1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 65 * ready. The zone is made visible after the ZSD constructor callbacks are 66 * executed. A zone remains in this state until it transitions into 67 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 68 * 69 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 70 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 71 * state. 72 * 73 * ZONE_IS_RUNNING: The zone is open for business: zsched has 74 * successfully started init. A zone remains in this state until 75 * zone_shutdown() is called. 76 * 77 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 78 * killing all processes running in the zone. The zone remains 79 * in this state until there are no more user processes running in the zone. 80 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 81 * Since zone_shutdown() is restartable, it may be called successfully 82 * multiple times for the same zone_t. Setting of the zone's state to 83 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 84 * the zone's status without worrying about it being a moving target. 85 * 86 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 87 * are no more user processes in the zone. The zone remains in this 88 * state until there are no more kernel threads associated with the 89 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 90 * fail. 91 * 92 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 93 * have exited. zone_shutdown() returns. Henceforth it is not possible to 94 * join the zone or create kernel threads therein. 95 * 96 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 97 * remains in this state until zsched exits. Calls to zone_find_by_*() 98 * return NULL from now on. 99 * 100 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 101 * processes or threads doing work on behalf of the zone. The zone is 102 * removed from the list of active zones. zone_destroy() returns, and 103 * the zone can be recreated. 104 * 105 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 106 * callbacks are executed, and all memory associated with the zone is 107 * freed. 108 * 109 * Threads can wait for the zone to enter a requested state by using 110 * zone_status_wait() or zone_status_timedwait() with the desired 111 * state passed in as an argument. Zone state transitions are 112 * uni-directional; it is not possible to move back to an earlier state. 113 * 114 * 115 * Zone-Specific Data: 116 * 117 * Subsystems needing to maintain zone-specific data can store that 118 * data using the ZSD mechanism. This provides a zone-specific data 119 * store, similar to thread-specific data (see pthread_getspecific(3C) 120 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 121 * to register callbacks to be invoked when a zone is created, shut 122 * down, or destroyed. This can be used to initialize zone-specific 123 * data for new zones and to clean up when zones go away. 124 * 125 * 126 * Data Structures: 127 * 128 * The per-zone structure (zone_t) is reference counted, and freed 129 * when all references are released. zone_hold and zone_rele can be 130 * used to adjust the reference count. In addition, reference counts 131 * associated with the cred_t structure are tracked separately using 132 * zone_cred_hold and zone_cred_rele. 133 * 134 * Pointers to active zone_t's are stored in two hash tables; one 135 * for searching by id, the other for searching by name. Lookups 136 * can be performed on either basis, using zone_find_by_id and 137 * zone_find_by_name. Both return zone_t pointers with the zone 138 * held, so zone_rele should be called when the pointer is no longer 139 * needed. Zones can also be searched by path; zone_find_by_path 140 * returns the zone with which a path name is associated (global 141 * zone if the path is not within some other zone's file system 142 * hierarchy). This currently requires iterating through each zone, 143 * so it is slower than an id or name search via a hash table. 144 * 145 * 146 * Locking: 147 * 148 * zonehash_lock: This is a top-level global lock used to protect the 149 * zone hash tables and lists. Zones cannot be created or destroyed 150 * while this lock is held. 151 * zone_status_lock: This is a global lock protecting zone state. 152 * Zones cannot change state while this lock is held. It also 153 * protects the list of kernel threads associated with a zone. 154 * zone_lock: This is a per-zone lock used to protect several fields of 155 * the zone_t (see <sys/zone.h> for details). In addition, holding 156 * this lock means that the zone cannot go away. 157 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 158 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 159 * list (a list of zones in the ZONE_IS_DEAD state). 160 * 161 * Ordering requirements: 162 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 163 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 164 * 165 * Blocking memory allocations are permitted while holding any of the 166 * zone locks. 167 * 168 * 169 * System Call Interface: 170 * 171 * The zone subsystem can be managed and queried from user level with 172 * the following system calls (all subcodes of the primary "zone" 173 * system call): 174 * - zone_create: creates a zone with selected attributes (name, 175 * root path, privileges, resource controls, ZFS datasets) 176 * - zone_enter: allows the current process to enter a zone 177 * - zone_getattr: reports attributes of a zone 178 * - zone_list: lists all zones active in the system 179 * - zone_lookup: looks up zone id based on name 180 * - zone_shutdown: initiates shutdown process (see states above) 181 * - zone_destroy: completes shutdown process (see states above) 182 * 183 */ 184 185 #include <sys/priv_impl.h> 186 #include <sys/cred.h> 187 #include <c2/audit.h> 188 #include <sys/debug.h> 189 #include <sys/file.h> 190 #include <sys/kmem.h> 191 #include <sys/mutex.h> 192 #include <sys/note.h> 193 #include <sys/pathname.h> 194 #include <sys/proc.h> 195 #include <sys/project.h> 196 #include <sys/sysevent.h> 197 #include <sys/task.h> 198 #include <sys/systm.h> 199 #include <sys/types.h> 200 #include <sys/utsname.h> 201 #include <sys/vnode.h> 202 #include <sys/vfs.h> 203 #include <sys/systeminfo.h> 204 #include <sys/policy.h> 205 #include <sys/cred_impl.h> 206 #include <sys/contract_impl.h> 207 #include <sys/contract/process_impl.h> 208 #include <sys/class.h> 209 #include <sys/pool.h> 210 #include <sys/pool_pset.h> 211 #include <sys/pset.h> 212 #include <sys/sysmacros.h> 213 #include <sys/callb.h> 214 #include <sys/vmparam.h> 215 #include <sys/corectl.h> 216 217 #include <sys/door.h> 218 #include <sys/cpuvar.h> 219 220 #include <sys/uadmin.h> 221 #include <sys/session.h> 222 #include <sys/cmn_err.h> 223 #include <sys/modhash.h> 224 #include <sys/nvpair.h> 225 #include <sys/rctl.h> 226 #include <sys/fss.h> 227 #include <sys/zone.h> 228 #include <sys/tsol/label.h> 229 230 /* 231 * cv used to signal that all references to the zone have been released. This 232 * needs to be global since there may be multiple waiters, and the first to 233 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 234 */ 235 static kcondvar_t zone_destroy_cv; 236 /* 237 * Lock used to serialize access to zone_cv. This could have been per-zone, 238 * but then we'd need another lock for zone_destroy_cv, and why bother? 239 */ 240 static kmutex_t zone_status_lock; 241 242 /* 243 * ZSD-related global variables. 244 */ 245 static kmutex_t zsd_key_lock; /* protects the following two */ 246 /* 247 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 248 */ 249 static zone_key_t zsd_keyval = 0; 250 /* 251 * Global list of registered keys. We use this when a new zone is created. 252 */ 253 static list_t zsd_registered_keys; 254 255 int zone_hash_size = 256; 256 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 257 static kmutex_t zonehash_lock; 258 static uint_t zonecount; 259 static id_space_t *zoneid_space; 260 261 /* 262 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 263 * kernel proper runs, and which manages all other zones. 264 * 265 * Although not declared as static, the variable "zone0" should not be used 266 * except for by code that needs to reference the global zone early on in boot, 267 * before it is fully initialized. All other consumers should use 268 * 'global_zone'. 269 */ 270 zone_t zone0; 271 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 272 273 /* 274 * List of active zones, protected by zonehash_lock. 275 */ 276 static list_t zone_active; 277 278 /* 279 * List of destroyed zones that still have outstanding cred references. 280 * Used for debugging. Uses a separate lock to avoid lock ordering 281 * problems in zone_free. 282 */ 283 static list_t zone_deathrow; 284 static kmutex_t zone_deathrow_lock; 285 286 /* number of zones is limited by virtual interface limit in IP */ 287 uint_t maxzones = 8192; 288 289 /* Event channel to sent zone state change notifications */ 290 evchan_t *zone_event_chan; 291 292 /* 293 * This table holds the mapping from kernel zone states to 294 * states visible in the state notification API. 295 * The idea is that we only expose "obvious" states and 296 * do not expose states which are just implementation details. 297 */ 298 const char *zone_status_table[] = { 299 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 300 ZONE_EVENT_READY, /* ready */ 301 ZONE_EVENT_READY, /* booting */ 302 ZONE_EVENT_RUNNING, /* running */ 303 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 304 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 305 ZONE_EVENT_SHUTTING_DOWN, /* down */ 306 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 307 ZONE_EVENT_UNINITIALIZED, /* dead */ 308 }; 309 310 /* 311 * This isn't static so lint doesn't complain. 312 */ 313 rctl_hndl_t rc_zone_cpu_shares; 314 rctl_hndl_t rc_zone_nlwps; 315 /* 316 * Synchronization primitives used to synchronize between mounts and zone 317 * creation/destruction. 318 */ 319 static int mounts_in_progress; 320 static kcondvar_t mount_cv; 321 static kmutex_t mount_lock; 322 323 const char * const zone_initname = "/sbin/init"; 324 static char * const zone_prefix = "/zone/"; 325 326 static int zone_shutdown(zoneid_t zoneid); 327 328 /* 329 * Bump this number when you alter the zone syscall interfaces; this is 330 * because we need to have support for previous API versions in libc 331 * to support patching; libc calls into the kernel to determine this number. 332 * 333 * Version 1 of the API is the version originally shipped with Solaris 10 334 * Version 2 alters the zone_create system call in order to support more 335 * arguments by moving the args into a structure; and to do better 336 * error reporting when zone_create() fails. 337 * Version 3 alters the zone_create system call in order to support the 338 * import of ZFS datasets to zones. 339 * Version 4 alters the zone_create system call in order to support 340 * Trusted Extensions. 341 */ 342 static const int ZONE_SYSCALL_API_VERSION = 4; 343 344 /* 345 * Certain filesystems (such as NFS and autofs) need to know which zone 346 * the mount is being placed in. Because of this, we need to be able to 347 * ensure that a zone isn't in the process of being created such that 348 * nfs_mount() thinks it is in the global zone, while by the time it 349 * gets added the list of mounted zones, it ends up on zoneA's mount 350 * list. 351 * 352 * The following functions: block_mounts()/resume_mounts() and 353 * mount_in_progress()/mount_completed() are used by zones and the VFS 354 * layer (respectively) to synchronize zone creation and new mounts. 355 * 356 * The semantics are like a reader-reader lock such that there may 357 * either be multiple mounts (or zone creations, if that weren't 358 * serialized by zonehash_lock) in progress at the same time, but not 359 * both. 360 * 361 * We use cv's so the user can ctrl-C out of the operation if it's 362 * taking too long. 363 * 364 * The semantics are such that there is unfair bias towards the 365 * "current" operation. This means that zone creations may starve if 366 * there is a rapid succession of new mounts coming in to the system, or 367 * there is a remote possibility that zones will be created at such a 368 * rate that new mounts will not be able to proceed. 369 */ 370 /* 371 * Prevent new mounts from progressing to the point of calling 372 * VFS_MOUNT(). If there are already mounts in this "region", wait for 373 * them to complete. 374 */ 375 static int 376 block_mounts(void) 377 { 378 int retval = 0; 379 380 /* 381 * Since it may block for a long time, block_mounts() shouldn't be 382 * called with zonehash_lock held. 383 */ 384 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 385 mutex_enter(&mount_lock); 386 while (mounts_in_progress > 0) { 387 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 388 goto signaled; 389 } 390 /* 391 * A negative value of mounts_in_progress indicates that mounts 392 * have been blocked by (-mounts_in_progress) different callers. 393 */ 394 mounts_in_progress--; 395 retval = 1; 396 signaled: 397 mutex_exit(&mount_lock); 398 return (retval); 399 } 400 401 /* 402 * The VFS layer may progress with new mounts as far as we're concerned. 403 * Allow them to progress if we were the last obstacle. 404 */ 405 static void 406 resume_mounts(void) 407 { 408 mutex_enter(&mount_lock); 409 if (++mounts_in_progress == 0) 410 cv_broadcast(&mount_cv); 411 mutex_exit(&mount_lock); 412 } 413 414 /* 415 * The VFS layer is busy with a mount; zones should wait until all 416 * mounts are completed to progress. 417 */ 418 void 419 mount_in_progress(void) 420 { 421 mutex_enter(&mount_lock); 422 while (mounts_in_progress < 0) 423 cv_wait(&mount_cv, &mount_lock); 424 mounts_in_progress++; 425 mutex_exit(&mount_lock); 426 } 427 428 /* 429 * VFS is done with one mount; wake up any waiting block_mounts() 430 * callers if this is the last mount. 431 */ 432 void 433 mount_completed(void) 434 { 435 mutex_enter(&mount_lock); 436 if (--mounts_in_progress == 0) 437 cv_broadcast(&mount_cv); 438 mutex_exit(&mount_lock); 439 } 440 441 /* 442 * ZSD routines. 443 * 444 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 445 * defined by the pthread_key_create() and related interfaces. 446 * 447 * Kernel subsystems may register one or more data items and/or 448 * callbacks to be executed when a zone is created, shutdown, or 449 * destroyed. 450 * 451 * Unlike the thread counterpart, destructor callbacks will be executed 452 * even if the data pointer is NULL and/or there are no constructor 453 * callbacks, so it is the responsibility of such callbacks to check for 454 * NULL data values if necessary. 455 * 456 * The locking strategy and overall picture is as follows: 457 * 458 * When someone calls zone_key_create(), a template ZSD entry is added to the 459 * global list "zsd_registered_keys", protected by zsd_key_lock. The 460 * constructor callback is called immediately on all existing zones, and a 461 * copy of the ZSD entry added to the per-zone zone_zsd list (protected by 462 * zone_lock). As this operation requires the list of zones, the list of 463 * registered keys, and the per-zone list of ZSD entries to remain constant 464 * throughout the entire operation, it must grab zonehash_lock, zone_lock for 465 * all existing zones, and zsd_key_lock, in that order. Similar locking is 466 * needed when zone_key_delete() is called. It is thus sufficient to hold 467 * zsd_key_lock *or* zone_lock to prevent additions to or removals from the 468 * per-zone zone_zsd list. 469 * 470 * Note that this implementation does not make a copy of the ZSD entry if a 471 * constructor callback is not provided. A zone_getspecific() on such an 472 * uninitialized ZSD entry will return NULL. 473 * 474 * When new zones are created constructor callbacks for all registered ZSD 475 * entries will be called. 476 * 477 * The framework does not provide any locking around zone_getspecific() and 478 * zone_setspecific() apart from that needed for internal consistency, so 479 * callers interested in atomic "test-and-set" semantics will need to provide 480 * their own locking. 481 */ 482 void 483 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 484 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 485 { 486 struct zsd_entry *zsdp; 487 struct zsd_entry *t; 488 struct zone *zone; 489 490 zsdp = kmem_alloc(sizeof (*zsdp), KM_SLEEP); 491 zsdp->zsd_data = NULL; 492 zsdp->zsd_create = create; 493 zsdp->zsd_shutdown = shutdown; 494 zsdp->zsd_destroy = destroy; 495 496 mutex_enter(&zonehash_lock); /* stop the world */ 497 for (zone = list_head(&zone_active); zone != NULL; 498 zone = list_next(&zone_active, zone)) 499 mutex_enter(&zone->zone_lock); /* lock all zones */ 500 501 mutex_enter(&zsd_key_lock); 502 *keyp = zsdp->zsd_key = ++zsd_keyval; 503 ASSERT(zsd_keyval != 0); 504 list_insert_tail(&zsd_registered_keys, zsdp); 505 mutex_exit(&zsd_key_lock); 506 507 if (create != NULL) { 508 for (zone = list_head(&zone_active); zone != NULL; 509 zone = list_next(&zone_active, zone)) { 510 t = kmem_alloc(sizeof (*t), KM_SLEEP); 511 t->zsd_key = *keyp; 512 t->zsd_data = (*create)(zone->zone_id); 513 t->zsd_create = create; 514 t->zsd_shutdown = shutdown; 515 t->zsd_destroy = destroy; 516 list_insert_tail(&zone->zone_zsd, t); 517 } 518 } 519 for (zone = list_head(&zone_active); zone != NULL; 520 zone = list_next(&zone_active, zone)) 521 mutex_exit(&zone->zone_lock); 522 mutex_exit(&zonehash_lock); 523 } 524 525 /* 526 * Helper function to find the zsd_entry associated with the key in the 527 * given list. 528 */ 529 static struct zsd_entry * 530 zsd_find(list_t *l, zone_key_t key) 531 { 532 struct zsd_entry *zsd; 533 534 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 535 if (zsd->zsd_key == key) { 536 /* 537 * Move to head of list to keep list in MRU order. 538 */ 539 if (zsd != list_head(l)) { 540 list_remove(l, zsd); 541 list_insert_head(l, zsd); 542 } 543 return (zsd); 544 } 545 } 546 return (NULL); 547 } 548 549 /* 550 * Function called when a module is being unloaded, or otherwise wishes 551 * to unregister its ZSD key and callbacks. 552 */ 553 int 554 zone_key_delete(zone_key_t key) 555 { 556 struct zsd_entry *zsdp = NULL; 557 zone_t *zone; 558 559 mutex_enter(&zonehash_lock); /* Zone create/delete waits for us */ 560 for (zone = list_head(&zone_active); zone != NULL; 561 zone = list_next(&zone_active, zone)) 562 mutex_enter(&zone->zone_lock); /* lock all zones */ 563 564 mutex_enter(&zsd_key_lock); 565 zsdp = zsd_find(&zsd_registered_keys, key); 566 if (zsdp == NULL) 567 goto notfound; 568 list_remove(&zsd_registered_keys, zsdp); 569 mutex_exit(&zsd_key_lock); 570 571 for (zone = list_head(&zone_active); zone != NULL; 572 zone = list_next(&zone_active, zone)) { 573 struct zsd_entry *del; 574 void *data; 575 576 if (!(zone->zone_flags & ZF_DESTROYED)) { 577 del = zsd_find(&zone->zone_zsd, key); 578 if (del != NULL) { 579 data = del->zsd_data; 580 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 581 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 582 list_remove(&zone->zone_zsd, del); 583 kmem_free(del, sizeof (*del)); 584 } else { 585 data = NULL; 586 } 587 if (zsdp->zsd_shutdown) 588 zsdp->zsd_shutdown(zone->zone_id, data); 589 if (zsdp->zsd_destroy) 590 zsdp->zsd_destroy(zone->zone_id, data); 591 } 592 mutex_exit(&zone->zone_lock); 593 } 594 mutex_exit(&zonehash_lock); 595 kmem_free(zsdp, sizeof (*zsdp)); 596 return (0); 597 598 notfound: 599 mutex_exit(&zsd_key_lock); 600 for (zone = list_head(&zone_active); zone != NULL; 601 zone = list_next(&zone_active, zone)) 602 mutex_exit(&zone->zone_lock); 603 mutex_exit(&zonehash_lock); 604 return (-1); 605 } 606 607 /* 608 * ZSD counterpart of pthread_setspecific(). 609 */ 610 int 611 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 612 { 613 struct zsd_entry *t; 614 struct zsd_entry *zsdp = NULL; 615 616 mutex_enter(&zone->zone_lock); 617 t = zsd_find(&zone->zone_zsd, key); 618 if (t != NULL) { 619 /* 620 * Replace old value with new 621 */ 622 t->zsd_data = (void *)data; 623 mutex_exit(&zone->zone_lock); 624 return (0); 625 } 626 /* 627 * If there was no previous value, go through the list of registered 628 * keys. 629 * 630 * We avoid grabbing zsd_key_lock until we are sure we need it; this is 631 * necessary for shutdown callbacks to be able to execute without fear 632 * of deadlock. 633 */ 634 mutex_enter(&zsd_key_lock); 635 zsdp = zsd_find(&zsd_registered_keys, key); 636 if (zsdp == NULL) { /* Key was not registered */ 637 mutex_exit(&zsd_key_lock); 638 mutex_exit(&zone->zone_lock); 639 return (-1); 640 } 641 642 /* 643 * Add a zsd_entry to this zone, using the template we just retrieved 644 * to initialize the constructor and destructor(s). 645 */ 646 t = kmem_alloc(sizeof (*t), KM_SLEEP); 647 t->zsd_key = key; 648 t->zsd_data = (void *)data; 649 t->zsd_create = zsdp->zsd_create; 650 t->zsd_shutdown = zsdp->zsd_shutdown; 651 t->zsd_destroy = zsdp->zsd_destroy; 652 list_insert_tail(&zone->zone_zsd, t); 653 mutex_exit(&zsd_key_lock); 654 mutex_exit(&zone->zone_lock); 655 return (0); 656 } 657 658 /* 659 * ZSD counterpart of pthread_getspecific(). 660 */ 661 void * 662 zone_getspecific(zone_key_t key, zone_t *zone) 663 { 664 struct zsd_entry *t; 665 void *data; 666 667 mutex_enter(&zone->zone_lock); 668 t = zsd_find(&zone->zone_zsd, key); 669 data = (t == NULL ? NULL : t->zsd_data); 670 mutex_exit(&zone->zone_lock); 671 return (data); 672 } 673 674 /* 675 * Function used to initialize a zone's list of ZSD callbacks and data 676 * when the zone is being created. The callbacks are initialized from 677 * the template list (zsd_registered_keys), and the constructor 678 * callback executed (if one exists). 679 * 680 * This is called before the zone is made publicly available, hence no 681 * need to grab zone_lock. 682 * 683 * Although we grab and release zsd_key_lock, new entries cannot be 684 * added to or removed from the zsd_registered_keys list until we 685 * release zonehash_lock, so there isn't a window for a 686 * zone_key_create() to come in after we've dropped zsd_key_lock but 687 * before the zone is added to the zone list, such that the constructor 688 * callbacks aren't executed for the new zone. 689 */ 690 static void 691 zone_zsd_configure(zone_t *zone) 692 { 693 struct zsd_entry *zsdp; 694 struct zsd_entry *t; 695 zoneid_t zoneid = zone->zone_id; 696 697 ASSERT(MUTEX_HELD(&zonehash_lock)); 698 ASSERT(list_head(&zone->zone_zsd) == NULL); 699 mutex_enter(&zsd_key_lock); 700 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 701 zsdp = list_next(&zsd_registered_keys, zsdp)) { 702 if (zsdp->zsd_create != NULL) { 703 t = kmem_alloc(sizeof (*t), KM_SLEEP); 704 t->zsd_key = zsdp->zsd_key; 705 t->zsd_create = zsdp->zsd_create; 706 t->zsd_data = (*t->zsd_create)(zoneid); 707 t->zsd_shutdown = zsdp->zsd_shutdown; 708 t->zsd_destroy = zsdp->zsd_destroy; 709 list_insert_tail(&zone->zone_zsd, t); 710 } 711 } 712 mutex_exit(&zsd_key_lock); 713 } 714 715 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 716 717 /* 718 * Helper function to execute shutdown or destructor callbacks. 719 */ 720 static void 721 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 722 { 723 struct zsd_entry *zsdp; 724 struct zsd_entry *t; 725 zoneid_t zoneid = zone->zone_id; 726 727 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 728 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 729 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 730 731 mutex_enter(&zone->zone_lock); 732 if (ct == ZSD_DESTROY) { 733 if (zone->zone_flags & ZF_DESTROYED) { 734 /* 735 * Make sure destructors are only called once. 736 */ 737 mutex_exit(&zone->zone_lock); 738 return; 739 } 740 zone->zone_flags |= ZF_DESTROYED; 741 } 742 mutex_exit(&zone->zone_lock); 743 744 /* 745 * Both zsd_key_lock and zone_lock need to be held in order to add or 746 * remove a ZSD key, (either globally as part of 747 * zone_key_create()/zone_key_delete(), or on a per-zone basis, as is 748 * possible through zone_setspecific()), so it's sufficient to hold 749 * zsd_key_lock here. 750 * 751 * This is a good thing, since we don't want to recursively try to grab 752 * zone_lock if a callback attempts to do something like a crfree() or 753 * zone_rele(). 754 */ 755 mutex_enter(&zsd_key_lock); 756 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 757 zsdp = list_next(&zsd_registered_keys, zsdp)) { 758 zone_key_t key = zsdp->zsd_key; 759 760 /* Skip if no callbacks registered */ 761 if (ct == ZSD_SHUTDOWN && zsdp->zsd_shutdown == NULL) 762 continue; 763 if (ct == ZSD_DESTROY && zsdp->zsd_destroy == NULL) 764 continue; 765 /* 766 * Call the callback with the zone-specific data if we can find 767 * any, otherwise with NULL. 768 */ 769 t = zsd_find(&zone->zone_zsd, key); 770 if (t != NULL) { 771 if (ct == ZSD_SHUTDOWN) { 772 t->zsd_shutdown(zoneid, t->zsd_data); 773 } else { 774 ASSERT(ct == ZSD_DESTROY); 775 t->zsd_destroy(zoneid, t->zsd_data); 776 } 777 } else { 778 if (ct == ZSD_SHUTDOWN) { 779 zsdp->zsd_shutdown(zoneid, NULL); 780 } else { 781 ASSERT(ct == ZSD_DESTROY); 782 zsdp->zsd_destroy(zoneid, NULL); 783 } 784 } 785 } 786 mutex_exit(&zsd_key_lock); 787 } 788 789 /* 790 * Called when the zone is going away; free ZSD-related memory, and 791 * destroy the zone_zsd list. 792 */ 793 static void 794 zone_free_zsd(zone_t *zone) 795 { 796 struct zsd_entry *t, *next; 797 798 /* 799 * Free all the zsd_entry's we had on this zone. 800 */ 801 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 802 next = list_next(&zone->zone_zsd, t); 803 list_remove(&zone->zone_zsd, t); 804 kmem_free(t, sizeof (*t)); 805 } 806 list_destroy(&zone->zone_zsd); 807 } 808 809 /* 810 * Frees memory associated with the zone dataset list. 811 */ 812 static void 813 zone_free_datasets(zone_t *zone) 814 { 815 zone_dataset_t *t, *next; 816 817 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 818 next = list_next(&zone->zone_datasets, t); 819 list_remove(&zone->zone_datasets, t); 820 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 821 kmem_free(t, sizeof (*t)); 822 } 823 list_destroy(&zone->zone_datasets); 824 } 825 826 /* 827 * zone.cpu-shares resource control support. 828 */ 829 /*ARGSUSED*/ 830 static rctl_qty_t 831 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 832 { 833 ASSERT(MUTEX_HELD(&p->p_lock)); 834 return (p->p_zone->zone_shares); 835 } 836 837 /*ARGSUSED*/ 838 static int 839 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 840 rctl_qty_t nv) 841 { 842 ASSERT(MUTEX_HELD(&p->p_lock)); 843 ASSERT(e->rcep_t == RCENTITY_ZONE); 844 if (e->rcep_p.zone == NULL) 845 return (0); 846 847 e->rcep_p.zone->zone_shares = nv; 848 return (0); 849 } 850 851 static rctl_ops_t zone_cpu_shares_ops = { 852 rcop_no_action, 853 zone_cpu_shares_usage, 854 zone_cpu_shares_set, 855 rcop_no_test 856 }; 857 858 /*ARGSUSED*/ 859 static rctl_qty_t 860 zone_lwps_usage(rctl_t *r, proc_t *p) 861 { 862 rctl_qty_t nlwps; 863 zone_t *zone = p->p_zone; 864 865 ASSERT(MUTEX_HELD(&p->p_lock)); 866 867 mutex_enter(&zone->zone_nlwps_lock); 868 nlwps = zone->zone_nlwps; 869 mutex_exit(&zone->zone_nlwps_lock); 870 871 return (nlwps); 872 } 873 874 /*ARGSUSED*/ 875 static int 876 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 877 rctl_qty_t incr, uint_t flags) 878 { 879 rctl_qty_t nlwps; 880 881 ASSERT(MUTEX_HELD(&p->p_lock)); 882 ASSERT(e->rcep_t == RCENTITY_ZONE); 883 if (e->rcep_p.zone == NULL) 884 return (0); 885 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 886 nlwps = e->rcep_p.zone->zone_nlwps; 887 888 if (nlwps + incr > rcntl->rcv_value) 889 return (1); 890 891 return (0); 892 } 893 894 /*ARGSUSED*/ 895 static int 896 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { 897 898 ASSERT(MUTEX_HELD(&p->p_lock)); 899 ASSERT(e->rcep_t == RCENTITY_ZONE); 900 if (e->rcep_p.zone == NULL) 901 return (0); 902 e->rcep_p.zone->zone_nlwps_ctl = nv; 903 return (0); 904 } 905 906 static rctl_ops_t zone_lwps_ops = { 907 rcop_no_action, 908 zone_lwps_usage, 909 zone_lwps_set, 910 zone_lwps_test, 911 }; 912 913 /* 914 * Helper function to brand the zone with a unique ID. 915 */ 916 static void 917 zone_uniqid(zone_t *zone) 918 { 919 static uint64_t uniqid = 0; 920 921 ASSERT(MUTEX_HELD(&zonehash_lock)); 922 zone->zone_uniqid = uniqid++; 923 } 924 925 /* 926 * Returns a held pointer to the "kcred" for the specified zone. 927 */ 928 struct cred * 929 zone_get_kcred(zoneid_t zoneid) 930 { 931 zone_t *zone; 932 cred_t *cr; 933 934 if ((zone = zone_find_by_id(zoneid)) == NULL) 935 return (NULL); 936 cr = zone->zone_kcred; 937 crhold(cr); 938 zone_rele(zone); 939 return (cr); 940 } 941 942 /* 943 * Called very early on in boot to initialize the ZSD list so that 944 * zone_key_create() can be called before zone_init(). It also initializes 945 * portions of zone0 which may be used before zone_init() is called. The 946 * variable "global_zone" will be set when zone0 is fully initialized by 947 * zone_init(). 948 */ 949 void 950 zone_zsd_init(void) 951 { 952 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 953 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 954 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 955 offsetof(struct zsd_entry, zsd_linkage)); 956 list_create(&zone_active, sizeof (zone_t), 957 offsetof(zone_t, zone_linkage)); 958 list_create(&zone_deathrow, sizeof (zone_t), 959 offsetof(zone_t, zone_linkage)); 960 961 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 962 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 963 zone0.zone_shares = 1; 964 zone0.zone_nlwps_ctl = INT_MAX; 965 zone0.zone_name = GLOBAL_ZONENAME; 966 zone0.zone_nodename = utsname.nodename; 967 zone0.zone_domain = srpc_domain; 968 zone0.zone_ref = 1; 969 zone0.zone_id = GLOBAL_ZONEID; 970 zone0.zone_status = ZONE_IS_RUNNING; 971 zone0.zone_rootpath = "/"; 972 zone0.zone_rootpathlen = 2; 973 zone0.zone_psetid = ZONE_PS_INVAL; 974 zone0.zone_ncpus = 0; 975 zone0.zone_ncpus_online = 0; 976 zone0.zone_proc_initpid = 1; 977 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 978 offsetof(struct zsd_entry, zsd_linkage)); 979 list_insert_head(&zone_active, &zone0); 980 981 /* 982 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 983 * to anything meaningful. It is assigned to be 'rootdir' in 984 * vfs_mountroot(). 985 */ 986 zone0.zone_rootvp = NULL; 987 zone0.zone_vfslist = NULL; 988 zone0.zone_bootargs = NULL; 989 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 990 /* 991 * The global zone has all privileges 992 */ 993 priv_fillset(zone0.zone_privset); 994 /* 995 * Add p0 to the global zone 996 */ 997 zone0.zone_zsched = &p0; 998 p0.p_zone = &zone0; 999 } 1000 1001 /* 1002 * Compute a hash value based on the contents of the label and the DOI. The 1003 * hash algorithm is somewhat arbitrary, but is based on the observation that 1004 * humans will likely pick labels that differ by amounts that work out to be 1005 * multiples of the number of hash chains, and thus stirring in some primes 1006 * should help. 1007 */ 1008 static uint_t 1009 hash_bylabel(void *hdata, mod_hash_key_t key) 1010 { 1011 const ts_label_t *lab = (ts_label_t *)key; 1012 const uint32_t *up, *ue; 1013 uint_t hash; 1014 int i; 1015 1016 _NOTE(ARGUNUSED(hdata)); 1017 1018 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1019 /* we depend on alignment of label, but not representation */ 1020 up = (const uint32_t *)&lab->tsl_label; 1021 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1022 i = 1; 1023 while (up < ue) { 1024 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1025 hash += *up + (*up << ((i % 16) + 1)); 1026 up++; 1027 i++; 1028 } 1029 return (hash); 1030 } 1031 1032 /* 1033 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1034 * equal). This may need to be changed if less than / greater than is ever 1035 * needed. 1036 */ 1037 static int 1038 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1039 { 1040 ts_label_t *lab1 = (ts_label_t *)key1; 1041 ts_label_t *lab2 = (ts_label_t *)key2; 1042 1043 return (label_equal(lab1, lab2) ? 0 : 1); 1044 } 1045 1046 /* 1047 * Called by main() to initialize the zones framework. 1048 */ 1049 void 1050 zone_init(void) 1051 { 1052 rctl_dict_entry_t *rde; 1053 rctl_val_t *dval; 1054 rctl_set_t *set; 1055 rctl_alloc_gp_t *gp; 1056 rctl_entity_p_t e; 1057 int res; 1058 1059 ASSERT(curproc == &p0); 1060 1061 /* 1062 * Create ID space for zone IDs. ID 0 is reserved for the 1063 * global zone. 1064 */ 1065 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1066 1067 /* 1068 * Initialize generic zone resource controls, if any. 1069 */ 1070 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1071 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1072 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1073 FSS_MAXSHARES, FSS_MAXSHARES, 1074 &zone_cpu_shares_ops); 1075 1076 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1077 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1078 INT_MAX, INT_MAX, &zone_lwps_ops); 1079 /* 1080 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1081 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1082 */ 1083 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1084 bzero(dval, sizeof (rctl_val_t)); 1085 dval->rcv_value = 1; 1086 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1087 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1088 dval->rcv_action_recip_pid = -1; 1089 1090 rde = rctl_dict_lookup("zone.cpu-shares"); 1091 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1092 1093 /* 1094 * Initialize the ``global zone''. 1095 */ 1096 set = rctl_set_create(); 1097 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1098 mutex_enter(&p0.p_lock); 1099 e.rcep_p.zone = &zone0; 1100 e.rcep_t = RCENTITY_ZONE; 1101 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1102 gp); 1103 1104 zone0.zone_nlwps = p0.p_lwpcnt; 1105 zone0.zone_ntasks = 1; 1106 mutex_exit(&p0.p_lock); 1107 rctl_prealloc_destroy(gp); 1108 /* 1109 * pool_default hasn't been initialized yet, so we let pool_init() take 1110 * care of making the global zone is in the default pool. 1111 */ 1112 1113 /* 1114 * Initialize zone label. 1115 * mlp are initialized when tnzonecfg is loaded. 1116 */ 1117 zone0.zone_slabel = l_admin_low; 1118 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1119 label_hold(l_admin_low); 1120 1121 mutex_enter(&zonehash_lock); 1122 zone_uniqid(&zone0); 1123 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1124 1125 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1126 mod_hash_null_valdtor); 1127 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1128 zone_hash_size, mod_hash_null_valdtor); 1129 /* 1130 * maintain zonehashbylabel only for labeled systems 1131 */ 1132 if (is_system_labeled()) 1133 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1134 zone_hash_size, mod_hash_null_keydtor, 1135 mod_hash_null_valdtor, hash_bylabel, NULL, 1136 hash_labelkey_cmp, KM_SLEEP); 1137 zonecount = 1; 1138 1139 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1140 (mod_hash_val_t)&zone0); 1141 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1142 (mod_hash_val_t)&zone0); 1143 if (is_system_labeled()) { 1144 zone0.zone_flags |= ZF_HASHED_LABEL; 1145 (void) mod_hash_insert(zonehashbylabel, 1146 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1147 } 1148 mutex_exit(&zonehash_lock); 1149 1150 /* 1151 * We avoid setting zone_kcred until now, since kcred is initialized 1152 * sometime after zone_zsd_init() and before zone_init(). 1153 */ 1154 zone0.zone_kcred = kcred; 1155 /* 1156 * The global zone is fully initialized (except for zone_rootvp which 1157 * will be set when the root filesystem is mounted). 1158 */ 1159 global_zone = &zone0; 1160 1161 /* 1162 * Setup an event channel to send zone status change notifications on 1163 */ 1164 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1165 EVCH_CREAT); 1166 1167 if (res) 1168 panic("Sysevent_evc_bind failed during zone setup.\n"); 1169 } 1170 1171 static void 1172 zone_free(zone_t *zone) 1173 { 1174 ASSERT(zone != global_zone); 1175 ASSERT(zone->zone_ntasks == 0); 1176 ASSERT(zone->zone_nlwps == 0); 1177 ASSERT(zone->zone_cred_ref == 0); 1178 ASSERT(zone->zone_kcred == NULL); 1179 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1180 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1181 1182 /* remove from deathrow list */ 1183 if (zone_status_get(zone) == ZONE_IS_DEAD) { 1184 ASSERT(zone->zone_ref == 0); 1185 mutex_enter(&zone_deathrow_lock); 1186 list_remove(&zone_deathrow, zone); 1187 mutex_exit(&zone_deathrow_lock); 1188 } 1189 1190 zone_free_zsd(zone); 1191 zone_free_datasets(zone); 1192 1193 if (zone->zone_rootvp != NULL) 1194 VN_RELE(zone->zone_rootvp); 1195 if (zone->zone_rootpath) 1196 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 1197 if (zone->zone_name != NULL) 1198 kmem_free(zone->zone_name, ZONENAME_MAX); 1199 if (zone->zone_slabel != NULL) 1200 label_rele(zone->zone_slabel); 1201 if (zone->zone_nodename != NULL) 1202 kmem_free(zone->zone_nodename, _SYS_NMLN); 1203 if (zone->zone_domain != NULL) 1204 kmem_free(zone->zone_domain, _SYS_NMLN); 1205 if (zone->zone_privset != NULL) 1206 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 1207 if (zone->zone_rctls != NULL) 1208 rctl_set_free(zone->zone_rctls); 1209 if (zone->zone_bootargs != NULL) 1210 kmem_free(zone->zone_bootargs, ZONEBOOTARGS_MAX); 1211 id_free(zoneid_space, zone->zone_id); 1212 mutex_destroy(&zone->zone_lock); 1213 cv_destroy(&zone->zone_cv); 1214 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 1215 kmem_free(zone, sizeof (zone_t)); 1216 } 1217 1218 /* 1219 * See block comment at the top of this file for information about zone 1220 * status values. 1221 */ 1222 /* 1223 * Convenience function for setting zone status. 1224 */ 1225 static void 1226 zone_status_set(zone_t *zone, zone_status_t status) 1227 { 1228 1229 nvlist_t *nvl = NULL; 1230 ASSERT(MUTEX_HELD(&zone_status_lock)); 1231 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 1232 status >= zone_status_get(zone)); 1233 1234 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 1235 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 1236 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 1237 zone_status_table[status]) || 1238 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 1239 zone_status_table[zone->zone_status]) || 1240 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 1241 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 1242 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 1243 ZONE_EVENT_STATUS_SUBCLASS, 1244 "sun.com", "kernel", nvl, EVCH_SLEEP)) { 1245 #ifdef DEBUG 1246 (void) printf( 1247 "Failed to allocate and send zone state change event.\n"); 1248 #endif 1249 } 1250 nvlist_free(nvl); 1251 1252 zone->zone_status = status; 1253 1254 cv_broadcast(&zone->zone_cv); 1255 } 1256 1257 /* 1258 * Public function to retrieve the zone status. The zone status may 1259 * change after it is retrieved. 1260 */ 1261 zone_status_t 1262 zone_status_get(zone_t *zone) 1263 { 1264 return (zone->zone_status); 1265 } 1266 1267 static int 1268 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 1269 { 1270 char *bootargs = kmem_zalloc(ZONEBOOTARGS_MAX, KM_SLEEP); 1271 size_t len; 1272 int err; 1273 1274 err = copyinstr(zone_bootargs, bootargs, ZONEBOOTARGS_MAX - 1, &len); 1275 if (err != 0) { 1276 kmem_free(bootargs, ZONEBOOTARGS_MAX); 1277 return (err); /* EFAULT or ENAMETOOLONG */ 1278 } 1279 bootargs[len] = '\0'; 1280 1281 ASSERT(zone->zone_bootargs == NULL); 1282 zone->zone_bootargs = bootargs; 1283 return (0); 1284 } 1285 1286 /* 1287 * Block indefinitely waiting for (zone_status >= status) 1288 */ 1289 void 1290 zone_status_wait(zone_t *zone, zone_status_t status) 1291 { 1292 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1293 1294 mutex_enter(&zone_status_lock); 1295 while (zone->zone_status < status) { 1296 cv_wait(&zone->zone_cv, &zone_status_lock); 1297 } 1298 mutex_exit(&zone_status_lock); 1299 } 1300 1301 /* 1302 * Private CPR-safe version of zone_status_wait(). 1303 */ 1304 static void 1305 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 1306 { 1307 callb_cpr_t cprinfo; 1308 1309 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1310 1311 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 1312 str); 1313 mutex_enter(&zone_status_lock); 1314 while (zone->zone_status < status) { 1315 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1316 cv_wait(&zone->zone_cv, &zone_status_lock); 1317 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 1318 } 1319 /* 1320 * zone_status_lock is implicitly released by the following. 1321 */ 1322 CALLB_CPR_EXIT(&cprinfo); 1323 } 1324 1325 /* 1326 * Block until zone enters requested state or signal is received. Return (0) 1327 * if signaled, non-zero otherwise. 1328 */ 1329 int 1330 zone_status_wait_sig(zone_t *zone, zone_status_t status) 1331 { 1332 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1333 1334 mutex_enter(&zone_status_lock); 1335 while (zone->zone_status < status) { 1336 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 1337 mutex_exit(&zone_status_lock); 1338 return (0); 1339 } 1340 } 1341 mutex_exit(&zone_status_lock); 1342 return (1); 1343 } 1344 1345 /* 1346 * Block until the zone enters the requested state or the timeout expires, 1347 * whichever happens first. Return (-1) if operation timed out, time remaining 1348 * otherwise. 1349 */ 1350 clock_t 1351 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 1352 { 1353 clock_t timeleft = 0; 1354 1355 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1356 1357 mutex_enter(&zone_status_lock); 1358 while (zone->zone_status < status && timeleft != -1) { 1359 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 1360 } 1361 mutex_exit(&zone_status_lock); 1362 return (timeleft); 1363 } 1364 1365 /* 1366 * Block until the zone enters the requested state, the current process is 1367 * signaled, or the timeout expires, whichever happens first. Return (-1) if 1368 * operation timed out, 0 if signaled, time remaining otherwise. 1369 */ 1370 clock_t 1371 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 1372 { 1373 clock_t timeleft = tim - lbolt; 1374 1375 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1376 1377 mutex_enter(&zone_status_lock); 1378 while (zone->zone_status < status) { 1379 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 1380 tim); 1381 if (timeleft <= 0) 1382 break; 1383 } 1384 mutex_exit(&zone_status_lock); 1385 return (timeleft); 1386 } 1387 1388 /* 1389 * Zones have two reference counts: one for references from credential 1390 * structures (zone_cred_ref), and one (zone_ref) for everything else. 1391 * This is so we can allow a zone to be rebooted while there are still 1392 * outstanding cred references, since certain drivers cache dblks (which 1393 * implicitly results in cached creds). We wait for zone_ref to drop to 1394 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 1395 * later freed when the zone_cred_ref drops to 0, though nothing other 1396 * than the zone id and privilege set should be accessed once the zone 1397 * is "dead". 1398 * 1399 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 1400 * to force halt/reboot to block waiting for the zone_cred_ref to drop 1401 * to 0. This can be useful to flush out other sources of cached creds 1402 * that may be less innocuous than the driver case. 1403 */ 1404 1405 int zone_wait_for_cred = 0; 1406 1407 static void 1408 zone_hold_locked(zone_t *z) 1409 { 1410 ASSERT(MUTEX_HELD(&z->zone_lock)); 1411 z->zone_ref++; 1412 ASSERT(z->zone_ref != 0); 1413 } 1414 1415 void 1416 zone_hold(zone_t *z) 1417 { 1418 mutex_enter(&z->zone_lock); 1419 zone_hold_locked(z); 1420 mutex_exit(&z->zone_lock); 1421 } 1422 1423 /* 1424 * If the non-cred ref count drops to 1 and either the cred ref count 1425 * is 0 or we aren't waiting for cred references, the zone is ready to 1426 * be destroyed. 1427 */ 1428 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 1429 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 1430 1431 void 1432 zone_rele(zone_t *z) 1433 { 1434 boolean_t wakeup; 1435 1436 mutex_enter(&z->zone_lock); 1437 ASSERT(z->zone_ref != 0); 1438 z->zone_ref--; 1439 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1440 /* no more refs, free the structure */ 1441 mutex_exit(&z->zone_lock); 1442 zone_free(z); 1443 return; 1444 } 1445 /* signal zone_destroy so the zone can finish halting */ 1446 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 1447 mutex_exit(&z->zone_lock); 1448 1449 if (wakeup) { 1450 /* 1451 * Grabbing zonehash_lock here effectively synchronizes with 1452 * zone_destroy() to avoid missed signals. 1453 */ 1454 mutex_enter(&zonehash_lock); 1455 cv_broadcast(&zone_destroy_cv); 1456 mutex_exit(&zonehash_lock); 1457 } 1458 } 1459 1460 void 1461 zone_cred_hold(zone_t *z) 1462 { 1463 mutex_enter(&z->zone_lock); 1464 z->zone_cred_ref++; 1465 ASSERT(z->zone_cred_ref != 0); 1466 mutex_exit(&z->zone_lock); 1467 } 1468 1469 void 1470 zone_cred_rele(zone_t *z) 1471 { 1472 boolean_t wakeup; 1473 1474 mutex_enter(&z->zone_lock); 1475 ASSERT(z->zone_cred_ref != 0); 1476 z->zone_cred_ref--; 1477 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1478 /* no more refs, free the structure */ 1479 mutex_exit(&z->zone_lock); 1480 zone_free(z); 1481 return; 1482 } 1483 /* 1484 * If zone_destroy is waiting for the cred references to drain 1485 * out, and they have, signal it. 1486 */ 1487 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 1488 zone_status_get(z) >= ZONE_IS_DEAD); 1489 mutex_exit(&z->zone_lock); 1490 1491 if (wakeup) { 1492 /* 1493 * Grabbing zonehash_lock here effectively synchronizes with 1494 * zone_destroy() to avoid missed signals. 1495 */ 1496 mutex_enter(&zonehash_lock); 1497 cv_broadcast(&zone_destroy_cv); 1498 mutex_exit(&zonehash_lock); 1499 } 1500 } 1501 1502 void 1503 zone_task_hold(zone_t *z) 1504 { 1505 mutex_enter(&z->zone_lock); 1506 z->zone_ntasks++; 1507 ASSERT(z->zone_ntasks != 0); 1508 mutex_exit(&z->zone_lock); 1509 } 1510 1511 void 1512 zone_task_rele(zone_t *zone) 1513 { 1514 uint_t refcnt; 1515 1516 mutex_enter(&zone->zone_lock); 1517 ASSERT(zone->zone_ntasks != 0); 1518 refcnt = --zone->zone_ntasks; 1519 if (refcnt > 1) { /* Common case */ 1520 mutex_exit(&zone->zone_lock); 1521 return; 1522 } 1523 zone_hold_locked(zone); /* so we can use the zone_t later */ 1524 mutex_exit(&zone->zone_lock); 1525 if (refcnt == 1) { 1526 /* 1527 * See if the zone is shutting down. 1528 */ 1529 mutex_enter(&zone_status_lock); 1530 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 1531 goto out; 1532 } 1533 1534 /* 1535 * Make sure the ntasks didn't change since we 1536 * dropped zone_lock. 1537 */ 1538 mutex_enter(&zone->zone_lock); 1539 if (refcnt != zone->zone_ntasks) { 1540 mutex_exit(&zone->zone_lock); 1541 goto out; 1542 } 1543 mutex_exit(&zone->zone_lock); 1544 1545 /* 1546 * No more user processes in the zone. The zone is empty. 1547 */ 1548 zone_status_set(zone, ZONE_IS_EMPTY); 1549 goto out; 1550 } 1551 1552 ASSERT(refcnt == 0); 1553 /* 1554 * zsched has exited; the zone is dead. 1555 */ 1556 zone->zone_zsched = NULL; /* paranoia */ 1557 mutex_enter(&zone_status_lock); 1558 zone_status_set(zone, ZONE_IS_DEAD); 1559 out: 1560 mutex_exit(&zone_status_lock); 1561 zone_rele(zone); 1562 } 1563 1564 zoneid_t 1565 getzoneid(void) 1566 { 1567 return (curproc->p_zone->zone_id); 1568 } 1569 1570 /* 1571 * Internal versions of zone_find_by_*(). These don't zone_hold() or 1572 * check the validity of a zone's state. 1573 */ 1574 static zone_t * 1575 zone_find_all_by_id(zoneid_t zoneid) 1576 { 1577 mod_hash_val_t hv; 1578 zone_t *zone = NULL; 1579 1580 ASSERT(MUTEX_HELD(&zonehash_lock)); 1581 1582 if (mod_hash_find(zonehashbyid, 1583 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 1584 zone = (zone_t *)hv; 1585 return (zone); 1586 } 1587 1588 static zone_t * 1589 zone_find_all_by_label(const ts_label_t *label) 1590 { 1591 mod_hash_val_t hv; 1592 zone_t *zone = NULL; 1593 1594 ASSERT(MUTEX_HELD(&zonehash_lock)); 1595 1596 /* 1597 * zonehashbylabel is not maintained for unlabeled systems 1598 */ 1599 if (!is_system_labeled()) 1600 return (NULL); 1601 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 1602 zone = (zone_t *)hv; 1603 return (zone); 1604 } 1605 1606 static zone_t * 1607 zone_find_all_by_name(char *name) 1608 { 1609 mod_hash_val_t hv; 1610 zone_t *zone = NULL; 1611 1612 ASSERT(MUTEX_HELD(&zonehash_lock)); 1613 1614 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 1615 zone = (zone_t *)hv; 1616 return (zone); 1617 } 1618 1619 /* 1620 * Public interface for looking up a zone by zoneid. Only returns the zone if 1621 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 1622 * Caller must call zone_rele() once it is done with the zone. 1623 * 1624 * The zone may begin the zone_destroy() sequence immediately after this 1625 * function returns, but may be safely used until zone_rele() is called. 1626 */ 1627 zone_t * 1628 zone_find_by_id(zoneid_t zoneid) 1629 { 1630 zone_t *zone; 1631 zone_status_t status; 1632 1633 mutex_enter(&zonehash_lock); 1634 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 1635 mutex_exit(&zonehash_lock); 1636 return (NULL); 1637 } 1638 status = zone_status_get(zone); 1639 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1640 /* 1641 * For all practical purposes the zone doesn't exist. 1642 */ 1643 mutex_exit(&zonehash_lock); 1644 return (NULL); 1645 } 1646 zone_hold(zone); 1647 mutex_exit(&zonehash_lock); 1648 return (zone); 1649 } 1650 1651 /* 1652 * Similar to zone_find_by_id, but using zone label as the key. 1653 */ 1654 zone_t * 1655 zone_find_by_label(const ts_label_t *label) 1656 { 1657 zone_t *zone; 1658 zone_status_t status; 1659 1660 mutex_enter(&zonehash_lock); 1661 if ((zone = zone_find_all_by_label(label)) == NULL) { 1662 mutex_exit(&zonehash_lock); 1663 return (NULL); 1664 } 1665 1666 status = zone_status_get(zone); 1667 if (status > ZONE_IS_DOWN) { 1668 /* 1669 * For all practical purposes the zone doesn't exist. 1670 */ 1671 mutex_exit(&zonehash_lock); 1672 return (NULL); 1673 } 1674 zone_hold(zone); 1675 mutex_exit(&zonehash_lock); 1676 return (zone); 1677 } 1678 1679 /* 1680 * Similar to zone_find_by_id, but using zone name as the key. 1681 */ 1682 zone_t * 1683 zone_find_by_name(char *name) 1684 { 1685 zone_t *zone; 1686 zone_status_t status; 1687 1688 mutex_enter(&zonehash_lock); 1689 if ((zone = zone_find_all_by_name(name)) == NULL) { 1690 mutex_exit(&zonehash_lock); 1691 return (NULL); 1692 } 1693 status = zone_status_get(zone); 1694 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1695 /* 1696 * For all practical purposes the zone doesn't exist. 1697 */ 1698 mutex_exit(&zonehash_lock); 1699 return (NULL); 1700 } 1701 zone_hold(zone); 1702 mutex_exit(&zonehash_lock); 1703 return (zone); 1704 } 1705 1706 /* 1707 * Similar to zone_find_by_id(), using the path as a key. For instance, 1708 * if there is a zone "foo" rooted at /foo/root, and the path argument 1709 * is "/foo/root/proc", it will return the held zone_t corresponding to 1710 * zone "foo". 1711 * 1712 * zone_find_by_path() always returns a non-NULL value, since at the 1713 * very least every path will be contained in the global zone. 1714 * 1715 * As with the other zone_find_by_*() functions, the caller is 1716 * responsible for zone_rele()ing the return value of this function. 1717 */ 1718 zone_t * 1719 zone_find_by_path(const char *path) 1720 { 1721 zone_t *zone; 1722 zone_t *zret = NULL; 1723 zone_status_t status; 1724 1725 if (path == NULL) { 1726 /* 1727 * Call from rootconf(). 1728 */ 1729 zone_hold(global_zone); 1730 return (global_zone); 1731 } 1732 ASSERT(*path == '/'); 1733 mutex_enter(&zonehash_lock); 1734 for (zone = list_head(&zone_active); zone != NULL; 1735 zone = list_next(&zone_active, zone)) { 1736 if (ZONE_PATH_VISIBLE(path, zone)) 1737 zret = zone; 1738 } 1739 ASSERT(zret != NULL); 1740 status = zone_status_get(zret); 1741 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1742 /* 1743 * Zone practically doesn't exist. 1744 */ 1745 zret = global_zone; 1746 } 1747 zone_hold(zret); 1748 mutex_exit(&zonehash_lock); 1749 return (zret); 1750 } 1751 1752 /* 1753 * Get the number of cpus visible to this zone. The system-wide global 1754 * 'ncpus' is returned if pools are disabled, the caller is in the 1755 * global zone, or a NULL zone argument is passed in. 1756 */ 1757 int 1758 zone_ncpus_get(zone_t *zone) 1759 { 1760 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 1761 1762 return (myncpus != 0 ? myncpus : ncpus); 1763 } 1764 1765 /* 1766 * Get the number of online cpus visible to this zone. The system-wide 1767 * global 'ncpus_online' is returned if pools are disabled, the caller 1768 * is in the global zone, or a NULL zone argument is passed in. 1769 */ 1770 int 1771 zone_ncpus_online_get(zone_t *zone) 1772 { 1773 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 1774 1775 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 1776 } 1777 1778 /* 1779 * Return the pool to which the zone is currently bound. 1780 */ 1781 pool_t * 1782 zone_pool_get(zone_t *zone) 1783 { 1784 ASSERT(pool_lock_held()); 1785 1786 return (zone->zone_pool); 1787 } 1788 1789 /* 1790 * Set the zone's pool pointer and update the zone's visibility to match 1791 * the resources in the new pool. 1792 */ 1793 void 1794 zone_pool_set(zone_t *zone, pool_t *pool) 1795 { 1796 ASSERT(pool_lock_held()); 1797 ASSERT(MUTEX_HELD(&cpu_lock)); 1798 1799 zone->zone_pool = pool; 1800 zone_pset_set(zone, pool->pool_pset->pset_id); 1801 } 1802 1803 /* 1804 * Return the cached value of the id of the processor set to which the 1805 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 1806 * facility is disabled. 1807 */ 1808 psetid_t 1809 zone_pset_get(zone_t *zone) 1810 { 1811 ASSERT(MUTEX_HELD(&cpu_lock)); 1812 1813 return (zone->zone_psetid); 1814 } 1815 1816 /* 1817 * Set the cached value of the id of the processor set to which the zone 1818 * is currently bound. Also update the zone's visibility to match the 1819 * resources in the new processor set. 1820 */ 1821 void 1822 zone_pset_set(zone_t *zone, psetid_t newpsetid) 1823 { 1824 psetid_t oldpsetid; 1825 1826 ASSERT(MUTEX_HELD(&cpu_lock)); 1827 oldpsetid = zone_pset_get(zone); 1828 1829 if (oldpsetid == newpsetid) 1830 return; 1831 /* 1832 * Global zone sees all. 1833 */ 1834 if (zone != global_zone) { 1835 zone->zone_psetid = newpsetid; 1836 if (newpsetid != ZONE_PS_INVAL) 1837 pool_pset_visibility_add(newpsetid, zone); 1838 if (oldpsetid != ZONE_PS_INVAL) 1839 pool_pset_visibility_remove(oldpsetid, zone); 1840 } 1841 /* 1842 * Disabling pools, so we should start using the global values 1843 * for ncpus and ncpus_online. 1844 */ 1845 if (newpsetid == ZONE_PS_INVAL) { 1846 zone->zone_ncpus = 0; 1847 zone->zone_ncpus_online = 0; 1848 } 1849 } 1850 1851 /* 1852 * Walk the list of active zones and issue the provided callback for 1853 * each of them. 1854 * 1855 * Caller must not be holding any locks that may be acquired under 1856 * zonehash_lock. See comment at the beginning of the file for a list of 1857 * common locks and their interactions with zones. 1858 */ 1859 int 1860 zone_walk(int (*cb)(zone_t *, void *), void *data) 1861 { 1862 zone_t *zone; 1863 int ret = 0; 1864 zone_status_t status; 1865 1866 mutex_enter(&zonehash_lock); 1867 for (zone = list_head(&zone_active); zone != NULL; 1868 zone = list_next(&zone_active, zone)) { 1869 /* 1870 * Skip zones that shouldn't be externally visible. 1871 */ 1872 status = zone_status_get(zone); 1873 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 1874 continue; 1875 /* 1876 * Bail immediately if any callback invocation returns a 1877 * non-zero value. 1878 */ 1879 ret = (*cb)(zone, data); 1880 if (ret != 0) 1881 break; 1882 } 1883 mutex_exit(&zonehash_lock); 1884 return (ret); 1885 } 1886 1887 static int 1888 zone_set_root(zone_t *zone, const char *upath) 1889 { 1890 vnode_t *vp; 1891 int trycount; 1892 int error = 0; 1893 char *path; 1894 struct pathname upn, pn; 1895 size_t pathlen; 1896 1897 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 1898 return (error); 1899 1900 pn_alloc(&pn); 1901 1902 /* prevent infinite loop */ 1903 trycount = 10; 1904 for (;;) { 1905 if (--trycount <= 0) { 1906 error = ESTALE; 1907 goto out; 1908 } 1909 1910 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 1911 /* 1912 * VOP_ACCESS() may cover 'vp' with a new 1913 * filesystem, if 'vp' is an autoFS vnode. 1914 * Get the new 'vp' if so. 1915 */ 1916 if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED())) == 0 && 1917 (vp->v_vfsmountedhere == NULL || 1918 (error = traverse(&vp)) == 0)) { 1919 pathlen = pn.pn_pathlen + 2; 1920 path = kmem_alloc(pathlen, KM_SLEEP); 1921 (void) strncpy(path, pn.pn_path, 1922 pn.pn_pathlen + 1); 1923 path[pathlen - 2] = '/'; 1924 path[pathlen - 1] = '\0'; 1925 pn_free(&pn); 1926 pn_free(&upn); 1927 1928 /* Success! */ 1929 break; 1930 } 1931 VN_RELE(vp); 1932 } 1933 if (error != ESTALE) 1934 goto out; 1935 } 1936 1937 ASSERT(error == 0); 1938 zone->zone_rootvp = vp; /* we hold a reference to vp */ 1939 zone->zone_rootpath = path; 1940 zone->zone_rootpathlen = pathlen; 1941 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 1942 zone->zone_flags |= ZF_IS_SCRATCH; 1943 return (0); 1944 1945 out: 1946 pn_free(&pn); 1947 pn_free(&upn); 1948 return (error); 1949 } 1950 1951 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 1952 ((c) >= 'a' && (c) <= 'z') || \ 1953 ((c) >= 'A' && (c) <= 'Z')) 1954 1955 static int 1956 zone_set_name(zone_t *zone, const char *uname) 1957 { 1958 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 1959 size_t len; 1960 int i, err; 1961 1962 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 1963 kmem_free(kname, ZONENAME_MAX); 1964 return (err); /* EFAULT or ENAMETOOLONG */ 1965 } 1966 1967 /* must be less than ZONENAME_MAX */ 1968 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 1969 kmem_free(kname, ZONENAME_MAX); 1970 return (EINVAL); 1971 } 1972 1973 /* 1974 * Name must start with an alphanumeric and must contain only 1975 * alphanumerics, '-', '_' and '.'. 1976 */ 1977 if (!isalnum(kname[0])) { 1978 kmem_free(kname, ZONENAME_MAX); 1979 return (EINVAL); 1980 } 1981 for (i = 1; i < len - 1; i++) { 1982 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 1983 kname[i] != '.') { 1984 kmem_free(kname, ZONENAME_MAX); 1985 return (EINVAL); 1986 } 1987 } 1988 1989 zone->zone_name = kname; 1990 return (0); 1991 } 1992 1993 /* 1994 * Similar to thread_create(), but makes sure the thread is in the appropriate 1995 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 1996 */ 1997 /*ARGSUSED*/ 1998 kthread_t * 1999 zthread_create( 2000 caddr_t stk, 2001 size_t stksize, 2002 void (*proc)(), 2003 void *arg, 2004 size_t len, 2005 pri_t pri) 2006 { 2007 kthread_t *t; 2008 zone_t *zone = curproc->p_zone; 2009 proc_t *pp = zone->zone_zsched; 2010 2011 zone_hold(zone); /* Reference to be dropped when thread exits */ 2012 2013 /* 2014 * No-one should be trying to create threads if the zone is shutting 2015 * down and there aren't any kernel threads around. See comment 2016 * in zthread_exit(). 2017 */ 2018 ASSERT(!(zone->zone_kthreads == NULL && 2019 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2020 /* 2021 * Create a thread, but don't let it run until we've finished setting 2022 * things up. 2023 */ 2024 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2025 ASSERT(t->t_forw == NULL); 2026 mutex_enter(&zone_status_lock); 2027 if (zone->zone_kthreads == NULL) { 2028 t->t_forw = t->t_back = t; 2029 } else { 2030 kthread_t *tx = zone->zone_kthreads; 2031 2032 t->t_forw = tx; 2033 t->t_back = tx->t_back; 2034 tx->t_back->t_forw = t; 2035 tx->t_back = t; 2036 } 2037 zone->zone_kthreads = t; 2038 mutex_exit(&zone_status_lock); 2039 2040 mutex_enter(&pp->p_lock); 2041 t->t_proc_flag |= TP_ZTHREAD; 2042 project_rele(t->t_proj); 2043 t->t_proj = project_hold(pp->p_task->tk_proj); 2044 2045 /* 2046 * Setup complete, let it run. 2047 */ 2048 thread_lock(t); 2049 t->t_schedflag |= TS_ALLSTART; 2050 setrun_locked(t); 2051 thread_unlock(t); 2052 2053 mutex_exit(&pp->p_lock); 2054 2055 return (t); 2056 } 2057 2058 /* 2059 * Similar to thread_exit(). Must be called by threads created via 2060 * zthread_exit(). 2061 */ 2062 void 2063 zthread_exit(void) 2064 { 2065 kthread_t *t = curthread; 2066 proc_t *pp = curproc; 2067 zone_t *zone = pp->p_zone; 2068 2069 mutex_enter(&zone_status_lock); 2070 2071 /* 2072 * Reparent to p0 2073 */ 2074 kpreempt_disable(); 2075 mutex_enter(&pp->p_lock); 2076 t->t_proc_flag &= ~TP_ZTHREAD; 2077 t->t_procp = &p0; 2078 hat_thread_exit(t); 2079 mutex_exit(&pp->p_lock); 2080 kpreempt_enable(); 2081 2082 if (t->t_back == t) { 2083 ASSERT(t->t_forw == t); 2084 /* 2085 * If the zone is empty, once the thread count 2086 * goes to zero no further kernel threads can be 2087 * created. This is because if the creator is a process 2088 * in the zone, then it must have exited before the zone 2089 * state could be set to ZONE_IS_EMPTY. 2090 * Otherwise, if the creator is a kernel thread in the 2091 * zone, the thread count is non-zero. 2092 * 2093 * This really means that non-zone kernel threads should 2094 * not create zone kernel threads. 2095 */ 2096 zone->zone_kthreads = NULL; 2097 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 2098 zone_status_set(zone, ZONE_IS_DOWN); 2099 } 2100 } else { 2101 t->t_forw->t_back = t->t_back; 2102 t->t_back->t_forw = t->t_forw; 2103 if (zone->zone_kthreads == t) 2104 zone->zone_kthreads = t->t_forw; 2105 } 2106 mutex_exit(&zone_status_lock); 2107 zone_rele(zone); 2108 thread_exit(); 2109 /* NOTREACHED */ 2110 } 2111 2112 static void 2113 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 2114 { 2115 vnode_t *oldvp; 2116 2117 /* we're going to hold a reference here to the directory */ 2118 VN_HOLD(vp); 2119 2120 #ifdef C2_AUDIT 2121 if (audit_active) /* update abs cwd/root path see c2audit.c */ 2122 audit_chdirec(vp, vpp); 2123 #endif 2124 2125 mutex_enter(&pp->p_lock); 2126 oldvp = *vpp; 2127 *vpp = vp; 2128 mutex_exit(&pp->p_lock); 2129 if (oldvp != NULL) 2130 VN_RELE(oldvp); 2131 } 2132 2133 /* 2134 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 2135 */ 2136 static int 2137 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 2138 { 2139 nvpair_t *nvp = NULL; 2140 boolean_t priv_set = B_FALSE; 2141 boolean_t limit_set = B_FALSE; 2142 boolean_t action_set = B_FALSE; 2143 2144 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2145 const char *name; 2146 uint64_t ui64; 2147 2148 name = nvpair_name(nvp); 2149 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 2150 return (EINVAL); 2151 (void) nvpair_value_uint64(nvp, &ui64); 2152 if (strcmp(name, "privilege") == 0) { 2153 /* 2154 * Currently only privileged values are allowed, but 2155 * this may change in the future. 2156 */ 2157 if (ui64 != RCPRIV_PRIVILEGED) 2158 return (EINVAL); 2159 rv->rcv_privilege = ui64; 2160 priv_set = B_TRUE; 2161 } else if (strcmp(name, "limit") == 0) { 2162 rv->rcv_value = ui64; 2163 limit_set = B_TRUE; 2164 } else if (strcmp(name, "action") == 0) { 2165 if (ui64 != RCTL_LOCAL_NOACTION && 2166 ui64 != RCTL_LOCAL_DENY) 2167 return (EINVAL); 2168 rv->rcv_flagaction = ui64; 2169 action_set = B_TRUE; 2170 } else { 2171 return (EINVAL); 2172 } 2173 } 2174 2175 if (!(priv_set && limit_set && action_set)) 2176 return (EINVAL); 2177 rv->rcv_action_signal = 0; 2178 rv->rcv_action_recipient = NULL; 2179 rv->rcv_action_recip_pid = -1; 2180 rv->rcv_firing_time = 0; 2181 2182 return (0); 2183 } 2184 2185 void 2186 zone_icode(void) 2187 { 2188 proc_t *p = ttoproc(curthread); 2189 struct core_globals *cg; 2190 2191 /* 2192 * For all purposes (ZONE_ATTR_INITPID and restart_init), 2193 * storing just the pid of init is sufficient. 2194 */ 2195 p->p_zone->zone_proc_initpid = p->p_pid; 2196 2197 /* 2198 * Allocate user address space and stack segment 2199 */ 2200 2201 p->p_cstime = p->p_stime = p->p_cutime = p->p_utime = 0; 2202 p->p_usrstack = (caddr_t)USRSTACK32; 2203 p->p_model = DATAMODEL_ILP32; 2204 p->p_stkprot = PROT_ZFOD & ~PROT_EXEC; 2205 p->p_datprot = PROT_ZFOD & ~PROT_EXEC; 2206 p->p_stk_ctl = INT32_MAX; 2207 2208 p->p_as = as_alloc(); 2209 p->p_as->a_userlimit = (caddr_t)USERLIMIT32; 2210 (void) hat_setup(p->p_as->a_hat, HAT_INIT); 2211 2212 cg = zone_getspecific(core_zone_key, p->p_zone); 2213 ASSERT(cg != NULL); 2214 corectl_path_hold(cg->core_default_path); 2215 corectl_content_hold(cg->core_default_content); 2216 p->p_corefile = cg->core_default_path; 2217 p->p_content = cg->core_default_content; 2218 2219 init_mstate(curthread, LMS_SYSTEM); 2220 2221 p->p_zone->zone_boot_err = exec_init(zone_initname, 0, 2222 p->p_zone->zone_bootargs); 2223 2224 mutex_enter(&zone_status_lock); 2225 if (p->p_zone->zone_boot_err != 0) { 2226 /* 2227 * Make sure we are still in the booting state-- we could have 2228 * raced and already be shutting down, or even further along. 2229 */ 2230 if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) 2231 zone_status_set(p->p_zone, ZONE_IS_SHUTTING_DOWN); 2232 mutex_exit(&zone_status_lock); 2233 /* It's gone bad, dispose of the process */ 2234 if (proc_exit(CLD_EXITED, p->p_zone->zone_boot_err) != 0) { 2235 mutex_enter(&p->p_lock); 2236 ASSERT(p->p_flag & SEXITLWPS); 2237 lwp_exit(); 2238 } 2239 } else { 2240 if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) 2241 zone_status_set(p->p_zone, ZONE_IS_RUNNING); 2242 mutex_exit(&zone_status_lock); 2243 /* cause the process to return to userland. */ 2244 lwp_rtt(); 2245 } 2246 } 2247 2248 struct zsched_arg { 2249 zone_t *zone; 2250 nvlist_t *nvlist; 2251 }; 2252 2253 /* 2254 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 2255 * anything to do with scheduling, but rather with the fact that 2256 * per-zone kernel threads are parented to zsched, just like regular 2257 * kernel threads are parented to sched (p0). 2258 * 2259 * zsched is also responsible for launching init for the zone. 2260 */ 2261 static void 2262 zsched(void *arg) 2263 { 2264 struct zsched_arg *za = arg; 2265 proc_t *pp = curproc; 2266 proc_t *initp = proc_init; 2267 zone_t *zone = za->zone; 2268 cred_t *cr, *oldcred; 2269 rctl_set_t *set; 2270 rctl_alloc_gp_t *gp; 2271 contract_t *ct = NULL; 2272 task_t *tk, *oldtk; 2273 rctl_entity_p_t e; 2274 kproject_t *pj; 2275 2276 nvlist_t *nvl = za->nvlist; 2277 nvpair_t *nvp = NULL; 2278 2279 bcopy("zsched", u.u_psargs, sizeof ("zsched")); 2280 bcopy("zsched", u.u_comm, sizeof ("zsched")); 2281 u.u_argc = 0; 2282 u.u_argv = NULL; 2283 u.u_envp = NULL; 2284 closeall(P_FINFO(pp)); 2285 2286 /* 2287 * We are this zone's "zsched" process. As the zone isn't generally 2288 * visible yet we don't need to grab any locks before initializing its 2289 * zone_proc pointer. 2290 */ 2291 zone_hold(zone); /* this hold is released by zone_destroy() */ 2292 zone->zone_zsched = pp; 2293 mutex_enter(&pp->p_lock); 2294 pp->p_zone = zone; 2295 mutex_exit(&pp->p_lock); 2296 2297 /* 2298 * Disassociate process from its 'parent'; parent ourselves to init 2299 * (pid 1) and change other values as needed. 2300 */ 2301 sess_create(); 2302 2303 mutex_enter(&pidlock); 2304 proc_detach(pp); 2305 pp->p_ppid = 1; 2306 pp->p_flag |= SZONETOP; 2307 pp->p_ancpid = 1; 2308 pp->p_parent = initp; 2309 pp->p_psibling = NULL; 2310 if (initp->p_child) 2311 initp->p_child->p_psibling = pp; 2312 pp->p_sibling = initp->p_child; 2313 initp->p_child = pp; 2314 2315 /* Decrement what newproc() incremented. */ 2316 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 2317 /* 2318 * Our credentials are about to become kcred-like, so we don't care 2319 * about the caller's ruid. 2320 */ 2321 upcount_inc(crgetruid(kcred), zone->zone_id); 2322 mutex_exit(&pidlock); 2323 2324 /* 2325 * getting out of global zone, so decrement lwp counts 2326 */ 2327 pj = pp->p_task->tk_proj; 2328 mutex_enter(&global_zone->zone_nlwps_lock); 2329 pj->kpj_nlwps -= pp->p_lwpcnt; 2330 global_zone->zone_nlwps -= pp->p_lwpcnt; 2331 mutex_exit(&global_zone->zone_nlwps_lock); 2332 2333 /* 2334 * Create and join a new task in project '0' of this zone. 2335 * 2336 * We don't need to call holdlwps() since we know we're the only lwp in 2337 * this process. 2338 * 2339 * task_join() returns with p_lock held. 2340 */ 2341 tk = task_create(0, zone); 2342 mutex_enter(&cpu_lock); 2343 oldtk = task_join(tk, 0); 2344 mutex_exit(&curproc->p_lock); 2345 mutex_exit(&cpu_lock); 2346 task_rele(oldtk); 2347 2348 /* 2349 * add lwp counts to zsched's zone, and increment project's task count 2350 * due to the task created in the above tasksys_settaskid 2351 */ 2352 pj = pp->p_task->tk_proj; 2353 mutex_enter(&zone->zone_nlwps_lock); 2354 pj->kpj_nlwps += pp->p_lwpcnt; 2355 pj->kpj_ntasks += 1; 2356 zone->zone_nlwps += pp->p_lwpcnt; 2357 mutex_exit(&zone->zone_nlwps_lock); 2358 2359 /* 2360 * The process was created by a process in the global zone, hence the 2361 * credentials are wrong. We might as well have kcred-ish credentials. 2362 */ 2363 cr = zone->zone_kcred; 2364 crhold(cr); 2365 mutex_enter(&pp->p_crlock); 2366 oldcred = pp->p_cred; 2367 pp->p_cred = cr; 2368 mutex_exit(&pp->p_crlock); 2369 crfree(oldcred); 2370 2371 /* 2372 * Hold credentials again (for thread) 2373 */ 2374 crhold(cr); 2375 2376 /* 2377 * p_lwpcnt can't change since this is a kernel process. 2378 */ 2379 crset(pp, cr); 2380 2381 /* 2382 * Chroot 2383 */ 2384 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 2385 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 2386 2387 /* 2388 * Initialize zone's rctl set. 2389 */ 2390 set = rctl_set_create(); 2391 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2392 mutex_enter(&pp->p_lock); 2393 e.rcep_p.zone = zone; 2394 e.rcep_t = RCENTITY_ZONE; 2395 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 2396 mutex_exit(&pp->p_lock); 2397 rctl_prealloc_destroy(gp); 2398 2399 /* 2400 * Apply the rctls passed in to zone_create(). This is basically a list 2401 * assignment: all of the old values are removed and the new ones 2402 * inserted. That is, if an empty list is passed in, all values are 2403 * removed. 2404 */ 2405 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2406 rctl_dict_entry_t *rde; 2407 rctl_hndl_t hndl; 2408 char *name; 2409 nvlist_t **nvlarray; 2410 uint_t i, nelem; 2411 int error; /* For ASSERT()s */ 2412 2413 name = nvpair_name(nvp); 2414 hndl = rctl_hndl_lookup(name); 2415 ASSERT(hndl != -1); 2416 rde = rctl_dict_lookup_hndl(hndl); 2417 ASSERT(rde != NULL); 2418 2419 for (; /* ever */; ) { 2420 rctl_val_t oval; 2421 2422 mutex_enter(&pp->p_lock); 2423 error = rctl_local_get(hndl, NULL, &oval, pp); 2424 mutex_exit(&pp->p_lock); 2425 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 2426 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 2427 if (oval.rcv_privilege == RCPRIV_SYSTEM) 2428 break; 2429 mutex_enter(&pp->p_lock); 2430 error = rctl_local_delete(hndl, &oval, pp); 2431 mutex_exit(&pp->p_lock); 2432 ASSERT(error == 0); 2433 } 2434 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2435 ASSERT(error == 0); 2436 for (i = 0; i < nelem; i++) { 2437 rctl_val_t *nvalp; 2438 2439 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2440 error = nvlist2rctlval(nvlarray[i], nvalp); 2441 ASSERT(error == 0); 2442 /* 2443 * rctl_local_insert can fail if the value being 2444 * inserted is a duplicate; this is OK. 2445 */ 2446 mutex_enter(&pp->p_lock); 2447 if (rctl_local_insert(hndl, nvalp, pp) != 0) 2448 kmem_cache_free(rctl_val_cache, nvalp); 2449 mutex_exit(&pp->p_lock); 2450 } 2451 } 2452 /* 2453 * Tell the world that we're done setting up. 2454 * 2455 * At this point we want to set the zone status to ZONE_IS_READY 2456 * and atomically set the zone's processor set visibility. Once 2457 * we drop pool_lock() this zone will automatically get updated 2458 * to reflect any future changes to the pools configuration. 2459 */ 2460 pool_lock(); 2461 mutex_enter(&cpu_lock); 2462 mutex_enter(&zonehash_lock); 2463 zone_uniqid(zone); 2464 zone_zsd_configure(zone); 2465 if (pool_state == POOL_ENABLED) 2466 zone_pset_set(zone, pool_default->pool_pset->pset_id); 2467 mutex_enter(&zone_status_lock); 2468 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2469 zone_status_set(zone, ZONE_IS_READY); 2470 mutex_exit(&zone_status_lock); 2471 mutex_exit(&zonehash_lock); 2472 mutex_exit(&cpu_lock); 2473 pool_unlock(); 2474 2475 /* 2476 * Once we see the zone transition to the ZONE_IS_BOOTING state, 2477 * we launch init, and set the state to running. 2478 */ 2479 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 2480 2481 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 2482 id_t cid; 2483 2484 /* 2485 * Ok, this is a little complicated. We need to grab the 2486 * zone's pool's scheduling class ID; note that by now, we 2487 * are already bound to a pool if we need to be (zoneadmd 2488 * will have done that to us while we're in the READY 2489 * state). *But* the scheduling class for the zone's 'init' 2490 * must be explicitly passed to newproc, which doesn't 2491 * respect pool bindings. 2492 * 2493 * We hold the pool_lock across the call to newproc() to 2494 * close the obvious race: the pool's scheduling class 2495 * could change before we manage to create the LWP with 2496 * classid 'cid'. 2497 */ 2498 pool_lock(); 2499 cid = pool_get_class(zone->zone_pool); 2500 if (cid == -1) 2501 cid = defaultcid; 2502 2503 /* 2504 * If this fails, zone_boot will ultimately fail. The 2505 * state of the zone will be set to SHUTTING_DOWN-- userland 2506 * will have to tear down the zone, and fail, or try again. 2507 */ 2508 if ((zone->zone_boot_err = newproc(zone_icode, NULL, cid, 2509 minclsyspri - 1, &ct)) != 0) { 2510 mutex_enter(&zone_status_lock); 2511 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 2512 mutex_exit(&zone_status_lock); 2513 } 2514 pool_unlock(); 2515 } 2516 2517 /* 2518 * Wait for zone_destroy() to be called. This is what we spend 2519 * most of our life doing. 2520 */ 2521 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 2522 2523 if (ct) 2524 /* 2525 * At this point the process contract should be empty. 2526 * (Though if it isn't, it's not the end of the world.) 2527 */ 2528 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 2529 2530 /* 2531 * Allow kcred to be freed when all referring processes 2532 * (including this one) go away. We can't just do this in 2533 * zone_free because we need to wait for the zone_cred_ref to 2534 * drop to 0 before calling zone_free, and the existence of 2535 * zone_kcred will prevent that. Thus, we call crfree here to 2536 * balance the crdup in zone_create. The crhold calls earlier 2537 * in zsched will be dropped when the thread and process exit. 2538 */ 2539 crfree(zone->zone_kcred); 2540 zone->zone_kcred = NULL; 2541 2542 exit(CLD_EXITED, 0); 2543 } 2544 2545 /* 2546 * Helper function to determine if there are any submounts of the 2547 * provided path. Used to make sure the zone doesn't "inherit" any 2548 * mounts from before it is created. 2549 */ 2550 static uint_t 2551 zone_mount_count(const char *rootpath) 2552 { 2553 vfs_t *vfsp; 2554 uint_t count = 0; 2555 size_t rootpathlen = strlen(rootpath); 2556 2557 /* 2558 * Holding zonehash_lock prevents race conditions with 2559 * vfs_list_add()/vfs_list_remove() since we serialize with 2560 * zone_find_by_path(). 2561 */ 2562 ASSERT(MUTEX_HELD(&zonehash_lock)); 2563 /* 2564 * The rootpath must end with a '/' 2565 */ 2566 ASSERT(rootpath[rootpathlen - 1] == '/'); 2567 2568 /* 2569 * This intentionally does not count the rootpath itself if that 2570 * happens to be a mount point. 2571 */ 2572 vfs_list_read_lock(); 2573 vfsp = rootvfs; 2574 do { 2575 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 2576 rootpathlen) == 0) 2577 count++; 2578 vfsp = vfsp->vfs_next; 2579 } while (vfsp != rootvfs); 2580 vfs_list_unlock(); 2581 return (count); 2582 } 2583 2584 /* 2585 * Helper function to make sure that a zone created on 'rootpath' 2586 * wouldn't end up containing other zones' rootpaths. 2587 */ 2588 static boolean_t 2589 zone_is_nested(const char *rootpath) 2590 { 2591 zone_t *zone; 2592 size_t rootpathlen = strlen(rootpath); 2593 size_t len; 2594 2595 ASSERT(MUTEX_HELD(&zonehash_lock)); 2596 2597 for (zone = list_head(&zone_active); zone != NULL; 2598 zone = list_next(&zone_active, zone)) { 2599 if (zone == global_zone) 2600 continue; 2601 len = strlen(zone->zone_rootpath); 2602 if (strncmp(rootpath, zone->zone_rootpath, 2603 MIN(rootpathlen, len)) == 0) 2604 return (B_TRUE); 2605 } 2606 return (B_FALSE); 2607 } 2608 2609 static int 2610 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 2611 size_t zone_privssz) 2612 { 2613 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2614 2615 if (zone_privssz < sizeof (priv_set_t)) 2616 return (set_errno(ENOMEM)); 2617 2618 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 2619 kmem_free(privs, sizeof (priv_set_t)); 2620 return (EFAULT); 2621 } 2622 2623 zone->zone_privset = privs; 2624 return (0); 2625 } 2626 2627 /* 2628 * We make creative use of nvlists to pass in rctls from userland. The list is 2629 * a list of the following structures: 2630 * 2631 * (name = rctl_name, value = nvpair_list_array) 2632 * 2633 * Where each element of the nvpair_list_array is of the form: 2634 * 2635 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 2636 * (name = "limit", value = uint64_t), 2637 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 2638 */ 2639 static int 2640 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 2641 { 2642 nvpair_t *nvp = NULL; 2643 nvlist_t *nvl = NULL; 2644 char *kbuf; 2645 int error; 2646 rctl_val_t rv; 2647 2648 *nvlp = NULL; 2649 2650 if (buflen == 0) 2651 return (0); 2652 2653 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 2654 return (ENOMEM); 2655 if (copyin(ubuf, kbuf, buflen)) { 2656 error = EFAULT; 2657 goto out; 2658 } 2659 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 2660 /* 2661 * nvl may have been allocated/free'd, but the value set to 2662 * non-NULL, so we reset it here. 2663 */ 2664 nvl = NULL; 2665 error = EINVAL; 2666 goto out; 2667 } 2668 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2669 rctl_dict_entry_t *rde; 2670 rctl_hndl_t hndl; 2671 nvlist_t **nvlarray; 2672 uint_t i, nelem; 2673 char *name; 2674 2675 error = EINVAL; 2676 name = nvpair_name(nvp); 2677 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 2678 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 2679 goto out; 2680 } 2681 if ((hndl = rctl_hndl_lookup(name)) == -1) { 2682 goto out; 2683 } 2684 rde = rctl_dict_lookup_hndl(hndl); 2685 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2686 ASSERT(error == 0); 2687 for (i = 0; i < nelem; i++) { 2688 if (error = nvlist2rctlval(nvlarray[i], &rv)) 2689 goto out; 2690 } 2691 if (rctl_invalid_value(rde, &rv)) { 2692 error = EINVAL; 2693 goto out; 2694 } 2695 } 2696 error = 0; 2697 *nvlp = nvl; 2698 out: 2699 kmem_free(kbuf, buflen); 2700 if (error && nvl != NULL) 2701 nvlist_free(nvl); 2702 return (error); 2703 } 2704 2705 int 2706 zone_create_error(int er_error, int er_ext, int *er_out) { 2707 if (er_out != NULL) { 2708 if (copyout(&er_ext, er_out, sizeof (int))) { 2709 return (set_errno(EFAULT)); 2710 } 2711 } 2712 return (set_errno(er_error)); 2713 } 2714 2715 static int 2716 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 2717 { 2718 ts_label_t *tsl; 2719 bslabel_t blab; 2720 2721 /* Get label from user */ 2722 if (copyin(lab, &blab, sizeof (blab)) != 0) 2723 return (EFAULT); 2724 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 2725 if (tsl == NULL) 2726 return (ENOMEM); 2727 2728 zone->zone_slabel = tsl; 2729 return (0); 2730 } 2731 2732 /* 2733 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 2734 */ 2735 static int 2736 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 2737 { 2738 char *kbuf; 2739 char *dataset, *next; 2740 zone_dataset_t *zd; 2741 size_t len; 2742 2743 if (ubuf == NULL || buflen == 0) 2744 return (0); 2745 2746 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 2747 return (ENOMEM); 2748 2749 if (copyin(ubuf, kbuf, buflen) != 0) { 2750 kmem_free(kbuf, buflen); 2751 return (EFAULT); 2752 } 2753 2754 dataset = next = kbuf; 2755 for (;;) { 2756 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 2757 2758 next = strchr(dataset, ','); 2759 2760 if (next == NULL) 2761 len = strlen(dataset); 2762 else 2763 len = next - dataset; 2764 2765 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 2766 bcopy(dataset, zd->zd_dataset, len); 2767 zd->zd_dataset[len] = '\0'; 2768 2769 list_insert_head(&zone->zone_datasets, zd); 2770 2771 if (next == NULL) 2772 break; 2773 2774 dataset = next + 1; 2775 } 2776 2777 kmem_free(kbuf, buflen); 2778 return (0); 2779 } 2780 2781 /* 2782 * System call to create/initialize a new zone named 'zone_name', rooted 2783 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 2784 * and initialized with the zone-wide rctls described in 'rctlbuf', and 2785 * with labeling set by 'match', 'doi', and 'label'. 2786 * 2787 * If extended error is non-null, we may use it to return more detailed 2788 * error information. 2789 */ 2790 static zoneid_t 2791 zone_create(const char *zone_name, const char *zone_root, 2792 const priv_set_t *zone_privs, size_t zone_privssz, 2793 caddr_t rctlbuf, size_t rctlbufsz, 2794 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 2795 int match, uint32_t doi, const bslabel_t *label) 2796 { 2797 struct zsched_arg zarg; 2798 nvlist_t *rctls = NULL; 2799 proc_t *pp = curproc; 2800 zone_t *zone, *ztmp; 2801 zoneid_t zoneid; 2802 int error; 2803 int error2 = 0; 2804 char *str; 2805 cred_t *zkcr; 2806 boolean_t insert_label_hash; 2807 2808 if (secpolicy_zone_config(CRED()) != 0) 2809 return (set_errno(EPERM)); 2810 2811 /* can't boot zone from within chroot environment */ 2812 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 2813 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 2814 extended_error)); 2815 2816 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 2817 zoneid = zone->zone_id = id_alloc(zoneid_space); 2818 zone->zone_status = ZONE_IS_UNINITIALIZED; 2819 zone->zone_pool = pool_default; 2820 zone->zone_pool_mod = gethrtime(); 2821 zone->zone_psetid = ZONE_PS_INVAL; 2822 zone->zone_ncpus = 0; 2823 zone->zone_ncpus_online = 0; 2824 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 2825 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2826 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 2827 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 2828 offsetof(struct zsd_entry, zsd_linkage)); 2829 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 2830 offsetof(zone_dataset_t, zd_linkage)); 2831 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2832 2833 if ((error = zone_set_name(zone, zone_name)) != 0) { 2834 zone_free(zone); 2835 return (zone_create_error(error, 0, extended_error)); 2836 } 2837 2838 if ((error = zone_set_root(zone, zone_root)) != 0) { 2839 zone_free(zone); 2840 return (zone_create_error(error, 0, extended_error)); 2841 } 2842 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 2843 zone_free(zone); 2844 return (zone_create_error(error, 0, extended_error)); 2845 } 2846 2847 /* initialize node name to be the same as zone name */ 2848 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 2849 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 2850 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 2851 2852 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 2853 zone->zone_domain[0] = '\0'; 2854 zone->zone_shares = 1; 2855 zone->zone_bootargs = NULL; 2856 2857 /* 2858 * Zsched initializes the rctls. 2859 */ 2860 zone->zone_rctls = NULL; 2861 2862 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 2863 zone_free(zone); 2864 return (zone_create_error(error, 0, extended_error)); 2865 } 2866 2867 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 2868 zone_free(zone); 2869 return (set_errno(error)); 2870 } 2871 2872 /* 2873 * Read in the trusted system parameters: 2874 * match flag and sensitivity label. 2875 */ 2876 zone->zone_match = match; 2877 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 2878 error = zone_set_label(zone, label, doi); 2879 if (error != 0) { 2880 zone_free(zone); 2881 return (set_errno(error)); 2882 } 2883 insert_label_hash = B_TRUE; 2884 } else { 2885 /* all zones get an admin_low label if system is not labeled */ 2886 zone->zone_slabel = l_admin_low; 2887 label_hold(l_admin_low); 2888 insert_label_hash = B_FALSE; 2889 } 2890 2891 /* 2892 * Stop all lwps since that's what normally happens as part of fork(). 2893 * This needs to happen before we grab any locks to avoid deadlock 2894 * (another lwp in the process could be waiting for the held lock). 2895 */ 2896 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 2897 zone_free(zone); 2898 if (rctls) 2899 nvlist_free(rctls); 2900 return (zone_create_error(error, 0, extended_error)); 2901 } 2902 2903 if (block_mounts() == 0) { 2904 mutex_enter(&pp->p_lock); 2905 if (curthread != pp->p_agenttp) 2906 continuelwps(pp); 2907 mutex_exit(&pp->p_lock); 2908 zone_free(zone); 2909 if (rctls) 2910 nvlist_free(rctls); 2911 return (zone_create_error(error, 0, extended_error)); 2912 } 2913 2914 /* 2915 * Set up credential for kernel access. After this, any errors 2916 * should go through the dance in errout rather than calling 2917 * zone_free directly. 2918 */ 2919 zone->zone_kcred = crdup(kcred); 2920 crsetzone(zone->zone_kcred, zone); 2921 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 2922 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 2923 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 2924 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 2925 2926 mutex_enter(&zonehash_lock); 2927 /* 2928 * Make sure zone doesn't already exist. 2929 * 2930 * If the system and zone are labeled, 2931 * make sure no other zone exists that has the same label. 2932 */ 2933 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 2934 (insert_label_hash && 2935 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 2936 zone_status_t status; 2937 2938 status = zone_status_get(ztmp); 2939 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 2940 error = EEXIST; 2941 else 2942 error = EBUSY; 2943 goto errout; 2944 } 2945 2946 /* 2947 * Don't allow zone creations which would cause one zone's rootpath to 2948 * be accessible from that of another (non-global) zone. 2949 */ 2950 if (zone_is_nested(zone->zone_rootpath)) { 2951 error = EBUSY; 2952 goto errout; 2953 } 2954 2955 ASSERT(zonecount != 0); /* check for leaks */ 2956 if (zonecount + 1 > maxzones) { 2957 error = ENOMEM; 2958 goto errout; 2959 } 2960 2961 if (zone_mount_count(zone->zone_rootpath) != 0) { 2962 error = EBUSY; 2963 error2 = ZE_AREMOUNTS; 2964 goto errout; 2965 } 2966 2967 /* 2968 * Zone is still incomplete, but we need to drop all locks while 2969 * zsched() initializes this zone's kernel process. We 2970 * optimistically add the zone to the hashtable and associated 2971 * lists so a parallel zone_create() doesn't try to create the 2972 * same zone. 2973 */ 2974 zonecount++; 2975 (void) mod_hash_insert(zonehashbyid, 2976 (mod_hash_key_t)(uintptr_t)zone->zone_id, 2977 (mod_hash_val_t)(uintptr_t)zone); 2978 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 2979 (void) strcpy(str, zone->zone_name); 2980 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 2981 (mod_hash_val_t)(uintptr_t)zone); 2982 if (insert_label_hash) { 2983 (void) mod_hash_insert(zonehashbylabel, 2984 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 2985 zone->zone_flags |= ZF_HASHED_LABEL; 2986 } 2987 2988 /* 2989 * Insert into active list. At this point there are no 'hold's 2990 * on the zone, but everyone else knows not to use it, so we can 2991 * continue to use it. zsched() will do a zone_hold() if the 2992 * newproc() is successful. 2993 */ 2994 list_insert_tail(&zone_active, zone); 2995 mutex_exit(&zonehash_lock); 2996 2997 zarg.zone = zone; 2998 zarg.nvlist = rctls; 2999 /* 3000 * The process, task, and project rctls are probably wrong; 3001 * we need an interface to get the default values of all rctls, 3002 * and initialize zsched appropriately. I'm not sure that that 3003 * makes much of a difference, though. 3004 */ 3005 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 3006 /* 3007 * We need to undo all globally visible state. 3008 */ 3009 mutex_enter(&zonehash_lock); 3010 list_remove(&zone_active, zone); 3011 if (zone->zone_flags & ZF_HASHED_LABEL) { 3012 ASSERT(zone->zone_slabel != NULL); 3013 (void) mod_hash_destroy(zonehashbylabel, 3014 (mod_hash_key_t)zone->zone_slabel); 3015 } 3016 (void) mod_hash_destroy(zonehashbyname, 3017 (mod_hash_key_t)(uintptr_t)zone->zone_name); 3018 (void) mod_hash_destroy(zonehashbyid, 3019 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3020 ASSERT(zonecount > 1); 3021 zonecount--; 3022 goto errout; 3023 } 3024 3025 /* 3026 * Zone creation can't fail from now on. 3027 */ 3028 3029 /* 3030 * Let the other lwps continue. 3031 */ 3032 mutex_enter(&pp->p_lock); 3033 if (curthread != pp->p_agenttp) 3034 continuelwps(pp); 3035 mutex_exit(&pp->p_lock); 3036 3037 /* 3038 * Wait for zsched to finish initializing the zone. 3039 */ 3040 zone_status_wait(zone, ZONE_IS_READY); 3041 /* 3042 * The zone is fully visible, so we can let mounts progress. 3043 */ 3044 resume_mounts(); 3045 if (rctls) 3046 nvlist_free(rctls); 3047 3048 return (zoneid); 3049 3050 errout: 3051 mutex_exit(&zonehash_lock); 3052 /* 3053 * Let the other lwps continue. 3054 */ 3055 mutex_enter(&pp->p_lock); 3056 if (curthread != pp->p_agenttp) 3057 continuelwps(pp); 3058 mutex_exit(&pp->p_lock); 3059 3060 resume_mounts(); 3061 if (rctls) 3062 nvlist_free(rctls); 3063 /* 3064 * There is currently one reference to the zone, a cred_ref from 3065 * zone_kcred. To free the zone, we call crfree, which will call 3066 * zone_cred_rele, which will call zone_free. 3067 */ 3068 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 3069 ASSERT(zone->zone_kcred->cr_ref == 1); 3070 ASSERT(zone->zone_ref == 0); 3071 zkcr = zone->zone_kcred; 3072 zone->zone_kcred = NULL; 3073 crfree(zkcr); /* triggers call to zone_free */ 3074 return (zone_create_error(error, error2, extended_error)); 3075 } 3076 3077 /* 3078 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 3079 * the heavy lifting. 3080 */ 3081 static int 3082 zone_boot(zoneid_t zoneid, const char *bootargs) 3083 { 3084 int err; 3085 zone_t *zone; 3086 3087 if (secpolicy_zone_config(CRED()) != 0) 3088 return (set_errno(EPERM)); 3089 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3090 return (set_errno(EINVAL)); 3091 3092 mutex_enter(&zonehash_lock); 3093 /* 3094 * Look for zone under hash lock to prevent races with calls to 3095 * zone_shutdown, zone_destroy, etc. 3096 */ 3097 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3098 mutex_exit(&zonehash_lock); 3099 return (set_errno(EINVAL)); 3100 } 3101 3102 if ((err = zone_set_bootargs(zone, bootargs)) != 0) { 3103 mutex_exit(&zonehash_lock); 3104 return (set_errno(err)); 3105 } 3106 3107 mutex_enter(&zone_status_lock); 3108 if (zone_status_get(zone) != ZONE_IS_READY) { 3109 mutex_exit(&zone_status_lock); 3110 mutex_exit(&zonehash_lock); 3111 return (set_errno(EINVAL)); 3112 } 3113 zone_status_set(zone, ZONE_IS_BOOTING); 3114 mutex_exit(&zone_status_lock); 3115 3116 zone_hold(zone); /* so we can use the zone_t later */ 3117 mutex_exit(&zonehash_lock); 3118 3119 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 3120 zone_rele(zone); 3121 return (set_errno(EINTR)); 3122 } 3123 3124 /* 3125 * Boot (starting init) might have failed, in which case the zone 3126 * will go to the SHUTTING_DOWN state; an appropriate errno will 3127 * be placed in zone->zone_boot_err, and so we return that. 3128 */ 3129 err = zone->zone_boot_err; 3130 zone_rele(zone); 3131 return (err ? set_errno(err) : 0); 3132 } 3133 3134 /* 3135 * Kills all user processes in the zone, waiting for them all to exit 3136 * before returning. 3137 */ 3138 static int 3139 zone_empty(zone_t *zone) 3140 { 3141 int waitstatus; 3142 3143 /* 3144 * We need to drop zonehash_lock before killing all 3145 * processes, otherwise we'll deadlock with zone_find_* 3146 * which can be called from the exit path. 3147 */ 3148 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 3149 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 3150 ZONE_IS_EMPTY)) == -1) { 3151 killall(zone->zone_id); 3152 } 3153 /* 3154 * return EINTR if we were signaled 3155 */ 3156 if (waitstatus == 0) 3157 return (EINTR); 3158 return (0); 3159 } 3160 3161 /* 3162 * This function implements the policy for zone visibility. 3163 * 3164 * In standard Solaris, a non-global zone can only see itself. 3165 * 3166 * In Trusted Extensions, a labeled zone can lookup any zone whose label 3167 * it dominates. For this test, the label of the global zone is treated as 3168 * admin_high so it is special-cased instead of being checked for dominance. 3169 * 3170 * Returns true if zone attributes are viewable, false otherwise. 3171 */ 3172 static boolean_t 3173 zone_list_access(zone_t *zone) 3174 { 3175 3176 if (curproc->p_zone == global_zone || 3177 curproc->p_zone == zone) { 3178 return (B_TRUE); 3179 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3180 bslabel_t *curproc_label; 3181 bslabel_t *zone_label; 3182 3183 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 3184 zone_label = label2bslabel(zone->zone_slabel); 3185 3186 if (zone->zone_id != GLOBAL_ZONEID && 3187 bldominates(curproc_label, zone_label)) { 3188 return (B_TRUE); 3189 } else { 3190 return (B_FALSE); 3191 } 3192 } else { 3193 return (B_FALSE); 3194 } 3195 } 3196 3197 /* 3198 * Systemcall to start the zone's halt sequence. By the time this 3199 * function successfully returns, all user processes and kernel threads 3200 * executing in it will have exited, ZSD shutdown callbacks executed, 3201 * and the zone status set to ZONE_IS_DOWN. 3202 * 3203 * It is possible that the call will interrupt itself if the caller is the 3204 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 3205 */ 3206 static int 3207 zone_shutdown(zoneid_t zoneid) 3208 { 3209 int error; 3210 zone_t *zone; 3211 zone_status_t status; 3212 3213 if (secpolicy_zone_config(CRED()) != 0) 3214 return (set_errno(EPERM)); 3215 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3216 return (set_errno(EINVAL)); 3217 3218 /* 3219 * Block mounts so that VFS_MOUNT() can get an accurate view of 3220 * the zone's status with regards to ZONE_IS_SHUTTING down. 3221 * 3222 * e.g. NFS can fail the mount if it determines that the zone 3223 * has already begun the shutdown sequence. 3224 */ 3225 if (block_mounts() == 0) 3226 return (set_errno(EINTR)); 3227 mutex_enter(&zonehash_lock); 3228 /* 3229 * Look for zone under hash lock to prevent races with other 3230 * calls to zone_shutdown and zone_destroy. 3231 */ 3232 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3233 mutex_exit(&zonehash_lock); 3234 resume_mounts(); 3235 return (set_errno(EINVAL)); 3236 } 3237 mutex_enter(&zone_status_lock); 3238 status = zone_status_get(zone); 3239 /* 3240 * Fail if the zone isn't fully initialized yet. 3241 */ 3242 if (status < ZONE_IS_READY) { 3243 mutex_exit(&zone_status_lock); 3244 mutex_exit(&zonehash_lock); 3245 resume_mounts(); 3246 return (set_errno(EINVAL)); 3247 } 3248 /* 3249 * If conditions required for zone_shutdown() to return have been met, 3250 * return success. 3251 */ 3252 if (status >= ZONE_IS_DOWN) { 3253 mutex_exit(&zone_status_lock); 3254 mutex_exit(&zonehash_lock); 3255 resume_mounts(); 3256 return (0); 3257 } 3258 /* 3259 * If zone_shutdown() hasn't been called before, go through the motions. 3260 * If it has, there's nothing to do but wait for the kernel threads to 3261 * drain. 3262 */ 3263 if (status < ZONE_IS_EMPTY) { 3264 uint_t ntasks; 3265 3266 mutex_enter(&zone->zone_lock); 3267 if ((ntasks = zone->zone_ntasks) != 1) { 3268 /* 3269 * There's still stuff running. 3270 */ 3271 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3272 } 3273 mutex_exit(&zone->zone_lock); 3274 if (ntasks == 1) { 3275 /* 3276 * The only way to create another task is through 3277 * zone_enter(), which will block until we drop 3278 * zonehash_lock. The zone is empty. 3279 */ 3280 if (zone->zone_kthreads == NULL) { 3281 /* 3282 * Skip ahead to ZONE_IS_DOWN 3283 */ 3284 zone_status_set(zone, ZONE_IS_DOWN); 3285 } else { 3286 zone_status_set(zone, ZONE_IS_EMPTY); 3287 } 3288 } 3289 } 3290 zone_hold(zone); /* so we can use the zone_t later */ 3291 mutex_exit(&zone_status_lock); 3292 mutex_exit(&zonehash_lock); 3293 resume_mounts(); 3294 3295 if (error = zone_empty(zone)) { 3296 zone_rele(zone); 3297 return (set_errno(error)); 3298 } 3299 /* 3300 * After the zone status goes to ZONE_IS_DOWN this zone will no 3301 * longer be notified of changes to the pools configuration, so 3302 * in order to not end up with a stale pool pointer, we point 3303 * ourselves at the default pool and remove all resource 3304 * visibility. This is especially important as the zone_t may 3305 * languish on the deathrow for a very long time waiting for 3306 * cred's to drain out. 3307 * 3308 * This rebinding of the zone can happen multiple times 3309 * (presumably due to interrupted or parallel systemcalls) 3310 * without any adverse effects. 3311 */ 3312 if (pool_lock_intr() != 0) { 3313 zone_rele(zone); 3314 return (set_errno(EINTR)); 3315 } 3316 if (pool_state == POOL_ENABLED) { 3317 mutex_enter(&cpu_lock); 3318 zone_pool_set(zone, pool_default); 3319 /* 3320 * The zone no longer needs to be able to see any cpus. 3321 */ 3322 zone_pset_set(zone, ZONE_PS_INVAL); 3323 mutex_exit(&cpu_lock); 3324 } 3325 pool_unlock(); 3326 3327 /* 3328 * ZSD shutdown callbacks can be executed multiple times, hence 3329 * it is safe to not be holding any locks across this call. 3330 */ 3331 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 3332 3333 mutex_enter(&zone_status_lock); 3334 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 3335 zone_status_set(zone, ZONE_IS_DOWN); 3336 mutex_exit(&zone_status_lock); 3337 3338 /* 3339 * Wait for kernel threads to drain. 3340 */ 3341 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 3342 zone_rele(zone); 3343 return (set_errno(EINTR)); 3344 } 3345 zone_rele(zone); 3346 return (0); 3347 } 3348 3349 /* 3350 * Systemcall entry point to finalize the zone halt process. The caller 3351 * must have already successfully callefd zone_shutdown(). 3352 * 3353 * Upon successful completion, the zone will have been fully destroyed: 3354 * zsched will have exited, destructor callbacks executed, and the zone 3355 * removed from the list of active zones. 3356 */ 3357 static int 3358 zone_destroy(zoneid_t zoneid) 3359 { 3360 uint64_t uniqid; 3361 zone_t *zone; 3362 zone_status_t status; 3363 3364 if (secpolicy_zone_config(CRED()) != 0) 3365 return (set_errno(EPERM)); 3366 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3367 return (set_errno(EINVAL)); 3368 3369 mutex_enter(&zonehash_lock); 3370 /* 3371 * Look for zone under hash lock to prevent races with other 3372 * calls to zone_destroy. 3373 */ 3374 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3375 mutex_exit(&zonehash_lock); 3376 return (set_errno(EINVAL)); 3377 } 3378 3379 if (zone_mount_count(zone->zone_rootpath) != 0) { 3380 mutex_exit(&zonehash_lock); 3381 return (set_errno(EBUSY)); 3382 } 3383 mutex_enter(&zone_status_lock); 3384 status = zone_status_get(zone); 3385 if (status < ZONE_IS_DOWN) { 3386 mutex_exit(&zone_status_lock); 3387 mutex_exit(&zonehash_lock); 3388 return (set_errno(EBUSY)); 3389 } else if (status == ZONE_IS_DOWN) { 3390 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 3391 } 3392 mutex_exit(&zone_status_lock); 3393 zone_hold(zone); 3394 mutex_exit(&zonehash_lock); 3395 3396 /* 3397 * wait for zsched to exit 3398 */ 3399 zone_status_wait(zone, ZONE_IS_DEAD); 3400 zone_zsd_callbacks(zone, ZSD_DESTROY); 3401 uniqid = zone->zone_uniqid; 3402 zone_rele(zone); 3403 zone = NULL; /* potentially free'd */ 3404 3405 mutex_enter(&zonehash_lock); 3406 for (; /* ever */; ) { 3407 boolean_t unref; 3408 3409 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 3410 zone->zone_uniqid != uniqid) { 3411 /* 3412 * The zone has gone away. Necessary conditions 3413 * are met, so we return success. 3414 */ 3415 mutex_exit(&zonehash_lock); 3416 return (0); 3417 } 3418 mutex_enter(&zone->zone_lock); 3419 unref = ZONE_IS_UNREF(zone); 3420 mutex_exit(&zone->zone_lock); 3421 if (unref) { 3422 /* 3423 * There is only one reference to the zone -- that 3424 * added when the zone was added to the hashtables -- 3425 * and things will remain this way until we drop 3426 * zonehash_lock... we can go ahead and cleanup the 3427 * zone. 3428 */ 3429 break; 3430 } 3431 3432 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 3433 /* Signaled */ 3434 mutex_exit(&zonehash_lock); 3435 return (set_errno(EINTR)); 3436 } 3437 3438 } 3439 3440 /* 3441 * It is now safe to let the zone be recreated; remove it from the 3442 * lists. The memory will not be freed until the last cred 3443 * reference goes away. 3444 */ 3445 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 3446 zonecount--; 3447 /* remove from active list and hash tables */ 3448 list_remove(&zone_active, zone); 3449 (void) mod_hash_destroy(zonehashbyname, 3450 (mod_hash_key_t)zone->zone_name); 3451 (void) mod_hash_destroy(zonehashbyid, 3452 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3453 if (zone->zone_flags & ZF_HASHED_LABEL) 3454 (void) mod_hash_destroy(zonehashbylabel, 3455 (mod_hash_key_t)zone->zone_slabel); 3456 mutex_exit(&zonehash_lock); 3457 3458 /* 3459 * Release the root vnode; we're not using it anymore. Nor should any 3460 * other thread that might access it exist. 3461 */ 3462 if (zone->zone_rootvp != NULL) { 3463 VN_RELE(zone->zone_rootvp); 3464 zone->zone_rootvp = NULL; 3465 } 3466 3467 /* add to deathrow list */ 3468 mutex_enter(&zone_deathrow_lock); 3469 list_insert_tail(&zone_deathrow, zone); 3470 mutex_exit(&zone_deathrow_lock); 3471 3472 /* 3473 * Drop last reference (which was added by zsched()), this will 3474 * free the zone unless there are outstanding cred references. 3475 */ 3476 zone_rele(zone); 3477 return (0); 3478 } 3479 3480 /* 3481 * Systemcall entry point for zone_getattr(2). 3482 */ 3483 static ssize_t 3484 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 3485 { 3486 size_t size; 3487 int error = 0, err; 3488 zone_t *zone; 3489 char *zonepath; 3490 zone_status_t zone_status; 3491 pid_t initpid; 3492 boolean_t global = (curproc->p_zone == global_zone); 3493 boolean_t curzone = (curproc->p_zone->zone_id == zoneid); 3494 3495 mutex_enter(&zonehash_lock); 3496 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3497 mutex_exit(&zonehash_lock); 3498 return (set_errno(EINVAL)); 3499 } 3500 zone_status = zone_status_get(zone); 3501 if (zone_status < ZONE_IS_READY) { 3502 mutex_exit(&zonehash_lock); 3503 return (set_errno(EINVAL)); 3504 } 3505 zone_hold(zone); 3506 mutex_exit(&zonehash_lock); 3507 3508 /* 3509 * If not in the global zone, don't show information about other zones, 3510 * unless the system is labeled and the local zone's label dominates 3511 * the other zone. 3512 */ 3513 if (!zone_list_access(zone)) { 3514 zone_rele(zone); 3515 return (set_errno(EINVAL)); 3516 } 3517 3518 switch (attr) { 3519 case ZONE_ATTR_ROOT: 3520 if (global) { 3521 /* 3522 * Copy the path to trim the trailing "/" (except for 3523 * the global zone). 3524 */ 3525 if (zone != global_zone) 3526 size = zone->zone_rootpathlen - 1; 3527 else 3528 size = zone->zone_rootpathlen; 3529 zonepath = kmem_alloc(size, KM_SLEEP); 3530 bcopy(zone->zone_rootpath, zonepath, size); 3531 zonepath[size - 1] = '\0'; 3532 } else { 3533 if (curzone || !is_system_labeled()) { 3534 /* 3535 * Caller is not in the global zone. 3536 * if the query is on the current zone 3537 * or the system is not labeled, 3538 * just return faked-up path for current zone. 3539 */ 3540 zonepath = "/"; 3541 size = 2; 3542 } else { 3543 /* 3544 * Return related path for current zone. 3545 */ 3546 int prefix_len = strlen(zone_prefix); 3547 int zname_len = strlen(zone->zone_name); 3548 3549 size = prefix_len + zname_len + 1; 3550 zonepath = kmem_alloc(size, KM_SLEEP); 3551 bcopy(zone_prefix, zonepath, prefix_len); 3552 bcopy(zone->zone_name, zonepath + 3553 prefix_len, zname_len); 3554 zonepath[size - 1] = '\0'; 3555 } 3556 } 3557 if (bufsize > size) 3558 bufsize = size; 3559 if (buf != NULL) { 3560 err = copyoutstr(zonepath, buf, bufsize, NULL); 3561 if (err != 0 && err != ENAMETOOLONG) 3562 error = EFAULT; 3563 } 3564 if (global || (is_system_labeled() && !curzone)) 3565 kmem_free(zonepath, size); 3566 break; 3567 3568 case ZONE_ATTR_NAME: 3569 size = strlen(zone->zone_name) + 1; 3570 if (bufsize > size) 3571 bufsize = size; 3572 if (buf != NULL) { 3573 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 3574 if (err != 0 && err != ENAMETOOLONG) 3575 error = EFAULT; 3576 } 3577 break; 3578 3579 case ZONE_ATTR_STATUS: 3580 /* 3581 * Since we're not holding zonehash_lock, the zone status 3582 * may be anything; leave it up to userland to sort it out. 3583 */ 3584 size = sizeof (zone_status); 3585 if (bufsize > size) 3586 bufsize = size; 3587 zone_status = zone_status_get(zone); 3588 if (buf != NULL && 3589 copyout(&zone_status, buf, bufsize) != 0) 3590 error = EFAULT; 3591 break; 3592 case ZONE_ATTR_PRIVSET: 3593 size = sizeof (priv_set_t); 3594 if (bufsize > size) 3595 bufsize = size; 3596 if (buf != NULL && 3597 copyout(zone->zone_privset, buf, bufsize) != 0) 3598 error = EFAULT; 3599 break; 3600 case ZONE_ATTR_UNIQID: 3601 size = sizeof (zone->zone_uniqid); 3602 if (bufsize > size) 3603 bufsize = size; 3604 if (buf != NULL && 3605 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 3606 error = EFAULT; 3607 break; 3608 case ZONE_ATTR_POOLID: 3609 { 3610 pool_t *pool; 3611 poolid_t poolid; 3612 3613 if (pool_lock_intr() != 0) { 3614 error = EINTR; 3615 break; 3616 } 3617 pool = zone_pool_get(zone); 3618 poolid = pool->pool_id; 3619 pool_unlock(); 3620 size = sizeof (poolid); 3621 if (bufsize > size) 3622 bufsize = size; 3623 if (buf != NULL && copyout(&poolid, buf, size) != 0) 3624 error = EFAULT; 3625 } 3626 break; 3627 case ZONE_ATTR_SLBL: 3628 size = sizeof (bslabel_t); 3629 if (bufsize > size) 3630 bufsize = size; 3631 if (zone->zone_slabel == NULL) 3632 error = EINVAL; 3633 else if (buf != NULL && 3634 copyout(label2bslabel(zone->zone_slabel), buf, 3635 bufsize) != 0) 3636 error = EFAULT; 3637 break; 3638 case ZONE_ATTR_INITPID: 3639 size = sizeof (initpid); 3640 if (bufsize > size) 3641 bufsize = size; 3642 initpid = zone->zone_proc_initpid; 3643 if (initpid == -1) { 3644 error = ESRCH; 3645 break; 3646 } 3647 if (buf != NULL && 3648 copyout(&initpid, buf, bufsize) != 0) 3649 error = EFAULT; 3650 break; 3651 default: 3652 error = EINVAL; 3653 } 3654 zone_rele(zone); 3655 3656 if (error) 3657 return (set_errno(error)); 3658 return ((ssize_t)size); 3659 } 3660 3661 /* 3662 * Return zero if the process has at least one vnode mapped in to its 3663 * address space which shouldn't be allowed to change zones. 3664 */ 3665 static int 3666 as_can_change_zones(void) 3667 { 3668 proc_t *pp = curproc; 3669 struct seg *seg; 3670 struct as *as = pp->p_as; 3671 vnode_t *vp; 3672 int allow = 1; 3673 3674 ASSERT(pp->p_as != &kas); 3675 AS_LOCK_ENTER(&as, &as->a_lock, RW_READER); 3676 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 3677 /* 3678 * if we can't get a backing vnode for this segment then skip 3679 * it. 3680 */ 3681 vp = NULL; 3682 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 3683 continue; 3684 if (!vn_can_change_zones(vp)) { /* bail on first match */ 3685 allow = 0; 3686 break; 3687 } 3688 } 3689 AS_LOCK_EXIT(&as, &as->a_lock); 3690 return (allow); 3691 } 3692 3693 /* 3694 * Systemcall entry point for zone_enter(). 3695 * 3696 * The current process is injected into said zone. In the process 3697 * it will change its project membership, privileges, rootdir/cwd, 3698 * zone-wide rctls, and pool association to match those of the zone. 3699 * 3700 * The first zone_enter() called while the zone is in the ZONE_IS_READY 3701 * state will transition it to ZONE_IS_RUNNING. Processes may only 3702 * enter a zone that is "ready" or "running". 3703 */ 3704 static int 3705 zone_enter(zoneid_t zoneid) 3706 { 3707 zone_t *zone; 3708 vnode_t *vp; 3709 proc_t *pp = curproc; 3710 contract_t *ct; 3711 cont_process_t *ctp; 3712 task_t *tk, *oldtk; 3713 kproject_t *zone_proj0; 3714 cred_t *cr, *newcr; 3715 pool_t *oldpool, *newpool; 3716 sess_t *sp; 3717 uid_t uid; 3718 zone_status_t status; 3719 int err = 0; 3720 rctl_entity_p_t e; 3721 3722 if (secpolicy_zone_config(CRED()) != 0) 3723 return (set_errno(EPERM)); 3724 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3725 return (set_errno(EINVAL)); 3726 3727 /* 3728 * Stop all lwps so we don't need to hold a lock to look at 3729 * curproc->p_zone. This needs to happen before we grab any 3730 * locks to avoid deadlock (another lwp in the process could 3731 * be waiting for the held lock). 3732 */ 3733 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 3734 return (set_errno(EINTR)); 3735 3736 /* 3737 * Make sure we're not changing zones with files open or mapped in 3738 * to our address space which shouldn't be changing zones. 3739 */ 3740 if (!files_can_change_zones()) { 3741 err = EBADF; 3742 goto out; 3743 } 3744 if (!as_can_change_zones()) { 3745 err = EFAULT; 3746 goto out; 3747 } 3748 3749 mutex_enter(&zonehash_lock); 3750 if (pp->p_zone != global_zone) { 3751 mutex_exit(&zonehash_lock); 3752 err = EINVAL; 3753 goto out; 3754 } 3755 3756 zone = zone_find_all_by_id(zoneid); 3757 if (zone == NULL) { 3758 mutex_exit(&zonehash_lock); 3759 err = EINVAL; 3760 goto out; 3761 } 3762 3763 /* 3764 * To prevent processes in a zone from holding contracts on 3765 * extrazonal resources, and to avoid process contract 3766 * memberships which span zones, contract holders and processes 3767 * which aren't the sole members of their encapsulating process 3768 * contracts are not allowed to zone_enter. 3769 */ 3770 ctp = pp->p_ct_process; 3771 ct = &ctp->conp_contract; 3772 mutex_enter(&ct->ct_lock); 3773 mutex_enter(&pp->p_lock); 3774 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 3775 mutex_exit(&pp->p_lock); 3776 mutex_exit(&ct->ct_lock); 3777 mutex_exit(&zonehash_lock); 3778 pool_unlock(); 3779 err = EINVAL; 3780 goto out; 3781 } 3782 3783 /* 3784 * Moreover, we don't allow processes whose encapsulating 3785 * process contracts have inherited extrazonal contracts. 3786 * While it would be easier to eliminate all process contracts 3787 * with inherited contracts, we need to be able to give a 3788 * restarted init (or other zone-penetrating process) its 3789 * predecessor's contracts. 3790 */ 3791 if (ctp->conp_ninherited != 0) { 3792 contract_t *next; 3793 for (next = list_head(&ctp->conp_inherited); next; 3794 next = list_next(&ctp->conp_inherited, next)) { 3795 if (contract_getzuniqid(next) != zone->zone_uniqid) { 3796 mutex_exit(&pp->p_lock); 3797 mutex_exit(&ct->ct_lock); 3798 mutex_exit(&zonehash_lock); 3799 pool_unlock(); 3800 err = EINVAL; 3801 goto out; 3802 } 3803 } 3804 } 3805 mutex_exit(&pp->p_lock); 3806 mutex_exit(&ct->ct_lock); 3807 3808 status = zone_status_get(zone); 3809 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 3810 /* 3811 * Can't join 3812 */ 3813 mutex_exit(&zonehash_lock); 3814 err = EINVAL; 3815 goto out; 3816 } 3817 3818 /* 3819 * Make sure new priv set is within the permitted set for caller 3820 */ 3821 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 3822 mutex_exit(&zonehash_lock); 3823 err = EPERM; 3824 goto out; 3825 } 3826 /* 3827 * We want to momentarily drop zonehash_lock while we optimistically 3828 * bind curproc to the pool it should be running in. This is safe 3829 * since the zone can't disappear (we have a hold on it). 3830 */ 3831 zone_hold(zone); 3832 mutex_exit(&zonehash_lock); 3833 3834 /* 3835 * Grab pool_lock to keep the pools configuration from changing 3836 * and to stop ourselves from getting rebound to another pool 3837 * until we join the zone. 3838 */ 3839 if (pool_lock_intr() != 0) { 3840 zone_rele(zone); 3841 err = EINTR; 3842 goto out; 3843 } 3844 ASSERT(secpolicy_pool(CRED()) == 0); 3845 /* 3846 * Bind ourselves to the pool currently associated with the zone. 3847 */ 3848 oldpool = curproc->p_pool; 3849 newpool = zone_pool_get(zone); 3850 if (pool_state == POOL_ENABLED && newpool != oldpool && 3851 (err = pool_do_bind(newpool, P_PID, P_MYID, 3852 POOL_BIND_ALL)) != 0) { 3853 pool_unlock(); 3854 zone_rele(zone); 3855 goto out; 3856 } 3857 3858 /* 3859 * Grab cpu_lock now; we'll need it later when we call 3860 * task_join(). 3861 */ 3862 mutex_enter(&cpu_lock); 3863 mutex_enter(&zonehash_lock); 3864 /* 3865 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 3866 */ 3867 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 3868 /* 3869 * Can't join anymore. 3870 */ 3871 mutex_exit(&zonehash_lock); 3872 mutex_exit(&cpu_lock); 3873 if (pool_state == POOL_ENABLED && 3874 newpool != oldpool) 3875 (void) pool_do_bind(oldpool, P_PID, P_MYID, 3876 POOL_BIND_ALL); 3877 pool_unlock(); 3878 zone_rele(zone); 3879 err = EINVAL; 3880 goto out; 3881 } 3882 3883 mutex_enter(&pp->p_lock); 3884 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 3885 /* verify that we do not exceed and task or lwp limits */ 3886 mutex_enter(&zone->zone_nlwps_lock); 3887 /* add new lwps to zone and zone's proj0 */ 3888 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 3889 zone->zone_nlwps += pp->p_lwpcnt; 3890 /* add 1 task to zone's proj0 */ 3891 zone_proj0->kpj_ntasks += 1; 3892 mutex_exit(&pp->p_lock); 3893 mutex_exit(&zone->zone_nlwps_lock); 3894 3895 /* remove lwps from proc's old zone and old project */ 3896 mutex_enter(&pp->p_zone->zone_nlwps_lock); 3897 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 3898 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 3899 mutex_exit(&pp->p_zone->zone_nlwps_lock); 3900 3901 /* 3902 * Joining the zone cannot fail from now on. 3903 * 3904 * This means that a lot of the following code can be commonized and 3905 * shared with zsched(). 3906 */ 3907 3908 /* 3909 * Reset the encapsulating process contract's zone. 3910 */ 3911 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 3912 contract_setzuniqid(ct, zone->zone_uniqid); 3913 3914 /* 3915 * Create a new task and associate the process with the project keyed 3916 * by (projid,zoneid). 3917 * 3918 * We might as well be in project 0; the global zone's projid doesn't 3919 * make much sense in a zone anyhow. 3920 * 3921 * This also increments zone_ntasks, and returns with p_lock held. 3922 */ 3923 tk = task_create(0, zone); 3924 oldtk = task_join(tk, 0); 3925 mutex_exit(&cpu_lock); 3926 3927 pp->p_flag |= SZONETOP; 3928 pp->p_zone = zone; 3929 3930 /* 3931 * call RCTLOP_SET functions on this proc 3932 */ 3933 e.rcep_p.zone = zone; 3934 e.rcep_t = RCENTITY_ZONE; 3935 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 3936 RCD_CALLBACK); 3937 mutex_exit(&pp->p_lock); 3938 3939 /* 3940 * We don't need to hold any of zsched's locks here; not only do we know 3941 * the process and zone aren't going away, we know its session isn't 3942 * changing either. 3943 * 3944 * By joining zsched's session here, we mimic the behavior in the 3945 * global zone of init's sid being the pid of sched. We extend this 3946 * to all zlogin-like zone_enter()'ing processes as well. 3947 */ 3948 mutex_enter(&pidlock); 3949 sp = zone->zone_zsched->p_sessp; 3950 SESS_HOLD(sp); 3951 mutex_enter(&pp->p_lock); 3952 pgexit(pp); 3953 SESS_RELE(pp->p_sessp); 3954 pp->p_sessp = sp; 3955 pgjoin(pp, zone->zone_zsched->p_pidp); 3956 mutex_exit(&pp->p_lock); 3957 mutex_exit(&pidlock); 3958 3959 mutex_exit(&zonehash_lock); 3960 /* 3961 * We're firmly in the zone; let pools progress. 3962 */ 3963 pool_unlock(); 3964 task_rele(oldtk); 3965 /* 3966 * We don't need to retain a hold on the zone since we already 3967 * incremented zone_ntasks, so the zone isn't going anywhere. 3968 */ 3969 zone_rele(zone); 3970 3971 /* 3972 * Chroot 3973 */ 3974 vp = zone->zone_rootvp; 3975 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 3976 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 3977 3978 /* 3979 * Change process credentials 3980 */ 3981 newcr = cralloc(); 3982 mutex_enter(&pp->p_crlock); 3983 cr = pp->p_cred; 3984 crcopy_to(cr, newcr); 3985 crsetzone(newcr, zone); 3986 pp->p_cred = newcr; 3987 3988 /* 3989 * Restrict all process privilege sets to zone limit 3990 */ 3991 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 3992 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 3993 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 3994 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 3995 mutex_exit(&pp->p_crlock); 3996 crset(pp, newcr); 3997 3998 /* 3999 * Adjust upcount to reflect zone entry. 4000 */ 4001 uid = crgetruid(newcr); 4002 mutex_enter(&pidlock); 4003 upcount_dec(uid, GLOBAL_ZONEID); 4004 upcount_inc(uid, zoneid); 4005 mutex_exit(&pidlock); 4006 4007 /* 4008 * Set up core file path and content. 4009 */ 4010 set_core_defaults(); 4011 4012 out: 4013 /* 4014 * Let the other lwps continue. 4015 */ 4016 mutex_enter(&pp->p_lock); 4017 if (curthread != pp->p_agenttp) 4018 continuelwps(pp); 4019 mutex_exit(&pp->p_lock); 4020 4021 return (err != 0 ? set_errno(err) : 0); 4022 } 4023 4024 /* 4025 * Systemcall entry point for zone_list(2). 4026 * 4027 * Processes running in a (non-global) zone only see themselves. 4028 * On labeled systems, they see all zones whose label they dominate. 4029 */ 4030 static int 4031 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 4032 { 4033 zoneid_t *zoneids; 4034 zone_t *zone, *myzone; 4035 uint_t user_nzones, real_nzones; 4036 uint_t domi_nzones; 4037 int error; 4038 4039 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 4040 return (set_errno(EFAULT)); 4041 4042 myzone = curproc->p_zone; 4043 if (myzone != global_zone) { 4044 bslabel_t *mybslab; 4045 4046 if (!is_system_labeled()) { 4047 /* just return current zone */ 4048 real_nzones = domi_nzones = 1; 4049 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 4050 zoneids[0] = myzone->zone_id; 4051 } else { 4052 /* return all zones that are dominated */ 4053 mutex_enter(&zonehash_lock); 4054 real_nzones = zonecount; 4055 domi_nzones = 0; 4056 if (real_nzones > 0) { 4057 zoneids = kmem_alloc(real_nzones * 4058 sizeof (zoneid_t), KM_SLEEP); 4059 mybslab = label2bslabel(myzone->zone_slabel); 4060 for (zone = list_head(&zone_active); 4061 zone != NULL; 4062 zone = list_next(&zone_active, zone)) { 4063 if (zone->zone_id == GLOBAL_ZONEID) 4064 continue; 4065 if (zone != myzone && 4066 (zone->zone_flags & ZF_IS_SCRATCH)) 4067 continue; 4068 /* 4069 * Note that a label always dominates 4070 * itself, so myzone is always included 4071 * in the list. 4072 */ 4073 if (bldominates(mybslab, 4074 label2bslabel(zone->zone_slabel))) { 4075 zoneids[domi_nzones++] = 4076 zone->zone_id; 4077 } 4078 } 4079 } 4080 mutex_exit(&zonehash_lock); 4081 } 4082 } else { 4083 mutex_enter(&zonehash_lock); 4084 real_nzones = zonecount; 4085 domi_nzones = 0; 4086 if (real_nzones > 0) { 4087 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 4088 KM_SLEEP); 4089 for (zone = list_head(&zone_active); zone != NULL; 4090 zone = list_next(&zone_active, zone)) 4091 zoneids[domi_nzones++] = zone->zone_id; 4092 ASSERT(domi_nzones == real_nzones); 4093 } 4094 mutex_exit(&zonehash_lock); 4095 } 4096 4097 /* 4098 * If user has allocated space for fewer entries than we found, then 4099 * return only up to his limit. Either way, tell him exactly how many 4100 * we found. 4101 */ 4102 if (domi_nzones < user_nzones) 4103 user_nzones = domi_nzones; 4104 error = 0; 4105 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 4106 error = EFAULT; 4107 } else if (zoneidlist != NULL && user_nzones != 0) { 4108 if (copyout(zoneids, zoneidlist, 4109 user_nzones * sizeof (zoneid_t)) != 0) 4110 error = EFAULT; 4111 } 4112 4113 if (real_nzones > 0) 4114 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 4115 4116 if (error != 0) 4117 return (set_errno(error)); 4118 else 4119 return (0); 4120 } 4121 4122 /* 4123 * Systemcall entry point for zone_lookup(2). 4124 * 4125 * Non-global zones are only able to see themselves and (on labeled systems) 4126 * the zones they dominate. 4127 */ 4128 static zoneid_t 4129 zone_lookup(const char *zone_name) 4130 { 4131 char *kname; 4132 zone_t *zone; 4133 zoneid_t zoneid; 4134 int err; 4135 4136 if (zone_name == NULL) { 4137 /* return caller's zone id */ 4138 return (getzoneid()); 4139 } 4140 4141 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 4142 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 4143 kmem_free(kname, ZONENAME_MAX); 4144 return (set_errno(err)); 4145 } 4146 4147 mutex_enter(&zonehash_lock); 4148 zone = zone_find_all_by_name(kname); 4149 kmem_free(kname, ZONENAME_MAX); 4150 /* 4151 * In a non-global zone, can only lookup global and own name. 4152 * In Trusted Extensions zone label dominance rules apply. 4153 */ 4154 if (zone == NULL || 4155 zone_status_get(zone) < ZONE_IS_READY || 4156 !zone_list_access(zone)) { 4157 mutex_exit(&zonehash_lock); 4158 return (set_errno(EINVAL)); 4159 } else { 4160 zoneid = zone->zone_id; 4161 mutex_exit(&zonehash_lock); 4162 return (zoneid); 4163 } 4164 } 4165 4166 static int 4167 zone_version(int *version_arg) 4168 { 4169 int version = ZONE_SYSCALL_API_VERSION; 4170 4171 if (copyout(&version, version_arg, sizeof (int)) != 0) 4172 return (set_errno(EFAULT)); 4173 return (0); 4174 } 4175 4176 /* ARGSUSED */ 4177 long 4178 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 4179 { 4180 zone_def zs; 4181 4182 switch (cmd) { 4183 case ZONE_CREATE: 4184 if (get_udatamodel() == DATAMODEL_NATIVE) { 4185 if (copyin(arg1, &zs, sizeof (zone_def))) { 4186 return (set_errno(EFAULT)); 4187 } 4188 } else { 4189 #ifdef _SYSCALL32_IMPL 4190 zone_def32 zs32; 4191 4192 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 4193 return (set_errno(EFAULT)); 4194 } 4195 zs.zone_name = 4196 (const char *)(unsigned long)zs32.zone_name; 4197 zs.zone_root = 4198 (const char *)(unsigned long)zs32.zone_root; 4199 zs.zone_privs = 4200 (const struct priv_set *) 4201 (unsigned long)zs32.zone_privs; 4202 zs.zone_privssz = zs32.zone_privssz; 4203 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 4204 zs.rctlbufsz = zs32.rctlbufsz; 4205 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 4206 zs.zfsbufsz = zs32.zfsbufsz; 4207 zs.extended_error = 4208 (int *)(unsigned long)zs32.extended_error; 4209 zs.match = zs32.match; 4210 zs.doi = zs32.doi; 4211 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 4212 #else 4213 panic("get_udatamodel() returned bogus result\n"); 4214 #endif 4215 } 4216 4217 return (zone_create(zs.zone_name, zs.zone_root, 4218 zs.zone_privs, zs.zone_privssz, 4219 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 4220 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 4221 zs.extended_error, zs.match, zs.doi, 4222 zs.label)); 4223 case ZONE_BOOT: 4224 return (zone_boot((zoneid_t)(uintptr_t)arg1, 4225 (const char *)arg2)); 4226 case ZONE_DESTROY: 4227 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 4228 case ZONE_GETATTR: 4229 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 4230 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 4231 case ZONE_ENTER: 4232 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 4233 case ZONE_LIST: 4234 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 4235 case ZONE_SHUTDOWN: 4236 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 4237 case ZONE_LOOKUP: 4238 return (zone_lookup((const char *)arg1)); 4239 case ZONE_VERSION: 4240 return (zone_version((int *)arg1)); 4241 default: 4242 return (set_errno(EINVAL)); 4243 } 4244 } 4245 4246 struct zarg { 4247 zone_t *zone; 4248 zone_cmd_arg_t arg; 4249 }; 4250 4251 static int 4252 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 4253 { 4254 char *buf; 4255 size_t buflen; 4256 int error; 4257 4258 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 4259 buf = kmem_alloc(buflen, KM_SLEEP); 4260 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 4261 error = door_ki_open(buf, doorp); 4262 kmem_free(buf, buflen); 4263 return (error); 4264 } 4265 4266 static void 4267 zone_release_door(door_handle_t *doorp) 4268 { 4269 door_ki_rele(*doorp); 4270 *doorp = NULL; 4271 } 4272 4273 static void 4274 zone_ki_call_zoneadmd(struct zarg *zargp) 4275 { 4276 door_handle_t door = NULL; 4277 door_arg_t darg, save_arg; 4278 char *zone_name; 4279 size_t zone_namelen; 4280 zoneid_t zoneid; 4281 zone_t *zone; 4282 zone_cmd_arg_t arg; 4283 uint64_t uniqid; 4284 size_t size; 4285 int error; 4286 int retry; 4287 4288 zone = zargp->zone; 4289 arg = zargp->arg; 4290 kmem_free(zargp, sizeof (*zargp)); 4291 4292 zone_namelen = strlen(zone->zone_name) + 1; 4293 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 4294 bcopy(zone->zone_name, zone_name, zone_namelen); 4295 zoneid = zone->zone_id; 4296 uniqid = zone->zone_uniqid; 4297 /* 4298 * zoneadmd may be down, but at least we can empty out the zone. 4299 * We can ignore the return value of zone_empty() since we're called 4300 * from a kernel thread and know we won't be delivered any signals. 4301 */ 4302 ASSERT(curproc == &p0); 4303 (void) zone_empty(zone); 4304 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 4305 zone_rele(zone); 4306 4307 size = sizeof (arg); 4308 darg.rbuf = (char *)&arg; 4309 darg.data_ptr = (char *)&arg; 4310 darg.rsize = size; 4311 darg.data_size = size; 4312 darg.desc_ptr = NULL; 4313 darg.desc_num = 0; 4314 4315 save_arg = darg; 4316 /* 4317 * Since we're not holding a reference to the zone, any number of 4318 * things can go wrong, including the zone disappearing before we get a 4319 * chance to talk to zoneadmd. 4320 */ 4321 for (retry = 0; /* forever */; retry++) { 4322 if (door == NULL && 4323 (error = zone_lookup_door(zone_name, &door)) != 0) { 4324 goto next; 4325 } 4326 ASSERT(door != NULL); 4327 4328 if ((error = door_ki_upcall(door, &darg)) == 0) { 4329 break; 4330 } 4331 switch (error) { 4332 case EINTR: 4333 /* FALLTHROUGH */ 4334 case EAGAIN: /* process may be forking */ 4335 /* 4336 * Back off for a bit 4337 */ 4338 break; 4339 case EBADF: 4340 zone_release_door(&door); 4341 if (zone_lookup_door(zone_name, &door) != 0) { 4342 /* 4343 * zoneadmd may be dead, but it may come back to 4344 * life later. 4345 */ 4346 break; 4347 } 4348 break; 4349 default: 4350 cmn_err(CE_WARN, 4351 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 4352 error); 4353 goto out; 4354 } 4355 next: 4356 /* 4357 * If this isn't the same zone_t that we originally had in mind, 4358 * then this is the same as if two kadmin requests come in at 4359 * the same time: the first one wins. This means we lose, so we 4360 * bail. 4361 */ 4362 if ((zone = zone_find_by_id(zoneid)) == NULL) { 4363 /* 4364 * Problem is solved. 4365 */ 4366 break; 4367 } 4368 if (zone->zone_uniqid != uniqid) { 4369 /* 4370 * zoneid recycled 4371 */ 4372 zone_rele(zone); 4373 break; 4374 } 4375 /* 4376 * We could zone_status_timedwait(), but there doesn't seem to 4377 * be much point in doing that (plus, it would mean that 4378 * zone_free() isn't called until this thread exits). 4379 */ 4380 zone_rele(zone); 4381 delay(hz); 4382 darg = save_arg; 4383 } 4384 out: 4385 if (door != NULL) { 4386 zone_release_door(&door); 4387 } 4388 kmem_free(zone_name, zone_namelen); 4389 thread_exit(); 4390 } 4391 4392 /* 4393 * Entry point for uadmin() to tell the zone to go away or reboot. The caller 4394 * is a process in the zone to be modified. 4395 * 4396 * In order to shutdown the zone, we will hand off control to zoneadmd 4397 * (running in the global zone) via a door. We do a half-hearted job at 4398 * killing all processes in the zone, create a kernel thread to contact 4399 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 4400 * a form of generation number used to let zoneadmd (as well as 4401 * zone_destroy()) know exactly which zone they're re talking about. 4402 */ 4403 int 4404 zone_uadmin(int cmd, int fcn, cred_t *credp) 4405 { 4406 struct zarg *zargp; 4407 zone_cmd_t zcmd; 4408 zone_t *zone; 4409 4410 zone = curproc->p_zone; 4411 ASSERT(getzoneid() != GLOBAL_ZONEID); 4412 4413 switch (cmd) { 4414 case A_SHUTDOWN: 4415 switch (fcn) { 4416 case AD_HALT: 4417 case AD_POWEROFF: 4418 zcmd = Z_HALT; 4419 break; 4420 case AD_BOOT: 4421 zcmd = Z_REBOOT; 4422 break; 4423 case AD_IBOOT: 4424 case AD_SBOOT: 4425 case AD_SIBOOT: 4426 case AD_NOSYNC: 4427 return (ENOTSUP); 4428 default: 4429 return (EINVAL); 4430 } 4431 break; 4432 case A_REBOOT: 4433 zcmd = Z_REBOOT; 4434 break; 4435 case A_FTRACE: 4436 case A_REMOUNT: 4437 case A_FREEZE: 4438 case A_DUMP: 4439 return (ENOTSUP); 4440 default: 4441 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 4442 return (EINVAL); 4443 } 4444 4445 if (secpolicy_zone_admin(credp, B_FALSE)) 4446 return (EPERM); 4447 mutex_enter(&zone_status_lock); 4448 /* 4449 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 4450 * is in the zone. 4451 */ 4452 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 4453 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 4454 /* 4455 * This zone is already on its way down. 4456 */ 4457 mutex_exit(&zone_status_lock); 4458 return (0); 4459 } 4460 /* 4461 * Prevent future zone_enter()s 4462 */ 4463 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4464 mutex_exit(&zone_status_lock); 4465 4466 /* 4467 * Kill everyone now and call zoneadmd later. 4468 * zone_ki_call_zoneadmd() will do a more thorough job of this 4469 * later. 4470 */ 4471 killall(zone->zone_id); 4472 /* 4473 * Now, create the thread to contact zoneadmd and do the rest of the 4474 * work. This thread can't be created in our zone otherwise 4475 * zone_destroy() would deadlock. 4476 */ 4477 zargp = kmem_alloc(sizeof (*zargp), KM_SLEEP); 4478 zargp->arg.cmd = zcmd; 4479 zargp->arg.uniqid = zone->zone_uniqid; 4480 (void) strcpy(zargp->arg.locale, "C"); 4481 zone_hold(zargp->zone = zone); 4482 4483 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 4484 TS_RUN, minclsyspri); 4485 exit(CLD_EXITED, 0); 4486 4487 return (EINVAL); 4488 } 4489 4490 /* 4491 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 4492 * status to ZONE_IS_SHUTTING_DOWN. 4493 */ 4494 void 4495 zone_shutdown_global(void) 4496 { 4497 ASSERT(curproc->p_zone == global_zone); 4498 4499 mutex_enter(&zone_status_lock); 4500 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 4501 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 4502 mutex_exit(&zone_status_lock); 4503 } 4504 4505 /* 4506 * Returns true if the named dataset is visible in the current zone. 4507 * The 'write' parameter is set to 1 if the dataset is also writable. 4508 */ 4509 int 4510 zone_dataset_visible(const char *dataset, int *write) 4511 { 4512 zone_dataset_t *zd; 4513 size_t len; 4514 zone_t *zone = curproc->p_zone; 4515 4516 if (dataset[0] == '\0') 4517 return (0); 4518 4519 /* 4520 * Walk the list once, looking for datasets which match exactly, or 4521 * specify a dataset underneath an exported dataset. If found, return 4522 * true and note that it is writable. 4523 */ 4524 for (zd = list_head(&zone->zone_datasets); zd != NULL; 4525 zd = list_next(&zone->zone_datasets, zd)) { 4526 4527 len = strlen(zd->zd_dataset); 4528 if (strlen(dataset) >= len && 4529 bcmp(dataset, zd->zd_dataset, len) == 0 && 4530 (dataset[len] == '\0' || dataset[len] == '/' || 4531 dataset[len] == '@')) { 4532 if (write) 4533 *write = 1; 4534 return (1); 4535 } 4536 } 4537 4538 /* 4539 * Walk the list a second time, searching for datasets which are parents 4540 * of exported datasets. These should be visible, but read-only. 4541 * 4542 * Note that we also have to support forms such as 'pool/dataset/', with 4543 * a trailing slash. 4544 */ 4545 for (zd = list_head(&zone->zone_datasets); zd != NULL; 4546 zd = list_next(&zone->zone_datasets, zd)) { 4547 4548 len = strlen(dataset); 4549 if (dataset[len - 1] == '/') 4550 len--; /* Ignore trailing slash */ 4551 if (len < strlen(zd->zd_dataset) && 4552 bcmp(dataset, zd->zd_dataset, len) == 0 && 4553 zd->zd_dataset[len] == '/') { 4554 if (write) 4555 *write = 0; 4556 return (1); 4557 } 4558 } 4559 4560 return (0); 4561 } 4562 4563 /* 4564 * zone_find_by_any_path() - 4565 * 4566 * kernel-private routine similar to zone_find_by_path(), but which 4567 * effectively compares against zone paths rather than zonerootpath 4568 * (i.e., the last component of zonerootpaths, which should be "root/", 4569 * are not compared.) This is done in order to accurately identify all 4570 * paths, whether zone-visible or not, including those which are parallel 4571 * to /root/, such as /dev/, /home/, etc... 4572 * 4573 * If the specified path does not fall under any zone path then global 4574 * zone is returned. 4575 * 4576 * The treat_abs parameter indicates whether the path should be treated as 4577 * an absolute path although it does not begin with "/". (This supports 4578 * nfs mount syntax such as host:any/path.) 4579 * 4580 * The caller is responsible for zone_rele of the returned zone. 4581 */ 4582 zone_t * 4583 zone_find_by_any_path(const char *path, boolean_t treat_abs) 4584 { 4585 zone_t *zone; 4586 int path_offset = 0; 4587 4588 if (path == NULL) { 4589 zone_hold(global_zone); 4590 return (global_zone); 4591 } 4592 4593 if (*path != '/') { 4594 ASSERT(treat_abs); 4595 path_offset = 1; 4596 } 4597 4598 mutex_enter(&zonehash_lock); 4599 for (zone = list_head(&zone_active); zone != NULL; 4600 zone = list_next(&zone_active, zone)) { 4601 char *c; 4602 size_t pathlen; 4603 char *rootpath_start; 4604 4605 if (zone == global_zone) /* skip global zone */ 4606 continue; 4607 4608 /* scan backwards to find start of last component */ 4609 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 4610 do { 4611 c--; 4612 } while (*c != '/'); 4613 4614 pathlen = c - zone->zone_rootpath + 1 - path_offset; 4615 rootpath_start = (zone->zone_rootpath + path_offset); 4616 if (strncmp(path, rootpath_start, pathlen) == 0) 4617 break; 4618 } 4619 if (zone == NULL) 4620 zone = global_zone; 4621 zone_hold(zone); 4622 mutex_exit(&zonehash_lock); 4623 return (zone); 4624 } 4625