1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 164 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 165 * list (a list of zones in the ZONE_IS_DEAD state). 166 * 167 * Ordering requirements: 168 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 169 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 170 * 171 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 172 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 173 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 174 * 175 * Blocking memory allocations are permitted while holding any of the 176 * zone locks. 177 * 178 * 179 * System Call Interface: 180 * 181 * The zone subsystem can be managed and queried from user level with 182 * the following system calls (all subcodes of the primary "zone" 183 * system call): 184 * - zone_create: creates a zone with selected attributes (name, 185 * root path, privileges, resource controls, ZFS datasets) 186 * - zone_enter: allows the current process to enter a zone 187 * - zone_getattr: reports attributes of a zone 188 * - zone_setattr: set attributes of a zone 189 * - zone_boot: set 'init' running for the zone 190 * - zone_list: lists all zones active in the system 191 * - zone_lookup: looks up zone id based on name 192 * - zone_shutdown: initiates shutdown process (see states above) 193 * - zone_destroy: completes shutdown process (see states above) 194 * 195 */ 196 197 #include <sys/priv_impl.h> 198 #include <sys/cred.h> 199 #include <c2/audit.h> 200 #include <sys/debug.h> 201 #include <sys/file.h> 202 #include <sys/kmem.h> 203 #include <sys/kstat.h> 204 #include <sys/mutex.h> 205 #include <sys/note.h> 206 #include <sys/pathname.h> 207 #include <sys/proc.h> 208 #include <sys/project.h> 209 #include <sys/sysevent.h> 210 #include <sys/task.h> 211 #include <sys/systm.h> 212 #include <sys/types.h> 213 #include <sys/utsname.h> 214 #include <sys/vnode.h> 215 #include <sys/vfs.h> 216 #include <sys/systeminfo.h> 217 #include <sys/policy.h> 218 #include <sys/cred_impl.h> 219 #include <sys/contract_impl.h> 220 #include <sys/contract/process_impl.h> 221 #include <sys/class.h> 222 #include <sys/pool.h> 223 #include <sys/pool_pset.h> 224 #include <sys/pset.h> 225 #include <sys/sysmacros.h> 226 #include <sys/callb.h> 227 #include <sys/vmparam.h> 228 #include <sys/corectl.h> 229 #include <sys/ipc_impl.h> 230 231 #include <sys/door.h> 232 #include <sys/cpuvar.h> 233 #include <sys/sdt.h> 234 235 #include <sys/uadmin.h> 236 #include <sys/session.h> 237 #include <sys/cmn_err.h> 238 #include <sys/modhash.h> 239 #include <sys/sunddi.h> 240 #include <sys/nvpair.h> 241 #include <sys/rctl.h> 242 #include <sys/fss.h> 243 #include <sys/brand.h> 244 #include <sys/zone.h> 245 #include <net/if.h> 246 #include <sys/cpucaps.h> 247 #include <vm/seg.h> 248 #include <sys/mac.h> 249 250 /* List of data link IDs which are accessible from the zone */ 251 typedef struct zone_dl { 252 datalink_id_t zdl_id; 253 list_node_t zdl_linkage; 254 } zone_dl_t; 255 256 /* 257 * cv used to signal that all references to the zone have been released. This 258 * needs to be global since there may be multiple waiters, and the first to 259 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 260 */ 261 static kcondvar_t zone_destroy_cv; 262 /* 263 * Lock used to serialize access to zone_cv. This could have been per-zone, 264 * but then we'd need another lock for zone_destroy_cv, and why bother? 265 */ 266 static kmutex_t zone_status_lock; 267 268 /* 269 * ZSD-related global variables. 270 */ 271 static kmutex_t zsd_key_lock; /* protects the following two */ 272 /* 273 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 274 */ 275 static zone_key_t zsd_keyval = 0; 276 /* 277 * Global list of registered keys. We use this when a new zone is created. 278 */ 279 static list_t zsd_registered_keys; 280 281 int zone_hash_size = 256; 282 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 283 static kmutex_t zonehash_lock; 284 static uint_t zonecount; 285 static id_space_t *zoneid_space; 286 287 /* 288 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 289 * kernel proper runs, and which manages all other zones. 290 * 291 * Although not declared as static, the variable "zone0" should not be used 292 * except for by code that needs to reference the global zone early on in boot, 293 * before it is fully initialized. All other consumers should use 294 * 'global_zone'. 295 */ 296 zone_t zone0; 297 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 298 299 /* 300 * List of active zones, protected by zonehash_lock. 301 */ 302 static list_t zone_active; 303 304 /* 305 * List of destroyed zones that still have outstanding cred references. 306 * Used for debugging. Uses a separate lock to avoid lock ordering 307 * problems in zone_free. 308 */ 309 static list_t zone_deathrow; 310 static kmutex_t zone_deathrow_lock; 311 312 /* number of zones is limited by virtual interface limit in IP */ 313 uint_t maxzones = 8192; 314 315 /* Event channel to sent zone state change notifications */ 316 evchan_t *zone_event_chan; 317 318 /* 319 * This table holds the mapping from kernel zone states to 320 * states visible in the state notification API. 321 * The idea is that we only expose "obvious" states and 322 * do not expose states which are just implementation details. 323 */ 324 const char *zone_status_table[] = { 325 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 326 ZONE_EVENT_INITIALIZED, /* initialized */ 327 ZONE_EVENT_READY, /* ready */ 328 ZONE_EVENT_READY, /* booting */ 329 ZONE_EVENT_RUNNING, /* running */ 330 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 331 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 332 ZONE_EVENT_SHUTTING_DOWN, /* down */ 333 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 334 ZONE_EVENT_UNINITIALIZED, /* dead */ 335 }; 336 337 /* 338 * This isn't static so lint doesn't complain. 339 */ 340 rctl_hndl_t rc_zone_cpu_shares; 341 rctl_hndl_t rc_zone_locked_mem; 342 rctl_hndl_t rc_zone_max_swap; 343 rctl_hndl_t rc_zone_cpu_cap; 344 rctl_hndl_t rc_zone_nlwps; 345 rctl_hndl_t rc_zone_shmmax; 346 rctl_hndl_t rc_zone_shmmni; 347 rctl_hndl_t rc_zone_semmni; 348 rctl_hndl_t rc_zone_msgmni; 349 /* 350 * Synchronization primitives used to synchronize between mounts and zone 351 * creation/destruction. 352 */ 353 static int mounts_in_progress; 354 static kcondvar_t mount_cv; 355 static kmutex_t mount_lock; 356 357 const char * const zone_default_initname = "/sbin/init"; 358 static char * const zone_prefix = "/zone/"; 359 static int zone_shutdown(zoneid_t zoneid); 360 static int zone_add_datalink(zoneid_t, datalink_id_t); 361 static int zone_remove_datalink(zoneid_t, datalink_id_t); 362 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 363 364 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 365 366 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 367 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 368 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 369 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 370 zone_key_t); 371 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 372 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 373 kmutex_t *); 374 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 375 kmutex_t *); 376 377 /* 378 * Bump this number when you alter the zone syscall interfaces; this is 379 * because we need to have support for previous API versions in libc 380 * to support patching; libc calls into the kernel to determine this number. 381 * 382 * Version 1 of the API is the version originally shipped with Solaris 10 383 * Version 2 alters the zone_create system call in order to support more 384 * arguments by moving the args into a structure; and to do better 385 * error reporting when zone_create() fails. 386 * Version 3 alters the zone_create system call in order to support the 387 * import of ZFS datasets to zones. 388 * Version 4 alters the zone_create system call in order to support 389 * Trusted Extensions. 390 * Version 5 alters the zone_boot system call, and converts its old 391 * bootargs parameter to be set by the zone_setattr API instead. 392 * Version 6 adds the flag argument to zone_create. 393 */ 394 static const int ZONE_SYSCALL_API_VERSION = 6; 395 396 /* 397 * Certain filesystems (such as NFS and autofs) need to know which zone 398 * the mount is being placed in. Because of this, we need to be able to 399 * ensure that a zone isn't in the process of being created such that 400 * nfs_mount() thinks it is in the global zone, while by the time it 401 * gets added the list of mounted zones, it ends up on zoneA's mount 402 * list. 403 * 404 * The following functions: block_mounts()/resume_mounts() and 405 * mount_in_progress()/mount_completed() are used by zones and the VFS 406 * layer (respectively) to synchronize zone creation and new mounts. 407 * 408 * The semantics are like a reader-reader lock such that there may 409 * either be multiple mounts (or zone creations, if that weren't 410 * serialized by zonehash_lock) in progress at the same time, but not 411 * both. 412 * 413 * We use cv's so the user can ctrl-C out of the operation if it's 414 * taking too long. 415 * 416 * The semantics are such that there is unfair bias towards the 417 * "current" operation. This means that zone creations may starve if 418 * there is a rapid succession of new mounts coming in to the system, or 419 * there is a remote possibility that zones will be created at such a 420 * rate that new mounts will not be able to proceed. 421 */ 422 /* 423 * Prevent new mounts from progressing to the point of calling 424 * VFS_MOUNT(). If there are already mounts in this "region", wait for 425 * them to complete. 426 */ 427 static int 428 block_mounts(void) 429 { 430 int retval = 0; 431 432 /* 433 * Since it may block for a long time, block_mounts() shouldn't be 434 * called with zonehash_lock held. 435 */ 436 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 437 mutex_enter(&mount_lock); 438 while (mounts_in_progress > 0) { 439 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 440 goto signaled; 441 } 442 /* 443 * A negative value of mounts_in_progress indicates that mounts 444 * have been blocked by (-mounts_in_progress) different callers. 445 */ 446 mounts_in_progress--; 447 retval = 1; 448 signaled: 449 mutex_exit(&mount_lock); 450 return (retval); 451 } 452 453 /* 454 * The VFS layer may progress with new mounts as far as we're concerned. 455 * Allow them to progress if we were the last obstacle. 456 */ 457 static void 458 resume_mounts(void) 459 { 460 mutex_enter(&mount_lock); 461 if (++mounts_in_progress == 0) 462 cv_broadcast(&mount_cv); 463 mutex_exit(&mount_lock); 464 } 465 466 /* 467 * The VFS layer is busy with a mount; zones should wait until all 468 * mounts are completed to progress. 469 */ 470 void 471 mount_in_progress(void) 472 { 473 mutex_enter(&mount_lock); 474 while (mounts_in_progress < 0) 475 cv_wait(&mount_cv, &mount_lock); 476 mounts_in_progress++; 477 mutex_exit(&mount_lock); 478 } 479 480 /* 481 * VFS is done with one mount; wake up any waiting block_mounts() 482 * callers if this is the last mount. 483 */ 484 void 485 mount_completed(void) 486 { 487 mutex_enter(&mount_lock); 488 if (--mounts_in_progress == 0) 489 cv_broadcast(&mount_cv); 490 mutex_exit(&mount_lock); 491 } 492 493 /* 494 * ZSD routines. 495 * 496 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 497 * defined by the pthread_key_create() and related interfaces. 498 * 499 * Kernel subsystems may register one or more data items and/or 500 * callbacks to be executed when a zone is created, shutdown, or 501 * destroyed. 502 * 503 * Unlike the thread counterpart, destructor callbacks will be executed 504 * even if the data pointer is NULL and/or there are no constructor 505 * callbacks, so it is the responsibility of such callbacks to check for 506 * NULL data values if necessary. 507 * 508 * The locking strategy and overall picture is as follows: 509 * 510 * When someone calls zone_key_create(), a template ZSD entry is added to the 511 * global list "zsd_registered_keys", protected by zsd_key_lock. While 512 * holding that lock all the existing zones are marked as 513 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 514 * zone_zsd list (protected by zone_lock). The global list is updated first 515 * (under zone_key_lock) to make sure that newly created zones use the 516 * most recent list of keys. Then under zonehash_lock we walk the zones 517 * and mark them. Similar locking is used in zone_key_delete(). 518 * 519 * The actual create, shutdown, and destroy callbacks are done without 520 * holding any lock. And zsd_flags are used to ensure that the operations 521 * completed so that when zone_key_create (and zone_create) is done, as well as 522 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 523 * are completed. 524 * 525 * When new zones are created constructor callbacks for all registered ZSD 526 * entries will be called. That also uses the above two phases of marking 527 * what needs to be done, and then running the callbacks without holding 528 * any locks. 529 * 530 * The framework does not provide any locking around zone_getspecific() and 531 * zone_setspecific() apart from that needed for internal consistency, so 532 * callers interested in atomic "test-and-set" semantics will need to provide 533 * their own locking. 534 */ 535 536 /* 537 * Helper function to find the zsd_entry associated with the key in the 538 * given list. 539 */ 540 static struct zsd_entry * 541 zsd_find(list_t *l, zone_key_t key) 542 { 543 struct zsd_entry *zsd; 544 545 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 546 if (zsd->zsd_key == key) { 547 return (zsd); 548 } 549 } 550 return (NULL); 551 } 552 553 /* 554 * Helper function to find the zsd_entry associated with the key in the 555 * given list. Move it to the front of the list. 556 */ 557 static struct zsd_entry * 558 zsd_find_mru(list_t *l, zone_key_t key) 559 { 560 struct zsd_entry *zsd; 561 562 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 563 if (zsd->zsd_key == key) { 564 /* 565 * Move to head of list to keep list in MRU order. 566 */ 567 if (zsd != list_head(l)) { 568 list_remove(l, zsd); 569 list_insert_head(l, zsd); 570 } 571 return (zsd); 572 } 573 } 574 return (NULL); 575 } 576 577 void 578 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 579 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 580 { 581 struct zsd_entry *zsdp; 582 struct zsd_entry *t; 583 struct zone *zone; 584 zone_key_t key; 585 586 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 587 zsdp->zsd_data = NULL; 588 zsdp->zsd_create = create; 589 zsdp->zsd_shutdown = shutdown; 590 zsdp->zsd_destroy = destroy; 591 592 /* 593 * Insert in global list of callbacks. Makes future zone creations 594 * see it. 595 */ 596 mutex_enter(&zsd_key_lock); 597 *keyp = key = zsdp->zsd_key = ++zsd_keyval; 598 ASSERT(zsd_keyval != 0); 599 list_insert_tail(&zsd_registered_keys, zsdp); 600 mutex_exit(&zsd_key_lock); 601 602 /* 603 * Insert for all existing zones and mark them as needing 604 * a create callback. 605 */ 606 mutex_enter(&zonehash_lock); /* stop the world */ 607 for (zone = list_head(&zone_active); zone != NULL; 608 zone = list_next(&zone_active, zone)) { 609 zone_status_t status; 610 611 mutex_enter(&zone->zone_lock); 612 613 /* Skip zones that are on the way down or not yet up */ 614 status = zone_status_get(zone); 615 if (status >= ZONE_IS_DOWN || 616 status == ZONE_IS_UNINITIALIZED) { 617 mutex_exit(&zone->zone_lock); 618 continue; 619 } 620 621 t = zsd_find_mru(&zone->zone_zsd, key); 622 if (t != NULL) { 623 /* 624 * A zsd_configure already inserted it after 625 * we dropped zsd_key_lock above. 626 */ 627 mutex_exit(&zone->zone_lock); 628 continue; 629 } 630 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 631 t->zsd_key = key; 632 t->zsd_create = create; 633 t->zsd_shutdown = shutdown; 634 t->zsd_destroy = destroy; 635 if (create != NULL) { 636 t->zsd_flags = ZSD_CREATE_NEEDED; 637 DTRACE_PROBE2(zsd__create__needed, 638 zone_t *, zone, zone_key_t, key); 639 } 640 list_insert_tail(&zone->zone_zsd, t); 641 mutex_exit(&zone->zone_lock); 642 } 643 mutex_exit(&zonehash_lock); 644 645 if (create != NULL) { 646 /* Now call the create callback for this key */ 647 zsd_apply_all_zones(zsd_apply_create, key); 648 } 649 } 650 651 /* 652 * Function called when a module is being unloaded, or otherwise wishes 653 * to unregister its ZSD key and callbacks. 654 * 655 * Remove from the global list and determine the functions that need to 656 * be called under a global lock. Then call the functions without 657 * holding any locks. Finally free up the zone_zsd entries. (The apply 658 * functions need to access the zone_zsd entries to find zsd_data etc.) 659 */ 660 int 661 zone_key_delete(zone_key_t key) 662 { 663 struct zsd_entry *zsdp = NULL; 664 zone_t *zone; 665 666 mutex_enter(&zsd_key_lock); 667 zsdp = zsd_find_mru(&zsd_registered_keys, key); 668 if (zsdp == NULL) { 669 mutex_exit(&zsd_key_lock); 670 return (-1); 671 } 672 list_remove(&zsd_registered_keys, zsdp); 673 mutex_exit(&zsd_key_lock); 674 675 mutex_enter(&zonehash_lock); 676 for (zone = list_head(&zone_active); zone != NULL; 677 zone = list_next(&zone_active, zone)) { 678 struct zsd_entry *del; 679 680 mutex_enter(&zone->zone_lock); 681 del = zsd_find_mru(&zone->zone_zsd, key); 682 if (del == NULL) { 683 /* 684 * Somebody else got here first e.g the zone going 685 * away. 686 */ 687 mutex_exit(&zone->zone_lock); 688 continue; 689 } 690 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 691 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 692 if (del->zsd_shutdown != NULL && 693 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 694 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 695 DTRACE_PROBE2(zsd__shutdown__needed, 696 zone_t *, zone, zone_key_t, key); 697 } 698 if (del->zsd_destroy != NULL && 699 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 700 del->zsd_flags |= ZSD_DESTROY_NEEDED; 701 DTRACE_PROBE2(zsd__destroy__needed, 702 zone_t *, zone, zone_key_t, key); 703 } 704 mutex_exit(&zone->zone_lock); 705 } 706 mutex_exit(&zonehash_lock); 707 kmem_free(zsdp, sizeof (*zsdp)); 708 709 /* Now call the shutdown and destroy callback for this key */ 710 zsd_apply_all_zones(zsd_apply_shutdown, key); 711 zsd_apply_all_zones(zsd_apply_destroy, key); 712 713 /* Now we can free up the zsdp structures in each zone */ 714 mutex_enter(&zonehash_lock); 715 for (zone = list_head(&zone_active); zone != NULL; 716 zone = list_next(&zone_active, zone)) { 717 struct zsd_entry *del; 718 719 mutex_enter(&zone->zone_lock); 720 del = zsd_find(&zone->zone_zsd, key); 721 if (del != NULL) { 722 list_remove(&zone->zone_zsd, del); 723 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 724 kmem_free(del, sizeof (*del)); 725 } 726 mutex_exit(&zone->zone_lock); 727 } 728 mutex_exit(&zonehash_lock); 729 730 return (0); 731 } 732 733 /* 734 * ZSD counterpart of pthread_setspecific(). 735 * 736 * Since all zsd callbacks, including those with no create function, 737 * have an entry in zone_zsd, if the key is registered it is part of 738 * the zone_zsd list. 739 * Return an error if the key wasn't registerd. 740 */ 741 int 742 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 743 { 744 struct zsd_entry *t; 745 746 mutex_enter(&zone->zone_lock); 747 t = zsd_find_mru(&zone->zone_zsd, key); 748 if (t != NULL) { 749 /* 750 * Replace old value with new 751 */ 752 t->zsd_data = (void *)data; 753 mutex_exit(&zone->zone_lock); 754 return (0); 755 } 756 mutex_exit(&zone->zone_lock); 757 return (-1); 758 } 759 760 /* 761 * ZSD counterpart of pthread_getspecific(). 762 */ 763 void * 764 zone_getspecific(zone_key_t key, zone_t *zone) 765 { 766 struct zsd_entry *t; 767 void *data; 768 769 mutex_enter(&zone->zone_lock); 770 t = zsd_find_mru(&zone->zone_zsd, key); 771 data = (t == NULL ? NULL : t->zsd_data); 772 mutex_exit(&zone->zone_lock); 773 return (data); 774 } 775 776 /* 777 * Function used to initialize a zone's list of ZSD callbacks and data 778 * when the zone is being created. The callbacks are initialized from 779 * the template list (zsd_registered_keys). The constructor callback is 780 * executed later (once the zone exists and with locks dropped). 781 */ 782 static void 783 zone_zsd_configure(zone_t *zone) 784 { 785 struct zsd_entry *zsdp; 786 struct zsd_entry *t; 787 788 ASSERT(MUTEX_HELD(&zonehash_lock)); 789 ASSERT(list_head(&zone->zone_zsd) == NULL); 790 mutex_enter(&zone->zone_lock); 791 mutex_enter(&zsd_key_lock); 792 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 793 zsdp = list_next(&zsd_registered_keys, zsdp)) { 794 /* 795 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 796 * should not have added anything to it. 797 */ 798 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 799 800 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 801 t->zsd_key = zsdp->zsd_key; 802 t->zsd_create = zsdp->zsd_create; 803 t->zsd_shutdown = zsdp->zsd_shutdown; 804 t->zsd_destroy = zsdp->zsd_destroy; 805 if (zsdp->zsd_create != NULL) { 806 t->zsd_flags = ZSD_CREATE_NEEDED; 807 DTRACE_PROBE2(zsd__create__needed, 808 zone_t *, zone, zone_key_t, zsdp->zsd_key); 809 } 810 list_insert_tail(&zone->zone_zsd, t); 811 } 812 mutex_exit(&zsd_key_lock); 813 mutex_exit(&zone->zone_lock); 814 } 815 816 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 817 818 /* 819 * Helper function to execute shutdown or destructor callbacks. 820 */ 821 static void 822 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 823 { 824 struct zsd_entry *t; 825 826 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 827 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 828 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 829 830 /* 831 * Run the callback solely based on what is registered for the zone 832 * in zone_zsd. The global list can change independently of this 833 * as keys are registered and unregistered and we don't register new 834 * callbacks for a zone that is in the process of going away. 835 */ 836 mutex_enter(&zone->zone_lock); 837 for (t = list_head(&zone->zone_zsd); t != NULL; 838 t = list_next(&zone->zone_zsd, t)) { 839 zone_key_t key = t->zsd_key; 840 841 /* Skip if no callbacks registered */ 842 843 if (ct == ZSD_SHUTDOWN) { 844 if (t->zsd_shutdown != NULL && 845 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 846 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 847 DTRACE_PROBE2(zsd__shutdown__needed, 848 zone_t *, zone, zone_key_t, key); 849 } 850 } else { 851 if (t->zsd_destroy != NULL && 852 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 853 t->zsd_flags |= ZSD_DESTROY_NEEDED; 854 DTRACE_PROBE2(zsd__destroy__needed, 855 zone_t *, zone, zone_key_t, key); 856 } 857 } 858 } 859 mutex_exit(&zone->zone_lock); 860 861 /* Now call the shutdown and destroy callback for this key */ 862 zsd_apply_all_keys(zsd_apply_shutdown, zone); 863 zsd_apply_all_keys(zsd_apply_destroy, zone); 864 865 } 866 867 /* 868 * Called when the zone is going away; free ZSD-related memory, and 869 * destroy the zone_zsd list. 870 */ 871 static void 872 zone_free_zsd(zone_t *zone) 873 { 874 struct zsd_entry *t, *next; 875 876 /* 877 * Free all the zsd_entry's we had on this zone. 878 */ 879 mutex_enter(&zone->zone_lock); 880 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 881 next = list_next(&zone->zone_zsd, t); 882 list_remove(&zone->zone_zsd, t); 883 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 884 kmem_free(t, sizeof (*t)); 885 } 886 list_destroy(&zone->zone_zsd); 887 mutex_exit(&zone->zone_lock); 888 889 } 890 891 /* 892 * Apply a function to all zones for particular key value. 893 * 894 * The applyfn has to drop zonehash_lock if it does some work, and 895 * then reacquire it before it returns. 896 * When the lock is dropped we don't follow list_next even 897 * if it is possible to do so without any hazards. This is 898 * because we want the design to allow for the list of zones 899 * to change in any arbitrary way during the time the 900 * lock was dropped. 901 * 902 * It is safe to restart the loop at list_head since the applyfn 903 * changes the zsd_flags as it does work, so a subsequent 904 * pass through will have no effect in applyfn, hence the loop will terminate 905 * in at worst O(N^2). 906 */ 907 static void 908 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 909 { 910 zone_t *zone; 911 912 mutex_enter(&zonehash_lock); 913 zone = list_head(&zone_active); 914 while (zone != NULL) { 915 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 916 /* Lock dropped - restart at head */ 917 zone = list_head(&zone_active); 918 } else { 919 zone = list_next(&zone_active, zone); 920 } 921 } 922 mutex_exit(&zonehash_lock); 923 } 924 925 /* 926 * Apply a function to all keys for a particular zone. 927 * 928 * The applyfn has to drop zonehash_lock if it does some work, and 929 * then reacquire it before it returns. 930 * When the lock is dropped we don't follow list_next even 931 * if it is possible to do so without any hazards. This is 932 * because we want the design to allow for the list of zsd callbacks 933 * to change in any arbitrary way during the time the 934 * lock was dropped. 935 * 936 * It is safe to restart the loop at list_head since the applyfn 937 * changes the zsd_flags as it does work, so a subsequent 938 * pass through will have no effect in applyfn, hence the loop will terminate 939 * in at worst O(N^2). 940 */ 941 static void 942 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 943 { 944 struct zsd_entry *t; 945 946 mutex_enter(&zone->zone_lock); 947 t = list_head(&zone->zone_zsd); 948 while (t != NULL) { 949 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 950 /* Lock dropped - restart at head */ 951 t = list_head(&zone->zone_zsd); 952 } else { 953 t = list_next(&zone->zone_zsd, t); 954 } 955 } 956 mutex_exit(&zone->zone_lock); 957 } 958 959 /* 960 * Call the create function for the zone and key if CREATE_NEEDED 961 * is set. 962 * If some other thread gets here first and sets CREATE_INPROGRESS, then 963 * we wait for that thread to complete so that we can ensure that 964 * all the callbacks are done when we've looped over all zones/keys. 965 * 966 * When we call the create function, we drop the global held by the 967 * caller, and return true to tell the caller it needs to re-evalute the 968 * state. 969 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 970 * remains held on exit. 971 */ 972 static boolean_t 973 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 974 zone_t *zone, zone_key_t key) 975 { 976 void *result; 977 struct zsd_entry *t; 978 boolean_t dropped; 979 980 if (lockp != NULL) { 981 ASSERT(MUTEX_HELD(lockp)); 982 } 983 if (zone_lock_held) { 984 ASSERT(MUTEX_HELD(&zone->zone_lock)); 985 } else { 986 mutex_enter(&zone->zone_lock); 987 } 988 989 t = zsd_find(&zone->zone_zsd, key); 990 if (t == NULL) { 991 /* 992 * Somebody else got here first e.g the zone going 993 * away. 994 */ 995 if (!zone_lock_held) 996 mutex_exit(&zone->zone_lock); 997 return (B_FALSE); 998 } 999 dropped = B_FALSE; 1000 if (zsd_wait_for_inprogress(zone, t, lockp)) 1001 dropped = B_TRUE; 1002 1003 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1004 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1005 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1006 DTRACE_PROBE2(zsd__create__inprogress, 1007 zone_t *, zone, zone_key_t, key); 1008 mutex_exit(&zone->zone_lock); 1009 if (lockp != NULL) 1010 mutex_exit(lockp); 1011 1012 dropped = B_TRUE; 1013 ASSERT(t->zsd_create != NULL); 1014 DTRACE_PROBE2(zsd__create__start, 1015 zone_t *, zone, zone_key_t, key); 1016 1017 result = (*t->zsd_create)(zone->zone_id); 1018 1019 DTRACE_PROBE2(zsd__create__end, 1020 zone_t *, zone, voidn *, result); 1021 1022 ASSERT(result != NULL); 1023 if (lockp != NULL) 1024 mutex_enter(lockp); 1025 mutex_enter(&zone->zone_lock); 1026 t->zsd_data = result; 1027 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1028 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1029 cv_broadcast(&t->zsd_cv); 1030 DTRACE_PROBE2(zsd__create__completed, 1031 zone_t *, zone, zone_key_t, key); 1032 } 1033 if (!zone_lock_held) 1034 mutex_exit(&zone->zone_lock); 1035 return (dropped); 1036 } 1037 1038 /* 1039 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1040 * is set. 1041 * If some other thread gets here first and sets *_INPROGRESS, then 1042 * we wait for that thread to complete so that we can ensure that 1043 * all the callbacks are done when we've looped over all zones/keys. 1044 * 1045 * When we call the shutdown function, we drop the global held by the 1046 * caller, and return true to tell the caller it needs to re-evalute the 1047 * state. 1048 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1049 * remains held on exit. 1050 */ 1051 static boolean_t 1052 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1053 zone_t *zone, zone_key_t key) 1054 { 1055 struct zsd_entry *t; 1056 void *data; 1057 boolean_t dropped; 1058 1059 if (lockp != NULL) { 1060 ASSERT(MUTEX_HELD(lockp)); 1061 } 1062 if (zone_lock_held) { 1063 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1064 } else { 1065 mutex_enter(&zone->zone_lock); 1066 } 1067 1068 t = zsd_find(&zone->zone_zsd, key); 1069 if (t == NULL) { 1070 /* 1071 * Somebody else got here first e.g the zone going 1072 * away. 1073 */ 1074 if (!zone_lock_held) 1075 mutex_exit(&zone->zone_lock); 1076 return (B_FALSE); 1077 } 1078 dropped = B_FALSE; 1079 if (zsd_wait_for_creator(zone, t, lockp)) 1080 dropped = B_TRUE; 1081 1082 if (zsd_wait_for_inprogress(zone, t, lockp)) 1083 dropped = B_TRUE; 1084 1085 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1086 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1087 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1088 DTRACE_PROBE2(zsd__shutdown__inprogress, 1089 zone_t *, zone, zone_key_t, key); 1090 mutex_exit(&zone->zone_lock); 1091 if (lockp != NULL) 1092 mutex_exit(lockp); 1093 dropped = B_TRUE; 1094 1095 ASSERT(t->zsd_shutdown != NULL); 1096 data = t->zsd_data; 1097 1098 DTRACE_PROBE2(zsd__shutdown__start, 1099 zone_t *, zone, zone_key_t, key); 1100 1101 (t->zsd_shutdown)(zone->zone_id, data); 1102 DTRACE_PROBE2(zsd__shutdown__end, 1103 zone_t *, zone, zone_key_t, key); 1104 1105 if (lockp != NULL) 1106 mutex_enter(lockp); 1107 mutex_enter(&zone->zone_lock); 1108 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1109 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1110 cv_broadcast(&t->zsd_cv); 1111 DTRACE_PROBE2(zsd__shutdown__completed, 1112 zone_t *, zone, zone_key_t, key); 1113 } 1114 if (!zone_lock_held) 1115 mutex_exit(&zone->zone_lock); 1116 return (dropped); 1117 } 1118 1119 /* 1120 * Call the destroy function for the zone and key if DESTROY_NEEDED 1121 * is set. 1122 * If some other thread gets here first and sets *_INPROGRESS, then 1123 * we wait for that thread to complete so that we can ensure that 1124 * all the callbacks are done when we've looped over all zones/keys. 1125 * 1126 * When we call the destroy function, we drop the global held by the 1127 * caller, and return true to tell the caller it needs to re-evalute the 1128 * state. 1129 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1130 * remains held on exit. 1131 */ 1132 static boolean_t 1133 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1134 zone_t *zone, zone_key_t key) 1135 { 1136 struct zsd_entry *t; 1137 void *data; 1138 boolean_t dropped; 1139 1140 if (lockp != NULL) { 1141 ASSERT(MUTEX_HELD(lockp)); 1142 } 1143 if (zone_lock_held) { 1144 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1145 } else { 1146 mutex_enter(&zone->zone_lock); 1147 } 1148 1149 t = zsd_find(&zone->zone_zsd, key); 1150 if (t == NULL) { 1151 /* 1152 * Somebody else got here first e.g the zone going 1153 * away. 1154 */ 1155 if (!zone_lock_held) 1156 mutex_exit(&zone->zone_lock); 1157 return (B_FALSE); 1158 } 1159 dropped = B_FALSE; 1160 if (zsd_wait_for_creator(zone, t, lockp)) 1161 dropped = B_TRUE; 1162 1163 if (zsd_wait_for_inprogress(zone, t, lockp)) 1164 dropped = B_TRUE; 1165 1166 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1167 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1168 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1169 DTRACE_PROBE2(zsd__destroy__inprogress, 1170 zone_t *, zone, zone_key_t, key); 1171 mutex_exit(&zone->zone_lock); 1172 if (lockp != NULL) 1173 mutex_exit(lockp); 1174 dropped = B_TRUE; 1175 1176 ASSERT(t->zsd_destroy != NULL); 1177 data = t->zsd_data; 1178 DTRACE_PROBE2(zsd__destroy__start, 1179 zone_t *, zone, zone_key_t, key); 1180 1181 (t->zsd_destroy)(zone->zone_id, data); 1182 DTRACE_PROBE2(zsd__destroy__end, 1183 zone_t *, zone, zone_key_t, key); 1184 1185 if (lockp != NULL) 1186 mutex_enter(lockp); 1187 mutex_enter(&zone->zone_lock); 1188 t->zsd_data = NULL; 1189 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1190 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1191 cv_broadcast(&t->zsd_cv); 1192 DTRACE_PROBE2(zsd__destroy__completed, 1193 zone_t *, zone, zone_key_t, key); 1194 } 1195 if (!zone_lock_held) 1196 mutex_exit(&zone->zone_lock); 1197 return (dropped); 1198 } 1199 1200 /* 1201 * Wait for any CREATE_NEEDED flag to be cleared. 1202 * Returns true if lockp was temporarily dropped while waiting. 1203 */ 1204 static boolean_t 1205 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1206 { 1207 boolean_t dropped = B_FALSE; 1208 1209 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1210 DTRACE_PROBE2(zsd__wait__for__creator, 1211 zone_t *, zone, struct zsd_entry *, t); 1212 if (lockp != NULL) { 1213 dropped = B_TRUE; 1214 mutex_exit(lockp); 1215 } 1216 cv_wait(&t->zsd_cv, &zone->zone_lock); 1217 if (lockp != NULL) { 1218 /* First drop zone_lock to preserve order */ 1219 mutex_exit(&zone->zone_lock); 1220 mutex_enter(lockp); 1221 mutex_enter(&zone->zone_lock); 1222 } 1223 } 1224 return (dropped); 1225 } 1226 1227 /* 1228 * Wait for any INPROGRESS flag to be cleared. 1229 * Returns true if lockp was temporarily dropped while waiting. 1230 */ 1231 static boolean_t 1232 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1233 { 1234 boolean_t dropped = B_FALSE; 1235 1236 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1237 DTRACE_PROBE2(zsd__wait__for__inprogress, 1238 zone_t *, zone, struct zsd_entry *, t); 1239 if (lockp != NULL) { 1240 dropped = B_TRUE; 1241 mutex_exit(lockp); 1242 } 1243 cv_wait(&t->zsd_cv, &zone->zone_lock); 1244 if (lockp != NULL) { 1245 /* First drop zone_lock to preserve order */ 1246 mutex_exit(&zone->zone_lock); 1247 mutex_enter(lockp); 1248 mutex_enter(&zone->zone_lock); 1249 } 1250 } 1251 return (dropped); 1252 } 1253 1254 /* 1255 * Frees memory associated with the zone dataset list. 1256 */ 1257 static void 1258 zone_free_datasets(zone_t *zone) 1259 { 1260 zone_dataset_t *t, *next; 1261 1262 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1263 next = list_next(&zone->zone_datasets, t); 1264 list_remove(&zone->zone_datasets, t); 1265 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1266 kmem_free(t, sizeof (*t)); 1267 } 1268 list_destroy(&zone->zone_datasets); 1269 } 1270 1271 /* 1272 * zone.cpu-shares resource control support. 1273 */ 1274 /*ARGSUSED*/ 1275 static rctl_qty_t 1276 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1277 { 1278 ASSERT(MUTEX_HELD(&p->p_lock)); 1279 return (p->p_zone->zone_shares); 1280 } 1281 1282 /*ARGSUSED*/ 1283 static int 1284 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1285 rctl_qty_t nv) 1286 { 1287 ASSERT(MUTEX_HELD(&p->p_lock)); 1288 ASSERT(e->rcep_t == RCENTITY_ZONE); 1289 if (e->rcep_p.zone == NULL) 1290 return (0); 1291 1292 e->rcep_p.zone->zone_shares = nv; 1293 return (0); 1294 } 1295 1296 static rctl_ops_t zone_cpu_shares_ops = { 1297 rcop_no_action, 1298 zone_cpu_shares_usage, 1299 zone_cpu_shares_set, 1300 rcop_no_test 1301 }; 1302 1303 /* 1304 * zone.cpu-cap resource control support. 1305 */ 1306 /*ARGSUSED*/ 1307 static rctl_qty_t 1308 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1309 { 1310 ASSERT(MUTEX_HELD(&p->p_lock)); 1311 return (cpucaps_zone_get(p->p_zone)); 1312 } 1313 1314 /*ARGSUSED*/ 1315 static int 1316 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1317 rctl_qty_t nv) 1318 { 1319 zone_t *zone = e->rcep_p.zone; 1320 1321 ASSERT(MUTEX_HELD(&p->p_lock)); 1322 ASSERT(e->rcep_t == RCENTITY_ZONE); 1323 1324 if (zone == NULL) 1325 return (0); 1326 1327 /* 1328 * set cap to the new value. 1329 */ 1330 return (cpucaps_zone_set(zone, nv)); 1331 } 1332 1333 static rctl_ops_t zone_cpu_cap_ops = { 1334 rcop_no_action, 1335 zone_cpu_cap_get, 1336 zone_cpu_cap_set, 1337 rcop_no_test 1338 }; 1339 1340 /*ARGSUSED*/ 1341 static rctl_qty_t 1342 zone_lwps_usage(rctl_t *r, proc_t *p) 1343 { 1344 rctl_qty_t nlwps; 1345 zone_t *zone = p->p_zone; 1346 1347 ASSERT(MUTEX_HELD(&p->p_lock)); 1348 1349 mutex_enter(&zone->zone_nlwps_lock); 1350 nlwps = zone->zone_nlwps; 1351 mutex_exit(&zone->zone_nlwps_lock); 1352 1353 return (nlwps); 1354 } 1355 1356 /*ARGSUSED*/ 1357 static int 1358 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1359 rctl_qty_t incr, uint_t flags) 1360 { 1361 rctl_qty_t nlwps; 1362 1363 ASSERT(MUTEX_HELD(&p->p_lock)); 1364 ASSERT(e->rcep_t == RCENTITY_ZONE); 1365 if (e->rcep_p.zone == NULL) 1366 return (0); 1367 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1368 nlwps = e->rcep_p.zone->zone_nlwps; 1369 1370 if (nlwps + incr > rcntl->rcv_value) 1371 return (1); 1372 1373 return (0); 1374 } 1375 1376 /*ARGSUSED*/ 1377 static int 1378 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1379 { 1380 ASSERT(MUTEX_HELD(&p->p_lock)); 1381 ASSERT(e->rcep_t == RCENTITY_ZONE); 1382 if (e->rcep_p.zone == NULL) 1383 return (0); 1384 e->rcep_p.zone->zone_nlwps_ctl = nv; 1385 return (0); 1386 } 1387 1388 static rctl_ops_t zone_lwps_ops = { 1389 rcop_no_action, 1390 zone_lwps_usage, 1391 zone_lwps_set, 1392 zone_lwps_test, 1393 }; 1394 1395 /*ARGSUSED*/ 1396 static int 1397 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1398 rctl_qty_t incr, uint_t flags) 1399 { 1400 rctl_qty_t v; 1401 ASSERT(MUTEX_HELD(&p->p_lock)); 1402 ASSERT(e->rcep_t == RCENTITY_ZONE); 1403 v = e->rcep_p.zone->zone_shmmax + incr; 1404 if (v > rval->rcv_value) 1405 return (1); 1406 return (0); 1407 } 1408 1409 static rctl_ops_t zone_shmmax_ops = { 1410 rcop_no_action, 1411 rcop_no_usage, 1412 rcop_no_set, 1413 zone_shmmax_test 1414 }; 1415 1416 /*ARGSUSED*/ 1417 static int 1418 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1419 rctl_qty_t incr, uint_t flags) 1420 { 1421 rctl_qty_t v; 1422 ASSERT(MUTEX_HELD(&p->p_lock)); 1423 ASSERT(e->rcep_t == RCENTITY_ZONE); 1424 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1425 if (v > rval->rcv_value) 1426 return (1); 1427 return (0); 1428 } 1429 1430 static rctl_ops_t zone_shmmni_ops = { 1431 rcop_no_action, 1432 rcop_no_usage, 1433 rcop_no_set, 1434 zone_shmmni_test 1435 }; 1436 1437 /*ARGSUSED*/ 1438 static int 1439 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1440 rctl_qty_t incr, uint_t flags) 1441 { 1442 rctl_qty_t v; 1443 ASSERT(MUTEX_HELD(&p->p_lock)); 1444 ASSERT(e->rcep_t == RCENTITY_ZONE); 1445 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1446 if (v > rval->rcv_value) 1447 return (1); 1448 return (0); 1449 } 1450 1451 static rctl_ops_t zone_semmni_ops = { 1452 rcop_no_action, 1453 rcop_no_usage, 1454 rcop_no_set, 1455 zone_semmni_test 1456 }; 1457 1458 /*ARGSUSED*/ 1459 static int 1460 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1461 rctl_qty_t incr, uint_t flags) 1462 { 1463 rctl_qty_t v; 1464 ASSERT(MUTEX_HELD(&p->p_lock)); 1465 ASSERT(e->rcep_t == RCENTITY_ZONE); 1466 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1467 if (v > rval->rcv_value) 1468 return (1); 1469 return (0); 1470 } 1471 1472 static rctl_ops_t zone_msgmni_ops = { 1473 rcop_no_action, 1474 rcop_no_usage, 1475 rcop_no_set, 1476 zone_msgmni_test 1477 }; 1478 1479 /*ARGSUSED*/ 1480 static rctl_qty_t 1481 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1482 { 1483 rctl_qty_t q; 1484 ASSERT(MUTEX_HELD(&p->p_lock)); 1485 mutex_enter(&p->p_zone->zone_mem_lock); 1486 q = p->p_zone->zone_locked_mem; 1487 mutex_exit(&p->p_zone->zone_mem_lock); 1488 return (q); 1489 } 1490 1491 /*ARGSUSED*/ 1492 static int 1493 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1494 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1495 { 1496 rctl_qty_t q; 1497 zone_t *z; 1498 1499 z = e->rcep_p.zone; 1500 ASSERT(MUTEX_HELD(&p->p_lock)); 1501 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1502 q = z->zone_locked_mem; 1503 if (q + incr > rcntl->rcv_value) 1504 return (1); 1505 return (0); 1506 } 1507 1508 /*ARGSUSED*/ 1509 static int 1510 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1511 rctl_qty_t nv) 1512 { 1513 ASSERT(MUTEX_HELD(&p->p_lock)); 1514 ASSERT(e->rcep_t == RCENTITY_ZONE); 1515 if (e->rcep_p.zone == NULL) 1516 return (0); 1517 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1518 return (0); 1519 } 1520 1521 static rctl_ops_t zone_locked_mem_ops = { 1522 rcop_no_action, 1523 zone_locked_mem_usage, 1524 zone_locked_mem_set, 1525 zone_locked_mem_test 1526 }; 1527 1528 /*ARGSUSED*/ 1529 static rctl_qty_t 1530 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1531 { 1532 rctl_qty_t q; 1533 zone_t *z = p->p_zone; 1534 1535 ASSERT(MUTEX_HELD(&p->p_lock)); 1536 mutex_enter(&z->zone_mem_lock); 1537 q = z->zone_max_swap; 1538 mutex_exit(&z->zone_mem_lock); 1539 return (q); 1540 } 1541 1542 /*ARGSUSED*/ 1543 static int 1544 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1545 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1546 { 1547 rctl_qty_t q; 1548 zone_t *z; 1549 1550 z = e->rcep_p.zone; 1551 ASSERT(MUTEX_HELD(&p->p_lock)); 1552 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1553 q = z->zone_max_swap; 1554 if (q + incr > rcntl->rcv_value) 1555 return (1); 1556 return (0); 1557 } 1558 1559 /*ARGSUSED*/ 1560 static int 1561 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1562 rctl_qty_t nv) 1563 { 1564 ASSERT(MUTEX_HELD(&p->p_lock)); 1565 ASSERT(e->rcep_t == RCENTITY_ZONE); 1566 if (e->rcep_p.zone == NULL) 1567 return (0); 1568 e->rcep_p.zone->zone_max_swap_ctl = nv; 1569 return (0); 1570 } 1571 1572 static rctl_ops_t zone_max_swap_ops = { 1573 rcop_no_action, 1574 zone_max_swap_usage, 1575 zone_max_swap_set, 1576 zone_max_swap_test 1577 }; 1578 1579 /* 1580 * Helper function to brand the zone with a unique ID. 1581 */ 1582 static void 1583 zone_uniqid(zone_t *zone) 1584 { 1585 static uint64_t uniqid = 0; 1586 1587 ASSERT(MUTEX_HELD(&zonehash_lock)); 1588 zone->zone_uniqid = uniqid++; 1589 } 1590 1591 /* 1592 * Returns a held pointer to the "kcred" for the specified zone. 1593 */ 1594 struct cred * 1595 zone_get_kcred(zoneid_t zoneid) 1596 { 1597 zone_t *zone; 1598 cred_t *cr; 1599 1600 if ((zone = zone_find_by_id(zoneid)) == NULL) 1601 return (NULL); 1602 cr = zone->zone_kcred; 1603 crhold(cr); 1604 zone_rele(zone); 1605 return (cr); 1606 } 1607 1608 static int 1609 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1610 { 1611 zone_t *zone = ksp->ks_private; 1612 zone_kstat_t *zk = ksp->ks_data; 1613 1614 if (rw == KSTAT_WRITE) 1615 return (EACCES); 1616 1617 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1618 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1619 return (0); 1620 } 1621 1622 static int 1623 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1624 { 1625 zone_t *zone = ksp->ks_private; 1626 zone_kstat_t *zk = ksp->ks_data; 1627 1628 if (rw == KSTAT_WRITE) 1629 return (EACCES); 1630 1631 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1632 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1633 return (0); 1634 } 1635 1636 static void 1637 zone_kstat_create(zone_t *zone) 1638 { 1639 kstat_t *ksp; 1640 zone_kstat_t *zk; 1641 1642 ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED, 1643 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1644 KSTAT_FLAG_VIRTUAL); 1645 1646 if (ksp == NULL) 1647 return; 1648 1649 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1650 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1651 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1652 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1653 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1654 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1655 ksp->ks_update = zone_lockedmem_kstat_update; 1656 ksp->ks_private = zone; 1657 kstat_install(ksp); 1658 1659 zone->zone_lockedmem_kstat = ksp; 1660 1661 ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED, 1662 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1663 KSTAT_FLAG_VIRTUAL); 1664 1665 if (ksp == NULL) 1666 return; 1667 1668 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1669 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1670 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1671 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1672 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1673 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1674 ksp->ks_update = zone_swapresv_kstat_update; 1675 ksp->ks_private = zone; 1676 kstat_install(ksp); 1677 1678 zone->zone_swapresv_kstat = ksp; 1679 } 1680 1681 static void 1682 zone_kstat_delete(zone_t *zone) 1683 { 1684 void *data; 1685 1686 if (zone->zone_lockedmem_kstat != NULL) { 1687 data = zone->zone_lockedmem_kstat->ks_data; 1688 kstat_delete(zone->zone_lockedmem_kstat); 1689 kmem_free(data, sizeof (zone_kstat_t)); 1690 } 1691 if (zone->zone_swapresv_kstat != NULL) { 1692 data = zone->zone_swapresv_kstat->ks_data; 1693 kstat_delete(zone->zone_swapresv_kstat); 1694 kmem_free(data, sizeof (zone_kstat_t)); 1695 } 1696 } 1697 1698 /* 1699 * Called very early on in boot to initialize the ZSD list so that 1700 * zone_key_create() can be called before zone_init(). It also initializes 1701 * portions of zone0 which may be used before zone_init() is called. The 1702 * variable "global_zone" will be set when zone0 is fully initialized by 1703 * zone_init(). 1704 */ 1705 void 1706 zone_zsd_init(void) 1707 { 1708 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1709 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1710 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1711 offsetof(struct zsd_entry, zsd_linkage)); 1712 list_create(&zone_active, sizeof (zone_t), 1713 offsetof(zone_t, zone_linkage)); 1714 list_create(&zone_deathrow, sizeof (zone_t), 1715 offsetof(zone_t, zone_linkage)); 1716 1717 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1718 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1719 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1720 zone0.zone_shares = 1; 1721 zone0.zone_nlwps = 0; 1722 zone0.zone_nlwps_ctl = INT_MAX; 1723 zone0.zone_locked_mem = 0; 1724 zone0.zone_locked_mem_ctl = UINT64_MAX; 1725 ASSERT(zone0.zone_max_swap == 0); 1726 zone0.zone_max_swap_ctl = UINT64_MAX; 1727 zone0.zone_shmmax = 0; 1728 zone0.zone_ipc.ipcq_shmmni = 0; 1729 zone0.zone_ipc.ipcq_semmni = 0; 1730 zone0.zone_ipc.ipcq_msgmni = 0; 1731 zone0.zone_name = GLOBAL_ZONENAME; 1732 zone0.zone_nodename = utsname.nodename; 1733 zone0.zone_domain = srpc_domain; 1734 zone0.zone_hostid = HW_INVALID_HOSTID; 1735 zone0.zone_ref = 1; 1736 zone0.zone_id = GLOBAL_ZONEID; 1737 zone0.zone_status = ZONE_IS_RUNNING; 1738 zone0.zone_rootpath = "/"; 1739 zone0.zone_rootpathlen = 2; 1740 zone0.zone_psetid = ZONE_PS_INVAL; 1741 zone0.zone_ncpus = 0; 1742 zone0.zone_ncpus_online = 0; 1743 zone0.zone_proc_initpid = 1; 1744 zone0.zone_initname = initname; 1745 zone0.zone_lockedmem_kstat = NULL; 1746 zone0.zone_swapresv_kstat = NULL; 1747 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1748 offsetof(struct zsd_entry, zsd_linkage)); 1749 list_insert_head(&zone_active, &zone0); 1750 1751 /* 1752 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1753 * to anything meaningful. It is assigned to be 'rootdir' in 1754 * vfs_mountroot(). 1755 */ 1756 zone0.zone_rootvp = NULL; 1757 zone0.zone_vfslist = NULL; 1758 zone0.zone_bootargs = initargs; 1759 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1760 /* 1761 * The global zone has all privileges 1762 */ 1763 priv_fillset(zone0.zone_privset); 1764 /* 1765 * Add p0 to the global zone 1766 */ 1767 zone0.zone_zsched = &p0; 1768 p0.p_zone = &zone0; 1769 } 1770 1771 /* 1772 * Compute a hash value based on the contents of the label and the DOI. The 1773 * hash algorithm is somewhat arbitrary, but is based on the observation that 1774 * humans will likely pick labels that differ by amounts that work out to be 1775 * multiples of the number of hash chains, and thus stirring in some primes 1776 * should help. 1777 */ 1778 static uint_t 1779 hash_bylabel(void *hdata, mod_hash_key_t key) 1780 { 1781 const ts_label_t *lab = (ts_label_t *)key; 1782 const uint32_t *up, *ue; 1783 uint_t hash; 1784 int i; 1785 1786 _NOTE(ARGUNUSED(hdata)); 1787 1788 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1789 /* we depend on alignment of label, but not representation */ 1790 up = (const uint32_t *)&lab->tsl_label; 1791 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1792 i = 1; 1793 while (up < ue) { 1794 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1795 hash += *up + (*up << ((i % 16) + 1)); 1796 up++; 1797 i++; 1798 } 1799 return (hash); 1800 } 1801 1802 /* 1803 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1804 * equal). This may need to be changed if less than / greater than is ever 1805 * needed. 1806 */ 1807 static int 1808 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1809 { 1810 ts_label_t *lab1 = (ts_label_t *)key1; 1811 ts_label_t *lab2 = (ts_label_t *)key2; 1812 1813 return (label_equal(lab1, lab2) ? 0 : 1); 1814 } 1815 1816 /* 1817 * Called by main() to initialize the zones framework. 1818 */ 1819 void 1820 zone_init(void) 1821 { 1822 rctl_dict_entry_t *rde; 1823 rctl_val_t *dval; 1824 rctl_set_t *set; 1825 rctl_alloc_gp_t *gp; 1826 rctl_entity_p_t e; 1827 int res; 1828 1829 ASSERT(curproc == &p0); 1830 1831 /* 1832 * Create ID space for zone IDs. ID 0 is reserved for the 1833 * global zone. 1834 */ 1835 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1836 1837 /* 1838 * Initialize generic zone resource controls, if any. 1839 */ 1840 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1841 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1842 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1843 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 1844 1845 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 1846 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 1847 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 1848 RCTL_GLOBAL_INFINITE, 1849 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 1850 1851 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1852 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1853 INT_MAX, INT_MAX, &zone_lwps_ops); 1854 /* 1855 * System V IPC resource controls 1856 */ 1857 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1858 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1859 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1860 1861 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1862 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1863 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1864 1865 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1866 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1867 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1868 1869 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1870 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1871 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1872 1873 /* 1874 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1875 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1876 */ 1877 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1878 bzero(dval, sizeof (rctl_val_t)); 1879 dval->rcv_value = 1; 1880 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1881 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1882 dval->rcv_action_recip_pid = -1; 1883 1884 rde = rctl_dict_lookup("zone.cpu-shares"); 1885 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1886 1887 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 1888 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1889 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1890 &zone_locked_mem_ops); 1891 1892 rc_zone_max_swap = rctl_register("zone.max-swap", 1893 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1894 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1895 &zone_max_swap_ops); 1896 1897 /* 1898 * Initialize the ``global zone''. 1899 */ 1900 set = rctl_set_create(); 1901 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1902 mutex_enter(&p0.p_lock); 1903 e.rcep_p.zone = &zone0; 1904 e.rcep_t = RCENTITY_ZONE; 1905 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1906 gp); 1907 1908 zone0.zone_nlwps = p0.p_lwpcnt; 1909 zone0.zone_ntasks = 1; 1910 mutex_exit(&p0.p_lock); 1911 zone0.zone_restart_init = B_TRUE; 1912 zone0.zone_brand = &native_brand; 1913 rctl_prealloc_destroy(gp); 1914 /* 1915 * pool_default hasn't been initialized yet, so we let pool_init() 1916 * take care of making sure the global zone is in the default pool. 1917 */ 1918 1919 /* 1920 * Initialize global zone kstats 1921 */ 1922 zone_kstat_create(&zone0); 1923 1924 /* 1925 * Initialize zone label. 1926 * mlp are initialized when tnzonecfg is loaded. 1927 */ 1928 zone0.zone_slabel = l_admin_low; 1929 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1930 label_hold(l_admin_low); 1931 1932 mutex_enter(&zonehash_lock); 1933 zone_uniqid(&zone0); 1934 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1935 1936 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1937 mod_hash_null_valdtor); 1938 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1939 zone_hash_size, mod_hash_null_valdtor); 1940 /* 1941 * maintain zonehashbylabel only for labeled systems 1942 */ 1943 if (is_system_labeled()) 1944 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1945 zone_hash_size, mod_hash_null_keydtor, 1946 mod_hash_null_valdtor, hash_bylabel, NULL, 1947 hash_labelkey_cmp, KM_SLEEP); 1948 zonecount = 1; 1949 1950 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1951 (mod_hash_val_t)&zone0); 1952 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1953 (mod_hash_val_t)&zone0); 1954 if (is_system_labeled()) { 1955 zone0.zone_flags |= ZF_HASHED_LABEL; 1956 (void) mod_hash_insert(zonehashbylabel, 1957 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1958 } 1959 mutex_exit(&zonehash_lock); 1960 1961 /* 1962 * We avoid setting zone_kcred until now, since kcred is initialized 1963 * sometime after zone_zsd_init() and before zone_init(). 1964 */ 1965 zone0.zone_kcred = kcred; 1966 /* 1967 * The global zone is fully initialized (except for zone_rootvp which 1968 * will be set when the root filesystem is mounted). 1969 */ 1970 global_zone = &zone0; 1971 1972 /* 1973 * Setup an event channel to send zone status change notifications on 1974 */ 1975 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1976 EVCH_CREAT); 1977 1978 if (res) 1979 panic("Sysevent_evc_bind failed during zone setup.\n"); 1980 1981 } 1982 1983 static void 1984 zone_free(zone_t *zone) 1985 { 1986 ASSERT(zone != global_zone); 1987 ASSERT(zone->zone_ntasks == 0); 1988 ASSERT(zone->zone_nlwps == 0); 1989 ASSERT(zone->zone_cred_ref == 0); 1990 ASSERT(zone->zone_kcred == NULL); 1991 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1992 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1993 1994 /* 1995 * Remove any zone caps. 1996 */ 1997 cpucaps_zone_remove(zone); 1998 1999 ASSERT(zone->zone_cpucap == NULL); 2000 2001 /* remove from deathrow list */ 2002 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2003 ASSERT(zone->zone_ref == 0); 2004 mutex_enter(&zone_deathrow_lock); 2005 list_remove(&zone_deathrow, zone); 2006 mutex_exit(&zone_deathrow_lock); 2007 } 2008 2009 zone_free_zsd(zone); 2010 zone_free_datasets(zone); 2011 list_destroy(&zone->zone_dl_list); 2012 2013 if (zone->zone_rootvp != NULL) 2014 VN_RELE(zone->zone_rootvp); 2015 if (zone->zone_rootpath) 2016 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2017 if (zone->zone_name != NULL) 2018 kmem_free(zone->zone_name, ZONENAME_MAX); 2019 if (zone->zone_slabel != NULL) 2020 label_rele(zone->zone_slabel); 2021 if (zone->zone_nodename != NULL) 2022 kmem_free(zone->zone_nodename, _SYS_NMLN); 2023 if (zone->zone_domain != NULL) 2024 kmem_free(zone->zone_domain, _SYS_NMLN); 2025 if (zone->zone_privset != NULL) 2026 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2027 if (zone->zone_rctls != NULL) 2028 rctl_set_free(zone->zone_rctls); 2029 if (zone->zone_bootargs != NULL) 2030 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2031 if (zone->zone_initname != NULL) 2032 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2033 id_free(zoneid_space, zone->zone_id); 2034 mutex_destroy(&zone->zone_lock); 2035 cv_destroy(&zone->zone_cv); 2036 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2037 kmem_free(zone, sizeof (zone_t)); 2038 } 2039 2040 /* 2041 * See block comment at the top of this file for information about zone 2042 * status values. 2043 */ 2044 /* 2045 * Convenience function for setting zone status. 2046 */ 2047 static void 2048 zone_status_set(zone_t *zone, zone_status_t status) 2049 { 2050 2051 nvlist_t *nvl = NULL; 2052 ASSERT(MUTEX_HELD(&zone_status_lock)); 2053 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2054 status >= zone_status_get(zone)); 2055 2056 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2057 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2058 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2059 zone_status_table[status]) || 2060 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2061 zone_status_table[zone->zone_status]) || 2062 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2063 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2064 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2065 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2066 #ifdef DEBUG 2067 (void) printf( 2068 "Failed to allocate and send zone state change event.\n"); 2069 #endif 2070 } 2071 nvlist_free(nvl); 2072 2073 zone->zone_status = status; 2074 2075 cv_broadcast(&zone->zone_cv); 2076 } 2077 2078 /* 2079 * Public function to retrieve the zone status. The zone status may 2080 * change after it is retrieved. 2081 */ 2082 zone_status_t 2083 zone_status_get(zone_t *zone) 2084 { 2085 return (zone->zone_status); 2086 } 2087 2088 static int 2089 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2090 { 2091 char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2092 int err = 0; 2093 2094 ASSERT(zone != global_zone); 2095 if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0) 2096 goto done; /* EFAULT or ENAMETOOLONG */ 2097 2098 if (zone->zone_bootargs != NULL) 2099 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2100 2101 zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP); 2102 (void) strcpy(zone->zone_bootargs, bootargs); 2103 2104 done: 2105 kmem_free(bootargs, BOOTARGS_MAX); 2106 return (err); 2107 } 2108 2109 static int 2110 zone_set_brand(zone_t *zone, const char *brand) 2111 { 2112 struct brand_attr *attrp; 2113 brand_t *bp; 2114 2115 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2116 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2117 kmem_free(attrp, sizeof (struct brand_attr)); 2118 return (EFAULT); 2119 } 2120 2121 bp = brand_register_zone(attrp); 2122 kmem_free(attrp, sizeof (struct brand_attr)); 2123 if (bp == NULL) 2124 return (EINVAL); 2125 2126 /* 2127 * This is the only place where a zone can change it's brand. 2128 * We already need to hold zone_status_lock to check the zone 2129 * status, so we'll just use that lock to serialize zone 2130 * branding requests as well. 2131 */ 2132 mutex_enter(&zone_status_lock); 2133 2134 /* Re-Branding is not allowed and the zone can't be booted yet */ 2135 if ((ZONE_IS_BRANDED(zone)) || 2136 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2137 mutex_exit(&zone_status_lock); 2138 brand_unregister_zone(bp); 2139 return (EINVAL); 2140 } 2141 2142 /* set up the brand specific data */ 2143 zone->zone_brand = bp; 2144 ZBROP(zone)->b_init_brand_data(zone); 2145 2146 mutex_exit(&zone_status_lock); 2147 return (0); 2148 } 2149 2150 static int 2151 zone_set_initname(zone_t *zone, const char *zone_initname) 2152 { 2153 char initname[INITNAME_SZ]; 2154 size_t len; 2155 int err = 0; 2156 2157 ASSERT(zone != global_zone); 2158 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2159 return (err); /* EFAULT or ENAMETOOLONG */ 2160 2161 if (zone->zone_initname != NULL) 2162 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2163 2164 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2165 (void) strcpy(zone->zone_initname, initname); 2166 return (0); 2167 } 2168 2169 static int 2170 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2171 { 2172 uint64_t mcap; 2173 int err = 0; 2174 2175 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2176 zone->zone_phys_mcap = mcap; 2177 2178 return (err); 2179 } 2180 2181 static int 2182 zone_set_sched_class(zone_t *zone, const char *new_class) 2183 { 2184 char sched_class[PC_CLNMSZ]; 2185 id_t classid; 2186 int err; 2187 2188 ASSERT(zone != global_zone); 2189 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2190 return (err); /* EFAULT or ENAMETOOLONG */ 2191 2192 if (getcid(sched_class, &classid) != 0 || classid == syscid) 2193 return (set_errno(EINVAL)); 2194 zone->zone_defaultcid = classid; 2195 ASSERT(zone->zone_defaultcid > 0 && 2196 zone->zone_defaultcid < loaded_classes); 2197 2198 return (0); 2199 } 2200 2201 /* 2202 * Block indefinitely waiting for (zone_status >= status) 2203 */ 2204 void 2205 zone_status_wait(zone_t *zone, zone_status_t status) 2206 { 2207 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2208 2209 mutex_enter(&zone_status_lock); 2210 while (zone->zone_status < status) { 2211 cv_wait(&zone->zone_cv, &zone_status_lock); 2212 } 2213 mutex_exit(&zone_status_lock); 2214 } 2215 2216 /* 2217 * Private CPR-safe version of zone_status_wait(). 2218 */ 2219 static void 2220 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2221 { 2222 callb_cpr_t cprinfo; 2223 2224 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2225 2226 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2227 str); 2228 mutex_enter(&zone_status_lock); 2229 while (zone->zone_status < status) { 2230 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2231 cv_wait(&zone->zone_cv, &zone_status_lock); 2232 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2233 } 2234 /* 2235 * zone_status_lock is implicitly released by the following. 2236 */ 2237 CALLB_CPR_EXIT(&cprinfo); 2238 } 2239 2240 /* 2241 * Block until zone enters requested state or signal is received. Return (0) 2242 * if signaled, non-zero otherwise. 2243 */ 2244 int 2245 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2246 { 2247 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2248 2249 mutex_enter(&zone_status_lock); 2250 while (zone->zone_status < status) { 2251 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2252 mutex_exit(&zone_status_lock); 2253 return (0); 2254 } 2255 } 2256 mutex_exit(&zone_status_lock); 2257 return (1); 2258 } 2259 2260 /* 2261 * Block until the zone enters the requested state or the timeout expires, 2262 * whichever happens first. Return (-1) if operation timed out, time remaining 2263 * otherwise. 2264 */ 2265 clock_t 2266 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2267 { 2268 clock_t timeleft = 0; 2269 2270 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2271 2272 mutex_enter(&zone_status_lock); 2273 while (zone->zone_status < status && timeleft != -1) { 2274 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2275 } 2276 mutex_exit(&zone_status_lock); 2277 return (timeleft); 2278 } 2279 2280 /* 2281 * Block until the zone enters the requested state, the current process is 2282 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2283 * operation timed out, 0 if signaled, time remaining otherwise. 2284 */ 2285 clock_t 2286 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2287 { 2288 clock_t timeleft = tim - lbolt; 2289 2290 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2291 2292 mutex_enter(&zone_status_lock); 2293 while (zone->zone_status < status) { 2294 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2295 tim); 2296 if (timeleft <= 0) 2297 break; 2298 } 2299 mutex_exit(&zone_status_lock); 2300 return (timeleft); 2301 } 2302 2303 /* 2304 * Zones have two reference counts: one for references from credential 2305 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2306 * This is so we can allow a zone to be rebooted while there are still 2307 * outstanding cred references, since certain drivers cache dblks (which 2308 * implicitly results in cached creds). We wait for zone_ref to drop to 2309 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2310 * later freed when the zone_cred_ref drops to 0, though nothing other 2311 * than the zone id and privilege set should be accessed once the zone 2312 * is "dead". 2313 * 2314 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2315 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2316 * to 0. This can be useful to flush out other sources of cached creds 2317 * that may be less innocuous than the driver case. 2318 */ 2319 2320 int zone_wait_for_cred = 0; 2321 2322 static void 2323 zone_hold_locked(zone_t *z) 2324 { 2325 ASSERT(MUTEX_HELD(&z->zone_lock)); 2326 z->zone_ref++; 2327 ASSERT(z->zone_ref != 0); 2328 } 2329 2330 void 2331 zone_hold(zone_t *z) 2332 { 2333 mutex_enter(&z->zone_lock); 2334 zone_hold_locked(z); 2335 mutex_exit(&z->zone_lock); 2336 } 2337 2338 /* 2339 * If the non-cred ref count drops to 1 and either the cred ref count 2340 * is 0 or we aren't waiting for cred references, the zone is ready to 2341 * be destroyed. 2342 */ 2343 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2344 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2345 2346 void 2347 zone_rele(zone_t *z) 2348 { 2349 boolean_t wakeup; 2350 2351 mutex_enter(&z->zone_lock); 2352 ASSERT(z->zone_ref != 0); 2353 z->zone_ref--; 2354 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2355 /* no more refs, free the structure */ 2356 mutex_exit(&z->zone_lock); 2357 zone_free(z); 2358 return; 2359 } 2360 /* signal zone_destroy so the zone can finish halting */ 2361 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2362 mutex_exit(&z->zone_lock); 2363 2364 if (wakeup) { 2365 /* 2366 * Grabbing zonehash_lock here effectively synchronizes with 2367 * zone_destroy() to avoid missed signals. 2368 */ 2369 mutex_enter(&zonehash_lock); 2370 cv_broadcast(&zone_destroy_cv); 2371 mutex_exit(&zonehash_lock); 2372 } 2373 } 2374 2375 void 2376 zone_cred_hold(zone_t *z) 2377 { 2378 mutex_enter(&z->zone_lock); 2379 z->zone_cred_ref++; 2380 ASSERT(z->zone_cred_ref != 0); 2381 mutex_exit(&z->zone_lock); 2382 } 2383 2384 void 2385 zone_cred_rele(zone_t *z) 2386 { 2387 boolean_t wakeup; 2388 2389 mutex_enter(&z->zone_lock); 2390 ASSERT(z->zone_cred_ref != 0); 2391 z->zone_cred_ref--; 2392 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2393 /* no more refs, free the structure */ 2394 mutex_exit(&z->zone_lock); 2395 zone_free(z); 2396 return; 2397 } 2398 /* 2399 * If zone_destroy is waiting for the cred references to drain 2400 * out, and they have, signal it. 2401 */ 2402 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2403 zone_status_get(z) >= ZONE_IS_DEAD); 2404 mutex_exit(&z->zone_lock); 2405 2406 if (wakeup) { 2407 /* 2408 * Grabbing zonehash_lock here effectively synchronizes with 2409 * zone_destroy() to avoid missed signals. 2410 */ 2411 mutex_enter(&zonehash_lock); 2412 cv_broadcast(&zone_destroy_cv); 2413 mutex_exit(&zonehash_lock); 2414 } 2415 } 2416 2417 void 2418 zone_task_hold(zone_t *z) 2419 { 2420 mutex_enter(&z->zone_lock); 2421 z->zone_ntasks++; 2422 ASSERT(z->zone_ntasks != 0); 2423 mutex_exit(&z->zone_lock); 2424 } 2425 2426 void 2427 zone_task_rele(zone_t *zone) 2428 { 2429 uint_t refcnt; 2430 2431 mutex_enter(&zone->zone_lock); 2432 ASSERT(zone->zone_ntasks != 0); 2433 refcnt = --zone->zone_ntasks; 2434 if (refcnt > 1) { /* Common case */ 2435 mutex_exit(&zone->zone_lock); 2436 return; 2437 } 2438 zone_hold_locked(zone); /* so we can use the zone_t later */ 2439 mutex_exit(&zone->zone_lock); 2440 if (refcnt == 1) { 2441 /* 2442 * See if the zone is shutting down. 2443 */ 2444 mutex_enter(&zone_status_lock); 2445 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2446 goto out; 2447 } 2448 2449 /* 2450 * Make sure the ntasks didn't change since we 2451 * dropped zone_lock. 2452 */ 2453 mutex_enter(&zone->zone_lock); 2454 if (refcnt != zone->zone_ntasks) { 2455 mutex_exit(&zone->zone_lock); 2456 goto out; 2457 } 2458 mutex_exit(&zone->zone_lock); 2459 2460 /* 2461 * No more user processes in the zone. The zone is empty. 2462 */ 2463 zone_status_set(zone, ZONE_IS_EMPTY); 2464 goto out; 2465 } 2466 2467 ASSERT(refcnt == 0); 2468 /* 2469 * zsched has exited; the zone is dead. 2470 */ 2471 zone->zone_zsched = NULL; /* paranoia */ 2472 mutex_enter(&zone_status_lock); 2473 zone_status_set(zone, ZONE_IS_DEAD); 2474 out: 2475 mutex_exit(&zone_status_lock); 2476 zone_rele(zone); 2477 } 2478 2479 zoneid_t 2480 getzoneid(void) 2481 { 2482 return (curproc->p_zone->zone_id); 2483 } 2484 2485 /* 2486 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2487 * check the validity of a zone's state. 2488 */ 2489 static zone_t * 2490 zone_find_all_by_id(zoneid_t zoneid) 2491 { 2492 mod_hash_val_t hv; 2493 zone_t *zone = NULL; 2494 2495 ASSERT(MUTEX_HELD(&zonehash_lock)); 2496 2497 if (mod_hash_find(zonehashbyid, 2498 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2499 zone = (zone_t *)hv; 2500 return (zone); 2501 } 2502 2503 static zone_t * 2504 zone_find_all_by_label(const ts_label_t *label) 2505 { 2506 mod_hash_val_t hv; 2507 zone_t *zone = NULL; 2508 2509 ASSERT(MUTEX_HELD(&zonehash_lock)); 2510 2511 /* 2512 * zonehashbylabel is not maintained for unlabeled systems 2513 */ 2514 if (!is_system_labeled()) 2515 return (NULL); 2516 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2517 zone = (zone_t *)hv; 2518 return (zone); 2519 } 2520 2521 static zone_t * 2522 zone_find_all_by_name(char *name) 2523 { 2524 mod_hash_val_t hv; 2525 zone_t *zone = NULL; 2526 2527 ASSERT(MUTEX_HELD(&zonehash_lock)); 2528 2529 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2530 zone = (zone_t *)hv; 2531 return (zone); 2532 } 2533 2534 /* 2535 * Public interface for looking up a zone by zoneid. Only returns the zone if 2536 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2537 * Caller must call zone_rele() once it is done with the zone. 2538 * 2539 * The zone may begin the zone_destroy() sequence immediately after this 2540 * function returns, but may be safely used until zone_rele() is called. 2541 */ 2542 zone_t * 2543 zone_find_by_id(zoneid_t zoneid) 2544 { 2545 zone_t *zone; 2546 zone_status_t status; 2547 2548 mutex_enter(&zonehash_lock); 2549 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2550 mutex_exit(&zonehash_lock); 2551 return (NULL); 2552 } 2553 status = zone_status_get(zone); 2554 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2555 /* 2556 * For all practical purposes the zone doesn't exist. 2557 */ 2558 mutex_exit(&zonehash_lock); 2559 return (NULL); 2560 } 2561 zone_hold(zone); 2562 mutex_exit(&zonehash_lock); 2563 return (zone); 2564 } 2565 2566 /* 2567 * Similar to zone_find_by_id, but using zone label as the key. 2568 */ 2569 zone_t * 2570 zone_find_by_label(const ts_label_t *label) 2571 { 2572 zone_t *zone; 2573 zone_status_t status; 2574 2575 mutex_enter(&zonehash_lock); 2576 if ((zone = zone_find_all_by_label(label)) == NULL) { 2577 mutex_exit(&zonehash_lock); 2578 return (NULL); 2579 } 2580 2581 status = zone_status_get(zone); 2582 if (status > ZONE_IS_DOWN) { 2583 /* 2584 * For all practical purposes the zone doesn't exist. 2585 */ 2586 mutex_exit(&zonehash_lock); 2587 return (NULL); 2588 } 2589 zone_hold(zone); 2590 mutex_exit(&zonehash_lock); 2591 return (zone); 2592 } 2593 2594 /* 2595 * Similar to zone_find_by_id, but using zone name as the key. 2596 */ 2597 zone_t * 2598 zone_find_by_name(char *name) 2599 { 2600 zone_t *zone; 2601 zone_status_t status; 2602 2603 mutex_enter(&zonehash_lock); 2604 if ((zone = zone_find_all_by_name(name)) == NULL) { 2605 mutex_exit(&zonehash_lock); 2606 return (NULL); 2607 } 2608 status = zone_status_get(zone); 2609 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2610 /* 2611 * For all practical purposes the zone doesn't exist. 2612 */ 2613 mutex_exit(&zonehash_lock); 2614 return (NULL); 2615 } 2616 zone_hold(zone); 2617 mutex_exit(&zonehash_lock); 2618 return (zone); 2619 } 2620 2621 /* 2622 * Similar to zone_find_by_id(), using the path as a key. For instance, 2623 * if there is a zone "foo" rooted at /foo/root, and the path argument 2624 * is "/foo/root/proc", it will return the held zone_t corresponding to 2625 * zone "foo". 2626 * 2627 * zone_find_by_path() always returns a non-NULL value, since at the 2628 * very least every path will be contained in the global zone. 2629 * 2630 * As with the other zone_find_by_*() functions, the caller is 2631 * responsible for zone_rele()ing the return value of this function. 2632 */ 2633 zone_t * 2634 zone_find_by_path(const char *path) 2635 { 2636 zone_t *zone; 2637 zone_t *zret = NULL; 2638 zone_status_t status; 2639 2640 if (path == NULL) { 2641 /* 2642 * Call from rootconf(). 2643 */ 2644 zone_hold(global_zone); 2645 return (global_zone); 2646 } 2647 ASSERT(*path == '/'); 2648 mutex_enter(&zonehash_lock); 2649 for (zone = list_head(&zone_active); zone != NULL; 2650 zone = list_next(&zone_active, zone)) { 2651 if (ZONE_PATH_VISIBLE(path, zone)) 2652 zret = zone; 2653 } 2654 ASSERT(zret != NULL); 2655 status = zone_status_get(zret); 2656 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2657 /* 2658 * Zone practically doesn't exist. 2659 */ 2660 zret = global_zone; 2661 } 2662 zone_hold(zret); 2663 mutex_exit(&zonehash_lock); 2664 return (zret); 2665 } 2666 2667 /* 2668 * Get the number of cpus visible to this zone. The system-wide global 2669 * 'ncpus' is returned if pools are disabled, the caller is in the 2670 * global zone, or a NULL zone argument is passed in. 2671 */ 2672 int 2673 zone_ncpus_get(zone_t *zone) 2674 { 2675 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2676 2677 return (myncpus != 0 ? myncpus : ncpus); 2678 } 2679 2680 /* 2681 * Get the number of online cpus visible to this zone. The system-wide 2682 * global 'ncpus_online' is returned if pools are disabled, the caller 2683 * is in the global zone, or a NULL zone argument is passed in. 2684 */ 2685 int 2686 zone_ncpus_online_get(zone_t *zone) 2687 { 2688 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 2689 2690 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 2691 } 2692 2693 /* 2694 * Return the pool to which the zone is currently bound. 2695 */ 2696 pool_t * 2697 zone_pool_get(zone_t *zone) 2698 { 2699 ASSERT(pool_lock_held()); 2700 2701 return (zone->zone_pool); 2702 } 2703 2704 /* 2705 * Set the zone's pool pointer and update the zone's visibility to match 2706 * the resources in the new pool. 2707 */ 2708 void 2709 zone_pool_set(zone_t *zone, pool_t *pool) 2710 { 2711 ASSERT(pool_lock_held()); 2712 ASSERT(MUTEX_HELD(&cpu_lock)); 2713 2714 zone->zone_pool = pool; 2715 zone_pset_set(zone, pool->pool_pset->pset_id); 2716 } 2717 2718 /* 2719 * Return the cached value of the id of the processor set to which the 2720 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 2721 * facility is disabled. 2722 */ 2723 psetid_t 2724 zone_pset_get(zone_t *zone) 2725 { 2726 ASSERT(MUTEX_HELD(&cpu_lock)); 2727 2728 return (zone->zone_psetid); 2729 } 2730 2731 /* 2732 * Set the cached value of the id of the processor set to which the zone 2733 * is currently bound. Also update the zone's visibility to match the 2734 * resources in the new processor set. 2735 */ 2736 void 2737 zone_pset_set(zone_t *zone, psetid_t newpsetid) 2738 { 2739 psetid_t oldpsetid; 2740 2741 ASSERT(MUTEX_HELD(&cpu_lock)); 2742 oldpsetid = zone_pset_get(zone); 2743 2744 if (oldpsetid == newpsetid) 2745 return; 2746 /* 2747 * Global zone sees all. 2748 */ 2749 if (zone != global_zone) { 2750 zone->zone_psetid = newpsetid; 2751 if (newpsetid != ZONE_PS_INVAL) 2752 pool_pset_visibility_add(newpsetid, zone); 2753 if (oldpsetid != ZONE_PS_INVAL) 2754 pool_pset_visibility_remove(oldpsetid, zone); 2755 } 2756 /* 2757 * Disabling pools, so we should start using the global values 2758 * for ncpus and ncpus_online. 2759 */ 2760 if (newpsetid == ZONE_PS_INVAL) { 2761 zone->zone_ncpus = 0; 2762 zone->zone_ncpus_online = 0; 2763 } 2764 } 2765 2766 /* 2767 * Walk the list of active zones and issue the provided callback for 2768 * each of them. 2769 * 2770 * Caller must not be holding any locks that may be acquired under 2771 * zonehash_lock. See comment at the beginning of the file for a list of 2772 * common locks and their interactions with zones. 2773 */ 2774 int 2775 zone_walk(int (*cb)(zone_t *, void *), void *data) 2776 { 2777 zone_t *zone; 2778 int ret = 0; 2779 zone_status_t status; 2780 2781 mutex_enter(&zonehash_lock); 2782 for (zone = list_head(&zone_active); zone != NULL; 2783 zone = list_next(&zone_active, zone)) { 2784 /* 2785 * Skip zones that shouldn't be externally visible. 2786 */ 2787 status = zone_status_get(zone); 2788 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2789 continue; 2790 /* 2791 * Bail immediately if any callback invocation returns a 2792 * non-zero value. 2793 */ 2794 ret = (*cb)(zone, data); 2795 if (ret != 0) 2796 break; 2797 } 2798 mutex_exit(&zonehash_lock); 2799 return (ret); 2800 } 2801 2802 static int 2803 zone_set_root(zone_t *zone, const char *upath) 2804 { 2805 vnode_t *vp; 2806 int trycount; 2807 int error = 0; 2808 char *path; 2809 struct pathname upn, pn; 2810 size_t pathlen; 2811 2812 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2813 return (error); 2814 2815 pn_alloc(&pn); 2816 2817 /* prevent infinite loop */ 2818 trycount = 10; 2819 for (;;) { 2820 if (--trycount <= 0) { 2821 error = ESTALE; 2822 goto out; 2823 } 2824 2825 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2826 /* 2827 * VOP_ACCESS() may cover 'vp' with a new 2828 * filesystem, if 'vp' is an autoFS vnode. 2829 * Get the new 'vp' if so. 2830 */ 2831 if ((error = 2832 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 2833 (!vn_ismntpt(vp) || 2834 (error = traverse(&vp)) == 0)) { 2835 pathlen = pn.pn_pathlen + 2; 2836 path = kmem_alloc(pathlen, KM_SLEEP); 2837 (void) strncpy(path, pn.pn_path, 2838 pn.pn_pathlen + 1); 2839 path[pathlen - 2] = '/'; 2840 path[pathlen - 1] = '\0'; 2841 pn_free(&pn); 2842 pn_free(&upn); 2843 2844 /* Success! */ 2845 break; 2846 } 2847 VN_RELE(vp); 2848 } 2849 if (error != ESTALE) 2850 goto out; 2851 } 2852 2853 ASSERT(error == 0); 2854 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2855 zone->zone_rootpath = path; 2856 zone->zone_rootpathlen = pathlen; 2857 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2858 zone->zone_flags |= ZF_IS_SCRATCH; 2859 return (0); 2860 2861 out: 2862 pn_free(&pn); 2863 pn_free(&upn); 2864 return (error); 2865 } 2866 2867 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2868 ((c) >= 'a' && (c) <= 'z') || \ 2869 ((c) >= 'A' && (c) <= 'Z')) 2870 2871 static int 2872 zone_set_name(zone_t *zone, const char *uname) 2873 { 2874 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2875 size_t len; 2876 int i, err; 2877 2878 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2879 kmem_free(kname, ZONENAME_MAX); 2880 return (err); /* EFAULT or ENAMETOOLONG */ 2881 } 2882 2883 /* must be less than ZONENAME_MAX */ 2884 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2885 kmem_free(kname, ZONENAME_MAX); 2886 return (EINVAL); 2887 } 2888 2889 /* 2890 * Name must start with an alphanumeric and must contain only 2891 * alphanumerics, '-', '_' and '.'. 2892 */ 2893 if (!isalnum(kname[0])) { 2894 kmem_free(kname, ZONENAME_MAX); 2895 return (EINVAL); 2896 } 2897 for (i = 1; i < len - 1; i++) { 2898 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2899 kname[i] != '.') { 2900 kmem_free(kname, ZONENAME_MAX); 2901 return (EINVAL); 2902 } 2903 } 2904 2905 zone->zone_name = kname; 2906 return (0); 2907 } 2908 2909 /* 2910 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 2911 * is NULL or it points to a zone with no hostid emulation, then the machine's 2912 * hostid (i.e., the global zone's hostid) is returned. This function returns 2913 * zero if neither the zone nor the host machine (global zone) have hostids. It 2914 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 2915 * hostid and the machine's hostid is invalid. 2916 */ 2917 uint32_t 2918 zone_get_hostid(zone_t *zonep) 2919 { 2920 unsigned long machine_hostid; 2921 2922 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 2923 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 2924 return (HW_INVALID_HOSTID); 2925 return ((uint32_t)machine_hostid); 2926 } 2927 return (zonep->zone_hostid); 2928 } 2929 2930 /* 2931 * Similar to thread_create(), but makes sure the thread is in the appropriate 2932 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 2933 */ 2934 /*ARGSUSED*/ 2935 kthread_t * 2936 zthread_create( 2937 caddr_t stk, 2938 size_t stksize, 2939 void (*proc)(), 2940 void *arg, 2941 size_t len, 2942 pri_t pri) 2943 { 2944 kthread_t *t; 2945 zone_t *zone = curproc->p_zone; 2946 proc_t *pp = zone->zone_zsched; 2947 2948 zone_hold(zone); /* Reference to be dropped when thread exits */ 2949 2950 /* 2951 * No-one should be trying to create threads if the zone is shutting 2952 * down and there aren't any kernel threads around. See comment 2953 * in zthread_exit(). 2954 */ 2955 ASSERT(!(zone->zone_kthreads == NULL && 2956 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2957 /* 2958 * Create a thread, but don't let it run until we've finished setting 2959 * things up. 2960 */ 2961 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2962 ASSERT(t->t_forw == NULL); 2963 mutex_enter(&zone_status_lock); 2964 if (zone->zone_kthreads == NULL) { 2965 t->t_forw = t->t_back = t; 2966 } else { 2967 kthread_t *tx = zone->zone_kthreads; 2968 2969 t->t_forw = tx; 2970 t->t_back = tx->t_back; 2971 tx->t_back->t_forw = t; 2972 tx->t_back = t; 2973 } 2974 zone->zone_kthreads = t; 2975 mutex_exit(&zone_status_lock); 2976 2977 mutex_enter(&pp->p_lock); 2978 t->t_proc_flag |= TP_ZTHREAD; 2979 project_rele(t->t_proj); 2980 t->t_proj = project_hold(pp->p_task->tk_proj); 2981 2982 /* 2983 * Setup complete, let it run. 2984 */ 2985 thread_lock(t); 2986 t->t_schedflag |= TS_ALLSTART; 2987 setrun_locked(t); 2988 thread_unlock(t); 2989 2990 mutex_exit(&pp->p_lock); 2991 2992 return (t); 2993 } 2994 2995 /* 2996 * Similar to thread_exit(). Must be called by threads created via 2997 * zthread_exit(). 2998 */ 2999 void 3000 zthread_exit(void) 3001 { 3002 kthread_t *t = curthread; 3003 proc_t *pp = curproc; 3004 zone_t *zone = pp->p_zone; 3005 3006 mutex_enter(&zone_status_lock); 3007 3008 /* 3009 * Reparent to p0 3010 */ 3011 kpreempt_disable(); 3012 mutex_enter(&pp->p_lock); 3013 t->t_proc_flag &= ~TP_ZTHREAD; 3014 t->t_procp = &p0; 3015 hat_thread_exit(t); 3016 mutex_exit(&pp->p_lock); 3017 kpreempt_enable(); 3018 3019 if (t->t_back == t) { 3020 ASSERT(t->t_forw == t); 3021 /* 3022 * If the zone is empty, once the thread count 3023 * goes to zero no further kernel threads can be 3024 * created. This is because if the creator is a process 3025 * in the zone, then it must have exited before the zone 3026 * state could be set to ZONE_IS_EMPTY. 3027 * Otherwise, if the creator is a kernel thread in the 3028 * zone, the thread count is non-zero. 3029 * 3030 * This really means that non-zone kernel threads should 3031 * not create zone kernel threads. 3032 */ 3033 zone->zone_kthreads = NULL; 3034 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3035 zone_status_set(zone, ZONE_IS_DOWN); 3036 /* 3037 * Remove any CPU caps on this zone. 3038 */ 3039 cpucaps_zone_remove(zone); 3040 } 3041 } else { 3042 t->t_forw->t_back = t->t_back; 3043 t->t_back->t_forw = t->t_forw; 3044 if (zone->zone_kthreads == t) 3045 zone->zone_kthreads = t->t_forw; 3046 } 3047 mutex_exit(&zone_status_lock); 3048 zone_rele(zone); 3049 thread_exit(); 3050 /* NOTREACHED */ 3051 } 3052 3053 static void 3054 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3055 { 3056 vnode_t *oldvp; 3057 3058 /* we're going to hold a reference here to the directory */ 3059 VN_HOLD(vp); 3060 3061 if (audit_active) /* update abs cwd/root path see c2audit.c */ 3062 audit_chdirec(vp, vpp); 3063 3064 mutex_enter(&pp->p_lock); 3065 oldvp = *vpp; 3066 *vpp = vp; 3067 mutex_exit(&pp->p_lock); 3068 if (oldvp != NULL) 3069 VN_RELE(oldvp); 3070 } 3071 3072 /* 3073 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3074 */ 3075 static int 3076 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3077 { 3078 nvpair_t *nvp = NULL; 3079 boolean_t priv_set = B_FALSE; 3080 boolean_t limit_set = B_FALSE; 3081 boolean_t action_set = B_FALSE; 3082 3083 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3084 const char *name; 3085 uint64_t ui64; 3086 3087 name = nvpair_name(nvp); 3088 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3089 return (EINVAL); 3090 (void) nvpair_value_uint64(nvp, &ui64); 3091 if (strcmp(name, "privilege") == 0) { 3092 /* 3093 * Currently only privileged values are allowed, but 3094 * this may change in the future. 3095 */ 3096 if (ui64 != RCPRIV_PRIVILEGED) 3097 return (EINVAL); 3098 rv->rcv_privilege = ui64; 3099 priv_set = B_TRUE; 3100 } else if (strcmp(name, "limit") == 0) { 3101 rv->rcv_value = ui64; 3102 limit_set = B_TRUE; 3103 } else if (strcmp(name, "action") == 0) { 3104 if (ui64 != RCTL_LOCAL_NOACTION && 3105 ui64 != RCTL_LOCAL_DENY) 3106 return (EINVAL); 3107 rv->rcv_flagaction = ui64; 3108 action_set = B_TRUE; 3109 } else { 3110 return (EINVAL); 3111 } 3112 } 3113 3114 if (!(priv_set && limit_set && action_set)) 3115 return (EINVAL); 3116 rv->rcv_action_signal = 0; 3117 rv->rcv_action_recipient = NULL; 3118 rv->rcv_action_recip_pid = -1; 3119 rv->rcv_firing_time = 0; 3120 3121 return (0); 3122 } 3123 3124 /* 3125 * Non-global zone version of start_init. 3126 */ 3127 void 3128 zone_start_init(void) 3129 { 3130 proc_t *p = ttoproc(curthread); 3131 zone_t *z = p->p_zone; 3132 3133 ASSERT(!INGLOBALZONE(curproc)); 3134 3135 /* 3136 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3137 * storing just the pid of init is sufficient. 3138 */ 3139 z->zone_proc_initpid = p->p_pid; 3140 3141 /* 3142 * We maintain zone_boot_err so that we can return the cause of the 3143 * failure back to the caller of the zone_boot syscall. 3144 */ 3145 p->p_zone->zone_boot_err = start_init_common(); 3146 3147 /* 3148 * We will prevent booting zones from becoming running zones if the 3149 * global zone is shutting down. 3150 */ 3151 mutex_enter(&zone_status_lock); 3152 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3153 ZONE_IS_SHUTTING_DOWN) { 3154 /* 3155 * Make sure we are still in the booting state-- we could have 3156 * raced and already be shutting down, or even further along. 3157 */ 3158 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3159 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3160 } 3161 mutex_exit(&zone_status_lock); 3162 /* It's gone bad, dispose of the process */ 3163 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3164 mutex_enter(&p->p_lock); 3165 ASSERT(p->p_flag & SEXITLWPS); 3166 lwp_exit(); 3167 } 3168 } else { 3169 if (zone_status_get(z) == ZONE_IS_BOOTING) 3170 zone_status_set(z, ZONE_IS_RUNNING); 3171 mutex_exit(&zone_status_lock); 3172 /* cause the process to return to userland. */ 3173 lwp_rtt(); 3174 } 3175 } 3176 3177 struct zsched_arg { 3178 zone_t *zone; 3179 nvlist_t *nvlist; 3180 }; 3181 3182 /* 3183 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3184 * anything to do with scheduling, but rather with the fact that 3185 * per-zone kernel threads are parented to zsched, just like regular 3186 * kernel threads are parented to sched (p0). 3187 * 3188 * zsched is also responsible for launching init for the zone. 3189 */ 3190 static void 3191 zsched(void *arg) 3192 { 3193 struct zsched_arg *za = arg; 3194 proc_t *pp = curproc; 3195 proc_t *initp = proc_init; 3196 zone_t *zone = za->zone; 3197 cred_t *cr, *oldcred; 3198 rctl_set_t *set; 3199 rctl_alloc_gp_t *gp; 3200 contract_t *ct = NULL; 3201 task_t *tk, *oldtk; 3202 rctl_entity_p_t e; 3203 kproject_t *pj; 3204 3205 nvlist_t *nvl = za->nvlist; 3206 nvpair_t *nvp = NULL; 3207 3208 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3209 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3210 PTOU(pp)->u_argc = 0; 3211 PTOU(pp)->u_argv = NULL; 3212 PTOU(pp)->u_envp = NULL; 3213 closeall(P_FINFO(pp)); 3214 3215 /* 3216 * We are this zone's "zsched" process. As the zone isn't generally 3217 * visible yet we don't need to grab any locks before initializing its 3218 * zone_proc pointer. 3219 */ 3220 zone_hold(zone); /* this hold is released by zone_destroy() */ 3221 zone->zone_zsched = pp; 3222 mutex_enter(&pp->p_lock); 3223 pp->p_zone = zone; 3224 mutex_exit(&pp->p_lock); 3225 3226 /* 3227 * Disassociate process from its 'parent'; parent ourselves to init 3228 * (pid 1) and change other values as needed. 3229 */ 3230 sess_create(); 3231 3232 mutex_enter(&pidlock); 3233 proc_detach(pp); 3234 pp->p_ppid = 1; 3235 pp->p_flag |= SZONETOP; 3236 pp->p_ancpid = 1; 3237 pp->p_parent = initp; 3238 pp->p_psibling = NULL; 3239 if (initp->p_child) 3240 initp->p_child->p_psibling = pp; 3241 pp->p_sibling = initp->p_child; 3242 initp->p_child = pp; 3243 3244 /* Decrement what newproc() incremented. */ 3245 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3246 /* 3247 * Our credentials are about to become kcred-like, so we don't care 3248 * about the caller's ruid. 3249 */ 3250 upcount_inc(crgetruid(kcred), zone->zone_id); 3251 mutex_exit(&pidlock); 3252 3253 /* 3254 * getting out of global zone, so decrement lwp counts 3255 */ 3256 pj = pp->p_task->tk_proj; 3257 mutex_enter(&global_zone->zone_nlwps_lock); 3258 pj->kpj_nlwps -= pp->p_lwpcnt; 3259 global_zone->zone_nlwps -= pp->p_lwpcnt; 3260 mutex_exit(&global_zone->zone_nlwps_lock); 3261 3262 /* 3263 * Decrement locked memory counts on old zone and project. 3264 */ 3265 mutex_enter(&global_zone->zone_mem_lock); 3266 global_zone->zone_locked_mem -= pp->p_locked_mem; 3267 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3268 mutex_exit(&global_zone->zone_mem_lock); 3269 3270 /* 3271 * Create and join a new task in project '0' of this zone. 3272 * 3273 * We don't need to call holdlwps() since we know we're the only lwp in 3274 * this process. 3275 * 3276 * task_join() returns with p_lock held. 3277 */ 3278 tk = task_create(0, zone); 3279 mutex_enter(&cpu_lock); 3280 oldtk = task_join(tk, 0); 3281 3282 pj = pp->p_task->tk_proj; 3283 3284 mutex_enter(&zone->zone_mem_lock); 3285 zone->zone_locked_mem += pp->p_locked_mem; 3286 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3287 mutex_exit(&zone->zone_mem_lock); 3288 3289 /* 3290 * add lwp counts to zsched's zone, and increment project's task count 3291 * due to the task created in the above tasksys_settaskid 3292 */ 3293 3294 mutex_enter(&zone->zone_nlwps_lock); 3295 pj->kpj_nlwps += pp->p_lwpcnt; 3296 pj->kpj_ntasks += 1; 3297 zone->zone_nlwps += pp->p_lwpcnt; 3298 mutex_exit(&zone->zone_nlwps_lock); 3299 3300 mutex_exit(&curproc->p_lock); 3301 mutex_exit(&cpu_lock); 3302 task_rele(oldtk); 3303 3304 /* 3305 * The process was created by a process in the global zone, hence the 3306 * credentials are wrong. We might as well have kcred-ish credentials. 3307 */ 3308 cr = zone->zone_kcred; 3309 crhold(cr); 3310 mutex_enter(&pp->p_crlock); 3311 oldcred = pp->p_cred; 3312 pp->p_cred = cr; 3313 mutex_exit(&pp->p_crlock); 3314 crfree(oldcred); 3315 3316 /* 3317 * Hold credentials again (for thread) 3318 */ 3319 crhold(cr); 3320 3321 /* 3322 * p_lwpcnt can't change since this is a kernel process. 3323 */ 3324 crset(pp, cr); 3325 3326 /* 3327 * Chroot 3328 */ 3329 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3330 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3331 3332 /* 3333 * Initialize zone's rctl set. 3334 */ 3335 set = rctl_set_create(); 3336 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3337 mutex_enter(&pp->p_lock); 3338 e.rcep_p.zone = zone; 3339 e.rcep_t = RCENTITY_ZONE; 3340 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3341 mutex_exit(&pp->p_lock); 3342 rctl_prealloc_destroy(gp); 3343 3344 /* 3345 * Apply the rctls passed in to zone_create(). This is basically a list 3346 * assignment: all of the old values are removed and the new ones 3347 * inserted. That is, if an empty list is passed in, all values are 3348 * removed. 3349 */ 3350 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3351 rctl_dict_entry_t *rde; 3352 rctl_hndl_t hndl; 3353 char *name; 3354 nvlist_t **nvlarray; 3355 uint_t i, nelem; 3356 int error; /* For ASSERT()s */ 3357 3358 name = nvpair_name(nvp); 3359 hndl = rctl_hndl_lookup(name); 3360 ASSERT(hndl != -1); 3361 rde = rctl_dict_lookup_hndl(hndl); 3362 ASSERT(rde != NULL); 3363 3364 for (; /* ever */; ) { 3365 rctl_val_t oval; 3366 3367 mutex_enter(&pp->p_lock); 3368 error = rctl_local_get(hndl, NULL, &oval, pp); 3369 mutex_exit(&pp->p_lock); 3370 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3371 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3372 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3373 break; 3374 mutex_enter(&pp->p_lock); 3375 error = rctl_local_delete(hndl, &oval, pp); 3376 mutex_exit(&pp->p_lock); 3377 ASSERT(error == 0); 3378 } 3379 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3380 ASSERT(error == 0); 3381 for (i = 0; i < nelem; i++) { 3382 rctl_val_t *nvalp; 3383 3384 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3385 error = nvlist2rctlval(nvlarray[i], nvalp); 3386 ASSERT(error == 0); 3387 /* 3388 * rctl_local_insert can fail if the value being 3389 * inserted is a duplicate; this is OK. 3390 */ 3391 mutex_enter(&pp->p_lock); 3392 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3393 kmem_cache_free(rctl_val_cache, nvalp); 3394 mutex_exit(&pp->p_lock); 3395 } 3396 } 3397 /* 3398 * Tell the world that we're done setting up. 3399 * 3400 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3401 * and atomically set the zone's processor set visibility. Once 3402 * we drop pool_lock() this zone will automatically get updated 3403 * to reflect any future changes to the pools configuration. 3404 * 3405 * Note that after we drop the locks below (zonehash_lock in 3406 * particular) other operations such as a zone_getattr call can 3407 * now proceed and observe the zone. That is the reason for doing a 3408 * state transition to the INITIALIZED state. 3409 */ 3410 pool_lock(); 3411 mutex_enter(&cpu_lock); 3412 mutex_enter(&zonehash_lock); 3413 zone_uniqid(zone); 3414 zone_zsd_configure(zone); 3415 if (pool_state == POOL_ENABLED) 3416 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3417 mutex_enter(&zone_status_lock); 3418 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3419 zone_status_set(zone, ZONE_IS_INITIALIZED); 3420 mutex_exit(&zone_status_lock); 3421 mutex_exit(&zonehash_lock); 3422 mutex_exit(&cpu_lock); 3423 pool_unlock(); 3424 3425 /* Now call the create callback for this key */ 3426 zsd_apply_all_keys(zsd_apply_create, zone); 3427 3428 /* The callbacks are complete. Mark ZONE_IS_READY */ 3429 mutex_enter(&zone_status_lock); 3430 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3431 zone_status_set(zone, ZONE_IS_READY); 3432 mutex_exit(&zone_status_lock); 3433 3434 /* 3435 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3436 * we launch init, and set the state to running. 3437 */ 3438 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3439 3440 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3441 id_t cid; 3442 3443 /* 3444 * Ok, this is a little complicated. We need to grab the 3445 * zone's pool's scheduling class ID; note that by now, we 3446 * are already bound to a pool if we need to be (zoneadmd 3447 * will have done that to us while we're in the READY 3448 * state). *But* the scheduling class for the zone's 'init' 3449 * must be explicitly passed to newproc, which doesn't 3450 * respect pool bindings. 3451 * 3452 * We hold the pool_lock across the call to newproc() to 3453 * close the obvious race: the pool's scheduling class 3454 * could change before we manage to create the LWP with 3455 * classid 'cid'. 3456 */ 3457 pool_lock(); 3458 if (zone->zone_defaultcid > 0) 3459 cid = zone->zone_defaultcid; 3460 else 3461 cid = pool_get_class(zone->zone_pool); 3462 if (cid == -1) 3463 cid = defaultcid; 3464 3465 /* 3466 * If this fails, zone_boot will ultimately fail. The 3467 * state of the zone will be set to SHUTTING_DOWN-- userland 3468 * will have to tear down the zone, and fail, or try again. 3469 */ 3470 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3471 minclsyspri - 1, &ct)) != 0) { 3472 mutex_enter(&zone_status_lock); 3473 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3474 mutex_exit(&zone_status_lock); 3475 } 3476 pool_unlock(); 3477 } 3478 3479 /* 3480 * Wait for zone_destroy() to be called. This is what we spend 3481 * most of our life doing. 3482 */ 3483 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3484 3485 if (ct) 3486 /* 3487 * At this point the process contract should be empty. 3488 * (Though if it isn't, it's not the end of the world.) 3489 */ 3490 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3491 3492 /* 3493 * Allow kcred to be freed when all referring processes 3494 * (including this one) go away. We can't just do this in 3495 * zone_free because we need to wait for the zone_cred_ref to 3496 * drop to 0 before calling zone_free, and the existence of 3497 * zone_kcred will prevent that. Thus, we call crfree here to 3498 * balance the crdup in zone_create. The crhold calls earlier 3499 * in zsched will be dropped when the thread and process exit. 3500 */ 3501 crfree(zone->zone_kcred); 3502 zone->zone_kcred = NULL; 3503 3504 exit(CLD_EXITED, 0); 3505 } 3506 3507 /* 3508 * Helper function to determine if there are any submounts of the 3509 * provided path. Used to make sure the zone doesn't "inherit" any 3510 * mounts from before it is created. 3511 */ 3512 static uint_t 3513 zone_mount_count(const char *rootpath) 3514 { 3515 vfs_t *vfsp; 3516 uint_t count = 0; 3517 size_t rootpathlen = strlen(rootpath); 3518 3519 /* 3520 * Holding zonehash_lock prevents race conditions with 3521 * vfs_list_add()/vfs_list_remove() since we serialize with 3522 * zone_find_by_path(). 3523 */ 3524 ASSERT(MUTEX_HELD(&zonehash_lock)); 3525 /* 3526 * The rootpath must end with a '/' 3527 */ 3528 ASSERT(rootpath[rootpathlen - 1] == '/'); 3529 3530 /* 3531 * This intentionally does not count the rootpath itself if that 3532 * happens to be a mount point. 3533 */ 3534 vfs_list_read_lock(); 3535 vfsp = rootvfs; 3536 do { 3537 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3538 rootpathlen) == 0) 3539 count++; 3540 vfsp = vfsp->vfs_next; 3541 } while (vfsp != rootvfs); 3542 vfs_list_unlock(); 3543 return (count); 3544 } 3545 3546 /* 3547 * Helper function to make sure that a zone created on 'rootpath' 3548 * wouldn't end up containing other zones' rootpaths. 3549 */ 3550 static boolean_t 3551 zone_is_nested(const char *rootpath) 3552 { 3553 zone_t *zone; 3554 size_t rootpathlen = strlen(rootpath); 3555 size_t len; 3556 3557 ASSERT(MUTEX_HELD(&zonehash_lock)); 3558 3559 /* 3560 * zone_set_root() appended '/' and '\0' at the end of rootpath 3561 */ 3562 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 3563 (rootpath[1] == '/') && (rootpath[2] == '\0')) 3564 return (B_TRUE); 3565 3566 for (zone = list_head(&zone_active); zone != NULL; 3567 zone = list_next(&zone_active, zone)) { 3568 if (zone == global_zone) 3569 continue; 3570 len = strlen(zone->zone_rootpath); 3571 if (strncmp(rootpath, zone->zone_rootpath, 3572 MIN(rootpathlen, len)) == 0) 3573 return (B_TRUE); 3574 } 3575 return (B_FALSE); 3576 } 3577 3578 static int 3579 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3580 size_t zone_privssz) 3581 { 3582 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3583 3584 if (zone_privssz < sizeof (priv_set_t)) 3585 return (set_errno(ENOMEM)); 3586 3587 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3588 kmem_free(privs, sizeof (priv_set_t)); 3589 return (EFAULT); 3590 } 3591 3592 zone->zone_privset = privs; 3593 return (0); 3594 } 3595 3596 /* 3597 * We make creative use of nvlists to pass in rctls from userland. The list is 3598 * a list of the following structures: 3599 * 3600 * (name = rctl_name, value = nvpair_list_array) 3601 * 3602 * Where each element of the nvpair_list_array is of the form: 3603 * 3604 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3605 * (name = "limit", value = uint64_t), 3606 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3607 */ 3608 static int 3609 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3610 { 3611 nvpair_t *nvp = NULL; 3612 nvlist_t *nvl = NULL; 3613 char *kbuf; 3614 int error; 3615 rctl_val_t rv; 3616 3617 *nvlp = NULL; 3618 3619 if (buflen == 0) 3620 return (0); 3621 3622 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3623 return (ENOMEM); 3624 if (copyin(ubuf, kbuf, buflen)) { 3625 error = EFAULT; 3626 goto out; 3627 } 3628 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3629 /* 3630 * nvl may have been allocated/free'd, but the value set to 3631 * non-NULL, so we reset it here. 3632 */ 3633 nvl = NULL; 3634 error = EINVAL; 3635 goto out; 3636 } 3637 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3638 rctl_dict_entry_t *rde; 3639 rctl_hndl_t hndl; 3640 nvlist_t **nvlarray; 3641 uint_t i, nelem; 3642 char *name; 3643 3644 error = EINVAL; 3645 name = nvpair_name(nvp); 3646 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3647 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3648 goto out; 3649 } 3650 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3651 goto out; 3652 } 3653 rde = rctl_dict_lookup_hndl(hndl); 3654 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3655 ASSERT(error == 0); 3656 for (i = 0; i < nelem; i++) { 3657 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3658 goto out; 3659 } 3660 if (rctl_invalid_value(rde, &rv)) { 3661 error = EINVAL; 3662 goto out; 3663 } 3664 } 3665 error = 0; 3666 *nvlp = nvl; 3667 out: 3668 kmem_free(kbuf, buflen); 3669 if (error && nvl != NULL) 3670 nvlist_free(nvl); 3671 return (error); 3672 } 3673 3674 int 3675 zone_create_error(int er_error, int er_ext, int *er_out) { 3676 if (er_out != NULL) { 3677 if (copyout(&er_ext, er_out, sizeof (int))) { 3678 return (set_errno(EFAULT)); 3679 } 3680 } 3681 return (set_errno(er_error)); 3682 } 3683 3684 static int 3685 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 3686 { 3687 ts_label_t *tsl; 3688 bslabel_t blab; 3689 3690 /* Get label from user */ 3691 if (copyin(lab, &blab, sizeof (blab)) != 0) 3692 return (EFAULT); 3693 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 3694 if (tsl == NULL) 3695 return (ENOMEM); 3696 3697 zone->zone_slabel = tsl; 3698 return (0); 3699 } 3700 3701 /* 3702 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 3703 */ 3704 static int 3705 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 3706 { 3707 char *kbuf; 3708 char *dataset, *next; 3709 zone_dataset_t *zd; 3710 size_t len; 3711 3712 if (ubuf == NULL || buflen == 0) 3713 return (0); 3714 3715 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3716 return (ENOMEM); 3717 3718 if (copyin(ubuf, kbuf, buflen) != 0) { 3719 kmem_free(kbuf, buflen); 3720 return (EFAULT); 3721 } 3722 3723 dataset = next = kbuf; 3724 for (;;) { 3725 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 3726 3727 next = strchr(dataset, ','); 3728 3729 if (next == NULL) 3730 len = strlen(dataset); 3731 else 3732 len = next - dataset; 3733 3734 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 3735 bcopy(dataset, zd->zd_dataset, len); 3736 zd->zd_dataset[len] = '\0'; 3737 3738 list_insert_head(&zone->zone_datasets, zd); 3739 3740 if (next == NULL) 3741 break; 3742 3743 dataset = next + 1; 3744 } 3745 3746 kmem_free(kbuf, buflen); 3747 return (0); 3748 } 3749 3750 /* 3751 * System call to create/initialize a new zone named 'zone_name', rooted 3752 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 3753 * and initialized with the zone-wide rctls described in 'rctlbuf', and 3754 * with labeling set by 'match', 'doi', and 'label'. 3755 * 3756 * If extended error is non-null, we may use it to return more detailed 3757 * error information. 3758 */ 3759 static zoneid_t 3760 zone_create(const char *zone_name, const char *zone_root, 3761 const priv_set_t *zone_privs, size_t zone_privssz, 3762 caddr_t rctlbuf, size_t rctlbufsz, 3763 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 3764 int match, uint32_t doi, const bslabel_t *label, 3765 int flags) 3766 { 3767 struct zsched_arg zarg; 3768 nvlist_t *rctls = NULL; 3769 proc_t *pp = curproc; 3770 zone_t *zone, *ztmp; 3771 zoneid_t zoneid; 3772 int error; 3773 int error2 = 0; 3774 char *str; 3775 cred_t *zkcr; 3776 boolean_t insert_label_hash; 3777 3778 if (secpolicy_zone_config(CRED()) != 0) 3779 return (set_errno(EPERM)); 3780 3781 /* can't boot zone from within chroot environment */ 3782 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 3783 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 3784 extended_error)); 3785 3786 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 3787 zoneid = zone->zone_id = id_alloc(zoneid_space); 3788 zone->zone_status = ZONE_IS_UNINITIALIZED; 3789 zone->zone_pool = pool_default; 3790 zone->zone_pool_mod = gethrtime(); 3791 zone->zone_psetid = ZONE_PS_INVAL; 3792 zone->zone_ncpus = 0; 3793 zone->zone_ncpus_online = 0; 3794 zone->zone_restart_init = B_TRUE; 3795 zone->zone_brand = &native_brand; 3796 zone->zone_initname = NULL; 3797 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 3798 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 3799 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 3800 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 3801 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 3802 offsetof(struct zsd_entry, zsd_linkage)); 3803 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 3804 offsetof(zone_dataset_t, zd_linkage)); 3805 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 3806 offsetof(zone_dl_t, zdl_linkage)); 3807 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 3808 3809 if (flags & ZCF_NET_EXCL) { 3810 zone->zone_flags |= ZF_NET_EXCL; 3811 } 3812 3813 if ((error = zone_set_name(zone, zone_name)) != 0) { 3814 zone_free(zone); 3815 return (zone_create_error(error, 0, extended_error)); 3816 } 3817 3818 if ((error = zone_set_root(zone, zone_root)) != 0) { 3819 zone_free(zone); 3820 return (zone_create_error(error, 0, extended_error)); 3821 } 3822 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 3823 zone_free(zone); 3824 return (zone_create_error(error, 0, extended_error)); 3825 } 3826 3827 /* initialize node name to be the same as zone name */ 3828 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3829 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 3830 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 3831 3832 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3833 zone->zone_domain[0] = '\0'; 3834 zone->zone_hostid = HW_INVALID_HOSTID; 3835 zone->zone_shares = 1; 3836 zone->zone_shmmax = 0; 3837 zone->zone_ipc.ipcq_shmmni = 0; 3838 zone->zone_ipc.ipcq_semmni = 0; 3839 zone->zone_ipc.ipcq_msgmni = 0; 3840 zone->zone_bootargs = NULL; 3841 zone->zone_initname = 3842 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 3843 (void) strcpy(zone->zone_initname, zone_default_initname); 3844 zone->zone_nlwps = 0; 3845 zone->zone_nlwps_ctl = INT_MAX; 3846 zone->zone_locked_mem = 0; 3847 zone->zone_locked_mem_ctl = UINT64_MAX; 3848 zone->zone_max_swap = 0; 3849 zone->zone_max_swap_ctl = UINT64_MAX; 3850 zone0.zone_lockedmem_kstat = NULL; 3851 zone0.zone_swapresv_kstat = NULL; 3852 3853 /* 3854 * Zsched initializes the rctls. 3855 */ 3856 zone->zone_rctls = NULL; 3857 3858 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 3859 zone_free(zone); 3860 return (zone_create_error(error, 0, extended_error)); 3861 } 3862 3863 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 3864 zone_free(zone); 3865 return (set_errno(error)); 3866 } 3867 3868 /* 3869 * Read in the trusted system parameters: 3870 * match flag and sensitivity label. 3871 */ 3872 zone->zone_match = match; 3873 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3874 /* Fail if requested to set doi to anything but system's doi */ 3875 if (doi != 0 && doi != default_doi) { 3876 zone_free(zone); 3877 return (set_errno(EINVAL)); 3878 } 3879 /* Always apply system's doi to the zone */ 3880 error = zone_set_label(zone, label, default_doi); 3881 if (error != 0) { 3882 zone_free(zone); 3883 return (set_errno(error)); 3884 } 3885 insert_label_hash = B_TRUE; 3886 } else { 3887 /* all zones get an admin_low label if system is not labeled */ 3888 zone->zone_slabel = l_admin_low; 3889 label_hold(l_admin_low); 3890 insert_label_hash = B_FALSE; 3891 } 3892 3893 /* 3894 * Stop all lwps since that's what normally happens as part of fork(). 3895 * This needs to happen before we grab any locks to avoid deadlock 3896 * (another lwp in the process could be waiting for the held lock). 3897 */ 3898 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 3899 zone_free(zone); 3900 if (rctls) 3901 nvlist_free(rctls); 3902 return (zone_create_error(error, 0, extended_error)); 3903 } 3904 3905 if (block_mounts() == 0) { 3906 mutex_enter(&pp->p_lock); 3907 if (curthread != pp->p_agenttp) 3908 continuelwps(pp); 3909 mutex_exit(&pp->p_lock); 3910 zone_free(zone); 3911 if (rctls) 3912 nvlist_free(rctls); 3913 return (zone_create_error(error, 0, extended_error)); 3914 } 3915 3916 /* 3917 * Set up credential for kernel access. After this, any errors 3918 * should go through the dance in errout rather than calling 3919 * zone_free directly. 3920 */ 3921 zone->zone_kcred = crdup(kcred); 3922 crsetzone(zone->zone_kcred, zone); 3923 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 3924 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 3925 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 3926 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 3927 3928 mutex_enter(&zonehash_lock); 3929 /* 3930 * Make sure zone doesn't already exist. 3931 * 3932 * If the system and zone are labeled, 3933 * make sure no other zone exists that has the same label. 3934 */ 3935 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 3936 (insert_label_hash && 3937 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 3938 zone_status_t status; 3939 3940 status = zone_status_get(ztmp); 3941 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 3942 error = EEXIST; 3943 else 3944 error = EBUSY; 3945 3946 if (insert_label_hash) 3947 error2 = ZE_LABELINUSE; 3948 3949 goto errout; 3950 } 3951 3952 /* 3953 * Don't allow zone creations which would cause one zone's rootpath to 3954 * be accessible from that of another (non-global) zone. 3955 */ 3956 if (zone_is_nested(zone->zone_rootpath)) { 3957 error = EBUSY; 3958 goto errout; 3959 } 3960 3961 ASSERT(zonecount != 0); /* check for leaks */ 3962 if (zonecount + 1 > maxzones) { 3963 error = ENOMEM; 3964 goto errout; 3965 } 3966 3967 if (zone_mount_count(zone->zone_rootpath) != 0) { 3968 error = EBUSY; 3969 error2 = ZE_AREMOUNTS; 3970 goto errout; 3971 } 3972 3973 /* 3974 * Zone is still incomplete, but we need to drop all locks while 3975 * zsched() initializes this zone's kernel process. We 3976 * optimistically add the zone to the hashtable and associated 3977 * lists so a parallel zone_create() doesn't try to create the 3978 * same zone. 3979 */ 3980 zonecount++; 3981 (void) mod_hash_insert(zonehashbyid, 3982 (mod_hash_key_t)(uintptr_t)zone->zone_id, 3983 (mod_hash_val_t)(uintptr_t)zone); 3984 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 3985 (void) strcpy(str, zone->zone_name); 3986 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 3987 (mod_hash_val_t)(uintptr_t)zone); 3988 if (insert_label_hash) { 3989 (void) mod_hash_insert(zonehashbylabel, 3990 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 3991 zone->zone_flags |= ZF_HASHED_LABEL; 3992 } 3993 3994 /* 3995 * Insert into active list. At this point there are no 'hold's 3996 * on the zone, but everyone else knows not to use it, so we can 3997 * continue to use it. zsched() will do a zone_hold() if the 3998 * newproc() is successful. 3999 */ 4000 list_insert_tail(&zone_active, zone); 4001 mutex_exit(&zonehash_lock); 4002 4003 zarg.zone = zone; 4004 zarg.nvlist = rctls; 4005 /* 4006 * The process, task, and project rctls are probably wrong; 4007 * we need an interface to get the default values of all rctls, 4008 * and initialize zsched appropriately. I'm not sure that that 4009 * makes much of a difference, though. 4010 */ 4011 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 4012 /* 4013 * We need to undo all globally visible state. 4014 */ 4015 mutex_enter(&zonehash_lock); 4016 list_remove(&zone_active, zone); 4017 if (zone->zone_flags & ZF_HASHED_LABEL) { 4018 ASSERT(zone->zone_slabel != NULL); 4019 (void) mod_hash_destroy(zonehashbylabel, 4020 (mod_hash_key_t)zone->zone_slabel); 4021 } 4022 (void) mod_hash_destroy(zonehashbyname, 4023 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4024 (void) mod_hash_destroy(zonehashbyid, 4025 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4026 ASSERT(zonecount > 1); 4027 zonecount--; 4028 goto errout; 4029 } 4030 4031 /* 4032 * Zone creation can't fail from now on. 4033 */ 4034 4035 /* 4036 * Create zone kstats 4037 */ 4038 zone_kstat_create(zone); 4039 4040 /* 4041 * Let the other lwps continue. 4042 */ 4043 mutex_enter(&pp->p_lock); 4044 if (curthread != pp->p_agenttp) 4045 continuelwps(pp); 4046 mutex_exit(&pp->p_lock); 4047 4048 /* 4049 * Wait for zsched to finish initializing the zone. 4050 */ 4051 zone_status_wait(zone, ZONE_IS_READY); 4052 /* 4053 * The zone is fully visible, so we can let mounts progress. 4054 */ 4055 resume_mounts(); 4056 if (rctls) 4057 nvlist_free(rctls); 4058 4059 return (zoneid); 4060 4061 errout: 4062 mutex_exit(&zonehash_lock); 4063 /* 4064 * Let the other lwps continue. 4065 */ 4066 mutex_enter(&pp->p_lock); 4067 if (curthread != pp->p_agenttp) 4068 continuelwps(pp); 4069 mutex_exit(&pp->p_lock); 4070 4071 resume_mounts(); 4072 if (rctls) 4073 nvlist_free(rctls); 4074 /* 4075 * There is currently one reference to the zone, a cred_ref from 4076 * zone_kcred. To free the zone, we call crfree, which will call 4077 * zone_cred_rele, which will call zone_free. 4078 */ 4079 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 4080 ASSERT(zone->zone_kcred->cr_ref == 1); 4081 ASSERT(zone->zone_ref == 0); 4082 zkcr = zone->zone_kcred; 4083 zone->zone_kcred = NULL; 4084 crfree(zkcr); /* triggers call to zone_free */ 4085 return (zone_create_error(error, error2, extended_error)); 4086 } 4087 4088 /* 4089 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4090 * the heavy lifting. initname is the path to the program to launch 4091 * at the "top" of the zone; if this is NULL, we use the system default, 4092 * which is stored at zone_default_initname. 4093 */ 4094 static int 4095 zone_boot(zoneid_t zoneid) 4096 { 4097 int err; 4098 zone_t *zone; 4099 4100 if (secpolicy_zone_config(CRED()) != 0) 4101 return (set_errno(EPERM)); 4102 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4103 return (set_errno(EINVAL)); 4104 4105 mutex_enter(&zonehash_lock); 4106 /* 4107 * Look for zone under hash lock to prevent races with calls to 4108 * zone_shutdown, zone_destroy, etc. 4109 */ 4110 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4111 mutex_exit(&zonehash_lock); 4112 return (set_errno(EINVAL)); 4113 } 4114 4115 mutex_enter(&zone_status_lock); 4116 if (zone_status_get(zone) != ZONE_IS_READY) { 4117 mutex_exit(&zone_status_lock); 4118 mutex_exit(&zonehash_lock); 4119 return (set_errno(EINVAL)); 4120 } 4121 zone_status_set(zone, ZONE_IS_BOOTING); 4122 mutex_exit(&zone_status_lock); 4123 4124 zone_hold(zone); /* so we can use the zone_t later */ 4125 mutex_exit(&zonehash_lock); 4126 4127 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4128 zone_rele(zone); 4129 return (set_errno(EINTR)); 4130 } 4131 4132 /* 4133 * Boot (starting init) might have failed, in which case the zone 4134 * will go to the SHUTTING_DOWN state; an appropriate errno will 4135 * be placed in zone->zone_boot_err, and so we return that. 4136 */ 4137 err = zone->zone_boot_err; 4138 zone_rele(zone); 4139 return (err ? set_errno(err) : 0); 4140 } 4141 4142 /* 4143 * Kills all user processes in the zone, waiting for them all to exit 4144 * before returning. 4145 */ 4146 static int 4147 zone_empty(zone_t *zone) 4148 { 4149 int waitstatus; 4150 4151 /* 4152 * We need to drop zonehash_lock before killing all 4153 * processes, otherwise we'll deadlock with zone_find_* 4154 * which can be called from the exit path. 4155 */ 4156 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4157 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 4158 ZONE_IS_EMPTY)) == -1) { 4159 killall(zone->zone_id); 4160 } 4161 /* 4162 * return EINTR if we were signaled 4163 */ 4164 if (waitstatus == 0) 4165 return (EINTR); 4166 return (0); 4167 } 4168 4169 /* 4170 * This function implements the policy for zone visibility. 4171 * 4172 * In standard Solaris, a non-global zone can only see itself. 4173 * 4174 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4175 * it dominates. For this test, the label of the global zone is treated as 4176 * admin_high so it is special-cased instead of being checked for dominance. 4177 * 4178 * Returns true if zone attributes are viewable, false otherwise. 4179 */ 4180 static boolean_t 4181 zone_list_access(zone_t *zone) 4182 { 4183 4184 if (curproc->p_zone == global_zone || 4185 curproc->p_zone == zone) { 4186 return (B_TRUE); 4187 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4188 bslabel_t *curproc_label; 4189 bslabel_t *zone_label; 4190 4191 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4192 zone_label = label2bslabel(zone->zone_slabel); 4193 4194 if (zone->zone_id != GLOBAL_ZONEID && 4195 bldominates(curproc_label, zone_label)) { 4196 return (B_TRUE); 4197 } else { 4198 return (B_FALSE); 4199 } 4200 } else { 4201 return (B_FALSE); 4202 } 4203 } 4204 4205 /* 4206 * Systemcall to start the zone's halt sequence. By the time this 4207 * function successfully returns, all user processes and kernel threads 4208 * executing in it will have exited, ZSD shutdown callbacks executed, 4209 * and the zone status set to ZONE_IS_DOWN. 4210 * 4211 * It is possible that the call will interrupt itself if the caller is the 4212 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4213 */ 4214 static int 4215 zone_shutdown(zoneid_t zoneid) 4216 { 4217 int error; 4218 zone_t *zone; 4219 zone_status_t status; 4220 4221 if (secpolicy_zone_config(CRED()) != 0) 4222 return (set_errno(EPERM)); 4223 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4224 return (set_errno(EINVAL)); 4225 4226 /* 4227 * Block mounts so that VFS_MOUNT() can get an accurate view of 4228 * the zone's status with regards to ZONE_IS_SHUTTING down. 4229 * 4230 * e.g. NFS can fail the mount if it determines that the zone 4231 * has already begun the shutdown sequence. 4232 */ 4233 if (block_mounts() == 0) 4234 return (set_errno(EINTR)); 4235 mutex_enter(&zonehash_lock); 4236 /* 4237 * Look for zone under hash lock to prevent races with other 4238 * calls to zone_shutdown and zone_destroy. 4239 */ 4240 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4241 mutex_exit(&zonehash_lock); 4242 resume_mounts(); 4243 return (set_errno(EINVAL)); 4244 } 4245 mutex_enter(&zone_status_lock); 4246 status = zone_status_get(zone); 4247 /* 4248 * Fail if the zone isn't fully initialized yet. 4249 */ 4250 if (status < ZONE_IS_READY) { 4251 mutex_exit(&zone_status_lock); 4252 mutex_exit(&zonehash_lock); 4253 resume_mounts(); 4254 return (set_errno(EINVAL)); 4255 } 4256 /* 4257 * If conditions required for zone_shutdown() to return have been met, 4258 * return success. 4259 */ 4260 if (status >= ZONE_IS_DOWN) { 4261 mutex_exit(&zone_status_lock); 4262 mutex_exit(&zonehash_lock); 4263 resume_mounts(); 4264 return (0); 4265 } 4266 /* 4267 * If zone_shutdown() hasn't been called before, go through the motions. 4268 * If it has, there's nothing to do but wait for the kernel threads to 4269 * drain. 4270 */ 4271 if (status < ZONE_IS_EMPTY) { 4272 uint_t ntasks; 4273 4274 mutex_enter(&zone->zone_lock); 4275 if ((ntasks = zone->zone_ntasks) != 1) { 4276 /* 4277 * There's still stuff running. 4278 */ 4279 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4280 } 4281 mutex_exit(&zone->zone_lock); 4282 if (ntasks == 1) { 4283 /* 4284 * The only way to create another task is through 4285 * zone_enter(), which will block until we drop 4286 * zonehash_lock. The zone is empty. 4287 */ 4288 if (zone->zone_kthreads == NULL) { 4289 /* 4290 * Skip ahead to ZONE_IS_DOWN 4291 */ 4292 zone_status_set(zone, ZONE_IS_DOWN); 4293 } else { 4294 zone_status_set(zone, ZONE_IS_EMPTY); 4295 } 4296 } 4297 } 4298 zone_hold(zone); /* so we can use the zone_t later */ 4299 mutex_exit(&zone_status_lock); 4300 mutex_exit(&zonehash_lock); 4301 resume_mounts(); 4302 4303 if (error = zone_empty(zone)) { 4304 zone_rele(zone); 4305 return (set_errno(error)); 4306 } 4307 /* 4308 * After the zone status goes to ZONE_IS_DOWN this zone will no 4309 * longer be notified of changes to the pools configuration, so 4310 * in order to not end up with a stale pool pointer, we point 4311 * ourselves at the default pool and remove all resource 4312 * visibility. This is especially important as the zone_t may 4313 * languish on the deathrow for a very long time waiting for 4314 * cred's to drain out. 4315 * 4316 * This rebinding of the zone can happen multiple times 4317 * (presumably due to interrupted or parallel systemcalls) 4318 * without any adverse effects. 4319 */ 4320 if (pool_lock_intr() != 0) { 4321 zone_rele(zone); 4322 return (set_errno(EINTR)); 4323 } 4324 if (pool_state == POOL_ENABLED) { 4325 mutex_enter(&cpu_lock); 4326 zone_pool_set(zone, pool_default); 4327 /* 4328 * The zone no longer needs to be able to see any cpus. 4329 */ 4330 zone_pset_set(zone, ZONE_PS_INVAL); 4331 mutex_exit(&cpu_lock); 4332 } 4333 pool_unlock(); 4334 4335 /* 4336 * ZSD shutdown callbacks can be executed multiple times, hence 4337 * it is safe to not be holding any locks across this call. 4338 */ 4339 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4340 4341 mutex_enter(&zone_status_lock); 4342 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4343 zone_status_set(zone, ZONE_IS_DOWN); 4344 mutex_exit(&zone_status_lock); 4345 4346 /* 4347 * Wait for kernel threads to drain. 4348 */ 4349 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4350 zone_rele(zone); 4351 return (set_errno(EINTR)); 4352 } 4353 4354 /* 4355 * Zone can be become down/destroyable even if the above wait 4356 * returns EINTR, so any code added here may never execute. 4357 * (i.e. don't add code here) 4358 */ 4359 4360 zone_rele(zone); 4361 return (0); 4362 } 4363 4364 /* 4365 * Systemcall entry point to finalize the zone halt process. The caller 4366 * must have already successfully called zone_shutdown(). 4367 * 4368 * Upon successful completion, the zone will have been fully destroyed: 4369 * zsched will have exited, destructor callbacks executed, and the zone 4370 * removed from the list of active zones. 4371 */ 4372 static int 4373 zone_destroy(zoneid_t zoneid) 4374 { 4375 uint64_t uniqid; 4376 zone_t *zone; 4377 zone_status_t status; 4378 4379 if (secpolicy_zone_config(CRED()) != 0) 4380 return (set_errno(EPERM)); 4381 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4382 return (set_errno(EINVAL)); 4383 4384 mutex_enter(&zonehash_lock); 4385 /* 4386 * Look for zone under hash lock to prevent races with other 4387 * calls to zone_destroy. 4388 */ 4389 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4390 mutex_exit(&zonehash_lock); 4391 return (set_errno(EINVAL)); 4392 } 4393 4394 if (zone_mount_count(zone->zone_rootpath) != 0) { 4395 mutex_exit(&zonehash_lock); 4396 return (set_errno(EBUSY)); 4397 } 4398 mutex_enter(&zone_status_lock); 4399 status = zone_status_get(zone); 4400 if (status < ZONE_IS_DOWN) { 4401 mutex_exit(&zone_status_lock); 4402 mutex_exit(&zonehash_lock); 4403 return (set_errno(EBUSY)); 4404 } else if (status == ZONE_IS_DOWN) { 4405 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 4406 } 4407 mutex_exit(&zone_status_lock); 4408 zone_hold(zone); 4409 mutex_exit(&zonehash_lock); 4410 4411 /* 4412 * wait for zsched to exit 4413 */ 4414 zone_status_wait(zone, ZONE_IS_DEAD); 4415 zone_zsd_callbacks(zone, ZSD_DESTROY); 4416 zone->zone_netstack = NULL; 4417 uniqid = zone->zone_uniqid; 4418 zone_rele(zone); 4419 zone = NULL; /* potentially free'd */ 4420 4421 mutex_enter(&zonehash_lock); 4422 for (; /* ever */; ) { 4423 boolean_t unref; 4424 4425 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 4426 zone->zone_uniqid != uniqid) { 4427 /* 4428 * The zone has gone away. Necessary conditions 4429 * are met, so we return success. 4430 */ 4431 mutex_exit(&zonehash_lock); 4432 return (0); 4433 } 4434 mutex_enter(&zone->zone_lock); 4435 unref = ZONE_IS_UNREF(zone); 4436 mutex_exit(&zone->zone_lock); 4437 if (unref) { 4438 /* 4439 * There is only one reference to the zone -- that 4440 * added when the zone was added to the hashtables -- 4441 * and things will remain this way until we drop 4442 * zonehash_lock... we can go ahead and cleanup the 4443 * zone. 4444 */ 4445 break; 4446 } 4447 4448 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 4449 /* Signaled */ 4450 mutex_exit(&zonehash_lock); 4451 return (set_errno(EINTR)); 4452 } 4453 4454 } 4455 4456 /* 4457 * Remove CPU cap for this zone now since we're not going to 4458 * fail below this point. 4459 */ 4460 cpucaps_zone_remove(zone); 4461 4462 /* Get rid of the zone's kstats */ 4463 zone_kstat_delete(zone); 4464 4465 /* free brand specific data */ 4466 if (ZONE_IS_BRANDED(zone)) 4467 ZBROP(zone)->b_free_brand_data(zone); 4468 4469 /* Say goodbye to brand framework. */ 4470 brand_unregister_zone(zone->zone_brand); 4471 4472 /* 4473 * It is now safe to let the zone be recreated; remove it from the 4474 * lists. The memory will not be freed until the last cred 4475 * reference goes away. 4476 */ 4477 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 4478 zonecount--; 4479 /* remove from active list and hash tables */ 4480 list_remove(&zone_active, zone); 4481 (void) mod_hash_destroy(zonehashbyname, 4482 (mod_hash_key_t)zone->zone_name); 4483 (void) mod_hash_destroy(zonehashbyid, 4484 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4485 if (zone->zone_flags & ZF_HASHED_LABEL) 4486 (void) mod_hash_destroy(zonehashbylabel, 4487 (mod_hash_key_t)zone->zone_slabel); 4488 mutex_exit(&zonehash_lock); 4489 4490 /* 4491 * Release the root vnode; we're not using it anymore. Nor should any 4492 * other thread that might access it exist. 4493 */ 4494 if (zone->zone_rootvp != NULL) { 4495 VN_RELE(zone->zone_rootvp); 4496 zone->zone_rootvp = NULL; 4497 } 4498 4499 /* add to deathrow list */ 4500 mutex_enter(&zone_deathrow_lock); 4501 list_insert_tail(&zone_deathrow, zone); 4502 mutex_exit(&zone_deathrow_lock); 4503 4504 /* 4505 * Drop last reference (which was added by zsched()), this will 4506 * free the zone unless there are outstanding cred references. 4507 */ 4508 zone_rele(zone); 4509 return (0); 4510 } 4511 4512 /* 4513 * Systemcall entry point for zone_getattr(2). 4514 */ 4515 static ssize_t 4516 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4517 { 4518 size_t size; 4519 int error = 0, err; 4520 zone_t *zone; 4521 char *zonepath; 4522 char *outstr; 4523 zone_status_t zone_status; 4524 pid_t initpid; 4525 boolean_t global = (curzone == global_zone); 4526 boolean_t inzone = (curzone->zone_id == zoneid); 4527 ushort_t flags; 4528 4529 mutex_enter(&zonehash_lock); 4530 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4531 mutex_exit(&zonehash_lock); 4532 return (set_errno(EINVAL)); 4533 } 4534 zone_status = zone_status_get(zone); 4535 if (zone_status < ZONE_IS_INITIALIZED) { 4536 mutex_exit(&zonehash_lock); 4537 return (set_errno(EINVAL)); 4538 } 4539 zone_hold(zone); 4540 mutex_exit(&zonehash_lock); 4541 4542 /* 4543 * If not in the global zone, don't show information about other zones, 4544 * unless the system is labeled and the local zone's label dominates 4545 * the other zone. 4546 */ 4547 if (!zone_list_access(zone)) { 4548 zone_rele(zone); 4549 return (set_errno(EINVAL)); 4550 } 4551 4552 switch (attr) { 4553 case ZONE_ATTR_ROOT: 4554 if (global) { 4555 /* 4556 * Copy the path to trim the trailing "/" (except for 4557 * the global zone). 4558 */ 4559 if (zone != global_zone) 4560 size = zone->zone_rootpathlen - 1; 4561 else 4562 size = zone->zone_rootpathlen; 4563 zonepath = kmem_alloc(size, KM_SLEEP); 4564 bcopy(zone->zone_rootpath, zonepath, size); 4565 zonepath[size - 1] = '\0'; 4566 } else { 4567 if (inzone || !is_system_labeled()) { 4568 /* 4569 * Caller is not in the global zone. 4570 * if the query is on the current zone 4571 * or the system is not labeled, 4572 * just return faked-up path for current zone. 4573 */ 4574 zonepath = "/"; 4575 size = 2; 4576 } else { 4577 /* 4578 * Return related path for current zone. 4579 */ 4580 int prefix_len = strlen(zone_prefix); 4581 int zname_len = strlen(zone->zone_name); 4582 4583 size = prefix_len + zname_len + 1; 4584 zonepath = kmem_alloc(size, KM_SLEEP); 4585 bcopy(zone_prefix, zonepath, prefix_len); 4586 bcopy(zone->zone_name, zonepath + 4587 prefix_len, zname_len); 4588 zonepath[size - 1] = '\0'; 4589 } 4590 } 4591 if (bufsize > size) 4592 bufsize = size; 4593 if (buf != NULL) { 4594 err = copyoutstr(zonepath, buf, bufsize, NULL); 4595 if (err != 0 && err != ENAMETOOLONG) 4596 error = EFAULT; 4597 } 4598 if (global || (is_system_labeled() && !inzone)) 4599 kmem_free(zonepath, size); 4600 break; 4601 4602 case ZONE_ATTR_NAME: 4603 size = strlen(zone->zone_name) + 1; 4604 if (bufsize > size) 4605 bufsize = size; 4606 if (buf != NULL) { 4607 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 4608 if (err != 0 && err != ENAMETOOLONG) 4609 error = EFAULT; 4610 } 4611 break; 4612 4613 case ZONE_ATTR_STATUS: 4614 /* 4615 * Since we're not holding zonehash_lock, the zone status 4616 * may be anything; leave it up to userland to sort it out. 4617 */ 4618 size = sizeof (zone_status); 4619 if (bufsize > size) 4620 bufsize = size; 4621 zone_status = zone_status_get(zone); 4622 if (buf != NULL && 4623 copyout(&zone_status, buf, bufsize) != 0) 4624 error = EFAULT; 4625 break; 4626 case ZONE_ATTR_FLAGS: 4627 size = sizeof (zone->zone_flags); 4628 if (bufsize > size) 4629 bufsize = size; 4630 flags = zone->zone_flags; 4631 if (buf != NULL && 4632 copyout(&flags, buf, bufsize) != 0) 4633 error = EFAULT; 4634 break; 4635 case ZONE_ATTR_PRIVSET: 4636 size = sizeof (priv_set_t); 4637 if (bufsize > size) 4638 bufsize = size; 4639 if (buf != NULL && 4640 copyout(zone->zone_privset, buf, bufsize) != 0) 4641 error = EFAULT; 4642 break; 4643 case ZONE_ATTR_UNIQID: 4644 size = sizeof (zone->zone_uniqid); 4645 if (bufsize > size) 4646 bufsize = size; 4647 if (buf != NULL && 4648 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 4649 error = EFAULT; 4650 break; 4651 case ZONE_ATTR_POOLID: 4652 { 4653 pool_t *pool; 4654 poolid_t poolid; 4655 4656 if (pool_lock_intr() != 0) { 4657 error = EINTR; 4658 break; 4659 } 4660 pool = zone_pool_get(zone); 4661 poolid = pool->pool_id; 4662 pool_unlock(); 4663 size = sizeof (poolid); 4664 if (bufsize > size) 4665 bufsize = size; 4666 if (buf != NULL && copyout(&poolid, buf, size) != 0) 4667 error = EFAULT; 4668 } 4669 break; 4670 case ZONE_ATTR_SLBL: 4671 size = sizeof (bslabel_t); 4672 if (bufsize > size) 4673 bufsize = size; 4674 if (zone->zone_slabel == NULL) 4675 error = EINVAL; 4676 else if (buf != NULL && 4677 copyout(label2bslabel(zone->zone_slabel), buf, 4678 bufsize) != 0) 4679 error = EFAULT; 4680 break; 4681 case ZONE_ATTR_INITPID: 4682 size = sizeof (initpid); 4683 if (bufsize > size) 4684 bufsize = size; 4685 initpid = zone->zone_proc_initpid; 4686 if (initpid == -1) { 4687 error = ESRCH; 4688 break; 4689 } 4690 if (buf != NULL && 4691 copyout(&initpid, buf, bufsize) != 0) 4692 error = EFAULT; 4693 break; 4694 case ZONE_ATTR_BRAND: 4695 size = strlen(zone->zone_brand->b_name) + 1; 4696 4697 if (bufsize > size) 4698 bufsize = size; 4699 if (buf != NULL) { 4700 err = copyoutstr(zone->zone_brand->b_name, buf, 4701 bufsize, NULL); 4702 if (err != 0 && err != ENAMETOOLONG) 4703 error = EFAULT; 4704 } 4705 break; 4706 case ZONE_ATTR_INITNAME: 4707 size = strlen(zone->zone_initname) + 1; 4708 if (bufsize > size) 4709 bufsize = size; 4710 if (buf != NULL) { 4711 err = copyoutstr(zone->zone_initname, buf, bufsize, 4712 NULL); 4713 if (err != 0 && err != ENAMETOOLONG) 4714 error = EFAULT; 4715 } 4716 break; 4717 case ZONE_ATTR_BOOTARGS: 4718 if (zone->zone_bootargs == NULL) 4719 outstr = ""; 4720 else 4721 outstr = zone->zone_bootargs; 4722 size = strlen(outstr) + 1; 4723 if (bufsize > size) 4724 bufsize = size; 4725 if (buf != NULL) { 4726 err = copyoutstr(outstr, buf, bufsize, NULL); 4727 if (err != 0 && err != ENAMETOOLONG) 4728 error = EFAULT; 4729 } 4730 break; 4731 case ZONE_ATTR_PHYS_MCAP: 4732 size = sizeof (zone->zone_phys_mcap); 4733 if (bufsize > size) 4734 bufsize = size; 4735 if (buf != NULL && 4736 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 4737 error = EFAULT; 4738 break; 4739 case ZONE_ATTR_SCHED_CLASS: 4740 mutex_enter(&class_lock); 4741 4742 if (zone->zone_defaultcid >= loaded_classes) 4743 outstr = ""; 4744 else 4745 outstr = sclass[zone->zone_defaultcid].cl_name; 4746 size = strlen(outstr) + 1; 4747 if (bufsize > size) 4748 bufsize = size; 4749 if (buf != NULL) { 4750 err = copyoutstr(outstr, buf, bufsize, NULL); 4751 if (err != 0 && err != ENAMETOOLONG) 4752 error = EFAULT; 4753 } 4754 4755 mutex_exit(&class_lock); 4756 break; 4757 case ZONE_ATTR_HOSTID: 4758 if (zone->zone_hostid != HW_INVALID_HOSTID && 4759 bufsize == sizeof (zone->zone_hostid)) { 4760 size = sizeof (zone->zone_hostid); 4761 if (buf != NULL && copyout(&zone->zone_hostid, buf, 4762 bufsize) != 0) 4763 error = EFAULT; 4764 } else { 4765 error = EINVAL; 4766 } 4767 break; 4768 default: 4769 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 4770 size = bufsize; 4771 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 4772 } else { 4773 error = EINVAL; 4774 } 4775 } 4776 zone_rele(zone); 4777 4778 if (error) 4779 return (set_errno(error)); 4780 return ((ssize_t)size); 4781 } 4782 4783 /* 4784 * Systemcall entry point for zone_setattr(2). 4785 */ 4786 /*ARGSUSED*/ 4787 static int 4788 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4789 { 4790 zone_t *zone; 4791 zone_status_t zone_status; 4792 int err; 4793 4794 if (secpolicy_zone_config(CRED()) != 0) 4795 return (set_errno(EPERM)); 4796 4797 /* 4798 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 4799 * global zone. 4800 */ 4801 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 4802 return (set_errno(EINVAL)); 4803 } 4804 4805 mutex_enter(&zonehash_lock); 4806 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4807 mutex_exit(&zonehash_lock); 4808 return (set_errno(EINVAL)); 4809 } 4810 zone_hold(zone); 4811 mutex_exit(&zonehash_lock); 4812 4813 /* 4814 * At present most attributes can only be set on non-running, 4815 * non-global zones. 4816 */ 4817 zone_status = zone_status_get(zone); 4818 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) 4819 goto done; 4820 4821 switch (attr) { 4822 case ZONE_ATTR_INITNAME: 4823 err = zone_set_initname(zone, (const char *)buf); 4824 break; 4825 case ZONE_ATTR_BOOTARGS: 4826 err = zone_set_bootargs(zone, (const char *)buf); 4827 break; 4828 case ZONE_ATTR_BRAND: 4829 err = zone_set_brand(zone, (const char *)buf); 4830 break; 4831 case ZONE_ATTR_PHYS_MCAP: 4832 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 4833 break; 4834 case ZONE_ATTR_SCHED_CLASS: 4835 err = zone_set_sched_class(zone, (const char *)buf); 4836 break; 4837 case ZONE_ATTR_HOSTID: 4838 if (bufsize == sizeof (zone->zone_hostid)) { 4839 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 4840 err = 0; 4841 else 4842 err = EFAULT; 4843 } else { 4844 err = EINVAL; 4845 } 4846 break; 4847 default: 4848 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 4849 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 4850 else 4851 err = EINVAL; 4852 } 4853 4854 done: 4855 zone_rele(zone); 4856 return (err != 0 ? set_errno(err) : 0); 4857 } 4858 4859 /* 4860 * Return zero if the process has at least one vnode mapped in to its 4861 * address space which shouldn't be allowed to change zones. 4862 * 4863 * Also return zero if the process has any shared mappings which reserve 4864 * swap. This is because the counting for zone.max-swap does not allow swap 4865 * reservation to be shared between zones. zone swap reservation is counted 4866 * on zone->zone_max_swap. 4867 */ 4868 static int 4869 as_can_change_zones(void) 4870 { 4871 proc_t *pp = curproc; 4872 struct seg *seg; 4873 struct as *as = pp->p_as; 4874 vnode_t *vp; 4875 int allow = 1; 4876 4877 ASSERT(pp->p_as != &kas); 4878 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 4879 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 4880 4881 /* 4882 * Cannot enter zone with shared anon memory which 4883 * reserves swap. See comment above. 4884 */ 4885 if (seg_can_change_zones(seg) == B_FALSE) { 4886 allow = 0; 4887 break; 4888 } 4889 /* 4890 * if we can't get a backing vnode for this segment then skip 4891 * it. 4892 */ 4893 vp = NULL; 4894 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 4895 continue; 4896 if (!vn_can_change_zones(vp)) { /* bail on first match */ 4897 allow = 0; 4898 break; 4899 } 4900 } 4901 AS_LOCK_EXIT(as, &as->a_lock); 4902 return (allow); 4903 } 4904 4905 /* 4906 * Count swap reserved by curproc's address space 4907 */ 4908 static size_t 4909 as_swresv(void) 4910 { 4911 proc_t *pp = curproc; 4912 struct seg *seg; 4913 struct as *as = pp->p_as; 4914 size_t swap = 0; 4915 4916 ASSERT(pp->p_as != &kas); 4917 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 4918 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 4919 swap += seg_swresv(seg); 4920 4921 return (swap); 4922 } 4923 4924 /* 4925 * Systemcall entry point for zone_enter(). 4926 * 4927 * The current process is injected into said zone. In the process 4928 * it will change its project membership, privileges, rootdir/cwd, 4929 * zone-wide rctls, and pool association to match those of the zone. 4930 * 4931 * The first zone_enter() called while the zone is in the ZONE_IS_READY 4932 * state will transition it to ZONE_IS_RUNNING. Processes may only 4933 * enter a zone that is "ready" or "running". 4934 */ 4935 static int 4936 zone_enter(zoneid_t zoneid) 4937 { 4938 zone_t *zone; 4939 vnode_t *vp; 4940 proc_t *pp = curproc; 4941 contract_t *ct; 4942 cont_process_t *ctp; 4943 task_t *tk, *oldtk; 4944 kproject_t *zone_proj0; 4945 cred_t *cr, *newcr; 4946 pool_t *oldpool, *newpool; 4947 sess_t *sp; 4948 uid_t uid; 4949 zone_status_t status; 4950 int err = 0; 4951 rctl_entity_p_t e; 4952 size_t swap; 4953 kthread_id_t t; 4954 4955 if (secpolicy_zone_config(CRED()) != 0) 4956 return (set_errno(EPERM)); 4957 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4958 return (set_errno(EINVAL)); 4959 4960 /* 4961 * Stop all lwps so we don't need to hold a lock to look at 4962 * curproc->p_zone. This needs to happen before we grab any 4963 * locks to avoid deadlock (another lwp in the process could 4964 * be waiting for the held lock). 4965 */ 4966 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 4967 return (set_errno(EINTR)); 4968 4969 /* 4970 * Make sure we're not changing zones with files open or mapped in 4971 * to our address space which shouldn't be changing zones. 4972 */ 4973 if (!files_can_change_zones()) { 4974 err = EBADF; 4975 goto out; 4976 } 4977 if (!as_can_change_zones()) { 4978 err = EFAULT; 4979 goto out; 4980 } 4981 4982 mutex_enter(&zonehash_lock); 4983 if (pp->p_zone != global_zone) { 4984 mutex_exit(&zonehash_lock); 4985 err = EINVAL; 4986 goto out; 4987 } 4988 4989 zone = zone_find_all_by_id(zoneid); 4990 if (zone == NULL) { 4991 mutex_exit(&zonehash_lock); 4992 err = EINVAL; 4993 goto out; 4994 } 4995 4996 /* 4997 * To prevent processes in a zone from holding contracts on 4998 * extrazonal resources, and to avoid process contract 4999 * memberships which span zones, contract holders and processes 5000 * which aren't the sole members of their encapsulating process 5001 * contracts are not allowed to zone_enter. 5002 */ 5003 ctp = pp->p_ct_process; 5004 ct = &ctp->conp_contract; 5005 mutex_enter(&ct->ct_lock); 5006 mutex_enter(&pp->p_lock); 5007 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5008 mutex_exit(&pp->p_lock); 5009 mutex_exit(&ct->ct_lock); 5010 mutex_exit(&zonehash_lock); 5011 err = EINVAL; 5012 goto out; 5013 } 5014 5015 /* 5016 * Moreover, we don't allow processes whose encapsulating 5017 * process contracts have inherited extrazonal contracts. 5018 * While it would be easier to eliminate all process contracts 5019 * with inherited contracts, we need to be able to give a 5020 * restarted init (or other zone-penetrating process) its 5021 * predecessor's contracts. 5022 */ 5023 if (ctp->conp_ninherited != 0) { 5024 contract_t *next; 5025 for (next = list_head(&ctp->conp_inherited); next; 5026 next = list_next(&ctp->conp_inherited, next)) { 5027 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5028 mutex_exit(&pp->p_lock); 5029 mutex_exit(&ct->ct_lock); 5030 mutex_exit(&zonehash_lock); 5031 err = EINVAL; 5032 goto out; 5033 } 5034 } 5035 } 5036 5037 mutex_exit(&pp->p_lock); 5038 mutex_exit(&ct->ct_lock); 5039 5040 status = zone_status_get(zone); 5041 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5042 /* 5043 * Can't join 5044 */ 5045 mutex_exit(&zonehash_lock); 5046 err = EINVAL; 5047 goto out; 5048 } 5049 5050 /* 5051 * Make sure new priv set is within the permitted set for caller 5052 */ 5053 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5054 mutex_exit(&zonehash_lock); 5055 err = EPERM; 5056 goto out; 5057 } 5058 /* 5059 * We want to momentarily drop zonehash_lock while we optimistically 5060 * bind curproc to the pool it should be running in. This is safe 5061 * since the zone can't disappear (we have a hold on it). 5062 */ 5063 zone_hold(zone); 5064 mutex_exit(&zonehash_lock); 5065 5066 /* 5067 * Grab pool_lock to keep the pools configuration from changing 5068 * and to stop ourselves from getting rebound to another pool 5069 * until we join the zone. 5070 */ 5071 if (pool_lock_intr() != 0) { 5072 zone_rele(zone); 5073 err = EINTR; 5074 goto out; 5075 } 5076 ASSERT(secpolicy_pool(CRED()) == 0); 5077 /* 5078 * Bind ourselves to the pool currently associated with the zone. 5079 */ 5080 oldpool = curproc->p_pool; 5081 newpool = zone_pool_get(zone); 5082 if (pool_state == POOL_ENABLED && newpool != oldpool && 5083 (err = pool_do_bind(newpool, P_PID, P_MYID, 5084 POOL_BIND_ALL)) != 0) { 5085 pool_unlock(); 5086 zone_rele(zone); 5087 goto out; 5088 } 5089 5090 /* 5091 * Grab cpu_lock now; we'll need it later when we call 5092 * task_join(). 5093 */ 5094 mutex_enter(&cpu_lock); 5095 mutex_enter(&zonehash_lock); 5096 /* 5097 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5098 */ 5099 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5100 /* 5101 * Can't join anymore. 5102 */ 5103 mutex_exit(&zonehash_lock); 5104 mutex_exit(&cpu_lock); 5105 if (pool_state == POOL_ENABLED && 5106 newpool != oldpool) 5107 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5108 POOL_BIND_ALL); 5109 pool_unlock(); 5110 zone_rele(zone); 5111 err = EINVAL; 5112 goto out; 5113 } 5114 5115 /* 5116 * a_lock must be held while transfering locked memory and swap 5117 * reservation from the global zone to the non global zone because 5118 * asynchronous faults on the processes' address space can lock 5119 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5120 * segments respectively. 5121 */ 5122 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5123 swap = as_swresv(); 5124 mutex_enter(&pp->p_lock); 5125 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5126 /* verify that we do not exceed and task or lwp limits */ 5127 mutex_enter(&zone->zone_nlwps_lock); 5128 /* add new lwps to zone and zone's proj0 */ 5129 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5130 zone->zone_nlwps += pp->p_lwpcnt; 5131 /* add 1 task to zone's proj0 */ 5132 zone_proj0->kpj_ntasks += 1; 5133 mutex_exit(&zone->zone_nlwps_lock); 5134 5135 mutex_enter(&zone->zone_mem_lock); 5136 zone->zone_locked_mem += pp->p_locked_mem; 5137 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5138 zone->zone_max_swap += swap; 5139 mutex_exit(&zone->zone_mem_lock); 5140 5141 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5142 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5143 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5144 5145 /* remove lwps from proc's old zone and old project */ 5146 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5147 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5148 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5149 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5150 5151 mutex_enter(&pp->p_zone->zone_mem_lock); 5152 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5153 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5154 pp->p_zone->zone_max_swap -= swap; 5155 mutex_exit(&pp->p_zone->zone_mem_lock); 5156 5157 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5158 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5159 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5160 5161 pp->p_flag |= SZONETOP; 5162 pp->p_zone = zone; 5163 mutex_exit(&pp->p_lock); 5164 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5165 5166 /* 5167 * Joining the zone cannot fail from now on. 5168 * 5169 * This means that a lot of the following code can be commonized and 5170 * shared with zsched(). 5171 */ 5172 5173 /* 5174 * If the process contract fmri was inherited, we need to 5175 * flag this so that any contract status will not leak 5176 * extra zone information, svc_fmri in this case 5177 */ 5178 if (ctp->conp_svc_ctid != ct->ct_id) { 5179 mutex_enter(&ct->ct_lock); 5180 ctp->conp_svc_zone_enter = ct->ct_id; 5181 mutex_exit(&ct->ct_lock); 5182 } 5183 5184 /* 5185 * Reset the encapsulating process contract's zone. 5186 */ 5187 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5188 contract_setzuniqid(ct, zone->zone_uniqid); 5189 5190 /* 5191 * Create a new task and associate the process with the project keyed 5192 * by (projid,zoneid). 5193 * 5194 * We might as well be in project 0; the global zone's projid doesn't 5195 * make much sense in a zone anyhow. 5196 * 5197 * This also increments zone_ntasks, and returns with p_lock held. 5198 */ 5199 tk = task_create(0, zone); 5200 oldtk = task_join(tk, 0); 5201 mutex_exit(&cpu_lock); 5202 5203 /* 5204 * call RCTLOP_SET functions on this proc 5205 */ 5206 e.rcep_p.zone = zone; 5207 e.rcep_t = RCENTITY_ZONE; 5208 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5209 RCD_CALLBACK); 5210 mutex_exit(&pp->p_lock); 5211 5212 /* 5213 * We don't need to hold any of zsched's locks here; not only do we know 5214 * the process and zone aren't going away, we know its session isn't 5215 * changing either. 5216 * 5217 * By joining zsched's session here, we mimic the behavior in the 5218 * global zone of init's sid being the pid of sched. We extend this 5219 * to all zlogin-like zone_enter()'ing processes as well. 5220 */ 5221 mutex_enter(&pidlock); 5222 sp = zone->zone_zsched->p_sessp; 5223 sess_hold(zone->zone_zsched); 5224 mutex_enter(&pp->p_lock); 5225 pgexit(pp); 5226 sess_rele(pp->p_sessp, B_TRUE); 5227 pp->p_sessp = sp; 5228 pgjoin(pp, zone->zone_zsched->p_pidp); 5229 5230 /* 5231 * If any threads are scheduled to be placed on zone wait queue they 5232 * should abandon the idea since the wait queue is changing. 5233 * We need to be holding pidlock & p_lock to do this. 5234 */ 5235 if ((t = pp->p_tlist) != NULL) { 5236 do { 5237 thread_lock(t); 5238 /* 5239 * Kick this thread so that he doesn't sit 5240 * on a wrong wait queue. 5241 */ 5242 if (ISWAITING(t)) 5243 setrun_locked(t); 5244 5245 if (t->t_schedflag & TS_ANYWAITQ) 5246 t->t_schedflag &= ~ TS_ANYWAITQ; 5247 5248 thread_unlock(t); 5249 } while ((t = t->t_forw) != pp->p_tlist); 5250 } 5251 5252 /* 5253 * If there is a default scheduling class for the zone and it is not 5254 * the class we are currently in, change all of the threads in the 5255 * process to the new class. We need to be holding pidlock & p_lock 5256 * when we call parmsset so this is a good place to do it. 5257 */ 5258 if (zone->zone_defaultcid > 0 && 5259 zone->zone_defaultcid != curthread->t_cid) { 5260 pcparms_t pcparms; 5261 5262 pcparms.pc_cid = zone->zone_defaultcid; 5263 pcparms.pc_clparms[0] = 0; 5264 5265 /* 5266 * If setting the class fails, we still want to enter the zone. 5267 */ 5268 if ((t = pp->p_tlist) != NULL) { 5269 do { 5270 (void) parmsset(&pcparms, t); 5271 } while ((t = t->t_forw) != pp->p_tlist); 5272 } 5273 } 5274 5275 mutex_exit(&pp->p_lock); 5276 mutex_exit(&pidlock); 5277 5278 mutex_exit(&zonehash_lock); 5279 /* 5280 * We're firmly in the zone; let pools progress. 5281 */ 5282 pool_unlock(); 5283 task_rele(oldtk); 5284 /* 5285 * We don't need to retain a hold on the zone since we already 5286 * incremented zone_ntasks, so the zone isn't going anywhere. 5287 */ 5288 zone_rele(zone); 5289 5290 /* 5291 * Chroot 5292 */ 5293 vp = zone->zone_rootvp; 5294 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 5295 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 5296 5297 /* 5298 * Change process credentials 5299 */ 5300 newcr = cralloc(); 5301 mutex_enter(&pp->p_crlock); 5302 cr = pp->p_cred; 5303 crcopy_to(cr, newcr); 5304 crsetzone(newcr, zone); 5305 pp->p_cred = newcr; 5306 5307 /* 5308 * Restrict all process privilege sets to zone limit 5309 */ 5310 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 5311 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 5312 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 5313 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 5314 mutex_exit(&pp->p_crlock); 5315 crset(pp, newcr); 5316 5317 /* 5318 * Adjust upcount to reflect zone entry. 5319 */ 5320 uid = crgetruid(newcr); 5321 mutex_enter(&pidlock); 5322 upcount_dec(uid, GLOBAL_ZONEID); 5323 upcount_inc(uid, zoneid); 5324 mutex_exit(&pidlock); 5325 5326 /* 5327 * Set up core file path and content. 5328 */ 5329 set_core_defaults(); 5330 5331 out: 5332 /* 5333 * Let the other lwps continue. 5334 */ 5335 mutex_enter(&pp->p_lock); 5336 if (curthread != pp->p_agenttp) 5337 continuelwps(pp); 5338 mutex_exit(&pp->p_lock); 5339 5340 return (err != 0 ? set_errno(err) : 0); 5341 } 5342 5343 /* 5344 * Systemcall entry point for zone_list(2). 5345 * 5346 * Processes running in a (non-global) zone only see themselves. 5347 * On labeled systems, they see all zones whose label they dominate. 5348 */ 5349 static int 5350 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 5351 { 5352 zoneid_t *zoneids; 5353 zone_t *zone, *myzone; 5354 uint_t user_nzones, real_nzones; 5355 uint_t domi_nzones; 5356 int error; 5357 5358 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 5359 return (set_errno(EFAULT)); 5360 5361 myzone = curproc->p_zone; 5362 if (myzone != global_zone) { 5363 bslabel_t *mybslab; 5364 5365 if (!is_system_labeled()) { 5366 /* just return current zone */ 5367 real_nzones = domi_nzones = 1; 5368 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 5369 zoneids[0] = myzone->zone_id; 5370 } else { 5371 /* return all zones that are dominated */ 5372 mutex_enter(&zonehash_lock); 5373 real_nzones = zonecount; 5374 domi_nzones = 0; 5375 if (real_nzones > 0) { 5376 zoneids = kmem_alloc(real_nzones * 5377 sizeof (zoneid_t), KM_SLEEP); 5378 mybslab = label2bslabel(myzone->zone_slabel); 5379 for (zone = list_head(&zone_active); 5380 zone != NULL; 5381 zone = list_next(&zone_active, zone)) { 5382 if (zone->zone_id == GLOBAL_ZONEID) 5383 continue; 5384 if (zone != myzone && 5385 (zone->zone_flags & ZF_IS_SCRATCH)) 5386 continue; 5387 /* 5388 * Note that a label always dominates 5389 * itself, so myzone is always included 5390 * in the list. 5391 */ 5392 if (bldominates(mybslab, 5393 label2bslabel(zone->zone_slabel))) { 5394 zoneids[domi_nzones++] = 5395 zone->zone_id; 5396 } 5397 } 5398 } 5399 mutex_exit(&zonehash_lock); 5400 } 5401 } else { 5402 mutex_enter(&zonehash_lock); 5403 real_nzones = zonecount; 5404 domi_nzones = 0; 5405 if (real_nzones > 0) { 5406 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 5407 KM_SLEEP); 5408 for (zone = list_head(&zone_active); zone != NULL; 5409 zone = list_next(&zone_active, zone)) 5410 zoneids[domi_nzones++] = zone->zone_id; 5411 ASSERT(domi_nzones == real_nzones); 5412 } 5413 mutex_exit(&zonehash_lock); 5414 } 5415 5416 /* 5417 * If user has allocated space for fewer entries than we found, then 5418 * return only up to his limit. Either way, tell him exactly how many 5419 * we found. 5420 */ 5421 if (domi_nzones < user_nzones) 5422 user_nzones = domi_nzones; 5423 error = 0; 5424 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 5425 error = EFAULT; 5426 } else if (zoneidlist != NULL && user_nzones != 0) { 5427 if (copyout(zoneids, zoneidlist, 5428 user_nzones * sizeof (zoneid_t)) != 0) 5429 error = EFAULT; 5430 } 5431 5432 if (real_nzones > 0) 5433 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 5434 5435 if (error != 0) 5436 return (set_errno(error)); 5437 else 5438 return (0); 5439 } 5440 5441 /* 5442 * Systemcall entry point for zone_lookup(2). 5443 * 5444 * Non-global zones are only able to see themselves and (on labeled systems) 5445 * the zones they dominate. 5446 */ 5447 static zoneid_t 5448 zone_lookup(const char *zone_name) 5449 { 5450 char *kname; 5451 zone_t *zone; 5452 zoneid_t zoneid; 5453 int err; 5454 5455 if (zone_name == NULL) { 5456 /* return caller's zone id */ 5457 return (getzoneid()); 5458 } 5459 5460 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 5461 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 5462 kmem_free(kname, ZONENAME_MAX); 5463 return (set_errno(err)); 5464 } 5465 5466 mutex_enter(&zonehash_lock); 5467 zone = zone_find_all_by_name(kname); 5468 kmem_free(kname, ZONENAME_MAX); 5469 /* 5470 * In a non-global zone, can only lookup global and own name. 5471 * In Trusted Extensions zone label dominance rules apply. 5472 */ 5473 if (zone == NULL || 5474 zone_status_get(zone) < ZONE_IS_READY || 5475 !zone_list_access(zone)) { 5476 mutex_exit(&zonehash_lock); 5477 return (set_errno(EINVAL)); 5478 } else { 5479 zoneid = zone->zone_id; 5480 mutex_exit(&zonehash_lock); 5481 return (zoneid); 5482 } 5483 } 5484 5485 static int 5486 zone_version(int *version_arg) 5487 { 5488 int version = ZONE_SYSCALL_API_VERSION; 5489 5490 if (copyout(&version, version_arg, sizeof (int)) != 0) 5491 return (set_errno(EFAULT)); 5492 return (0); 5493 } 5494 5495 /* ARGSUSED */ 5496 long 5497 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 5498 { 5499 zone_def zs; 5500 int err; 5501 5502 switch (cmd) { 5503 case ZONE_CREATE: 5504 if (get_udatamodel() == DATAMODEL_NATIVE) { 5505 if (copyin(arg1, &zs, sizeof (zone_def))) { 5506 return (set_errno(EFAULT)); 5507 } 5508 } else { 5509 #ifdef _SYSCALL32_IMPL 5510 zone_def32 zs32; 5511 5512 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 5513 return (set_errno(EFAULT)); 5514 } 5515 zs.zone_name = 5516 (const char *)(unsigned long)zs32.zone_name; 5517 zs.zone_root = 5518 (const char *)(unsigned long)zs32.zone_root; 5519 zs.zone_privs = 5520 (const struct priv_set *) 5521 (unsigned long)zs32.zone_privs; 5522 zs.zone_privssz = zs32.zone_privssz; 5523 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 5524 zs.rctlbufsz = zs32.rctlbufsz; 5525 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 5526 zs.zfsbufsz = zs32.zfsbufsz; 5527 zs.extended_error = 5528 (int *)(unsigned long)zs32.extended_error; 5529 zs.match = zs32.match; 5530 zs.doi = zs32.doi; 5531 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 5532 zs.flags = zs32.flags; 5533 #else 5534 panic("get_udatamodel() returned bogus result\n"); 5535 #endif 5536 } 5537 5538 return (zone_create(zs.zone_name, zs.zone_root, 5539 zs.zone_privs, zs.zone_privssz, 5540 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 5541 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 5542 zs.extended_error, zs.match, zs.doi, 5543 zs.label, zs.flags)); 5544 case ZONE_BOOT: 5545 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 5546 case ZONE_DESTROY: 5547 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 5548 case ZONE_GETATTR: 5549 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 5550 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5551 case ZONE_SETATTR: 5552 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 5553 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5554 case ZONE_ENTER: 5555 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 5556 case ZONE_LIST: 5557 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 5558 case ZONE_SHUTDOWN: 5559 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 5560 case ZONE_LOOKUP: 5561 return (zone_lookup((const char *)arg1)); 5562 case ZONE_VERSION: 5563 return (zone_version((int *)arg1)); 5564 case ZONE_ADD_DATALINK: 5565 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 5566 (datalink_id_t)(uintptr_t)arg2)); 5567 case ZONE_DEL_DATALINK: 5568 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 5569 (datalink_id_t)(uintptr_t)arg2)); 5570 case ZONE_CHECK_DATALINK: { 5571 zoneid_t zoneid; 5572 boolean_t need_copyout; 5573 5574 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 5575 return (EFAULT); 5576 need_copyout = (zoneid == ALL_ZONES); 5577 err = zone_check_datalink(&zoneid, 5578 (datalink_id_t)(uintptr_t)arg2); 5579 if (err == 0 && need_copyout) { 5580 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 5581 err = EFAULT; 5582 } 5583 return (err == 0 ? 0 : set_errno(err)); 5584 } 5585 case ZONE_LIST_DATALINK: 5586 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 5587 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 5588 default: 5589 return (set_errno(EINVAL)); 5590 } 5591 } 5592 5593 struct zarg { 5594 zone_t *zone; 5595 zone_cmd_arg_t arg; 5596 }; 5597 5598 static int 5599 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 5600 { 5601 char *buf; 5602 size_t buflen; 5603 int error; 5604 5605 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 5606 buf = kmem_alloc(buflen, KM_SLEEP); 5607 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 5608 error = door_ki_open(buf, doorp); 5609 kmem_free(buf, buflen); 5610 return (error); 5611 } 5612 5613 static void 5614 zone_release_door(door_handle_t *doorp) 5615 { 5616 door_ki_rele(*doorp); 5617 *doorp = NULL; 5618 } 5619 5620 static void 5621 zone_ki_call_zoneadmd(struct zarg *zargp) 5622 { 5623 door_handle_t door = NULL; 5624 door_arg_t darg, save_arg; 5625 char *zone_name; 5626 size_t zone_namelen; 5627 zoneid_t zoneid; 5628 zone_t *zone; 5629 zone_cmd_arg_t arg; 5630 uint64_t uniqid; 5631 size_t size; 5632 int error; 5633 int retry; 5634 5635 zone = zargp->zone; 5636 arg = zargp->arg; 5637 kmem_free(zargp, sizeof (*zargp)); 5638 5639 zone_namelen = strlen(zone->zone_name) + 1; 5640 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 5641 bcopy(zone->zone_name, zone_name, zone_namelen); 5642 zoneid = zone->zone_id; 5643 uniqid = zone->zone_uniqid; 5644 /* 5645 * zoneadmd may be down, but at least we can empty out the zone. 5646 * We can ignore the return value of zone_empty() since we're called 5647 * from a kernel thread and know we won't be delivered any signals. 5648 */ 5649 ASSERT(curproc == &p0); 5650 (void) zone_empty(zone); 5651 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 5652 zone_rele(zone); 5653 5654 size = sizeof (arg); 5655 darg.rbuf = (char *)&arg; 5656 darg.data_ptr = (char *)&arg; 5657 darg.rsize = size; 5658 darg.data_size = size; 5659 darg.desc_ptr = NULL; 5660 darg.desc_num = 0; 5661 5662 save_arg = darg; 5663 /* 5664 * Since we're not holding a reference to the zone, any number of 5665 * things can go wrong, including the zone disappearing before we get a 5666 * chance to talk to zoneadmd. 5667 */ 5668 for (retry = 0; /* forever */; retry++) { 5669 if (door == NULL && 5670 (error = zone_lookup_door(zone_name, &door)) != 0) { 5671 goto next; 5672 } 5673 ASSERT(door != NULL); 5674 5675 if ((error = door_ki_upcall_limited(door, &darg, NULL, 5676 SIZE_MAX, 0)) == 0) { 5677 break; 5678 } 5679 switch (error) { 5680 case EINTR: 5681 /* FALLTHROUGH */ 5682 case EAGAIN: /* process may be forking */ 5683 /* 5684 * Back off for a bit 5685 */ 5686 break; 5687 case EBADF: 5688 zone_release_door(&door); 5689 if (zone_lookup_door(zone_name, &door) != 0) { 5690 /* 5691 * zoneadmd may be dead, but it may come back to 5692 * life later. 5693 */ 5694 break; 5695 } 5696 break; 5697 default: 5698 cmn_err(CE_WARN, 5699 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 5700 error); 5701 goto out; 5702 } 5703 next: 5704 /* 5705 * If this isn't the same zone_t that we originally had in mind, 5706 * then this is the same as if two kadmin requests come in at 5707 * the same time: the first one wins. This means we lose, so we 5708 * bail. 5709 */ 5710 if ((zone = zone_find_by_id(zoneid)) == NULL) { 5711 /* 5712 * Problem is solved. 5713 */ 5714 break; 5715 } 5716 if (zone->zone_uniqid != uniqid) { 5717 /* 5718 * zoneid recycled 5719 */ 5720 zone_rele(zone); 5721 break; 5722 } 5723 /* 5724 * We could zone_status_timedwait(), but there doesn't seem to 5725 * be much point in doing that (plus, it would mean that 5726 * zone_free() isn't called until this thread exits). 5727 */ 5728 zone_rele(zone); 5729 delay(hz); 5730 darg = save_arg; 5731 } 5732 out: 5733 if (door != NULL) { 5734 zone_release_door(&door); 5735 } 5736 kmem_free(zone_name, zone_namelen); 5737 thread_exit(); 5738 } 5739 5740 /* 5741 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 5742 * kadmin(). The caller is a process in the zone. 5743 * 5744 * In order to shutdown the zone, we will hand off control to zoneadmd 5745 * (running in the global zone) via a door. We do a half-hearted job at 5746 * killing all processes in the zone, create a kernel thread to contact 5747 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 5748 * a form of generation number used to let zoneadmd (as well as 5749 * zone_destroy()) know exactly which zone they're re talking about. 5750 */ 5751 int 5752 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 5753 { 5754 struct zarg *zargp; 5755 zone_cmd_t zcmd; 5756 zone_t *zone; 5757 5758 zone = curproc->p_zone; 5759 ASSERT(getzoneid() != GLOBAL_ZONEID); 5760 5761 switch (cmd) { 5762 case A_SHUTDOWN: 5763 switch (fcn) { 5764 case AD_HALT: 5765 case AD_POWEROFF: 5766 zcmd = Z_HALT; 5767 break; 5768 case AD_BOOT: 5769 zcmd = Z_REBOOT; 5770 break; 5771 case AD_IBOOT: 5772 case AD_SBOOT: 5773 case AD_SIBOOT: 5774 case AD_NOSYNC: 5775 return (ENOTSUP); 5776 default: 5777 return (EINVAL); 5778 } 5779 break; 5780 case A_REBOOT: 5781 zcmd = Z_REBOOT; 5782 break; 5783 case A_FTRACE: 5784 case A_REMOUNT: 5785 case A_FREEZE: 5786 case A_DUMP: 5787 case A_CONFIG: 5788 return (ENOTSUP); 5789 default: 5790 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 5791 return (EINVAL); 5792 } 5793 5794 if (secpolicy_zone_admin(credp, B_FALSE)) 5795 return (EPERM); 5796 mutex_enter(&zone_status_lock); 5797 5798 /* 5799 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 5800 * is in the zone. 5801 */ 5802 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 5803 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 5804 /* 5805 * This zone is already on its way down. 5806 */ 5807 mutex_exit(&zone_status_lock); 5808 return (0); 5809 } 5810 /* 5811 * Prevent future zone_enter()s 5812 */ 5813 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5814 mutex_exit(&zone_status_lock); 5815 5816 /* 5817 * Kill everyone now and call zoneadmd later. 5818 * zone_ki_call_zoneadmd() will do a more thorough job of this 5819 * later. 5820 */ 5821 killall(zone->zone_id); 5822 /* 5823 * Now, create the thread to contact zoneadmd and do the rest of the 5824 * work. This thread can't be created in our zone otherwise 5825 * zone_destroy() would deadlock. 5826 */ 5827 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 5828 zargp->arg.cmd = zcmd; 5829 zargp->arg.uniqid = zone->zone_uniqid; 5830 zargp->zone = zone; 5831 (void) strcpy(zargp->arg.locale, "C"); 5832 /* mdep was already copied in for us by uadmin */ 5833 if (mdep != NULL) 5834 (void) strlcpy(zargp->arg.bootbuf, mdep, 5835 sizeof (zargp->arg.bootbuf)); 5836 zone_hold(zone); 5837 5838 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 5839 TS_RUN, minclsyspri); 5840 exit(CLD_EXITED, 0); 5841 5842 return (EINVAL); 5843 } 5844 5845 /* 5846 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 5847 * status to ZONE_IS_SHUTTING_DOWN. 5848 * 5849 * This function also shuts down all running zones to ensure that they won't 5850 * fork new processes. 5851 */ 5852 void 5853 zone_shutdown_global(void) 5854 { 5855 zone_t *current_zonep; 5856 5857 ASSERT(INGLOBALZONE(curproc)); 5858 mutex_enter(&zonehash_lock); 5859 mutex_enter(&zone_status_lock); 5860 5861 /* Modify the global zone's status first. */ 5862 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 5863 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 5864 5865 /* 5866 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 5867 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 5868 * could cause assertions to fail (e.g., assertions about a zone's 5869 * state during initialization, readying, or booting) or produce races. 5870 * We'll let threads continue to initialize and ready new zones: they'll 5871 * fail to boot the new zones when they see that the global zone is 5872 * shutting down. 5873 */ 5874 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 5875 current_zonep = list_next(&zone_active, current_zonep)) { 5876 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 5877 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 5878 } 5879 mutex_exit(&zone_status_lock); 5880 mutex_exit(&zonehash_lock); 5881 } 5882 5883 /* 5884 * Returns true if the named dataset is visible in the current zone. 5885 * The 'write' parameter is set to 1 if the dataset is also writable. 5886 */ 5887 int 5888 zone_dataset_visible(const char *dataset, int *write) 5889 { 5890 zone_dataset_t *zd; 5891 size_t len; 5892 zone_t *zone = curproc->p_zone; 5893 5894 if (dataset[0] == '\0') 5895 return (0); 5896 5897 /* 5898 * Walk the list once, looking for datasets which match exactly, or 5899 * specify a dataset underneath an exported dataset. If found, return 5900 * true and note that it is writable. 5901 */ 5902 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5903 zd = list_next(&zone->zone_datasets, zd)) { 5904 5905 len = strlen(zd->zd_dataset); 5906 if (strlen(dataset) >= len && 5907 bcmp(dataset, zd->zd_dataset, len) == 0 && 5908 (dataset[len] == '\0' || dataset[len] == '/' || 5909 dataset[len] == '@')) { 5910 if (write) 5911 *write = 1; 5912 return (1); 5913 } 5914 } 5915 5916 /* 5917 * Walk the list a second time, searching for datasets which are parents 5918 * of exported datasets. These should be visible, but read-only. 5919 * 5920 * Note that we also have to support forms such as 'pool/dataset/', with 5921 * a trailing slash. 5922 */ 5923 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5924 zd = list_next(&zone->zone_datasets, zd)) { 5925 5926 len = strlen(dataset); 5927 if (dataset[len - 1] == '/') 5928 len--; /* Ignore trailing slash */ 5929 if (len < strlen(zd->zd_dataset) && 5930 bcmp(dataset, zd->zd_dataset, len) == 0 && 5931 zd->zd_dataset[len] == '/') { 5932 if (write) 5933 *write = 0; 5934 return (1); 5935 } 5936 } 5937 5938 return (0); 5939 } 5940 5941 /* 5942 * zone_find_by_any_path() - 5943 * 5944 * kernel-private routine similar to zone_find_by_path(), but which 5945 * effectively compares against zone paths rather than zonerootpath 5946 * (i.e., the last component of zonerootpaths, which should be "root/", 5947 * are not compared.) This is done in order to accurately identify all 5948 * paths, whether zone-visible or not, including those which are parallel 5949 * to /root/, such as /dev/, /home/, etc... 5950 * 5951 * If the specified path does not fall under any zone path then global 5952 * zone is returned. 5953 * 5954 * The treat_abs parameter indicates whether the path should be treated as 5955 * an absolute path although it does not begin with "/". (This supports 5956 * nfs mount syntax such as host:any/path.) 5957 * 5958 * The caller is responsible for zone_rele of the returned zone. 5959 */ 5960 zone_t * 5961 zone_find_by_any_path(const char *path, boolean_t treat_abs) 5962 { 5963 zone_t *zone; 5964 int path_offset = 0; 5965 5966 if (path == NULL) { 5967 zone_hold(global_zone); 5968 return (global_zone); 5969 } 5970 5971 if (*path != '/') { 5972 ASSERT(treat_abs); 5973 path_offset = 1; 5974 } 5975 5976 mutex_enter(&zonehash_lock); 5977 for (zone = list_head(&zone_active); zone != NULL; 5978 zone = list_next(&zone_active, zone)) { 5979 char *c; 5980 size_t pathlen; 5981 char *rootpath_start; 5982 5983 if (zone == global_zone) /* skip global zone */ 5984 continue; 5985 5986 /* scan backwards to find start of last component */ 5987 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 5988 do { 5989 c--; 5990 } while (*c != '/'); 5991 5992 pathlen = c - zone->zone_rootpath + 1 - path_offset; 5993 rootpath_start = (zone->zone_rootpath + path_offset); 5994 if (strncmp(path, rootpath_start, pathlen) == 0) 5995 break; 5996 } 5997 if (zone == NULL) 5998 zone = global_zone; 5999 zone_hold(zone); 6000 mutex_exit(&zonehash_lock); 6001 return (zone); 6002 } 6003 6004 /* 6005 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6006 * zone_dl_t pointer if found, and NULL otherwise. 6007 */ 6008 static zone_dl_t * 6009 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6010 { 6011 zone_dl_t *zdl; 6012 6013 ASSERT(mutex_owned(&zone->zone_lock)); 6014 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6015 zdl = list_next(&zone->zone_dl_list, zdl)) { 6016 if (zdl->zdl_id == linkid) 6017 break; 6018 } 6019 return (zdl); 6020 } 6021 6022 static boolean_t 6023 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6024 { 6025 boolean_t exists; 6026 6027 mutex_enter(&zone->zone_lock); 6028 exists = (zone_find_dl(zone, linkid) != NULL); 6029 mutex_exit(&zone->zone_lock); 6030 return (exists); 6031 } 6032 6033 /* 6034 * Add an data link name for the zone. 6035 */ 6036 static int 6037 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6038 { 6039 zone_dl_t *zdl; 6040 zone_t *zone; 6041 zone_t *thiszone; 6042 6043 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6044 return (set_errno(ENXIO)); 6045 6046 /* Verify that the datalink ID doesn't already belong to a zone. */ 6047 mutex_enter(&zonehash_lock); 6048 for (zone = list_head(&zone_active); zone != NULL; 6049 zone = list_next(&zone_active, zone)) { 6050 if (zone_dl_exists(zone, linkid)) { 6051 mutex_exit(&zonehash_lock); 6052 zone_rele(thiszone); 6053 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6054 } 6055 } 6056 6057 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6058 zdl->zdl_id = linkid; 6059 mutex_enter(&thiszone->zone_lock); 6060 list_insert_head(&thiszone->zone_dl_list, zdl); 6061 mutex_exit(&thiszone->zone_lock); 6062 mutex_exit(&zonehash_lock); 6063 zone_rele(thiszone); 6064 return (0); 6065 } 6066 6067 static int 6068 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6069 { 6070 zone_dl_t *zdl; 6071 zone_t *zone; 6072 int err = 0; 6073 6074 if ((zone = zone_find_by_id(zoneid)) == NULL) 6075 return (set_errno(EINVAL)); 6076 6077 mutex_enter(&zone->zone_lock); 6078 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6079 err = ENXIO; 6080 } else { 6081 list_remove(&zone->zone_dl_list, zdl); 6082 kmem_free(zdl, sizeof (zone_dl_t)); 6083 } 6084 mutex_exit(&zone->zone_lock); 6085 zone_rele(zone); 6086 return (err == 0 ? 0 : set_errno(err)); 6087 } 6088 6089 /* 6090 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6091 * the linkid. Otherwise we just check if the specified zoneidp has been 6092 * assigned the supplied linkid. 6093 */ 6094 int 6095 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6096 { 6097 zone_t *zone; 6098 int err = ENXIO; 6099 6100 if (*zoneidp != ALL_ZONES) { 6101 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6102 if (zone_dl_exists(zone, linkid)) 6103 err = 0; 6104 zone_rele(zone); 6105 } 6106 return (err); 6107 } 6108 6109 mutex_enter(&zonehash_lock); 6110 for (zone = list_head(&zone_active); zone != NULL; 6111 zone = list_next(&zone_active, zone)) { 6112 if (zone_dl_exists(zone, linkid)) { 6113 *zoneidp = zone->zone_id; 6114 err = 0; 6115 break; 6116 } 6117 } 6118 mutex_exit(&zonehash_lock); 6119 return (err); 6120 } 6121 6122 /* 6123 * Get the list of datalink IDs assigned to a zone. 6124 * 6125 * On input, *nump is the number of datalink IDs that can fit in the supplied 6126 * idarray. Upon return, *nump is either set to the number of datalink IDs 6127 * that were placed in the array if the array was large enough, or to the 6128 * number of datalink IDs that the function needs to place in the array if the 6129 * array is too small. 6130 */ 6131 static int 6132 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6133 { 6134 uint_t num, dlcount; 6135 zone_t *zone; 6136 zone_dl_t *zdl; 6137 datalink_id_t *idptr = idarray; 6138 6139 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6140 return (set_errno(EFAULT)); 6141 if ((zone = zone_find_by_id(zoneid)) == NULL) 6142 return (set_errno(ENXIO)); 6143 6144 num = 0; 6145 mutex_enter(&zone->zone_lock); 6146 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6147 zdl = list_next(&zone->zone_dl_list, zdl)) { 6148 /* 6149 * If the list is bigger than what the caller supplied, just 6150 * count, don't do copyout. 6151 */ 6152 if (++num > dlcount) 6153 continue; 6154 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6155 mutex_exit(&zone->zone_lock); 6156 zone_rele(zone); 6157 return (set_errno(EFAULT)); 6158 } 6159 idptr++; 6160 } 6161 mutex_exit(&zone->zone_lock); 6162 zone_rele(zone); 6163 6164 /* Increased or decreased, caller should be notified. */ 6165 if (num != dlcount) { 6166 if (copyout(&num, nump, sizeof (num)) != 0) 6167 return (set_errno(EFAULT)); 6168 } 6169 return (0); 6170 } 6171 6172 /* 6173 * Public interface for looking up a zone by zoneid. It's a customized version 6174 * for netstack_zone_create(). It can only be called from the zsd create 6175 * callbacks, since it doesn't have reference on the zone structure hence if 6176 * it is called elsewhere the zone could disappear after the zonehash_lock 6177 * is dropped. 6178 * 6179 * Furthermore it 6180 * 1. Doesn't check the status of the zone. 6181 * 2. It will be called even before zone_init is called, in that case the 6182 * address of zone0 is returned directly, and netstack_zone_create() 6183 * will only assign a value to zone0.zone_netstack, won't break anything. 6184 * 3. Returns without the zone being held. 6185 */ 6186 zone_t * 6187 zone_find_by_id_nolock(zoneid_t zoneid) 6188 { 6189 zone_t *zone; 6190 6191 mutex_enter(&zonehash_lock); 6192 if (zonehashbyid == NULL) 6193 zone = &zone0; 6194 else 6195 zone = zone_find_all_by_id(zoneid); 6196 mutex_exit(&zonehash_lock); 6197 return (zone); 6198 } 6199 6200 /* 6201 * Walk the datalinks for a given zone 6202 */ 6203 int 6204 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 6205 void *data) 6206 { 6207 zone_t *zone; 6208 zone_dl_t *zdl; 6209 datalink_id_t *idarray; 6210 uint_t idcount = 0; 6211 int i, ret = 0; 6212 6213 if ((zone = zone_find_by_id(zoneid)) == NULL) 6214 return (ENOENT); 6215 6216 /* 6217 * We first build an array of linkid's so that we can walk these and 6218 * execute the callback with the zone_lock dropped. 6219 */ 6220 mutex_enter(&zone->zone_lock); 6221 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6222 zdl = list_next(&zone->zone_dl_list, zdl)) { 6223 idcount++; 6224 } 6225 6226 if (idcount == 0) { 6227 mutex_exit(&zone->zone_lock); 6228 zone_rele(zone); 6229 return (0); 6230 } 6231 6232 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 6233 if (idarray == NULL) { 6234 mutex_exit(&zone->zone_lock); 6235 zone_rele(zone); 6236 return (ENOMEM); 6237 } 6238 6239 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6240 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 6241 idarray[i] = zdl->zdl_id; 6242 } 6243 6244 mutex_exit(&zone->zone_lock); 6245 6246 for (i = 0; i < idcount && ret == 0; i++) { 6247 if ((ret = (*cb)(idarray[i], data)) != 0) 6248 break; 6249 } 6250 6251 zone_rele(zone); 6252 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 6253 return (ret); 6254 } 6255