1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 65 * ready. The zone is made visible after the ZSD constructor callbacks are 66 * executed. A zone remains in this state until it transitions into 67 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 68 * 69 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 70 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 71 * state. 72 * 73 * ZONE_IS_RUNNING: The zone is open for business: zsched has 74 * successfully started init. A zone remains in this state until 75 * zone_shutdown() is called. 76 * 77 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 78 * killing all processes running in the zone. The zone remains 79 * in this state until there are no more user processes running in the zone. 80 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 81 * Since zone_shutdown() is restartable, it may be called successfully 82 * multiple times for the same zone_t. Setting of the zone's state to 83 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 84 * the zone's status without worrying about it being a moving target. 85 * 86 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 87 * are no more user processes in the zone. The zone remains in this 88 * state until there are no more kernel threads associated with the 89 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 90 * fail. 91 * 92 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 93 * have exited. zone_shutdown() returns. Henceforth it is not possible to 94 * join the zone or create kernel threads therein. 95 * 96 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 97 * remains in this state until zsched exits. Calls to zone_find_by_*() 98 * return NULL from now on. 99 * 100 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 101 * processes or threads doing work on behalf of the zone. The zone is 102 * removed from the list of active zones. zone_destroy() returns, and 103 * the zone can be recreated. 104 * 105 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 106 * callbacks are executed, and all memory associated with the zone is 107 * freed. 108 * 109 * Threads can wait for the zone to enter a requested state by using 110 * zone_status_wait() or zone_status_timedwait() with the desired 111 * state passed in as an argument. Zone state transitions are 112 * uni-directional; it is not possible to move back to an earlier state. 113 * 114 * 115 * Zone-Specific Data: 116 * 117 * Subsystems needing to maintain zone-specific data can store that 118 * data using the ZSD mechanism. This provides a zone-specific data 119 * store, similar to thread-specific data (see pthread_getspecific(3C) 120 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 121 * to register callbacks to be invoked when a zone is created, shut 122 * down, or destroyed. This can be used to initialize zone-specific 123 * data for new zones and to clean up when zones go away. 124 * 125 * 126 * Data Structures: 127 * 128 * The per-zone structure (zone_t) is reference counted, and freed 129 * when all references are released. zone_hold and zone_rele can be 130 * used to adjust the reference count. In addition, reference counts 131 * associated with the cred_t structure are tracked separately using 132 * zone_cred_hold and zone_cred_rele. 133 * 134 * Pointers to active zone_t's are stored in two hash tables; one 135 * for searching by id, the other for searching by name. Lookups 136 * can be performed on either basis, using zone_find_by_id and 137 * zone_find_by_name. Both return zone_t pointers with the zone 138 * held, so zone_rele should be called when the pointer is no longer 139 * needed. Zones can also be searched by path; zone_find_by_path 140 * returns the zone with which a path name is associated (global 141 * zone if the path is not within some other zone's file system 142 * hierarchy). This currently requires iterating through each zone, 143 * so it is slower than an id or name search via a hash table. 144 * 145 * 146 * Locking: 147 * 148 * zonehash_lock: This is a top-level global lock used to protect the 149 * zone hash tables and lists. Zones cannot be created or destroyed 150 * while this lock is held. 151 * zone_status_lock: This is a global lock protecting zone state. 152 * Zones cannot change state while this lock is held. It also 153 * protects the list of kernel threads associated with a zone. 154 * zone_lock: This is a per-zone lock used to protect several fields of 155 * the zone_t (see <sys/zone.h> for details). In addition, holding 156 * this lock means that the zone cannot go away. 157 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 158 * related to the zone.max-lwps rctl. 159 * zone_mem_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-locked-memory and zone.max-swap rctls. 161 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 162 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 163 * list (a list of zones in the ZONE_IS_DEAD state). 164 * 165 * Ordering requirements: 166 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 167 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 168 * 169 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 170 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 171 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 172 * 173 * Blocking memory allocations are permitted while holding any of the 174 * zone locks. 175 * 176 * 177 * System Call Interface: 178 * 179 * The zone subsystem can be managed and queried from user level with 180 * the following system calls (all subcodes of the primary "zone" 181 * system call): 182 * - zone_create: creates a zone with selected attributes (name, 183 * root path, privileges, resource controls, ZFS datasets) 184 * - zone_enter: allows the current process to enter a zone 185 * - zone_getattr: reports attributes of a zone 186 * - zone_setattr: set attributes of a zone 187 * - zone_boot: set 'init' running for the zone 188 * - zone_list: lists all zones active in the system 189 * - zone_lookup: looks up zone id based on name 190 * - zone_shutdown: initiates shutdown process (see states above) 191 * - zone_destroy: completes shutdown process (see states above) 192 * 193 */ 194 195 #include <sys/priv_impl.h> 196 #include <sys/cred.h> 197 #include <c2/audit.h> 198 #include <sys/debug.h> 199 #include <sys/file.h> 200 #include <sys/kmem.h> 201 #include <sys/kstat.h> 202 #include <sys/mutex.h> 203 #include <sys/note.h> 204 #include <sys/pathname.h> 205 #include <sys/proc.h> 206 #include <sys/project.h> 207 #include <sys/sysevent.h> 208 #include <sys/task.h> 209 #include <sys/systm.h> 210 #include <sys/types.h> 211 #include <sys/utsname.h> 212 #include <sys/vnode.h> 213 #include <sys/vfs.h> 214 #include <sys/systeminfo.h> 215 #include <sys/policy.h> 216 #include <sys/cred_impl.h> 217 #include <sys/contract_impl.h> 218 #include <sys/contract/process_impl.h> 219 #include <sys/class.h> 220 #include <sys/pool.h> 221 #include <sys/pool_pset.h> 222 #include <sys/pset.h> 223 #include <sys/sysmacros.h> 224 #include <sys/callb.h> 225 #include <sys/vmparam.h> 226 #include <sys/corectl.h> 227 #include <sys/ipc_impl.h> 228 229 #include <sys/door.h> 230 #include <sys/cpuvar.h> 231 232 #include <sys/uadmin.h> 233 #include <sys/session.h> 234 #include <sys/cmn_err.h> 235 #include <sys/modhash.h> 236 #include <sys/sunddi.h> 237 #include <sys/nvpair.h> 238 #include <sys/rctl.h> 239 #include <sys/fss.h> 240 #include <sys/brand.h> 241 #include <sys/zone.h> 242 #include <sys/tsol/label.h> 243 244 #include <vm/seg.h> 245 246 /* 247 * cv used to signal that all references to the zone have been released. This 248 * needs to be global since there may be multiple waiters, and the first to 249 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 250 */ 251 static kcondvar_t zone_destroy_cv; 252 /* 253 * Lock used to serialize access to zone_cv. This could have been per-zone, 254 * but then we'd need another lock for zone_destroy_cv, and why bother? 255 */ 256 static kmutex_t zone_status_lock; 257 258 /* 259 * ZSD-related global variables. 260 */ 261 static kmutex_t zsd_key_lock; /* protects the following two */ 262 /* 263 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 264 */ 265 static zone_key_t zsd_keyval = 0; 266 /* 267 * Global list of registered keys. We use this when a new zone is created. 268 */ 269 static list_t zsd_registered_keys; 270 271 int zone_hash_size = 256; 272 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 273 static kmutex_t zonehash_lock; 274 static uint_t zonecount; 275 static id_space_t *zoneid_space; 276 277 /* 278 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 279 * kernel proper runs, and which manages all other zones. 280 * 281 * Although not declared as static, the variable "zone0" should not be used 282 * except for by code that needs to reference the global zone early on in boot, 283 * before it is fully initialized. All other consumers should use 284 * 'global_zone'. 285 */ 286 zone_t zone0; 287 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 288 289 /* 290 * List of active zones, protected by zonehash_lock. 291 */ 292 static list_t zone_active; 293 294 /* 295 * List of destroyed zones that still have outstanding cred references. 296 * Used for debugging. Uses a separate lock to avoid lock ordering 297 * problems in zone_free. 298 */ 299 static list_t zone_deathrow; 300 static kmutex_t zone_deathrow_lock; 301 302 /* number of zones is limited by virtual interface limit in IP */ 303 uint_t maxzones = 8192; 304 305 /* Event channel to sent zone state change notifications */ 306 evchan_t *zone_event_chan; 307 308 /* 309 * This table holds the mapping from kernel zone states to 310 * states visible in the state notification API. 311 * The idea is that we only expose "obvious" states and 312 * do not expose states which are just implementation details. 313 */ 314 const char *zone_status_table[] = { 315 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 316 ZONE_EVENT_READY, /* ready */ 317 ZONE_EVENT_READY, /* booting */ 318 ZONE_EVENT_RUNNING, /* running */ 319 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 320 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 321 ZONE_EVENT_SHUTTING_DOWN, /* down */ 322 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 323 ZONE_EVENT_UNINITIALIZED, /* dead */ 324 }; 325 326 /* 327 * This isn't static so lint doesn't complain. 328 */ 329 rctl_hndl_t rc_zone_cpu_shares; 330 rctl_hndl_t rc_zone_locked_mem; 331 rctl_hndl_t rc_zone_max_swap; 332 rctl_hndl_t rc_zone_nlwps; 333 rctl_hndl_t rc_zone_shmmax; 334 rctl_hndl_t rc_zone_shmmni; 335 rctl_hndl_t rc_zone_semmni; 336 rctl_hndl_t rc_zone_msgmni; 337 /* 338 * Synchronization primitives used to synchronize between mounts and zone 339 * creation/destruction. 340 */ 341 static int mounts_in_progress; 342 static kcondvar_t mount_cv; 343 static kmutex_t mount_lock; 344 345 const char * const zone_default_initname = "/sbin/init"; 346 static char * const zone_prefix = "/zone/"; 347 static int zone_shutdown(zoneid_t zoneid); 348 349 /* 350 * Bump this number when you alter the zone syscall interfaces; this is 351 * because we need to have support for previous API versions in libc 352 * to support patching; libc calls into the kernel to determine this number. 353 * 354 * Version 1 of the API is the version originally shipped with Solaris 10 355 * Version 2 alters the zone_create system call in order to support more 356 * arguments by moving the args into a structure; and to do better 357 * error reporting when zone_create() fails. 358 * Version 3 alters the zone_create system call in order to support the 359 * import of ZFS datasets to zones. 360 * Version 4 alters the zone_create system call in order to support 361 * Trusted Extensions. 362 * Version 5 alters the zone_boot system call, and converts its old 363 * bootargs parameter to be set by the zone_setattr API instead. 364 */ 365 static const int ZONE_SYSCALL_API_VERSION = 5; 366 367 /* 368 * Certain filesystems (such as NFS and autofs) need to know which zone 369 * the mount is being placed in. Because of this, we need to be able to 370 * ensure that a zone isn't in the process of being created such that 371 * nfs_mount() thinks it is in the global zone, while by the time it 372 * gets added the list of mounted zones, it ends up on zoneA's mount 373 * list. 374 * 375 * The following functions: block_mounts()/resume_mounts() and 376 * mount_in_progress()/mount_completed() are used by zones and the VFS 377 * layer (respectively) to synchronize zone creation and new mounts. 378 * 379 * The semantics are like a reader-reader lock such that there may 380 * either be multiple mounts (or zone creations, if that weren't 381 * serialized by zonehash_lock) in progress at the same time, but not 382 * both. 383 * 384 * We use cv's so the user can ctrl-C out of the operation if it's 385 * taking too long. 386 * 387 * The semantics are such that there is unfair bias towards the 388 * "current" operation. This means that zone creations may starve if 389 * there is a rapid succession of new mounts coming in to the system, or 390 * there is a remote possibility that zones will be created at such a 391 * rate that new mounts will not be able to proceed. 392 */ 393 /* 394 * Prevent new mounts from progressing to the point of calling 395 * VFS_MOUNT(). If there are already mounts in this "region", wait for 396 * them to complete. 397 */ 398 static int 399 block_mounts(void) 400 { 401 int retval = 0; 402 403 /* 404 * Since it may block for a long time, block_mounts() shouldn't be 405 * called with zonehash_lock held. 406 */ 407 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 408 mutex_enter(&mount_lock); 409 while (mounts_in_progress > 0) { 410 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 411 goto signaled; 412 } 413 /* 414 * A negative value of mounts_in_progress indicates that mounts 415 * have been blocked by (-mounts_in_progress) different callers. 416 */ 417 mounts_in_progress--; 418 retval = 1; 419 signaled: 420 mutex_exit(&mount_lock); 421 return (retval); 422 } 423 424 /* 425 * The VFS layer may progress with new mounts as far as we're concerned. 426 * Allow them to progress if we were the last obstacle. 427 */ 428 static void 429 resume_mounts(void) 430 { 431 mutex_enter(&mount_lock); 432 if (++mounts_in_progress == 0) 433 cv_broadcast(&mount_cv); 434 mutex_exit(&mount_lock); 435 } 436 437 /* 438 * The VFS layer is busy with a mount; zones should wait until all 439 * mounts are completed to progress. 440 */ 441 void 442 mount_in_progress(void) 443 { 444 mutex_enter(&mount_lock); 445 while (mounts_in_progress < 0) 446 cv_wait(&mount_cv, &mount_lock); 447 mounts_in_progress++; 448 mutex_exit(&mount_lock); 449 } 450 451 /* 452 * VFS is done with one mount; wake up any waiting block_mounts() 453 * callers if this is the last mount. 454 */ 455 void 456 mount_completed(void) 457 { 458 mutex_enter(&mount_lock); 459 if (--mounts_in_progress == 0) 460 cv_broadcast(&mount_cv); 461 mutex_exit(&mount_lock); 462 } 463 464 /* 465 * ZSD routines. 466 * 467 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 468 * defined by the pthread_key_create() and related interfaces. 469 * 470 * Kernel subsystems may register one or more data items and/or 471 * callbacks to be executed when a zone is created, shutdown, or 472 * destroyed. 473 * 474 * Unlike the thread counterpart, destructor callbacks will be executed 475 * even if the data pointer is NULL and/or there are no constructor 476 * callbacks, so it is the responsibility of such callbacks to check for 477 * NULL data values if necessary. 478 * 479 * The locking strategy and overall picture is as follows: 480 * 481 * When someone calls zone_key_create(), a template ZSD entry is added to the 482 * global list "zsd_registered_keys", protected by zsd_key_lock. The 483 * constructor callback is called immediately on all existing zones, and a 484 * copy of the ZSD entry added to the per-zone zone_zsd list (protected by 485 * zone_lock). As this operation requires the list of zones, the list of 486 * registered keys, and the per-zone list of ZSD entries to remain constant 487 * throughout the entire operation, it must grab zonehash_lock, zone_lock for 488 * all existing zones, and zsd_key_lock, in that order. Similar locking is 489 * needed when zone_key_delete() is called. It is thus sufficient to hold 490 * zsd_key_lock *or* zone_lock to prevent additions to or removals from the 491 * per-zone zone_zsd list. 492 * 493 * Note that this implementation does not make a copy of the ZSD entry if a 494 * constructor callback is not provided. A zone_getspecific() on such an 495 * uninitialized ZSD entry will return NULL. 496 * 497 * When new zones are created constructor callbacks for all registered ZSD 498 * entries will be called. 499 * 500 * The framework does not provide any locking around zone_getspecific() and 501 * zone_setspecific() apart from that needed for internal consistency, so 502 * callers interested in atomic "test-and-set" semantics will need to provide 503 * their own locking. 504 */ 505 void 506 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 507 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 508 { 509 struct zsd_entry *zsdp; 510 struct zsd_entry *t; 511 struct zone *zone; 512 513 zsdp = kmem_alloc(sizeof (*zsdp), KM_SLEEP); 514 zsdp->zsd_data = NULL; 515 zsdp->zsd_create = create; 516 zsdp->zsd_shutdown = shutdown; 517 zsdp->zsd_destroy = destroy; 518 519 mutex_enter(&zonehash_lock); /* stop the world */ 520 for (zone = list_head(&zone_active); zone != NULL; 521 zone = list_next(&zone_active, zone)) 522 mutex_enter(&zone->zone_lock); /* lock all zones */ 523 524 mutex_enter(&zsd_key_lock); 525 *keyp = zsdp->zsd_key = ++zsd_keyval; 526 ASSERT(zsd_keyval != 0); 527 list_insert_tail(&zsd_registered_keys, zsdp); 528 mutex_exit(&zsd_key_lock); 529 530 if (create != NULL) { 531 for (zone = list_head(&zone_active); zone != NULL; 532 zone = list_next(&zone_active, zone)) { 533 t = kmem_alloc(sizeof (*t), KM_SLEEP); 534 t->zsd_key = *keyp; 535 t->zsd_data = (*create)(zone->zone_id); 536 t->zsd_create = create; 537 t->zsd_shutdown = shutdown; 538 t->zsd_destroy = destroy; 539 list_insert_tail(&zone->zone_zsd, t); 540 } 541 } 542 for (zone = list_head(&zone_active); zone != NULL; 543 zone = list_next(&zone_active, zone)) 544 mutex_exit(&zone->zone_lock); 545 mutex_exit(&zonehash_lock); 546 } 547 548 /* 549 * Helper function to find the zsd_entry associated with the key in the 550 * given list. 551 */ 552 static struct zsd_entry * 553 zsd_find(list_t *l, zone_key_t key) 554 { 555 struct zsd_entry *zsd; 556 557 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 558 if (zsd->zsd_key == key) { 559 /* 560 * Move to head of list to keep list in MRU order. 561 */ 562 if (zsd != list_head(l)) { 563 list_remove(l, zsd); 564 list_insert_head(l, zsd); 565 } 566 return (zsd); 567 } 568 } 569 return (NULL); 570 } 571 572 /* 573 * Function called when a module is being unloaded, or otherwise wishes 574 * to unregister its ZSD key and callbacks. 575 */ 576 int 577 zone_key_delete(zone_key_t key) 578 { 579 struct zsd_entry *zsdp = NULL; 580 zone_t *zone; 581 582 mutex_enter(&zonehash_lock); /* Zone create/delete waits for us */ 583 for (zone = list_head(&zone_active); zone != NULL; 584 zone = list_next(&zone_active, zone)) 585 mutex_enter(&zone->zone_lock); /* lock all zones */ 586 587 mutex_enter(&zsd_key_lock); 588 zsdp = zsd_find(&zsd_registered_keys, key); 589 if (zsdp == NULL) 590 goto notfound; 591 list_remove(&zsd_registered_keys, zsdp); 592 mutex_exit(&zsd_key_lock); 593 594 for (zone = list_head(&zone_active); zone != NULL; 595 zone = list_next(&zone_active, zone)) { 596 struct zsd_entry *del; 597 void *data; 598 599 if (!(zone->zone_flags & ZF_DESTROYED)) { 600 del = zsd_find(&zone->zone_zsd, key); 601 if (del != NULL) { 602 data = del->zsd_data; 603 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 604 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 605 list_remove(&zone->zone_zsd, del); 606 kmem_free(del, sizeof (*del)); 607 } else { 608 data = NULL; 609 } 610 if (zsdp->zsd_shutdown) 611 zsdp->zsd_shutdown(zone->zone_id, data); 612 if (zsdp->zsd_destroy) 613 zsdp->zsd_destroy(zone->zone_id, data); 614 } 615 mutex_exit(&zone->zone_lock); 616 } 617 mutex_exit(&zonehash_lock); 618 kmem_free(zsdp, sizeof (*zsdp)); 619 return (0); 620 621 notfound: 622 mutex_exit(&zsd_key_lock); 623 for (zone = list_head(&zone_active); zone != NULL; 624 zone = list_next(&zone_active, zone)) 625 mutex_exit(&zone->zone_lock); 626 mutex_exit(&zonehash_lock); 627 return (-1); 628 } 629 630 /* 631 * ZSD counterpart of pthread_setspecific(). 632 */ 633 int 634 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 635 { 636 struct zsd_entry *t; 637 struct zsd_entry *zsdp = NULL; 638 639 mutex_enter(&zone->zone_lock); 640 t = zsd_find(&zone->zone_zsd, key); 641 if (t != NULL) { 642 /* 643 * Replace old value with new 644 */ 645 t->zsd_data = (void *)data; 646 mutex_exit(&zone->zone_lock); 647 return (0); 648 } 649 /* 650 * If there was no previous value, go through the list of registered 651 * keys. 652 * 653 * We avoid grabbing zsd_key_lock until we are sure we need it; this is 654 * necessary for shutdown callbacks to be able to execute without fear 655 * of deadlock. 656 */ 657 mutex_enter(&zsd_key_lock); 658 zsdp = zsd_find(&zsd_registered_keys, key); 659 if (zsdp == NULL) { /* Key was not registered */ 660 mutex_exit(&zsd_key_lock); 661 mutex_exit(&zone->zone_lock); 662 return (-1); 663 } 664 665 /* 666 * Add a zsd_entry to this zone, using the template we just retrieved 667 * to initialize the constructor and destructor(s). 668 */ 669 t = kmem_alloc(sizeof (*t), KM_SLEEP); 670 t->zsd_key = key; 671 t->zsd_data = (void *)data; 672 t->zsd_create = zsdp->zsd_create; 673 t->zsd_shutdown = zsdp->zsd_shutdown; 674 t->zsd_destroy = zsdp->zsd_destroy; 675 list_insert_tail(&zone->zone_zsd, t); 676 mutex_exit(&zsd_key_lock); 677 mutex_exit(&zone->zone_lock); 678 return (0); 679 } 680 681 /* 682 * ZSD counterpart of pthread_getspecific(). 683 */ 684 void * 685 zone_getspecific(zone_key_t key, zone_t *zone) 686 { 687 struct zsd_entry *t; 688 void *data; 689 690 mutex_enter(&zone->zone_lock); 691 t = zsd_find(&zone->zone_zsd, key); 692 data = (t == NULL ? NULL : t->zsd_data); 693 mutex_exit(&zone->zone_lock); 694 return (data); 695 } 696 697 /* 698 * Function used to initialize a zone's list of ZSD callbacks and data 699 * when the zone is being created. The callbacks are initialized from 700 * the template list (zsd_registered_keys), and the constructor 701 * callback executed (if one exists). 702 * 703 * This is called before the zone is made publicly available, hence no 704 * need to grab zone_lock. 705 * 706 * Although we grab and release zsd_key_lock, new entries cannot be 707 * added to or removed from the zsd_registered_keys list until we 708 * release zonehash_lock, so there isn't a window for a 709 * zone_key_create() to come in after we've dropped zsd_key_lock but 710 * before the zone is added to the zone list, such that the constructor 711 * callbacks aren't executed for the new zone. 712 */ 713 static void 714 zone_zsd_configure(zone_t *zone) 715 { 716 struct zsd_entry *zsdp; 717 struct zsd_entry *t; 718 zoneid_t zoneid = zone->zone_id; 719 720 ASSERT(MUTEX_HELD(&zonehash_lock)); 721 ASSERT(list_head(&zone->zone_zsd) == NULL); 722 mutex_enter(&zsd_key_lock); 723 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 724 zsdp = list_next(&zsd_registered_keys, zsdp)) { 725 if (zsdp->zsd_create != NULL) { 726 t = kmem_alloc(sizeof (*t), KM_SLEEP); 727 t->zsd_key = zsdp->zsd_key; 728 t->zsd_create = zsdp->zsd_create; 729 t->zsd_data = (*t->zsd_create)(zoneid); 730 t->zsd_shutdown = zsdp->zsd_shutdown; 731 t->zsd_destroy = zsdp->zsd_destroy; 732 list_insert_tail(&zone->zone_zsd, t); 733 } 734 } 735 mutex_exit(&zsd_key_lock); 736 } 737 738 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 739 740 /* 741 * Helper function to execute shutdown or destructor callbacks. 742 */ 743 static void 744 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 745 { 746 struct zsd_entry *zsdp; 747 struct zsd_entry *t; 748 zoneid_t zoneid = zone->zone_id; 749 750 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 751 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 752 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 753 754 mutex_enter(&zone->zone_lock); 755 if (ct == ZSD_DESTROY) { 756 if (zone->zone_flags & ZF_DESTROYED) { 757 /* 758 * Make sure destructors are only called once. 759 */ 760 mutex_exit(&zone->zone_lock); 761 return; 762 } 763 zone->zone_flags |= ZF_DESTROYED; 764 } 765 mutex_exit(&zone->zone_lock); 766 767 /* 768 * Both zsd_key_lock and zone_lock need to be held in order to add or 769 * remove a ZSD key, (either globally as part of 770 * zone_key_create()/zone_key_delete(), or on a per-zone basis, as is 771 * possible through zone_setspecific()), so it's sufficient to hold 772 * zsd_key_lock here. 773 * 774 * This is a good thing, since we don't want to recursively try to grab 775 * zone_lock if a callback attempts to do something like a crfree() or 776 * zone_rele(). 777 */ 778 mutex_enter(&zsd_key_lock); 779 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 780 zsdp = list_next(&zsd_registered_keys, zsdp)) { 781 zone_key_t key = zsdp->zsd_key; 782 783 /* Skip if no callbacks registered */ 784 if (ct == ZSD_SHUTDOWN && zsdp->zsd_shutdown == NULL) 785 continue; 786 if (ct == ZSD_DESTROY && zsdp->zsd_destroy == NULL) 787 continue; 788 /* 789 * Call the callback with the zone-specific data if we can find 790 * any, otherwise with NULL. 791 */ 792 t = zsd_find(&zone->zone_zsd, key); 793 if (t != NULL) { 794 if (ct == ZSD_SHUTDOWN) { 795 t->zsd_shutdown(zoneid, t->zsd_data); 796 } else { 797 ASSERT(ct == ZSD_DESTROY); 798 t->zsd_destroy(zoneid, t->zsd_data); 799 } 800 } else { 801 if (ct == ZSD_SHUTDOWN) { 802 zsdp->zsd_shutdown(zoneid, NULL); 803 } else { 804 ASSERT(ct == ZSD_DESTROY); 805 zsdp->zsd_destroy(zoneid, NULL); 806 } 807 } 808 } 809 mutex_exit(&zsd_key_lock); 810 } 811 812 /* 813 * Called when the zone is going away; free ZSD-related memory, and 814 * destroy the zone_zsd list. 815 */ 816 static void 817 zone_free_zsd(zone_t *zone) 818 { 819 struct zsd_entry *t, *next; 820 821 /* 822 * Free all the zsd_entry's we had on this zone. 823 */ 824 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 825 next = list_next(&zone->zone_zsd, t); 826 list_remove(&zone->zone_zsd, t); 827 kmem_free(t, sizeof (*t)); 828 } 829 list_destroy(&zone->zone_zsd); 830 } 831 832 /* 833 * Frees memory associated with the zone dataset list. 834 */ 835 static void 836 zone_free_datasets(zone_t *zone) 837 { 838 zone_dataset_t *t, *next; 839 840 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 841 next = list_next(&zone->zone_datasets, t); 842 list_remove(&zone->zone_datasets, t); 843 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 844 kmem_free(t, sizeof (*t)); 845 } 846 list_destroy(&zone->zone_datasets); 847 } 848 849 /* 850 * zone.cpu-shares resource control support. 851 */ 852 /*ARGSUSED*/ 853 static rctl_qty_t 854 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 855 { 856 ASSERT(MUTEX_HELD(&p->p_lock)); 857 return (p->p_zone->zone_shares); 858 } 859 860 /*ARGSUSED*/ 861 static int 862 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 863 rctl_qty_t nv) 864 { 865 ASSERT(MUTEX_HELD(&p->p_lock)); 866 ASSERT(e->rcep_t == RCENTITY_ZONE); 867 if (e->rcep_p.zone == NULL) 868 return (0); 869 870 e->rcep_p.zone->zone_shares = nv; 871 return (0); 872 } 873 874 static rctl_ops_t zone_cpu_shares_ops = { 875 rcop_no_action, 876 zone_cpu_shares_usage, 877 zone_cpu_shares_set, 878 rcop_no_test 879 }; 880 881 /*ARGSUSED*/ 882 static rctl_qty_t 883 zone_lwps_usage(rctl_t *r, proc_t *p) 884 { 885 rctl_qty_t nlwps; 886 zone_t *zone = p->p_zone; 887 888 ASSERT(MUTEX_HELD(&p->p_lock)); 889 890 mutex_enter(&zone->zone_nlwps_lock); 891 nlwps = zone->zone_nlwps; 892 mutex_exit(&zone->zone_nlwps_lock); 893 894 return (nlwps); 895 } 896 897 /*ARGSUSED*/ 898 static int 899 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 900 rctl_qty_t incr, uint_t flags) 901 { 902 rctl_qty_t nlwps; 903 904 ASSERT(MUTEX_HELD(&p->p_lock)); 905 ASSERT(e->rcep_t == RCENTITY_ZONE); 906 if (e->rcep_p.zone == NULL) 907 return (0); 908 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 909 nlwps = e->rcep_p.zone->zone_nlwps; 910 911 if (nlwps + incr > rcntl->rcv_value) 912 return (1); 913 914 return (0); 915 } 916 917 /*ARGSUSED*/ 918 static int 919 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 920 { 921 ASSERT(MUTEX_HELD(&p->p_lock)); 922 ASSERT(e->rcep_t == RCENTITY_ZONE); 923 if (e->rcep_p.zone == NULL) 924 return (0); 925 e->rcep_p.zone->zone_nlwps_ctl = nv; 926 return (0); 927 } 928 929 static rctl_ops_t zone_lwps_ops = { 930 rcop_no_action, 931 zone_lwps_usage, 932 zone_lwps_set, 933 zone_lwps_test, 934 }; 935 936 /*ARGSUSED*/ 937 static int 938 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 939 rctl_qty_t incr, uint_t flags) 940 { 941 rctl_qty_t v; 942 ASSERT(MUTEX_HELD(&p->p_lock)); 943 ASSERT(e->rcep_t == RCENTITY_ZONE); 944 v = e->rcep_p.zone->zone_shmmax + incr; 945 if (v > rval->rcv_value) 946 return (1); 947 return (0); 948 } 949 950 static rctl_ops_t zone_shmmax_ops = { 951 rcop_no_action, 952 rcop_no_usage, 953 rcop_no_set, 954 zone_shmmax_test 955 }; 956 957 /*ARGSUSED*/ 958 static int 959 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 960 rctl_qty_t incr, uint_t flags) 961 { 962 rctl_qty_t v; 963 ASSERT(MUTEX_HELD(&p->p_lock)); 964 ASSERT(e->rcep_t == RCENTITY_ZONE); 965 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 966 if (v > rval->rcv_value) 967 return (1); 968 return (0); 969 } 970 971 static rctl_ops_t zone_shmmni_ops = { 972 rcop_no_action, 973 rcop_no_usage, 974 rcop_no_set, 975 zone_shmmni_test 976 }; 977 978 /*ARGSUSED*/ 979 static int 980 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 981 rctl_qty_t incr, uint_t flags) 982 { 983 rctl_qty_t v; 984 ASSERT(MUTEX_HELD(&p->p_lock)); 985 ASSERT(e->rcep_t == RCENTITY_ZONE); 986 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 987 if (v > rval->rcv_value) 988 return (1); 989 return (0); 990 } 991 992 static rctl_ops_t zone_semmni_ops = { 993 rcop_no_action, 994 rcop_no_usage, 995 rcop_no_set, 996 zone_semmni_test 997 }; 998 999 /*ARGSUSED*/ 1000 static int 1001 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1002 rctl_qty_t incr, uint_t flags) 1003 { 1004 rctl_qty_t v; 1005 ASSERT(MUTEX_HELD(&p->p_lock)); 1006 ASSERT(e->rcep_t == RCENTITY_ZONE); 1007 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1008 if (v > rval->rcv_value) 1009 return (1); 1010 return (0); 1011 } 1012 1013 static rctl_ops_t zone_msgmni_ops = { 1014 rcop_no_action, 1015 rcop_no_usage, 1016 rcop_no_set, 1017 zone_msgmni_test 1018 }; 1019 1020 /*ARGSUSED*/ 1021 static rctl_qty_t 1022 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1023 { 1024 rctl_qty_t q; 1025 ASSERT(MUTEX_HELD(&p->p_lock)); 1026 mutex_enter(&p->p_zone->zone_mem_lock); 1027 q = p->p_zone->zone_locked_mem; 1028 mutex_exit(&p->p_zone->zone_mem_lock); 1029 return (q); 1030 } 1031 1032 /*ARGSUSED*/ 1033 static int 1034 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1035 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1036 { 1037 rctl_qty_t q; 1038 zone_t *z; 1039 1040 z = e->rcep_p.zone; 1041 ASSERT(MUTEX_HELD(&p->p_lock)); 1042 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1043 q = z->zone_locked_mem; 1044 if (q + incr > rcntl->rcv_value) 1045 return (1); 1046 return (0); 1047 } 1048 1049 /*ARGSUSED*/ 1050 static int 1051 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1052 rctl_qty_t nv) 1053 { 1054 ASSERT(MUTEX_HELD(&p->p_lock)); 1055 ASSERT(e->rcep_t == RCENTITY_ZONE); 1056 if (e->rcep_p.zone == NULL) 1057 return (0); 1058 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1059 return (0); 1060 } 1061 1062 static rctl_ops_t zone_locked_mem_ops = { 1063 rcop_no_action, 1064 zone_locked_mem_usage, 1065 zone_locked_mem_set, 1066 zone_locked_mem_test 1067 }; 1068 1069 /*ARGSUSED*/ 1070 static rctl_qty_t 1071 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1072 { 1073 rctl_qty_t q; 1074 zone_t *z = p->p_zone; 1075 1076 ASSERT(MUTEX_HELD(&p->p_lock)); 1077 mutex_enter(&z->zone_mem_lock); 1078 q = z->zone_max_swap; 1079 mutex_exit(&z->zone_mem_lock); 1080 return (q); 1081 } 1082 1083 /*ARGSUSED*/ 1084 static int 1085 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1086 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1087 { 1088 rctl_qty_t q; 1089 zone_t *z; 1090 1091 z = e->rcep_p.zone; 1092 ASSERT(MUTEX_HELD(&p->p_lock)); 1093 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1094 q = z->zone_max_swap; 1095 if (q + incr > rcntl->rcv_value) 1096 return (1); 1097 return (0); 1098 } 1099 1100 /*ARGSUSED*/ 1101 static int 1102 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1103 rctl_qty_t nv) 1104 { 1105 ASSERT(MUTEX_HELD(&p->p_lock)); 1106 ASSERT(e->rcep_t == RCENTITY_ZONE); 1107 if (e->rcep_p.zone == NULL) 1108 return (0); 1109 e->rcep_p.zone->zone_max_swap_ctl = nv; 1110 return (0); 1111 } 1112 1113 static rctl_ops_t zone_max_swap_ops = { 1114 rcop_no_action, 1115 zone_max_swap_usage, 1116 zone_max_swap_set, 1117 zone_max_swap_test 1118 }; 1119 1120 /* 1121 * Helper function to brand the zone with a unique ID. 1122 */ 1123 static void 1124 zone_uniqid(zone_t *zone) 1125 { 1126 static uint64_t uniqid = 0; 1127 1128 ASSERT(MUTEX_HELD(&zonehash_lock)); 1129 zone->zone_uniqid = uniqid++; 1130 } 1131 1132 /* 1133 * Returns a held pointer to the "kcred" for the specified zone. 1134 */ 1135 struct cred * 1136 zone_get_kcred(zoneid_t zoneid) 1137 { 1138 zone_t *zone; 1139 cred_t *cr; 1140 1141 if ((zone = zone_find_by_id(zoneid)) == NULL) 1142 return (NULL); 1143 cr = zone->zone_kcred; 1144 crhold(cr); 1145 zone_rele(zone); 1146 return (cr); 1147 } 1148 1149 static int 1150 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1151 { 1152 zone_t *zone = ksp->ks_private; 1153 zone_kstat_t *zk = ksp->ks_data; 1154 1155 if (rw == KSTAT_WRITE) 1156 return (EACCES); 1157 1158 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1159 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1160 return (0); 1161 } 1162 1163 static int 1164 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1165 { 1166 zone_t *zone = ksp->ks_private; 1167 zone_kstat_t *zk = ksp->ks_data; 1168 1169 if (rw == KSTAT_WRITE) 1170 return (EACCES); 1171 1172 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1173 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1174 return (0); 1175 } 1176 1177 static void 1178 zone_kstat_create(zone_t *zone) 1179 { 1180 kstat_t *ksp; 1181 zone_kstat_t *zk; 1182 1183 ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED, 1184 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1185 KSTAT_FLAG_VIRTUAL); 1186 1187 if (ksp == NULL) 1188 return; 1189 1190 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1191 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1192 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1193 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1194 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1195 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1196 ksp->ks_update = zone_lockedmem_kstat_update; 1197 ksp->ks_private = zone; 1198 kstat_install(ksp); 1199 1200 zone->zone_lockedmem_kstat = ksp; 1201 1202 ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED, 1203 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1204 KSTAT_FLAG_VIRTUAL); 1205 1206 if (ksp == NULL) 1207 return; 1208 1209 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1210 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1211 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1212 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1213 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1214 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1215 ksp->ks_update = zone_swapresv_kstat_update; 1216 ksp->ks_private = zone; 1217 kstat_install(ksp); 1218 1219 zone->zone_swapresv_kstat = ksp; 1220 } 1221 1222 static void 1223 zone_kstat_delete(zone_t *zone) 1224 { 1225 void *data; 1226 1227 if (zone->zone_lockedmem_kstat != NULL) { 1228 data = zone->zone_lockedmem_kstat->ks_data; 1229 kstat_delete(zone->zone_lockedmem_kstat); 1230 kmem_free(data, sizeof (zone_kstat_t)); 1231 } 1232 if (zone->zone_swapresv_kstat != NULL) { 1233 data = zone->zone_swapresv_kstat->ks_data; 1234 kstat_delete(zone->zone_swapresv_kstat); 1235 kmem_free(data, sizeof (zone_kstat_t)); 1236 } 1237 } 1238 1239 /* 1240 * Called very early on in boot to initialize the ZSD list so that 1241 * zone_key_create() can be called before zone_init(). It also initializes 1242 * portions of zone0 which may be used before zone_init() is called. The 1243 * variable "global_zone" will be set when zone0 is fully initialized by 1244 * zone_init(). 1245 */ 1246 void 1247 zone_zsd_init(void) 1248 { 1249 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1250 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1251 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1252 offsetof(struct zsd_entry, zsd_linkage)); 1253 list_create(&zone_active, sizeof (zone_t), 1254 offsetof(zone_t, zone_linkage)); 1255 list_create(&zone_deathrow, sizeof (zone_t), 1256 offsetof(zone_t, zone_linkage)); 1257 1258 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1259 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1260 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1261 zone0.zone_shares = 1; 1262 zone0.zone_nlwps = 0; 1263 zone0.zone_nlwps_ctl = INT_MAX; 1264 zone0.zone_locked_mem = 0; 1265 zone0.zone_locked_mem_ctl = UINT64_MAX; 1266 ASSERT(zone0.zone_max_swap == 0); 1267 zone0.zone_max_swap_ctl = UINT64_MAX; 1268 zone0.zone_shmmax = 0; 1269 zone0.zone_ipc.ipcq_shmmni = 0; 1270 zone0.zone_ipc.ipcq_semmni = 0; 1271 zone0.zone_ipc.ipcq_msgmni = 0; 1272 zone0.zone_name = GLOBAL_ZONENAME; 1273 zone0.zone_nodename = utsname.nodename; 1274 zone0.zone_domain = srpc_domain; 1275 zone0.zone_ref = 1; 1276 zone0.zone_id = GLOBAL_ZONEID; 1277 zone0.zone_status = ZONE_IS_RUNNING; 1278 zone0.zone_rootpath = "/"; 1279 zone0.zone_rootpathlen = 2; 1280 zone0.zone_psetid = ZONE_PS_INVAL; 1281 zone0.zone_ncpus = 0; 1282 zone0.zone_ncpus_online = 0; 1283 zone0.zone_proc_initpid = 1; 1284 zone0.zone_initname = initname; 1285 zone0.zone_lockedmem_kstat = NULL; 1286 zone0.zone_swapresv_kstat = NULL; 1287 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1288 offsetof(struct zsd_entry, zsd_linkage)); 1289 list_insert_head(&zone_active, &zone0); 1290 1291 /* 1292 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1293 * to anything meaningful. It is assigned to be 'rootdir' in 1294 * vfs_mountroot(). 1295 */ 1296 zone0.zone_rootvp = NULL; 1297 zone0.zone_vfslist = NULL; 1298 zone0.zone_bootargs = initargs; 1299 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1300 /* 1301 * The global zone has all privileges 1302 */ 1303 priv_fillset(zone0.zone_privset); 1304 /* 1305 * Add p0 to the global zone 1306 */ 1307 zone0.zone_zsched = &p0; 1308 p0.p_zone = &zone0; 1309 } 1310 1311 /* 1312 * Compute a hash value based on the contents of the label and the DOI. The 1313 * hash algorithm is somewhat arbitrary, but is based on the observation that 1314 * humans will likely pick labels that differ by amounts that work out to be 1315 * multiples of the number of hash chains, and thus stirring in some primes 1316 * should help. 1317 */ 1318 static uint_t 1319 hash_bylabel(void *hdata, mod_hash_key_t key) 1320 { 1321 const ts_label_t *lab = (ts_label_t *)key; 1322 const uint32_t *up, *ue; 1323 uint_t hash; 1324 int i; 1325 1326 _NOTE(ARGUNUSED(hdata)); 1327 1328 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1329 /* we depend on alignment of label, but not representation */ 1330 up = (const uint32_t *)&lab->tsl_label; 1331 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1332 i = 1; 1333 while (up < ue) { 1334 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1335 hash += *up + (*up << ((i % 16) + 1)); 1336 up++; 1337 i++; 1338 } 1339 return (hash); 1340 } 1341 1342 /* 1343 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1344 * equal). This may need to be changed if less than / greater than is ever 1345 * needed. 1346 */ 1347 static int 1348 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1349 { 1350 ts_label_t *lab1 = (ts_label_t *)key1; 1351 ts_label_t *lab2 = (ts_label_t *)key2; 1352 1353 return (label_equal(lab1, lab2) ? 0 : 1); 1354 } 1355 1356 /* 1357 * Called by main() to initialize the zones framework. 1358 */ 1359 void 1360 zone_init(void) 1361 { 1362 rctl_dict_entry_t *rde; 1363 rctl_val_t *dval; 1364 rctl_set_t *set; 1365 rctl_alloc_gp_t *gp; 1366 rctl_entity_p_t e; 1367 int res; 1368 1369 ASSERT(curproc == &p0); 1370 1371 /* 1372 * Create ID space for zone IDs. ID 0 is reserved for the 1373 * global zone. 1374 */ 1375 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1376 1377 /* 1378 * Initialize generic zone resource controls, if any. 1379 */ 1380 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1381 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1382 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1383 FSS_MAXSHARES, FSS_MAXSHARES, 1384 &zone_cpu_shares_ops); 1385 1386 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1387 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1388 INT_MAX, INT_MAX, &zone_lwps_ops); 1389 /* 1390 * System V IPC resource controls 1391 */ 1392 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1393 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1394 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1395 1396 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1397 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1398 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1399 1400 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1401 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1402 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1403 1404 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1405 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1406 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1407 1408 /* 1409 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1410 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1411 */ 1412 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1413 bzero(dval, sizeof (rctl_val_t)); 1414 dval->rcv_value = 1; 1415 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1416 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1417 dval->rcv_action_recip_pid = -1; 1418 1419 rde = rctl_dict_lookup("zone.cpu-shares"); 1420 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1421 1422 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 1423 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1424 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1425 &zone_locked_mem_ops); 1426 1427 rc_zone_max_swap = rctl_register("zone.max-swap", 1428 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1429 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1430 &zone_max_swap_ops); 1431 1432 /* 1433 * Initialize the ``global zone''. 1434 */ 1435 set = rctl_set_create(); 1436 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1437 mutex_enter(&p0.p_lock); 1438 e.rcep_p.zone = &zone0; 1439 e.rcep_t = RCENTITY_ZONE; 1440 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1441 gp); 1442 1443 zone0.zone_nlwps = p0.p_lwpcnt; 1444 zone0.zone_ntasks = 1; 1445 mutex_exit(&p0.p_lock); 1446 zone0.zone_restart_init = B_TRUE; 1447 zone0.zone_brand = &native_brand; 1448 rctl_prealloc_destroy(gp); 1449 /* 1450 * pool_default hasn't been initialized yet, so we let pool_init() 1451 * take care of making sure the global zone is in the default pool. 1452 */ 1453 1454 /* 1455 * Initialize global zone kstats 1456 */ 1457 zone_kstat_create(&zone0); 1458 1459 /* 1460 * Initialize zone label. 1461 * mlp are initialized when tnzonecfg is loaded. 1462 */ 1463 zone0.zone_slabel = l_admin_low; 1464 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1465 label_hold(l_admin_low); 1466 1467 mutex_enter(&zonehash_lock); 1468 zone_uniqid(&zone0); 1469 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1470 1471 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1472 mod_hash_null_valdtor); 1473 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1474 zone_hash_size, mod_hash_null_valdtor); 1475 /* 1476 * maintain zonehashbylabel only for labeled systems 1477 */ 1478 if (is_system_labeled()) 1479 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1480 zone_hash_size, mod_hash_null_keydtor, 1481 mod_hash_null_valdtor, hash_bylabel, NULL, 1482 hash_labelkey_cmp, KM_SLEEP); 1483 zonecount = 1; 1484 1485 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1486 (mod_hash_val_t)&zone0); 1487 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1488 (mod_hash_val_t)&zone0); 1489 if (is_system_labeled()) { 1490 zone0.zone_flags |= ZF_HASHED_LABEL; 1491 (void) mod_hash_insert(zonehashbylabel, 1492 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1493 } 1494 mutex_exit(&zonehash_lock); 1495 1496 /* 1497 * We avoid setting zone_kcred until now, since kcred is initialized 1498 * sometime after zone_zsd_init() and before zone_init(). 1499 */ 1500 zone0.zone_kcred = kcred; 1501 /* 1502 * The global zone is fully initialized (except for zone_rootvp which 1503 * will be set when the root filesystem is mounted). 1504 */ 1505 global_zone = &zone0; 1506 1507 /* 1508 * Setup an event channel to send zone status change notifications on 1509 */ 1510 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1511 EVCH_CREAT); 1512 1513 if (res) 1514 panic("Sysevent_evc_bind failed during zone setup.\n"); 1515 1516 } 1517 1518 static void 1519 zone_free(zone_t *zone) 1520 { 1521 ASSERT(zone != global_zone); 1522 ASSERT(zone->zone_ntasks == 0); 1523 ASSERT(zone->zone_nlwps == 0); 1524 ASSERT(zone->zone_cred_ref == 0); 1525 ASSERT(zone->zone_kcred == NULL); 1526 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1527 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1528 1529 /* remove from deathrow list */ 1530 if (zone_status_get(zone) == ZONE_IS_DEAD) { 1531 ASSERT(zone->zone_ref == 0); 1532 mutex_enter(&zone_deathrow_lock); 1533 list_remove(&zone_deathrow, zone); 1534 mutex_exit(&zone_deathrow_lock); 1535 } 1536 1537 zone_free_zsd(zone); 1538 zone_free_datasets(zone); 1539 1540 if (zone->zone_rootvp != NULL) 1541 VN_RELE(zone->zone_rootvp); 1542 if (zone->zone_rootpath) 1543 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 1544 if (zone->zone_name != NULL) 1545 kmem_free(zone->zone_name, ZONENAME_MAX); 1546 if (zone->zone_slabel != NULL) 1547 label_rele(zone->zone_slabel); 1548 if (zone->zone_nodename != NULL) 1549 kmem_free(zone->zone_nodename, _SYS_NMLN); 1550 if (zone->zone_domain != NULL) 1551 kmem_free(zone->zone_domain, _SYS_NMLN); 1552 if (zone->zone_privset != NULL) 1553 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 1554 if (zone->zone_rctls != NULL) 1555 rctl_set_free(zone->zone_rctls); 1556 if (zone->zone_bootargs != NULL) 1557 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 1558 if (zone->zone_initname != NULL) 1559 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 1560 id_free(zoneid_space, zone->zone_id); 1561 mutex_destroy(&zone->zone_lock); 1562 cv_destroy(&zone->zone_cv); 1563 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 1564 kmem_free(zone, sizeof (zone_t)); 1565 } 1566 1567 /* 1568 * See block comment at the top of this file for information about zone 1569 * status values. 1570 */ 1571 /* 1572 * Convenience function for setting zone status. 1573 */ 1574 static void 1575 zone_status_set(zone_t *zone, zone_status_t status) 1576 { 1577 1578 nvlist_t *nvl = NULL; 1579 ASSERT(MUTEX_HELD(&zone_status_lock)); 1580 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 1581 status >= zone_status_get(zone)); 1582 1583 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 1584 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 1585 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 1586 zone_status_table[status]) || 1587 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 1588 zone_status_table[zone->zone_status]) || 1589 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 1590 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 1591 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 1592 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 1593 #ifdef DEBUG 1594 (void) printf( 1595 "Failed to allocate and send zone state change event.\n"); 1596 #endif 1597 } 1598 nvlist_free(nvl); 1599 1600 zone->zone_status = status; 1601 1602 cv_broadcast(&zone->zone_cv); 1603 } 1604 1605 /* 1606 * Public function to retrieve the zone status. The zone status may 1607 * change after it is retrieved. 1608 */ 1609 zone_status_t 1610 zone_status_get(zone_t *zone) 1611 { 1612 return (zone->zone_status); 1613 } 1614 1615 static int 1616 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 1617 { 1618 char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 1619 int err = 0; 1620 1621 ASSERT(zone != global_zone); 1622 if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0) 1623 goto done; /* EFAULT or ENAMETOOLONG */ 1624 1625 if (zone->zone_bootargs != NULL) 1626 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 1627 1628 zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP); 1629 (void) strcpy(zone->zone_bootargs, bootargs); 1630 1631 done: 1632 kmem_free(bootargs, BOOTARGS_MAX); 1633 return (err); 1634 } 1635 1636 static int 1637 zone_set_initname(zone_t *zone, const char *zone_initname) 1638 { 1639 char initname[INITNAME_SZ]; 1640 size_t len; 1641 int err = 0; 1642 1643 ASSERT(zone != global_zone); 1644 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 1645 return (err); /* EFAULT or ENAMETOOLONG */ 1646 1647 if (zone->zone_initname != NULL) 1648 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 1649 1650 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 1651 (void) strcpy(zone->zone_initname, initname); 1652 return (0); 1653 } 1654 1655 static int 1656 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 1657 { 1658 uint64_t mcap; 1659 int err = 0; 1660 1661 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 1662 zone->zone_phys_mcap = mcap; 1663 1664 return (err); 1665 } 1666 1667 static int 1668 zone_set_sched_class(zone_t *zone, const char *new_class) 1669 { 1670 char sched_class[PC_CLNMSZ]; 1671 id_t classid; 1672 int err; 1673 1674 ASSERT(zone != global_zone); 1675 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 1676 return (err); /* EFAULT or ENAMETOOLONG */ 1677 1678 if (getcid(sched_class, &classid) != 0 || classid == syscid) 1679 return (set_errno(EINVAL)); 1680 zone->zone_defaultcid = classid; 1681 ASSERT(zone->zone_defaultcid > 0 && 1682 zone->zone_defaultcid < loaded_classes); 1683 1684 return (0); 1685 } 1686 1687 /* 1688 * Block indefinitely waiting for (zone_status >= status) 1689 */ 1690 void 1691 zone_status_wait(zone_t *zone, zone_status_t status) 1692 { 1693 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1694 1695 mutex_enter(&zone_status_lock); 1696 while (zone->zone_status < status) { 1697 cv_wait(&zone->zone_cv, &zone_status_lock); 1698 } 1699 mutex_exit(&zone_status_lock); 1700 } 1701 1702 /* 1703 * Private CPR-safe version of zone_status_wait(). 1704 */ 1705 static void 1706 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 1707 { 1708 callb_cpr_t cprinfo; 1709 1710 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1711 1712 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 1713 str); 1714 mutex_enter(&zone_status_lock); 1715 while (zone->zone_status < status) { 1716 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1717 cv_wait(&zone->zone_cv, &zone_status_lock); 1718 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 1719 } 1720 /* 1721 * zone_status_lock is implicitly released by the following. 1722 */ 1723 CALLB_CPR_EXIT(&cprinfo); 1724 } 1725 1726 /* 1727 * Block until zone enters requested state or signal is received. Return (0) 1728 * if signaled, non-zero otherwise. 1729 */ 1730 int 1731 zone_status_wait_sig(zone_t *zone, zone_status_t status) 1732 { 1733 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1734 1735 mutex_enter(&zone_status_lock); 1736 while (zone->zone_status < status) { 1737 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 1738 mutex_exit(&zone_status_lock); 1739 return (0); 1740 } 1741 } 1742 mutex_exit(&zone_status_lock); 1743 return (1); 1744 } 1745 1746 /* 1747 * Block until the zone enters the requested state or the timeout expires, 1748 * whichever happens first. Return (-1) if operation timed out, time remaining 1749 * otherwise. 1750 */ 1751 clock_t 1752 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 1753 { 1754 clock_t timeleft = 0; 1755 1756 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1757 1758 mutex_enter(&zone_status_lock); 1759 while (zone->zone_status < status && timeleft != -1) { 1760 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 1761 } 1762 mutex_exit(&zone_status_lock); 1763 return (timeleft); 1764 } 1765 1766 /* 1767 * Block until the zone enters the requested state, the current process is 1768 * signaled, or the timeout expires, whichever happens first. Return (-1) if 1769 * operation timed out, 0 if signaled, time remaining otherwise. 1770 */ 1771 clock_t 1772 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 1773 { 1774 clock_t timeleft = tim - lbolt; 1775 1776 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1777 1778 mutex_enter(&zone_status_lock); 1779 while (zone->zone_status < status) { 1780 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 1781 tim); 1782 if (timeleft <= 0) 1783 break; 1784 } 1785 mutex_exit(&zone_status_lock); 1786 return (timeleft); 1787 } 1788 1789 /* 1790 * Zones have two reference counts: one for references from credential 1791 * structures (zone_cred_ref), and one (zone_ref) for everything else. 1792 * This is so we can allow a zone to be rebooted while there are still 1793 * outstanding cred references, since certain drivers cache dblks (which 1794 * implicitly results in cached creds). We wait for zone_ref to drop to 1795 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 1796 * later freed when the zone_cred_ref drops to 0, though nothing other 1797 * than the zone id and privilege set should be accessed once the zone 1798 * is "dead". 1799 * 1800 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 1801 * to force halt/reboot to block waiting for the zone_cred_ref to drop 1802 * to 0. This can be useful to flush out other sources of cached creds 1803 * that may be less innocuous than the driver case. 1804 */ 1805 1806 int zone_wait_for_cred = 0; 1807 1808 static void 1809 zone_hold_locked(zone_t *z) 1810 { 1811 ASSERT(MUTEX_HELD(&z->zone_lock)); 1812 z->zone_ref++; 1813 ASSERT(z->zone_ref != 0); 1814 } 1815 1816 void 1817 zone_hold(zone_t *z) 1818 { 1819 mutex_enter(&z->zone_lock); 1820 zone_hold_locked(z); 1821 mutex_exit(&z->zone_lock); 1822 } 1823 1824 /* 1825 * If the non-cred ref count drops to 1 and either the cred ref count 1826 * is 0 or we aren't waiting for cred references, the zone is ready to 1827 * be destroyed. 1828 */ 1829 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 1830 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 1831 1832 void 1833 zone_rele(zone_t *z) 1834 { 1835 boolean_t wakeup; 1836 1837 mutex_enter(&z->zone_lock); 1838 ASSERT(z->zone_ref != 0); 1839 z->zone_ref--; 1840 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1841 /* no more refs, free the structure */ 1842 mutex_exit(&z->zone_lock); 1843 zone_free(z); 1844 return; 1845 } 1846 /* signal zone_destroy so the zone can finish halting */ 1847 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 1848 mutex_exit(&z->zone_lock); 1849 1850 if (wakeup) { 1851 /* 1852 * Grabbing zonehash_lock here effectively synchronizes with 1853 * zone_destroy() to avoid missed signals. 1854 */ 1855 mutex_enter(&zonehash_lock); 1856 cv_broadcast(&zone_destroy_cv); 1857 mutex_exit(&zonehash_lock); 1858 } 1859 } 1860 1861 void 1862 zone_cred_hold(zone_t *z) 1863 { 1864 mutex_enter(&z->zone_lock); 1865 z->zone_cred_ref++; 1866 ASSERT(z->zone_cred_ref != 0); 1867 mutex_exit(&z->zone_lock); 1868 } 1869 1870 void 1871 zone_cred_rele(zone_t *z) 1872 { 1873 boolean_t wakeup; 1874 1875 mutex_enter(&z->zone_lock); 1876 ASSERT(z->zone_cred_ref != 0); 1877 z->zone_cred_ref--; 1878 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1879 /* no more refs, free the structure */ 1880 mutex_exit(&z->zone_lock); 1881 zone_free(z); 1882 return; 1883 } 1884 /* 1885 * If zone_destroy is waiting for the cred references to drain 1886 * out, and they have, signal it. 1887 */ 1888 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 1889 zone_status_get(z) >= ZONE_IS_DEAD); 1890 mutex_exit(&z->zone_lock); 1891 1892 if (wakeup) { 1893 /* 1894 * Grabbing zonehash_lock here effectively synchronizes with 1895 * zone_destroy() to avoid missed signals. 1896 */ 1897 mutex_enter(&zonehash_lock); 1898 cv_broadcast(&zone_destroy_cv); 1899 mutex_exit(&zonehash_lock); 1900 } 1901 } 1902 1903 void 1904 zone_task_hold(zone_t *z) 1905 { 1906 mutex_enter(&z->zone_lock); 1907 z->zone_ntasks++; 1908 ASSERT(z->zone_ntasks != 0); 1909 mutex_exit(&z->zone_lock); 1910 } 1911 1912 void 1913 zone_task_rele(zone_t *zone) 1914 { 1915 uint_t refcnt; 1916 1917 mutex_enter(&zone->zone_lock); 1918 ASSERT(zone->zone_ntasks != 0); 1919 refcnt = --zone->zone_ntasks; 1920 if (refcnt > 1) { /* Common case */ 1921 mutex_exit(&zone->zone_lock); 1922 return; 1923 } 1924 zone_hold_locked(zone); /* so we can use the zone_t later */ 1925 mutex_exit(&zone->zone_lock); 1926 if (refcnt == 1) { 1927 /* 1928 * See if the zone is shutting down. 1929 */ 1930 mutex_enter(&zone_status_lock); 1931 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 1932 goto out; 1933 } 1934 1935 /* 1936 * Make sure the ntasks didn't change since we 1937 * dropped zone_lock. 1938 */ 1939 mutex_enter(&zone->zone_lock); 1940 if (refcnt != zone->zone_ntasks) { 1941 mutex_exit(&zone->zone_lock); 1942 goto out; 1943 } 1944 mutex_exit(&zone->zone_lock); 1945 1946 /* 1947 * No more user processes in the zone. The zone is empty. 1948 */ 1949 zone_status_set(zone, ZONE_IS_EMPTY); 1950 goto out; 1951 } 1952 1953 ASSERT(refcnt == 0); 1954 /* 1955 * zsched has exited; the zone is dead. 1956 */ 1957 zone->zone_zsched = NULL; /* paranoia */ 1958 mutex_enter(&zone_status_lock); 1959 zone_status_set(zone, ZONE_IS_DEAD); 1960 out: 1961 mutex_exit(&zone_status_lock); 1962 zone_rele(zone); 1963 } 1964 1965 zoneid_t 1966 getzoneid(void) 1967 { 1968 return (curproc->p_zone->zone_id); 1969 } 1970 1971 /* 1972 * Internal versions of zone_find_by_*(). These don't zone_hold() or 1973 * check the validity of a zone's state. 1974 */ 1975 static zone_t * 1976 zone_find_all_by_id(zoneid_t zoneid) 1977 { 1978 mod_hash_val_t hv; 1979 zone_t *zone = NULL; 1980 1981 ASSERT(MUTEX_HELD(&zonehash_lock)); 1982 1983 if (mod_hash_find(zonehashbyid, 1984 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 1985 zone = (zone_t *)hv; 1986 return (zone); 1987 } 1988 1989 static zone_t * 1990 zone_find_all_by_label(const ts_label_t *label) 1991 { 1992 mod_hash_val_t hv; 1993 zone_t *zone = NULL; 1994 1995 ASSERT(MUTEX_HELD(&zonehash_lock)); 1996 1997 /* 1998 * zonehashbylabel is not maintained for unlabeled systems 1999 */ 2000 if (!is_system_labeled()) 2001 return (NULL); 2002 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2003 zone = (zone_t *)hv; 2004 return (zone); 2005 } 2006 2007 static zone_t * 2008 zone_find_all_by_name(char *name) 2009 { 2010 mod_hash_val_t hv; 2011 zone_t *zone = NULL; 2012 2013 ASSERT(MUTEX_HELD(&zonehash_lock)); 2014 2015 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2016 zone = (zone_t *)hv; 2017 return (zone); 2018 } 2019 2020 /* 2021 * Public interface for looking up a zone by zoneid. Only returns the zone if 2022 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2023 * Caller must call zone_rele() once it is done with the zone. 2024 * 2025 * The zone may begin the zone_destroy() sequence immediately after this 2026 * function returns, but may be safely used until zone_rele() is called. 2027 */ 2028 zone_t * 2029 zone_find_by_id(zoneid_t zoneid) 2030 { 2031 zone_t *zone; 2032 zone_status_t status; 2033 2034 mutex_enter(&zonehash_lock); 2035 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2036 mutex_exit(&zonehash_lock); 2037 return (NULL); 2038 } 2039 status = zone_status_get(zone); 2040 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2041 /* 2042 * For all practical purposes the zone doesn't exist. 2043 */ 2044 mutex_exit(&zonehash_lock); 2045 return (NULL); 2046 } 2047 zone_hold(zone); 2048 mutex_exit(&zonehash_lock); 2049 return (zone); 2050 } 2051 2052 /* 2053 * Similar to zone_find_by_id, but using zone label as the key. 2054 */ 2055 zone_t * 2056 zone_find_by_label(const ts_label_t *label) 2057 { 2058 zone_t *zone; 2059 zone_status_t status; 2060 2061 mutex_enter(&zonehash_lock); 2062 if ((zone = zone_find_all_by_label(label)) == NULL) { 2063 mutex_exit(&zonehash_lock); 2064 return (NULL); 2065 } 2066 2067 status = zone_status_get(zone); 2068 if (status > ZONE_IS_DOWN) { 2069 /* 2070 * For all practical purposes the zone doesn't exist. 2071 */ 2072 mutex_exit(&zonehash_lock); 2073 return (NULL); 2074 } 2075 zone_hold(zone); 2076 mutex_exit(&zonehash_lock); 2077 return (zone); 2078 } 2079 2080 /* 2081 * Similar to zone_find_by_id, but using zone name as the key. 2082 */ 2083 zone_t * 2084 zone_find_by_name(char *name) 2085 { 2086 zone_t *zone; 2087 zone_status_t status; 2088 2089 mutex_enter(&zonehash_lock); 2090 if ((zone = zone_find_all_by_name(name)) == NULL) { 2091 mutex_exit(&zonehash_lock); 2092 return (NULL); 2093 } 2094 status = zone_status_get(zone); 2095 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2096 /* 2097 * For all practical purposes the zone doesn't exist. 2098 */ 2099 mutex_exit(&zonehash_lock); 2100 return (NULL); 2101 } 2102 zone_hold(zone); 2103 mutex_exit(&zonehash_lock); 2104 return (zone); 2105 } 2106 2107 /* 2108 * Similar to zone_find_by_id(), using the path as a key. For instance, 2109 * if there is a zone "foo" rooted at /foo/root, and the path argument 2110 * is "/foo/root/proc", it will return the held zone_t corresponding to 2111 * zone "foo". 2112 * 2113 * zone_find_by_path() always returns a non-NULL value, since at the 2114 * very least every path will be contained in the global zone. 2115 * 2116 * As with the other zone_find_by_*() functions, the caller is 2117 * responsible for zone_rele()ing the return value of this function. 2118 */ 2119 zone_t * 2120 zone_find_by_path(const char *path) 2121 { 2122 zone_t *zone; 2123 zone_t *zret = NULL; 2124 zone_status_t status; 2125 2126 if (path == NULL) { 2127 /* 2128 * Call from rootconf(). 2129 */ 2130 zone_hold(global_zone); 2131 return (global_zone); 2132 } 2133 ASSERT(*path == '/'); 2134 mutex_enter(&zonehash_lock); 2135 for (zone = list_head(&zone_active); zone != NULL; 2136 zone = list_next(&zone_active, zone)) { 2137 if (ZONE_PATH_VISIBLE(path, zone)) 2138 zret = zone; 2139 } 2140 ASSERT(zret != NULL); 2141 status = zone_status_get(zret); 2142 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2143 /* 2144 * Zone practically doesn't exist. 2145 */ 2146 zret = global_zone; 2147 } 2148 zone_hold(zret); 2149 mutex_exit(&zonehash_lock); 2150 return (zret); 2151 } 2152 2153 /* 2154 * Get the number of cpus visible to this zone. The system-wide global 2155 * 'ncpus' is returned if pools are disabled, the caller is in the 2156 * global zone, or a NULL zone argument is passed in. 2157 */ 2158 int 2159 zone_ncpus_get(zone_t *zone) 2160 { 2161 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2162 2163 return (myncpus != 0 ? myncpus : ncpus); 2164 } 2165 2166 /* 2167 * Get the number of online cpus visible to this zone. The system-wide 2168 * global 'ncpus_online' is returned if pools are disabled, the caller 2169 * is in the global zone, or a NULL zone argument is passed in. 2170 */ 2171 int 2172 zone_ncpus_online_get(zone_t *zone) 2173 { 2174 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 2175 2176 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 2177 } 2178 2179 /* 2180 * Return the pool to which the zone is currently bound. 2181 */ 2182 pool_t * 2183 zone_pool_get(zone_t *zone) 2184 { 2185 ASSERT(pool_lock_held()); 2186 2187 return (zone->zone_pool); 2188 } 2189 2190 /* 2191 * Set the zone's pool pointer and update the zone's visibility to match 2192 * the resources in the new pool. 2193 */ 2194 void 2195 zone_pool_set(zone_t *zone, pool_t *pool) 2196 { 2197 ASSERT(pool_lock_held()); 2198 ASSERT(MUTEX_HELD(&cpu_lock)); 2199 2200 zone->zone_pool = pool; 2201 zone_pset_set(zone, pool->pool_pset->pset_id); 2202 } 2203 2204 /* 2205 * Return the cached value of the id of the processor set to which the 2206 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 2207 * facility is disabled. 2208 */ 2209 psetid_t 2210 zone_pset_get(zone_t *zone) 2211 { 2212 ASSERT(MUTEX_HELD(&cpu_lock)); 2213 2214 return (zone->zone_psetid); 2215 } 2216 2217 /* 2218 * Set the cached value of the id of the processor set to which the zone 2219 * is currently bound. Also update the zone's visibility to match the 2220 * resources in the new processor set. 2221 */ 2222 void 2223 zone_pset_set(zone_t *zone, psetid_t newpsetid) 2224 { 2225 psetid_t oldpsetid; 2226 2227 ASSERT(MUTEX_HELD(&cpu_lock)); 2228 oldpsetid = zone_pset_get(zone); 2229 2230 if (oldpsetid == newpsetid) 2231 return; 2232 /* 2233 * Global zone sees all. 2234 */ 2235 if (zone != global_zone) { 2236 zone->zone_psetid = newpsetid; 2237 if (newpsetid != ZONE_PS_INVAL) 2238 pool_pset_visibility_add(newpsetid, zone); 2239 if (oldpsetid != ZONE_PS_INVAL) 2240 pool_pset_visibility_remove(oldpsetid, zone); 2241 } 2242 /* 2243 * Disabling pools, so we should start using the global values 2244 * for ncpus and ncpus_online. 2245 */ 2246 if (newpsetid == ZONE_PS_INVAL) { 2247 zone->zone_ncpus = 0; 2248 zone->zone_ncpus_online = 0; 2249 } 2250 } 2251 2252 /* 2253 * Walk the list of active zones and issue the provided callback for 2254 * each of them. 2255 * 2256 * Caller must not be holding any locks that may be acquired under 2257 * zonehash_lock. See comment at the beginning of the file for a list of 2258 * common locks and their interactions with zones. 2259 */ 2260 int 2261 zone_walk(int (*cb)(zone_t *, void *), void *data) 2262 { 2263 zone_t *zone; 2264 int ret = 0; 2265 zone_status_t status; 2266 2267 mutex_enter(&zonehash_lock); 2268 for (zone = list_head(&zone_active); zone != NULL; 2269 zone = list_next(&zone_active, zone)) { 2270 /* 2271 * Skip zones that shouldn't be externally visible. 2272 */ 2273 status = zone_status_get(zone); 2274 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2275 continue; 2276 /* 2277 * Bail immediately if any callback invocation returns a 2278 * non-zero value. 2279 */ 2280 ret = (*cb)(zone, data); 2281 if (ret != 0) 2282 break; 2283 } 2284 mutex_exit(&zonehash_lock); 2285 return (ret); 2286 } 2287 2288 static int 2289 zone_set_root(zone_t *zone, const char *upath) 2290 { 2291 vnode_t *vp; 2292 int trycount; 2293 int error = 0; 2294 char *path; 2295 struct pathname upn, pn; 2296 size_t pathlen; 2297 2298 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2299 return (error); 2300 2301 pn_alloc(&pn); 2302 2303 /* prevent infinite loop */ 2304 trycount = 10; 2305 for (;;) { 2306 if (--trycount <= 0) { 2307 error = ESTALE; 2308 goto out; 2309 } 2310 2311 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2312 /* 2313 * VOP_ACCESS() may cover 'vp' with a new 2314 * filesystem, if 'vp' is an autoFS vnode. 2315 * Get the new 'vp' if so. 2316 */ 2317 if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED())) == 0 && 2318 (vp->v_vfsmountedhere == NULL || 2319 (error = traverse(&vp)) == 0)) { 2320 pathlen = pn.pn_pathlen + 2; 2321 path = kmem_alloc(pathlen, KM_SLEEP); 2322 (void) strncpy(path, pn.pn_path, 2323 pn.pn_pathlen + 1); 2324 path[pathlen - 2] = '/'; 2325 path[pathlen - 1] = '\0'; 2326 pn_free(&pn); 2327 pn_free(&upn); 2328 2329 /* Success! */ 2330 break; 2331 } 2332 VN_RELE(vp); 2333 } 2334 if (error != ESTALE) 2335 goto out; 2336 } 2337 2338 ASSERT(error == 0); 2339 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2340 zone->zone_rootpath = path; 2341 zone->zone_rootpathlen = pathlen; 2342 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2343 zone->zone_flags |= ZF_IS_SCRATCH; 2344 return (0); 2345 2346 out: 2347 pn_free(&pn); 2348 pn_free(&upn); 2349 return (error); 2350 } 2351 2352 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2353 ((c) >= 'a' && (c) <= 'z') || \ 2354 ((c) >= 'A' && (c) <= 'Z')) 2355 2356 static int 2357 zone_set_name(zone_t *zone, const char *uname) 2358 { 2359 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2360 size_t len; 2361 int i, err; 2362 2363 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2364 kmem_free(kname, ZONENAME_MAX); 2365 return (err); /* EFAULT or ENAMETOOLONG */ 2366 } 2367 2368 /* must be less than ZONENAME_MAX */ 2369 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2370 kmem_free(kname, ZONENAME_MAX); 2371 return (EINVAL); 2372 } 2373 2374 /* 2375 * Name must start with an alphanumeric and must contain only 2376 * alphanumerics, '-', '_' and '.'. 2377 */ 2378 if (!isalnum(kname[0])) { 2379 kmem_free(kname, ZONENAME_MAX); 2380 return (EINVAL); 2381 } 2382 for (i = 1; i < len - 1; i++) { 2383 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2384 kname[i] != '.') { 2385 kmem_free(kname, ZONENAME_MAX); 2386 return (EINVAL); 2387 } 2388 } 2389 2390 zone->zone_name = kname; 2391 return (0); 2392 } 2393 2394 /* 2395 * Similar to thread_create(), but makes sure the thread is in the appropriate 2396 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 2397 */ 2398 /*ARGSUSED*/ 2399 kthread_t * 2400 zthread_create( 2401 caddr_t stk, 2402 size_t stksize, 2403 void (*proc)(), 2404 void *arg, 2405 size_t len, 2406 pri_t pri) 2407 { 2408 kthread_t *t; 2409 zone_t *zone = curproc->p_zone; 2410 proc_t *pp = zone->zone_zsched; 2411 2412 zone_hold(zone); /* Reference to be dropped when thread exits */ 2413 2414 /* 2415 * No-one should be trying to create threads if the zone is shutting 2416 * down and there aren't any kernel threads around. See comment 2417 * in zthread_exit(). 2418 */ 2419 ASSERT(!(zone->zone_kthreads == NULL && 2420 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2421 /* 2422 * Create a thread, but don't let it run until we've finished setting 2423 * things up. 2424 */ 2425 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2426 ASSERT(t->t_forw == NULL); 2427 mutex_enter(&zone_status_lock); 2428 if (zone->zone_kthreads == NULL) { 2429 t->t_forw = t->t_back = t; 2430 } else { 2431 kthread_t *tx = zone->zone_kthreads; 2432 2433 t->t_forw = tx; 2434 t->t_back = tx->t_back; 2435 tx->t_back->t_forw = t; 2436 tx->t_back = t; 2437 } 2438 zone->zone_kthreads = t; 2439 mutex_exit(&zone_status_lock); 2440 2441 mutex_enter(&pp->p_lock); 2442 t->t_proc_flag |= TP_ZTHREAD; 2443 project_rele(t->t_proj); 2444 t->t_proj = project_hold(pp->p_task->tk_proj); 2445 2446 /* 2447 * Setup complete, let it run. 2448 */ 2449 thread_lock(t); 2450 t->t_schedflag |= TS_ALLSTART; 2451 setrun_locked(t); 2452 thread_unlock(t); 2453 2454 mutex_exit(&pp->p_lock); 2455 2456 return (t); 2457 } 2458 2459 /* 2460 * Similar to thread_exit(). Must be called by threads created via 2461 * zthread_exit(). 2462 */ 2463 void 2464 zthread_exit(void) 2465 { 2466 kthread_t *t = curthread; 2467 proc_t *pp = curproc; 2468 zone_t *zone = pp->p_zone; 2469 2470 mutex_enter(&zone_status_lock); 2471 2472 /* 2473 * Reparent to p0 2474 */ 2475 kpreempt_disable(); 2476 mutex_enter(&pp->p_lock); 2477 t->t_proc_flag &= ~TP_ZTHREAD; 2478 t->t_procp = &p0; 2479 hat_thread_exit(t); 2480 mutex_exit(&pp->p_lock); 2481 kpreempt_enable(); 2482 2483 if (t->t_back == t) { 2484 ASSERT(t->t_forw == t); 2485 /* 2486 * If the zone is empty, once the thread count 2487 * goes to zero no further kernel threads can be 2488 * created. This is because if the creator is a process 2489 * in the zone, then it must have exited before the zone 2490 * state could be set to ZONE_IS_EMPTY. 2491 * Otherwise, if the creator is a kernel thread in the 2492 * zone, the thread count is non-zero. 2493 * 2494 * This really means that non-zone kernel threads should 2495 * not create zone kernel threads. 2496 */ 2497 zone->zone_kthreads = NULL; 2498 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 2499 zone_status_set(zone, ZONE_IS_DOWN); 2500 } 2501 } else { 2502 t->t_forw->t_back = t->t_back; 2503 t->t_back->t_forw = t->t_forw; 2504 if (zone->zone_kthreads == t) 2505 zone->zone_kthreads = t->t_forw; 2506 } 2507 mutex_exit(&zone_status_lock); 2508 zone_rele(zone); 2509 thread_exit(); 2510 /* NOTREACHED */ 2511 } 2512 2513 static void 2514 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 2515 { 2516 vnode_t *oldvp; 2517 2518 /* we're going to hold a reference here to the directory */ 2519 VN_HOLD(vp); 2520 2521 #ifdef C2_AUDIT 2522 if (audit_active) /* update abs cwd/root path see c2audit.c */ 2523 audit_chdirec(vp, vpp); 2524 #endif 2525 2526 mutex_enter(&pp->p_lock); 2527 oldvp = *vpp; 2528 *vpp = vp; 2529 mutex_exit(&pp->p_lock); 2530 if (oldvp != NULL) 2531 VN_RELE(oldvp); 2532 } 2533 2534 /* 2535 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 2536 */ 2537 static int 2538 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 2539 { 2540 nvpair_t *nvp = NULL; 2541 boolean_t priv_set = B_FALSE; 2542 boolean_t limit_set = B_FALSE; 2543 boolean_t action_set = B_FALSE; 2544 2545 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2546 const char *name; 2547 uint64_t ui64; 2548 2549 name = nvpair_name(nvp); 2550 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 2551 return (EINVAL); 2552 (void) nvpair_value_uint64(nvp, &ui64); 2553 if (strcmp(name, "privilege") == 0) { 2554 /* 2555 * Currently only privileged values are allowed, but 2556 * this may change in the future. 2557 */ 2558 if (ui64 != RCPRIV_PRIVILEGED) 2559 return (EINVAL); 2560 rv->rcv_privilege = ui64; 2561 priv_set = B_TRUE; 2562 } else if (strcmp(name, "limit") == 0) { 2563 rv->rcv_value = ui64; 2564 limit_set = B_TRUE; 2565 } else if (strcmp(name, "action") == 0) { 2566 if (ui64 != RCTL_LOCAL_NOACTION && 2567 ui64 != RCTL_LOCAL_DENY) 2568 return (EINVAL); 2569 rv->rcv_flagaction = ui64; 2570 action_set = B_TRUE; 2571 } else { 2572 return (EINVAL); 2573 } 2574 } 2575 2576 if (!(priv_set && limit_set && action_set)) 2577 return (EINVAL); 2578 rv->rcv_action_signal = 0; 2579 rv->rcv_action_recipient = NULL; 2580 rv->rcv_action_recip_pid = -1; 2581 rv->rcv_firing_time = 0; 2582 2583 return (0); 2584 } 2585 2586 /* 2587 * Non-global zone version of start_init. 2588 */ 2589 void 2590 zone_start_init(void) 2591 { 2592 proc_t *p = ttoproc(curthread); 2593 zone_t *z = p->p_zone; 2594 2595 ASSERT(!INGLOBALZONE(curproc)); 2596 2597 /* 2598 * For all purposes (ZONE_ATTR_INITPID and restart_init), 2599 * storing just the pid of init is sufficient. 2600 */ 2601 z->zone_proc_initpid = p->p_pid; 2602 2603 /* 2604 * We maintain zone_boot_err so that we can return the cause of the 2605 * failure back to the caller of the zone_boot syscall. 2606 */ 2607 p->p_zone->zone_boot_err = start_init_common(); 2608 2609 mutex_enter(&zone_status_lock); 2610 if (z->zone_boot_err != 0) { 2611 /* 2612 * Make sure we are still in the booting state-- we could have 2613 * raced and already be shutting down, or even further along. 2614 */ 2615 if (zone_status_get(z) == ZONE_IS_BOOTING) 2616 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 2617 mutex_exit(&zone_status_lock); 2618 /* It's gone bad, dispose of the process */ 2619 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 2620 mutex_enter(&p->p_lock); 2621 ASSERT(p->p_flag & SEXITLWPS); 2622 lwp_exit(); 2623 } 2624 } else { 2625 if (zone_status_get(z) == ZONE_IS_BOOTING) 2626 zone_status_set(z, ZONE_IS_RUNNING); 2627 mutex_exit(&zone_status_lock); 2628 /* cause the process to return to userland. */ 2629 lwp_rtt(); 2630 } 2631 } 2632 2633 struct zsched_arg { 2634 zone_t *zone; 2635 nvlist_t *nvlist; 2636 }; 2637 2638 /* 2639 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 2640 * anything to do with scheduling, but rather with the fact that 2641 * per-zone kernel threads are parented to zsched, just like regular 2642 * kernel threads are parented to sched (p0). 2643 * 2644 * zsched is also responsible for launching init for the zone. 2645 */ 2646 static void 2647 zsched(void *arg) 2648 { 2649 struct zsched_arg *za = arg; 2650 proc_t *pp = curproc; 2651 proc_t *initp = proc_init; 2652 zone_t *zone = za->zone; 2653 cred_t *cr, *oldcred; 2654 rctl_set_t *set; 2655 rctl_alloc_gp_t *gp; 2656 contract_t *ct = NULL; 2657 task_t *tk, *oldtk; 2658 rctl_entity_p_t e; 2659 kproject_t *pj; 2660 2661 nvlist_t *nvl = za->nvlist; 2662 nvpair_t *nvp = NULL; 2663 2664 bcopy("zsched", u.u_psargs, sizeof ("zsched")); 2665 bcopy("zsched", u.u_comm, sizeof ("zsched")); 2666 u.u_argc = 0; 2667 u.u_argv = NULL; 2668 u.u_envp = NULL; 2669 closeall(P_FINFO(pp)); 2670 2671 /* 2672 * We are this zone's "zsched" process. As the zone isn't generally 2673 * visible yet we don't need to grab any locks before initializing its 2674 * zone_proc pointer. 2675 */ 2676 zone_hold(zone); /* this hold is released by zone_destroy() */ 2677 zone->zone_zsched = pp; 2678 mutex_enter(&pp->p_lock); 2679 pp->p_zone = zone; 2680 mutex_exit(&pp->p_lock); 2681 2682 /* 2683 * Disassociate process from its 'parent'; parent ourselves to init 2684 * (pid 1) and change other values as needed. 2685 */ 2686 sess_create(); 2687 2688 mutex_enter(&pidlock); 2689 proc_detach(pp); 2690 pp->p_ppid = 1; 2691 pp->p_flag |= SZONETOP; 2692 pp->p_ancpid = 1; 2693 pp->p_parent = initp; 2694 pp->p_psibling = NULL; 2695 if (initp->p_child) 2696 initp->p_child->p_psibling = pp; 2697 pp->p_sibling = initp->p_child; 2698 initp->p_child = pp; 2699 2700 /* Decrement what newproc() incremented. */ 2701 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 2702 /* 2703 * Our credentials are about to become kcred-like, so we don't care 2704 * about the caller's ruid. 2705 */ 2706 upcount_inc(crgetruid(kcred), zone->zone_id); 2707 mutex_exit(&pidlock); 2708 2709 /* 2710 * getting out of global zone, so decrement lwp counts 2711 */ 2712 pj = pp->p_task->tk_proj; 2713 mutex_enter(&global_zone->zone_nlwps_lock); 2714 pj->kpj_nlwps -= pp->p_lwpcnt; 2715 global_zone->zone_nlwps -= pp->p_lwpcnt; 2716 mutex_exit(&global_zone->zone_nlwps_lock); 2717 2718 /* 2719 * Decrement locked memory counts on old zone and project. 2720 */ 2721 mutex_enter(&global_zone->zone_mem_lock); 2722 global_zone->zone_locked_mem -= pp->p_locked_mem; 2723 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 2724 mutex_exit(&global_zone->zone_mem_lock); 2725 2726 /* 2727 * Create and join a new task in project '0' of this zone. 2728 * 2729 * We don't need to call holdlwps() since we know we're the only lwp in 2730 * this process. 2731 * 2732 * task_join() returns with p_lock held. 2733 */ 2734 tk = task_create(0, zone); 2735 mutex_enter(&cpu_lock); 2736 oldtk = task_join(tk, 0); 2737 2738 pj = pp->p_task->tk_proj; 2739 2740 mutex_enter(&zone->zone_mem_lock); 2741 zone->zone_locked_mem += pp->p_locked_mem; 2742 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 2743 mutex_exit(&zone->zone_mem_lock); 2744 2745 /* 2746 * add lwp counts to zsched's zone, and increment project's task count 2747 * due to the task created in the above tasksys_settaskid 2748 */ 2749 2750 mutex_enter(&zone->zone_nlwps_lock); 2751 pj->kpj_nlwps += pp->p_lwpcnt; 2752 pj->kpj_ntasks += 1; 2753 zone->zone_nlwps += pp->p_lwpcnt; 2754 mutex_exit(&zone->zone_nlwps_lock); 2755 2756 mutex_exit(&curproc->p_lock); 2757 mutex_exit(&cpu_lock); 2758 task_rele(oldtk); 2759 2760 /* 2761 * The process was created by a process in the global zone, hence the 2762 * credentials are wrong. We might as well have kcred-ish credentials. 2763 */ 2764 cr = zone->zone_kcred; 2765 crhold(cr); 2766 mutex_enter(&pp->p_crlock); 2767 oldcred = pp->p_cred; 2768 pp->p_cred = cr; 2769 mutex_exit(&pp->p_crlock); 2770 crfree(oldcred); 2771 2772 /* 2773 * Hold credentials again (for thread) 2774 */ 2775 crhold(cr); 2776 2777 /* 2778 * p_lwpcnt can't change since this is a kernel process. 2779 */ 2780 crset(pp, cr); 2781 2782 /* 2783 * Chroot 2784 */ 2785 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 2786 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 2787 2788 /* 2789 * Initialize zone's rctl set. 2790 */ 2791 set = rctl_set_create(); 2792 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2793 mutex_enter(&pp->p_lock); 2794 e.rcep_p.zone = zone; 2795 e.rcep_t = RCENTITY_ZONE; 2796 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 2797 mutex_exit(&pp->p_lock); 2798 rctl_prealloc_destroy(gp); 2799 2800 /* 2801 * Apply the rctls passed in to zone_create(). This is basically a list 2802 * assignment: all of the old values are removed and the new ones 2803 * inserted. That is, if an empty list is passed in, all values are 2804 * removed. 2805 */ 2806 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2807 rctl_dict_entry_t *rde; 2808 rctl_hndl_t hndl; 2809 char *name; 2810 nvlist_t **nvlarray; 2811 uint_t i, nelem; 2812 int error; /* For ASSERT()s */ 2813 2814 name = nvpair_name(nvp); 2815 hndl = rctl_hndl_lookup(name); 2816 ASSERT(hndl != -1); 2817 rde = rctl_dict_lookup_hndl(hndl); 2818 ASSERT(rde != NULL); 2819 2820 for (; /* ever */; ) { 2821 rctl_val_t oval; 2822 2823 mutex_enter(&pp->p_lock); 2824 error = rctl_local_get(hndl, NULL, &oval, pp); 2825 mutex_exit(&pp->p_lock); 2826 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 2827 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 2828 if (oval.rcv_privilege == RCPRIV_SYSTEM) 2829 break; 2830 mutex_enter(&pp->p_lock); 2831 error = rctl_local_delete(hndl, &oval, pp); 2832 mutex_exit(&pp->p_lock); 2833 ASSERT(error == 0); 2834 } 2835 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2836 ASSERT(error == 0); 2837 for (i = 0; i < nelem; i++) { 2838 rctl_val_t *nvalp; 2839 2840 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2841 error = nvlist2rctlval(nvlarray[i], nvalp); 2842 ASSERT(error == 0); 2843 /* 2844 * rctl_local_insert can fail if the value being 2845 * inserted is a duplicate; this is OK. 2846 */ 2847 mutex_enter(&pp->p_lock); 2848 if (rctl_local_insert(hndl, nvalp, pp) != 0) 2849 kmem_cache_free(rctl_val_cache, nvalp); 2850 mutex_exit(&pp->p_lock); 2851 } 2852 } 2853 /* 2854 * Tell the world that we're done setting up. 2855 * 2856 * At this point we want to set the zone status to ZONE_IS_READY 2857 * and atomically set the zone's processor set visibility. Once 2858 * we drop pool_lock() this zone will automatically get updated 2859 * to reflect any future changes to the pools configuration. 2860 */ 2861 pool_lock(); 2862 mutex_enter(&cpu_lock); 2863 mutex_enter(&zonehash_lock); 2864 zone_uniqid(zone); 2865 zone_zsd_configure(zone); 2866 if (pool_state == POOL_ENABLED) 2867 zone_pset_set(zone, pool_default->pool_pset->pset_id); 2868 mutex_enter(&zone_status_lock); 2869 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2870 zone_status_set(zone, ZONE_IS_READY); 2871 mutex_exit(&zone_status_lock); 2872 mutex_exit(&zonehash_lock); 2873 mutex_exit(&cpu_lock); 2874 pool_unlock(); 2875 2876 /* 2877 * Once we see the zone transition to the ZONE_IS_BOOTING state, 2878 * we launch init, and set the state to running. 2879 */ 2880 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 2881 2882 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 2883 id_t cid; 2884 2885 /* 2886 * Ok, this is a little complicated. We need to grab the 2887 * zone's pool's scheduling class ID; note that by now, we 2888 * are already bound to a pool if we need to be (zoneadmd 2889 * will have done that to us while we're in the READY 2890 * state). *But* the scheduling class for the zone's 'init' 2891 * must be explicitly passed to newproc, which doesn't 2892 * respect pool bindings. 2893 * 2894 * We hold the pool_lock across the call to newproc() to 2895 * close the obvious race: the pool's scheduling class 2896 * could change before we manage to create the LWP with 2897 * classid 'cid'. 2898 */ 2899 pool_lock(); 2900 if (zone->zone_defaultcid > 0) 2901 cid = zone->zone_defaultcid; 2902 else 2903 cid = pool_get_class(zone->zone_pool); 2904 if (cid == -1) 2905 cid = defaultcid; 2906 2907 /* 2908 * If this fails, zone_boot will ultimately fail. The 2909 * state of the zone will be set to SHUTTING_DOWN-- userland 2910 * will have to tear down the zone, and fail, or try again. 2911 */ 2912 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 2913 minclsyspri - 1, &ct)) != 0) { 2914 mutex_enter(&zone_status_lock); 2915 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 2916 mutex_exit(&zone_status_lock); 2917 } 2918 pool_unlock(); 2919 } 2920 2921 /* 2922 * Wait for zone_destroy() to be called. This is what we spend 2923 * most of our life doing. 2924 */ 2925 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 2926 2927 if (ct) 2928 /* 2929 * At this point the process contract should be empty. 2930 * (Though if it isn't, it's not the end of the world.) 2931 */ 2932 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 2933 2934 /* 2935 * Allow kcred to be freed when all referring processes 2936 * (including this one) go away. We can't just do this in 2937 * zone_free because we need to wait for the zone_cred_ref to 2938 * drop to 0 before calling zone_free, and the existence of 2939 * zone_kcred will prevent that. Thus, we call crfree here to 2940 * balance the crdup in zone_create. The crhold calls earlier 2941 * in zsched will be dropped when the thread and process exit. 2942 */ 2943 crfree(zone->zone_kcred); 2944 zone->zone_kcred = NULL; 2945 2946 exit(CLD_EXITED, 0); 2947 } 2948 2949 /* 2950 * Helper function to determine if there are any submounts of the 2951 * provided path. Used to make sure the zone doesn't "inherit" any 2952 * mounts from before it is created. 2953 */ 2954 static uint_t 2955 zone_mount_count(const char *rootpath) 2956 { 2957 vfs_t *vfsp; 2958 uint_t count = 0; 2959 size_t rootpathlen = strlen(rootpath); 2960 2961 /* 2962 * Holding zonehash_lock prevents race conditions with 2963 * vfs_list_add()/vfs_list_remove() since we serialize with 2964 * zone_find_by_path(). 2965 */ 2966 ASSERT(MUTEX_HELD(&zonehash_lock)); 2967 /* 2968 * The rootpath must end with a '/' 2969 */ 2970 ASSERT(rootpath[rootpathlen - 1] == '/'); 2971 2972 /* 2973 * This intentionally does not count the rootpath itself if that 2974 * happens to be a mount point. 2975 */ 2976 vfs_list_read_lock(); 2977 vfsp = rootvfs; 2978 do { 2979 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 2980 rootpathlen) == 0) 2981 count++; 2982 vfsp = vfsp->vfs_next; 2983 } while (vfsp != rootvfs); 2984 vfs_list_unlock(); 2985 return (count); 2986 } 2987 2988 /* 2989 * Helper function to make sure that a zone created on 'rootpath' 2990 * wouldn't end up containing other zones' rootpaths. 2991 */ 2992 static boolean_t 2993 zone_is_nested(const char *rootpath) 2994 { 2995 zone_t *zone; 2996 size_t rootpathlen = strlen(rootpath); 2997 size_t len; 2998 2999 ASSERT(MUTEX_HELD(&zonehash_lock)); 3000 3001 for (zone = list_head(&zone_active); zone != NULL; 3002 zone = list_next(&zone_active, zone)) { 3003 if (zone == global_zone) 3004 continue; 3005 len = strlen(zone->zone_rootpath); 3006 if (strncmp(rootpath, zone->zone_rootpath, 3007 MIN(rootpathlen, len)) == 0) 3008 return (B_TRUE); 3009 } 3010 return (B_FALSE); 3011 } 3012 3013 static int 3014 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3015 size_t zone_privssz) 3016 { 3017 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3018 3019 if (zone_privssz < sizeof (priv_set_t)) 3020 return (set_errno(ENOMEM)); 3021 3022 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3023 kmem_free(privs, sizeof (priv_set_t)); 3024 return (EFAULT); 3025 } 3026 3027 zone->zone_privset = privs; 3028 return (0); 3029 } 3030 3031 /* 3032 * We make creative use of nvlists to pass in rctls from userland. The list is 3033 * a list of the following structures: 3034 * 3035 * (name = rctl_name, value = nvpair_list_array) 3036 * 3037 * Where each element of the nvpair_list_array is of the form: 3038 * 3039 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3040 * (name = "limit", value = uint64_t), 3041 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3042 */ 3043 static int 3044 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3045 { 3046 nvpair_t *nvp = NULL; 3047 nvlist_t *nvl = NULL; 3048 char *kbuf; 3049 int error; 3050 rctl_val_t rv; 3051 3052 *nvlp = NULL; 3053 3054 if (buflen == 0) 3055 return (0); 3056 3057 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3058 return (ENOMEM); 3059 if (copyin(ubuf, kbuf, buflen)) { 3060 error = EFAULT; 3061 goto out; 3062 } 3063 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3064 /* 3065 * nvl may have been allocated/free'd, but the value set to 3066 * non-NULL, so we reset it here. 3067 */ 3068 nvl = NULL; 3069 error = EINVAL; 3070 goto out; 3071 } 3072 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3073 rctl_dict_entry_t *rde; 3074 rctl_hndl_t hndl; 3075 nvlist_t **nvlarray; 3076 uint_t i, nelem; 3077 char *name; 3078 3079 error = EINVAL; 3080 name = nvpair_name(nvp); 3081 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3082 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3083 goto out; 3084 } 3085 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3086 goto out; 3087 } 3088 rde = rctl_dict_lookup_hndl(hndl); 3089 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3090 ASSERT(error == 0); 3091 for (i = 0; i < nelem; i++) { 3092 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3093 goto out; 3094 } 3095 if (rctl_invalid_value(rde, &rv)) { 3096 error = EINVAL; 3097 goto out; 3098 } 3099 } 3100 error = 0; 3101 *nvlp = nvl; 3102 out: 3103 kmem_free(kbuf, buflen); 3104 if (error && nvl != NULL) 3105 nvlist_free(nvl); 3106 return (error); 3107 } 3108 3109 int 3110 zone_create_error(int er_error, int er_ext, int *er_out) { 3111 if (er_out != NULL) { 3112 if (copyout(&er_ext, er_out, sizeof (int))) { 3113 return (set_errno(EFAULT)); 3114 } 3115 } 3116 return (set_errno(er_error)); 3117 } 3118 3119 static int 3120 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 3121 { 3122 ts_label_t *tsl; 3123 bslabel_t blab; 3124 3125 /* Get label from user */ 3126 if (copyin(lab, &blab, sizeof (blab)) != 0) 3127 return (EFAULT); 3128 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 3129 if (tsl == NULL) 3130 return (ENOMEM); 3131 3132 zone->zone_slabel = tsl; 3133 return (0); 3134 } 3135 3136 /* 3137 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 3138 */ 3139 static int 3140 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 3141 { 3142 char *kbuf; 3143 char *dataset, *next; 3144 zone_dataset_t *zd; 3145 size_t len; 3146 3147 if (ubuf == NULL || buflen == 0) 3148 return (0); 3149 3150 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3151 return (ENOMEM); 3152 3153 if (copyin(ubuf, kbuf, buflen) != 0) { 3154 kmem_free(kbuf, buflen); 3155 return (EFAULT); 3156 } 3157 3158 dataset = next = kbuf; 3159 for (;;) { 3160 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 3161 3162 next = strchr(dataset, ','); 3163 3164 if (next == NULL) 3165 len = strlen(dataset); 3166 else 3167 len = next - dataset; 3168 3169 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 3170 bcopy(dataset, zd->zd_dataset, len); 3171 zd->zd_dataset[len] = '\0'; 3172 3173 list_insert_head(&zone->zone_datasets, zd); 3174 3175 if (next == NULL) 3176 break; 3177 3178 dataset = next + 1; 3179 } 3180 3181 kmem_free(kbuf, buflen); 3182 return (0); 3183 } 3184 3185 /* 3186 * System call to create/initialize a new zone named 'zone_name', rooted 3187 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 3188 * and initialized with the zone-wide rctls described in 'rctlbuf', and 3189 * with labeling set by 'match', 'doi', and 'label'. 3190 * 3191 * If extended error is non-null, we may use it to return more detailed 3192 * error information. 3193 */ 3194 static zoneid_t 3195 zone_create(const char *zone_name, const char *zone_root, 3196 const priv_set_t *zone_privs, size_t zone_privssz, 3197 caddr_t rctlbuf, size_t rctlbufsz, 3198 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 3199 int match, uint32_t doi, const bslabel_t *label) 3200 { 3201 struct zsched_arg zarg; 3202 nvlist_t *rctls = NULL; 3203 proc_t *pp = curproc; 3204 zone_t *zone, *ztmp; 3205 zoneid_t zoneid; 3206 int error; 3207 int error2 = 0; 3208 char *str; 3209 cred_t *zkcr; 3210 boolean_t insert_label_hash; 3211 3212 if (secpolicy_zone_config(CRED()) != 0) 3213 return (set_errno(EPERM)); 3214 3215 /* can't boot zone from within chroot environment */ 3216 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 3217 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 3218 extended_error)); 3219 3220 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 3221 zoneid = zone->zone_id = id_alloc(zoneid_space); 3222 zone->zone_status = ZONE_IS_UNINITIALIZED; 3223 zone->zone_pool = pool_default; 3224 zone->zone_pool_mod = gethrtime(); 3225 zone->zone_psetid = ZONE_PS_INVAL; 3226 zone->zone_ncpus = 0; 3227 zone->zone_ncpus_online = 0; 3228 zone->zone_restart_init = B_TRUE; 3229 zone->zone_brand = &native_brand; 3230 zone->zone_initname = NULL; 3231 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 3232 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 3233 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 3234 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 3235 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 3236 offsetof(struct zsd_entry, zsd_linkage)); 3237 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 3238 offsetof(zone_dataset_t, zd_linkage)); 3239 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 3240 3241 if ((error = zone_set_name(zone, zone_name)) != 0) { 3242 zone_free(zone); 3243 return (zone_create_error(error, 0, extended_error)); 3244 } 3245 3246 if ((error = zone_set_root(zone, zone_root)) != 0) { 3247 zone_free(zone); 3248 return (zone_create_error(error, 0, extended_error)); 3249 } 3250 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 3251 zone_free(zone); 3252 return (zone_create_error(error, 0, extended_error)); 3253 } 3254 3255 /* initialize node name to be the same as zone name */ 3256 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3257 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 3258 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 3259 3260 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3261 zone->zone_domain[0] = '\0'; 3262 zone->zone_shares = 1; 3263 zone->zone_shmmax = 0; 3264 zone->zone_ipc.ipcq_shmmni = 0; 3265 zone->zone_ipc.ipcq_semmni = 0; 3266 zone->zone_ipc.ipcq_msgmni = 0; 3267 zone->zone_bootargs = NULL; 3268 zone->zone_initname = 3269 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 3270 (void) strcpy(zone->zone_initname, zone_default_initname); 3271 zone->zone_nlwps = 0; 3272 zone->zone_nlwps_ctl = INT_MAX; 3273 zone->zone_locked_mem = 0; 3274 zone->zone_locked_mem_ctl = UINT64_MAX; 3275 zone->zone_max_swap = 0; 3276 zone->zone_max_swap_ctl = UINT64_MAX; 3277 zone0.zone_lockedmem_kstat = NULL; 3278 zone0.zone_swapresv_kstat = NULL; 3279 3280 /* 3281 * Zsched initializes the rctls. 3282 */ 3283 zone->zone_rctls = NULL; 3284 3285 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 3286 zone_free(zone); 3287 return (zone_create_error(error, 0, extended_error)); 3288 } 3289 3290 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 3291 zone_free(zone); 3292 return (set_errno(error)); 3293 } 3294 3295 /* 3296 * Read in the trusted system parameters: 3297 * match flag and sensitivity label. 3298 */ 3299 zone->zone_match = match; 3300 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3301 error = zone_set_label(zone, label, doi); 3302 if (error != 0) { 3303 zone_free(zone); 3304 return (set_errno(error)); 3305 } 3306 insert_label_hash = B_TRUE; 3307 } else { 3308 /* all zones get an admin_low label if system is not labeled */ 3309 zone->zone_slabel = l_admin_low; 3310 label_hold(l_admin_low); 3311 insert_label_hash = B_FALSE; 3312 } 3313 3314 /* 3315 * Stop all lwps since that's what normally happens as part of fork(). 3316 * This needs to happen before we grab any locks to avoid deadlock 3317 * (another lwp in the process could be waiting for the held lock). 3318 */ 3319 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 3320 zone_free(zone); 3321 if (rctls) 3322 nvlist_free(rctls); 3323 return (zone_create_error(error, 0, extended_error)); 3324 } 3325 3326 if (block_mounts() == 0) { 3327 mutex_enter(&pp->p_lock); 3328 if (curthread != pp->p_agenttp) 3329 continuelwps(pp); 3330 mutex_exit(&pp->p_lock); 3331 zone_free(zone); 3332 if (rctls) 3333 nvlist_free(rctls); 3334 return (zone_create_error(error, 0, extended_error)); 3335 } 3336 3337 /* 3338 * Set up credential for kernel access. After this, any errors 3339 * should go through the dance in errout rather than calling 3340 * zone_free directly. 3341 */ 3342 zone->zone_kcred = crdup(kcred); 3343 crsetzone(zone->zone_kcred, zone); 3344 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 3345 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 3346 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 3347 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 3348 3349 mutex_enter(&zonehash_lock); 3350 /* 3351 * Make sure zone doesn't already exist. 3352 * 3353 * If the system and zone are labeled, 3354 * make sure no other zone exists that has the same label. 3355 */ 3356 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 3357 (insert_label_hash && 3358 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 3359 zone_status_t status; 3360 3361 status = zone_status_get(ztmp); 3362 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 3363 error = EEXIST; 3364 else 3365 error = EBUSY; 3366 goto errout; 3367 } 3368 3369 /* 3370 * Don't allow zone creations which would cause one zone's rootpath to 3371 * be accessible from that of another (non-global) zone. 3372 */ 3373 if (zone_is_nested(zone->zone_rootpath)) { 3374 error = EBUSY; 3375 goto errout; 3376 } 3377 3378 ASSERT(zonecount != 0); /* check for leaks */ 3379 if (zonecount + 1 > maxzones) { 3380 error = ENOMEM; 3381 goto errout; 3382 } 3383 3384 if (zone_mount_count(zone->zone_rootpath) != 0) { 3385 error = EBUSY; 3386 error2 = ZE_AREMOUNTS; 3387 goto errout; 3388 } 3389 3390 /* 3391 * Zone is still incomplete, but we need to drop all locks while 3392 * zsched() initializes this zone's kernel process. We 3393 * optimistically add the zone to the hashtable and associated 3394 * lists so a parallel zone_create() doesn't try to create the 3395 * same zone. 3396 */ 3397 zonecount++; 3398 (void) mod_hash_insert(zonehashbyid, 3399 (mod_hash_key_t)(uintptr_t)zone->zone_id, 3400 (mod_hash_val_t)(uintptr_t)zone); 3401 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 3402 (void) strcpy(str, zone->zone_name); 3403 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 3404 (mod_hash_val_t)(uintptr_t)zone); 3405 if (insert_label_hash) { 3406 (void) mod_hash_insert(zonehashbylabel, 3407 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 3408 zone->zone_flags |= ZF_HASHED_LABEL; 3409 } 3410 3411 /* 3412 * Insert into active list. At this point there are no 'hold's 3413 * on the zone, but everyone else knows not to use it, so we can 3414 * continue to use it. zsched() will do a zone_hold() if the 3415 * newproc() is successful. 3416 */ 3417 list_insert_tail(&zone_active, zone); 3418 mutex_exit(&zonehash_lock); 3419 3420 zarg.zone = zone; 3421 zarg.nvlist = rctls; 3422 /* 3423 * The process, task, and project rctls are probably wrong; 3424 * we need an interface to get the default values of all rctls, 3425 * and initialize zsched appropriately. I'm not sure that that 3426 * makes much of a difference, though. 3427 */ 3428 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 3429 /* 3430 * We need to undo all globally visible state. 3431 */ 3432 mutex_enter(&zonehash_lock); 3433 list_remove(&zone_active, zone); 3434 if (zone->zone_flags & ZF_HASHED_LABEL) { 3435 ASSERT(zone->zone_slabel != NULL); 3436 (void) mod_hash_destroy(zonehashbylabel, 3437 (mod_hash_key_t)zone->zone_slabel); 3438 } 3439 (void) mod_hash_destroy(zonehashbyname, 3440 (mod_hash_key_t)(uintptr_t)zone->zone_name); 3441 (void) mod_hash_destroy(zonehashbyid, 3442 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3443 ASSERT(zonecount > 1); 3444 zonecount--; 3445 goto errout; 3446 } 3447 3448 /* 3449 * Zone creation can't fail from now on. 3450 */ 3451 3452 /* 3453 * Create zone kstats 3454 */ 3455 zone_kstat_create(zone); 3456 3457 /* 3458 * Let the other lwps continue. 3459 */ 3460 mutex_enter(&pp->p_lock); 3461 if (curthread != pp->p_agenttp) 3462 continuelwps(pp); 3463 mutex_exit(&pp->p_lock); 3464 3465 /* 3466 * Wait for zsched to finish initializing the zone. 3467 */ 3468 zone_status_wait(zone, ZONE_IS_READY); 3469 /* 3470 * The zone is fully visible, so we can let mounts progress. 3471 */ 3472 resume_mounts(); 3473 if (rctls) 3474 nvlist_free(rctls); 3475 3476 return (zoneid); 3477 3478 errout: 3479 mutex_exit(&zonehash_lock); 3480 /* 3481 * Let the other lwps continue. 3482 */ 3483 mutex_enter(&pp->p_lock); 3484 if (curthread != pp->p_agenttp) 3485 continuelwps(pp); 3486 mutex_exit(&pp->p_lock); 3487 3488 resume_mounts(); 3489 if (rctls) 3490 nvlist_free(rctls); 3491 /* 3492 * There is currently one reference to the zone, a cred_ref from 3493 * zone_kcred. To free the zone, we call crfree, which will call 3494 * zone_cred_rele, which will call zone_free. 3495 */ 3496 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 3497 ASSERT(zone->zone_kcred->cr_ref == 1); 3498 ASSERT(zone->zone_ref == 0); 3499 zkcr = zone->zone_kcred; 3500 zone->zone_kcred = NULL; 3501 crfree(zkcr); /* triggers call to zone_free */ 3502 return (zone_create_error(error, error2, extended_error)); 3503 } 3504 3505 /* 3506 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 3507 * the heavy lifting. initname is the path to the program to launch 3508 * at the "top" of the zone; if this is NULL, we use the system default, 3509 * which is stored at zone_default_initname. 3510 */ 3511 static int 3512 zone_boot(zoneid_t zoneid) 3513 { 3514 int err; 3515 zone_t *zone; 3516 3517 if (secpolicy_zone_config(CRED()) != 0) 3518 return (set_errno(EPERM)); 3519 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3520 return (set_errno(EINVAL)); 3521 3522 mutex_enter(&zonehash_lock); 3523 /* 3524 * Look for zone under hash lock to prevent races with calls to 3525 * zone_shutdown, zone_destroy, etc. 3526 */ 3527 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3528 mutex_exit(&zonehash_lock); 3529 return (set_errno(EINVAL)); 3530 } 3531 3532 mutex_enter(&zone_status_lock); 3533 if (zone_status_get(zone) != ZONE_IS_READY) { 3534 mutex_exit(&zone_status_lock); 3535 mutex_exit(&zonehash_lock); 3536 return (set_errno(EINVAL)); 3537 } 3538 zone_status_set(zone, ZONE_IS_BOOTING); 3539 mutex_exit(&zone_status_lock); 3540 3541 zone_hold(zone); /* so we can use the zone_t later */ 3542 mutex_exit(&zonehash_lock); 3543 3544 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 3545 zone_rele(zone); 3546 return (set_errno(EINTR)); 3547 } 3548 3549 /* 3550 * Boot (starting init) might have failed, in which case the zone 3551 * will go to the SHUTTING_DOWN state; an appropriate errno will 3552 * be placed in zone->zone_boot_err, and so we return that. 3553 */ 3554 err = zone->zone_boot_err; 3555 zone_rele(zone); 3556 return (err ? set_errno(err) : 0); 3557 } 3558 3559 /* 3560 * Kills all user processes in the zone, waiting for them all to exit 3561 * before returning. 3562 */ 3563 static int 3564 zone_empty(zone_t *zone) 3565 { 3566 int waitstatus; 3567 3568 /* 3569 * We need to drop zonehash_lock before killing all 3570 * processes, otherwise we'll deadlock with zone_find_* 3571 * which can be called from the exit path. 3572 */ 3573 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 3574 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 3575 ZONE_IS_EMPTY)) == -1) { 3576 killall(zone->zone_id); 3577 } 3578 /* 3579 * return EINTR if we were signaled 3580 */ 3581 if (waitstatus == 0) 3582 return (EINTR); 3583 return (0); 3584 } 3585 3586 /* 3587 * This function implements the policy for zone visibility. 3588 * 3589 * In standard Solaris, a non-global zone can only see itself. 3590 * 3591 * In Trusted Extensions, a labeled zone can lookup any zone whose label 3592 * it dominates. For this test, the label of the global zone is treated as 3593 * admin_high so it is special-cased instead of being checked for dominance. 3594 * 3595 * Returns true if zone attributes are viewable, false otherwise. 3596 */ 3597 static boolean_t 3598 zone_list_access(zone_t *zone) 3599 { 3600 3601 if (curproc->p_zone == global_zone || 3602 curproc->p_zone == zone) { 3603 return (B_TRUE); 3604 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3605 bslabel_t *curproc_label; 3606 bslabel_t *zone_label; 3607 3608 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 3609 zone_label = label2bslabel(zone->zone_slabel); 3610 3611 if (zone->zone_id != GLOBAL_ZONEID && 3612 bldominates(curproc_label, zone_label)) { 3613 return (B_TRUE); 3614 } else { 3615 return (B_FALSE); 3616 } 3617 } else { 3618 return (B_FALSE); 3619 } 3620 } 3621 3622 /* 3623 * Systemcall to start the zone's halt sequence. By the time this 3624 * function successfully returns, all user processes and kernel threads 3625 * executing in it will have exited, ZSD shutdown callbacks executed, 3626 * and the zone status set to ZONE_IS_DOWN. 3627 * 3628 * It is possible that the call will interrupt itself if the caller is the 3629 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 3630 */ 3631 static int 3632 zone_shutdown(zoneid_t zoneid) 3633 { 3634 int error; 3635 zone_t *zone; 3636 zone_status_t status; 3637 3638 if (secpolicy_zone_config(CRED()) != 0) 3639 return (set_errno(EPERM)); 3640 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3641 return (set_errno(EINVAL)); 3642 3643 /* 3644 * Block mounts so that VFS_MOUNT() can get an accurate view of 3645 * the zone's status with regards to ZONE_IS_SHUTTING down. 3646 * 3647 * e.g. NFS can fail the mount if it determines that the zone 3648 * has already begun the shutdown sequence. 3649 */ 3650 if (block_mounts() == 0) 3651 return (set_errno(EINTR)); 3652 mutex_enter(&zonehash_lock); 3653 /* 3654 * Look for zone under hash lock to prevent races with other 3655 * calls to zone_shutdown and zone_destroy. 3656 */ 3657 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3658 mutex_exit(&zonehash_lock); 3659 resume_mounts(); 3660 return (set_errno(EINVAL)); 3661 } 3662 mutex_enter(&zone_status_lock); 3663 status = zone_status_get(zone); 3664 /* 3665 * Fail if the zone isn't fully initialized yet. 3666 */ 3667 if (status < ZONE_IS_READY) { 3668 mutex_exit(&zone_status_lock); 3669 mutex_exit(&zonehash_lock); 3670 resume_mounts(); 3671 return (set_errno(EINVAL)); 3672 } 3673 /* 3674 * If conditions required for zone_shutdown() to return have been met, 3675 * return success. 3676 */ 3677 if (status >= ZONE_IS_DOWN) { 3678 mutex_exit(&zone_status_lock); 3679 mutex_exit(&zonehash_lock); 3680 resume_mounts(); 3681 return (0); 3682 } 3683 /* 3684 * If zone_shutdown() hasn't been called before, go through the motions. 3685 * If it has, there's nothing to do but wait for the kernel threads to 3686 * drain. 3687 */ 3688 if (status < ZONE_IS_EMPTY) { 3689 uint_t ntasks; 3690 3691 mutex_enter(&zone->zone_lock); 3692 if ((ntasks = zone->zone_ntasks) != 1) { 3693 /* 3694 * There's still stuff running. 3695 */ 3696 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3697 } 3698 mutex_exit(&zone->zone_lock); 3699 if (ntasks == 1) { 3700 /* 3701 * The only way to create another task is through 3702 * zone_enter(), which will block until we drop 3703 * zonehash_lock. The zone is empty. 3704 */ 3705 if (zone->zone_kthreads == NULL) { 3706 /* 3707 * Skip ahead to ZONE_IS_DOWN 3708 */ 3709 zone_status_set(zone, ZONE_IS_DOWN); 3710 } else { 3711 zone_status_set(zone, ZONE_IS_EMPTY); 3712 } 3713 } 3714 } 3715 zone_hold(zone); /* so we can use the zone_t later */ 3716 mutex_exit(&zone_status_lock); 3717 mutex_exit(&zonehash_lock); 3718 resume_mounts(); 3719 3720 if (error = zone_empty(zone)) { 3721 zone_rele(zone); 3722 return (set_errno(error)); 3723 } 3724 /* 3725 * After the zone status goes to ZONE_IS_DOWN this zone will no 3726 * longer be notified of changes to the pools configuration, so 3727 * in order to not end up with a stale pool pointer, we point 3728 * ourselves at the default pool and remove all resource 3729 * visibility. This is especially important as the zone_t may 3730 * languish on the deathrow for a very long time waiting for 3731 * cred's to drain out. 3732 * 3733 * This rebinding of the zone can happen multiple times 3734 * (presumably due to interrupted or parallel systemcalls) 3735 * without any adverse effects. 3736 */ 3737 if (pool_lock_intr() != 0) { 3738 zone_rele(zone); 3739 return (set_errno(EINTR)); 3740 } 3741 if (pool_state == POOL_ENABLED) { 3742 mutex_enter(&cpu_lock); 3743 zone_pool_set(zone, pool_default); 3744 /* 3745 * The zone no longer needs to be able to see any cpus. 3746 */ 3747 zone_pset_set(zone, ZONE_PS_INVAL); 3748 mutex_exit(&cpu_lock); 3749 } 3750 pool_unlock(); 3751 3752 /* 3753 * ZSD shutdown callbacks can be executed multiple times, hence 3754 * it is safe to not be holding any locks across this call. 3755 */ 3756 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 3757 3758 mutex_enter(&zone_status_lock); 3759 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 3760 zone_status_set(zone, ZONE_IS_DOWN); 3761 mutex_exit(&zone_status_lock); 3762 3763 /* 3764 * Wait for kernel threads to drain. 3765 */ 3766 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 3767 zone_rele(zone); 3768 return (set_errno(EINTR)); 3769 } 3770 3771 brand_unregister_zone(zone->zone_brand); 3772 3773 zone_rele(zone); 3774 return (0); 3775 } 3776 3777 /* 3778 * Systemcall entry point to finalize the zone halt process. The caller 3779 * must have already successfully called zone_shutdown(). 3780 * 3781 * Upon successful completion, the zone will have been fully destroyed: 3782 * zsched will have exited, destructor callbacks executed, and the zone 3783 * removed from the list of active zones. 3784 */ 3785 static int 3786 zone_destroy(zoneid_t zoneid) 3787 { 3788 uint64_t uniqid; 3789 zone_t *zone; 3790 zone_status_t status; 3791 3792 if (secpolicy_zone_config(CRED()) != 0) 3793 return (set_errno(EPERM)); 3794 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3795 return (set_errno(EINVAL)); 3796 3797 mutex_enter(&zonehash_lock); 3798 /* 3799 * Look for zone under hash lock to prevent races with other 3800 * calls to zone_destroy. 3801 */ 3802 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3803 mutex_exit(&zonehash_lock); 3804 return (set_errno(EINVAL)); 3805 } 3806 3807 if (zone_mount_count(zone->zone_rootpath) != 0) { 3808 mutex_exit(&zonehash_lock); 3809 return (set_errno(EBUSY)); 3810 } 3811 mutex_enter(&zone_status_lock); 3812 status = zone_status_get(zone); 3813 if (status < ZONE_IS_DOWN) { 3814 mutex_exit(&zone_status_lock); 3815 mutex_exit(&zonehash_lock); 3816 return (set_errno(EBUSY)); 3817 } else if (status == ZONE_IS_DOWN) { 3818 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 3819 } 3820 mutex_exit(&zone_status_lock); 3821 zone_hold(zone); 3822 mutex_exit(&zonehash_lock); 3823 3824 /* 3825 * wait for zsched to exit 3826 */ 3827 zone_status_wait(zone, ZONE_IS_DEAD); 3828 zone_zsd_callbacks(zone, ZSD_DESTROY); 3829 uniqid = zone->zone_uniqid; 3830 zone_rele(zone); 3831 zone = NULL; /* potentially free'd */ 3832 3833 mutex_enter(&zonehash_lock); 3834 for (; /* ever */; ) { 3835 boolean_t unref; 3836 3837 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 3838 zone->zone_uniqid != uniqid) { 3839 /* 3840 * The zone has gone away. Necessary conditions 3841 * are met, so we return success. 3842 */ 3843 mutex_exit(&zonehash_lock); 3844 return (0); 3845 } 3846 mutex_enter(&zone->zone_lock); 3847 unref = ZONE_IS_UNREF(zone); 3848 mutex_exit(&zone->zone_lock); 3849 if (unref) { 3850 /* 3851 * There is only one reference to the zone -- that 3852 * added when the zone was added to the hashtables -- 3853 * and things will remain this way until we drop 3854 * zonehash_lock... we can go ahead and cleanup the 3855 * zone. 3856 */ 3857 break; 3858 } 3859 3860 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 3861 /* Signaled */ 3862 mutex_exit(&zonehash_lock); 3863 return (set_errno(EINTR)); 3864 } 3865 3866 } 3867 3868 /* Get rid of the zone's kstats */ 3869 zone_kstat_delete(zone); 3870 3871 /* 3872 * It is now safe to let the zone be recreated; remove it from the 3873 * lists. The memory will not be freed until the last cred 3874 * reference goes away. 3875 */ 3876 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 3877 zonecount--; 3878 /* remove from active list and hash tables */ 3879 list_remove(&zone_active, zone); 3880 (void) mod_hash_destroy(zonehashbyname, 3881 (mod_hash_key_t)zone->zone_name); 3882 (void) mod_hash_destroy(zonehashbyid, 3883 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3884 if (zone->zone_flags & ZF_HASHED_LABEL) 3885 (void) mod_hash_destroy(zonehashbylabel, 3886 (mod_hash_key_t)zone->zone_slabel); 3887 mutex_exit(&zonehash_lock); 3888 3889 /* 3890 * Release the root vnode; we're not using it anymore. Nor should any 3891 * other thread that might access it exist. 3892 */ 3893 if (zone->zone_rootvp != NULL) { 3894 VN_RELE(zone->zone_rootvp); 3895 zone->zone_rootvp = NULL; 3896 } 3897 3898 /* add to deathrow list */ 3899 mutex_enter(&zone_deathrow_lock); 3900 list_insert_tail(&zone_deathrow, zone); 3901 mutex_exit(&zone_deathrow_lock); 3902 3903 /* 3904 * Drop last reference (which was added by zsched()), this will 3905 * free the zone unless there are outstanding cred references. 3906 */ 3907 zone_rele(zone); 3908 return (0); 3909 } 3910 3911 /* 3912 * Systemcall entry point for zone_getattr(2). 3913 */ 3914 static ssize_t 3915 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 3916 { 3917 size_t size; 3918 int error = 0, err; 3919 zone_t *zone; 3920 char *zonepath; 3921 char *outstr; 3922 zone_status_t zone_status; 3923 pid_t initpid; 3924 boolean_t global = (curproc->p_zone == global_zone); 3925 boolean_t curzone = (curproc->p_zone->zone_id == zoneid); 3926 3927 mutex_enter(&zonehash_lock); 3928 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3929 mutex_exit(&zonehash_lock); 3930 return (set_errno(EINVAL)); 3931 } 3932 zone_status = zone_status_get(zone); 3933 if (zone_status < ZONE_IS_READY) { 3934 mutex_exit(&zonehash_lock); 3935 return (set_errno(EINVAL)); 3936 } 3937 zone_hold(zone); 3938 mutex_exit(&zonehash_lock); 3939 3940 /* 3941 * If not in the global zone, don't show information about other zones, 3942 * unless the system is labeled and the local zone's label dominates 3943 * the other zone. 3944 */ 3945 if (!zone_list_access(zone)) { 3946 zone_rele(zone); 3947 return (set_errno(EINVAL)); 3948 } 3949 3950 switch (attr) { 3951 case ZONE_ATTR_ROOT: 3952 if (global) { 3953 /* 3954 * Copy the path to trim the trailing "/" (except for 3955 * the global zone). 3956 */ 3957 if (zone != global_zone) 3958 size = zone->zone_rootpathlen - 1; 3959 else 3960 size = zone->zone_rootpathlen; 3961 zonepath = kmem_alloc(size, KM_SLEEP); 3962 bcopy(zone->zone_rootpath, zonepath, size); 3963 zonepath[size - 1] = '\0'; 3964 } else { 3965 if (curzone || !is_system_labeled()) { 3966 /* 3967 * Caller is not in the global zone. 3968 * if the query is on the current zone 3969 * or the system is not labeled, 3970 * just return faked-up path for current zone. 3971 */ 3972 zonepath = "/"; 3973 size = 2; 3974 } else { 3975 /* 3976 * Return related path for current zone. 3977 */ 3978 int prefix_len = strlen(zone_prefix); 3979 int zname_len = strlen(zone->zone_name); 3980 3981 size = prefix_len + zname_len + 1; 3982 zonepath = kmem_alloc(size, KM_SLEEP); 3983 bcopy(zone_prefix, zonepath, prefix_len); 3984 bcopy(zone->zone_name, zonepath + 3985 prefix_len, zname_len); 3986 zonepath[size - 1] = '\0'; 3987 } 3988 } 3989 if (bufsize > size) 3990 bufsize = size; 3991 if (buf != NULL) { 3992 err = copyoutstr(zonepath, buf, bufsize, NULL); 3993 if (err != 0 && err != ENAMETOOLONG) 3994 error = EFAULT; 3995 } 3996 if (global || (is_system_labeled() && !curzone)) 3997 kmem_free(zonepath, size); 3998 break; 3999 4000 case ZONE_ATTR_NAME: 4001 size = strlen(zone->zone_name) + 1; 4002 if (bufsize > size) 4003 bufsize = size; 4004 if (buf != NULL) { 4005 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 4006 if (err != 0 && err != ENAMETOOLONG) 4007 error = EFAULT; 4008 } 4009 break; 4010 4011 case ZONE_ATTR_STATUS: 4012 /* 4013 * Since we're not holding zonehash_lock, the zone status 4014 * may be anything; leave it up to userland to sort it out. 4015 */ 4016 size = sizeof (zone_status); 4017 if (bufsize > size) 4018 bufsize = size; 4019 zone_status = zone_status_get(zone); 4020 if (buf != NULL && 4021 copyout(&zone_status, buf, bufsize) != 0) 4022 error = EFAULT; 4023 break; 4024 case ZONE_ATTR_PRIVSET: 4025 size = sizeof (priv_set_t); 4026 if (bufsize > size) 4027 bufsize = size; 4028 if (buf != NULL && 4029 copyout(zone->zone_privset, buf, bufsize) != 0) 4030 error = EFAULT; 4031 break; 4032 case ZONE_ATTR_UNIQID: 4033 size = sizeof (zone->zone_uniqid); 4034 if (bufsize > size) 4035 bufsize = size; 4036 if (buf != NULL && 4037 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 4038 error = EFAULT; 4039 break; 4040 case ZONE_ATTR_POOLID: 4041 { 4042 pool_t *pool; 4043 poolid_t poolid; 4044 4045 if (pool_lock_intr() != 0) { 4046 error = EINTR; 4047 break; 4048 } 4049 pool = zone_pool_get(zone); 4050 poolid = pool->pool_id; 4051 pool_unlock(); 4052 size = sizeof (poolid); 4053 if (bufsize > size) 4054 bufsize = size; 4055 if (buf != NULL && copyout(&poolid, buf, size) != 0) 4056 error = EFAULT; 4057 } 4058 break; 4059 case ZONE_ATTR_SLBL: 4060 size = sizeof (bslabel_t); 4061 if (bufsize > size) 4062 bufsize = size; 4063 if (zone->zone_slabel == NULL) 4064 error = EINVAL; 4065 else if (buf != NULL && 4066 copyout(label2bslabel(zone->zone_slabel), buf, 4067 bufsize) != 0) 4068 error = EFAULT; 4069 break; 4070 case ZONE_ATTR_INITPID: 4071 size = sizeof (initpid); 4072 if (bufsize > size) 4073 bufsize = size; 4074 initpid = zone->zone_proc_initpid; 4075 if (initpid == -1) { 4076 error = ESRCH; 4077 break; 4078 } 4079 if (buf != NULL && 4080 copyout(&initpid, buf, bufsize) != 0) 4081 error = EFAULT; 4082 break; 4083 case ZONE_ATTR_BRAND: 4084 size = strlen(zone->zone_brand->b_name) + 1; 4085 4086 if (bufsize > size) 4087 bufsize = size; 4088 if (buf != NULL) { 4089 err = copyoutstr(zone->zone_brand->b_name, buf, 4090 bufsize, NULL); 4091 if (err != 0 && err != ENAMETOOLONG) 4092 error = EFAULT; 4093 } 4094 break; 4095 case ZONE_ATTR_INITNAME: 4096 size = strlen(zone->zone_initname) + 1; 4097 if (bufsize > size) 4098 bufsize = size; 4099 if (buf != NULL) { 4100 err = copyoutstr(zone->zone_initname, buf, bufsize, 4101 NULL); 4102 if (err != 0 && err != ENAMETOOLONG) 4103 error = EFAULT; 4104 } 4105 break; 4106 case ZONE_ATTR_BOOTARGS: 4107 if (zone->zone_bootargs == NULL) 4108 outstr = ""; 4109 else 4110 outstr = zone->zone_bootargs; 4111 size = strlen(outstr) + 1; 4112 if (bufsize > size) 4113 bufsize = size; 4114 if (buf != NULL) { 4115 err = copyoutstr(outstr, buf, bufsize, NULL); 4116 if (err != 0 && err != ENAMETOOLONG) 4117 error = EFAULT; 4118 } 4119 break; 4120 case ZONE_ATTR_PHYS_MCAP: 4121 size = sizeof (zone->zone_phys_mcap); 4122 if (bufsize > size) 4123 bufsize = size; 4124 if (buf != NULL && 4125 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 4126 error = EFAULT; 4127 break; 4128 case ZONE_ATTR_SCHED_CLASS: 4129 mutex_enter(&class_lock); 4130 4131 if (zone->zone_defaultcid >= loaded_classes) 4132 outstr = ""; 4133 else 4134 outstr = sclass[zone->zone_defaultcid].cl_name; 4135 size = strlen(outstr) + 1; 4136 if (bufsize > size) 4137 bufsize = size; 4138 if (buf != NULL) { 4139 err = copyoutstr(outstr, buf, bufsize, NULL); 4140 if (err != 0 && err != ENAMETOOLONG) 4141 error = EFAULT; 4142 } 4143 4144 mutex_exit(&class_lock); 4145 break; 4146 default: 4147 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 4148 size = bufsize; 4149 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 4150 } else { 4151 error = EINVAL; 4152 } 4153 } 4154 zone_rele(zone); 4155 4156 if (error) 4157 return (set_errno(error)); 4158 return ((ssize_t)size); 4159 } 4160 4161 /* 4162 * Systemcall entry point for zone_setattr(2). 4163 */ 4164 /*ARGSUSED*/ 4165 static int 4166 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4167 { 4168 zone_t *zone; 4169 zone_status_t zone_status; 4170 struct brand_attr *attrp; 4171 int err; 4172 4173 if (secpolicy_zone_config(CRED()) != 0) 4174 return (set_errno(EPERM)); 4175 4176 /* 4177 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 4178 * global zone. 4179 */ 4180 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 4181 return (set_errno(EINVAL)); 4182 } 4183 4184 mutex_enter(&zonehash_lock); 4185 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4186 mutex_exit(&zonehash_lock); 4187 return (set_errno(EINVAL)); 4188 } 4189 zone_hold(zone); 4190 mutex_exit(&zonehash_lock); 4191 4192 /* 4193 * At present most attributes can only be set on non-running, 4194 * non-global zones. 4195 */ 4196 zone_status = zone_status_get(zone); 4197 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) 4198 goto done; 4199 4200 switch (attr) { 4201 case ZONE_ATTR_INITNAME: 4202 err = zone_set_initname(zone, (const char *)buf); 4203 break; 4204 case ZONE_ATTR_BOOTARGS: 4205 err = zone_set_bootargs(zone, (const char *)buf); 4206 break; 4207 case ZONE_ATTR_BRAND: 4208 ASSERT(!ZONE_IS_BRANDED(zone)); 4209 err = 0; 4210 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 4211 if ((buf == NULL) || 4212 (copyin(buf, attrp, sizeof (struct brand_attr)) != 0)) { 4213 kmem_free(attrp, sizeof (struct brand_attr)); 4214 err = EFAULT; 4215 break; 4216 } 4217 4218 if (is_system_labeled() && strncmp(attrp->ba_brandname, 4219 NATIVE_BRAND_NAME, MAXNAMELEN) != 0) { 4220 err = EPERM; 4221 break; 4222 } 4223 4224 zone->zone_brand = brand_register_zone(attrp); 4225 kmem_free(attrp, sizeof (struct brand_attr)); 4226 if (zone->zone_brand == NULL) 4227 err = EINVAL; 4228 break; 4229 case ZONE_ATTR_PHYS_MCAP: 4230 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 4231 break; 4232 case ZONE_ATTR_SCHED_CLASS: 4233 err = zone_set_sched_class(zone, (const char *)buf); 4234 break; 4235 default: 4236 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 4237 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 4238 else 4239 err = EINVAL; 4240 } 4241 4242 done: 4243 zone_rele(zone); 4244 return (err != 0 ? set_errno(err) : 0); 4245 } 4246 4247 /* 4248 * Return zero if the process has at least one vnode mapped in to its 4249 * address space which shouldn't be allowed to change zones. 4250 * 4251 * Also return zero if the process has any shared mappings which reserve 4252 * swap. This is because the counting for zone.max-swap does not allow swap 4253 * revervation to be shared between zones. zone swap reservation is counted 4254 * on zone->zone_max_swap. 4255 */ 4256 static int 4257 as_can_change_zones(void) 4258 { 4259 proc_t *pp = curproc; 4260 struct seg *seg; 4261 struct as *as = pp->p_as; 4262 vnode_t *vp; 4263 int allow = 1; 4264 4265 ASSERT(pp->p_as != &kas); 4266 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 4267 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 4268 4269 /* 4270 * Cannot enter zone with shared anon memory which 4271 * reserves swap. See comment above. 4272 */ 4273 if (seg_can_change_zones(seg) == B_FALSE) { 4274 allow = 0; 4275 break; 4276 } 4277 /* 4278 * if we can't get a backing vnode for this segment then skip 4279 * it. 4280 */ 4281 vp = NULL; 4282 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 4283 continue; 4284 if (!vn_can_change_zones(vp)) { /* bail on first match */ 4285 allow = 0; 4286 break; 4287 } 4288 } 4289 AS_LOCK_EXIT(as, &as->a_lock); 4290 return (allow); 4291 } 4292 4293 /* 4294 * Count swap reserved by curproc's address space 4295 */ 4296 static size_t 4297 as_swresv(void) 4298 { 4299 proc_t *pp = curproc; 4300 struct seg *seg; 4301 struct as *as = pp->p_as; 4302 size_t swap = 0; 4303 4304 ASSERT(pp->p_as != &kas); 4305 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 4306 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 4307 swap += seg_swresv(seg); 4308 4309 return (swap); 4310 } 4311 4312 /* 4313 * Systemcall entry point for zone_enter(). 4314 * 4315 * The current process is injected into said zone. In the process 4316 * it will change its project membership, privileges, rootdir/cwd, 4317 * zone-wide rctls, and pool association to match those of the zone. 4318 * 4319 * The first zone_enter() called while the zone is in the ZONE_IS_READY 4320 * state will transition it to ZONE_IS_RUNNING. Processes may only 4321 * enter a zone that is "ready" or "running". 4322 */ 4323 static int 4324 zone_enter(zoneid_t zoneid) 4325 { 4326 zone_t *zone; 4327 vnode_t *vp; 4328 proc_t *pp = curproc; 4329 contract_t *ct; 4330 cont_process_t *ctp; 4331 task_t *tk, *oldtk; 4332 kproject_t *zone_proj0; 4333 cred_t *cr, *newcr; 4334 pool_t *oldpool, *newpool; 4335 sess_t *sp; 4336 uid_t uid; 4337 zone_status_t status; 4338 int err = 0; 4339 rctl_entity_p_t e; 4340 size_t swap; 4341 4342 if (secpolicy_zone_config(CRED()) != 0) 4343 return (set_errno(EPERM)); 4344 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4345 return (set_errno(EINVAL)); 4346 4347 /* 4348 * Stop all lwps so we don't need to hold a lock to look at 4349 * curproc->p_zone. This needs to happen before we grab any 4350 * locks to avoid deadlock (another lwp in the process could 4351 * be waiting for the held lock). 4352 */ 4353 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 4354 return (set_errno(EINTR)); 4355 4356 /* 4357 * Make sure we're not changing zones with files open or mapped in 4358 * to our address space which shouldn't be changing zones. 4359 */ 4360 if (!files_can_change_zones()) { 4361 err = EBADF; 4362 goto out; 4363 } 4364 if (!as_can_change_zones()) { 4365 err = EFAULT; 4366 goto out; 4367 } 4368 4369 mutex_enter(&zonehash_lock); 4370 if (pp->p_zone != global_zone) { 4371 mutex_exit(&zonehash_lock); 4372 err = EINVAL; 4373 goto out; 4374 } 4375 4376 zone = zone_find_all_by_id(zoneid); 4377 if (zone == NULL) { 4378 mutex_exit(&zonehash_lock); 4379 err = EINVAL; 4380 goto out; 4381 } 4382 4383 /* 4384 * To prevent processes in a zone from holding contracts on 4385 * extrazonal resources, and to avoid process contract 4386 * memberships which span zones, contract holders and processes 4387 * which aren't the sole members of their encapsulating process 4388 * contracts are not allowed to zone_enter. 4389 */ 4390 ctp = pp->p_ct_process; 4391 ct = &ctp->conp_contract; 4392 mutex_enter(&ct->ct_lock); 4393 mutex_enter(&pp->p_lock); 4394 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 4395 mutex_exit(&pp->p_lock); 4396 mutex_exit(&ct->ct_lock); 4397 mutex_exit(&zonehash_lock); 4398 pool_unlock(); 4399 err = EINVAL; 4400 goto out; 4401 } 4402 4403 /* 4404 * Moreover, we don't allow processes whose encapsulating 4405 * process contracts have inherited extrazonal contracts. 4406 * While it would be easier to eliminate all process contracts 4407 * with inherited contracts, we need to be able to give a 4408 * restarted init (or other zone-penetrating process) its 4409 * predecessor's contracts. 4410 */ 4411 if (ctp->conp_ninherited != 0) { 4412 contract_t *next; 4413 for (next = list_head(&ctp->conp_inherited); next; 4414 next = list_next(&ctp->conp_inherited, next)) { 4415 if (contract_getzuniqid(next) != zone->zone_uniqid) { 4416 mutex_exit(&pp->p_lock); 4417 mutex_exit(&ct->ct_lock); 4418 mutex_exit(&zonehash_lock); 4419 pool_unlock(); 4420 err = EINVAL; 4421 goto out; 4422 } 4423 } 4424 } 4425 mutex_exit(&pp->p_lock); 4426 mutex_exit(&ct->ct_lock); 4427 4428 status = zone_status_get(zone); 4429 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 4430 /* 4431 * Can't join 4432 */ 4433 mutex_exit(&zonehash_lock); 4434 err = EINVAL; 4435 goto out; 4436 } 4437 4438 /* 4439 * Make sure new priv set is within the permitted set for caller 4440 */ 4441 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 4442 mutex_exit(&zonehash_lock); 4443 err = EPERM; 4444 goto out; 4445 } 4446 /* 4447 * We want to momentarily drop zonehash_lock while we optimistically 4448 * bind curproc to the pool it should be running in. This is safe 4449 * since the zone can't disappear (we have a hold on it). 4450 */ 4451 zone_hold(zone); 4452 mutex_exit(&zonehash_lock); 4453 4454 /* 4455 * Grab pool_lock to keep the pools configuration from changing 4456 * and to stop ourselves from getting rebound to another pool 4457 * until we join the zone. 4458 */ 4459 if (pool_lock_intr() != 0) { 4460 zone_rele(zone); 4461 err = EINTR; 4462 goto out; 4463 } 4464 ASSERT(secpolicy_pool(CRED()) == 0); 4465 /* 4466 * Bind ourselves to the pool currently associated with the zone. 4467 */ 4468 oldpool = curproc->p_pool; 4469 newpool = zone_pool_get(zone); 4470 if (pool_state == POOL_ENABLED && newpool != oldpool && 4471 (err = pool_do_bind(newpool, P_PID, P_MYID, 4472 POOL_BIND_ALL)) != 0) { 4473 pool_unlock(); 4474 zone_rele(zone); 4475 goto out; 4476 } 4477 4478 /* 4479 * Grab cpu_lock now; we'll need it later when we call 4480 * task_join(). 4481 */ 4482 mutex_enter(&cpu_lock); 4483 mutex_enter(&zonehash_lock); 4484 /* 4485 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 4486 */ 4487 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 4488 /* 4489 * Can't join anymore. 4490 */ 4491 mutex_exit(&zonehash_lock); 4492 mutex_exit(&cpu_lock); 4493 if (pool_state == POOL_ENABLED && 4494 newpool != oldpool) 4495 (void) pool_do_bind(oldpool, P_PID, P_MYID, 4496 POOL_BIND_ALL); 4497 pool_unlock(); 4498 zone_rele(zone); 4499 err = EINVAL; 4500 goto out; 4501 } 4502 4503 /* 4504 * a_lock must be held while transfering locked memory and swap 4505 * reservation from the global zone to the non global zone because 4506 * asynchronous faults on the processes' address space can lock 4507 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 4508 * segments respectively. 4509 */ 4510 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 4511 swap = as_swresv(); 4512 mutex_enter(&pp->p_lock); 4513 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 4514 /* verify that we do not exceed and task or lwp limits */ 4515 mutex_enter(&zone->zone_nlwps_lock); 4516 /* add new lwps to zone and zone's proj0 */ 4517 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 4518 zone->zone_nlwps += pp->p_lwpcnt; 4519 /* add 1 task to zone's proj0 */ 4520 zone_proj0->kpj_ntasks += 1; 4521 mutex_exit(&zone->zone_nlwps_lock); 4522 4523 mutex_enter(&zone->zone_mem_lock); 4524 zone->zone_locked_mem += pp->p_locked_mem; 4525 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 4526 zone->zone_max_swap += swap; 4527 mutex_exit(&zone->zone_mem_lock); 4528 4529 /* remove lwps from proc's old zone and old project */ 4530 mutex_enter(&pp->p_zone->zone_nlwps_lock); 4531 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 4532 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 4533 mutex_exit(&pp->p_zone->zone_nlwps_lock); 4534 4535 mutex_enter(&pp->p_zone->zone_mem_lock); 4536 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 4537 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 4538 pp->p_zone->zone_max_swap -= swap; 4539 mutex_exit(&pp->p_zone->zone_mem_lock); 4540 4541 mutex_exit(&pp->p_lock); 4542 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 4543 4544 /* 4545 * Joining the zone cannot fail from now on. 4546 * 4547 * This means that a lot of the following code can be commonized and 4548 * shared with zsched(). 4549 */ 4550 4551 /* 4552 * Reset the encapsulating process contract's zone. 4553 */ 4554 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 4555 contract_setzuniqid(ct, zone->zone_uniqid); 4556 4557 /* 4558 * Create a new task and associate the process with the project keyed 4559 * by (projid,zoneid). 4560 * 4561 * We might as well be in project 0; the global zone's projid doesn't 4562 * make much sense in a zone anyhow. 4563 * 4564 * This also increments zone_ntasks, and returns with p_lock held. 4565 */ 4566 tk = task_create(0, zone); 4567 oldtk = task_join(tk, 0); 4568 mutex_exit(&cpu_lock); 4569 4570 pp->p_flag |= SZONETOP; 4571 pp->p_zone = zone; 4572 4573 /* 4574 * call RCTLOP_SET functions on this proc 4575 */ 4576 e.rcep_p.zone = zone; 4577 e.rcep_t = RCENTITY_ZONE; 4578 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 4579 RCD_CALLBACK); 4580 mutex_exit(&pp->p_lock); 4581 4582 /* 4583 * We don't need to hold any of zsched's locks here; not only do we know 4584 * the process and zone aren't going away, we know its session isn't 4585 * changing either. 4586 * 4587 * By joining zsched's session here, we mimic the behavior in the 4588 * global zone of init's sid being the pid of sched. We extend this 4589 * to all zlogin-like zone_enter()'ing processes as well. 4590 */ 4591 mutex_enter(&pidlock); 4592 sp = zone->zone_zsched->p_sessp; 4593 sess_hold(zone->zone_zsched); 4594 mutex_enter(&pp->p_lock); 4595 pgexit(pp); 4596 sess_rele(pp->p_sessp, B_TRUE); 4597 pp->p_sessp = sp; 4598 pgjoin(pp, zone->zone_zsched->p_pidp); 4599 4600 /* 4601 * If there is a default scheduling class for the zone and it is not 4602 * the class we are currently in, change all of the threads in the 4603 * process to the new class. We need to be holding pidlock & p_lock 4604 * when we call parmsset so this is a good place to do it. 4605 */ 4606 if (zone->zone_defaultcid > 0 && 4607 zone->zone_defaultcid != curthread->t_cid) { 4608 pcparms_t pcparms; 4609 kthread_id_t t; 4610 4611 pcparms.pc_cid = zone->zone_defaultcid; 4612 pcparms.pc_clparms[0] = 0; 4613 4614 /* 4615 * If setting the class fails, we still want to enter the zone. 4616 */ 4617 if ((t = pp->p_tlist) != NULL) { 4618 do { 4619 (void) parmsset(&pcparms, t); 4620 } while ((t = t->t_forw) != pp->p_tlist); 4621 } 4622 } 4623 4624 mutex_exit(&pp->p_lock); 4625 mutex_exit(&pidlock); 4626 4627 mutex_exit(&zonehash_lock); 4628 /* 4629 * We're firmly in the zone; let pools progress. 4630 */ 4631 pool_unlock(); 4632 task_rele(oldtk); 4633 /* 4634 * We don't need to retain a hold on the zone since we already 4635 * incremented zone_ntasks, so the zone isn't going anywhere. 4636 */ 4637 zone_rele(zone); 4638 4639 /* 4640 * Chroot 4641 */ 4642 vp = zone->zone_rootvp; 4643 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 4644 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 4645 4646 /* 4647 * Change process credentials 4648 */ 4649 newcr = cralloc(); 4650 mutex_enter(&pp->p_crlock); 4651 cr = pp->p_cred; 4652 crcopy_to(cr, newcr); 4653 crsetzone(newcr, zone); 4654 pp->p_cred = newcr; 4655 4656 /* 4657 * Restrict all process privilege sets to zone limit 4658 */ 4659 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 4660 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 4661 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 4662 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 4663 mutex_exit(&pp->p_crlock); 4664 crset(pp, newcr); 4665 4666 /* 4667 * Adjust upcount to reflect zone entry. 4668 */ 4669 uid = crgetruid(newcr); 4670 mutex_enter(&pidlock); 4671 upcount_dec(uid, GLOBAL_ZONEID); 4672 upcount_inc(uid, zoneid); 4673 mutex_exit(&pidlock); 4674 4675 /* 4676 * Set up core file path and content. 4677 */ 4678 set_core_defaults(); 4679 4680 out: 4681 /* 4682 * Let the other lwps continue. 4683 */ 4684 mutex_enter(&pp->p_lock); 4685 if (curthread != pp->p_agenttp) 4686 continuelwps(pp); 4687 mutex_exit(&pp->p_lock); 4688 4689 return (err != 0 ? set_errno(err) : 0); 4690 } 4691 4692 /* 4693 * Systemcall entry point for zone_list(2). 4694 * 4695 * Processes running in a (non-global) zone only see themselves. 4696 * On labeled systems, they see all zones whose label they dominate. 4697 */ 4698 static int 4699 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 4700 { 4701 zoneid_t *zoneids; 4702 zone_t *zone, *myzone; 4703 uint_t user_nzones, real_nzones; 4704 uint_t domi_nzones; 4705 int error; 4706 4707 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 4708 return (set_errno(EFAULT)); 4709 4710 myzone = curproc->p_zone; 4711 if (myzone != global_zone) { 4712 bslabel_t *mybslab; 4713 4714 if (!is_system_labeled()) { 4715 /* just return current zone */ 4716 real_nzones = domi_nzones = 1; 4717 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 4718 zoneids[0] = myzone->zone_id; 4719 } else { 4720 /* return all zones that are dominated */ 4721 mutex_enter(&zonehash_lock); 4722 real_nzones = zonecount; 4723 domi_nzones = 0; 4724 if (real_nzones > 0) { 4725 zoneids = kmem_alloc(real_nzones * 4726 sizeof (zoneid_t), KM_SLEEP); 4727 mybslab = label2bslabel(myzone->zone_slabel); 4728 for (zone = list_head(&zone_active); 4729 zone != NULL; 4730 zone = list_next(&zone_active, zone)) { 4731 if (zone->zone_id == GLOBAL_ZONEID) 4732 continue; 4733 if (zone != myzone && 4734 (zone->zone_flags & ZF_IS_SCRATCH)) 4735 continue; 4736 /* 4737 * Note that a label always dominates 4738 * itself, so myzone is always included 4739 * in the list. 4740 */ 4741 if (bldominates(mybslab, 4742 label2bslabel(zone->zone_slabel))) { 4743 zoneids[domi_nzones++] = 4744 zone->zone_id; 4745 } 4746 } 4747 } 4748 mutex_exit(&zonehash_lock); 4749 } 4750 } else { 4751 mutex_enter(&zonehash_lock); 4752 real_nzones = zonecount; 4753 domi_nzones = 0; 4754 if (real_nzones > 0) { 4755 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 4756 KM_SLEEP); 4757 for (zone = list_head(&zone_active); zone != NULL; 4758 zone = list_next(&zone_active, zone)) 4759 zoneids[domi_nzones++] = zone->zone_id; 4760 ASSERT(domi_nzones == real_nzones); 4761 } 4762 mutex_exit(&zonehash_lock); 4763 } 4764 4765 /* 4766 * If user has allocated space for fewer entries than we found, then 4767 * return only up to his limit. Either way, tell him exactly how many 4768 * we found. 4769 */ 4770 if (domi_nzones < user_nzones) 4771 user_nzones = domi_nzones; 4772 error = 0; 4773 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 4774 error = EFAULT; 4775 } else if (zoneidlist != NULL && user_nzones != 0) { 4776 if (copyout(zoneids, zoneidlist, 4777 user_nzones * sizeof (zoneid_t)) != 0) 4778 error = EFAULT; 4779 } 4780 4781 if (real_nzones > 0) 4782 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 4783 4784 if (error != 0) 4785 return (set_errno(error)); 4786 else 4787 return (0); 4788 } 4789 4790 /* 4791 * Systemcall entry point for zone_lookup(2). 4792 * 4793 * Non-global zones are only able to see themselves and (on labeled systems) 4794 * the zones they dominate. 4795 */ 4796 static zoneid_t 4797 zone_lookup(const char *zone_name) 4798 { 4799 char *kname; 4800 zone_t *zone; 4801 zoneid_t zoneid; 4802 int err; 4803 4804 if (zone_name == NULL) { 4805 /* return caller's zone id */ 4806 return (getzoneid()); 4807 } 4808 4809 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 4810 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 4811 kmem_free(kname, ZONENAME_MAX); 4812 return (set_errno(err)); 4813 } 4814 4815 mutex_enter(&zonehash_lock); 4816 zone = zone_find_all_by_name(kname); 4817 kmem_free(kname, ZONENAME_MAX); 4818 /* 4819 * In a non-global zone, can only lookup global and own name. 4820 * In Trusted Extensions zone label dominance rules apply. 4821 */ 4822 if (zone == NULL || 4823 zone_status_get(zone) < ZONE_IS_READY || 4824 !zone_list_access(zone)) { 4825 mutex_exit(&zonehash_lock); 4826 return (set_errno(EINVAL)); 4827 } else { 4828 zoneid = zone->zone_id; 4829 mutex_exit(&zonehash_lock); 4830 return (zoneid); 4831 } 4832 } 4833 4834 static int 4835 zone_version(int *version_arg) 4836 { 4837 int version = ZONE_SYSCALL_API_VERSION; 4838 4839 if (copyout(&version, version_arg, sizeof (int)) != 0) 4840 return (set_errno(EFAULT)); 4841 return (0); 4842 } 4843 4844 /* ARGSUSED */ 4845 long 4846 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 4847 { 4848 zone_def zs; 4849 4850 switch (cmd) { 4851 case ZONE_CREATE: 4852 if (get_udatamodel() == DATAMODEL_NATIVE) { 4853 if (copyin(arg1, &zs, sizeof (zone_def))) { 4854 return (set_errno(EFAULT)); 4855 } 4856 } else { 4857 #ifdef _SYSCALL32_IMPL 4858 zone_def32 zs32; 4859 4860 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 4861 return (set_errno(EFAULT)); 4862 } 4863 zs.zone_name = 4864 (const char *)(unsigned long)zs32.zone_name; 4865 zs.zone_root = 4866 (const char *)(unsigned long)zs32.zone_root; 4867 zs.zone_privs = 4868 (const struct priv_set *) 4869 (unsigned long)zs32.zone_privs; 4870 zs.zone_privssz = zs32.zone_privssz; 4871 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 4872 zs.rctlbufsz = zs32.rctlbufsz; 4873 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 4874 zs.zfsbufsz = zs32.zfsbufsz; 4875 zs.extended_error = 4876 (int *)(unsigned long)zs32.extended_error; 4877 zs.match = zs32.match; 4878 zs.doi = zs32.doi; 4879 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 4880 #else 4881 panic("get_udatamodel() returned bogus result\n"); 4882 #endif 4883 } 4884 4885 return (zone_create(zs.zone_name, zs.zone_root, 4886 zs.zone_privs, zs.zone_privssz, 4887 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 4888 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 4889 zs.extended_error, zs.match, zs.doi, 4890 zs.label)); 4891 case ZONE_BOOT: 4892 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 4893 case ZONE_DESTROY: 4894 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 4895 case ZONE_GETATTR: 4896 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 4897 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 4898 case ZONE_SETATTR: 4899 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 4900 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 4901 case ZONE_ENTER: 4902 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 4903 case ZONE_LIST: 4904 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 4905 case ZONE_SHUTDOWN: 4906 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 4907 case ZONE_LOOKUP: 4908 return (zone_lookup((const char *)arg1)); 4909 case ZONE_VERSION: 4910 return (zone_version((int *)arg1)); 4911 default: 4912 return (set_errno(EINVAL)); 4913 } 4914 } 4915 4916 struct zarg { 4917 zone_t *zone; 4918 zone_cmd_arg_t arg; 4919 }; 4920 4921 static int 4922 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 4923 { 4924 char *buf; 4925 size_t buflen; 4926 int error; 4927 4928 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 4929 buf = kmem_alloc(buflen, KM_SLEEP); 4930 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 4931 error = door_ki_open(buf, doorp); 4932 kmem_free(buf, buflen); 4933 return (error); 4934 } 4935 4936 static void 4937 zone_release_door(door_handle_t *doorp) 4938 { 4939 door_ki_rele(*doorp); 4940 *doorp = NULL; 4941 } 4942 4943 static void 4944 zone_ki_call_zoneadmd(struct zarg *zargp) 4945 { 4946 door_handle_t door = NULL; 4947 door_arg_t darg, save_arg; 4948 char *zone_name; 4949 size_t zone_namelen; 4950 zoneid_t zoneid; 4951 zone_t *zone; 4952 zone_cmd_arg_t arg; 4953 uint64_t uniqid; 4954 size_t size; 4955 int error; 4956 int retry; 4957 4958 zone = zargp->zone; 4959 arg = zargp->arg; 4960 kmem_free(zargp, sizeof (*zargp)); 4961 4962 zone_namelen = strlen(zone->zone_name) + 1; 4963 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 4964 bcopy(zone->zone_name, zone_name, zone_namelen); 4965 zoneid = zone->zone_id; 4966 uniqid = zone->zone_uniqid; 4967 /* 4968 * zoneadmd may be down, but at least we can empty out the zone. 4969 * We can ignore the return value of zone_empty() since we're called 4970 * from a kernel thread and know we won't be delivered any signals. 4971 */ 4972 ASSERT(curproc == &p0); 4973 (void) zone_empty(zone); 4974 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 4975 zone_rele(zone); 4976 4977 size = sizeof (arg); 4978 darg.rbuf = (char *)&arg; 4979 darg.data_ptr = (char *)&arg; 4980 darg.rsize = size; 4981 darg.data_size = size; 4982 darg.desc_ptr = NULL; 4983 darg.desc_num = 0; 4984 4985 save_arg = darg; 4986 /* 4987 * Since we're not holding a reference to the zone, any number of 4988 * things can go wrong, including the zone disappearing before we get a 4989 * chance to talk to zoneadmd. 4990 */ 4991 for (retry = 0; /* forever */; retry++) { 4992 if (door == NULL && 4993 (error = zone_lookup_door(zone_name, &door)) != 0) { 4994 goto next; 4995 } 4996 ASSERT(door != NULL); 4997 4998 if ((error = door_ki_upcall(door, &darg)) == 0) { 4999 break; 5000 } 5001 switch (error) { 5002 case EINTR: 5003 /* FALLTHROUGH */ 5004 case EAGAIN: /* process may be forking */ 5005 /* 5006 * Back off for a bit 5007 */ 5008 break; 5009 case EBADF: 5010 zone_release_door(&door); 5011 if (zone_lookup_door(zone_name, &door) != 0) { 5012 /* 5013 * zoneadmd may be dead, but it may come back to 5014 * life later. 5015 */ 5016 break; 5017 } 5018 break; 5019 default: 5020 cmn_err(CE_WARN, 5021 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 5022 error); 5023 goto out; 5024 } 5025 next: 5026 /* 5027 * If this isn't the same zone_t that we originally had in mind, 5028 * then this is the same as if two kadmin requests come in at 5029 * the same time: the first one wins. This means we lose, so we 5030 * bail. 5031 */ 5032 if ((zone = zone_find_by_id(zoneid)) == NULL) { 5033 /* 5034 * Problem is solved. 5035 */ 5036 break; 5037 } 5038 if (zone->zone_uniqid != uniqid) { 5039 /* 5040 * zoneid recycled 5041 */ 5042 zone_rele(zone); 5043 break; 5044 } 5045 /* 5046 * We could zone_status_timedwait(), but there doesn't seem to 5047 * be much point in doing that (plus, it would mean that 5048 * zone_free() isn't called until this thread exits). 5049 */ 5050 zone_rele(zone); 5051 delay(hz); 5052 darg = save_arg; 5053 } 5054 out: 5055 if (door != NULL) { 5056 zone_release_door(&door); 5057 } 5058 kmem_free(zone_name, zone_namelen); 5059 thread_exit(); 5060 } 5061 5062 /* 5063 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 5064 * kadmin(). The caller is a process in the zone. 5065 * 5066 * In order to shutdown the zone, we will hand off control to zoneadmd 5067 * (running in the global zone) via a door. We do a half-hearted job at 5068 * killing all processes in the zone, create a kernel thread to contact 5069 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 5070 * a form of generation number used to let zoneadmd (as well as 5071 * zone_destroy()) know exactly which zone they're re talking about. 5072 */ 5073 int 5074 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 5075 { 5076 struct zarg *zargp; 5077 zone_cmd_t zcmd; 5078 zone_t *zone; 5079 5080 zone = curproc->p_zone; 5081 ASSERT(getzoneid() != GLOBAL_ZONEID); 5082 5083 switch (cmd) { 5084 case A_SHUTDOWN: 5085 switch (fcn) { 5086 case AD_HALT: 5087 case AD_POWEROFF: 5088 zcmd = Z_HALT; 5089 break; 5090 case AD_BOOT: 5091 zcmd = Z_REBOOT; 5092 break; 5093 case AD_IBOOT: 5094 case AD_SBOOT: 5095 case AD_SIBOOT: 5096 case AD_NOSYNC: 5097 return (ENOTSUP); 5098 default: 5099 return (EINVAL); 5100 } 5101 break; 5102 case A_REBOOT: 5103 zcmd = Z_REBOOT; 5104 break; 5105 case A_FTRACE: 5106 case A_REMOUNT: 5107 case A_FREEZE: 5108 case A_DUMP: 5109 return (ENOTSUP); 5110 default: 5111 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 5112 return (EINVAL); 5113 } 5114 5115 if (secpolicy_zone_admin(credp, B_FALSE)) 5116 return (EPERM); 5117 mutex_enter(&zone_status_lock); 5118 5119 /* 5120 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 5121 * is in the zone. 5122 */ 5123 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 5124 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 5125 /* 5126 * This zone is already on its way down. 5127 */ 5128 mutex_exit(&zone_status_lock); 5129 return (0); 5130 } 5131 /* 5132 * Prevent future zone_enter()s 5133 */ 5134 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5135 mutex_exit(&zone_status_lock); 5136 5137 /* 5138 * Kill everyone now and call zoneadmd later. 5139 * zone_ki_call_zoneadmd() will do a more thorough job of this 5140 * later. 5141 */ 5142 killall(zone->zone_id); 5143 /* 5144 * Now, create the thread to contact zoneadmd and do the rest of the 5145 * work. This thread can't be created in our zone otherwise 5146 * zone_destroy() would deadlock. 5147 */ 5148 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 5149 zargp->arg.cmd = zcmd; 5150 zargp->arg.uniqid = zone->zone_uniqid; 5151 zargp->zone = zone; 5152 (void) strcpy(zargp->arg.locale, "C"); 5153 /* mdep was already copied in for us by uadmin */ 5154 if (mdep != NULL) 5155 (void) strlcpy(zargp->arg.bootbuf, mdep, 5156 sizeof (zargp->arg.bootbuf)); 5157 zone_hold(zone); 5158 5159 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 5160 TS_RUN, minclsyspri); 5161 exit(CLD_EXITED, 0); 5162 5163 return (EINVAL); 5164 } 5165 5166 /* 5167 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 5168 * status to ZONE_IS_SHUTTING_DOWN. 5169 */ 5170 void 5171 zone_shutdown_global(void) 5172 { 5173 ASSERT(curproc->p_zone == global_zone); 5174 5175 mutex_enter(&zone_status_lock); 5176 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 5177 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 5178 mutex_exit(&zone_status_lock); 5179 } 5180 5181 /* 5182 * Returns true if the named dataset is visible in the current zone. 5183 * The 'write' parameter is set to 1 if the dataset is also writable. 5184 */ 5185 int 5186 zone_dataset_visible(const char *dataset, int *write) 5187 { 5188 zone_dataset_t *zd; 5189 size_t len; 5190 zone_t *zone = curproc->p_zone; 5191 5192 if (dataset[0] == '\0') 5193 return (0); 5194 5195 /* 5196 * Walk the list once, looking for datasets which match exactly, or 5197 * specify a dataset underneath an exported dataset. If found, return 5198 * true and note that it is writable. 5199 */ 5200 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5201 zd = list_next(&zone->zone_datasets, zd)) { 5202 5203 len = strlen(zd->zd_dataset); 5204 if (strlen(dataset) >= len && 5205 bcmp(dataset, zd->zd_dataset, len) == 0 && 5206 (dataset[len] == '\0' || dataset[len] == '/' || 5207 dataset[len] == '@')) { 5208 if (write) 5209 *write = 1; 5210 return (1); 5211 } 5212 } 5213 5214 /* 5215 * Walk the list a second time, searching for datasets which are parents 5216 * of exported datasets. These should be visible, but read-only. 5217 * 5218 * Note that we also have to support forms such as 'pool/dataset/', with 5219 * a trailing slash. 5220 */ 5221 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5222 zd = list_next(&zone->zone_datasets, zd)) { 5223 5224 len = strlen(dataset); 5225 if (dataset[len - 1] == '/') 5226 len--; /* Ignore trailing slash */ 5227 if (len < strlen(zd->zd_dataset) && 5228 bcmp(dataset, zd->zd_dataset, len) == 0 && 5229 zd->zd_dataset[len] == '/') { 5230 if (write) 5231 *write = 0; 5232 return (1); 5233 } 5234 } 5235 5236 return (0); 5237 } 5238 5239 /* 5240 * zone_find_by_any_path() - 5241 * 5242 * kernel-private routine similar to zone_find_by_path(), but which 5243 * effectively compares against zone paths rather than zonerootpath 5244 * (i.e., the last component of zonerootpaths, which should be "root/", 5245 * are not compared.) This is done in order to accurately identify all 5246 * paths, whether zone-visible or not, including those which are parallel 5247 * to /root/, such as /dev/, /home/, etc... 5248 * 5249 * If the specified path does not fall under any zone path then global 5250 * zone is returned. 5251 * 5252 * The treat_abs parameter indicates whether the path should be treated as 5253 * an absolute path although it does not begin with "/". (This supports 5254 * nfs mount syntax such as host:any/path.) 5255 * 5256 * The caller is responsible for zone_rele of the returned zone. 5257 */ 5258 zone_t * 5259 zone_find_by_any_path(const char *path, boolean_t treat_abs) 5260 { 5261 zone_t *zone; 5262 int path_offset = 0; 5263 5264 if (path == NULL) { 5265 zone_hold(global_zone); 5266 return (global_zone); 5267 } 5268 5269 if (*path != '/') { 5270 ASSERT(treat_abs); 5271 path_offset = 1; 5272 } 5273 5274 mutex_enter(&zonehash_lock); 5275 for (zone = list_head(&zone_active); zone != NULL; 5276 zone = list_next(&zone_active, zone)) { 5277 char *c; 5278 size_t pathlen; 5279 char *rootpath_start; 5280 5281 if (zone == global_zone) /* skip global zone */ 5282 continue; 5283 5284 /* scan backwards to find start of last component */ 5285 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 5286 do { 5287 c--; 5288 } while (*c != '/'); 5289 5290 pathlen = c - zone->zone_rootpath + 1 - path_offset; 5291 rootpath_start = (zone->zone_rootpath + path_offset); 5292 if (strncmp(path, rootpath_start, pathlen) == 0) 5293 break; 5294 } 5295 if (zone == NULL) 5296 zone = global_zone; 5297 zone_hold(zone); 5298 mutex_exit(&zonehash_lock); 5299 return (zone); 5300 } 5301