easier to eliminate all process contracts 4966 * with inherited contracts, we need to be able to give a 4967 * restarted init (or other zone-penetrating process) its 4968 * predecessor's contracts. 4969 */ 4970 if (ctp->conp_ninherited != 0) { 4971 contract_t *next; 4972 for (next = list_head(&ctp->conp_inherited); next; 4973 next = list_next(&ctp->conp_inherited, next)) { 4974 if (contract_getzuniqid(next) != zone->zone_uniqid) { 4975 mutex_exit(&pp->p_lock); 4976 mutex_exit(&ct->ct_lock); 4977 mutex_exit(&zonehash_lock); 4978 err = EINVAL; 4979 goto out; 4980 } 4981 } 4982 } 4983 4984 mutex_exit(&pp->p_lock); 4985 mutex_exit(&ct->ct_lock); 4986 4987 status = zone_status_get(zone); 4988 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 4989 /* 4990 * Can't join 4991 */ 4992 mutex_exit(&zonehash_lock); 4993 err = EINVAL; 4994 goto out; 4995 } 4996 4997 /* 4998 * Make sure new priv set is within the permitted set for caller 4999 */ 5000 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5001 mutex_exit(&zonehash_lock); 5002 err = EPERM; 5003 goto out; 5004 } 5005 /* 5006 * We want to momentarily drop zonehash_lock while we optimistically 5007 * bind curproc to the pool it should be running in. This is safe 5008 * since the zone can't disappear (we have a hold on it). 5009 */ 5010 zone_hold(zone); 5011 mutex_exit(&zonehash_lock); 5012 5013 /* 5014 * Grab pool_lock to keep the pools configuration from changing 5015 * and to stop ourselves from getting rebound to another pool 5016 * until we join the zone. 5017 */ 5018 if (pool_lock_intr() != 0) { 5019 zone_rele(zone); 5020 err = EINTR; 5021 goto out; 5022 } 5023 ASSERT(secpolicy_pool(CRED()) == 0); 5024 /* 5025 * Bind ourselves to the pool currently associated with the zone. 5026 */ 5027 oldpool = curproc->p_pool; 5028 newpool = zone_pool_get(zone); 5029 if (pool_state == POOL_ENABLED && newpool != oldpool && 5030 (err = pool_do_bind(newpool, P_PID, P_MYID, 5031 POOL_BIND_ALL)) != 0) { 5032 pool_unlock(); 5033 zone_rele(zone); 5034 goto out; 5035 } 5036 5037 /* 5038 * Grab cpu_lock now; we'll need it later when we call 5039 * task_join(). 5040 */ 5041 mutex_enter(&cpu_lock); 5042 mutex_enter(&zonehash_lock); 5043 /* 5044 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5045 */ 5046 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5047 /* 5048 * Can't join anymore. 5049 */ 5050 mutex_exit(&zonehash_lock); 5051 mutex_exit(&cpu_lock); 5052 if (pool_state == POOL_ENABLED && 5053 newpool != oldpool) 5054 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5055 POOL_BIND_ALL); 5056 pool_unlock(); 5057 zone_rele(zone); 5058 err = EINVAL; 5059 goto out; 5060 } 5061 5062 /* 5063 * a_lock must be held while transfering locked memory and swap 5064 * reservation from the global zone to the non global zone because 5065 * asynchronous faults on the processes' address space can lock 5066 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5067 * segments respectively. 5068 */ 5069 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5070 swap = as_swresv(); 5071 mutex_enter(&pp->p_lock); 5072 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5073 /* verify that we do not exceed and task or lwp limits */ 5074 mutex_enter(&zone->zone_nlwps_lock); 5075 /* add new lwps to zone and zone's proj0 */ 5076 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5077 zone->zone_nlwps += pp->p_lwpcnt; 5078 /* add 1 task to zone's proj0 */ 5079 zone_proj0->kpj_ntasks += 1; 5080 mutex_exit(&zone->zone_nlwps_lock); 5081 5082 mutex_enter(&zone->zone_mem_lock); 5083 zone->zone_locked_mem += pp->p_locked_mem; 5084 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5085 zone->zone_max_swap += swap; 5086 mutex_exit(&zone->zone_mem_lock); 5087 5088 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5089 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5090 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5091 5092 /* remove lwps from proc's old zone and old project */ 5093 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5094 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5095 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5096 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5097 5098 mutex_enter(&pp->p_zone->zone_mem_lock); 5099 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5100 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5101 pp->p_zone->zone_max_swap -= swap; 5102 mutex_exit(&pp->p_zone->zone_mem_lock); 5103 5104 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5105 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5106 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5107 5108 mutex_exit(&pp->p_lock); 5109 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5110 5111 /* 5112 * Joining the zone cannot fail from now on. 5113 * 5114 * This means that a lot of the following code can be commonized and 5115 * shared with zsched(). 5116 */ 5117 5118 /* 5119 * If the process contract fmri was inherited, we need to 5120 * flag this so that any contract status will not leak 5121 * extra zone information, svc_fmri in this case 5122 */ 5123 if (ctp->conp_svc_ctid != ct->ct_id) { 5124 mutex_enter(&ct->ct_lock); 5125 ctp->conp_svc_zone_enter = ct->ct_id; 5126 mutex_exit(&ct->ct_lock); 5127 } 5128 5129 /* 5130 * Reset the encapsulating process contract's zone. 5131 */ 5132 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5133 contract_setzuniqid(ct, zone->zone_uniqid); 5134 5135 /* 5136 * Create a new task and associate the process with the project keyed 5137 * by (projid,zoneid). 5138 * 5139 * We might as well be in project 0; the global zone's projid doesn't 5140 * make much sense in a zone anyhow. 5141 * 5142 * This also increments zone_ntasks, and returns with p_lock held. 5143 */ 5144 tk = task_create(0, zone); 5145 oldtk = task_join(tk, 0); 5146 mutex_exit(&cpu_lock); 5147 5148 pp->p_flag |= SZONETOP; 5149 pp->p_zone = zone; 5150 5151 /* 5152 * call RCTLOP_SET functions on this proc 5153 */ 5154 e.rcep_p.zone = zone; 5155 e.rcep_t = RCENTITY_ZONE; 5156 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5157 RCD_CALLBACK); 5158 mutex_exit(&pp->p_lock); 5159 5160 /* 5161 * We don't need to hold any of zsched's locks here; not only do we know 5162 * the process and zone aren't going away, we know its session isn't 5163 * changing either. 5164 * 5165 * By joining zsched's session here, we mimic the behavior in the 5166 * global zone of init's sid being the pid of sched. We extend this 5167 * to all zlogin-like zone_enter()'ing processes as well. 5168 */ 5169 mutex_enter(&pidlock); 5170 sp = zone->zone_zsched->p_sessp; 5171 sess_hold(zone->zone_zsched); 5172 mutex_enter(&pp->p_lock); 5173 pgexit(pp); 5174 sess_rele(pp->p_sessp, B_TRUE); 5175 pp->p_sessp = sp; 5176 pgjoin(pp, zone->zone_zsched->p_pidp); 5177 5178 /* 5179 * If any threads are scheduled to be placed on zone wait queue they 5180 * should abandon the idea since the wait queue is changing. 5181 * We need to be holding pidlock & p_lock to do this. 5182 */ 5183 if ((t = pp->p_tlist) != NULL) { 5184 do { 5185 thread_lock(t); 5186 /* 5187 * Kick this thread so that he doesn't sit 5188 * on a wrong wait queue. 5189 */ 5190 if (ISWAITING(t)) 5191 setrun_locked(t); 5192 5193 if (t->t_schedflag & TS_ANYWAITQ) 5194 t->t_schedflag &= ~ TS_ANYWAITQ; 5195 5196 thread_unlock(t); 5197 } while ((t = t->t_forw) != pp->p_tlist); 5198 } 5199 5200 /* 5201 * If there is a default scheduling class for the zone and it is not 5202 * the class we are currently in, change all of the threads in the 5203 * process to the new class. We need to be holding pidlock & p_lock 5204 * when we call parmsset so this is a good place to do it. 5205 */ 5206 if (zone->zone_defaultcid > 0 && 5207 zone->zone_defaultcid != curthread->t_cid) { 5208 pcparms_t pcparms; 5209 5210 pcparms.pc_cid = zone->zone_defaultcid; 5211 pcparms.pc_clparms[0] = 0; 5212 5213 /* 5214 * If setting the class fails, we still want to enter the zone. 5215 */ 5216 if ((t = pp->p_tlist) != NULL) { 5217 do { 5218 (void) parmsset(&pcparms, t); 5219 } while ((t = t->t_forw) != pp->p_tlist); 5220 } 5221 } 5222 5223 mutex_exit(&pp->p_lock); 5224 mutex_exit(&pidlock); 5225 5226 mutex_exit(&zonehash_lock); 5227 /* 5228 * We're firmly in the zone; let pools progress. 5229 */ 5230 pool_unlock(); 5231 task_rele(oldtk); 5232 /* 5233 * We don't need to retain a hold on the zone since we already 5234 * incremented zone_ntasks, so the zone isn't going anywhere. 5235 */ 5236 zone_rele(zone); 5237 5238 /* 5239 * Chroot 5240 */ 5241 vp = zone->zone_rootvp; 5242 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 5243 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 5244 5245 /* 5246 * Change process credentials 5247 */ 5248 newcr = cralloc(); 5249 mutex_enter(&pp->p_crlock); 5250 cr = pp->p_cred; 5251 crcopy_to(cr, newcr); 5252 crsetzone(newcr, zone); 5253 pp->p_cred = newcr; 5254 5255 /* 5256 * Restrict all process privilege sets to zone limit 5257 */ 5258 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 5259 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 5260 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 5261 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 5262 mutex_exit(&pp->p_crlock); 5263 crset(pp, newcr); 5264 5265 /* 5266 * Adjust upcount to reflect zone entry. 5267 */ 5268 uid = crgetruid(newcr); 5269 mutex_enter(&pidlock); 5270 upcount_dec(uid, GLOBAL_ZONEID); 5271 upcount_inc(uid, zoneid); 5272 mutex_exit(&pidlock); 5273 5274 /* 5275 * Set up core file path and content. 5276 */ 5277 set_core_defaults(); 5278 5279 out: 5280 /* 5281 * Let the other lwps continue. 5282 */ 5283 mutex_enter(&pp->p_lock); 5284 if (curthread != pp->p_agenttp) 5285 continuelwps(pp); 5286 mutex_exit(&pp->p_lock); 5287 5288 return (err != 0 ? set_errno(err) : 0); 5289 } 5290 5291 /* 5292 * Systemcall entry point for zone_list(2). 5293 * 5294 * Processes running in a (non-global) zone only see themselves. 5295 * On labeled systems, they see all zones whose label they dominate. 5296 */ 5297 static int 5298 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 5299 { 5300 zoneid_t *zoneids; 5301 zone_t *zone, *myzone; 5302 uint_t user_nzones, real_nzones; 5303 uint_t domi_nzones; 5304 int error; 5305 5306 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 5307 return (set_errno(EFAULT)); 5308 5309 myzone = curproc->p_zone; 5310 if (myzone != global_zone) { 5311 bslabel_t *mybslab; 5312 5313 if (!is_system_labeled()) { 5314 /* just return current zone */ 5315 real_nzones = domi_nzones = 1; 5316 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 5317 zoneids[0] = myzone->zone_id; 5318 } else { 5319 /* return all zones that are dominated */ 5320 mutex_enter(&zonehash_lock); 5321 real_nzones = zonecount; 5322 domi_nzones = 0; 5323 if (real_nzones > 0) { 5324 zoneids = kmem_alloc(real_nzones * 5325 sizeof (zoneid_t), KM_SLEEP); 5326 mybslab = label2bslabel(myzone->zone_slabel); 5327 for (zone = list_head(&zone_active); 5328 zone != NULL; 5329 zone = list_next(&zone_active, zone)) { 5330 if (zone->zone_id == GLOBAL_ZONEID) 5331 continue; 5332 if (zone != myzone && 5333 (zone->zone_flags & ZF_IS_SCRATCH)) 5334 continue; 5335 /* 5336 * Note that a label always dominates 5337 * itself, so myzone is always included 5338 * in the list. 5339 */ 5340 if (bldominates(mybslab, 5341 label2bslabel(zone->zone_slabel))) { 5342 zoneids[domi_nzones++] = 5343 zone->zone_id; 5344 } 5345 } 5346 } 5347 mutex_exit(&zonehash_lock); 5348 } 5349 } else { 5350 mutex_enter(&zonehash_lock); 5351 real_nzones = zonecount; 5352 domi_nzones = 0; 5353 if (real_nzones > 0) { 5354 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 5355 KM_SLEEP); 5356 for (zone = list_head(&zone_active); zone != NULL; 5357 zone = list_next(&zone_active, zone)) 5358 zoneids[domi_nzones++] = zone->zone_id; 5359 ASSERT(domi_nzones == real_nzones); 5360 } 5361 mutex_exit(&zonehash_lock); 5362 } 5363 5364 /* 5365 * If user has allocated space for fewer entries than we found, then 5366 * return only up to his limit. Either way, tell him exactly how many 5367 * we found. 5368 */ 5369 if (domi_nzones < user_nzones) 5370 user_nzones = domi_nzones; 5371 error = 0; 5372 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 5373 error = EFAULT; 5374 } else if (zoneidlist != NULL && user_nzones != 0) { 5375 if (copyout(zoneids, zoneidlist, 5376 user_nzones * sizeof (zoneid_t)) != 0) 5377 error = EFAULT; 5378 } 5379 5380 if (real_nzones > 0) 5381 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 5382 5383 if (error != 0) 5384 return (set_errno(error)); 5385 else 5386 return (0); 5387 } 5388 5389 /* 5390 * Systemcall entry point for zone_lookup(2). 5391 * 5392 * Non-global zones are only able to see themselves and (on labeled systems) 5393 * the zones they dominate. 5394 */ 5395 static zoneid_t 5396 zone_lookup(const char *zone_name) 5397 { 5398 char *kname; 5399 zone_t *zone; 5400 zoneid_t zoneid; 5401 int err; 5402 5403 if (zone_name == NULL) { 5404 /* return caller's zone id */ 5405 return (getzoneid()); 5406 } 5407 5408 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 5409 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 5410 kmem_free(kname, ZONENAME_MAX); 5411 return (set_errno(err)); 5412 } 5413 5414 mutex_enter(&zonehash_lock); 5415 zone = zone_find_all_by_name(kname); 5416 kmem_free(kname, ZONENAME_MAX); 5417 /* 5418 * In a non-global zone, can only lookup global and own name. 5419 * In Trusted Extensions zone label dominance rules apply. 5420 */ 5421 if (zone == NULL || 5422 zone_status_get(zone) < ZONE_IS_READY || 5423 !zone_list_access(zone)) { 5424 mutex_exit(&zonehash_lock); 5425 return (set_errno(EINVAL)); 5426 } else { 5427 zoneid = zone->zone_id; 5428 mutex_exit(&zonehash_lock); 5429 return (zoneid); 5430 } 5431 } 5432 5433 static int 5434 zone_version(int *version_arg) 5435 { 5436 int version = ZONE_SYSCALL_API_VERSION; 5437 5438 if (copyout(&version, version_arg, sizeof (int)) != 0) 5439 return (set_errno(EFAULT)); 5440 return (0); 5441 } 5442 5443 /* ARGSUSED */ 5444 long 5445 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 5446 { 5447 zone_def zs; 5448 5449 switch (cmd) { 5450 case ZONE_CREATE: 5451 if (get_udatamodel() == DATAMODEL_NATIVE) { 5452 if (copyin(arg1, &zs, sizeof (zone_def))) { 5453 return (set_errno(EFAULT)); 5454 } 5455 } else { 5456 #ifdef _SYSCALL32_IMPL 5457 zone_def32 zs32; 5458 5459 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 5460 return (set_errno(EFAULT)); 5461 } 5462 zs.zone_name = 5463 (const char *)(unsigned long)zs32.zone_name; 5464 zs.zone_root = 5465 (const char *)(unsigned long)zs32.zone_root; 5466 zs.zone_privs = 5467 (const struct priv_set *) 5468 (unsigned long)zs32.zone_privs; 5469 zs.zone_privssz = zs32.zone_privssz; 5470 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 5471 zs.rctlbufsz = zs32.rctlbufsz; 5472 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 5473 zs.zfsbufsz = zs32.zfsbufsz; 5474 zs.extended_error = 5475 (int *)(unsigned long)zs32.extended_error; 5476 zs.match = zs32.match; 5477 zs.doi = zs32.doi; 5478 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 5479 zs.flags = zs32.flags; 5480 #else 5481 panic("get_udatamodel() returned bogus result\n"); 5482 #endif 5483 } 5484 5485 return (zone_create(zs.zone_name, zs.zone_root, 5486 zs.zone_privs, zs.zone_privssz, 5487 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 5488 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 5489 zs.extended_error, zs.match, zs.doi, 5490 zs.label, zs.flags)); 5491 case ZONE_BOOT: 5492 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 5493 case ZONE_DESTROY: 5494 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 5495 case ZONE_GETATTR: 5496 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 5497 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5498 case ZONE_SETATTR: 5499 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 5500 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5501 case ZONE_ENTER: 5502 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 5503 case ZONE_LIST: 5504 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 5505 case ZONE_SHUTDOWN: 5506 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 5507 case ZONE_LOOKUP: 5508 return (zone_lookup((const char *)arg1)); 5509 case ZONE_VERSION: 5510 return (zone_version((int *)arg1)); 5511 case ZONE_ADD_DATALINK: 5512 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 5513 (char *)arg2)); 5514 case ZONE_DEL_DATALINK: 5515 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 5516 (char *)arg2)); 5517 case ZONE_CHECK_DATALINK: 5518 return (zone_check_datalink((zoneid_t *)arg1, (char *)arg2)); 5519 case ZONE_LIST_DATALINK: 5520 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 5521 (int *)arg2, (char *)arg3)); 5522 default: 5523 return (set_errno(EINVAL)); 5524 } 5525 } 5526 5527 struct zarg { 5528 zone_t *zone; 5529 zone_cmd_arg_t arg; 5530 }; 5531 5532 static int 5533 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 5534 { 5535 char *buf; 5536 size_t buflen; 5537 int error; 5538 5539 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 5540 buf = kmem_alloc(buflen, KM_SLEEP); 5541 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 5542 error = door_ki_open(buf, doorp); 5543 kmem_free(buf, buflen); 5544 return (error); 5545 } 5546 5547 static void 5548 zone_release_door(door_handle_t *doorp) 5549 { 5550 door_ki_rele(*doorp); 5551 *doorp = NULL; 5552 } 5553 5554 static void 5555 zone_ki_call_zoneadmd(struct zarg *zargp) 5556 { 5557 door_handle_t door = NULL; 5558 door_arg_t darg, save_arg; 5559 char *zone_name; 5560 size_t zone_namelen; 5561 zoneid_t zoneid; 5562 zone_t *zone; 5563 zone_cmd_arg_t arg; 5564 uint64_t uniqid; 5565 size_t size; 5566 int error; 5567 int retry; 5568 5569 zone = zargp->zone; 5570 arg = zargp->arg; 5571 kmem_free(zargp, sizeof (*zargp)); 5572 5573 zone_namelen = strlen(zone->zone_name) + 1; 5574 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 5575 bcopy(zone->zone_name, zone_name, zone_namelen); 5576 zoneid = zone->zone_id; 5577 uniqid = zone->zone_uniqid; 5578 /* 5579 * zoneadmd may be down, but at least we can empty out the zone. 5580 * We can ignore the return value of zone_empty() since we're called 5581 * from a kernel thread and know we won't be delivered any signals. 5582 */ 5583 ASSERT(curproc == &p0); 5584 (void) zone_empty(zone); 5585 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 5586 zone_rele(zone); 5587 5588 size = sizeof (arg); 5589 darg.rbuf = (char *)&arg; 5590 darg.data_ptr = (char *)&arg; 5591 darg.rsize = size; 5592 darg.data_size = size; 5593 darg.desc_ptr = NULL; 5594 darg.desc_num = 0; 5595 5596 save_arg = darg; 5597 /* 5598 * Since we're not holding a reference to the zone, any number of 5599 * things can go wrong, including the zone disappearing before we get a 5600 * chance to talk to zoneadmd. 5601 */ 5602 for (retry = 0; /* forever */; retry++) { 5603 if (door == NULL && 5604 (error = zone_lookup_door(zone_name, &door)) != 0) { 5605 goto next; 5606 } 5607 ASSERT(door != NULL); 5608 5609 if ((error = door_ki_upcall_limited(door, &darg, NULL, 5610 SIZE_MAX, 0)) == 0) { 5611 break; 5612 } 5613 switch (error) { 5614 case EINTR: 5615 /* FALLTHROUGH */ 5616 case EAGAIN: /* process may be forking */ 5617 /* 5618 * Back off for a bit 5619 */ 5620 break; 5621 case EBADF: 5622 zone_release_door(&door); 5623 if (zone_lookup_door(zone_name, &door) != 0) { 5624 /* 5625 * zoneadmd may be dead, but it may come back to 5626 * life later. 5627 */ 5628 break; 5629 } 5630 break; 5631 default: 5632 cmn_err(CE_WARN, 5633 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 5634 error); 5635 goto out; 5636 } 5637 next: 5638 /* 5639 * If this isn't the same zone_t that we originally had in mind, 5640 * then this is the same as if two kadmin requests come in at 5641 * the same time: the first one wins. This means we lose, so we 5642 * bail. 5643 */ 5644 if ((zone = zone_find_by_id(zoneid)) == NULL) { 5645 /* 5646 * Problem is solved. 5647 */ 5648 break; 5649 } 5650 if (zone->zone_uniqid != uniqid) { 5651 /* 5652 * zoneid recycled 5653 */ 5654 zone_rele(zone); 5655 break; 5656 } 5657 /* 5658 * We could zone_status_timedwait(), but there doesn't seem to 5659 * be much point in doing that (plus, it would mean that 5660 * zone_free() isn't called until this thread exits). 5661 */ 5662 zone_rele(zone); 5663 delay(hz); 5664 darg = save_arg; 5665 } 5666 out: 5667 if (door != NULL) { 5668 zone_release_door(&door); 5669 } 5670 kmem_free(zone_name, zone_namelen); 5671 thread_exit(); 5672 } 5673 5674 /* 5675 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 5676 * kadmin(). The caller is a process in the zone. 5677 * 5678 * In order to shutdown the zone, we will hand off control to zoneadmd 5679 * (running in the global zone) via a door. We do a half-hearted job at 5680 * killing all processes in the zone, create a kernel thread to contact 5681 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 5682 * a form of generation number used to let zoneadmd (as well as 5683 * zone_destroy()) know exactly which zone they're re talking about. 5684 */ 5685 int 5686 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 5687 { 5688 struct zarg *zargp; 5689 zone_cmd_t zcmd; 5690 zone_t *zone; 5691 5692 zone = curproc->p_zone; 5693 ASSERT(getzoneid() != GLOBAL_ZONEID); 5694 5695 switch (cmd) { 5696 case A_SHUTDOWN: 5697 switch (fcn) { 5698 case AD_HALT: 5699 case AD_POWEROFF: 5700 zcmd = Z_HALT; 5701 break; 5702 case AD_BOOT: 5703 zcmd = Z_REBOOT; 5704 break; 5705 case AD_IBOOT: 5706 case AD_SBOOT: 5707 case AD_SIBOOT: 5708 case AD_NOSYNC: 5709 return (ENOTSUP); 5710 default: 5711 return (EINVAL); 5712 } 5713 break; 5714 case A_REBOOT: 5715 zcmd = Z_REBOOT; 5716 break; 5717 case A_FTRACE: 5718 case A_REMOUNT: 5719 case A_FREEZE: 5720 case A_DUMP: 5721 return (ENOTSUP); 5722 default: 5723 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 5724 return (EINVAL); 5725 } 5726 5727 if (secpolicy_zone_admin(credp, B_FALSE)) 5728 return (EPERM); 5729 mutex_enter(&zone_status_lock); 5730 5731 /* 5732 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 5733 * is in the zone. 5734 */ 5735 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 5736 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 5737 /* 5738 * This zone is already on its way down. 5739 */ 5740 mutex_exit(&zone_status_lock); 5741 return (0); 5742 } 5743 /* 5744 * Prevent future zone_enter()s 5745 */ 5746 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5747 mutex_exit(&zone_status_lock); 5748 5749 /* 5750 * Kill everyone now and call zoneadmd later. 5751 * zone_ki_call_zoneadmd() will do a more thorough job of this 5752 * later. 5753 */ 5754 killall(zone->zone_id); 5755 /* 5756 * Now, create the thread to contact zoneadmd and do the rest of the 5757 * work. This thread can't be created in our zone otherwise 5758 * zone_destroy() would deadlock. 5759 */ 5760 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 5761 zargp->arg.cmd = zcmd; 5762 zargp->arg.uniqid = zone->zone_uniqid; 5763 zargp->zone = zone; 5764 (void) strcpy(zargp->arg.locale, "C"); 5765 /* mdep was already copied in for us by uadmin */ 5766 if (mdep != NULL) 5767 (void) strlcpy(zargp->arg.bootbuf, mdep, 5768 sizeof (zargp->arg.bootbuf)); 5769 zone_hold(zone); 5770 5771 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 5772 TS_RUN, minclsyspri); 5773 exit(CLD_EXITED, 0); 5774 5775 return (EINVAL); 5776 } 5777 5778 /* 5779 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 5780 * status to ZONE_IS_SHUTTING_DOWN. 5781 * 5782 * This function also shuts down all running zones to ensure that they won't 5783 * fork new processes. 5784 */ 5785 void 5786 zone_shutdown_global(void) 5787 { 5788 zone_t *current_zonep; 5789 5790 ASSERT(INGLOBALZONE(curproc)); 5791 mutex_enter(&zonehash_lock); 5792 mutex_enter(&zone_status_lock); 5793 5794 /* Modify the global zone's status first. */ 5795 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 5796 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 5797 5798 /* 5799 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 5800 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 5801 * could cause assertions to fail (e.g., assertions about a zone's 5802 * state during initialization, readying, or booting) or produce races. 5803 * We'll let threads continue to initialize and ready new zones: they'll 5804 * fail to boot the new zones when they see that the global zone is 5805 * shutting down. 5806 */ 5807 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 5808 current_zonep = list_next(&zone_active, current_zonep)) { 5809 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 5810 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 5811 } 5812 mutex_exit(&zone_status_lock); 5813 mutex_exit(&zonehash_lock); 5814 } 5815 5816 /* 5817 * Returns true if the named dataset is visible in the current zone. 5818 * The 'write' parameter is set to 1 if the dataset is also writable. 5819 */ 5820 int 5821 zone_dataset_visible(const char *dataset, int *write) 5822 { 5823 zone_dataset_t *zd; 5824 size_t len; 5825 zone_t *zone = curproc->p_zone; 5826 5827 if (dataset[0] == '\0') 5828 return (0); 5829 5830 /* 5831 * Walk the list once, looking for datasets which match exactly, or 5832 * specify a dataset underneath an exported dataset. If found, return 5833 * true and note that it is writable. 5834 */ 5835 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5836 zd = list_next(&zone->zone_datasets, zd)) { 5837 5838 len = strlen(zd->zd_dataset); 5839 if (strlen(dataset) >= len && 5840 bcmp(dataset, zd->zd_dataset, len) == 0 && 5841 (dataset[len] == '\0' || dataset[len] == '/' || 5842 dataset[len] == '@')) { 5843 if (write) 5844 *write = 1; 5845 return (1); 5846 } 5847 } 5848 5849 /* 5850 * Walk the list a second time, searching for datasets which are parents 5851 * of exported datasets. These should be visible, but read-only. 5852 * 5853 * Note that we also have to support forms such as 'pool/dataset/', with 5854 * a trailing slash. 5855 */ 5856 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5857 zd = list_next(&zone->zone_datasets, zd)) { 5858 5859 len = strlen(dataset); 5860 if (dataset[len - 1] == '/') 5861 len--; /* Ignore trailing slash */ 5862 if (len < strlen(zd->zd_dataset) && 5863 bcmp(dataset, zd->zd_dataset, len) == 0 && 5864 zd->zd_dataset[len] == '/') { 5865 if (write) 5866 *write = 0; 5867 return (1); 5868 } 5869 } 5870 5871 return (0); 5872 } 5873 5874 /* 5875 * zone_find_by_any_path() - 5876 * 5877 * kernel-private routine similar to zone_find_by_path(), but which 5878 * effectively compares against zone paths rather than zonerootpath 5879 * (i.e., the last component of zonerootpaths, which should be "root/", 5880 * are not compared.) This is done in order to accurately identify all 5881 * paths, whether zone-visible or not, including those which are parallel 5882 * to /root/, such as /dev/, /home/, etc... 5883 * 5884 * If the specified path does not fall under any zone path then global 5885 * zone is returned. 5886 * 5887 * The treat_abs parameter indicates whether the path should be treated as 5888 * an absolute path although it does not begin with "/". (This supports 5889 * nfs mount syntax such as host:any/path.) 5890 * 5891 * The caller is responsible for zone_rele of the returned zone. 5892 */ 5893 zone_t * 5894 zone_find_by_any_path(const char *path, boolean_t treat_abs) 5895 { 5896 zone_t *zone; 5897 int path_offset = 0; 5898 5899 if (path == NULL) { 5900 zone_hold(global_zone); 5901 return (global_zone); 5902 } 5903 5904 if (*path != '/') { 5905 ASSERT(treat_abs); 5906 path_offset = 1; 5907 } 5908 5909 mutex_enter(&zonehash_lock); 5910 for (zone = list_head(&zone_active); zone != NULL; 5911 zone = list_next(&zone_active, zone)) { 5912 char *c; 5913 size_t pathlen; 5914 char *rootpath_start; 5915 5916 if (zone == global_zone) /* skip global zone */ 5917 continue; 5918 5919 /* scan backwards to find start of last component */ 5920 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 5921 do { 5922 c--; 5923 } while (*c != '/'); 5924 5925 pathlen = c - zone->zone_rootpath + 1 - path_offset; 5926 rootpath_start = (zone->zone_rootpath + path_offset); 5927 if (strncmp(path, rootpath_start, pathlen) == 0) 5928 break; 5929 } 5930 if (zone == NULL) 5931 zone = global_zone; 5932 zone_hold(zone); 5933 mutex_exit(&zonehash_lock); 5934 return (zone); 5935 } 5936 5937 /* List of data link names which are accessible from the zone */ 5938 struct dlnamelist { 5939 char dlnl_name[LIFNAMSIZ]; 5940 struct dlnamelist *dlnl_next; 5941 }; 5942 5943 5944 /* 5945 * Check whether the datalink name (dlname) itself is present. 5946 * Return true if found. 5947 */ 5948 static boolean_t 5949 zone_dlname(zone_t *zone, char *dlname) 5950 { 5951 struct dlnamelist *dlnl; 5952 boolean_t found = B_FALSE; 5953 5954 mutex_enter(&zone->zone_lock); 5955 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 5956 if (strncmp(dlnl->dlnl_name, dlname, LIFNAMSIZ) == 0) { 5957 found = B_TRUE; 5958 break; 5959 } 5960 } 5961 mutex_exit(&zone->zone_lock); 5962 return (found); 5963 } 5964 5965 /* 5966 * Add an data link name for the zone. Does not check for duplicates. 5967 */ 5968 static int 5969 zone_add_datalink(zoneid_t zoneid, char *dlname) 5970 { 5971 struct dlnamelist *dlnl; 5972 zone_t *zone; 5973 zone_t *thiszone; 5974 int err; 5975 5976 dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP); 5977 if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) { 5978 kmem_free(dlnl, sizeof (struct dlnamelist)); 5979 return (set_errno(err)); 5980 } 5981 5982 thiszone = zone_find_by_id(zoneid); 5983 if (thiszone == NULL) { 5984 kmem_free(dlnl, sizeof (struct dlnamelist)); 5985 return (set_errno(ENXIO)); 5986 } 5987 5988 /* 5989 * Verify that the datalink name isn't already used by a different 5990 * zone while allowing duplicate entries for the same zone (e.g. due 5991 * to both using IPv4 and IPv6 on an interface) 5992 */ 5993 mutex_enter(&zonehash_lock); 5994 for (zone = list_head(&zone_active); zone != NULL; 5995 zone = list_next(&zone_active, zone)) { 5996 if (zone->zone_id == zoneid) 5997 continue; 5998 5999 if (zone_dlname(zone, dlnl->dlnl_name)) { 6000 mutex_exit(&zonehash_lock); 6001 zone_rele(thiszone); 6002 kmem_free(dlnl, sizeof (struct dlnamelist)); 6003 return (set_errno(EPERM)); 6004 } 6005 } 6006 mutex_enter(&thiszone->zone_lock); 6007 dlnl->dlnl_next = thiszone->zone_dl_list; 6008 thiszone->zone_dl_list = dlnl; 6009 mutex_exit(&thiszone->zone_lock); 6010 mutex_exit(&zonehash_lock); 6011 zone_rele(thiszone); 6012 return (0); 6013 } 6014 6015 static int 6016 zone_remove_datalink(zoneid_t zoneid, char *dlname) 6017 { 6018 struct dlnamelist *dlnl, *odlnl, **dlnlp; 6019 zone_t *zone; 6020 int err; 6021 6022 dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP); 6023 if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) { 6024 kmem_free(dlnl, sizeof (struct dlnamelist)); 6025 return (set_errno(err)); 6026 } 6027 zone = zone_find_by_id(zoneid); 6028 if (zone == NULL) { 6029 kmem_free(dlnl, sizeof (struct dlnamelist)); 6030 return (set_errno(EINVAL)); 6031 } 6032 6033 mutex_enter(&zone->zone_lock); 6034 /* Look for match */ 6035 dlnlp = &zone->zone_dl_list; 6036 while (*dlnlp != NULL) { 6037 if (strncmp(dlnl->dlnl_name, (*dlnlp)->dlnl_name, 6038 LIFNAMSIZ) == 0) 6039 goto found; 6040 dlnlp = &((*dlnlp)->dlnl_next); 6041 } 6042 mutex_exit(&zone->zone_lock); 6043 zone_rele(zone); 6044 kmem_free(dlnl, sizeof (struct dlnamelist)); 6045 return (set_errno(ENXIO)); 6046 6047 found: 6048 odlnl = *dlnlp; 6049 *dlnlp = (*dlnlp)->dlnl_next; 6050 kmem_free(odlnl, sizeof (struct dlnamelist)); 6051 6052 mutex_exit(&zone->zone_lock); 6053 zone_rele(zone); 6054 kmem_free(dlnl, sizeof (struct dlnamelist)); 6055 return (0); 6056 } 6057 6058 /* 6059 * Using the zoneidp as ALL_ZONES, we can lookup which zone is using datalink 6060 * name (dlname); otherwise we just check if the specified zoneidp has access 6061 * to the datalink name. 6062 */ 6063 static int 6064 zone_check_datalink(zoneid_t *zoneidp, char *dlname) 6065 { 6066 zoneid_t id; 6067 char *dln; 6068 zone_t *zone; 6069 int err = 0; 6070 boolean_t allzones = B_FALSE; 6071 6072 if (copyin(zoneidp, &id, sizeof (id)) != 0) { 6073 return (set_errno(EFAULT)); 6074 } 6075 dln = kmem_zalloc(LIFNAMSIZ, KM_SLEEP); 6076 if ((err = copyinstr(dlname, dln, LIFNAMSIZ, NULL)) != 0) { 6077 kmem_free(dln, LIFNAMSIZ); 6078 return (set_errno(err)); 6079 } 6080 6081 if (id == ALL_ZONES) 6082 allzones = B_TRUE; 6083 6084 /* 6085 * Check whether datalink name is already used. 6086 */ 6087 mutex_enter(&zonehash_lock); 6088 for (zone = list_head(&zone_active); zone != NULL; 6089 zone = list_next(&zone_active, zone)) { 6090 if (allzones || (id == zone->zone_id)) { 6091 if (!zone_dlname(zone, dln)) 6092 continue; 6093 if (allzones) 6094 err = copyout(&zone->zone_id, zoneidp, 6095 sizeof (*zoneidp)); 6096 6097 mutex_exit(&zonehash_lock); 6098 kmem_free(dln, LIFNAMSIZ); 6099 return (err ? set_errno(EFAULT) : 0); 6100 } 6101 } 6102 6103 /* datalink name is not found in any active zone. */ 6104 mutex_exit(&zonehash_lock); 6105 kmem_free(dln, LIFNAMSIZ); 6106 return (set_errno(ENXIO)); 6107 } 6108 6109 /* 6110 * Get the names of the datalinks assigned to a zone. 6111 * Here *nump is the number of datalinks, and the assumption 6112 * is that the caller will guarantee that the the supplied buffer is 6113 * big enough to hold at least #*nump datalink names, that is, 6114 * LIFNAMSIZ X *nump 6115 * On return, *nump will be the "new" number of datalinks, if it 6116 * ever changed. 6117 */ 6118 static int 6119 zone_list_datalink(zoneid_t zoneid, int *nump, char *buf) 6120 { 6121 int num, dlcount; 6122 zone_t *zone; 6123 struct dlnamelist *dlnl; 6124 char *ptr; 6125 6126 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6127 return (set_errno(EFAULT)); 6128 6129 zone = zone_find_by_id(zoneid); 6130 if (zone == NULL) { 6131 return (set_errno(ENXIO)); 6132 } 6133 6134 num = 0; 6135 mutex_enter(&zone->zone_lock); 6136 ptr = buf; 6137 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 6138 /* 6139 * If the list changed and the new number is bigger 6140 * than what the caller supplied, just count, don't 6141 * do copyout 6142 */ 6143 if (++num > dlcount) 6144 continue; 6145 if (copyout(dlnl->dlnl_name, ptr, LIFNAMSIZ) != 0) { 6146 mutex_exit(&zone->zone_lock); 6147 zone_rele(zone); 6148 return (set_errno(EFAULT)); 6149 } 6150 ptr += LIFNAMSIZ; 6151 } 6152 mutex_exit(&zone->zone_lock); 6153 zone_rele(zone); 6154 6155 /* Increased or decreased, caller should be notified. */ 6156 if (num != dlcount) { 6157 if (copyout(&num, nump, sizeof (num)) != 0) { 6158 return (set_errno(EFAULT)); 6159 } 6160 } 6161 return (0); 6162 } 6163 6164 /* 6165 * Public interface for looking up a zone by zoneid. It's a customized version 6166 * for netstack_zone_create(). It can only be called from the zsd create 6167 * callbacks, since it doesn't have reference on the zone structure hence if 6168 * it is called elsewhere the zone could disappear after the zonehash_lock 6169 * is dropped. 6170 * 6171 * Furthermore it 6172 * 1. Doesn't check the status of the zone. 6173 * 2. It will be called even before zone_init is called, in that case the 6174 * address of zone0 is returned directly, and netstack_zone_create() 6175 * will only assign a value to zone0.zone_netstack, won't break anything. 6176 * 3. Returns without the zone being held. 6177 */ 6178 zone_t * 6179 zone_find_by_id_nolock(zoneid_t zoneid) 6180 { 6181 zone_t *zone; 6182 6183 mutex_enter(&zonehash_lock); 6184 if (zonehashbyid == NULL) 6185 zone = &zone0; 6186 else 6187 zone = zone_find_all_by_id(zoneid); 6188 mutex_exit(&zonehash_lock); 6189 return (zone); 6190 } 6191 6192 /* 6193 * Walk the datalinks for a given zone 6194 */ 6195 int 6196 zone_datalink_walk(zoneid_t zoneid, int (*cb)(const char *, void *), void *data) 6197 { 6198 zone_t *zone; 6199 struct dlnamelist *dlnl; 6200 int ret = 0; 6201 6202 if ((zone = zone_find_by_id(zoneid)) == NULL) 6203 return (ENOENT); 6204 6205 mutex_enter(&zone->zone_lock); 6206 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 6207 if ((ret = (*cb)(dlnl->dlnl_name, data)) != 0) 6208 break; 6209 } 6210 mutex_exit(&zone->zone_lock); 6211 zone_rele(zone); 6212 return (ret); 6213 } 6214