xref: /titanic_41/usr/src/uts/common/os/zone.c (revision afd1ac7b1c9a8cdf273c865aa5e9a14620341443)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 /*
31  * Zones
32  *
33  *   A zone is a named collection of processes, namespace constraints,
34  *   and other system resources which comprise a secure and manageable
35  *   application containment facility.
36  *
37  *   Zones (represented by the reference counted zone_t) are tracked in
38  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
39  *   (zoneid_t) are used to track zone association.  Zone IDs are
40  *   dynamically generated when the zone is created; if a persistent
41  *   identifier is needed (core files, accounting logs, audit trail,
42  *   etc.), the zone name should be used.
43  *
44  *
45  *   Global Zone:
46  *
47  *   The global zone (zoneid 0) is automatically associated with all
48  *   system resources that have not been bound to a user-created zone.
49  *   This means that even systems where zones are not in active use
50  *   have a global zone, and all processes, mounts, etc. are
51  *   associated with that zone.  The global zone is generally
52  *   unconstrained in terms of privileges and access, though the usual
53  *   credential and privilege based restrictions apply.
54  *
55  *
56  *   Zone States:
57  *
58  *   The states in which a zone may be in and the transitions are as
59  *   follows:
60  *
61  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
62  *   initialized zone is added to the list of active zones on the system but
63  *   isn't accessible.
64  *
65  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
66  *   ready.  The zone is made visible after the ZSD constructor callbacks are
67  *   executed.  A zone remains in this state until it transitions into
68  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
69  *
70  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
71  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
72  *   state.
73  *
74  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
75  *   successfully started init.   A zone remains in this state until
76  *   zone_shutdown() is called.
77  *
78  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
79  *   killing all processes running in the zone. The zone remains
80  *   in this state until there are no more user processes running in the zone.
81  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
82  *   Since zone_shutdown() is restartable, it may be called successfully
83  *   multiple times for the same zone_t.  Setting of the zone's state to
84  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
85  *   the zone's status without worrying about it being a moving target.
86  *
87  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
88  *   are no more user processes in the zone.  The zone remains in this
89  *   state until there are no more kernel threads associated with the
90  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
91  *   fail.
92  *
93  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
94  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
95  *   join the zone or create kernel threads therein.
96  *
97  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
98  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
99  *   return NULL from now on.
100  *
101  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
102  *   processes or threads doing work on behalf of the zone.  The zone is
103  *   removed from the list of active zones.  zone_destroy() returns, and
104  *   the zone can be recreated.
105  *
106  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
107  *   callbacks are executed, and all memory associated with the zone is
108  *   freed.
109  *
110  *   Threads can wait for the zone to enter a requested state by using
111  *   zone_status_wait() or zone_status_timedwait() with the desired
112  *   state passed in as an argument.  Zone state transitions are
113  *   uni-directional; it is not possible to move back to an earlier state.
114  *
115  *
116  *   Zone-Specific Data:
117  *
118  *   Subsystems needing to maintain zone-specific data can store that
119  *   data using the ZSD mechanism.  This provides a zone-specific data
120  *   store, similar to thread-specific data (see pthread_getspecific(3C)
121  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
122  *   to register callbacks to be invoked when a zone is created, shut
123  *   down, or destroyed.  This can be used to initialize zone-specific
124  *   data for new zones and to clean up when zones go away.
125  *
126  *
127  *   Data Structures:
128  *
129  *   The per-zone structure (zone_t) is reference counted, and freed
130  *   when all references are released.  zone_hold and zone_rele can be
131  *   used to adjust the reference count.  In addition, reference counts
132  *   associated with the cred_t structure are tracked separately using
133  *   zone_cred_hold and zone_cred_rele.
134  *
135  *   Pointers to active zone_t's are stored in two hash tables; one
136  *   for searching by id, the other for searching by name.  Lookups
137  *   can be performed on either basis, using zone_find_by_id and
138  *   zone_find_by_name.  Both return zone_t pointers with the zone
139  *   held, so zone_rele should be called when the pointer is no longer
140  *   needed.  Zones can also be searched by path; zone_find_by_path
141  *   returns the zone with which a path name is associated (global
142  *   zone if the path is not within some other zone's file system
143  *   hierarchy).  This currently requires iterating through each zone,
144  *   so it is slower than an id or name search via a hash table.
145  *
146  *
147  *   Locking:
148  *
149  *   zonehash_lock: This is a top-level global lock used to protect the
150  *       zone hash tables and lists.  Zones cannot be created or destroyed
151  *       while this lock is held.
152  *   zone_status_lock: This is a global lock protecting zone state.
153  *       Zones cannot change state while this lock is held.  It also
154  *       protects the list of kernel threads associated with a zone.
155  *   zone_lock: This is a per-zone lock used to protect several fields of
156  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
157  *       this lock means that the zone cannot go away.
158  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
159  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
160  *       list (a list of zones in the ZONE_IS_DEAD state).
161  *
162  *   Ordering requirements:
163  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
164  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
165  *
166  *   Blocking memory allocations are permitted while holding any of the
167  *   zone locks.
168  *
169  *
170  *   System Call Interface:
171  *
172  *   The zone subsystem can be managed and queried from user level with
173  *   the following system calls (all subcodes of the primary "zone"
174  *   system call):
175  *   - zone_create: creates a zone with selected attributes (name,
176  *     root path, privileges, resource controls, ZFS datasets)
177  *   - zone_enter: allows the current process to enter a zone
178  *   - zone_getattr: reports attributes of a zone
179  *   - zone_list: lists all zones active in the system
180  *   - zone_lookup: looks up zone id based on name
181  *   - zone_shutdown: initiates shutdown process (see states above)
182  *   - zone_destroy: completes shutdown process (see states above)
183  *
184  */
185 
186 #include <sys/priv_impl.h>
187 #include <sys/cred.h>
188 #include <c2/audit.h>
189 #include <sys/ddi.h>
190 #include <sys/debug.h>
191 #include <sys/file.h>
192 #include <sys/kmem.h>
193 #include <sys/mutex.h>
194 #include <sys/pathname.h>
195 #include <sys/proc.h>
196 #include <sys/project.h>
197 #include <sys/task.h>
198 #include <sys/systm.h>
199 #include <sys/types.h>
200 #include <sys/utsname.h>
201 #include <sys/vnode.h>
202 #include <sys/vfs.h>
203 #include <sys/systeminfo.h>
204 #include <sys/policy.h>
205 #include <sys/cred_impl.h>
206 #include <sys/contract_impl.h>
207 #include <sys/contract/process_impl.h>
208 #include <sys/class.h>
209 #include <sys/pool.h>
210 #include <sys/pool_pset.h>
211 #include <sys/pset.h>
212 #include <sys/log.h>
213 #include <sys/sysmacros.h>
214 #include <sys/callb.h>
215 #include <sys/vmparam.h>
216 #include <sys/corectl.h>
217 
218 #include <sys/door.h>
219 #include <sys/cpuvar.h>
220 #include <sys/fs/snode.h>
221 
222 #include <sys/uadmin.h>
223 #include <sys/session.h>
224 #include <sys/cmn_err.h>
225 #include <sys/modhash.h>
226 #include <sys/nvpair.h>
227 #include <sys/rctl.h>
228 #include <sys/fss.h>
229 #include <sys/zone.h>
230 
231 /*
232  * cv used to signal that all references to the zone have been released.  This
233  * needs to be global since there may be multiple waiters, and the first to
234  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
235  */
236 static kcondvar_t zone_destroy_cv;
237 /*
238  * Lock used to serialize access to zone_cv.  This could have been per-zone,
239  * but then we'd need another lock for zone_destroy_cv, and why bother?
240  */
241 static kmutex_t zone_status_lock;
242 
243 /*
244  * ZSD-related global variables.
245  */
246 static kmutex_t zsd_key_lock;	/* protects the following two */
247 /*
248  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
249  */
250 static zone_key_t zsd_keyval = 0;
251 /*
252  * Global list of registered keys.  We use this when a new zone is created.
253  */
254 static list_t zsd_registered_keys;
255 
256 int zone_hash_size = 256;
257 static mod_hash_t *zonehashbyname, *zonehashbyid;
258 static kmutex_t zonehash_lock;
259 static uint_t zonecount;
260 static id_space_t *zoneid_space;
261 
262 /*
263  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
264  * kernel proper runs, and which manages all other zones.
265  *
266  * Although not declared as static, the variable "zone0" should not be used
267  * except for by code that needs to reference the global zone early on in boot,
268  * before it is fully initialized.  All other consumers should use
269  * 'global_zone'.
270  */
271 zone_t zone0;
272 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
273 
274 /*
275  * List of active zones, protected by zonehash_lock.
276  */
277 static list_t zone_active;
278 
279 /*
280  * List of destroyed zones that still have outstanding cred references.
281  * Used for debugging.  Uses a separate lock to avoid lock ordering
282  * problems in zone_free.
283  */
284 static list_t zone_deathrow;
285 static kmutex_t zone_deathrow_lock;
286 
287 /* number of zones is limited by virtual interface limit in IP */
288 uint_t maxzones = 8192;
289 
290 /*
291  * This isn't static so lint doesn't complain.
292  */
293 rctl_hndl_t rc_zone_cpu_shares;
294 rctl_hndl_t rc_zone_nlwps;
295 /*
296  * Synchronization primitives used to synchronize between mounts and zone
297  * creation/destruction.
298  */
299 static int mounts_in_progress;
300 static kcondvar_t mount_cv;
301 static kmutex_t mount_lock;
302 
303 const char * const zone_initname = "/sbin/init";
304 
305 static int zone_shutdown(zoneid_t zoneid);
306 
307 /*
308  * Bump this number when you alter the zone syscall interfaces; this is
309  * because we need to have support for previous API versions in libc
310  * to support patching; libc calls into the kernel to determine this number.
311  *
312  * Version 1 of the API is the version originally shipped with Solaris 10
313  * Version 2 alters the zone_create system call in order to support more
314  *     arguments by moving the args into a structure; and to do better
315  *     error reporting when zone_create() fails.
316  * Version 3 alters the zone_create system call in order to support the
317  *     import of ZFS datasets to zones.
318  */
319 static const int ZONE_SYSCALL_API_VERSION = 3;
320 
321 /*
322  * Certain filesystems (such as NFS and autofs) need to know which zone
323  * the mount is being placed in.  Because of this, we need to be able to
324  * ensure that a zone isn't in the process of being created such that
325  * nfs_mount() thinks it is in the global zone, while by the time it
326  * gets added the list of mounted zones, it ends up on zoneA's mount
327  * list.
328  *
329  * The following functions: block_mounts()/resume_mounts() and
330  * mount_in_progress()/mount_completed() are used by zones and the VFS
331  * layer (respectively) to synchronize zone creation and new mounts.
332  *
333  * The semantics are like a reader-reader lock such that there may
334  * either be multiple mounts (or zone creations, if that weren't
335  * serialized by zonehash_lock) in progress at the same time, but not
336  * both.
337  *
338  * We use cv's so the user can ctrl-C out of the operation if it's
339  * taking too long.
340  *
341  * The semantics are such that there is unfair bias towards the
342  * "current" operation.  This means that zone creations may starve if
343  * there is a rapid succession of new mounts coming in to the system, or
344  * there is a remote possibility that zones will be created at such a
345  * rate that new mounts will not be able to proceed.
346  */
347 /*
348  * Prevent new mounts from progressing to the point of calling
349  * VFS_MOUNT().  If there are already mounts in this "region", wait for
350  * them to complete.
351  */
352 static int
353 block_mounts(void)
354 {
355 	int retval = 0;
356 
357 	/*
358 	 * Since it may block for a long time, block_mounts() shouldn't be
359 	 * called with zonehash_lock held.
360 	 */
361 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
362 	mutex_enter(&mount_lock);
363 	while (mounts_in_progress > 0) {
364 		if (cv_wait_sig(&mount_cv, &mount_lock) == 0)
365 			goto signaled;
366 	}
367 	/*
368 	 * A negative value of mounts_in_progress indicates that mounts
369 	 * have been blocked by (-mounts_in_progress) different callers.
370 	 */
371 	mounts_in_progress--;
372 	retval = 1;
373 signaled:
374 	mutex_exit(&mount_lock);
375 	return (retval);
376 }
377 
378 /*
379  * The VFS layer may progress with new mounts as far as we're concerned.
380  * Allow them to progress if we were the last obstacle.
381  */
382 static void
383 resume_mounts(void)
384 {
385 	mutex_enter(&mount_lock);
386 	if (++mounts_in_progress == 0)
387 		cv_broadcast(&mount_cv);
388 	mutex_exit(&mount_lock);
389 }
390 
391 /*
392  * The VFS layer is busy with a mount; zones should wait until all
393  * mounts are completed to progress.
394  */
395 void
396 mount_in_progress(void)
397 {
398 	mutex_enter(&mount_lock);
399 	while (mounts_in_progress < 0)
400 		cv_wait(&mount_cv, &mount_lock);
401 	mounts_in_progress++;
402 	mutex_exit(&mount_lock);
403 }
404 
405 /*
406  * VFS is done with one mount; wake up any waiting block_mounts()
407  * callers if this is the last mount.
408  */
409 void
410 mount_completed(void)
411 {
412 	mutex_enter(&mount_lock);
413 	if (--mounts_in_progress == 0)
414 		cv_broadcast(&mount_cv);
415 	mutex_exit(&mount_lock);
416 }
417 
418 /*
419  * ZSD routines.
420  *
421  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
422  * defined by the pthread_key_create() and related interfaces.
423  *
424  * Kernel subsystems may register one or more data items and/or
425  * callbacks to be executed when a zone is created, shutdown, or
426  * destroyed.
427  *
428  * Unlike the thread counterpart, destructor callbacks will be executed
429  * even if the data pointer is NULL and/or there are no constructor
430  * callbacks, so it is the responsibility of such callbacks to check for
431  * NULL data values if necessary.
432  *
433  * The locking strategy and overall picture is as follows:
434  *
435  * When someone calls zone_key_create(), a template ZSD entry is added to the
436  * global list "zsd_registered_keys", protected by zsd_key_lock.  The
437  * constructor callback is called immediately on all existing zones, and a
438  * copy of the ZSD entry added to the per-zone zone_zsd list (protected by
439  * zone_lock).  As this operation requires the list of zones, the list of
440  * registered keys, and the per-zone list of ZSD entries to remain constant
441  * throughout the entire operation, it must grab zonehash_lock, zone_lock for
442  * all existing zones, and zsd_key_lock, in that order.  Similar locking is
443  * needed when zone_key_delete() is called.  It is thus sufficient to hold
444  * zsd_key_lock *or* zone_lock to prevent additions to or removals from the
445  * per-zone zone_zsd list.
446  *
447  * Note that this implementation does not make a copy of the ZSD entry if a
448  * constructor callback is not provided.  A zone_getspecific() on such an
449  * uninitialized ZSD entry will return NULL.
450  *
451  * When new zones are created constructor callbacks for all registered ZSD
452  * entries will be called.
453  *
454  * The framework does not provide any locking around zone_getspecific() and
455  * zone_setspecific() apart from that needed for internal consistency, so
456  * callers interested in atomic "test-and-set" semantics will need to provide
457  * their own locking.
458  */
459 void
460 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
461     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
462 {
463 	struct zsd_entry *zsdp;
464 	struct zsd_entry *t;
465 	struct zone *zone;
466 
467 	zsdp = kmem_alloc(sizeof (*zsdp), KM_SLEEP);
468 	zsdp->zsd_data = NULL;
469 	zsdp->zsd_create = create;
470 	zsdp->zsd_shutdown = shutdown;
471 	zsdp->zsd_destroy = destroy;
472 
473 	mutex_enter(&zonehash_lock);	/* stop the world */
474 	for (zone = list_head(&zone_active); zone != NULL;
475 	    zone = list_next(&zone_active, zone))
476 		mutex_enter(&zone->zone_lock);	/* lock all zones */
477 
478 	mutex_enter(&zsd_key_lock);
479 	*keyp = zsdp->zsd_key = ++zsd_keyval;
480 	ASSERT(zsd_keyval != 0);
481 	list_insert_tail(&zsd_registered_keys, zsdp);
482 	mutex_exit(&zsd_key_lock);
483 
484 	if (create != NULL) {
485 		for (zone = list_head(&zone_active); zone != NULL;
486 		    zone = list_next(&zone_active, zone)) {
487 			t = kmem_alloc(sizeof (*t), KM_SLEEP);
488 			t->zsd_key = *keyp;
489 			t->zsd_data = (*create)(zone->zone_id);
490 			t->zsd_create = create;
491 			t->zsd_shutdown = shutdown;
492 			t->zsd_destroy = destroy;
493 			list_insert_tail(&zone->zone_zsd, t);
494 		}
495 	}
496 	for (zone = list_head(&zone_active); zone != NULL;
497 	    zone = list_next(&zone_active, zone))
498 		mutex_exit(&zone->zone_lock);
499 	mutex_exit(&zonehash_lock);
500 }
501 
502 /*
503  * Helper function to find the zsd_entry associated with the key in the
504  * given list.
505  */
506 static struct zsd_entry *
507 zsd_find(list_t *l, zone_key_t key)
508 {
509 	struct zsd_entry *zsd;
510 
511 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
512 		if (zsd->zsd_key == key) {
513 			/*
514 			 * Move to head of list to keep list in MRU order.
515 			 */
516 			if (zsd != list_head(l)) {
517 				list_remove(l, zsd);
518 				list_insert_head(l, zsd);
519 			}
520 			return (zsd);
521 		}
522 	}
523 	return (NULL);
524 }
525 
526 /*
527  * Function called when a module is being unloaded, or otherwise wishes
528  * to unregister its ZSD key and callbacks.
529  */
530 int
531 zone_key_delete(zone_key_t key)
532 {
533 	struct zsd_entry *zsdp = NULL;
534 	zone_t *zone;
535 
536 	mutex_enter(&zonehash_lock);	/* Zone create/delete waits for us */
537 	for (zone = list_head(&zone_active); zone != NULL;
538 	    zone = list_next(&zone_active, zone))
539 		mutex_enter(&zone->zone_lock);	/* lock all zones */
540 
541 	mutex_enter(&zsd_key_lock);
542 	zsdp = zsd_find(&zsd_registered_keys, key);
543 	if (zsdp == NULL)
544 		goto notfound;
545 	list_remove(&zsd_registered_keys, zsdp);
546 	mutex_exit(&zsd_key_lock);
547 
548 	for (zone = list_head(&zone_active); zone != NULL;
549 	    zone = list_next(&zone_active, zone)) {
550 		struct zsd_entry *del;
551 		void *data;
552 
553 		if (!(zone->zone_flags & ZF_DESTROYED)) {
554 			del = zsd_find(&zone->zone_zsd, key);
555 			if (del != NULL) {
556 				data = del->zsd_data;
557 				ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
558 				ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
559 				list_remove(&zone->zone_zsd, del);
560 				kmem_free(del, sizeof (*del));
561 			} else {
562 				data = NULL;
563 			}
564 			if (zsdp->zsd_shutdown)
565 				zsdp->zsd_shutdown(zone->zone_id, data);
566 			if (zsdp->zsd_destroy)
567 				zsdp->zsd_destroy(zone->zone_id, data);
568 		}
569 		mutex_exit(&zone->zone_lock);
570 	}
571 	mutex_exit(&zonehash_lock);
572 	kmem_free(zsdp, sizeof (*zsdp));
573 	return (0);
574 
575 notfound:
576 	mutex_exit(&zsd_key_lock);
577 	for (zone = list_head(&zone_active); zone != NULL;
578 	    zone = list_next(&zone_active, zone))
579 		mutex_exit(&zone->zone_lock);
580 	mutex_exit(&zonehash_lock);
581 	return (-1);
582 }
583 
584 /*
585  * ZSD counterpart of pthread_setspecific().
586  */
587 int
588 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
589 {
590 	struct zsd_entry *t;
591 	struct zsd_entry *zsdp = NULL;
592 
593 	mutex_enter(&zone->zone_lock);
594 	t = zsd_find(&zone->zone_zsd, key);
595 	if (t != NULL) {
596 		/*
597 		 * Replace old value with new
598 		 */
599 		t->zsd_data = (void *)data;
600 		mutex_exit(&zone->zone_lock);
601 		return (0);
602 	}
603 	/*
604 	 * If there was no previous value, go through the list of registered
605 	 * keys.
606 	 *
607 	 * We avoid grabbing zsd_key_lock until we are sure we need it; this is
608 	 * necessary for shutdown callbacks to be able to execute without fear
609 	 * of deadlock.
610 	 */
611 	mutex_enter(&zsd_key_lock);
612 	zsdp = zsd_find(&zsd_registered_keys, key);
613 	if (zsdp == NULL) { 	/* Key was not registered */
614 		mutex_exit(&zsd_key_lock);
615 		mutex_exit(&zone->zone_lock);
616 		return (-1);
617 	}
618 
619 	/*
620 	 * Add a zsd_entry to this zone, using the template we just retrieved
621 	 * to initialize the constructor and destructor(s).
622 	 */
623 	t = kmem_alloc(sizeof (*t), KM_SLEEP);
624 	t->zsd_key = key;
625 	t->zsd_data = (void *)data;
626 	t->zsd_create = zsdp->zsd_create;
627 	t->zsd_shutdown = zsdp->zsd_shutdown;
628 	t->zsd_destroy = zsdp->zsd_destroy;
629 	list_insert_tail(&zone->zone_zsd, t);
630 	mutex_exit(&zsd_key_lock);
631 	mutex_exit(&zone->zone_lock);
632 	return (0);
633 }
634 
635 /*
636  * ZSD counterpart of pthread_getspecific().
637  */
638 void *
639 zone_getspecific(zone_key_t key, zone_t *zone)
640 {
641 	struct zsd_entry *t;
642 	void *data;
643 
644 	mutex_enter(&zone->zone_lock);
645 	t = zsd_find(&zone->zone_zsd, key);
646 	data = (t == NULL ? NULL : t->zsd_data);
647 	mutex_exit(&zone->zone_lock);
648 	return (data);
649 }
650 
651 /*
652  * Function used to initialize a zone's list of ZSD callbacks and data
653  * when the zone is being created.  The callbacks are initialized from
654  * the template list (zsd_registered_keys), and the constructor
655  * callback executed (if one exists).
656  *
657  * This is called before the zone is made publicly available, hence no
658  * need to grab zone_lock.
659  *
660  * Although we grab and release zsd_key_lock, new entries cannot be
661  * added to or removed from the zsd_registered_keys list until we
662  * release zonehash_lock, so there isn't a window for a
663  * zone_key_create() to come in after we've dropped zsd_key_lock but
664  * before the zone is added to the zone list, such that the constructor
665  * callbacks aren't executed for the new zone.
666  */
667 static void
668 zone_zsd_configure(zone_t *zone)
669 {
670 	struct zsd_entry *zsdp;
671 	struct zsd_entry *t;
672 	zoneid_t zoneid = zone->zone_id;
673 
674 	ASSERT(MUTEX_HELD(&zonehash_lock));
675 	ASSERT(list_head(&zone->zone_zsd) == NULL);
676 	mutex_enter(&zsd_key_lock);
677 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
678 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
679 		if (zsdp->zsd_create != NULL) {
680 			t = kmem_alloc(sizeof (*t), KM_SLEEP);
681 			t->zsd_key = zsdp->zsd_key;
682 			t->zsd_create = zsdp->zsd_create;
683 			t->zsd_data = (*t->zsd_create)(zoneid);
684 			t->zsd_shutdown = zsdp->zsd_shutdown;
685 			t->zsd_destroy = zsdp->zsd_destroy;
686 			list_insert_tail(&zone->zone_zsd, t);
687 		}
688 	}
689 	mutex_exit(&zsd_key_lock);
690 }
691 
692 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
693 
694 /*
695  * Helper function to execute shutdown or destructor callbacks.
696  */
697 static void
698 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
699 {
700 	struct zsd_entry *zsdp;
701 	struct zsd_entry *t;
702 	zoneid_t zoneid = zone->zone_id;
703 
704 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
705 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
706 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
707 
708 	mutex_enter(&zone->zone_lock);
709 	if (ct == ZSD_DESTROY) {
710 		if (zone->zone_flags & ZF_DESTROYED) {
711 			/*
712 			 * Make sure destructors are only called once.
713 			 */
714 			mutex_exit(&zone->zone_lock);
715 			return;
716 		}
717 		zone->zone_flags |= ZF_DESTROYED;
718 	}
719 	mutex_exit(&zone->zone_lock);
720 
721 	/*
722 	 * Both zsd_key_lock and zone_lock need to be held in order to add or
723 	 * remove a ZSD key, (either globally as part of
724 	 * zone_key_create()/zone_key_delete(), or on a per-zone basis, as is
725 	 * possible through zone_setspecific()), so it's sufficient to hold
726 	 * zsd_key_lock here.
727 	 *
728 	 * This is a good thing, since we don't want to recursively try to grab
729 	 * zone_lock if a callback attempts to do something like a crfree() or
730 	 * zone_rele().
731 	 */
732 	mutex_enter(&zsd_key_lock);
733 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
734 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
735 		zone_key_t key = zsdp->zsd_key;
736 
737 		/* Skip if no callbacks registered */
738 		if (ct == ZSD_SHUTDOWN && zsdp->zsd_shutdown == NULL)
739 			continue;
740 		if (ct == ZSD_DESTROY && zsdp->zsd_destroy == NULL)
741 			continue;
742 		/*
743 		 * Call the callback with the zone-specific data if we can find
744 		 * any, otherwise with NULL.
745 		 */
746 		t = zsd_find(&zone->zone_zsd, key);
747 		if (t != NULL) {
748 			if (ct == ZSD_SHUTDOWN) {
749 				t->zsd_shutdown(zoneid, t->zsd_data);
750 			} else {
751 				ASSERT(ct == ZSD_DESTROY);
752 				t->zsd_destroy(zoneid, t->zsd_data);
753 			}
754 		} else {
755 			if (ct == ZSD_SHUTDOWN) {
756 				zsdp->zsd_shutdown(zoneid, NULL);
757 			} else {
758 				ASSERT(ct == ZSD_DESTROY);
759 				zsdp->zsd_destroy(zoneid, NULL);
760 			}
761 		}
762 	}
763 	mutex_exit(&zsd_key_lock);
764 }
765 
766 /*
767  * Called when the zone is going away; free ZSD-related memory, and
768  * destroy the zone_zsd list.
769  */
770 static void
771 zone_free_zsd(zone_t *zone)
772 {
773 	struct zsd_entry *t, *next;
774 
775 	/*
776 	 * Free all the zsd_entry's we had on this zone.
777 	 */
778 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
779 		next = list_next(&zone->zone_zsd, t);
780 		list_remove(&zone->zone_zsd, t);
781 		kmem_free(t, sizeof (*t));
782 	}
783 	list_destroy(&zone->zone_zsd);
784 }
785 
786 /*
787  * Frees memory associated with the zone dataset list.
788  */
789 static void
790 zone_free_datasets(zone_t *zone)
791 {
792 	zone_dataset_t *t, *next;
793 
794 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
795 		next = list_next(&zone->zone_datasets, t);
796 		list_remove(&zone->zone_datasets, t);
797 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
798 		kmem_free(t, sizeof (*t));
799 	}
800 	list_destroy(&zone->zone_datasets);
801 }
802 
803 /*
804  * zone.cpu-shares resource control support.
805  */
806 /*ARGSUSED*/
807 static rctl_qty_t
808 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
809 {
810 	ASSERT(MUTEX_HELD(&p->p_lock));
811 	return (p->p_zone->zone_shares);
812 }
813 
814 /*ARGSUSED*/
815 static int
816 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
817     rctl_qty_t nv)
818 {
819 	ASSERT(MUTEX_HELD(&p->p_lock));
820 	ASSERT(e->rcep_t == RCENTITY_ZONE);
821 	if (e->rcep_p.zone == NULL)
822 		return (0);
823 
824 	e->rcep_p.zone->zone_shares = nv;
825 	return (0);
826 }
827 
828 static rctl_ops_t zone_cpu_shares_ops = {
829 	rcop_no_action,
830 	zone_cpu_shares_usage,
831 	zone_cpu_shares_set,
832 	rcop_no_test
833 };
834 
835 /*ARGSUSED*/
836 static rctl_qty_t
837 zone_lwps_usage(rctl_t *r, proc_t *p)
838 {
839 	rctl_qty_t nlwps;
840 	zone_t *zone = p->p_zone;
841 
842 	ASSERT(MUTEX_HELD(&p->p_lock));
843 
844 	mutex_enter(&zone->zone_nlwps_lock);
845 	nlwps = zone->zone_nlwps;
846 	mutex_exit(&zone->zone_nlwps_lock);
847 
848 	return (nlwps);
849 }
850 
851 /*ARGSUSED*/
852 static int
853 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
854     rctl_qty_t incr, uint_t flags)
855 {
856 	rctl_qty_t nlwps;
857 
858 	ASSERT(MUTEX_HELD(&p->p_lock));
859 	ASSERT(e->rcep_t == RCENTITY_ZONE);
860 	if (e->rcep_p.zone == NULL)
861 		return (0);
862 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
863 	nlwps = e->rcep_p.zone->zone_nlwps;
864 
865 	if (nlwps + incr > rcntl->rcv_value)
866 		return (1);
867 
868 	return (0);
869 }
870 
871 /*ARGSUSED*/
872 static int
873 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) {
874 
875 	ASSERT(MUTEX_HELD(&p->p_lock));
876 	ASSERT(e->rcep_t == RCENTITY_ZONE);
877 	if (e->rcep_p.zone == NULL)
878 		return (0);
879 	e->rcep_p.zone->zone_nlwps_ctl = nv;
880 	return (0);
881 }
882 
883 static rctl_ops_t zone_lwps_ops = {
884 	rcop_no_action,
885 	zone_lwps_usage,
886 	zone_lwps_set,
887 	zone_lwps_test,
888 };
889 
890 /*
891  * Helper function to brand the zone with a unique ID.
892  */
893 static void
894 zone_uniqid(zone_t *zone)
895 {
896 	static uint64_t uniqid = 0;
897 
898 	ASSERT(MUTEX_HELD(&zonehash_lock));
899 	zone->zone_uniqid = uniqid++;
900 }
901 
902 /*
903  * Returns a held pointer to the "kcred" for the specified zone.
904  */
905 struct cred *
906 zone_get_kcred(zoneid_t zoneid)
907 {
908 	zone_t *zone;
909 	cred_t *cr;
910 
911 	if ((zone = zone_find_by_id(zoneid)) == NULL)
912 		return (NULL);
913 	cr = zone->zone_kcred;
914 	crhold(cr);
915 	zone_rele(zone);
916 	return (cr);
917 }
918 
919 /*
920  * Called very early on in boot to initialize the ZSD list so that
921  * zone_key_create() can be called before zone_init().  It also initializes
922  * portions of zone0 which may be used before zone_init() is called.  The
923  * variable "global_zone" will be set when zone0 is fully initialized by
924  * zone_init().
925  */
926 void
927 zone_zsd_init(void)
928 {
929 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
930 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
931 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
932 	    offsetof(struct zsd_entry, zsd_linkage));
933 	list_create(&zone_active, sizeof (zone_t),
934 	    offsetof(zone_t, zone_linkage));
935 	list_create(&zone_deathrow, sizeof (zone_t),
936 	    offsetof(zone_t, zone_linkage));
937 
938 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
939 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
940 	zone0.zone_shares = 1;
941 	zone0.zone_nlwps_ctl = INT_MAX;
942 	zone0.zone_name = GLOBAL_ZONENAME;
943 	zone0.zone_nodename = utsname.nodename;
944 	zone0.zone_domain = srpc_domain;
945 	zone0.zone_ref = 1;
946 	zone0.zone_id = GLOBAL_ZONEID;
947 	zone0.zone_status = ZONE_IS_RUNNING;
948 	zone0.zone_rootpath = "/";
949 	zone0.zone_rootpathlen = 2;
950 	zone0.zone_psetid = ZONE_PS_INVAL;
951 	zone0.zone_ncpus = 0;
952 	zone0.zone_ncpus_online = 0;
953 	zone0.zone_proc_initpid = 1;
954 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
955 	    offsetof(struct zsd_entry, zsd_linkage));
956 	list_insert_head(&zone_active, &zone0);
957 
958 	/*
959 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
960 	 * to anything meaningful.  It is assigned to be 'rootdir' in
961 	 * vfs_mountroot().
962 	 */
963 	zone0.zone_rootvp = NULL;
964 	zone0.zone_vfslist = NULL;
965 	zone0.zone_bootargs = NULL;
966 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
967 	/*
968 	 * The global zone has all privileges
969 	 */
970 	priv_fillset(zone0.zone_privset);
971 	/*
972 	 * Add p0 to the global zone
973 	 */
974 	zone0.zone_zsched = &p0;
975 	p0.p_zone = &zone0;
976 }
977 
978 /*
979  * Called by main() to initialize the zones framework.
980  */
981 void
982 zone_init(void)
983 {
984 	rctl_dict_entry_t *rde;
985 	rctl_val_t *dval;
986 	rctl_set_t *set;
987 	rctl_alloc_gp_t *gp;
988 	rctl_entity_p_t e;
989 
990 	ASSERT(curproc == &p0);
991 
992 	/*
993 	 * Create ID space for zone IDs.  ID 0 is reserved for the
994 	 * global zone.
995 	 */
996 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
997 
998 	/*
999 	 * Initialize generic zone resource controls, if any.
1000 	 */
1001 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
1002 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
1003 	    RCTL_GLOBAL_NOBASIC |
1004 	    RCTL_GLOBAL_COUNT, FSS_MAXSHARES, FSS_MAXSHARES,
1005 	    &zone_cpu_shares_ops);
1006 
1007 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
1008 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
1009 	    INT_MAX, INT_MAX, &zone_lwps_ops);
1010 	/*
1011 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
1012 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
1013 	 */
1014 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
1015 	bzero(dval, sizeof (rctl_val_t));
1016 	dval->rcv_value = 1;
1017 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
1018 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
1019 	dval->rcv_action_recip_pid = -1;
1020 
1021 	rde = rctl_dict_lookup("zone.cpu-shares");
1022 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
1023 
1024 	/*
1025 	 * Initialize the ``global zone''.
1026 	 */
1027 	set = rctl_set_create();
1028 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
1029 	mutex_enter(&p0.p_lock);
1030 	e.rcep_p.zone = &zone0;
1031 	e.rcep_t = RCENTITY_ZONE;
1032 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
1033 	    gp);
1034 
1035 	zone0.zone_nlwps = p0.p_lwpcnt;
1036 	zone0.zone_ntasks = 1;
1037 	mutex_exit(&p0.p_lock);
1038 	rctl_prealloc_destroy(gp);
1039 	/*
1040 	 * pool_default hasn't been initialized yet, so we let pool_init() take
1041 	 * care of making the global zone is in the default pool.
1042 	 */
1043 	mutex_enter(&zonehash_lock);
1044 	zone_uniqid(&zone0);
1045 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
1046 	mutex_exit(&zonehash_lock);
1047 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
1048 	    mod_hash_null_valdtor);
1049 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
1050 	    zone_hash_size, mod_hash_null_valdtor);
1051 	zonecount = 1;
1052 
1053 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
1054 	    (mod_hash_val_t)&zone0);
1055 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
1056 	    (mod_hash_val_t)&zone0);
1057 	/*
1058 	 * We avoid setting zone_kcred until now, since kcred is initialized
1059 	 * sometime after zone_zsd_init() and before zone_init().
1060 	 */
1061 	zone0.zone_kcred = kcred;
1062 	/*
1063 	 * The global zone is fully initialized (except for zone_rootvp which
1064 	 * will be set when the root filesystem is mounted).
1065 	 */
1066 	global_zone = &zone0;
1067 }
1068 
1069 static void
1070 zone_free(zone_t *zone)
1071 {
1072 	ASSERT(zone != global_zone);
1073 	ASSERT(zone->zone_ntasks == 0);
1074 	ASSERT(zone->zone_nlwps == 0);
1075 	ASSERT(zone->zone_cred_ref == 0);
1076 	ASSERT(zone->zone_kcred == NULL);
1077 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
1078 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
1079 
1080 	/* remove from deathrow list */
1081 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
1082 		ASSERT(zone->zone_ref == 0);
1083 		mutex_enter(&zone_deathrow_lock);
1084 		list_remove(&zone_deathrow, zone);
1085 		mutex_exit(&zone_deathrow_lock);
1086 	}
1087 
1088 	zone_free_zsd(zone);
1089 	zone_free_datasets(zone);
1090 
1091 	if (zone->zone_rootvp != NULL)
1092 		VN_RELE(zone->zone_rootvp);
1093 	if (zone->zone_rootpath)
1094 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
1095 	if (zone->zone_name != NULL)
1096 		kmem_free(zone->zone_name, ZONENAME_MAX);
1097 	if (zone->zone_nodename != NULL)
1098 		kmem_free(zone->zone_nodename, _SYS_NMLN);
1099 	if (zone->zone_domain != NULL)
1100 		kmem_free(zone->zone_domain, _SYS_NMLN);
1101 	if (zone->zone_privset != NULL)
1102 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
1103 	if (zone->zone_rctls != NULL)
1104 		rctl_set_free(zone->zone_rctls);
1105 	if (zone->zone_bootargs != NULL)
1106 		kmem_free(zone->zone_bootargs, ZONEBOOTARGS_MAX);
1107 	id_free(zoneid_space, zone->zone_id);
1108 	mutex_destroy(&zone->zone_lock);
1109 	cv_destroy(&zone->zone_cv);
1110 	kmem_free(zone, sizeof (zone_t));
1111 }
1112 
1113 /*
1114  * See block comment at the top of this file for information about zone
1115  * status values.
1116  */
1117 /*
1118  * Convenience function for setting zone status.
1119  */
1120 static void
1121 zone_status_set(zone_t *zone, zone_status_t status)
1122 {
1123 	ASSERT(MUTEX_HELD(&zone_status_lock));
1124 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
1125 	    status >= zone_status_get(zone));
1126 	zone->zone_status = status;
1127 	cv_broadcast(&zone->zone_cv);
1128 }
1129 
1130 /*
1131  * Public function to retrieve the zone status.  The zone status may
1132  * change after it is retrieved.
1133  */
1134 zone_status_t
1135 zone_status_get(zone_t *zone)
1136 {
1137 	return (zone->zone_status);
1138 }
1139 
1140 static int
1141 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
1142 {
1143 	char *bootargs = kmem_zalloc(ZONEBOOTARGS_MAX, KM_SLEEP);
1144 	size_t len;
1145 	int err;
1146 
1147 	err = copyinstr(zone_bootargs, bootargs, ZONEBOOTARGS_MAX - 1, &len);
1148 	if (err != 0) {
1149 		kmem_free(bootargs, ZONEBOOTARGS_MAX);
1150 		return (err);	/* EFAULT or ENAMETOOLONG */
1151 	}
1152 	bootargs[len] = '\0';
1153 
1154 	ASSERT(zone->zone_bootargs == NULL);
1155 	zone->zone_bootargs = bootargs;
1156 	return (0);
1157 }
1158 
1159 /*
1160  * Block indefinitely waiting for (zone_status >= status)
1161  */
1162 void
1163 zone_status_wait(zone_t *zone, zone_status_t status)
1164 {
1165 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
1166 
1167 	mutex_enter(&zone_status_lock);
1168 	while (zone->zone_status < status) {
1169 		cv_wait(&zone->zone_cv, &zone_status_lock);
1170 	}
1171 	mutex_exit(&zone_status_lock);
1172 }
1173 
1174 /*
1175  * Private CPR-safe version of zone_status_wait().
1176  */
1177 static void
1178 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
1179 {
1180 	callb_cpr_t cprinfo;
1181 
1182 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
1183 
1184 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
1185 	    str);
1186 	mutex_enter(&zone_status_lock);
1187 	while (zone->zone_status < status) {
1188 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1189 		cv_wait(&zone->zone_cv, &zone_status_lock);
1190 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
1191 	}
1192 	/*
1193 	 * zone_status_lock is implicitly released by the following.
1194 	 */
1195 	CALLB_CPR_EXIT(&cprinfo);
1196 }
1197 
1198 /*
1199  * Block until zone enters requested state or signal is received.  Return (0)
1200  * if signaled, non-zero otherwise.
1201  */
1202 int
1203 zone_status_wait_sig(zone_t *zone, zone_status_t status)
1204 {
1205 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
1206 
1207 	mutex_enter(&zone_status_lock);
1208 	while (zone->zone_status < status) {
1209 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
1210 			mutex_exit(&zone_status_lock);
1211 			return (0);
1212 		}
1213 	}
1214 	mutex_exit(&zone_status_lock);
1215 	return (1);
1216 }
1217 
1218 /*
1219  * Block until the zone enters the requested state or the timeout expires,
1220  * whichever happens first.  Return (-1) if operation timed out, time remaining
1221  * otherwise.
1222  */
1223 clock_t
1224 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
1225 {
1226 	clock_t timeleft = 0;
1227 
1228 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
1229 
1230 	mutex_enter(&zone_status_lock);
1231 	while (zone->zone_status < status && timeleft != -1) {
1232 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
1233 	}
1234 	mutex_exit(&zone_status_lock);
1235 	return (timeleft);
1236 }
1237 
1238 /*
1239  * Block until the zone enters the requested state, the current process is
1240  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
1241  * operation timed out, 0 if signaled, time remaining otherwise.
1242  */
1243 clock_t
1244 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
1245 {
1246 	clock_t timeleft = tim - lbolt;
1247 
1248 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
1249 
1250 	mutex_enter(&zone_status_lock);
1251 	while (zone->zone_status < status) {
1252 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
1253 		    tim);
1254 		if (timeleft <= 0)
1255 			break;
1256 	}
1257 	mutex_exit(&zone_status_lock);
1258 	return (timeleft);
1259 }
1260 
1261 /*
1262  * Zones have two reference counts: one for references from credential
1263  * structures (zone_cred_ref), and one (zone_ref) for everything else.
1264  * This is so we can allow a zone to be rebooted while there are still
1265  * outstanding cred references, since certain drivers cache dblks (which
1266  * implicitly results in cached creds).  We wait for zone_ref to drop to
1267  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
1268  * later freed when the zone_cred_ref drops to 0, though nothing other
1269  * than the zone id and privilege set should be accessed once the zone
1270  * is "dead".
1271  *
1272  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
1273  * to force halt/reboot to block waiting for the zone_cred_ref to drop
1274  * to 0.  This can be useful to flush out other sources of cached creds
1275  * that may be less innocuous than the driver case.
1276  */
1277 
1278 int zone_wait_for_cred = 0;
1279 
1280 static void
1281 zone_hold_locked(zone_t *z)
1282 {
1283 	ASSERT(MUTEX_HELD(&z->zone_lock));
1284 	z->zone_ref++;
1285 	ASSERT(z->zone_ref != 0);
1286 }
1287 
1288 void
1289 zone_hold(zone_t *z)
1290 {
1291 	mutex_enter(&z->zone_lock);
1292 	zone_hold_locked(z);
1293 	mutex_exit(&z->zone_lock);
1294 }
1295 
1296 /*
1297  * If the non-cred ref count drops to 1 and either the cred ref count
1298  * is 0 or we aren't waiting for cred references, the zone is ready to
1299  * be destroyed.
1300  */
1301 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
1302 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
1303 
1304 void
1305 zone_rele(zone_t *z)
1306 {
1307 	boolean_t wakeup;
1308 
1309 	mutex_enter(&z->zone_lock);
1310 	ASSERT(z->zone_ref != 0);
1311 	z->zone_ref--;
1312 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
1313 		/* no more refs, free the structure */
1314 		mutex_exit(&z->zone_lock);
1315 		zone_free(z);
1316 		return;
1317 	}
1318 	/* signal zone_destroy so the zone can finish halting */
1319 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
1320 	mutex_exit(&z->zone_lock);
1321 
1322 	if (wakeup) {
1323 		/*
1324 		 * Grabbing zonehash_lock here effectively synchronizes with
1325 		 * zone_destroy() to avoid missed signals.
1326 		 */
1327 		mutex_enter(&zonehash_lock);
1328 		cv_broadcast(&zone_destroy_cv);
1329 		mutex_exit(&zonehash_lock);
1330 	}
1331 }
1332 
1333 void
1334 zone_cred_hold(zone_t *z)
1335 {
1336 	mutex_enter(&z->zone_lock);
1337 	z->zone_cred_ref++;
1338 	ASSERT(z->zone_cred_ref != 0);
1339 	mutex_exit(&z->zone_lock);
1340 }
1341 
1342 void
1343 zone_cred_rele(zone_t *z)
1344 {
1345 	boolean_t wakeup;
1346 
1347 	mutex_enter(&z->zone_lock);
1348 	ASSERT(z->zone_cred_ref != 0);
1349 	z->zone_cred_ref--;
1350 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
1351 		/* no more refs, free the structure */
1352 		mutex_exit(&z->zone_lock);
1353 		zone_free(z);
1354 		return;
1355 	}
1356 	/*
1357 	 * If zone_destroy is waiting for the cred references to drain
1358 	 * out, and they have, signal it.
1359 	 */
1360 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
1361 	    zone_status_get(z) >= ZONE_IS_DEAD);
1362 	mutex_exit(&z->zone_lock);
1363 
1364 	if (wakeup) {
1365 		/*
1366 		 * Grabbing zonehash_lock here effectively synchronizes with
1367 		 * zone_destroy() to avoid missed signals.
1368 		 */
1369 		mutex_enter(&zonehash_lock);
1370 		cv_broadcast(&zone_destroy_cv);
1371 		mutex_exit(&zonehash_lock);
1372 	}
1373 }
1374 
1375 void
1376 zone_task_hold(zone_t *z)
1377 {
1378 	mutex_enter(&z->zone_lock);
1379 	z->zone_ntasks++;
1380 	ASSERT(z->zone_ntasks != 0);
1381 	mutex_exit(&z->zone_lock);
1382 }
1383 
1384 void
1385 zone_task_rele(zone_t *zone)
1386 {
1387 	uint_t refcnt;
1388 
1389 	mutex_enter(&zone->zone_lock);
1390 	ASSERT(zone->zone_ntasks != 0);
1391 	refcnt = --zone->zone_ntasks;
1392 	if (refcnt > 1)	{	/* Common case */
1393 		mutex_exit(&zone->zone_lock);
1394 		return;
1395 	}
1396 	zone_hold_locked(zone);	/* so we can use the zone_t later */
1397 	mutex_exit(&zone->zone_lock);
1398 	if (refcnt == 1) {
1399 		/*
1400 		 * See if the zone is shutting down.
1401 		 */
1402 		mutex_enter(&zone_status_lock);
1403 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
1404 			goto out;
1405 		}
1406 
1407 		/*
1408 		 * Make sure the ntasks didn't change since we
1409 		 * dropped zone_lock.
1410 		 */
1411 		mutex_enter(&zone->zone_lock);
1412 		if (refcnt != zone->zone_ntasks) {
1413 			mutex_exit(&zone->zone_lock);
1414 			goto out;
1415 		}
1416 		mutex_exit(&zone->zone_lock);
1417 
1418 		/*
1419 		 * No more user processes in the zone.  The zone is empty.
1420 		 */
1421 		zone_status_set(zone, ZONE_IS_EMPTY);
1422 		goto out;
1423 	}
1424 
1425 	ASSERT(refcnt == 0);
1426 	/*
1427 	 * zsched has exited; the zone is dead.
1428 	 */
1429 	zone->zone_zsched = NULL;		/* paranoia */
1430 	mutex_enter(&zone_status_lock);
1431 	zone_status_set(zone, ZONE_IS_DEAD);
1432 out:
1433 	mutex_exit(&zone_status_lock);
1434 	zone_rele(zone);
1435 }
1436 
1437 zoneid_t
1438 getzoneid(void)
1439 {
1440 	return (curproc->p_zone->zone_id);
1441 }
1442 
1443 /*
1444  * Internal versions of zone_find_by_*().  These don't zone_hold() or
1445  * check the validity of a zone's state.
1446  */
1447 static zone_t *
1448 zone_find_all_by_id(zoneid_t zoneid)
1449 {
1450 	mod_hash_val_t hv;
1451 	zone_t *zone = NULL;
1452 
1453 	ASSERT(MUTEX_HELD(&zonehash_lock));
1454 
1455 	if (mod_hash_find(zonehashbyid,
1456 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
1457 		zone = (zone_t *)hv;
1458 	return (zone);
1459 }
1460 
1461 static zone_t *
1462 zone_find_all_by_name(char *name)
1463 {
1464 	mod_hash_val_t hv;
1465 	zone_t *zone = NULL;
1466 
1467 	ASSERT(MUTEX_HELD(&zonehash_lock));
1468 
1469 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
1470 		zone = (zone_t *)hv;
1471 	return (zone);
1472 }
1473 
1474 /*
1475  * Public interface for looking up a zone by zoneid.  Only returns the zone if
1476  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
1477  * Caller must call zone_rele() once it is done with the zone.
1478  *
1479  * The zone may begin the zone_destroy() sequence immediately after this
1480  * function returns, but may be safely used until zone_rele() is called.
1481  */
1482 zone_t *
1483 zone_find_by_id(zoneid_t zoneid)
1484 {
1485 	zone_t *zone;
1486 	zone_status_t status;
1487 
1488 	mutex_enter(&zonehash_lock);
1489 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
1490 		mutex_exit(&zonehash_lock);
1491 		return (NULL);
1492 	}
1493 	status = zone_status_get(zone);
1494 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
1495 		/*
1496 		 * For all practical purposes the zone doesn't exist.
1497 		 */
1498 		mutex_exit(&zonehash_lock);
1499 		return (NULL);
1500 	}
1501 	zone_hold(zone);
1502 	mutex_exit(&zonehash_lock);
1503 	return (zone);
1504 }
1505 
1506 /*
1507  * Similar to zone_find_by_id, but using zone name as the key.
1508  */
1509 zone_t *
1510 zone_find_by_name(char *name)
1511 {
1512 	zone_t *zone;
1513 	zone_status_t status;
1514 
1515 	mutex_enter(&zonehash_lock);
1516 	if ((zone = zone_find_all_by_name(name)) == NULL) {
1517 		mutex_exit(&zonehash_lock);
1518 		return (NULL);
1519 	}
1520 	status = zone_status_get(zone);
1521 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
1522 		/*
1523 		 * For all practical purposes the zone doesn't exist.
1524 		 */
1525 		mutex_exit(&zonehash_lock);
1526 		return (NULL);
1527 	}
1528 	zone_hold(zone);
1529 	mutex_exit(&zonehash_lock);
1530 	return (zone);
1531 }
1532 
1533 /*
1534  * Similar to zone_find_by_id(), using the path as a key.  For instance,
1535  * if there is a zone "foo" rooted at /foo/root, and the path argument
1536  * is "/foo/root/proc", it will return the held zone_t corresponding to
1537  * zone "foo".
1538  *
1539  * zone_find_by_path() always returns a non-NULL value, since at the
1540  * very least every path will be contained in the global zone.
1541  *
1542  * As with the other zone_find_by_*() functions, the caller is
1543  * responsible for zone_rele()ing the return value of this function.
1544  */
1545 zone_t *
1546 zone_find_by_path(const char *path)
1547 {
1548 	zone_t *zone;
1549 	zone_t *zret = NULL;
1550 	zone_status_t status;
1551 
1552 	if (path == NULL) {
1553 		/*
1554 		 * Call from rootconf().
1555 		 */
1556 		zone_hold(global_zone);
1557 		return (global_zone);
1558 	}
1559 	ASSERT(*path == '/');
1560 	mutex_enter(&zonehash_lock);
1561 	for (zone = list_head(&zone_active); zone != NULL;
1562 	    zone = list_next(&zone_active, zone)) {
1563 		if (ZONE_PATH_VISIBLE(path, zone))
1564 			zret = zone;
1565 	}
1566 	ASSERT(zret != NULL);
1567 	status = zone_status_get(zret);
1568 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
1569 		/*
1570 		 * Zone practically doesn't exist.
1571 		 */
1572 		zret = global_zone;
1573 	}
1574 	zone_hold(zret);
1575 	mutex_exit(&zonehash_lock);
1576 	return (zret);
1577 }
1578 
1579 /*
1580  * Get the number of cpus visible to this zone.  The system-wide global
1581  * 'ncpus' is returned if pools are disabled, the caller is in the
1582  * global zone, or a NULL zone argument is passed in.
1583  */
1584 int
1585 zone_ncpus_get(zone_t *zone)
1586 {
1587 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
1588 
1589 	return (myncpus != 0 ? myncpus : ncpus);
1590 }
1591 
1592 /*
1593  * Get the number of online cpus visible to this zone.  The system-wide
1594  * global 'ncpus_online' is returned if pools are disabled, the caller
1595  * is in the global zone, or a NULL zone argument is passed in.
1596  */
1597 int
1598 zone_ncpus_online_get(zone_t *zone)
1599 {
1600 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
1601 
1602 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
1603 }
1604 
1605 /*
1606  * Return the pool to which the zone is currently bound.
1607  */
1608 pool_t *
1609 zone_pool_get(zone_t *zone)
1610 {
1611 	ASSERT(pool_lock_held());
1612 
1613 	return (zone->zone_pool);
1614 }
1615 
1616 /*
1617  * Set the zone's pool pointer and update the zone's visibility to match
1618  * the resources in the new pool.
1619  */
1620 void
1621 zone_pool_set(zone_t *zone, pool_t *pool)
1622 {
1623 	ASSERT(pool_lock_held());
1624 	ASSERT(MUTEX_HELD(&cpu_lock));
1625 
1626 	zone->zone_pool = pool;
1627 	zone_pset_set(zone, pool->pool_pset->pset_id);
1628 }
1629 
1630 /*
1631  * Return the cached value of the id of the processor set to which the
1632  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
1633  * facility is disabled.
1634  */
1635 psetid_t
1636 zone_pset_get(zone_t *zone)
1637 {
1638 	ASSERT(MUTEX_HELD(&cpu_lock));
1639 
1640 	return (zone->zone_psetid);
1641 }
1642 
1643 /*
1644  * Set the cached value of the id of the processor set to which the zone
1645  * is currently bound.  Also update the zone's visibility to match the
1646  * resources in the new processor set.
1647  */
1648 void
1649 zone_pset_set(zone_t *zone, psetid_t newpsetid)
1650 {
1651 	psetid_t oldpsetid;
1652 
1653 	ASSERT(MUTEX_HELD(&cpu_lock));
1654 	oldpsetid = zone_pset_get(zone);
1655 
1656 	if (oldpsetid == newpsetid)
1657 		return;
1658 	/*
1659 	 * Global zone sees all.
1660 	 */
1661 	if (zone != global_zone) {
1662 		zone->zone_psetid = newpsetid;
1663 		if (newpsetid != ZONE_PS_INVAL)
1664 			pool_pset_visibility_add(newpsetid, zone);
1665 		if (oldpsetid != ZONE_PS_INVAL)
1666 			pool_pset_visibility_remove(oldpsetid, zone);
1667 	}
1668 	/*
1669 	 * Disabling pools, so we should start using the global values
1670 	 * for ncpus and ncpus_online.
1671 	 */
1672 	if (newpsetid == ZONE_PS_INVAL) {
1673 		zone->zone_ncpus = 0;
1674 		zone->zone_ncpus_online = 0;
1675 	}
1676 }
1677 
1678 /*
1679  * Walk the list of active zones and issue the provided callback for
1680  * each of them.
1681  *
1682  * Caller must not be holding any locks that may be acquired under
1683  * zonehash_lock.  See comment at the beginning of the file for a list of
1684  * common locks and their interactions with zones.
1685  */
1686 int
1687 zone_walk(int (*cb)(zone_t *, void *), void *data)
1688 {
1689 	zone_t *zone;
1690 	int ret = 0;
1691 	zone_status_t status;
1692 
1693 	mutex_enter(&zonehash_lock);
1694 	for (zone = list_head(&zone_active); zone != NULL;
1695 	    zone = list_next(&zone_active, zone)) {
1696 		/*
1697 		 * Skip zones that shouldn't be externally visible.
1698 		 */
1699 		status = zone_status_get(zone);
1700 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
1701 			continue;
1702 		/*
1703 		 * Bail immediately if any callback invocation returns a
1704 		 * non-zero value.
1705 		 */
1706 		ret = (*cb)(zone, data);
1707 		if (ret != 0)
1708 			break;
1709 	}
1710 	mutex_exit(&zonehash_lock);
1711 	return (ret);
1712 }
1713 
1714 static int
1715 zone_set_root(zone_t *zone, const char *upath)
1716 {
1717 	vnode_t *vp;
1718 	int trycount;
1719 	int error = 0;
1720 	char *path;
1721 	struct pathname upn, pn;
1722 	size_t pathlen;
1723 
1724 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
1725 		return (error);
1726 
1727 	pn_alloc(&pn);
1728 
1729 	/* prevent infinite loop */
1730 	trycount = 10;
1731 	for (;;) {
1732 		if (--trycount <= 0) {
1733 			error = ESTALE;
1734 			goto out;
1735 		}
1736 
1737 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
1738 			/*
1739 			 * VOP_ACCESS() may cover 'vp' with a new
1740 			 * filesystem, if 'vp' is an autoFS vnode.
1741 			 * Get the new 'vp' if so.
1742 			 */
1743 			if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED())) == 0 &&
1744 			    (vp->v_vfsmountedhere == NULL ||
1745 			    (error = traverse(&vp)) == 0)) {
1746 				pathlen = pn.pn_pathlen + 2;
1747 				path = kmem_alloc(pathlen, KM_SLEEP);
1748 				(void) strncpy(path, pn.pn_path,
1749 				    pn.pn_pathlen + 1);
1750 				path[pathlen - 2] = '/';
1751 				path[pathlen - 1] = '\0';
1752 				pn_free(&pn);
1753 				pn_free(&upn);
1754 
1755 				/* Success! */
1756 				break;
1757 			}
1758 			VN_RELE(vp);
1759 		}
1760 		if (error != ESTALE)
1761 			goto out;
1762 	}
1763 
1764 	ASSERT(error == 0);
1765 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
1766 	zone->zone_rootpath = path;
1767 	zone->zone_rootpathlen = pathlen;
1768 	return (0);
1769 
1770 out:
1771 	pn_free(&pn);
1772 	pn_free(&upn);
1773 	return (error);
1774 }
1775 
1776 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
1777 			((c) >= 'a' && (c) <= 'z') || \
1778 			((c) >= 'A' && (c) <= 'Z'))
1779 
1780 static int
1781 zone_set_name(zone_t *zone, const char *uname)
1782 {
1783 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
1784 	size_t len;
1785 	int i, err;
1786 
1787 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
1788 		kmem_free(kname, ZONENAME_MAX);
1789 		return (err);	/* EFAULT or ENAMETOOLONG */
1790 	}
1791 
1792 	/* must be less than ZONENAME_MAX */
1793 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
1794 		kmem_free(kname, ZONENAME_MAX);
1795 		return (EINVAL);
1796 	}
1797 
1798 	/*
1799 	 * Name must start with an alphanumeric and must contain only
1800 	 * alphanumerics, '-', '_' and '.'.
1801 	 */
1802 	if (!isalnum(kname[0])) {
1803 		kmem_free(kname, ZONENAME_MAX);
1804 		return (EINVAL);
1805 	}
1806 	for (i = 1; i < len - 1; i++) {
1807 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
1808 		    kname[i] != '.') {
1809 			kmem_free(kname, ZONENAME_MAX);
1810 			return (EINVAL);
1811 		}
1812 	}
1813 
1814 	zone->zone_name = kname;
1815 	return (0);
1816 }
1817 
1818 /*
1819  * Similar to thread_create(), but makes sure the thread is in the appropriate
1820  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
1821  */
1822 /*ARGSUSED*/
1823 kthread_t *
1824 zthread_create(
1825     caddr_t stk,
1826     size_t stksize,
1827     void (*proc)(),
1828     void *arg,
1829     size_t len,
1830     pri_t pri)
1831 {
1832 	kthread_t *t;
1833 	zone_t *zone = curproc->p_zone;
1834 	proc_t *pp = zone->zone_zsched;
1835 
1836 	zone_hold(zone);	/* Reference to be dropped when thread exits */
1837 
1838 	/*
1839 	 * No-one should be trying to create threads if the zone is shutting
1840 	 * down and there aren't any kernel threads around.  See comment
1841 	 * in zthread_exit().
1842 	 */
1843 	ASSERT(!(zone->zone_kthreads == NULL &&
1844 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
1845 	/*
1846 	 * Create a thread, but don't let it run until we've finished setting
1847 	 * things up.
1848 	 */
1849 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
1850 	ASSERT(t->t_forw == NULL);
1851 	mutex_enter(&zone_status_lock);
1852 	if (zone->zone_kthreads == NULL) {
1853 		t->t_forw = t->t_back = t;
1854 	} else {
1855 		kthread_t *tx = zone->zone_kthreads;
1856 
1857 		t->t_forw = tx;
1858 		t->t_back = tx->t_back;
1859 		tx->t_back->t_forw = t;
1860 		tx->t_back = t;
1861 	}
1862 	zone->zone_kthreads = t;
1863 	mutex_exit(&zone_status_lock);
1864 
1865 	mutex_enter(&pp->p_lock);
1866 	t->t_proc_flag |= TP_ZTHREAD;
1867 	project_rele(t->t_proj);
1868 	t->t_proj = project_hold(pp->p_task->tk_proj);
1869 
1870 	/*
1871 	 * Setup complete, let it run.
1872 	 */
1873 	thread_lock(t);
1874 	t->t_schedflag |= TS_ALLSTART;
1875 	setrun_locked(t);
1876 	thread_unlock(t);
1877 
1878 	mutex_exit(&pp->p_lock);
1879 
1880 	return (t);
1881 }
1882 
1883 /*
1884  * Similar to thread_exit().  Must be called by threads created via
1885  * zthread_exit().
1886  */
1887 void
1888 zthread_exit(void)
1889 {
1890 	kthread_t *t = curthread;
1891 	proc_t *pp = curproc;
1892 	zone_t *zone = pp->p_zone;
1893 
1894 	mutex_enter(&zone_status_lock);
1895 
1896 	/*
1897 	 * Reparent to p0
1898 	 */
1899 	mutex_enter(&pp->p_lock);
1900 	t->t_proc_flag &= ~TP_ZTHREAD;
1901 	t->t_procp = &p0;
1902 	hat_thread_exit(t);
1903 	mutex_exit(&pp->p_lock);
1904 
1905 	if (t->t_back == t) {
1906 		ASSERT(t->t_forw == t);
1907 		/*
1908 		 * If the zone is empty, once the thread count
1909 		 * goes to zero no further kernel threads can be
1910 		 * created.  This is because if the creator is a process
1911 		 * in the zone, then it must have exited before the zone
1912 		 * state could be set to ZONE_IS_EMPTY.
1913 		 * Otherwise, if the creator is a kernel thread in the
1914 		 * zone, the thread count is non-zero.
1915 		 *
1916 		 * This really means that non-zone kernel threads should
1917 		 * not create zone kernel threads.
1918 		 */
1919 		zone->zone_kthreads = NULL;
1920 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
1921 			zone_status_set(zone, ZONE_IS_DOWN);
1922 		}
1923 	} else {
1924 		t->t_forw->t_back = t->t_back;
1925 		t->t_back->t_forw = t->t_forw;
1926 		if (zone->zone_kthreads == t)
1927 			zone->zone_kthreads = t->t_forw;
1928 	}
1929 	mutex_exit(&zone_status_lock);
1930 	zone_rele(zone);
1931 	thread_exit();
1932 	/* NOTREACHED */
1933 }
1934 
1935 static void
1936 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
1937 {
1938 	vnode_t *oldvp;
1939 
1940 	/* we're going to hold a reference here to the directory */
1941 	VN_HOLD(vp);
1942 
1943 #ifdef C2_AUDIT
1944 	if (audit_active)	/* update abs cwd/root path see c2audit.c */
1945 		audit_chdirec(vp, vpp);
1946 #endif
1947 
1948 	mutex_enter(&pp->p_lock);
1949 	oldvp = *vpp;
1950 	*vpp = vp;
1951 	mutex_exit(&pp->p_lock);
1952 	if (oldvp != NULL)
1953 		VN_RELE(oldvp);
1954 }
1955 
1956 /*
1957  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
1958  */
1959 static int
1960 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
1961 {
1962 	nvpair_t *nvp = NULL;
1963 	boolean_t priv_set = B_FALSE;
1964 	boolean_t limit_set = B_FALSE;
1965 	boolean_t action_set = B_FALSE;
1966 
1967 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
1968 		const char *name;
1969 		uint64_t ui64;
1970 
1971 		name = nvpair_name(nvp);
1972 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
1973 			return (EINVAL);
1974 		(void) nvpair_value_uint64(nvp, &ui64);
1975 		if (strcmp(name, "privilege") == 0) {
1976 			/*
1977 			 * Currently only privileged values are allowed, but
1978 			 * this may change in the future.
1979 			 */
1980 			if (ui64 != RCPRIV_PRIVILEGED)
1981 				return (EINVAL);
1982 			rv->rcv_privilege = ui64;
1983 			priv_set = B_TRUE;
1984 		} else if (strcmp(name, "limit") == 0) {
1985 			rv->rcv_value = ui64;
1986 			limit_set = B_TRUE;
1987 		} else if (strcmp(name, "action") == 0) {
1988 			if (ui64 != RCTL_LOCAL_NOACTION &&
1989 			    ui64 != RCTL_LOCAL_DENY)
1990 				return (EINVAL);
1991 			rv->rcv_flagaction = ui64;
1992 			action_set = B_TRUE;
1993 		} else {
1994 			return (EINVAL);
1995 		}
1996 	}
1997 
1998 	if (!(priv_set && limit_set && action_set))
1999 		return (EINVAL);
2000 	rv->rcv_action_signal = 0;
2001 	rv->rcv_action_recipient = NULL;
2002 	rv->rcv_action_recip_pid = -1;
2003 	rv->rcv_firing_time = 0;
2004 
2005 	return (0);
2006 }
2007 
2008 void
2009 zone_icode(void)
2010 {
2011 	proc_t *p = ttoproc(curthread);
2012 	struct core_globals	*cg;
2013 
2014 	/*
2015 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
2016 	 * storing just the pid of init is sufficient.
2017 	 */
2018 	p->p_zone->zone_proc_initpid = p->p_pid;
2019 
2020 	/*
2021 	 * Allocate user address space and stack segment
2022 	 */
2023 
2024 	p->p_cstime = p->p_stime = p->p_cutime = p->p_utime = 0;
2025 	p->p_usrstack = (caddr_t)USRSTACK32;
2026 	p->p_model = DATAMODEL_ILP32;
2027 	p->p_stkprot = PROT_ZFOD & ~PROT_EXEC;
2028 	p->p_datprot = PROT_ZFOD & ~PROT_EXEC;
2029 	p->p_stk_ctl = INT32_MAX;
2030 
2031 	p->p_as = as_alloc();
2032 	p->p_as->a_userlimit = (caddr_t)USERLIMIT32;
2033 	(void) hat_setup(p->p_as->a_hat, HAT_INIT);
2034 
2035 	cg = zone_getspecific(core_zone_key, p->p_zone);
2036 	ASSERT(cg != NULL);
2037 	corectl_path_hold(cg->core_default_path);
2038 	corectl_content_hold(cg->core_default_content);
2039 	p->p_corefile = cg->core_default_path;
2040 	p->p_content = cg->core_default_content;
2041 
2042 	init_mstate(curthread, LMS_SYSTEM);
2043 
2044 	p->p_zone->zone_boot_err = exec_init(zone_initname, 0,
2045 	    p->p_zone->zone_bootargs);
2046 
2047 	mutex_enter(&zone_status_lock);
2048 	if (p->p_zone->zone_boot_err != 0) {
2049 		/*
2050 		 * Make sure we are still in the booting state-- we could have
2051 		 * raced and already be shutting down, or even further along.
2052 		 */
2053 		if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING)
2054 			zone_status_set(p->p_zone, ZONE_IS_SHUTTING_DOWN);
2055 		mutex_exit(&zone_status_lock);
2056 		/* It's gone bad, dispose of the process */
2057 		if (proc_exit(CLD_EXITED, p->p_zone->zone_boot_err) != 0) {
2058 			mutex_enter(&p->p_lock);
2059 			ASSERT(p->p_flag & SEXITLWPS);
2060 			lwp_exit();
2061 		}
2062 	} else {
2063 		if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING)
2064 			zone_status_set(p->p_zone, ZONE_IS_RUNNING);
2065 		mutex_exit(&zone_status_lock);
2066 		/* cause the process to return to userland. */
2067 		lwp_rtt();
2068 	}
2069 }
2070 
2071 struct zsched_arg {
2072 	zone_t *zone;
2073 	nvlist_t *nvlist;
2074 };
2075 
2076 /*
2077  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
2078  * anything to do with scheduling, but rather with the fact that
2079  * per-zone kernel threads are parented to zsched, just like regular
2080  * kernel threads are parented to sched (p0).
2081  *
2082  * zsched is also responsible for launching init for the zone.
2083  */
2084 static void
2085 zsched(void *arg)
2086 {
2087 	struct zsched_arg *za = arg;
2088 	proc_t *pp = curproc;
2089 	proc_t *initp = proc_init;
2090 	zone_t *zone = za->zone;
2091 	cred_t *cr, *oldcred;
2092 	rctl_set_t *set;
2093 	rctl_alloc_gp_t *gp;
2094 	contract_t *ct = NULL;
2095 	task_t *tk, *oldtk;
2096 	rctl_entity_p_t e;
2097 	kproject_t *pj;
2098 
2099 	nvlist_t *nvl = za->nvlist;
2100 	nvpair_t *nvp = NULL;
2101 
2102 	bcopy("zsched", u.u_psargs, sizeof ("zsched"));
2103 	bcopy("zsched", u.u_comm, sizeof ("zsched"));
2104 	u.u_argc = 0;
2105 	u.u_argv = NULL;
2106 	u.u_envp = NULL;
2107 	closeall(P_FINFO(pp));
2108 
2109 	/*
2110 	 * We are this zone's "zsched" process.  As the zone isn't generally
2111 	 * visible yet we don't need to grab any locks before initializing its
2112 	 * zone_proc pointer.
2113 	 */
2114 	zone_hold(zone);  /* this hold is released by zone_destroy() */
2115 	zone->zone_zsched = pp;
2116 	mutex_enter(&pp->p_lock);
2117 	pp->p_zone = zone;
2118 	mutex_exit(&pp->p_lock);
2119 
2120 	/*
2121 	 * Disassociate process from its 'parent'; parent ourselves to init
2122 	 * (pid 1) and change other values as needed.
2123 	 */
2124 	sess_create();
2125 
2126 	mutex_enter(&pidlock);
2127 	proc_detach(pp);
2128 	pp->p_ppid = 1;
2129 	pp->p_flag |= SZONETOP;
2130 	pp->p_ancpid = 1;
2131 	pp->p_parent = initp;
2132 	pp->p_psibling = NULL;
2133 	if (initp->p_child)
2134 		initp->p_child->p_psibling = pp;
2135 	pp->p_sibling = initp->p_child;
2136 	initp->p_child = pp;
2137 
2138 	/* Decrement what newproc() incremented. */
2139 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
2140 	/*
2141 	 * Our credentials are about to become kcred-like, so we don't care
2142 	 * about the caller's ruid.
2143 	 */
2144 	upcount_inc(crgetruid(kcred), zone->zone_id);
2145 	mutex_exit(&pidlock);
2146 
2147 	/*
2148 	 * getting out of global zone, so decrement lwp counts
2149 	 */
2150 	pj = pp->p_task->tk_proj;
2151 	mutex_enter(&global_zone->zone_nlwps_lock);
2152 	pj->kpj_nlwps -= pp->p_lwpcnt;
2153 	global_zone->zone_nlwps -= pp->p_lwpcnt;
2154 	mutex_exit(&global_zone->zone_nlwps_lock);
2155 
2156 	/*
2157 	 * Create and join a new task in project '0' of this zone.
2158 	 *
2159 	 * We don't need to call holdlwps() since we know we're the only lwp in
2160 	 * this process.
2161 	 *
2162 	 * task_join() returns with p_lock held.
2163 	 */
2164 	tk = task_create(0, zone);
2165 	mutex_enter(&cpu_lock);
2166 	oldtk = task_join(tk, 0);
2167 	mutex_exit(&curproc->p_lock);
2168 	mutex_exit(&cpu_lock);
2169 	task_rele(oldtk);
2170 
2171 	/*
2172 	 * add lwp counts to zsched's zone, and increment project's task count
2173 	 * due to the task created in the above tasksys_settaskid
2174 	 */
2175 	pj = pp->p_task->tk_proj;
2176 	mutex_enter(&zone->zone_nlwps_lock);
2177 	pj->kpj_nlwps += pp->p_lwpcnt;
2178 	pj->kpj_ntasks += 1;
2179 	zone->zone_nlwps += pp->p_lwpcnt;
2180 	mutex_exit(&zone->zone_nlwps_lock);
2181 
2182 	/*
2183 	 * The process was created by a process in the global zone, hence the
2184 	 * credentials are wrong.  We might as well have kcred-ish credentials.
2185 	 */
2186 	cr = zone->zone_kcred;
2187 	crhold(cr);
2188 	mutex_enter(&pp->p_crlock);
2189 	oldcred = pp->p_cred;
2190 	pp->p_cred = cr;
2191 	mutex_exit(&pp->p_crlock);
2192 	crfree(oldcred);
2193 
2194 	/*
2195 	 * Hold credentials again (for thread)
2196 	 */
2197 	crhold(cr);
2198 
2199 	/*
2200 	 * p_lwpcnt can't change since this is a kernel process.
2201 	 */
2202 	crset(pp, cr);
2203 
2204 	/*
2205 	 * Chroot
2206 	 */
2207 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
2208 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
2209 
2210 	/*
2211 	 * Initialize zone's rctl set.
2212 	 */
2213 	set = rctl_set_create();
2214 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2215 	mutex_enter(&pp->p_lock);
2216 	e.rcep_p.zone = zone;
2217 	e.rcep_t = RCENTITY_ZONE;
2218 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
2219 	mutex_exit(&pp->p_lock);
2220 	rctl_prealloc_destroy(gp);
2221 
2222 	/*
2223 	 * Apply the rctls passed in to zone_create().  This is basically a list
2224 	 * assignment: all of the old values are removed and the new ones
2225 	 * inserted.  That is, if an empty list is passed in, all values are
2226 	 * removed.
2227 	 */
2228 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
2229 		rctl_dict_entry_t *rde;
2230 		rctl_hndl_t hndl;
2231 		char *name;
2232 		nvlist_t **nvlarray;
2233 		uint_t i, nelem;
2234 		int error;	/* For ASSERT()s */
2235 
2236 		name = nvpair_name(nvp);
2237 		hndl = rctl_hndl_lookup(name);
2238 		ASSERT(hndl != -1);
2239 		rde = rctl_dict_lookup_hndl(hndl);
2240 		ASSERT(rde != NULL);
2241 
2242 		for (; /* ever */; ) {
2243 			rctl_val_t oval;
2244 
2245 			mutex_enter(&pp->p_lock);
2246 			error = rctl_local_get(hndl, NULL, &oval, pp);
2247 			mutex_exit(&pp->p_lock);
2248 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
2249 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
2250 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
2251 				break;
2252 			mutex_enter(&pp->p_lock);
2253 			error = rctl_local_delete(hndl, &oval, pp);
2254 			mutex_exit(&pp->p_lock);
2255 			ASSERT(error == 0);
2256 		}
2257 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
2258 		ASSERT(error == 0);
2259 		for (i = 0; i < nelem; i++) {
2260 			rctl_val_t *nvalp;
2261 
2262 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2263 			error = nvlist2rctlval(nvlarray[i], nvalp);
2264 			ASSERT(error == 0);
2265 			/*
2266 			 * rctl_local_insert can fail if the value being
2267 			 * inserted is a duplicate; this is OK.
2268 			 */
2269 			mutex_enter(&pp->p_lock);
2270 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
2271 				kmem_cache_free(rctl_val_cache, nvalp);
2272 			mutex_exit(&pp->p_lock);
2273 		}
2274 	}
2275 	/*
2276 	 * Tell the world that we're done setting up.
2277 	 *
2278 	 * At this point we want to set the zone status to ZONE_IS_READY
2279 	 * and atomically set the zone's processor set visibility.  Once
2280 	 * we drop pool_lock() this zone will automatically get updated
2281 	 * to reflect any future changes to the pools configuration.
2282 	 */
2283 	pool_lock();
2284 	mutex_enter(&cpu_lock);
2285 	mutex_enter(&zonehash_lock);
2286 	zone_uniqid(zone);
2287 	zone_zsd_configure(zone);
2288 	if (pool_state == POOL_ENABLED)
2289 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
2290 	mutex_enter(&zone_status_lock);
2291 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2292 	zone_status_set(zone, ZONE_IS_READY);
2293 	mutex_exit(&zone_status_lock);
2294 	mutex_exit(&zonehash_lock);
2295 	mutex_exit(&cpu_lock);
2296 	pool_unlock();
2297 
2298 	/*
2299 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
2300 	 * we launch init, and set the state to running.
2301 	 */
2302 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
2303 
2304 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
2305 		id_t cid;
2306 
2307 		/*
2308 		 * Ok, this is a little complicated.  We need to grab the
2309 		 * zone's pool's scheduling class ID; note that by now, we
2310 		 * are already bound to a pool if we need to be (zoneadmd
2311 		 * will have done that to us while we're in the READY
2312 		 * state).  *But* the scheduling class for the zone's 'init'
2313 		 * must be explicitly passed to newproc, which doesn't
2314 		 * respect pool bindings.
2315 		 *
2316 		 * We hold the pool_lock across the call to newproc() to
2317 		 * close the obvious race: the pool's scheduling class
2318 		 * could change before we manage to create the LWP with
2319 		 * classid 'cid'.
2320 		 */
2321 		pool_lock();
2322 		cid = pool_get_class(zone->zone_pool);
2323 		if (cid == -1)
2324 			cid = defaultcid;
2325 
2326 		/*
2327 		 * If this fails, zone_boot will ultimately fail.  The
2328 		 * state of the zone will be set to SHUTTING_DOWN-- userland
2329 		 * will have to tear down the zone, and fail, or try again.
2330 		 */
2331 		if ((zone->zone_boot_err = newproc(zone_icode, NULL, cid,
2332 		    minclsyspri - 1, &ct)) != 0) {
2333 			mutex_enter(&zone_status_lock);
2334 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
2335 			mutex_exit(&zone_status_lock);
2336 		}
2337 		pool_unlock();
2338 	}
2339 
2340 	/*
2341 	 * Wait for zone_destroy() to be called.  This is what we spend
2342 	 * most of our life doing.
2343 	 */
2344 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
2345 
2346 	if (ct)
2347 		/*
2348 		 * At this point the process contract should be empty.
2349 		 * (Though if it isn't, it's not the end of the world.)
2350 		 */
2351 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
2352 
2353 	/*
2354 	 * Allow kcred to be freed when all referring processes
2355 	 * (including this one) go away.  We can't just do this in
2356 	 * zone_free because we need to wait for the zone_cred_ref to
2357 	 * drop to 0 before calling zone_free, and the existence of
2358 	 * zone_kcred will prevent that.  Thus, we call crfree here to
2359 	 * balance the crdup in zone_create.  The crhold calls earlier
2360 	 * in zsched will be dropped when the thread and process exit.
2361 	 */
2362 	crfree(zone->zone_kcred);
2363 	zone->zone_kcred = NULL;
2364 
2365 	exit(CLD_EXITED, 0);
2366 }
2367 
2368 /*
2369  * Helper function to determine if there are any submounts of the
2370  * provided path.  Used to make sure the zone doesn't "inherit" any
2371  * mounts from before it is created.
2372  */
2373 static uint_t
2374 zone_mount_count(const char *rootpath)
2375 {
2376 	vfs_t *vfsp;
2377 	uint_t count = 0;
2378 	size_t rootpathlen = strlen(rootpath);
2379 
2380 	/*
2381 	 * Holding zonehash_lock prevents race conditions with
2382 	 * vfs_list_add()/vfs_list_remove() since we serialize with
2383 	 * zone_find_by_path().
2384 	 */
2385 	ASSERT(MUTEX_HELD(&zonehash_lock));
2386 	/*
2387 	 * The rootpath must end with a '/'
2388 	 */
2389 	ASSERT(rootpath[rootpathlen - 1] == '/');
2390 
2391 	/*
2392 	 * This intentionally does not count the rootpath itself if that
2393 	 * happens to be a mount point.
2394 	 */
2395 	vfs_list_read_lock();
2396 	vfsp = rootvfs;
2397 	do {
2398 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
2399 		    rootpathlen) == 0)
2400 			count++;
2401 		vfsp = vfsp->vfs_next;
2402 	} while (vfsp != rootvfs);
2403 	vfs_list_unlock();
2404 	return (count);
2405 }
2406 
2407 /*
2408  * Helper function to make sure that a zone created on 'rootpath'
2409  * wouldn't end up containing other zones' rootpaths.
2410  */
2411 static boolean_t
2412 zone_is_nested(const char *rootpath)
2413 {
2414 	zone_t *zone;
2415 	size_t rootpathlen = strlen(rootpath);
2416 	size_t len;
2417 
2418 	ASSERT(MUTEX_HELD(&zonehash_lock));
2419 
2420 	for (zone = list_head(&zone_active); zone != NULL;
2421 	    zone = list_next(&zone_active, zone)) {
2422 		if (zone == global_zone)
2423 			continue;
2424 		len = strlen(zone->zone_rootpath);
2425 		if (strncmp(rootpath, zone->zone_rootpath,
2426 		    MIN(rootpathlen, len)) == 0)
2427 			return (B_TRUE);
2428 	}
2429 	return (B_FALSE);
2430 }
2431 
2432 static int
2433 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
2434     size_t zone_privssz)
2435 {
2436 	priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2437 
2438 	if (zone_privssz < sizeof (priv_set_t))
2439 		return (set_errno(ENOMEM));
2440 
2441 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
2442 		kmem_free(privs, sizeof (priv_set_t));
2443 		return (EFAULT);
2444 	}
2445 
2446 	zone->zone_privset = privs;
2447 	return (0);
2448 }
2449 
2450 /*
2451  * We make creative use of nvlists to pass in rctls from userland.  The list is
2452  * a list of the following structures:
2453  *
2454  * (name = rctl_name, value = nvpair_list_array)
2455  *
2456  * Where each element of the nvpair_list_array is of the form:
2457  *
2458  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
2459  * 	(name = "limit", value = uint64_t),
2460  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
2461  */
2462 static int
2463 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
2464 {
2465 	nvpair_t *nvp = NULL;
2466 	nvlist_t *nvl = NULL;
2467 	char *kbuf;
2468 	int error;
2469 	rctl_val_t rv;
2470 
2471 	*nvlp = NULL;
2472 
2473 	if (buflen == 0)
2474 		return (0);
2475 
2476 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
2477 		return (ENOMEM);
2478 	if (copyin(ubuf, kbuf, buflen)) {
2479 		error = EFAULT;
2480 		goto out;
2481 	}
2482 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
2483 		/*
2484 		 * nvl may have been allocated/free'd, but the value set to
2485 		 * non-NULL, so we reset it here.
2486 		 */
2487 		nvl = NULL;
2488 		error = EINVAL;
2489 		goto out;
2490 	}
2491 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
2492 		rctl_dict_entry_t *rde;
2493 		rctl_hndl_t hndl;
2494 		nvlist_t **nvlarray;
2495 		uint_t i, nelem;
2496 		char *name;
2497 
2498 		error = EINVAL;
2499 		name = nvpair_name(nvp);
2500 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
2501 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
2502 			goto out;
2503 		}
2504 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
2505 			goto out;
2506 		}
2507 		rde = rctl_dict_lookup_hndl(hndl);
2508 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
2509 		ASSERT(error == 0);
2510 		for (i = 0; i < nelem; i++) {
2511 			if (error = nvlist2rctlval(nvlarray[i], &rv))
2512 				goto out;
2513 		}
2514 		if (rctl_invalid_value(rde, &rv)) {
2515 			error = EINVAL;
2516 			goto out;
2517 		}
2518 	}
2519 	error = 0;
2520 	*nvlp = nvl;
2521 out:
2522 	kmem_free(kbuf, buflen);
2523 	if (error && nvl != NULL)
2524 		nvlist_free(nvl);
2525 	return (error);
2526 }
2527 
2528 int
2529 zone_create_error(int er_error, int er_ext, int *er_out) {
2530 	if (er_out != NULL) {
2531 		if (copyout(&er_ext, er_out, sizeof (int))) {
2532 			return (set_errno(EFAULT));
2533 		}
2534 	}
2535 	return (set_errno(er_error));
2536 }
2537 
2538 /*
2539  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
2540  */
2541 static int
2542 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
2543 {
2544 	char *kbuf;
2545 	char *dataset, *next;
2546 	zone_dataset_t *zd;
2547 	size_t len;
2548 
2549 	if (ubuf == NULL || buflen == 0)
2550 		return (0);
2551 
2552 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
2553 		return (ENOMEM);
2554 
2555 	if (copyin(ubuf, kbuf, buflen) != 0) {
2556 		kmem_free(kbuf, buflen);
2557 		return (EFAULT);
2558 	}
2559 
2560 	dataset = next = kbuf;
2561 	for (;;) {
2562 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
2563 
2564 		next = strchr(dataset, ',');
2565 
2566 		if (next == NULL)
2567 			len = strlen(dataset);
2568 		else
2569 			len = next - dataset;
2570 
2571 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
2572 		bcopy(dataset, zd->zd_dataset, len);
2573 		zd->zd_dataset[len] = '\0';
2574 
2575 		list_insert_head(&zone->zone_datasets, zd);
2576 
2577 		if (next == NULL)
2578 			break;
2579 
2580 		dataset = next + 1;
2581 	}
2582 
2583 	kmem_free(kbuf, buflen);
2584 	return (0);
2585 }
2586 
2587 /*
2588  * System call to create/initialize a new zone named 'zone_name', rooted
2589  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
2590  * and initialized with the zone-wide rctls described in 'rctlbuf'.
2591  *
2592  * If extended error is non-null, we may use it to return more detailed
2593  * error information.
2594  */
2595 static zoneid_t
2596 zone_create(const char *zone_name, const char *zone_root,
2597     const priv_set_t *zone_privs, size_t zone_privssz,
2598     caddr_t rctlbuf, size_t rctlbufsz,
2599     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error)
2600 {
2601 	struct zsched_arg zarg;
2602 	nvlist_t *rctls = NULL;
2603 	proc_t *pp = curproc;
2604 	zone_t *zone, *ztmp;
2605 	zoneid_t zoneid;
2606 	int error;
2607 	int error2 = 0;
2608 	char *str;
2609 	cred_t *zkcr;
2610 
2611 	if (secpolicy_zone_config(CRED()) != 0)
2612 		return (set_errno(EPERM));
2613 
2614 	/* can't boot zone from within chroot environment */
2615 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
2616 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
2617 		    extended_error));
2618 
2619 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
2620 	zoneid = zone->zone_id = id_alloc(zoneid_space);
2621 	zone->zone_status = ZONE_IS_UNINITIALIZED;
2622 	zone->zone_pool = pool_default;
2623 	zone->zone_pool_mod = gethrtime();
2624 	zone->zone_psetid = ZONE_PS_INVAL;
2625 	zone->zone_ncpus = 0;
2626 	zone->zone_ncpus_online = 0;
2627 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
2628 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2629 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
2630 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
2631 	    offsetof(struct zsd_entry, zsd_linkage));
2632 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
2633 	    offsetof(zone_dataset_t, zd_linkage));
2634 
2635 	if ((error = zone_set_name(zone, zone_name)) != 0) {
2636 		zone_free(zone);
2637 		return (zone_create_error(error, 0, extended_error));
2638 	}
2639 
2640 	if ((error = zone_set_root(zone, zone_root)) != 0) {
2641 		zone_free(zone);
2642 		return (zone_create_error(error, 0, extended_error));
2643 	}
2644 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
2645 		zone_free(zone);
2646 		return (zone_create_error(error, 0, extended_error));
2647 	}
2648 
2649 	/* initialize node name to be the same as zone name */
2650 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
2651 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
2652 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
2653 
2654 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
2655 	zone->zone_domain[0] = '\0';
2656 	zone->zone_shares = 1;
2657 	zone->zone_bootargs = NULL;
2658 
2659 	/*
2660 	 * Zsched initializes the rctls.
2661 	 */
2662 	zone->zone_rctls = NULL;
2663 
2664 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
2665 		zone_free(zone);
2666 		return (zone_create_error(error, 0, extended_error));
2667 	}
2668 
2669 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
2670 		zone_free(zone);
2671 		return (set_errno(error));
2672 	}
2673 
2674 	/*
2675 	 * Stop all lwps since that's what normally happens as part of fork().
2676 	 * This needs to happen before we grab any locks to avoid deadlock
2677 	 * (another lwp in the process could be waiting for the held lock).
2678 	 */
2679 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
2680 		zone_free(zone);
2681 		if (rctls)
2682 			nvlist_free(rctls);
2683 		return (zone_create_error(error, 0, extended_error));
2684 	}
2685 
2686 	if (block_mounts() == 0) {
2687 		mutex_enter(&pp->p_lock);
2688 		if (curthread != pp->p_agenttp)
2689 			continuelwps(pp);
2690 		mutex_exit(&pp->p_lock);
2691 		zone_free(zone);
2692 		if (rctls)
2693 			nvlist_free(rctls);
2694 		return (zone_create_error(error, 0, extended_error));
2695 	}
2696 
2697 	/*
2698 	 * Set up credential for kernel access.  After this, any errors
2699 	 * should go through the dance in errout rather than calling
2700 	 * zone_free directly.
2701 	 */
2702 	zone->zone_kcred = crdup(kcred);
2703 	crsetzone(zone->zone_kcred, zone);
2704 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
2705 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
2706 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
2707 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
2708 
2709 	mutex_enter(&zonehash_lock);
2710 	/*
2711 	 * Make sure zone doesn't already exist.
2712 	 */
2713 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL) {
2714 		zone_status_t status;
2715 
2716 		status = zone_status_get(ztmp);
2717 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
2718 			error = EEXIST;
2719 		else
2720 			error = EBUSY;
2721 		goto errout;
2722 	}
2723 
2724 	/*
2725 	 * Don't allow zone creations which would cause one zone's rootpath to
2726 	 * be accessible from that of another (non-global) zone.
2727 	 */
2728 	if (zone_is_nested(zone->zone_rootpath)) {
2729 		error = EBUSY;
2730 		goto errout;
2731 	}
2732 
2733 	ASSERT(zonecount != 0);		/* check for leaks */
2734 	if (zonecount + 1 > maxzones) {
2735 		error = ENOMEM;
2736 		goto errout;
2737 	}
2738 
2739 	if (zone_mount_count(zone->zone_rootpath) != 0) {
2740 		error = EBUSY;
2741 		error2 = ZE_AREMOUNTS;
2742 		goto errout;
2743 	}
2744 
2745 	/*
2746 	 * Zone is still incomplete, but we need to drop all locks while
2747 	 * zsched() initializes this zone's kernel process.  We
2748 	 * optimistically add the zone to the hashtable and associated
2749 	 * lists so a parallel zone_create() doesn't try to create the
2750 	 * same zone.
2751 	 */
2752 	zonecount++;
2753 	(void) mod_hash_insert(zonehashbyid,
2754 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
2755 	    (mod_hash_val_t)(uintptr_t)zone);
2756 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
2757 	(void) strcpy(str, zone->zone_name);
2758 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
2759 	    (mod_hash_val_t)(uintptr_t)zone);
2760 	/*
2761 	 * Insert into active list.  At this point there are no 'hold's
2762 	 * on the zone, but everyone else knows not to use it, so we can
2763 	 * continue to use it.  zsched() will do a zone_hold() if the
2764 	 * newproc() is successful.
2765 	 */
2766 	list_insert_tail(&zone_active, zone);
2767 	mutex_exit(&zonehash_lock);
2768 
2769 	zarg.zone = zone;
2770 	zarg.nvlist = rctls;
2771 	/*
2772 	 * The process, task, and project rctls are probably wrong;
2773 	 * we need an interface to get the default values of all rctls,
2774 	 * and initialize zsched appropriately.  I'm not sure that that
2775 	 * makes much of a difference, though.
2776 	 */
2777 	if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) {
2778 		/*
2779 		 * We need to undo all globally visible state.
2780 		 */
2781 		mutex_enter(&zonehash_lock);
2782 		list_remove(&zone_active, zone);
2783 		(void) mod_hash_destroy(zonehashbyname,
2784 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
2785 		(void) mod_hash_destroy(zonehashbyid,
2786 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
2787 		ASSERT(zonecount > 1);
2788 		zonecount--;
2789 		goto errout;
2790 	}
2791 
2792 	/*
2793 	 * Zone creation can't fail from now on.
2794 	 */
2795 
2796 	/*
2797 	 * Let the other lwps continue.
2798 	 */
2799 	mutex_enter(&pp->p_lock);
2800 	if (curthread != pp->p_agenttp)
2801 		continuelwps(pp);
2802 	mutex_exit(&pp->p_lock);
2803 
2804 	/*
2805 	 * Wait for zsched to finish initializing the zone.
2806 	 */
2807 	zone_status_wait(zone, ZONE_IS_READY);
2808 	/*
2809 	 * The zone is fully visible, so we can let mounts progress.
2810 	 */
2811 	resume_mounts();
2812 	if (rctls)
2813 		nvlist_free(rctls);
2814 
2815 	return (zoneid);
2816 
2817 errout:
2818 	mutex_exit(&zonehash_lock);
2819 	/*
2820 	 * Let the other lwps continue.
2821 	 */
2822 	mutex_enter(&pp->p_lock);
2823 	if (curthread != pp->p_agenttp)
2824 		continuelwps(pp);
2825 	mutex_exit(&pp->p_lock);
2826 
2827 	resume_mounts();
2828 	if (rctls)
2829 		nvlist_free(rctls);
2830 	/*
2831 	 * There is currently one reference to the zone, a cred_ref from
2832 	 * zone_kcred.  To free the zone, we call crfree, which will call
2833 	 * zone_cred_rele, which will call zone_free.
2834 	 */
2835 	ASSERT(zone->zone_cred_ref == 1);	/* for zone_kcred */
2836 	ASSERT(zone->zone_kcred->cr_ref == 1);
2837 	ASSERT(zone->zone_ref == 0);
2838 	zkcr = zone->zone_kcred;
2839 	zone->zone_kcred = NULL;
2840 	crfree(zkcr);				/* triggers call to zone_free */
2841 	return (zone_create_error(error, error2, extended_error));
2842 }
2843 
2844 /*
2845  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
2846  * the heavy lifting.
2847  */
2848 static int
2849 zone_boot(zoneid_t zoneid, const char *bootargs)
2850 {
2851 	int err;
2852 	zone_t *zone;
2853 
2854 	if (secpolicy_zone_config(CRED()) != 0)
2855 		return (set_errno(EPERM));
2856 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
2857 		return (set_errno(EINVAL));
2858 
2859 	mutex_enter(&zonehash_lock);
2860 	/*
2861 	 * Look for zone under hash lock to prevent races with calls to
2862 	 * zone_shutdown, zone_destroy, etc.
2863 	 */
2864 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2865 		mutex_exit(&zonehash_lock);
2866 		return (set_errno(EINVAL));
2867 	}
2868 
2869 	if ((err = zone_set_bootargs(zone, bootargs)) != 0) {
2870 		mutex_exit(&zonehash_lock);
2871 		return (set_errno(err));
2872 	}
2873 
2874 	mutex_enter(&zone_status_lock);
2875 	if (zone_status_get(zone) != ZONE_IS_READY) {
2876 		mutex_exit(&zone_status_lock);
2877 		mutex_exit(&zonehash_lock);
2878 		return (set_errno(EINVAL));
2879 	}
2880 	zone_status_set(zone, ZONE_IS_BOOTING);
2881 	mutex_exit(&zone_status_lock);
2882 
2883 	zone_hold(zone);	/* so we can use the zone_t later */
2884 	mutex_exit(&zonehash_lock);
2885 
2886 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
2887 		zone_rele(zone);
2888 		return (set_errno(EINTR));
2889 	}
2890 
2891 	/*
2892 	 * Boot (starting init) might have failed, in which case the zone
2893 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
2894 	 * be placed in zone->zone_boot_err, and so we return that.
2895 	 */
2896 	err = zone->zone_boot_err;
2897 	zone_rele(zone);
2898 	return (err ? set_errno(err) : 0);
2899 }
2900 
2901 /*
2902  * Kills all user processes in the zone, waiting for them all to exit
2903  * before returning.
2904  */
2905 static int
2906 zone_empty(zone_t *zone)
2907 {
2908 	int waitstatus;
2909 
2910 	/*
2911 	 * We need to drop zonehash_lock before killing all
2912 	 * processes, otherwise we'll deadlock with zone_find_*
2913 	 * which can be called from the exit path.
2914 	 */
2915 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
2916 	while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz,
2917 	    ZONE_IS_EMPTY)) == -1) {
2918 		killall(zone->zone_id);
2919 	}
2920 	/*
2921 	 * return EINTR if we were signaled
2922 	 */
2923 	if (waitstatus == 0)
2924 		return (EINTR);
2925 	return (0);
2926 }
2927 
2928 /*
2929  * Systemcall to start the zone's halt sequence.  By the time this
2930  * function successfully returns, all user processes and kernel threads
2931  * executing in it will have exited, ZSD shutdown callbacks executed,
2932  * and the zone status set to ZONE_IS_DOWN.
2933  *
2934  * It is possible that the call will interrupt itself if the caller is the
2935  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
2936  */
2937 static int
2938 zone_shutdown(zoneid_t zoneid)
2939 {
2940 	int error;
2941 	zone_t *zone;
2942 	zone_status_t status;
2943 
2944 	if (secpolicy_zone_config(CRED()) != 0)
2945 		return (set_errno(EPERM));
2946 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
2947 		return (set_errno(EINVAL));
2948 
2949 	/*
2950 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
2951 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
2952 	 *
2953 	 * e.g. NFS can fail the mount if it determines that the zone
2954 	 * has already begun the shutdown sequence.
2955 	 */
2956 	if (block_mounts() == 0)
2957 		return (set_errno(EINTR));
2958 	mutex_enter(&zonehash_lock);
2959 	/*
2960 	 * Look for zone under hash lock to prevent races with other
2961 	 * calls to zone_shutdown and zone_destroy.
2962 	 */
2963 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2964 		mutex_exit(&zonehash_lock);
2965 		resume_mounts();
2966 		return (set_errno(EINVAL));
2967 	}
2968 	mutex_enter(&zone_status_lock);
2969 	status = zone_status_get(zone);
2970 	/*
2971 	 * Fail if the zone isn't fully initialized yet.
2972 	 */
2973 	if (status < ZONE_IS_READY) {
2974 		mutex_exit(&zone_status_lock);
2975 		mutex_exit(&zonehash_lock);
2976 		resume_mounts();
2977 		return (set_errno(EINVAL));
2978 	}
2979 	/*
2980 	 * If conditions required for zone_shutdown() to return have been met,
2981 	 * return success.
2982 	 */
2983 	if (status >= ZONE_IS_DOWN) {
2984 		mutex_exit(&zone_status_lock);
2985 		mutex_exit(&zonehash_lock);
2986 		resume_mounts();
2987 		return (0);
2988 	}
2989 	/*
2990 	 * If zone_shutdown() hasn't been called before, go through the motions.
2991 	 * If it has, there's nothing to do but wait for the kernel threads to
2992 	 * drain.
2993 	 */
2994 	if (status < ZONE_IS_EMPTY) {
2995 		uint_t ntasks;
2996 
2997 		mutex_enter(&zone->zone_lock);
2998 		if ((ntasks = zone->zone_ntasks) != 1) {
2999 			/*
3000 			 * There's still stuff running.
3001 			 */
3002 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3003 		}
3004 		mutex_exit(&zone->zone_lock);
3005 		if (ntasks == 1) {
3006 			/*
3007 			 * The only way to create another task is through
3008 			 * zone_enter(), which will block until we drop
3009 			 * zonehash_lock.  The zone is empty.
3010 			 */
3011 			if (zone->zone_kthreads == NULL) {
3012 				/*
3013 				 * Skip ahead to ZONE_IS_DOWN
3014 				 */
3015 				zone_status_set(zone, ZONE_IS_DOWN);
3016 			} else {
3017 				zone_status_set(zone, ZONE_IS_EMPTY);
3018 			}
3019 		}
3020 	}
3021 	zone_hold(zone);	/* so we can use the zone_t later */
3022 	mutex_exit(&zone_status_lock);
3023 	mutex_exit(&zonehash_lock);
3024 	resume_mounts();
3025 
3026 	if (error = zone_empty(zone)) {
3027 		zone_rele(zone);
3028 		return (set_errno(error));
3029 	}
3030 	/*
3031 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
3032 	 * longer be notified of changes to the pools configuration, so
3033 	 * in order to not end up with a stale pool pointer, we point
3034 	 * ourselves at the default pool and remove all resource
3035 	 * visibility.  This is especially important as the zone_t may
3036 	 * languish on the deathrow for a very long time waiting for
3037 	 * cred's to drain out.
3038 	 *
3039 	 * This rebinding of the zone can happen multiple times
3040 	 * (presumably due to interrupted or parallel systemcalls)
3041 	 * without any adverse effects.
3042 	 */
3043 	if (pool_lock_intr() != 0) {
3044 		zone_rele(zone);
3045 		return (set_errno(EINTR));
3046 	}
3047 	if (pool_state == POOL_ENABLED) {
3048 		mutex_enter(&cpu_lock);
3049 		zone_pool_set(zone, pool_default);
3050 		/*
3051 		 * The zone no longer needs to be able to see any cpus.
3052 		 */
3053 		zone_pset_set(zone, ZONE_PS_INVAL);
3054 		mutex_exit(&cpu_lock);
3055 	}
3056 	pool_unlock();
3057 
3058 	/*
3059 	 * ZSD shutdown callbacks can be executed multiple times, hence
3060 	 * it is safe to not be holding any locks across this call.
3061 	 */
3062 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
3063 
3064 	mutex_enter(&zone_status_lock);
3065 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
3066 		zone_status_set(zone, ZONE_IS_DOWN);
3067 	mutex_exit(&zone_status_lock);
3068 
3069 	/*
3070 	 * Wait for kernel threads to drain.
3071 	 */
3072 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
3073 		zone_rele(zone);
3074 		return (set_errno(EINTR));
3075 	}
3076 	zone_rele(zone);
3077 	return (0);
3078 }
3079 
3080 /*
3081  * Systemcall entry point to finalize the zone halt process.  The caller
3082  * must have already successfully callefd zone_shutdown().
3083  *
3084  * Upon successful completion, the zone will have been fully destroyed:
3085  * zsched will have exited, destructor callbacks executed, and the zone
3086  * removed from the list of active zones.
3087  */
3088 static int
3089 zone_destroy(zoneid_t zoneid)
3090 {
3091 	uint64_t uniqid;
3092 	zone_t *zone;
3093 	zone_status_t status;
3094 
3095 	if (secpolicy_zone_config(CRED()) != 0)
3096 		return (set_errno(EPERM));
3097 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
3098 		return (set_errno(EINVAL));
3099 
3100 	mutex_enter(&zonehash_lock);
3101 	/*
3102 	 * Look for zone under hash lock to prevent races with other
3103 	 * calls to zone_destroy.
3104 	 */
3105 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3106 		mutex_exit(&zonehash_lock);
3107 		return (set_errno(EINVAL));
3108 	}
3109 
3110 	if (zone_mount_count(zone->zone_rootpath) != 0) {
3111 		mutex_exit(&zonehash_lock);
3112 		return (set_errno(EBUSY));
3113 	}
3114 	mutex_enter(&zone_status_lock);
3115 	status = zone_status_get(zone);
3116 	if (status < ZONE_IS_DOWN) {
3117 		mutex_exit(&zone_status_lock);
3118 		mutex_exit(&zonehash_lock);
3119 		return (set_errno(EBUSY));
3120 	} else if (status == ZONE_IS_DOWN) {
3121 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
3122 	}
3123 	mutex_exit(&zone_status_lock);
3124 	zone_hold(zone);
3125 	mutex_exit(&zonehash_lock);
3126 
3127 	/*
3128 	 * wait for zsched to exit
3129 	 */
3130 	zone_status_wait(zone, ZONE_IS_DEAD);
3131 	zone_zsd_callbacks(zone, ZSD_DESTROY);
3132 	uniqid = zone->zone_uniqid;
3133 	zone_rele(zone);
3134 	zone = NULL;	/* potentially free'd */
3135 
3136 	mutex_enter(&zonehash_lock);
3137 	for (; /* ever */; ) {
3138 		boolean_t unref;
3139 
3140 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
3141 		    zone->zone_uniqid != uniqid) {
3142 			/*
3143 			 * The zone has gone away.  Necessary conditions
3144 			 * are met, so we return success.
3145 			 */
3146 			mutex_exit(&zonehash_lock);
3147 			return (0);
3148 		}
3149 		mutex_enter(&zone->zone_lock);
3150 		unref = ZONE_IS_UNREF(zone);
3151 		mutex_exit(&zone->zone_lock);
3152 		if (unref) {
3153 			/*
3154 			 * There is only one reference to the zone -- that
3155 			 * added when the zone was added to the hashtables --
3156 			 * and things will remain this way until we drop
3157 			 * zonehash_lock... we can go ahead and cleanup the
3158 			 * zone.
3159 			 */
3160 			break;
3161 		}
3162 
3163 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
3164 			/* Signaled */
3165 			mutex_exit(&zonehash_lock);
3166 			return (set_errno(EINTR));
3167 		}
3168 
3169 	}
3170 
3171 	/*
3172 	 * It is now safe to let the zone be recreated; remove it from the
3173 	 * lists.  The memory will not be freed until the last cred
3174 	 * reference goes away.
3175 	 */
3176 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
3177 	zonecount--;
3178 	/* remove from active list and hash tables */
3179 	list_remove(&zone_active, zone);
3180 	(void) mod_hash_destroy(zonehashbyname,
3181 	    (mod_hash_key_t)zone->zone_name);
3182 	(void) mod_hash_destroy(zonehashbyid,
3183 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
3184 	mutex_exit(&zonehash_lock);
3185 
3186 	/*
3187 	 * Release the root vnode; we're not using it anymore.  Nor should any
3188 	 * other thread that might access it exist.
3189 	 */
3190 	if (zone->zone_rootvp != NULL) {
3191 		VN_RELE(zone->zone_rootvp);
3192 		zone->zone_rootvp = NULL;
3193 	}
3194 
3195 	/* add to deathrow list */
3196 	mutex_enter(&zone_deathrow_lock);
3197 	list_insert_tail(&zone_deathrow, zone);
3198 	mutex_exit(&zone_deathrow_lock);
3199 
3200 	/*
3201 	 * Drop last reference (which was added by zsched()), this will
3202 	 * free the zone unless there are outstanding cred references.
3203 	 */
3204 	zone_rele(zone);
3205 	return (0);
3206 }
3207 
3208 /*
3209  * Systemcall entry point for zone_getattr(2).
3210  */
3211 static ssize_t
3212 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
3213 {
3214 	size_t size;
3215 	int error = 0, err;
3216 	zone_t *zone;
3217 	char *zonepath;
3218 	zone_status_t zone_status;
3219 	pid_t initpid;
3220 	boolean_t global = (curproc->p_zone == global_zone);
3221 
3222 	mutex_enter(&zonehash_lock);
3223 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3224 		mutex_exit(&zonehash_lock);
3225 		return (set_errno(EINVAL));
3226 	}
3227 	zone_status = zone_status_get(zone);
3228 	if (zone_status < ZONE_IS_READY) {
3229 		mutex_exit(&zonehash_lock);
3230 		return (set_errno(EINVAL));
3231 	}
3232 	zone_hold(zone);
3233 	mutex_exit(&zonehash_lock);
3234 
3235 	/*
3236 	 * If not in the global zone, don't show information about other zones.
3237 	 */
3238 	if (!global && curproc->p_zone != zone) {
3239 		zone_rele(zone);
3240 		return (set_errno(EINVAL));
3241 	}
3242 
3243 	switch (attr) {
3244 	case ZONE_ATTR_ROOT:
3245 		if (global) {
3246 			/*
3247 			 * Copy the path to trim the trailing "/" (except for
3248 			 * the global zone).
3249 			 */
3250 			if (zone != global_zone)
3251 				size = zone->zone_rootpathlen - 1;
3252 			else
3253 				size = zone->zone_rootpathlen;
3254 			zonepath = kmem_alloc(size, KM_SLEEP);
3255 			bcopy(zone->zone_rootpath, zonepath, size);
3256 			zonepath[size - 1] = '\0';
3257 		} else {
3258 			/*
3259 			 * Caller is not in the global zone, just return
3260 			 * faked-up path for current zone.
3261 			 */
3262 			zonepath = "/";
3263 			size = 2;
3264 		}
3265 		if (bufsize > size)
3266 			bufsize = size;
3267 		if (buf != NULL) {
3268 			err = copyoutstr(zonepath, buf, bufsize, NULL);
3269 			if (err != 0 && err != ENAMETOOLONG)
3270 				error = EFAULT;
3271 		}
3272 		if (global)
3273 			kmem_free(zonepath, size);
3274 		break;
3275 
3276 	case ZONE_ATTR_NAME:
3277 		size = strlen(zone->zone_name) + 1;
3278 		if (bufsize > size)
3279 			bufsize = size;
3280 		if (buf != NULL) {
3281 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
3282 			if (err != 0 && err != ENAMETOOLONG)
3283 				error = EFAULT;
3284 		}
3285 		break;
3286 
3287 	case ZONE_ATTR_STATUS:
3288 		/*
3289 		 * Since we're not holding zonehash_lock, the zone status
3290 		 * may be anything; leave it up to userland to sort it out.
3291 		 */
3292 		size = sizeof (zone_status);
3293 		if (bufsize > size)
3294 			bufsize = size;
3295 		zone_status = zone_status_get(zone);
3296 		if (buf != NULL &&
3297 		    copyout(&zone_status, buf, bufsize) != 0)
3298 			error = EFAULT;
3299 		break;
3300 	case ZONE_ATTR_PRIVSET:
3301 		size = sizeof (priv_set_t);
3302 		if (bufsize > size)
3303 			bufsize = size;
3304 		if (buf != NULL &&
3305 		    copyout(zone->zone_privset, buf, bufsize) != 0)
3306 			error = EFAULT;
3307 		break;
3308 	case ZONE_ATTR_UNIQID:
3309 		size = sizeof (zone->zone_uniqid);
3310 		if (bufsize > size)
3311 			bufsize = size;
3312 		if (buf != NULL &&
3313 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
3314 			error = EFAULT;
3315 		break;
3316 	case ZONE_ATTR_POOLID:
3317 		{
3318 			pool_t *pool;
3319 			poolid_t poolid;
3320 
3321 			if (pool_lock_intr() != 0) {
3322 				error = EINTR;
3323 				break;
3324 			}
3325 			pool = zone_pool_get(zone);
3326 			poolid = pool->pool_id;
3327 			pool_unlock();
3328 			size = sizeof (poolid);
3329 			if (bufsize > size)
3330 				bufsize = size;
3331 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
3332 				error = EFAULT;
3333 		}
3334 		break;
3335 	case ZONE_ATTR_INITPID:
3336 		size = sizeof (initpid);
3337 		if (bufsize > size)
3338 			bufsize = size;
3339 		initpid = zone->zone_proc_initpid;
3340 		if (initpid == -1) {
3341 			error = ESRCH;
3342 			break;
3343 		}
3344 		if (buf != NULL &&
3345 		    copyout(&initpid, buf, bufsize) != 0)
3346 			error = EFAULT;
3347 		break;
3348 	default:
3349 		error = EINVAL;
3350 	}
3351 	zone_rele(zone);
3352 
3353 	if (error)
3354 		return (set_errno(error));
3355 	return ((ssize_t)size);
3356 }
3357 
3358 /*
3359  * Return zero if the process has at least one vnode mapped in to its
3360  * address space which shouldn't be allowed to change zones.
3361  */
3362 static int
3363 as_can_change_zones(void)
3364 {
3365 	proc_t *pp = curproc;
3366 	struct seg *seg;
3367 	struct as *as = pp->p_as;
3368 	vnode_t *vp;
3369 	int allow = 1;
3370 
3371 	ASSERT(pp->p_as != &kas);
3372 	AS_LOCK_ENTER(&as, &as->a_lock, RW_READER);
3373 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
3374 		/*
3375 		 * if we can't get a backing vnode for this segment then skip
3376 		 * it.
3377 		 */
3378 		vp = NULL;
3379 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
3380 			continue;
3381 		if (!vn_can_change_zones(vp)) { /* bail on first match */
3382 			allow = 0;
3383 			break;
3384 		}
3385 	}
3386 	AS_LOCK_EXIT(&as, &as->a_lock);
3387 	return (allow);
3388 }
3389 
3390 /*
3391  * Systemcall entry point for zone_enter().
3392  *
3393  * The current process is injected into said zone.  In the process
3394  * it will change its project membership, privileges, rootdir/cwd,
3395  * zone-wide rctls, and pool association to match those of the zone.
3396  *
3397  * The first zone_enter() called while the zone is in the ZONE_IS_READY
3398  * state will transition it to ZONE_IS_RUNNING.  Processes may only
3399  * enter a zone that is "ready" or "running".
3400  */
3401 static int
3402 zone_enter(zoneid_t zoneid)
3403 {
3404 	zone_t *zone;
3405 	vnode_t *vp;
3406 	proc_t *pp = curproc;
3407 	contract_t *ct;
3408 	cont_process_t *ctp;
3409 	task_t *tk, *oldtk;
3410 	kproject_t *zone_proj0;
3411 	cred_t *cr, *newcr;
3412 	pool_t *oldpool, *newpool;
3413 	sess_t *sp;
3414 	uid_t uid;
3415 	zone_status_t status;
3416 	int err = 0;
3417 	rctl_entity_p_t e;
3418 
3419 	if (secpolicy_zone_config(CRED()) != 0)
3420 		return (set_errno(EPERM));
3421 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
3422 		return (set_errno(EINVAL));
3423 
3424 	/*
3425 	 * Stop all lwps so we don't need to hold a lock to look at
3426 	 * curproc->p_zone.  This needs to happen before we grab any
3427 	 * locks to avoid deadlock (another lwp in the process could
3428 	 * be waiting for the held lock).
3429 	 */
3430 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
3431 		return (set_errno(EINTR));
3432 
3433 	/*
3434 	 * Make sure we're not changing zones with files open or mapped in
3435 	 * to our address space which shouldn't be changing zones.
3436 	 */
3437 	if (!files_can_change_zones()) {
3438 		err = EBADF;
3439 		goto out;
3440 	}
3441 	if (!as_can_change_zones()) {
3442 		err = EFAULT;
3443 		goto out;
3444 	}
3445 
3446 	mutex_enter(&zonehash_lock);
3447 	if (pp->p_zone != global_zone) {
3448 		mutex_exit(&zonehash_lock);
3449 		err = EINVAL;
3450 		goto out;
3451 	}
3452 
3453 	zone = zone_find_all_by_id(zoneid);
3454 	if (zone == NULL) {
3455 		mutex_exit(&zonehash_lock);
3456 		err = EINVAL;
3457 		goto out;
3458 	}
3459 
3460 	/*
3461 	 * To prevent processes in a zone from holding contracts on
3462 	 * extrazonal resources, and to avoid process contract
3463 	 * memberships which span zones, contract holders and processes
3464 	 * which aren't the sole members of their encapsulating process
3465 	 * contracts are not allowed to zone_enter.
3466 	 */
3467 	ctp = pp->p_ct_process;
3468 	ct = &ctp->conp_contract;
3469 	mutex_enter(&ct->ct_lock);
3470 	mutex_enter(&pp->p_lock);
3471 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
3472 		mutex_exit(&pp->p_lock);
3473 		mutex_exit(&ct->ct_lock);
3474 		mutex_exit(&zonehash_lock);
3475 		pool_unlock();
3476 		err = EINVAL;
3477 		goto out;
3478 	}
3479 
3480 	/*
3481 	 * Moreover, we don't allow processes whose encapsulating
3482 	 * process contracts have inherited extrazonal contracts.
3483 	 * While it would be easier to eliminate all process contracts
3484 	 * with inherited contracts, we need to be able to give a
3485 	 * restarted init (or other zone-penetrating process) its
3486 	 * predecessor's contracts.
3487 	 */
3488 	if (ctp->conp_ninherited != 0) {
3489 		contract_t *next;
3490 		for (next = list_head(&ctp->conp_inherited); next;
3491 		    next = list_next(&ctp->conp_inherited, next)) {
3492 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
3493 				mutex_exit(&pp->p_lock);
3494 				mutex_exit(&ct->ct_lock);
3495 				mutex_exit(&zonehash_lock);
3496 				pool_unlock();
3497 				err = EINVAL;
3498 				goto out;
3499 			}
3500 		}
3501 	}
3502 	mutex_exit(&pp->p_lock);
3503 	mutex_exit(&ct->ct_lock);
3504 
3505 	status = zone_status_get(zone);
3506 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
3507 		/*
3508 		 * Can't join
3509 		 */
3510 		mutex_exit(&zonehash_lock);
3511 		err = EINVAL;
3512 		goto out;
3513 	}
3514 
3515 	/*
3516 	 * Make sure new priv set is within the permitted set for caller
3517 	 */
3518 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
3519 		mutex_exit(&zonehash_lock);
3520 		err = EPERM;
3521 		goto out;
3522 	}
3523 	/*
3524 	 * We want to momentarily drop zonehash_lock while we optimistically
3525 	 * bind curproc to the pool it should be running in.  This is safe
3526 	 * since the zone can't disappear (we have a hold on it).
3527 	 */
3528 	zone_hold(zone);
3529 	mutex_exit(&zonehash_lock);
3530 
3531 	/*
3532 	 * Grab pool_lock to keep the pools configuration from changing
3533 	 * and to stop ourselves from getting rebound to another pool
3534 	 * until we join the zone.
3535 	 */
3536 	if (pool_lock_intr() != 0) {
3537 		zone_rele(zone);
3538 		err = EINTR;
3539 		goto out;
3540 	}
3541 	ASSERT(secpolicy_pool(CRED()) == 0);
3542 	/*
3543 	 * Bind ourselves to the pool currently associated with the zone.
3544 	 */
3545 	oldpool = curproc->p_pool;
3546 	newpool = zone_pool_get(zone);
3547 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
3548 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
3549 	    POOL_BIND_ALL)) != 0) {
3550 		pool_unlock();
3551 		zone_rele(zone);
3552 		goto out;
3553 	}
3554 
3555 	/*
3556 	 * Grab cpu_lock now; we'll need it later when we call
3557 	 * task_join().
3558 	 */
3559 	mutex_enter(&cpu_lock);
3560 	mutex_enter(&zonehash_lock);
3561 	/*
3562 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
3563 	 */
3564 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
3565 		/*
3566 		 * Can't join anymore.
3567 		 */
3568 		mutex_exit(&zonehash_lock);
3569 		mutex_exit(&cpu_lock);
3570 		if (pool_state == POOL_ENABLED &&
3571 		    newpool != oldpool)
3572 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
3573 			    POOL_BIND_ALL);
3574 		pool_unlock();
3575 		zone_rele(zone);
3576 		err = EINVAL;
3577 		goto out;
3578 	}
3579 
3580 	mutex_enter(&pp->p_lock);
3581 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
3582 	/* verify that we do not exceed and task or lwp limits */
3583 	mutex_enter(&zone->zone_nlwps_lock);
3584 	/* add new lwps to zone and zone's proj0 */
3585 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
3586 	zone->zone_nlwps += pp->p_lwpcnt;
3587 	/* add 1 task to zone's proj0 */
3588 	zone_proj0->kpj_ntasks += 1;
3589 	mutex_exit(&pp->p_lock);
3590 	mutex_exit(&zone->zone_nlwps_lock);
3591 
3592 	/* remove lwps from proc's old zone and old project */
3593 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
3594 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
3595 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
3596 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
3597 
3598 	/*
3599 	 * Joining the zone cannot fail from now on.
3600 	 *
3601 	 * This means that a lot of the following code can be commonized and
3602 	 * shared with zsched().
3603 	 */
3604 
3605 	/*
3606 	 * Reset the encapsulating process contract's zone.
3607 	 */
3608 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
3609 	contract_setzuniqid(ct, zone->zone_uniqid);
3610 
3611 	/*
3612 	 * Create a new task and associate the process with the project keyed
3613 	 * by (projid,zoneid).
3614 	 *
3615 	 * We might as well be in project 0; the global zone's projid doesn't
3616 	 * make much sense in a zone anyhow.
3617 	 *
3618 	 * This also increments zone_ntasks, and returns with p_lock held.
3619 	 */
3620 	tk = task_create(0, zone);
3621 	oldtk = task_join(tk, 0);
3622 	mutex_exit(&cpu_lock);
3623 
3624 	pp->p_flag |= SZONETOP;
3625 	pp->p_zone = zone;
3626 
3627 	/*
3628 	 * call RCTLOP_SET functions on this proc
3629 	 */
3630 	e.rcep_p.zone = zone;
3631 	e.rcep_t = RCENTITY_ZONE;
3632 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
3633 	    RCD_CALLBACK);
3634 	mutex_exit(&pp->p_lock);
3635 
3636 	/*
3637 	 * We don't need to hold any of zsched's locks here; not only do we know
3638 	 * the process and zone aren't going away, we know its session isn't
3639 	 * changing either.
3640 	 *
3641 	 * By joining zsched's session here, we mimic the behavior in the
3642 	 * global zone of init's sid being the pid of sched.  We extend this
3643 	 * to all zlogin-like zone_enter()'ing processes as well.
3644 	 */
3645 	mutex_enter(&pidlock);
3646 	sp = zone->zone_zsched->p_sessp;
3647 	SESS_HOLD(sp);
3648 	mutex_enter(&pp->p_lock);
3649 	pgexit(pp);
3650 	SESS_RELE(pp->p_sessp);
3651 	pp->p_sessp = sp;
3652 	pgjoin(pp, zone->zone_zsched->p_pidp);
3653 	mutex_exit(&pp->p_lock);
3654 	mutex_exit(&pidlock);
3655 
3656 	mutex_exit(&zonehash_lock);
3657 	/*
3658 	 * We're firmly in the zone; let pools progress.
3659 	 */
3660 	pool_unlock();
3661 	task_rele(oldtk);
3662 	/*
3663 	 * We don't need to retain a hold on the zone since we already
3664 	 * incremented zone_ntasks, so the zone isn't going anywhere.
3665 	 */
3666 	zone_rele(zone);
3667 
3668 	/*
3669 	 * Chroot
3670 	 */
3671 	vp = zone->zone_rootvp;
3672 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
3673 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
3674 
3675 	/*
3676 	 * Change process credentials
3677 	 */
3678 	newcr = cralloc();
3679 	mutex_enter(&pp->p_crlock);
3680 	cr = pp->p_cred;
3681 	crcopy_to(cr, newcr);
3682 	crsetzone(newcr, zone);
3683 	pp->p_cred = newcr;
3684 
3685 	/*
3686 	 * Restrict all process privilege sets to zone limit
3687 	 */
3688 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
3689 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
3690 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
3691 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
3692 	mutex_exit(&pp->p_crlock);
3693 	crset(pp, newcr);
3694 
3695 	/*
3696 	 * Adjust upcount to reflect zone entry.
3697 	 */
3698 	uid = crgetruid(newcr);
3699 	mutex_enter(&pidlock);
3700 	upcount_dec(uid, GLOBAL_ZONEID);
3701 	upcount_inc(uid, zoneid);
3702 	mutex_exit(&pidlock);
3703 
3704 	/*
3705 	 * Set up core file path and content.
3706 	 */
3707 	set_core_defaults();
3708 
3709 out:
3710 	/*
3711 	 * Let the other lwps continue.
3712 	 */
3713 	mutex_enter(&pp->p_lock);
3714 	if (curthread != pp->p_agenttp)
3715 		continuelwps(pp);
3716 	mutex_exit(&pp->p_lock);
3717 
3718 	return (err != 0 ? set_errno(err) : 0);
3719 }
3720 
3721 /*
3722  * Systemcall entry point for zone_list(2).
3723  *
3724  * Processes running in a (non-global) zone only see themselves.
3725  */
3726 static int
3727 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
3728 {
3729 	zoneid_t *zoneids;
3730 	zone_t *zone;
3731 	uint_t user_nzones, real_nzones;
3732 	int error = 0;
3733 	uint_t i;
3734 
3735 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
3736 		return (set_errno(EFAULT));
3737 
3738 	if (curproc->p_zone != global_zone) {
3739 		/* just return current zone */
3740 		real_nzones = 1;
3741 		zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
3742 		zoneids[0] = curproc->p_zone->zone_id;
3743 	} else {
3744 		mutex_enter(&zonehash_lock);
3745 		real_nzones = zonecount;
3746 		if (real_nzones) {
3747 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
3748 			    KM_SLEEP);
3749 			i = 0;
3750 			for (zone = list_head(&zone_active); zone != NULL;
3751 			    zone = list_next(&zone_active, zone))
3752 				zoneids[i++] = zone->zone_id;
3753 			ASSERT(i == real_nzones);
3754 		}
3755 		mutex_exit(&zonehash_lock);
3756 	}
3757 
3758 	if (user_nzones > real_nzones)
3759 		user_nzones = real_nzones;
3760 
3761 	if (copyout(&real_nzones, numzones, sizeof (uint_t)) != 0)
3762 		error = EFAULT;
3763 	else if (zoneidlist != NULL && user_nzones != 0) {
3764 		if (copyout(zoneids, zoneidlist,
3765 		    user_nzones * sizeof (zoneid_t)) != 0)
3766 			error = EFAULT;
3767 	}
3768 
3769 	if (real_nzones)
3770 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
3771 
3772 	if (error)
3773 		return (set_errno(error));
3774 	else
3775 		return (0);
3776 }
3777 
3778 /*
3779  * Systemcall entry point for zone_lookup(2).
3780  *
3781  * Non-global zones are only able to see themselves.
3782  */
3783 static zoneid_t
3784 zone_lookup(const char *zone_name)
3785 {
3786 	char *kname;
3787 	zone_t *zone;
3788 	zoneid_t zoneid;
3789 	int err;
3790 
3791 	if (zone_name == NULL) {
3792 		/* return caller's zone id */
3793 		return (getzoneid());
3794 	}
3795 
3796 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3797 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
3798 		kmem_free(kname, ZONENAME_MAX);
3799 		return (set_errno(err));
3800 	}
3801 
3802 	mutex_enter(&zonehash_lock);
3803 	zone = zone_find_all_by_name(kname);
3804 	kmem_free(kname, ZONENAME_MAX);
3805 	if (zone == NULL || zone_status_get(zone) < ZONE_IS_READY ||
3806 	    (curproc->p_zone != global_zone && curproc->p_zone != zone)) {
3807 		/* in non-global zone, can only lookup own name */
3808 		mutex_exit(&zonehash_lock);
3809 		return (set_errno(EINVAL));
3810 	}
3811 	zoneid = zone->zone_id;
3812 	mutex_exit(&zonehash_lock);
3813 	return (zoneid);
3814 }
3815 
3816 static int
3817 zone_version(int *version_arg)
3818 {
3819 	int version = ZONE_SYSCALL_API_VERSION;
3820 
3821 	if (copyout(&version, version_arg, sizeof (int)) != 0)
3822 		return (set_errno(EFAULT));
3823 	return (0);
3824 }
3825 
3826 /* ARGSUSED */
3827 long
3828 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
3829 {
3830 	zone_def zs;
3831 
3832 	switch (cmd) {
3833 	case ZONE_CREATE:
3834 		if (get_udatamodel() == DATAMODEL_NATIVE) {
3835 			if (copyin(arg1, &zs, sizeof (zone_def))) {
3836 				return (set_errno(EFAULT));
3837 			}
3838 		} else {
3839 #ifdef _SYSCALL32_IMPL
3840 			zone_def32 zs32;
3841 
3842 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
3843 				return (set_errno(EFAULT));
3844 			}
3845 			zs.zone_name =
3846 			    (const char *)(unsigned long)zs32.zone_name;
3847 			zs.zone_root =
3848 			    (const char *)(unsigned long)zs32.zone_root;
3849 			zs.zone_privs =
3850 			    (const struct priv_set *)
3851 			    (unsigned long)zs32.zone_privs;
3852 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
3853 			zs.rctlbufsz = zs32.rctlbufsz;
3854 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
3855 			zs.zfsbufsz = zs32.zfsbufsz;
3856 			zs.extended_error =
3857 			    (int *)(unsigned long)zs32.extended_error;
3858 #else
3859 			panic("get_udatamodel() returned bogus result\n");
3860 #endif
3861 		}
3862 
3863 		return (zone_create(zs.zone_name, zs.zone_root,
3864 		    zs.zone_privs, zs.zone_privssz,
3865 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
3866 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
3867 		    zs.extended_error));
3868 	case ZONE_BOOT:
3869 		return (zone_boot((zoneid_t)(uintptr_t)arg1,
3870 		    (const char *)arg2));
3871 	case ZONE_DESTROY:
3872 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
3873 	case ZONE_GETATTR:
3874 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
3875 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
3876 	case ZONE_ENTER:
3877 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
3878 	case ZONE_LIST:
3879 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
3880 	case ZONE_SHUTDOWN:
3881 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
3882 	case ZONE_LOOKUP:
3883 		return (zone_lookup((const char *)arg1));
3884 	case ZONE_VERSION:
3885 		return (zone_version((int *)arg1));
3886 	default:
3887 		return (set_errno(EINVAL));
3888 	}
3889 }
3890 
3891 struct zarg {
3892 	zone_t *zone;
3893 	zone_cmd_arg_t arg;
3894 };
3895 
3896 static int
3897 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
3898 {
3899 	char *buf;
3900 	size_t buflen;
3901 	int error;
3902 
3903 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
3904 	buf = kmem_alloc(buflen, KM_SLEEP);
3905 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
3906 	error = door_ki_open(buf, doorp);
3907 	kmem_free(buf, buflen);
3908 	return (error);
3909 }
3910 
3911 static void
3912 zone_release_door(door_handle_t *doorp)
3913 {
3914 	door_ki_rele(*doorp);
3915 	*doorp = NULL;
3916 }
3917 
3918 static void
3919 zone_ki_call_zoneadmd(struct zarg *zargp)
3920 {
3921 	door_handle_t door = NULL;
3922 	door_arg_t darg, save_arg;
3923 	char *zone_name;
3924 	size_t zone_namelen;
3925 	zoneid_t zoneid;
3926 	zone_t *zone;
3927 	zone_cmd_arg_t arg;
3928 	uint64_t uniqid;
3929 	size_t size;
3930 	int error;
3931 	int retry;
3932 
3933 	zone = zargp->zone;
3934 	arg = zargp->arg;
3935 	kmem_free(zargp, sizeof (*zargp));
3936 
3937 	zone_namelen = strlen(zone->zone_name) + 1;
3938 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
3939 	bcopy(zone->zone_name, zone_name, zone_namelen);
3940 	zoneid = zone->zone_id;
3941 	uniqid = zone->zone_uniqid;
3942 	/*
3943 	 * zoneadmd may be down, but at least we can empty out the zone.
3944 	 * We can ignore the return value of zone_empty() since we're called
3945 	 * from a kernel thread and know we won't be delivered any signals.
3946 	 */
3947 	ASSERT(curproc == &p0);
3948 	(void) zone_empty(zone);
3949 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
3950 	zone_rele(zone);
3951 
3952 	size = sizeof (arg);
3953 	darg.rbuf = (char *)&arg;
3954 	darg.data_ptr = (char *)&arg;
3955 	darg.rsize = size;
3956 	darg.data_size = size;
3957 	darg.desc_ptr = NULL;
3958 	darg.desc_num = 0;
3959 
3960 	save_arg = darg;
3961 	/*
3962 	 * Since we're not holding a reference to the zone, any number of
3963 	 * things can go wrong, including the zone disappearing before we get a
3964 	 * chance to talk to zoneadmd.
3965 	 */
3966 	for (retry = 0; /* forever */; retry++) {
3967 		if (door == NULL &&
3968 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
3969 			goto next;
3970 		}
3971 		ASSERT(door != NULL);
3972 
3973 		if ((error = door_ki_upcall(door, &darg)) == 0) {
3974 			break;
3975 		}
3976 		switch (error) {
3977 		case EINTR:
3978 			/* FALLTHROUGH */
3979 		case EAGAIN:	/* process may be forking */
3980 			/*
3981 			 * Back off for a bit
3982 			 */
3983 			break;
3984 		case EBADF:
3985 			zone_release_door(&door);
3986 			if (zone_lookup_door(zone_name, &door) != 0) {
3987 				/*
3988 				 * zoneadmd may be dead, but it may come back to
3989 				 * life later.
3990 				 */
3991 				break;
3992 			}
3993 			break;
3994 		default:
3995 			cmn_err(CE_WARN,
3996 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
3997 			    error);
3998 			goto out;
3999 		}
4000 next:
4001 		/*
4002 		 * If this isn't the same zone_t that we originally had in mind,
4003 		 * then this is the same as if two kadmin requests come in at
4004 		 * the same time: the first one wins.  This means we lose, so we
4005 		 * bail.
4006 		 */
4007 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
4008 			/*
4009 			 * Problem is solved.
4010 			 */
4011 			break;
4012 		}
4013 		if (zone->zone_uniqid != uniqid) {
4014 			/*
4015 			 * zoneid recycled
4016 			 */
4017 			zone_rele(zone);
4018 			break;
4019 		}
4020 		/*
4021 		 * We could zone_status_timedwait(), but there doesn't seem to
4022 		 * be much point in doing that (plus, it would mean that
4023 		 * zone_free() isn't called until this thread exits).
4024 		 */
4025 		zone_rele(zone);
4026 		delay(hz);
4027 		darg = save_arg;
4028 	}
4029 out:
4030 	if (door != NULL) {
4031 		zone_release_door(&door);
4032 	}
4033 	kmem_free(zone_name, zone_namelen);
4034 	thread_exit();
4035 }
4036 
4037 /*
4038  * Entry point for uadmin() to tell the zone to go away or reboot.  The caller
4039  * is a process in the zone to be modified.
4040  *
4041  * In order to shutdown the zone, we will hand off control to zoneadmd
4042  * (running in the global zone) via a door.  We do a half-hearted job at
4043  * killing all processes in the zone, create a kernel thread to contact
4044  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
4045  * a form of generation number used to let zoneadmd (as well as
4046  * zone_destroy()) know exactly which zone they're re talking about.
4047  */
4048 int
4049 zone_uadmin(int cmd, int fcn, cred_t *credp)
4050 {
4051 	struct zarg *zargp;
4052 	zone_cmd_t zcmd;
4053 	zone_t *zone;
4054 
4055 	zone = curproc->p_zone;
4056 	ASSERT(getzoneid() != GLOBAL_ZONEID);
4057 
4058 	switch (cmd) {
4059 	case A_SHUTDOWN:
4060 		switch (fcn) {
4061 		case AD_HALT:
4062 		case AD_POWEROFF:
4063 			zcmd = Z_HALT;
4064 			break;
4065 		case AD_BOOT:
4066 			zcmd = Z_REBOOT;
4067 			break;
4068 		case AD_IBOOT:
4069 		case AD_SBOOT:
4070 		case AD_SIBOOT:
4071 		case AD_NOSYNC:
4072 			return (ENOTSUP);
4073 		default:
4074 			return (EINVAL);
4075 		}
4076 		break;
4077 	case A_REBOOT:
4078 		zcmd = Z_REBOOT;
4079 		break;
4080 	case A_FTRACE:
4081 	case A_REMOUNT:
4082 	case A_FREEZE:
4083 	case A_DUMP:
4084 		return (ENOTSUP);
4085 	default:
4086 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
4087 		return (EINVAL);
4088 	}
4089 
4090 	if (secpolicy_zone_admin(credp, B_FALSE))
4091 		return (EPERM);
4092 	mutex_enter(&zone_status_lock);
4093 	/*
4094 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
4095 	 * is in the zone.
4096 	 */
4097 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
4098 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
4099 		/*
4100 		 * This zone is already on its way down.
4101 		 */
4102 		mutex_exit(&zone_status_lock);
4103 		return (0);
4104 	}
4105 	/*
4106 	 * Prevent future zone_enter()s
4107 	 */
4108 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4109 	mutex_exit(&zone_status_lock);
4110 
4111 	/*
4112 	 * Kill everyone now and call zoneadmd later.
4113 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
4114 	 * later.
4115 	 */
4116 	killall(zone->zone_id);
4117 	/*
4118 	 * Now, create the thread to contact zoneadmd and do the rest of the
4119 	 * work.  This thread can't be created in our zone otherwise
4120 	 * zone_destroy() would deadlock.
4121 	 */
4122 	zargp = kmem_alloc(sizeof (*zargp), KM_SLEEP);
4123 	zargp->arg.cmd = zcmd;
4124 	zargp->arg.uniqid = zone->zone_uniqid;
4125 	(void) strcpy(zargp->arg.locale, "C");
4126 	zone_hold(zargp->zone = zone);
4127 
4128 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
4129 	    TS_RUN, minclsyspri);
4130 	exit(CLD_EXITED, 0);
4131 
4132 	return (EINVAL);
4133 }
4134 
4135 /*
4136  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
4137  * status to ZONE_IS_SHUTTING_DOWN.
4138  */
4139 void
4140 zone_shutdown_global(void)
4141 {
4142 	ASSERT(curproc->p_zone == global_zone);
4143 
4144 	mutex_enter(&zone_status_lock);
4145 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
4146 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
4147 	mutex_exit(&zone_status_lock);
4148 }
4149 
4150 /*
4151  * Returns true if the named dataset is visible in the current zone.
4152  * The 'write' parameter is set to 1 if the dataset is also writable.
4153  */
4154 int
4155 zone_dataset_visible(const char *dataset, int *write)
4156 {
4157 	zone_dataset_t *zd;
4158 	size_t len;
4159 	zone_t *zone = curproc->p_zone;
4160 
4161 	if (dataset[0] == '\0')
4162 		return (0);
4163 
4164 	/*
4165 	 * Walk the list once, looking for datasets which match exactly, or
4166 	 * specify a dataset underneath an exported dataset.  If found, return
4167 	 * true and note that it is writable.
4168 	 */
4169 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
4170 	    zd = list_next(&zone->zone_datasets, zd)) {
4171 
4172 		len = strlen(zd->zd_dataset);
4173 		if (strlen(dataset) >= len &&
4174 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
4175 		    (dataset[len] == '\0' || dataset[len] == '/' ||
4176 		    dataset[len] == '@')) {
4177 			if (write)
4178 				*write = 1;
4179 			return (1);
4180 		}
4181 	}
4182 
4183 	/*
4184 	 * Walk the list a second time, searching for datasets which are parents
4185 	 * of exported datasets.  These should be visible, but read-only.
4186 	 *
4187 	 * Note that we also have to support forms such as 'pool/dataset/', with
4188 	 * a trailing slash.
4189 	 */
4190 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
4191 	    zd = list_next(&zone->zone_datasets, zd)) {
4192 
4193 		len = strlen(dataset);
4194 		if (dataset[len - 1] == '/')
4195 			len--;	/* Ignore trailing slash */
4196 		if (len < strlen(zd->zd_dataset) &&
4197 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
4198 		    zd->zd_dataset[len] == '/') {
4199 			if (write)
4200 				*write = 0;
4201 			return (1);
4202 		}
4203 	}
4204 
4205 	return (0);
4206 }
4207