1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 65 * ready. The zone is made visible after the ZSD constructor callbacks are 66 * executed. A zone remains in this state until it transitions into 67 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 68 * 69 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 70 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 71 * state. 72 * 73 * ZONE_IS_RUNNING: The zone is open for business: zsched has 74 * successfully started init. A zone remains in this state until 75 * zone_shutdown() is called. 76 * 77 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 78 * killing all processes running in the zone. The zone remains 79 * in this state until there are no more user processes running in the zone. 80 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 81 * Since zone_shutdown() is restartable, it may be called successfully 82 * multiple times for the same zone_t. Setting of the zone's state to 83 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 84 * the zone's status without worrying about it being a moving target. 85 * 86 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 87 * are no more user processes in the zone. The zone remains in this 88 * state until there are no more kernel threads associated with the 89 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 90 * fail. 91 * 92 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 93 * have exited. zone_shutdown() returns. Henceforth it is not possible to 94 * join the zone or create kernel threads therein. 95 * 96 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 97 * remains in this state until zsched exits. Calls to zone_find_by_*() 98 * return NULL from now on. 99 * 100 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 101 * processes or threads doing work on behalf of the zone. The zone is 102 * removed from the list of active zones. zone_destroy() returns, and 103 * the zone can be recreated. 104 * 105 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 106 * callbacks are executed, and all memory associated with the zone is 107 * freed. 108 * 109 * Threads can wait for the zone to enter a requested state by using 110 * zone_status_wait() or zone_status_timedwait() with the desired 111 * state passed in as an argument. Zone state transitions are 112 * uni-directional; it is not possible to move back to an earlier state. 113 * 114 * 115 * Zone-Specific Data: 116 * 117 * Subsystems needing to maintain zone-specific data can store that 118 * data using the ZSD mechanism. This provides a zone-specific data 119 * store, similar to thread-specific data (see pthread_getspecific(3C) 120 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 121 * to register callbacks to be invoked when a zone is created, shut 122 * down, or destroyed. This can be used to initialize zone-specific 123 * data for new zones and to clean up when zones go away. 124 * 125 * 126 * Data Structures: 127 * 128 * The per-zone structure (zone_t) is reference counted, and freed 129 * when all references are released. zone_hold and zone_rele can be 130 * used to adjust the reference count. In addition, reference counts 131 * associated with the cred_t structure are tracked separately using 132 * zone_cred_hold and zone_cred_rele. 133 * 134 * Pointers to active zone_t's are stored in two hash tables; one 135 * for searching by id, the other for searching by name. Lookups 136 * can be performed on either basis, using zone_find_by_id and 137 * zone_find_by_name. Both return zone_t pointers with the zone 138 * held, so zone_rele should be called when the pointer is no longer 139 * needed. Zones can also be searched by path; zone_find_by_path 140 * returns the zone with which a path name is associated (global 141 * zone if the path is not within some other zone's file system 142 * hierarchy). This currently requires iterating through each zone, 143 * so it is slower than an id or name search via a hash table. 144 * 145 * 146 * Locking: 147 * 148 * zonehash_lock: This is a top-level global lock used to protect the 149 * zone hash tables and lists. Zones cannot be created or destroyed 150 * while this lock is held. 151 * zone_status_lock: This is a global lock protecting zone state. 152 * Zones cannot change state while this lock is held. It also 153 * protects the list of kernel threads associated with a zone. 154 * zone_lock: This is a per-zone lock used to protect several fields of 155 * the zone_t (see <sys/zone.h> for details). In addition, holding 156 * this lock means that the zone cannot go away. 157 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 158 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 159 * list (a list of zones in the ZONE_IS_DEAD state). 160 * 161 * Ordering requirements: 162 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 163 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 164 * 165 * Blocking memory allocations are permitted while holding any of the 166 * zone locks. 167 * 168 * 169 * System Call Interface: 170 * 171 * The zone subsystem can be managed and queried from user level with 172 * the following system calls (all subcodes of the primary "zone" 173 * system call): 174 * - zone_create: creates a zone with selected attributes (name, 175 * root path, privileges, resource controls, ZFS datasets) 176 * - zone_enter: allows the current process to enter a zone 177 * - zone_getattr: reports attributes of a zone 178 * - zone_setattr: set attributes of a zone 179 * - zone_boot: set 'init' running for the zone 180 * - zone_list: lists all zones active in the system 181 * - zone_lookup: looks up zone id based on name 182 * - zone_shutdown: initiates shutdown process (see states above) 183 * - zone_destroy: completes shutdown process (see states above) 184 * 185 */ 186 187 #include <sys/priv_impl.h> 188 #include <sys/cred.h> 189 #include <c2/audit.h> 190 #include <sys/debug.h> 191 #include <sys/file.h> 192 #include <sys/kmem.h> 193 #include <sys/mutex.h> 194 #include <sys/note.h> 195 #include <sys/pathname.h> 196 #include <sys/proc.h> 197 #include <sys/project.h> 198 #include <sys/sysevent.h> 199 #include <sys/task.h> 200 #include <sys/systm.h> 201 #include <sys/types.h> 202 #include <sys/utsname.h> 203 #include <sys/vnode.h> 204 #include <sys/vfs.h> 205 #include <sys/systeminfo.h> 206 #include <sys/policy.h> 207 #include <sys/cred_impl.h> 208 #include <sys/contract_impl.h> 209 #include <sys/contract/process_impl.h> 210 #include <sys/class.h> 211 #include <sys/pool.h> 212 #include <sys/pool_pset.h> 213 #include <sys/pset.h> 214 #include <sys/sysmacros.h> 215 #include <sys/callb.h> 216 #include <sys/vmparam.h> 217 #include <sys/corectl.h> 218 #include <sys/ipc_impl.h> 219 220 #include <sys/door.h> 221 #include <sys/cpuvar.h> 222 223 #include <sys/uadmin.h> 224 #include <sys/session.h> 225 #include <sys/cmn_err.h> 226 #include <sys/modhash.h> 227 #include <sys/sunddi.h> 228 #include <sys/nvpair.h> 229 #include <sys/rctl.h> 230 #include <sys/fss.h> 231 #include <sys/brand.h> 232 #include <sys/zone.h> 233 #include <sys/tsol/label.h> 234 235 /* 236 * cv used to signal that all references to the zone have been released. This 237 * needs to be global since there may be multiple waiters, and the first to 238 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 239 */ 240 static kcondvar_t zone_destroy_cv; 241 /* 242 * Lock used to serialize access to zone_cv. This could have been per-zone, 243 * but then we'd need another lock for zone_destroy_cv, and why bother? 244 */ 245 static kmutex_t zone_status_lock; 246 247 /* 248 * ZSD-related global variables. 249 */ 250 static kmutex_t zsd_key_lock; /* protects the following two */ 251 /* 252 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 253 */ 254 static zone_key_t zsd_keyval = 0; 255 /* 256 * Global list of registered keys. We use this when a new zone is created. 257 */ 258 static list_t zsd_registered_keys; 259 260 int zone_hash_size = 256; 261 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 262 static kmutex_t zonehash_lock; 263 static uint_t zonecount; 264 static id_space_t *zoneid_space; 265 266 /* 267 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 268 * kernel proper runs, and which manages all other zones. 269 * 270 * Although not declared as static, the variable "zone0" should not be used 271 * except for by code that needs to reference the global zone early on in boot, 272 * before it is fully initialized. All other consumers should use 273 * 'global_zone'. 274 */ 275 zone_t zone0; 276 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 277 278 /* 279 * List of active zones, protected by zonehash_lock. 280 */ 281 static list_t zone_active; 282 283 /* 284 * List of destroyed zones that still have outstanding cred references. 285 * Used for debugging. Uses a separate lock to avoid lock ordering 286 * problems in zone_free. 287 */ 288 static list_t zone_deathrow; 289 static kmutex_t zone_deathrow_lock; 290 291 /* number of zones is limited by virtual interface limit in IP */ 292 uint_t maxzones = 8192; 293 294 /* Event channel to sent zone state change notifications */ 295 evchan_t *zone_event_chan; 296 297 /* 298 * This table holds the mapping from kernel zone states to 299 * states visible in the state notification API. 300 * The idea is that we only expose "obvious" states and 301 * do not expose states which are just implementation details. 302 */ 303 const char *zone_status_table[] = { 304 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 305 ZONE_EVENT_READY, /* ready */ 306 ZONE_EVENT_READY, /* booting */ 307 ZONE_EVENT_RUNNING, /* running */ 308 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 309 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 310 ZONE_EVENT_SHUTTING_DOWN, /* down */ 311 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 312 ZONE_EVENT_UNINITIALIZED, /* dead */ 313 }; 314 315 /* 316 * This isn't static so lint doesn't complain. 317 */ 318 rctl_hndl_t rc_zone_cpu_shares; 319 rctl_hndl_t rc_zone_locked_mem; 320 rctl_hndl_t rc_zone_nlwps; 321 rctl_hndl_t rc_zone_shmmax; 322 rctl_hndl_t rc_zone_shmmni; 323 rctl_hndl_t rc_zone_semmni; 324 rctl_hndl_t rc_zone_msgmni; 325 /* 326 * Synchronization primitives used to synchronize between mounts and zone 327 * creation/destruction. 328 */ 329 static int mounts_in_progress; 330 static kcondvar_t mount_cv; 331 static kmutex_t mount_lock; 332 333 const char * const zone_default_initname = "/sbin/init"; 334 static char * const zone_prefix = "/zone/"; 335 static int zone_shutdown(zoneid_t zoneid); 336 337 /* 338 * Bump this number when you alter the zone syscall interfaces; this is 339 * because we need to have support for previous API versions in libc 340 * to support patching; libc calls into the kernel to determine this number. 341 * 342 * Version 1 of the API is the version originally shipped with Solaris 10 343 * Version 2 alters the zone_create system call in order to support more 344 * arguments by moving the args into a structure; and to do better 345 * error reporting when zone_create() fails. 346 * Version 3 alters the zone_create system call in order to support the 347 * import of ZFS datasets to zones. 348 * Version 4 alters the zone_create system call in order to support 349 * Trusted Extensions. 350 * Version 5 alters the zone_boot system call, and converts its old 351 * bootargs parameter to be set by the zone_setattr API instead. 352 */ 353 static const int ZONE_SYSCALL_API_VERSION = 5; 354 355 /* 356 * Certain filesystems (such as NFS and autofs) need to know which zone 357 * the mount is being placed in. Because of this, we need to be able to 358 * ensure that a zone isn't in the process of being created such that 359 * nfs_mount() thinks it is in the global zone, while by the time it 360 * gets added the list of mounted zones, it ends up on zoneA's mount 361 * list. 362 * 363 * The following functions: block_mounts()/resume_mounts() and 364 * mount_in_progress()/mount_completed() are used by zones and the VFS 365 * layer (respectively) to synchronize zone creation and new mounts. 366 * 367 * The semantics are like a reader-reader lock such that there may 368 * either be multiple mounts (or zone creations, if that weren't 369 * serialized by zonehash_lock) in progress at the same time, but not 370 * both. 371 * 372 * We use cv's so the user can ctrl-C out of the operation if it's 373 * taking too long. 374 * 375 * The semantics are such that there is unfair bias towards the 376 * "current" operation. This means that zone creations may starve if 377 * there is a rapid succession of new mounts coming in to the system, or 378 * there is a remote possibility that zones will be created at such a 379 * rate that new mounts will not be able to proceed. 380 */ 381 /* 382 * Prevent new mounts from progressing to the point of calling 383 * VFS_MOUNT(). If there are already mounts in this "region", wait for 384 * them to complete. 385 */ 386 static int 387 block_mounts(void) 388 { 389 int retval = 0; 390 391 /* 392 * Since it may block for a long time, block_mounts() shouldn't be 393 * called with zonehash_lock held. 394 */ 395 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 396 mutex_enter(&mount_lock); 397 while (mounts_in_progress > 0) { 398 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 399 goto signaled; 400 } 401 /* 402 * A negative value of mounts_in_progress indicates that mounts 403 * have been blocked by (-mounts_in_progress) different callers. 404 */ 405 mounts_in_progress--; 406 retval = 1; 407 signaled: 408 mutex_exit(&mount_lock); 409 return (retval); 410 } 411 412 /* 413 * The VFS layer may progress with new mounts as far as we're concerned. 414 * Allow them to progress if we were the last obstacle. 415 */ 416 static void 417 resume_mounts(void) 418 { 419 mutex_enter(&mount_lock); 420 if (++mounts_in_progress == 0) 421 cv_broadcast(&mount_cv); 422 mutex_exit(&mount_lock); 423 } 424 425 /* 426 * The VFS layer is busy with a mount; zones should wait until all 427 * mounts are completed to progress. 428 */ 429 void 430 mount_in_progress(void) 431 { 432 mutex_enter(&mount_lock); 433 while (mounts_in_progress < 0) 434 cv_wait(&mount_cv, &mount_lock); 435 mounts_in_progress++; 436 mutex_exit(&mount_lock); 437 } 438 439 /* 440 * VFS is done with one mount; wake up any waiting block_mounts() 441 * callers if this is the last mount. 442 */ 443 void 444 mount_completed(void) 445 { 446 mutex_enter(&mount_lock); 447 if (--mounts_in_progress == 0) 448 cv_broadcast(&mount_cv); 449 mutex_exit(&mount_lock); 450 } 451 452 /* 453 * ZSD routines. 454 * 455 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 456 * defined by the pthread_key_create() and related interfaces. 457 * 458 * Kernel subsystems may register one or more data items and/or 459 * callbacks to be executed when a zone is created, shutdown, or 460 * destroyed. 461 * 462 * Unlike the thread counterpart, destructor callbacks will be executed 463 * even if the data pointer is NULL and/or there are no constructor 464 * callbacks, so it is the responsibility of such callbacks to check for 465 * NULL data values if necessary. 466 * 467 * The locking strategy and overall picture is as follows: 468 * 469 * When someone calls zone_key_create(), a template ZSD entry is added to the 470 * global list "zsd_registered_keys", protected by zsd_key_lock. The 471 * constructor callback is called immediately on all existing zones, and a 472 * copy of the ZSD entry added to the per-zone zone_zsd list (protected by 473 * zone_lock). As this operation requires the list of zones, the list of 474 * registered keys, and the per-zone list of ZSD entries to remain constant 475 * throughout the entire operation, it must grab zonehash_lock, zone_lock for 476 * all existing zones, and zsd_key_lock, in that order. Similar locking is 477 * needed when zone_key_delete() is called. It is thus sufficient to hold 478 * zsd_key_lock *or* zone_lock to prevent additions to or removals from the 479 * per-zone zone_zsd list. 480 * 481 * Note that this implementation does not make a copy of the ZSD entry if a 482 * constructor callback is not provided. A zone_getspecific() on such an 483 * uninitialized ZSD entry will return NULL. 484 * 485 * When new zones are created constructor callbacks for all registered ZSD 486 * entries will be called. 487 * 488 * The framework does not provide any locking around zone_getspecific() and 489 * zone_setspecific() apart from that needed for internal consistency, so 490 * callers interested in atomic "test-and-set" semantics will need to provide 491 * their own locking. 492 */ 493 void 494 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 495 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 496 { 497 struct zsd_entry *zsdp; 498 struct zsd_entry *t; 499 struct zone *zone; 500 501 zsdp = kmem_alloc(sizeof (*zsdp), KM_SLEEP); 502 zsdp->zsd_data = NULL; 503 zsdp->zsd_create = create; 504 zsdp->zsd_shutdown = shutdown; 505 zsdp->zsd_destroy = destroy; 506 507 mutex_enter(&zonehash_lock); /* stop the world */ 508 for (zone = list_head(&zone_active); zone != NULL; 509 zone = list_next(&zone_active, zone)) 510 mutex_enter(&zone->zone_lock); /* lock all zones */ 511 512 mutex_enter(&zsd_key_lock); 513 *keyp = zsdp->zsd_key = ++zsd_keyval; 514 ASSERT(zsd_keyval != 0); 515 list_insert_tail(&zsd_registered_keys, zsdp); 516 mutex_exit(&zsd_key_lock); 517 518 if (create != NULL) { 519 for (zone = list_head(&zone_active); zone != NULL; 520 zone = list_next(&zone_active, zone)) { 521 t = kmem_alloc(sizeof (*t), KM_SLEEP); 522 t->zsd_key = *keyp; 523 t->zsd_data = (*create)(zone->zone_id); 524 t->zsd_create = create; 525 t->zsd_shutdown = shutdown; 526 t->zsd_destroy = destroy; 527 list_insert_tail(&zone->zone_zsd, t); 528 } 529 } 530 for (zone = list_head(&zone_active); zone != NULL; 531 zone = list_next(&zone_active, zone)) 532 mutex_exit(&zone->zone_lock); 533 mutex_exit(&zonehash_lock); 534 } 535 536 /* 537 * Helper function to find the zsd_entry associated with the key in the 538 * given list. 539 */ 540 static struct zsd_entry * 541 zsd_find(list_t *l, zone_key_t key) 542 { 543 struct zsd_entry *zsd; 544 545 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 546 if (zsd->zsd_key == key) { 547 /* 548 * Move to head of list to keep list in MRU order. 549 */ 550 if (zsd != list_head(l)) { 551 list_remove(l, zsd); 552 list_insert_head(l, zsd); 553 } 554 return (zsd); 555 } 556 } 557 return (NULL); 558 } 559 560 /* 561 * Function called when a module is being unloaded, or otherwise wishes 562 * to unregister its ZSD key and callbacks. 563 */ 564 int 565 zone_key_delete(zone_key_t key) 566 { 567 struct zsd_entry *zsdp = NULL; 568 zone_t *zone; 569 570 mutex_enter(&zonehash_lock); /* Zone create/delete waits for us */ 571 for (zone = list_head(&zone_active); zone != NULL; 572 zone = list_next(&zone_active, zone)) 573 mutex_enter(&zone->zone_lock); /* lock all zones */ 574 575 mutex_enter(&zsd_key_lock); 576 zsdp = zsd_find(&zsd_registered_keys, key); 577 if (zsdp == NULL) 578 goto notfound; 579 list_remove(&zsd_registered_keys, zsdp); 580 mutex_exit(&zsd_key_lock); 581 582 for (zone = list_head(&zone_active); zone != NULL; 583 zone = list_next(&zone_active, zone)) { 584 struct zsd_entry *del; 585 void *data; 586 587 if (!(zone->zone_flags & ZF_DESTROYED)) { 588 del = zsd_find(&zone->zone_zsd, key); 589 if (del != NULL) { 590 data = del->zsd_data; 591 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 592 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 593 list_remove(&zone->zone_zsd, del); 594 kmem_free(del, sizeof (*del)); 595 } else { 596 data = NULL; 597 } 598 if (zsdp->zsd_shutdown) 599 zsdp->zsd_shutdown(zone->zone_id, data); 600 if (zsdp->zsd_destroy) 601 zsdp->zsd_destroy(zone->zone_id, data); 602 } 603 mutex_exit(&zone->zone_lock); 604 } 605 mutex_exit(&zonehash_lock); 606 kmem_free(zsdp, sizeof (*zsdp)); 607 return (0); 608 609 notfound: 610 mutex_exit(&zsd_key_lock); 611 for (zone = list_head(&zone_active); zone != NULL; 612 zone = list_next(&zone_active, zone)) 613 mutex_exit(&zone->zone_lock); 614 mutex_exit(&zonehash_lock); 615 return (-1); 616 } 617 618 /* 619 * ZSD counterpart of pthread_setspecific(). 620 */ 621 int 622 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 623 { 624 struct zsd_entry *t; 625 struct zsd_entry *zsdp = NULL; 626 627 mutex_enter(&zone->zone_lock); 628 t = zsd_find(&zone->zone_zsd, key); 629 if (t != NULL) { 630 /* 631 * Replace old value with new 632 */ 633 t->zsd_data = (void *)data; 634 mutex_exit(&zone->zone_lock); 635 return (0); 636 } 637 /* 638 * If there was no previous value, go through the list of registered 639 * keys. 640 * 641 * We avoid grabbing zsd_key_lock until we are sure we need it; this is 642 * necessary for shutdown callbacks to be able to execute without fear 643 * of deadlock. 644 */ 645 mutex_enter(&zsd_key_lock); 646 zsdp = zsd_find(&zsd_registered_keys, key); 647 if (zsdp == NULL) { /* Key was not registered */ 648 mutex_exit(&zsd_key_lock); 649 mutex_exit(&zone->zone_lock); 650 return (-1); 651 } 652 653 /* 654 * Add a zsd_entry to this zone, using the template we just retrieved 655 * to initialize the constructor and destructor(s). 656 */ 657 t = kmem_alloc(sizeof (*t), KM_SLEEP); 658 t->zsd_key = key; 659 t->zsd_data = (void *)data; 660 t->zsd_create = zsdp->zsd_create; 661 t->zsd_shutdown = zsdp->zsd_shutdown; 662 t->zsd_destroy = zsdp->zsd_destroy; 663 list_insert_tail(&zone->zone_zsd, t); 664 mutex_exit(&zsd_key_lock); 665 mutex_exit(&zone->zone_lock); 666 return (0); 667 } 668 669 /* 670 * ZSD counterpart of pthread_getspecific(). 671 */ 672 void * 673 zone_getspecific(zone_key_t key, zone_t *zone) 674 { 675 struct zsd_entry *t; 676 void *data; 677 678 mutex_enter(&zone->zone_lock); 679 t = zsd_find(&zone->zone_zsd, key); 680 data = (t == NULL ? NULL : t->zsd_data); 681 mutex_exit(&zone->zone_lock); 682 return (data); 683 } 684 685 /* 686 * Function used to initialize a zone's list of ZSD callbacks and data 687 * when the zone is being created. The callbacks are initialized from 688 * the template list (zsd_registered_keys), and the constructor 689 * callback executed (if one exists). 690 * 691 * This is called before the zone is made publicly available, hence no 692 * need to grab zone_lock. 693 * 694 * Although we grab and release zsd_key_lock, new entries cannot be 695 * added to or removed from the zsd_registered_keys list until we 696 * release zonehash_lock, so there isn't a window for a 697 * zone_key_create() to come in after we've dropped zsd_key_lock but 698 * before the zone is added to the zone list, such that the constructor 699 * callbacks aren't executed for the new zone. 700 */ 701 static void 702 zone_zsd_configure(zone_t *zone) 703 { 704 struct zsd_entry *zsdp; 705 struct zsd_entry *t; 706 zoneid_t zoneid = zone->zone_id; 707 708 ASSERT(MUTEX_HELD(&zonehash_lock)); 709 ASSERT(list_head(&zone->zone_zsd) == NULL); 710 mutex_enter(&zsd_key_lock); 711 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 712 zsdp = list_next(&zsd_registered_keys, zsdp)) { 713 if (zsdp->zsd_create != NULL) { 714 t = kmem_alloc(sizeof (*t), KM_SLEEP); 715 t->zsd_key = zsdp->zsd_key; 716 t->zsd_create = zsdp->zsd_create; 717 t->zsd_data = (*t->zsd_create)(zoneid); 718 t->zsd_shutdown = zsdp->zsd_shutdown; 719 t->zsd_destroy = zsdp->zsd_destroy; 720 list_insert_tail(&zone->zone_zsd, t); 721 } 722 } 723 mutex_exit(&zsd_key_lock); 724 } 725 726 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 727 728 /* 729 * Helper function to execute shutdown or destructor callbacks. 730 */ 731 static void 732 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 733 { 734 struct zsd_entry *zsdp; 735 struct zsd_entry *t; 736 zoneid_t zoneid = zone->zone_id; 737 738 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 739 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 740 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 741 742 mutex_enter(&zone->zone_lock); 743 if (ct == ZSD_DESTROY) { 744 if (zone->zone_flags & ZF_DESTROYED) { 745 /* 746 * Make sure destructors are only called once. 747 */ 748 mutex_exit(&zone->zone_lock); 749 return; 750 } 751 zone->zone_flags |= ZF_DESTROYED; 752 } 753 mutex_exit(&zone->zone_lock); 754 755 /* 756 * Both zsd_key_lock and zone_lock need to be held in order to add or 757 * remove a ZSD key, (either globally as part of 758 * zone_key_create()/zone_key_delete(), or on a per-zone basis, as is 759 * possible through zone_setspecific()), so it's sufficient to hold 760 * zsd_key_lock here. 761 * 762 * This is a good thing, since we don't want to recursively try to grab 763 * zone_lock if a callback attempts to do something like a crfree() or 764 * zone_rele(). 765 */ 766 mutex_enter(&zsd_key_lock); 767 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 768 zsdp = list_next(&zsd_registered_keys, zsdp)) { 769 zone_key_t key = zsdp->zsd_key; 770 771 /* Skip if no callbacks registered */ 772 if (ct == ZSD_SHUTDOWN && zsdp->zsd_shutdown == NULL) 773 continue; 774 if (ct == ZSD_DESTROY && zsdp->zsd_destroy == NULL) 775 continue; 776 /* 777 * Call the callback with the zone-specific data if we can find 778 * any, otherwise with NULL. 779 */ 780 t = zsd_find(&zone->zone_zsd, key); 781 if (t != NULL) { 782 if (ct == ZSD_SHUTDOWN) { 783 t->zsd_shutdown(zoneid, t->zsd_data); 784 } else { 785 ASSERT(ct == ZSD_DESTROY); 786 t->zsd_destroy(zoneid, t->zsd_data); 787 } 788 } else { 789 if (ct == ZSD_SHUTDOWN) { 790 zsdp->zsd_shutdown(zoneid, NULL); 791 } else { 792 ASSERT(ct == ZSD_DESTROY); 793 zsdp->zsd_destroy(zoneid, NULL); 794 } 795 } 796 } 797 mutex_exit(&zsd_key_lock); 798 } 799 800 /* 801 * Called when the zone is going away; free ZSD-related memory, and 802 * destroy the zone_zsd list. 803 */ 804 static void 805 zone_free_zsd(zone_t *zone) 806 { 807 struct zsd_entry *t, *next; 808 809 /* 810 * Free all the zsd_entry's we had on this zone. 811 */ 812 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 813 next = list_next(&zone->zone_zsd, t); 814 list_remove(&zone->zone_zsd, t); 815 kmem_free(t, sizeof (*t)); 816 } 817 list_destroy(&zone->zone_zsd); 818 } 819 820 /* 821 * Frees memory associated with the zone dataset list. 822 */ 823 static void 824 zone_free_datasets(zone_t *zone) 825 { 826 zone_dataset_t *t, *next; 827 828 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 829 next = list_next(&zone->zone_datasets, t); 830 list_remove(&zone->zone_datasets, t); 831 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 832 kmem_free(t, sizeof (*t)); 833 } 834 list_destroy(&zone->zone_datasets); 835 } 836 837 /* 838 * zone.cpu-shares resource control support. 839 */ 840 /*ARGSUSED*/ 841 static rctl_qty_t 842 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 843 { 844 ASSERT(MUTEX_HELD(&p->p_lock)); 845 return (p->p_zone->zone_shares); 846 } 847 848 /*ARGSUSED*/ 849 static int 850 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 851 rctl_qty_t nv) 852 { 853 ASSERT(MUTEX_HELD(&p->p_lock)); 854 ASSERT(e->rcep_t == RCENTITY_ZONE); 855 if (e->rcep_p.zone == NULL) 856 return (0); 857 858 e->rcep_p.zone->zone_shares = nv; 859 return (0); 860 } 861 862 static rctl_ops_t zone_cpu_shares_ops = { 863 rcop_no_action, 864 zone_cpu_shares_usage, 865 zone_cpu_shares_set, 866 rcop_no_test 867 }; 868 869 /*ARGSUSED*/ 870 static rctl_qty_t 871 zone_lwps_usage(rctl_t *r, proc_t *p) 872 { 873 rctl_qty_t nlwps; 874 zone_t *zone = p->p_zone; 875 876 ASSERT(MUTEX_HELD(&p->p_lock)); 877 878 mutex_enter(&zone->zone_nlwps_lock); 879 nlwps = zone->zone_nlwps; 880 mutex_exit(&zone->zone_nlwps_lock); 881 882 return (nlwps); 883 } 884 885 /*ARGSUSED*/ 886 static int 887 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 888 rctl_qty_t incr, uint_t flags) 889 { 890 rctl_qty_t nlwps; 891 892 ASSERT(MUTEX_HELD(&p->p_lock)); 893 ASSERT(e->rcep_t == RCENTITY_ZONE); 894 if (e->rcep_p.zone == NULL) 895 return (0); 896 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 897 nlwps = e->rcep_p.zone->zone_nlwps; 898 899 if (nlwps + incr > rcntl->rcv_value) 900 return (1); 901 902 return (0); 903 } 904 905 /*ARGSUSED*/ 906 static int 907 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 908 { 909 ASSERT(MUTEX_HELD(&p->p_lock)); 910 ASSERT(e->rcep_t == RCENTITY_ZONE); 911 if (e->rcep_p.zone == NULL) 912 return (0); 913 e->rcep_p.zone->zone_nlwps_ctl = nv; 914 return (0); 915 } 916 917 static rctl_ops_t zone_lwps_ops = { 918 rcop_no_action, 919 zone_lwps_usage, 920 zone_lwps_set, 921 zone_lwps_test, 922 }; 923 924 /*ARGSUSED*/ 925 static int 926 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 927 rctl_qty_t incr, uint_t flags) 928 { 929 rctl_qty_t v; 930 ASSERT(MUTEX_HELD(&p->p_lock)); 931 ASSERT(e->rcep_t == RCENTITY_ZONE); 932 v = e->rcep_p.zone->zone_shmmax + incr; 933 if (v > rval->rcv_value) 934 return (1); 935 return (0); 936 } 937 938 static rctl_ops_t zone_shmmax_ops = { 939 rcop_no_action, 940 rcop_no_usage, 941 rcop_no_set, 942 zone_shmmax_test 943 }; 944 945 /*ARGSUSED*/ 946 static int 947 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 948 rctl_qty_t incr, uint_t flags) 949 { 950 rctl_qty_t v; 951 ASSERT(MUTEX_HELD(&p->p_lock)); 952 ASSERT(e->rcep_t == RCENTITY_ZONE); 953 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 954 if (v > rval->rcv_value) 955 return (1); 956 return (0); 957 } 958 959 static rctl_ops_t zone_shmmni_ops = { 960 rcop_no_action, 961 rcop_no_usage, 962 rcop_no_set, 963 zone_shmmni_test 964 }; 965 966 /*ARGSUSED*/ 967 static int 968 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 969 rctl_qty_t incr, uint_t flags) 970 { 971 rctl_qty_t v; 972 ASSERT(MUTEX_HELD(&p->p_lock)); 973 ASSERT(e->rcep_t == RCENTITY_ZONE); 974 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 975 if (v > rval->rcv_value) 976 return (1); 977 return (0); 978 } 979 980 static rctl_ops_t zone_semmni_ops = { 981 rcop_no_action, 982 rcop_no_usage, 983 rcop_no_set, 984 zone_semmni_test 985 }; 986 987 /*ARGSUSED*/ 988 static int 989 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 990 rctl_qty_t incr, uint_t flags) 991 { 992 rctl_qty_t v; 993 ASSERT(MUTEX_HELD(&p->p_lock)); 994 ASSERT(e->rcep_t == RCENTITY_ZONE); 995 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 996 if (v > rval->rcv_value) 997 return (1); 998 return (0); 999 } 1000 1001 static rctl_ops_t zone_msgmni_ops = { 1002 rcop_no_action, 1003 rcop_no_usage, 1004 rcop_no_set, 1005 zone_msgmni_test 1006 }; 1007 1008 /*ARGSUSED*/ 1009 static rctl_qty_t 1010 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1011 { 1012 rctl_qty_t q; 1013 ASSERT(MUTEX_HELD(&p->p_lock)); 1014 mutex_enter(&p->p_zone->zone_rctl_lock); 1015 q = p->p_zone->zone_locked_mem; 1016 mutex_exit(&p->p_zone->zone_rctl_lock); 1017 return (q); 1018 } 1019 1020 /*ARGSUSED*/ 1021 static int 1022 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1023 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1024 { 1025 rctl_qty_t q; 1026 ASSERT(MUTEX_HELD(&p->p_lock)); 1027 ASSERT(MUTEX_HELD(&p->p_zone->zone_rctl_lock)); 1028 q = p->p_zone->zone_locked_mem; 1029 if (q + incr > rcntl->rcv_value) 1030 return (1); 1031 return (0); 1032 } 1033 1034 /*ARGSUSED*/ 1035 static int 1036 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1037 rctl_qty_t nv) 1038 { 1039 ASSERT(MUTEX_HELD(&p->p_lock)); 1040 ASSERT(e->rcep_t == RCENTITY_ZONE); 1041 if (e->rcep_p.zone == NULL) 1042 return (0); 1043 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1044 return (0); 1045 } 1046 1047 static rctl_ops_t zone_locked_mem_ops = { 1048 rcop_no_action, 1049 zone_locked_mem_usage, 1050 zone_locked_mem_set, 1051 zone_locked_mem_test 1052 }; 1053 1054 /* 1055 * Helper function to brand the zone with a unique ID. 1056 */ 1057 static void 1058 zone_uniqid(zone_t *zone) 1059 { 1060 static uint64_t uniqid = 0; 1061 1062 ASSERT(MUTEX_HELD(&zonehash_lock)); 1063 zone->zone_uniqid = uniqid++; 1064 } 1065 1066 /* 1067 * Returns a held pointer to the "kcred" for the specified zone. 1068 */ 1069 struct cred * 1070 zone_get_kcred(zoneid_t zoneid) 1071 { 1072 zone_t *zone; 1073 cred_t *cr; 1074 1075 if ((zone = zone_find_by_id(zoneid)) == NULL) 1076 return (NULL); 1077 cr = zone->zone_kcred; 1078 crhold(cr); 1079 zone_rele(zone); 1080 return (cr); 1081 } 1082 1083 /* 1084 * Called very early on in boot to initialize the ZSD list so that 1085 * zone_key_create() can be called before zone_init(). It also initializes 1086 * portions of zone0 which may be used before zone_init() is called. The 1087 * variable "global_zone" will be set when zone0 is fully initialized by 1088 * zone_init(). 1089 */ 1090 void 1091 zone_zsd_init(void) 1092 { 1093 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1094 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1095 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1096 offsetof(struct zsd_entry, zsd_linkage)); 1097 list_create(&zone_active, sizeof (zone_t), 1098 offsetof(zone_t, zone_linkage)); 1099 list_create(&zone_deathrow, sizeof (zone_t), 1100 offsetof(zone_t, zone_linkage)); 1101 1102 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1103 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1104 zone0.zone_shares = 1; 1105 zone0.zone_nlwps_ctl = INT_MAX; 1106 zone0.zone_shmmax = 0; 1107 zone0.zone_ipc.ipcq_shmmni = 0; 1108 zone0.zone_ipc.ipcq_semmni = 0; 1109 zone0.zone_ipc.ipcq_msgmni = 0; 1110 zone0.zone_name = GLOBAL_ZONENAME; 1111 zone0.zone_nodename = utsname.nodename; 1112 zone0.zone_domain = srpc_domain; 1113 zone0.zone_ref = 1; 1114 zone0.zone_id = GLOBAL_ZONEID; 1115 zone0.zone_status = ZONE_IS_RUNNING; 1116 zone0.zone_rootpath = "/"; 1117 zone0.zone_rootpathlen = 2; 1118 zone0.zone_psetid = ZONE_PS_INVAL; 1119 zone0.zone_ncpus = 0; 1120 zone0.zone_ncpus_online = 0; 1121 zone0.zone_proc_initpid = 1; 1122 zone0.zone_initname = initname; 1123 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1124 offsetof(struct zsd_entry, zsd_linkage)); 1125 list_insert_head(&zone_active, &zone0); 1126 1127 /* 1128 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1129 * to anything meaningful. It is assigned to be 'rootdir' in 1130 * vfs_mountroot(). 1131 */ 1132 zone0.zone_rootvp = NULL; 1133 zone0.zone_vfslist = NULL; 1134 zone0.zone_bootargs = initargs; 1135 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1136 /* 1137 * The global zone has all privileges 1138 */ 1139 priv_fillset(zone0.zone_privset); 1140 /* 1141 * Add p0 to the global zone 1142 */ 1143 zone0.zone_zsched = &p0; 1144 p0.p_zone = &zone0; 1145 } 1146 1147 /* 1148 * Compute a hash value based on the contents of the label and the DOI. The 1149 * hash algorithm is somewhat arbitrary, but is based on the observation that 1150 * humans will likely pick labels that differ by amounts that work out to be 1151 * multiples of the number of hash chains, and thus stirring in some primes 1152 * should help. 1153 */ 1154 static uint_t 1155 hash_bylabel(void *hdata, mod_hash_key_t key) 1156 { 1157 const ts_label_t *lab = (ts_label_t *)key; 1158 const uint32_t *up, *ue; 1159 uint_t hash; 1160 int i; 1161 1162 _NOTE(ARGUNUSED(hdata)); 1163 1164 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1165 /* we depend on alignment of label, but not representation */ 1166 up = (const uint32_t *)&lab->tsl_label; 1167 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1168 i = 1; 1169 while (up < ue) { 1170 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1171 hash += *up + (*up << ((i % 16) + 1)); 1172 up++; 1173 i++; 1174 } 1175 return (hash); 1176 } 1177 1178 /* 1179 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1180 * equal). This may need to be changed if less than / greater than is ever 1181 * needed. 1182 */ 1183 static int 1184 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1185 { 1186 ts_label_t *lab1 = (ts_label_t *)key1; 1187 ts_label_t *lab2 = (ts_label_t *)key2; 1188 1189 return (label_equal(lab1, lab2) ? 0 : 1); 1190 } 1191 1192 /* 1193 * Called by main() to initialize the zones framework. 1194 */ 1195 void 1196 zone_init(void) 1197 { 1198 rctl_dict_entry_t *rde; 1199 rctl_val_t *dval; 1200 rctl_set_t *set; 1201 rctl_alloc_gp_t *gp; 1202 rctl_entity_p_t e; 1203 int res; 1204 1205 ASSERT(curproc == &p0); 1206 1207 /* 1208 * Create ID space for zone IDs. ID 0 is reserved for the 1209 * global zone. 1210 */ 1211 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1212 1213 /* 1214 * Initialize generic zone resource controls, if any. 1215 */ 1216 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1217 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1218 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1219 FSS_MAXSHARES, FSS_MAXSHARES, 1220 &zone_cpu_shares_ops); 1221 1222 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1223 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1224 INT_MAX, INT_MAX, &zone_lwps_ops); 1225 /* 1226 * System V IPC resource controls 1227 */ 1228 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1229 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1230 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1231 1232 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1233 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1234 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1235 1236 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1237 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1238 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1239 1240 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1241 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1242 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1243 1244 /* 1245 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1246 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1247 */ 1248 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1249 bzero(dval, sizeof (rctl_val_t)); 1250 dval->rcv_value = 1; 1251 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1252 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1253 dval->rcv_action_recip_pid = -1; 1254 1255 rde = rctl_dict_lookup("zone.cpu-shares"); 1256 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1257 1258 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 1259 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1260 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1261 &zone_locked_mem_ops); 1262 /* 1263 * Initialize the ``global zone''. 1264 */ 1265 set = rctl_set_create(); 1266 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1267 mutex_enter(&p0.p_lock); 1268 e.rcep_p.zone = &zone0; 1269 e.rcep_t = RCENTITY_ZONE; 1270 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1271 gp); 1272 1273 zone0.zone_nlwps = p0.p_lwpcnt; 1274 zone0.zone_ntasks = 1; 1275 mutex_exit(&p0.p_lock); 1276 zone0.zone_restart_init = B_TRUE; 1277 zone0.zone_brand = &native_brand; 1278 rctl_prealloc_destroy(gp); 1279 /* 1280 * pool_default hasn't been initialized yet, so we let pool_init() take 1281 * care of making the global zone is in the default pool. 1282 */ 1283 1284 /* 1285 * Initialize zone label. 1286 * mlp are initialized when tnzonecfg is loaded. 1287 */ 1288 zone0.zone_slabel = l_admin_low; 1289 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1290 label_hold(l_admin_low); 1291 1292 mutex_enter(&zonehash_lock); 1293 zone_uniqid(&zone0); 1294 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1295 1296 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1297 mod_hash_null_valdtor); 1298 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1299 zone_hash_size, mod_hash_null_valdtor); 1300 /* 1301 * maintain zonehashbylabel only for labeled systems 1302 */ 1303 if (is_system_labeled()) 1304 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1305 zone_hash_size, mod_hash_null_keydtor, 1306 mod_hash_null_valdtor, hash_bylabel, NULL, 1307 hash_labelkey_cmp, KM_SLEEP); 1308 zonecount = 1; 1309 1310 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1311 (mod_hash_val_t)&zone0); 1312 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1313 (mod_hash_val_t)&zone0); 1314 if (is_system_labeled()) { 1315 zone0.zone_flags |= ZF_HASHED_LABEL; 1316 (void) mod_hash_insert(zonehashbylabel, 1317 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1318 } 1319 mutex_exit(&zonehash_lock); 1320 1321 /* 1322 * We avoid setting zone_kcred until now, since kcred is initialized 1323 * sometime after zone_zsd_init() and before zone_init(). 1324 */ 1325 zone0.zone_kcred = kcred; 1326 /* 1327 * The global zone is fully initialized (except for zone_rootvp which 1328 * will be set when the root filesystem is mounted). 1329 */ 1330 global_zone = &zone0; 1331 1332 /* 1333 * Setup an event channel to send zone status change notifications on 1334 */ 1335 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1336 EVCH_CREAT); 1337 1338 if (res) 1339 panic("Sysevent_evc_bind failed during zone setup.\n"); 1340 } 1341 1342 static void 1343 zone_free(zone_t *zone) 1344 { 1345 ASSERT(zone != global_zone); 1346 ASSERT(zone->zone_ntasks == 0); 1347 ASSERT(zone->zone_nlwps == 0); 1348 ASSERT(zone->zone_cred_ref == 0); 1349 ASSERT(zone->zone_kcred == NULL); 1350 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1351 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1352 1353 /* remove from deathrow list */ 1354 if (zone_status_get(zone) == ZONE_IS_DEAD) { 1355 ASSERT(zone->zone_ref == 0); 1356 mutex_enter(&zone_deathrow_lock); 1357 list_remove(&zone_deathrow, zone); 1358 mutex_exit(&zone_deathrow_lock); 1359 } 1360 1361 zone_free_zsd(zone); 1362 zone_free_datasets(zone); 1363 1364 if (zone->zone_rootvp != NULL) 1365 VN_RELE(zone->zone_rootvp); 1366 if (zone->zone_rootpath) 1367 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 1368 if (zone->zone_name != NULL) 1369 kmem_free(zone->zone_name, ZONENAME_MAX); 1370 if (zone->zone_slabel != NULL) 1371 label_rele(zone->zone_slabel); 1372 if (zone->zone_nodename != NULL) 1373 kmem_free(zone->zone_nodename, _SYS_NMLN); 1374 if (zone->zone_domain != NULL) 1375 kmem_free(zone->zone_domain, _SYS_NMLN); 1376 if (zone->zone_privset != NULL) 1377 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 1378 if (zone->zone_rctls != NULL) 1379 rctl_set_free(zone->zone_rctls); 1380 if (zone->zone_bootargs != NULL) 1381 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 1382 if (zone->zone_initname != NULL) 1383 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 1384 id_free(zoneid_space, zone->zone_id); 1385 mutex_destroy(&zone->zone_lock); 1386 cv_destroy(&zone->zone_cv); 1387 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 1388 kmem_free(zone, sizeof (zone_t)); 1389 } 1390 1391 /* 1392 * See block comment at the top of this file for information about zone 1393 * status values. 1394 */ 1395 /* 1396 * Convenience function for setting zone status. 1397 */ 1398 static void 1399 zone_status_set(zone_t *zone, zone_status_t status) 1400 { 1401 1402 nvlist_t *nvl = NULL; 1403 ASSERT(MUTEX_HELD(&zone_status_lock)); 1404 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 1405 status >= zone_status_get(zone)); 1406 1407 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 1408 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 1409 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 1410 zone_status_table[status]) || 1411 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 1412 zone_status_table[zone->zone_status]) || 1413 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 1414 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 1415 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 1416 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 1417 #ifdef DEBUG 1418 (void) printf( 1419 "Failed to allocate and send zone state change event.\n"); 1420 #endif 1421 } 1422 nvlist_free(nvl); 1423 1424 zone->zone_status = status; 1425 1426 cv_broadcast(&zone->zone_cv); 1427 } 1428 1429 /* 1430 * Public function to retrieve the zone status. The zone status may 1431 * change after it is retrieved. 1432 */ 1433 zone_status_t 1434 zone_status_get(zone_t *zone) 1435 { 1436 return (zone->zone_status); 1437 } 1438 1439 static int 1440 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 1441 { 1442 char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 1443 int err = 0; 1444 1445 ASSERT(zone != global_zone); 1446 if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0) 1447 goto done; /* EFAULT or ENAMETOOLONG */ 1448 1449 if (zone->zone_bootargs != NULL) 1450 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 1451 1452 zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP); 1453 (void) strcpy(zone->zone_bootargs, bootargs); 1454 1455 done: 1456 kmem_free(bootargs, BOOTARGS_MAX); 1457 return (err); 1458 } 1459 1460 static int 1461 zone_set_initname(zone_t *zone, const char *zone_initname) 1462 { 1463 char initname[INITNAME_SZ]; 1464 size_t len; 1465 int err = 0; 1466 1467 ASSERT(zone != global_zone); 1468 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 1469 return (err); /* EFAULT or ENAMETOOLONG */ 1470 1471 if (zone->zone_initname != NULL) 1472 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 1473 1474 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 1475 (void) strcpy(zone->zone_initname, initname); 1476 return (0); 1477 } 1478 1479 /* 1480 * Block indefinitely waiting for (zone_status >= status) 1481 */ 1482 void 1483 zone_status_wait(zone_t *zone, zone_status_t status) 1484 { 1485 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1486 1487 mutex_enter(&zone_status_lock); 1488 while (zone->zone_status < status) { 1489 cv_wait(&zone->zone_cv, &zone_status_lock); 1490 } 1491 mutex_exit(&zone_status_lock); 1492 } 1493 1494 /* 1495 * Private CPR-safe version of zone_status_wait(). 1496 */ 1497 static void 1498 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 1499 { 1500 callb_cpr_t cprinfo; 1501 1502 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1503 1504 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 1505 str); 1506 mutex_enter(&zone_status_lock); 1507 while (zone->zone_status < status) { 1508 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1509 cv_wait(&zone->zone_cv, &zone_status_lock); 1510 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 1511 } 1512 /* 1513 * zone_status_lock is implicitly released by the following. 1514 */ 1515 CALLB_CPR_EXIT(&cprinfo); 1516 } 1517 1518 /* 1519 * Block until zone enters requested state or signal is received. Return (0) 1520 * if signaled, non-zero otherwise. 1521 */ 1522 int 1523 zone_status_wait_sig(zone_t *zone, zone_status_t status) 1524 { 1525 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1526 1527 mutex_enter(&zone_status_lock); 1528 while (zone->zone_status < status) { 1529 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 1530 mutex_exit(&zone_status_lock); 1531 return (0); 1532 } 1533 } 1534 mutex_exit(&zone_status_lock); 1535 return (1); 1536 } 1537 1538 /* 1539 * Block until the zone enters the requested state or the timeout expires, 1540 * whichever happens first. Return (-1) if operation timed out, time remaining 1541 * otherwise. 1542 */ 1543 clock_t 1544 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 1545 { 1546 clock_t timeleft = 0; 1547 1548 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1549 1550 mutex_enter(&zone_status_lock); 1551 while (zone->zone_status < status && timeleft != -1) { 1552 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 1553 } 1554 mutex_exit(&zone_status_lock); 1555 return (timeleft); 1556 } 1557 1558 /* 1559 * Block until the zone enters the requested state, the current process is 1560 * signaled, or the timeout expires, whichever happens first. Return (-1) if 1561 * operation timed out, 0 if signaled, time remaining otherwise. 1562 */ 1563 clock_t 1564 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 1565 { 1566 clock_t timeleft = tim - lbolt; 1567 1568 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1569 1570 mutex_enter(&zone_status_lock); 1571 while (zone->zone_status < status) { 1572 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 1573 tim); 1574 if (timeleft <= 0) 1575 break; 1576 } 1577 mutex_exit(&zone_status_lock); 1578 return (timeleft); 1579 } 1580 1581 /* 1582 * Zones have two reference counts: one for references from credential 1583 * structures (zone_cred_ref), and one (zone_ref) for everything else. 1584 * This is so we can allow a zone to be rebooted while there are still 1585 * outstanding cred references, since certain drivers cache dblks (which 1586 * implicitly results in cached creds). We wait for zone_ref to drop to 1587 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 1588 * later freed when the zone_cred_ref drops to 0, though nothing other 1589 * than the zone id and privilege set should be accessed once the zone 1590 * is "dead". 1591 * 1592 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 1593 * to force halt/reboot to block waiting for the zone_cred_ref to drop 1594 * to 0. This can be useful to flush out other sources of cached creds 1595 * that may be less innocuous than the driver case. 1596 */ 1597 1598 int zone_wait_for_cred = 0; 1599 1600 static void 1601 zone_hold_locked(zone_t *z) 1602 { 1603 ASSERT(MUTEX_HELD(&z->zone_lock)); 1604 z->zone_ref++; 1605 ASSERT(z->zone_ref != 0); 1606 } 1607 1608 void 1609 zone_hold(zone_t *z) 1610 { 1611 mutex_enter(&z->zone_lock); 1612 zone_hold_locked(z); 1613 mutex_exit(&z->zone_lock); 1614 } 1615 1616 /* 1617 * If the non-cred ref count drops to 1 and either the cred ref count 1618 * is 0 or we aren't waiting for cred references, the zone is ready to 1619 * be destroyed. 1620 */ 1621 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 1622 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 1623 1624 void 1625 zone_rele(zone_t *z) 1626 { 1627 boolean_t wakeup; 1628 1629 mutex_enter(&z->zone_lock); 1630 ASSERT(z->zone_ref != 0); 1631 z->zone_ref--; 1632 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1633 /* no more refs, free the structure */ 1634 mutex_exit(&z->zone_lock); 1635 zone_free(z); 1636 return; 1637 } 1638 /* signal zone_destroy so the zone can finish halting */ 1639 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 1640 mutex_exit(&z->zone_lock); 1641 1642 if (wakeup) { 1643 /* 1644 * Grabbing zonehash_lock here effectively synchronizes with 1645 * zone_destroy() to avoid missed signals. 1646 */ 1647 mutex_enter(&zonehash_lock); 1648 cv_broadcast(&zone_destroy_cv); 1649 mutex_exit(&zonehash_lock); 1650 } 1651 } 1652 1653 void 1654 zone_cred_hold(zone_t *z) 1655 { 1656 mutex_enter(&z->zone_lock); 1657 z->zone_cred_ref++; 1658 ASSERT(z->zone_cred_ref != 0); 1659 mutex_exit(&z->zone_lock); 1660 } 1661 1662 void 1663 zone_cred_rele(zone_t *z) 1664 { 1665 boolean_t wakeup; 1666 1667 mutex_enter(&z->zone_lock); 1668 ASSERT(z->zone_cred_ref != 0); 1669 z->zone_cred_ref--; 1670 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1671 /* no more refs, free the structure */ 1672 mutex_exit(&z->zone_lock); 1673 zone_free(z); 1674 return; 1675 } 1676 /* 1677 * If zone_destroy is waiting for the cred references to drain 1678 * out, and they have, signal it. 1679 */ 1680 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 1681 zone_status_get(z) >= ZONE_IS_DEAD); 1682 mutex_exit(&z->zone_lock); 1683 1684 if (wakeup) { 1685 /* 1686 * Grabbing zonehash_lock here effectively synchronizes with 1687 * zone_destroy() to avoid missed signals. 1688 */ 1689 mutex_enter(&zonehash_lock); 1690 cv_broadcast(&zone_destroy_cv); 1691 mutex_exit(&zonehash_lock); 1692 } 1693 } 1694 1695 void 1696 zone_task_hold(zone_t *z) 1697 { 1698 mutex_enter(&z->zone_lock); 1699 z->zone_ntasks++; 1700 ASSERT(z->zone_ntasks != 0); 1701 mutex_exit(&z->zone_lock); 1702 } 1703 1704 void 1705 zone_task_rele(zone_t *zone) 1706 { 1707 uint_t refcnt; 1708 1709 mutex_enter(&zone->zone_lock); 1710 ASSERT(zone->zone_ntasks != 0); 1711 refcnt = --zone->zone_ntasks; 1712 if (refcnt > 1) { /* Common case */ 1713 mutex_exit(&zone->zone_lock); 1714 return; 1715 } 1716 zone_hold_locked(zone); /* so we can use the zone_t later */ 1717 mutex_exit(&zone->zone_lock); 1718 if (refcnt == 1) { 1719 /* 1720 * See if the zone is shutting down. 1721 */ 1722 mutex_enter(&zone_status_lock); 1723 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 1724 goto out; 1725 } 1726 1727 /* 1728 * Make sure the ntasks didn't change since we 1729 * dropped zone_lock. 1730 */ 1731 mutex_enter(&zone->zone_lock); 1732 if (refcnt != zone->zone_ntasks) { 1733 mutex_exit(&zone->zone_lock); 1734 goto out; 1735 } 1736 mutex_exit(&zone->zone_lock); 1737 1738 /* 1739 * No more user processes in the zone. The zone is empty. 1740 */ 1741 zone_status_set(zone, ZONE_IS_EMPTY); 1742 goto out; 1743 } 1744 1745 ASSERT(refcnt == 0); 1746 /* 1747 * zsched has exited; the zone is dead. 1748 */ 1749 zone->zone_zsched = NULL; /* paranoia */ 1750 mutex_enter(&zone_status_lock); 1751 zone_status_set(zone, ZONE_IS_DEAD); 1752 out: 1753 mutex_exit(&zone_status_lock); 1754 zone_rele(zone); 1755 } 1756 1757 zoneid_t 1758 getzoneid(void) 1759 { 1760 return (curproc->p_zone->zone_id); 1761 } 1762 1763 /* 1764 * Internal versions of zone_find_by_*(). These don't zone_hold() or 1765 * check the validity of a zone's state. 1766 */ 1767 static zone_t * 1768 zone_find_all_by_id(zoneid_t zoneid) 1769 { 1770 mod_hash_val_t hv; 1771 zone_t *zone = NULL; 1772 1773 ASSERT(MUTEX_HELD(&zonehash_lock)); 1774 1775 if (mod_hash_find(zonehashbyid, 1776 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 1777 zone = (zone_t *)hv; 1778 return (zone); 1779 } 1780 1781 static zone_t * 1782 zone_find_all_by_label(const ts_label_t *label) 1783 { 1784 mod_hash_val_t hv; 1785 zone_t *zone = NULL; 1786 1787 ASSERT(MUTEX_HELD(&zonehash_lock)); 1788 1789 /* 1790 * zonehashbylabel is not maintained for unlabeled systems 1791 */ 1792 if (!is_system_labeled()) 1793 return (NULL); 1794 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 1795 zone = (zone_t *)hv; 1796 return (zone); 1797 } 1798 1799 static zone_t * 1800 zone_find_all_by_name(char *name) 1801 { 1802 mod_hash_val_t hv; 1803 zone_t *zone = NULL; 1804 1805 ASSERT(MUTEX_HELD(&zonehash_lock)); 1806 1807 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 1808 zone = (zone_t *)hv; 1809 return (zone); 1810 } 1811 1812 /* 1813 * Public interface for looking up a zone by zoneid. Only returns the zone if 1814 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 1815 * Caller must call zone_rele() once it is done with the zone. 1816 * 1817 * The zone may begin the zone_destroy() sequence immediately after this 1818 * function returns, but may be safely used until zone_rele() is called. 1819 */ 1820 zone_t * 1821 zone_find_by_id(zoneid_t zoneid) 1822 { 1823 zone_t *zone; 1824 zone_status_t status; 1825 1826 mutex_enter(&zonehash_lock); 1827 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 1828 mutex_exit(&zonehash_lock); 1829 return (NULL); 1830 } 1831 status = zone_status_get(zone); 1832 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1833 /* 1834 * For all practical purposes the zone doesn't exist. 1835 */ 1836 mutex_exit(&zonehash_lock); 1837 return (NULL); 1838 } 1839 zone_hold(zone); 1840 mutex_exit(&zonehash_lock); 1841 return (zone); 1842 } 1843 1844 /* 1845 * Similar to zone_find_by_id, but using zone label as the key. 1846 */ 1847 zone_t * 1848 zone_find_by_label(const ts_label_t *label) 1849 { 1850 zone_t *zone; 1851 zone_status_t status; 1852 1853 mutex_enter(&zonehash_lock); 1854 if ((zone = zone_find_all_by_label(label)) == NULL) { 1855 mutex_exit(&zonehash_lock); 1856 return (NULL); 1857 } 1858 1859 status = zone_status_get(zone); 1860 if (status > ZONE_IS_DOWN) { 1861 /* 1862 * For all practical purposes the zone doesn't exist. 1863 */ 1864 mutex_exit(&zonehash_lock); 1865 return (NULL); 1866 } 1867 zone_hold(zone); 1868 mutex_exit(&zonehash_lock); 1869 return (zone); 1870 } 1871 1872 /* 1873 * Similar to zone_find_by_id, but using zone name as the key. 1874 */ 1875 zone_t * 1876 zone_find_by_name(char *name) 1877 { 1878 zone_t *zone; 1879 zone_status_t status; 1880 1881 mutex_enter(&zonehash_lock); 1882 if ((zone = zone_find_all_by_name(name)) == NULL) { 1883 mutex_exit(&zonehash_lock); 1884 return (NULL); 1885 } 1886 status = zone_status_get(zone); 1887 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1888 /* 1889 * For all practical purposes the zone doesn't exist. 1890 */ 1891 mutex_exit(&zonehash_lock); 1892 return (NULL); 1893 } 1894 zone_hold(zone); 1895 mutex_exit(&zonehash_lock); 1896 return (zone); 1897 } 1898 1899 /* 1900 * Similar to zone_find_by_id(), using the path as a key. For instance, 1901 * if there is a zone "foo" rooted at /foo/root, and the path argument 1902 * is "/foo/root/proc", it will return the held zone_t corresponding to 1903 * zone "foo". 1904 * 1905 * zone_find_by_path() always returns a non-NULL value, since at the 1906 * very least every path will be contained in the global zone. 1907 * 1908 * As with the other zone_find_by_*() functions, the caller is 1909 * responsible for zone_rele()ing the return value of this function. 1910 */ 1911 zone_t * 1912 zone_find_by_path(const char *path) 1913 { 1914 zone_t *zone; 1915 zone_t *zret = NULL; 1916 zone_status_t status; 1917 1918 if (path == NULL) { 1919 /* 1920 * Call from rootconf(). 1921 */ 1922 zone_hold(global_zone); 1923 return (global_zone); 1924 } 1925 ASSERT(*path == '/'); 1926 mutex_enter(&zonehash_lock); 1927 for (zone = list_head(&zone_active); zone != NULL; 1928 zone = list_next(&zone_active, zone)) { 1929 if (ZONE_PATH_VISIBLE(path, zone)) 1930 zret = zone; 1931 } 1932 ASSERT(zret != NULL); 1933 status = zone_status_get(zret); 1934 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1935 /* 1936 * Zone practically doesn't exist. 1937 */ 1938 zret = global_zone; 1939 } 1940 zone_hold(zret); 1941 mutex_exit(&zonehash_lock); 1942 return (zret); 1943 } 1944 1945 /* 1946 * Get the number of cpus visible to this zone. The system-wide global 1947 * 'ncpus' is returned if pools are disabled, the caller is in the 1948 * global zone, or a NULL zone argument is passed in. 1949 */ 1950 int 1951 zone_ncpus_get(zone_t *zone) 1952 { 1953 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 1954 1955 return (myncpus != 0 ? myncpus : ncpus); 1956 } 1957 1958 /* 1959 * Get the number of online cpus visible to this zone. The system-wide 1960 * global 'ncpus_online' is returned if pools are disabled, the caller 1961 * is in the global zone, or a NULL zone argument is passed in. 1962 */ 1963 int 1964 zone_ncpus_online_get(zone_t *zone) 1965 { 1966 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 1967 1968 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 1969 } 1970 1971 /* 1972 * Return the pool to which the zone is currently bound. 1973 */ 1974 pool_t * 1975 zone_pool_get(zone_t *zone) 1976 { 1977 ASSERT(pool_lock_held()); 1978 1979 return (zone->zone_pool); 1980 } 1981 1982 /* 1983 * Set the zone's pool pointer and update the zone's visibility to match 1984 * the resources in the new pool. 1985 */ 1986 void 1987 zone_pool_set(zone_t *zone, pool_t *pool) 1988 { 1989 ASSERT(pool_lock_held()); 1990 ASSERT(MUTEX_HELD(&cpu_lock)); 1991 1992 zone->zone_pool = pool; 1993 zone_pset_set(zone, pool->pool_pset->pset_id); 1994 } 1995 1996 /* 1997 * Return the cached value of the id of the processor set to which the 1998 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 1999 * facility is disabled. 2000 */ 2001 psetid_t 2002 zone_pset_get(zone_t *zone) 2003 { 2004 ASSERT(MUTEX_HELD(&cpu_lock)); 2005 2006 return (zone->zone_psetid); 2007 } 2008 2009 /* 2010 * Set the cached value of the id of the processor set to which the zone 2011 * is currently bound. Also update the zone's visibility to match the 2012 * resources in the new processor set. 2013 */ 2014 void 2015 zone_pset_set(zone_t *zone, psetid_t newpsetid) 2016 { 2017 psetid_t oldpsetid; 2018 2019 ASSERT(MUTEX_HELD(&cpu_lock)); 2020 oldpsetid = zone_pset_get(zone); 2021 2022 if (oldpsetid == newpsetid) 2023 return; 2024 /* 2025 * Global zone sees all. 2026 */ 2027 if (zone != global_zone) { 2028 zone->zone_psetid = newpsetid; 2029 if (newpsetid != ZONE_PS_INVAL) 2030 pool_pset_visibility_add(newpsetid, zone); 2031 if (oldpsetid != ZONE_PS_INVAL) 2032 pool_pset_visibility_remove(oldpsetid, zone); 2033 } 2034 /* 2035 * Disabling pools, so we should start using the global values 2036 * for ncpus and ncpus_online. 2037 */ 2038 if (newpsetid == ZONE_PS_INVAL) { 2039 zone->zone_ncpus = 0; 2040 zone->zone_ncpus_online = 0; 2041 } 2042 } 2043 2044 /* 2045 * Walk the list of active zones and issue the provided callback for 2046 * each of them. 2047 * 2048 * Caller must not be holding any locks that may be acquired under 2049 * zonehash_lock. See comment at the beginning of the file for a list of 2050 * common locks and their interactions with zones. 2051 */ 2052 int 2053 zone_walk(int (*cb)(zone_t *, void *), void *data) 2054 { 2055 zone_t *zone; 2056 int ret = 0; 2057 zone_status_t status; 2058 2059 mutex_enter(&zonehash_lock); 2060 for (zone = list_head(&zone_active); zone != NULL; 2061 zone = list_next(&zone_active, zone)) { 2062 /* 2063 * Skip zones that shouldn't be externally visible. 2064 */ 2065 status = zone_status_get(zone); 2066 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2067 continue; 2068 /* 2069 * Bail immediately if any callback invocation returns a 2070 * non-zero value. 2071 */ 2072 ret = (*cb)(zone, data); 2073 if (ret != 0) 2074 break; 2075 } 2076 mutex_exit(&zonehash_lock); 2077 return (ret); 2078 } 2079 2080 static int 2081 zone_set_root(zone_t *zone, const char *upath) 2082 { 2083 vnode_t *vp; 2084 int trycount; 2085 int error = 0; 2086 char *path; 2087 struct pathname upn, pn; 2088 size_t pathlen; 2089 2090 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2091 return (error); 2092 2093 pn_alloc(&pn); 2094 2095 /* prevent infinite loop */ 2096 trycount = 10; 2097 for (;;) { 2098 if (--trycount <= 0) { 2099 error = ESTALE; 2100 goto out; 2101 } 2102 2103 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2104 /* 2105 * VOP_ACCESS() may cover 'vp' with a new 2106 * filesystem, if 'vp' is an autoFS vnode. 2107 * Get the new 'vp' if so. 2108 */ 2109 if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED())) == 0 && 2110 (vp->v_vfsmountedhere == NULL || 2111 (error = traverse(&vp)) == 0)) { 2112 pathlen = pn.pn_pathlen + 2; 2113 path = kmem_alloc(pathlen, KM_SLEEP); 2114 (void) strncpy(path, pn.pn_path, 2115 pn.pn_pathlen + 1); 2116 path[pathlen - 2] = '/'; 2117 path[pathlen - 1] = '\0'; 2118 pn_free(&pn); 2119 pn_free(&upn); 2120 2121 /* Success! */ 2122 break; 2123 } 2124 VN_RELE(vp); 2125 } 2126 if (error != ESTALE) 2127 goto out; 2128 } 2129 2130 ASSERT(error == 0); 2131 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2132 zone->zone_rootpath = path; 2133 zone->zone_rootpathlen = pathlen; 2134 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2135 zone->zone_flags |= ZF_IS_SCRATCH; 2136 return (0); 2137 2138 out: 2139 pn_free(&pn); 2140 pn_free(&upn); 2141 return (error); 2142 } 2143 2144 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2145 ((c) >= 'a' && (c) <= 'z') || \ 2146 ((c) >= 'A' && (c) <= 'Z')) 2147 2148 static int 2149 zone_set_name(zone_t *zone, const char *uname) 2150 { 2151 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2152 size_t len; 2153 int i, err; 2154 2155 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2156 kmem_free(kname, ZONENAME_MAX); 2157 return (err); /* EFAULT or ENAMETOOLONG */ 2158 } 2159 2160 /* must be less than ZONENAME_MAX */ 2161 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2162 kmem_free(kname, ZONENAME_MAX); 2163 return (EINVAL); 2164 } 2165 2166 /* 2167 * Name must start with an alphanumeric and must contain only 2168 * alphanumerics, '-', '_' and '.'. 2169 */ 2170 if (!isalnum(kname[0])) { 2171 kmem_free(kname, ZONENAME_MAX); 2172 return (EINVAL); 2173 } 2174 for (i = 1; i < len - 1; i++) { 2175 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2176 kname[i] != '.') { 2177 kmem_free(kname, ZONENAME_MAX); 2178 return (EINVAL); 2179 } 2180 } 2181 2182 zone->zone_name = kname; 2183 return (0); 2184 } 2185 2186 /* 2187 * Similar to thread_create(), but makes sure the thread is in the appropriate 2188 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 2189 */ 2190 /*ARGSUSED*/ 2191 kthread_t * 2192 zthread_create( 2193 caddr_t stk, 2194 size_t stksize, 2195 void (*proc)(), 2196 void *arg, 2197 size_t len, 2198 pri_t pri) 2199 { 2200 kthread_t *t; 2201 zone_t *zone = curproc->p_zone; 2202 proc_t *pp = zone->zone_zsched; 2203 2204 zone_hold(zone); /* Reference to be dropped when thread exits */ 2205 2206 /* 2207 * No-one should be trying to create threads if the zone is shutting 2208 * down and there aren't any kernel threads around. See comment 2209 * in zthread_exit(). 2210 */ 2211 ASSERT(!(zone->zone_kthreads == NULL && 2212 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2213 /* 2214 * Create a thread, but don't let it run until we've finished setting 2215 * things up. 2216 */ 2217 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2218 ASSERT(t->t_forw == NULL); 2219 mutex_enter(&zone_status_lock); 2220 if (zone->zone_kthreads == NULL) { 2221 t->t_forw = t->t_back = t; 2222 } else { 2223 kthread_t *tx = zone->zone_kthreads; 2224 2225 t->t_forw = tx; 2226 t->t_back = tx->t_back; 2227 tx->t_back->t_forw = t; 2228 tx->t_back = t; 2229 } 2230 zone->zone_kthreads = t; 2231 mutex_exit(&zone_status_lock); 2232 2233 mutex_enter(&pp->p_lock); 2234 t->t_proc_flag |= TP_ZTHREAD; 2235 project_rele(t->t_proj); 2236 t->t_proj = project_hold(pp->p_task->tk_proj); 2237 2238 /* 2239 * Setup complete, let it run. 2240 */ 2241 thread_lock(t); 2242 t->t_schedflag |= TS_ALLSTART; 2243 setrun_locked(t); 2244 thread_unlock(t); 2245 2246 mutex_exit(&pp->p_lock); 2247 2248 return (t); 2249 } 2250 2251 /* 2252 * Similar to thread_exit(). Must be called by threads created via 2253 * zthread_exit(). 2254 */ 2255 void 2256 zthread_exit(void) 2257 { 2258 kthread_t *t = curthread; 2259 proc_t *pp = curproc; 2260 zone_t *zone = pp->p_zone; 2261 2262 mutex_enter(&zone_status_lock); 2263 2264 /* 2265 * Reparent to p0 2266 */ 2267 kpreempt_disable(); 2268 mutex_enter(&pp->p_lock); 2269 t->t_proc_flag &= ~TP_ZTHREAD; 2270 t->t_procp = &p0; 2271 hat_thread_exit(t); 2272 mutex_exit(&pp->p_lock); 2273 kpreempt_enable(); 2274 2275 if (t->t_back == t) { 2276 ASSERT(t->t_forw == t); 2277 /* 2278 * If the zone is empty, once the thread count 2279 * goes to zero no further kernel threads can be 2280 * created. This is because if the creator is a process 2281 * in the zone, then it must have exited before the zone 2282 * state could be set to ZONE_IS_EMPTY. 2283 * Otherwise, if the creator is a kernel thread in the 2284 * zone, the thread count is non-zero. 2285 * 2286 * This really means that non-zone kernel threads should 2287 * not create zone kernel threads. 2288 */ 2289 zone->zone_kthreads = NULL; 2290 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 2291 zone_status_set(zone, ZONE_IS_DOWN); 2292 } 2293 } else { 2294 t->t_forw->t_back = t->t_back; 2295 t->t_back->t_forw = t->t_forw; 2296 if (zone->zone_kthreads == t) 2297 zone->zone_kthreads = t->t_forw; 2298 } 2299 mutex_exit(&zone_status_lock); 2300 zone_rele(zone); 2301 thread_exit(); 2302 /* NOTREACHED */ 2303 } 2304 2305 static void 2306 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 2307 { 2308 vnode_t *oldvp; 2309 2310 /* we're going to hold a reference here to the directory */ 2311 VN_HOLD(vp); 2312 2313 #ifdef C2_AUDIT 2314 if (audit_active) /* update abs cwd/root path see c2audit.c */ 2315 audit_chdirec(vp, vpp); 2316 #endif 2317 2318 mutex_enter(&pp->p_lock); 2319 oldvp = *vpp; 2320 *vpp = vp; 2321 mutex_exit(&pp->p_lock); 2322 if (oldvp != NULL) 2323 VN_RELE(oldvp); 2324 } 2325 2326 /* 2327 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 2328 */ 2329 static int 2330 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 2331 { 2332 nvpair_t *nvp = NULL; 2333 boolean_t priv_set = B_FALSE; 2334 boolean_t limit_set = B_FALSE; 2335 boolean_t action_set = B_FALSE; 2336 2337 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2338 const char *name; 2339 uint64_t ui64; 2340 2341 name = nvpair_name(nvp); 2342 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 2343 return (EINVAL); 2344 (void) nvpair_value_uint64(nvp, &ui64); 2345 if (strcmp(name, "privilege") == 0) { 2346 /* 2347 * Currently only privileged values are allowed, but 2348 * this may change in the future. 2349 */ 2350 if (ui64 != RCPRIV_PRIVILEGED) 2351 return (EINVAL); 2352 rv->rcv_privilege = ui64; 2353 priv_set = B_TRUE; 2354 } else if (strcmp(name, "limit") == 0) { 2355 rv->rcv_value = ui64; 2356 limit_set = B_TRUE; 2357 } else if (strcmp(name, "action") == 0) { 2358 if (ui64 != RCTL_LOCAL_NOACTION && 2359 ui64 != RCTL_LOCAL_DENY) 2360 return (EINVAL); 2361 rv->rcv_flagaction = ui64; 2362 action_set = B_TRUE; 2363 } else { 2364 return (EINVAL); 2365 } 2366 } 2367 2368 if (!(priv_set && limit_set && action_set)) 2369 return (EINVAL); 2370 rv->rcv_action_signal = 0; 2371 rv->rcv_action_recipient = NULL; 2372 rv->rcv_action_recip_pid = -1; 2373 rv->rcv_firing_time = 0; 2374 2375 return (0); 2376 } 2377 2378 /* 2379 * Non-global zone version of start_init. 2380 */ 2381 void 2382 zone_start_init(void) 2383 { 2384 proc_t *p = ttoproc(curthread); 2385 zone_t *z = p->p_zone; 2386 2387 ASSERT(!INGLOBALZONE(curproc)); 2388 2389 /* 2390 * For all purposes (ZONE_ATTR_INITPID and restart_init), 2391 * storing just the pid of init is sufficient. 2392 */ 2393 z->zone_proc_initpid = p->p_pid; 2394 2395 /* 2396 * We maintain zone_boot_err so that we can return the cause of the 2397 * failure back to the caller of the zone_boot syscall. 2398 */ 2399 p->p_zone->zone_boot_err = start_init_common(); 2400 2401 mutex_enter(&zone_status_lock); 2402 if (z->zone_boot_err != 0) { 2403 /* 2404 * Make sure we are still in the booting state-- we could have 2405 * raced and already be shutting down, or even further along. 2406 */ 2407 if (zone_status_get(z) == ZONE_IS_BOOTING) 2408 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 2409 mutex_exit(&zone_status_lock); 2410 /* It's gone bad, dispose of the process */ 2411 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 2412 mutex_enter(&p->p_lock); 2413 ASSERT(p->p_flag & SEXITLWPS); 2414 lwp_exit(); 2415 } 2416 } else { 2417 if (zone_status_get(z) == ZONE_IS_BOOTING) 2418 zone_status_set(z, ZONE_IS_RUNNING); 2419 mutex_exit(&zone_status_lock); 2420 /* cause the process to return to userland. */ 2421 lwp_rtt(); 2422 } 2423 } 2424 2425 struct zsched_arg { 2426 zone_t *zone; 2427 nvlist_t *nvlist; 2428 }; 2429 2430 /* 2431 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 2432 * anything to do with scheduling, but rather with the fact that 2433 * per-zone kernel threads are parented to zsched, just like regular 2434 * kernel threads are parented to sched (p0). 2435 * 2436 * zsched is also responsible for launching init for the zone. 2437 */ 2438 static void 2439 zsched(void *arg) 2440 { 2441 struct zsched_arg *za = arg; 2442 proc_t *pp = curproc; 2443 proc_t *initp = proc_init; 2444 zone_t *zone = za->zone; 2445 cred_t *cr, *oldcred; 2446 rctl_set_t *set; 2447 rctl_alloc_gp_t *gp; 2448 contract_t *ct = NULL; 2449 task_t *tk, *oldtk; 2450 rctl_entity_p_t e; 2451 kproject_t *pj; 2452 2453 nvlist_t *nvl = za->nvlist; 2454 nvpair_t *nvp = NULL; 2455 2456 bcopy("zsched", u.u_psargs, sizeof ("zsched")); 2457 bcopy("zsched", u.u_comm, sizeof ("zsched")); 2458 u.u_argc = 0; 2459 u.u_argv = NULL; 2460 u.u_envp = NULL; 2461 closeall(P_FINFO(pp)); 2462 2463 /* 2464 * We are this zone's "zsched" process. As the zone isn't generally 2465 * visible yet we don't need to grab any locks before initializing its 2466 * zone_proc pointer. 2467 */ 2468 zone_hold(zone); /* this hold is released by zone_destroy() */ 2469 zone->zone_zsched = pp; 2470 mutex_enter(&pp->p_lock); 2471 pp->p_zone = zone; 2472 mutex_exit(&pp->p_lock); 2473 2474 /* 2475 * Disassociate process from its 'parent'; parent ourselves to init 2476 * (pid 1) and change other values as needed. 2477 */ 2478 sess_create(); 2479 2480 mutex_enter(&pidlock); 2481 proc_detach(pp); 2482 pp->p_ppid = 1; 2483 pp->p_flag |= SZONETOP; 2484 pp->p_ancpid = 1; 2485 pp->p_parent = initp; 2486 pp->p_psibling = NULL; 2487 if (initp->p_child) 2488 initp->p_child->p_psibling = pp; 2489 pp->p_sibling = initp->p_child; 2490 initp->p_child = pp; 2491 2492 /* Decrement what newproc() incremented. */ 2493 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 2494 /* 2495 * Our credentials are about to become kcred-like, so we don't care 2496 * about the caller's ruid. 2497 */ 2498 upcount_inc(crgetruid(kcred), zone->zone_id); 2499 mutex_exit(&pidlock); 2500 2501 /* 2502 * getting out of global zone, so decrement lwp counts 2503 */ 2504 pj = pp->p_task->tk_proj; 2505 mutex_enter(&global_zone->zone_nlwps_lock); 2506 pj->kpj_nlwps -= pp->p_lwpcnt; 2507 global_zone->zone_nlwps -= pp->p_lwpcnt; 2508 mutex_exit(&global_zone->zone_nlwps_lock); 2509 2510 /* 2511 * Decrement locked memory counts on old zone and project. 2512 */ 2513 mutex_enter(&global_zone->zone_rctl_lock); 2514 global_zone->zone_locked_mem -= pp->p_locked_mem; 2515 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 2516 mutex_exit(&global_zone->zone_rctl_lock); 2517 2518 /* 2519 * Create and join a new task in project '0' of this zone. 2520 * 2521 * We don't need to call holdlwps() since we know we're the only lwp in 2522 * this process. 2523 * 2524 * task_join() returns with p_lock held. 2525 */ 2526 tk = task_create(0, zone); 2527 mutex_enter(&cpu_lock); 2528 oldtk = task_join(tk, 0); 2529 2530 pj = pp->p_task->tk_proj; 2531 2532 mutex_enter(&zone->zone_rctl_lock); 2533 zone->zone_locked_mem += pp->p_locked_mem; 2534 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 2535 mutex_exit(&zone->zone_rctl_lock); 2536 2537 /* 2538 * add lwp counts to zsched's zone, and increment project's task count 2539 * due to the task created in the above tasksys_settaskid 2540 */ 2541 2542 mutex_enter(&zone->zone_nlwps_lock); 2543 pj->kpj_nlwps += pp->p_lwpcnt; 2544 pj->kpj_ntasks += 1; 2545 zone->zone_nlwps += pp->p_lwpcnt; 2546 mutex_exit(&zone->zone_nlwps_lock); 2547 2548 mutex_exit(&curproc->p_lock); 2549 mutex_exit(&cpu_lock); 2550 task_rele(oldtk); 2551 2552 /* 2553 * The process was created by a process in the global zone, hence the 2554 * credentials are wrong. We might as well have kcred-ish credentials. 2555 */ 2556 cr = zone->zone_kcred; 2557 crhold(cr); 2558 mutex_enter(&pp->p_crlock); 2559 oldcred = pp->p_cred; 2560 pp->p_cred = cr; 2561 mutex_exit(&pp->p_crlock); 2562 crfree(oldcred); 2563 2564 /* 2565 * Hold credentials again (for thread) 2566 */ 2567 crhold(cr); 2568 2569 /* 2570 * p_lwpcnt can't change since this is a kernel process. 2571 */ 2572 crset(pp, cr); 2573 2574 /* 2575 * Chroot 2576 */ 2577 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 2578 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 2579 2580 /* 2581 * Initialize zone's rctl set. 2582 */ 2583 set = rctl_set_create(); 2584 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2585 mutex_enter(&pp->p_lock); 2586 e.rcep_p.zone = zone; 2587 e.rcep_t = RCENTITY_ZONE; 2588 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 2589 mutex_exit(&pp->p_lock); 2590 rctl_prealloc_destroy(gp); 2591 2592 /* 2593 * Apply the rctls passed in to zone_create(). This is basically a list 2594 * assignment: all of the old values are removed and the new ones 2595 * inserted. That is, if an empty list is passed in, all values are 2596 * removed. 2597 */ 2598 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2599 rctl_dict_entry_t *rde; 2600 rctl_hndl_t hndl; 2601 char *name; 2602 nvlist_t **nvlarray; 2603 uint_t i, nelem; 2604 int error; /* For ASSERT()s */ 2605 2606 name = nvpair_name(nvp); 2607 hndl = rctl_hndl_lookup(name); 2608 ASSERT(hndl != -1); 2609 rde = rctl_dict_lookup_hndl(hndl); 2610 ASSERT(rde != NULL); 2611 2612 for (; /* ever */; ) { 2613 rctl_val_t oval; 2614 2615 mutex_enter(&pp->p_lock); 2616 error = rctl_local_get(hndl, NULL, &oval, pp); 2617 mutex_exit(&pp->p_lock); 2618 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 2619 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 2620 if (oval.rcv_privilege == RCPRIV_SYSTEM) 2621 break; 2622 mutex_enter(&pp->p_lock); 2623 error = rctl_local_delete(hndl, &oval, pp); 2624 mutex_exit(&pp->p_lock); 2625 ASSERT(error == 0); 2626 } 2627 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2628 ASSERT(error == 0); 2629 for (i = 0; i < nelem; i++) { 2630 rctl_val_t *nvalp; 2631 2632 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2633 error = nvlist2rctlval(nvlarray[i], nvalp); 2634 ASSERT(error == 0); 2635 /* 2636 * rctl_local_insert can fail if the value being 2637 * inserted is a duplicate; this is OK. 2638 */ 2639 mutex_enter(&pp->p_lock); 2640 if (rctl_local_insert(hndl, nvalp, pp) != 0) 2641 kmem_cache_free(rctl_val_cache, nvalp); 2642 mutex_exit(&pp->p_lock); 2643 } 2644 } 2645 /* 2646 * Tell the world that we're done setting up. 2647 * 2648 * At this point we want to set the zone status to ZONE_IS_READY 2649 * and atomically set the zone's processor set visibility. Once 2650 * we drop pool_lock() this zone will automatically get updated 2651 * to reflect any future changes to the pools configuration. 2652 */ 2653 pool_lock(); 2654 mutex_enter(&cpu_lock); 2655 mutex_enter(&zonehash_lock); 2656 zone_uniqid(zone); 2657 zone_zsd_configure(zone); 2658 if (pool_state == POOL_ENABLED) 2659 zone_pset_set(zone, pool_default->pool_pset->pset_id); 2660 mutex_enter(&zone_status_lock); 2661 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2662 zone_status_set(zone, ZONE_IS_READY); 2663 mutex_exit(&zone_status_lock); 2664 mutex_exit(&zonehash_lock); 2665 mutex_exit(&cpu_lock); 2666 pool_unlock(); 2667 2668 /* 2669 * Once we see the zone transition to the ZONE_IS_BOOTING state, 2670 * we launch init, and set the state to running. 2671 */ 2672 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 2673 2674 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 2675 id_t cid; 2676 2677 /* 2678 * Ok, this is a little complicated. We need to grab the 2679 * zone's pool's scheduling class ID; note that by now, we 2680 * are already bound to a pool if we need to be (zoneadmd 2681 * will have done that to us while we're in the READY 2682 * state). *But* the scheduling class for the zone's 'init' 2683 * must be explicitly passed to newproc, which doesn't 2684 * respect pool bindings. 2685 * 2686 * We hold the pool_lock across the call to newproc() to 2687 * close the obvious race: the pool's scheduling class 2688 * could change before we manage to create the LWP with 2689 * classid 'cid'. 2690 */ 2691 pool_lock(); 2692 cid = pool_get_class(zone->zone_pool); 2693 if (cid == -1) 2694 cid = defaultcid; 2695 2696 /* 2697 * If this fails, zone_boot will ultimately fail. The 2698 * state of the zone will be set to SHUTTING_DOWN-- userland 2699 * will have to tear down the zone, and fail, or try again. 2700 */ 2701 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 2702 minclsyspri - 1, &ct)) != 0) { 2703 mutex_enter(&zone_status_lock); 2704 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 2705 mutex_exit(&zone_status_lock); 2706 } 2707 pool_unlock(); 2708 } 2709 2710 /* 2711 * Wait for zone_destroy() to be called. This is what we spend 2712 * most of our life doing. 2713 */ 2714 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 2715 2716 if (ct) 2717 /* 2718 * At this point the process contract should be empty. 2719 * (Though if it isn't, it's not the end of the world.) 2720 */ 2721 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 2722 2723 /* 2724 * Allow kcred to be freed when all referring processes 2725 * (including this one) go away. We can't just do this in 2726 * zone_free because we need to wait for the zone_cred_ref to 2727 * drop to 0 before calling zone_free, and the existence of 2728 * zone_kcred will prevent that. Thus, we call crfree here to 2729 * balance the crdup in zone_create. The crhold calls earlier 2730 * in zsched will be dropped when the thread and process exit. 2731 */ 2732 crfree(zone->zone_kcred); 2733 zone->zone_kcred = NULL; 2734 2735 exit(CLD_EXITED, 0); 2736 } 2737 2738 /* 2739 * Helper function to determine if there are any submounts of the 2740 * provided path. Used to make sure the zone doesn't "inherit" any 2741 * mounts from before it is created. 2742 */ 2743 static uint_t 2744 zone_mount_count(const char *rootpath) 2745 { 2746 vfs_t *vfsp; 2747 uint_t count = 0; 2748 size_t rootpathlen = strlen(rootpath); 2749 2750 /* 2751 * Holding zonehash_lock prevents race conditions with 2752 * vfs_list_add()/vfs_list_remove() since we serialize with 2753 * zone_find_by_path(). 2754 */ 2755 ASSERT(MUTEX_HELD(&zonehash_lock)); 2756 /* 2757 * The rootpath must end with a '/' 2758 */ 2759 ASSERT(rootpath[rootpathlen - 1] == '/'); 2760 2761 /* 2762 * This intentionally does not count the rootpath itself if that 2763 * happens to be a mount point. 2764 */ 2765 vfs_list_read_lock(); 2766 vfsp = rootvfs; 2767 do { 2768 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 2769 rootpathlen) == 0) 2770 count++; 2771 vfsp = vfsp->vfs_next; 2772 } while (vfsp != rootvfs); 2773 vfs_list_unlock(); 2774 return (count); 2775 } 2776 2777 /* 2778 * Helper function to make sure that a zone created on 'rootpath' 2779 * wouldn't end up containing other zones' rootpaths. 2780 */ 2781 static boolean_t 2782 zone_is_nested(const char *rootpath) 2783 { 2784 zone_t *zone; 2785 size_t rootpathlen = strlen(rootpath); 2786 size_t len; 2787 2788 ASSERT(MUTEX_HELD(&zonehash_lock)); 2789 2790 for (zone = list_head(&zone_active); zone != NULL; 2791 zone = list_next(&zone_active, zone)) { 2792 if (zone == global_zone) 2793 continue; 2794 len = strlen(zone->zone_rootpath); 2795 if (strncmp(rootpath, zone->zone_rootpath, 2796 MIN(rootpathlen, len)) == 0) 2797 return (B_TRUE); 2798 } 2799 return (B_FALSE); 2800 } 2801 2802 static int 2803 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 2804 size_t zone_privssz) 2805 { 2806 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2807 2808 if (zone_privssz < sizeof (priv_set_t)) 2809 return (set_errno(ENOMEM)); 2810 2811 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 2812 kmem_free(privs, sizeof (priv_set_t)); 2813 return (EFAULT); 2814 } 2815 2816 zone->zone_privset = privs; 2817 return (0); 2818 } 2819 2820 /* 2821 * We make creative use of nvlists to pass in rctls from userland. The list is 2822 * a list of the following structures: 2823 * 2824 * (name = rctl_name, value = nvpair_list_array) 2825 * 2826 * Where each element of the nvpair_list_array is of the form: 2827 * 2828 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 2829 * (name = "limit", value = uint64_t), 2830 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 2831 */ 2832 static int 2833 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 2834 { 2835 nvpair_t *nvp = NULL; 2836 nvlist_t *nvl = NULL; 2837 char *kbuf; 2838 int error; 2839 rctl_val_t rv; 2840 2841 *nvlp = NULL; 2842 2843 if (buflen == 0) 2844 return (0); 2845 2846 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 2847 return (ENOMEM); 2848 if (copyin(ubuf, kbuf, buflen)) { 2849 error = EFAULT; 2850 goto out; 2851 } 2852 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 2853 /* 2854 * nvl may have been allocated/free'd, but the value set to 2855 * non-NULL, so we reset it here. 2856 */ 2857 nvl = NULL; 2858 error = EINVAL; 2859 goto out; 2860 } 2861 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2862 rctl_dict_entry_t *rde; 2863 rctl_hndl_t hndl; 2864 nvlist_t **nvlarray; 2865 uint_t i, nelem; 2866 char *name; 2867 2868 error = EINVAL; 2869 name = nvpair_name(nvp); 2870 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 2871 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 2872 goto out; 2873 } 2874 if ((hndl = rctl_hndl_lookup(name)) == -1) { 2875 goto out; 2876 } 2877 rde = rctl_dict_lookup_hndl(hndl); 2878 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2879 ASSERT(error == 0); 2880 for (i = 0; i < nelem; i++) { 2881 if (error = nvlist2rctlval(nvlarray[i], &rv)) 2882 goto out; 2883 } 2884 if (rctl_invalid_value(rde, &rv)) { 2885 error = EINVAL; 2886 goto out; 2887 } 2888 } 2889 error = 0; 2890 *nvlp = nvl; 2891 out: 2892 kmem_free(kbuf, buflen); 2893 if (error && nvl != NULL) 2894 nvlist_free(nvl); 2895 return (error); 2896 } 2897 2898 int 2899 zone_create_error(int er_error, int er_ext, int *er_out) { 2900 if (er_out != NULL) { 2901 if (copyout(&er_ext, er_out, sizeof (int))) { 2902 return (set_errno(EFAULT)); 2903 } 2904 } 2905 return (set_errno(er_error)); 2906 } 2907 2908 static int 2909 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 2910 { 2911 ts_label_t *tsl; 2912 bslabel_t blab; 2913 2914 /* Get label from user */ 2915 if (copyin(lab, &blab, sizeof (blab)) != 0) 2916 return (EFAULT); 2917 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 2918 if (tsl == NULL) 2919 return (ENOMEM); 2920 2921 zone->zone_slabel = tsl; 2922 return (0); 2923 } 2924 2925 /* 2926 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 2927 */ 2928 static int 2929 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 2930 { 2931 char *kbuf; 2932 char *dataset, *next; 2933 zone_dataset_t *zd; 2934 size_t len; 2935 2936 if (ubuf == NULL || buflen == 0) 2937 return (0); 2938 2939 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 2940 return (ENOMEM); 2941 2942 if (copyin(ubuf, kbuf, buflen) != 0) { 2943 kmem_free(kbuf, buflen); 2944 return (EFAULT); 2945 } 2946 2947 dataset = next = kbuf; 2948 for (;;) { 2949 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 2950 2951 next = strchr(dataset, ','); 2952 2953 if (next == NULL) 2954 len = strlen(dataset); 2955 else 2956 len = next - dataset; 2957 2958 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 2959 bcopy(dataset, zd->zd_dataset, len); 2960 zd->zd_dataset[len] = '\0'; 2961 2962 list_insert_head(&zone->zone_datasets, zd); 2963 2964 if (next == NULL) 2965 break; 2966 2967 dataset = next + 1; 2968 } 2969 2970 kmem_free(kbuf, buflen); 2971 return (0); 2972 } 2973 2974 /* 2975 * System call to create/initialize a new zone named 'zone_name', rooted 2976 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 2977 * and initialized with the zone-wide rctls described in 'rctlbuf', and 2978 * with labeling set by 'match', 'doi', and 'label'. 2979 * 2980 * If extended error is non-null, we may use it to return more detailed 2981 * error information. 2982 */ 2983 static zoneid_t 2984 zone_create(const char *zone_name, const char *zone_root, 2985 const priv_set_t *zone_privs, size_t zone_privssz, 2986 caddr_t rctlbuf, size_t rctlbufsz, 2987 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 2988 int match, uint32_t doi, const bslabel_t *label) 2989 { 2990 struct zsched_arg zarg; 2991 nvlist_t *rctls = NULL; 2992 proc_t *pp = curproc; 2993 zone_t *zone, *ztmp; 2994 zoneid_t zoneid; 2995 int error; 2996 int error2 = 0; 2997 char *str; 2998 cred_t *zkcr; 2999 boolean_t insert_label_hash; 3000 3001 if (secpolicy_zone_config(CRED()) != 0) 3002 return (set_errno(EPERM)); 3003 3004 /* can't boot zone from within chroot environment */ 3005 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 3006 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 3007 extended_error)); 3008 3009 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 3010 zoneid = zone->zone_id = id_alloc(zoneid_space); 3011 zone->zone_status = ZONE_IS_UNINITIALIZED; 3012 zone->zone_pool = pool_default; 3013 zone->zone_pool_mod = gethrtime(); 3014 zone->zone_psetid = ZONE_PS_INVAL; 3015 zone->zone_ncpus = 0; 3016 zone->zone_ncpus_online = 0; 3017 zone->zone_restart_init = B_TRUE; 3018 zone->zone_brand = &native_brand; 3019 zone->zone_initname = NULL; 3020 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 3021 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 3022 mutex_init(&zone->zone_rctl_lock, NULL, MUTEX_DEFAULT, NULL); 3023 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 3024 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 3025 offsetof(struct zsd_entry, zsd_linkage)); 3026 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 3027 offsetof(zone_dataset_t, zd_linkage)); 3028 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 3029 3030 if ((error = zone_set_name(zone, zone_name)) != 0) { 3031 zone_free(zone); 3032 return (zone_create_error(error, 0, extended_error)); 3033 } 3034 3035 if ((error = zone_set_root(zone, zone_root)) != 0) { 3036 zone_free(zone); 3037 return (zone_create_error(error, 0, extended_error)); 3038 } 3039 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 3040 zone_free(zone); 3041 return (zone_create_error(error, 0, extended_error)); 3042 } 3043 3044 /* initialize node name to be the same as zone name */ 3045 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3046 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 3047 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 3048 3049 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3050 zone->zone_domain[0] = '\0'; 3051 zone->zone_shares = 1; 3052 zone->zone_shmmax = 0; 3053 zone->zone_ipc.ipcq_shmmni = 0; 3054 zone->zone_ipc.ipcq_semmni = 0; 3055 zone->zone_ipc.ipcq_msgmni = 0; 3056 zone->zone_bootargs = NULL; 3057 zone->zone_initname = 3058 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 3059 (void) strcpy(zone->zone_initname, zone_default_initname); 3060 zone->zone_locked_mem = 0; 3061 zone->zone_locked_mem_ctl = UINT64_MAX; 3062 3063 /* 3064 * Zsched initializes the rctls. 3065 */ 3066 zone->zone_rctls = NULL; 3067 3068 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 3069 zone_free(zone); 3070 return (zone_create_error(error, 0, extended_error)); 3071 } 3072 3073 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 3074 zone_free(zone); 3075 return (set_errno(error)); 3076 } 3077 3078 /* 3079 * Read in the trusted system parameters: 3080 * match flag and sensitivity label. 3081 */ 3082 zone->zone_match = match; 3083 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3084 error = zone_set_label(zone, label, doi); 3085 if (error != 0) { 3086 zone_free(zone); 3087 return (set_errno(error)); 3088 } 3089 insert_label_hash = B_TRUE; 3090 } else { 3091 /* all zones get an admin_low label if system is not labeled */ 3092 zone->zone_slabel = l_admin_low; 3093 label_hold(l_admin_low); 3094 insert_label_hash = B_FALSE; 3095 } 3096 3097 /* 3098 * Stop all lwps since that's what normally happens as part of fork(). 3099 * This needs to happen before we grab any locks to avoid deadlock 3100 * (another lwp in the process could be waiting for the held lock). 3101 */ 3102 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 3103 zone_free(zone); 3104 if (rctls) 3105 nvlist_free(rctls); 3106 return (zone_create_error(error, 0, extended_error)); 3107 } 3108 3109 if (block_mounts() == 0) { 3110 mutex_enter(&pp->p_lock); 3111 if (curthread != pp->p_agenttp) 3112 continuelwps(pp); 3113 mutex_exit(&pp->p_lock); 3114 zone_free(zone); 3115 if (rctls) 3116 nvlist_free(rctls); 3117 return (zone_create_error(error, 0, extended_error)); 3118 } 3119 3120 /* 3121 * Set up credential for kernel access. After this, any errors 3122 * should go through the dance in errout rather than calling 3123 * zone_free directly. 3124 */ 3125 zone->zone_kcred = crdup(kcred); 3126 crsetzone(zone->zone_kcred, zone); 3127 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 3128 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 3129 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 3130 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 3131 3132 mutex_enter(&zonehash_lock); 3133 /* 3134 * Make sure zone doesn't already exist. 3135 * 3136 * If the system and zone are labeled, 3137 * make sure no other zone exists that has the same label. 3138 */ 3139 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 3140 (insert_label_hash && 3141 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 3142 zone_status_t status; 3143 3144 status = zone_status_get(ztmp); 3145 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 3146 error = EEXIST; 3147 else 3148 error = EBUSY; 3149 goto errout; 3150 } 3151 3152 /* 3153 * Don't allow zone creations which would cause one zone's rootpath to 3154 * be accessible from that of another (non-global) zone. 3155 */ 3156 if (zone_is_nested(zone->zone_rootpath)) { 3157 error = EBUSY; 3158 goto errout; 3159 } 3160 3161 ASSERT(zonecount != 0); /* check for leaks */ 3162 if (zonecount + 1 > maxzones) { 3163 error = ENOMEM; 3164 goto errout; 3165 } 3166 3167 if (zone_mount_count(zone->zone_rootpath) != 0) { 3168 error = EBUSY; 3169 error2 = ZE_AREMOUNTS; 3170 goto errout; 3171 } 3172 3173 /* 3174 * Zone is still incomplete, but we need to drop all locks while 3175 * zsched() initializes this zone's kernel process. We 3176 * optimistically add the zone to the hashtable and associated 3177 * lists so a parallel zone_create() doesn't try to create the 3178 * same zone. 3179 */ 3180 zonecount++; 3181 (void) mod_hash_insert(zonehashbyid, 3182 (mod_hash_key_t)(uintptr_t)zone->zone_id, 3183 (mod_hash_val_t)(uintptr_t)zone); 3184 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 3185 (void) strcpy(str, zone->zone_name); 3186 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 3187 (mod_hash_val_t)(uintptr_t)zone); 3188 if (insert_label_hash) { 3189 (void) mod_hash_insert(zonehashbylabel, 3190 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 3191 zone->zone_flags |= ZF_HASHED_LABEL; 3192 } 3193 3194 /* 3195 * Insert into active list. At this point there are no 'hold's 3196 * on the zone, but everyone else knows not to use it, so we can 3197 * continue to use it. zsched() will do a zone_hold() if the 3198 * newproc() is successful. 3199 */ 3200 list_insert_tail(&zone_active, zone); 3201 mutex_exit(&zonehash_lock); 3202 3203 zarg.zone = zone; 3204 zarg.nvlist = rctls; 3205 /* 3206 * The process, task, and project rctls are probably wrong; 3207 * we need an interface to get the default values of all rctls, 3208 * and initialize zsched appropriately. I'm not sure that that 3209 * makes much of a difference, though. 3210 */ 3211 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 3212 /* 3213 * We need to undo all globally visible state. 3214 */ 3215 mutex_enter(&zonehash_lock); 3216 list_remove(&zone_active, zone); 3217 if (zone->zone_flags & ZF_HASHED_LABEL) { 3218 ASSERT(zone->zone_slabel != NULL); 3219 (void) mod_hash_destroy(zonehashbylabel, 3220 (mod_hash_key_t)zone->zone_slabel); 3221 } 3222 (void) mod_hash_destroy(zonehashbyname, 3223 (mod_hash_key_t)(uintptr_t)zone->zone_name); 3224 (void) mod_hash_destroy(zonehashbyid, 3225 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3226 ASSERT(zonecount > 1); 3227 zonecount--; 3228 goto errout; 3229 } 3230 3231 /* 3232 * Zone creation can't fail from now on. 3233 */ 3234 3235 /* 3236 * Let the other lwps continue. 3237 */ 3238 mutex_enter(&pp->p_lock); 3239 if (curthread != pp->p_agenttp) 3240 continuelwps(pp); 3241 mutex_exit(&pp->p_lock); 3242 3243 /* 3244 * Wait for zsched to finish initializing the zone. 3245 */ 3246 zone_status_wait(zone, ZONE_IS_READY); 3247 /* 3248 * The zone is fully visible, so we can let mounts progress. 3249 */ 3250 resume_mounts(); 3251 if (rctls) 3252 nvlist_free(rctls); 3253 3254 return (zoneid); 3255 3256 errout: 3257 mutex_exit(&zonehash_lock); 3258 /* 3259 * Let the other lwps continue. 3260 */ 3261 mutex_enter(&pp->p_lock); 3262 if (curthread != pp->p_agenttp) 3263 continuelwps(pp); 3264 mutex_exit(&pp->p_lock); 3265 3266 resume_mounts(); 3267 if (rctls) 3268 nvlist_free(rctls); 3269 /* 3270 * There is currently one reference to the zone, a cred_ref from 3271 * zone_kcred. To free the zone, we call crfree, which will call 3272 * zone_cred_rele, which will call zone_free. 3273 */ 3274 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 3275 ASSERT(zone->zone_kcred->cr_ref == 1); 3276 ASSERT(zone->zone_ref == 0); 3277 zkcr = zone->zone_kcred; 3278 zone->zone_kcred = NULL; 3279 crfree(zkcr); /* triggers call to zone_free */ 3280 return (zone_create_error(error, error2, extended_error)); 3281 } 3282 3283 /* 3284 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 3285 * the heavy lifting. initname is the path to the program to launch 3286 * at the "top" of the zone; if this is NULL, we use the system default, 3287 * which is stored at zone_default_initname. 3288 */ 3289 static int 3290 zone_boot(zoneid_t zoneid) 3291 { 3292 int err; 3293 zone_t *zone; 3294 3295 if (secpolicy_zone_config(CRED()) != 0) 3296 return (set_errno(EPERM)); 3297 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3298 return (set_errno(EINVAL)); 3299 3300 mutex_enter(&zonehash_lock); 3301 /* 3302 * Look for zone under hash lock to prevent races with calls to 3303 * zone_shutdown, zone_destroy, etc. 3304 */ 3305 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3306 mutex_exit(&zonehash_lock); 3307 return (set_errno(EINVAL)); 3308 } 3309 3310 mutex_enter(&zone_status_lock); 3311 if (zone_status_get(zone) != ZONE_IS_READY) { 3312 mutex_exit(&zone_status_lock); 3313 mutex_exit(&zonehash_lock); 3314 return (set_errno(EINVAL)); 3315 } 3316 zone_status_set(zone, ZONE_IS_BOOTING); 3317 mutex_exit(&zone_status_lock); 3318 3319 zone_hold(zone); /* so we can use the zone_t later */ 3320 mutex_exit(&zonehash_lock); 3321 3322 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 3323 zone_rele(zone); 3324 return (set_errno(EINTR)); 3325 } 3326 3327 /* 3328 * Boot (starting init) might have failed, in which case the zone 3329 * will go to the SHUTTING_DOWN state; an appropriate errno will 3330 * be placed in zone->zone_boot_err, and so we return that. 3331 */ 3332 err = zone->zone_boot_err; 3333 zone_rele(zone); 3334 return (err ? set_errno(err) : 0); 3335 } 3336 3337 /* 3338 * Kills all user processes in the zone, waiting for them all to exit 3339 * before returning. 3340 */ 3341 static int 3342 zone_empty(zone_t *zone) 3343 { 3344 int waitstatus; 3345 3346 /* 3347 * We need to drop zonehash_lock before killing all 3348 * processes, otherwise we'll deadlock with zone_find_* 3349 * which can be called from the exit path. 3350 */ 3351 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 3352 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 3353 ZONE_IS_EMPTY)) == -1) { 3354 killall(zone->zone_id); 3355 } 3356 /* 3357 * return EINTR if we were signaled 3358 */ 3359 if (waitstatus == 0) 3360 return (EINTR); 3361 return (0); 3362 } 3363 3364 /* 3365 * This function implements the policy for zone visibility. 3366 * 3367 * In standard Solaris, a non-global zone can only see itself. 3368 * 3369 * In Trusted Extensions, a labeled zone can lookup any zone whose label 3370 * it dominates. For this test, the label of the global zone is treated as 3371 * admin_high so it is special-cased instead of being checked for dominance. 3372 * 3373 * Returns true if zone attributes are viewable, false otherwise. 3374 */ 3375 static boolean_t 3376 zone_list_access(zone_t *zone) 3377 { 3378 3379 if (curproc->p_zone == global_zone || 3380 curproc->p_zone == zone) { 3381 return (B_TRUE); 3382 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3383 bslabel_t *curproc_label; 3384 bslabel_t *zone_label; 3385 3386 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 3387 zone_label = label2bslabel(zone->zone_slabel); 3388 3389 if (zone->zone_id != GLOBAL_ZONEID && 3390 bldominates(curproc_label, zone_label)) { 3391 return (B_TRUE); 3392 } else { 3393 return (B_FALSE); 3394 } 3395 } else { 3396 return (B_FALSE); 3397 } 3398 } 3399 3400 /* 3401 * Systemcall to start the zone's halt sequence. By the time this 3402 * function successfully returns, all user processes and kernel threads 3403 * executing in it will have exited, ZSD shutdown callbacks executed, 3404 * and the zone status set to ZONE_IS_DOWN. 3405 * 3406 * It is possible that the call will interrupt itself if the caller is the 3407 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 3408 */ 3409 static int 3410 zone_shutdown(zoneid_t zoneid) 3411 { 3412 int error; 3413 zone_t *zone; 3414 zone_status_t status; 3415 3416 if (secpolicy_zone_config(CRED()) != 0) 3417 return (set_errno(EPERM)); 3418 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3419 return (set_errno(EINVAL)); 3420 3421 /* 3422 * Block mounts so that VFS_MOUNT() can get an accurate view of 3423 * the zone's status with regards to ZONE_IS_SHUTTING down. 3424 * 3425 * e.g. NFS can fail the mount if it determines that the zone 3426 * has already begun the shutdown sequence. 3427 */ 3428 if (block_mounts() == 0) 3429 return (set_errno(EINTR)); 3430 mutex_enter(&zonehash_lock); 3431 /* 3432 * Look for zone under hash lock to prevent races with other 3433 * calls to zone_shutdown and zone_destroy. 3434 */ 3435 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3436 mutex_exit(&zonehash_lock); 3437 resume_mounts(); 3438 return (set_errno(EINVAL)); 3439 } 3440 mutex_enter(&zone_status_lock); 3441 status = zone_status_get(zone); 3442 /* 3443 * Fail if the zone isn't fully initialized yet. 3444 */ 3445 if (status < ZONE_IS_READY) { 3446 mutex_exit(&zone_status_lock); 3447 mutex_exit(&zonehash_lock); 3448 resume_mounts(); 3449 return (set_errno(EINVAL)); 3450 } 3451 /* 3452 * If conditions required for zone_shutdown() to return have been met, 3453 * return success. 3454 */ 3455 if (status >= ZONE_IS_DOWN) { 3456 mutex_exit(&zone_status_lock); 3457 mutex_exit(&zonehash_lock); 3458 resume_mounts(); 3459 return (0); 3460 } 3461 /* 3462 * If zone_shutdown() hasn't been called before, go through the motions. 3463 * If it has, there's nothing to do but wait for the kernel threads to 3464 * drain. 3465 */ 3466 if (status < ZONE_IS_EMPTY) { 3467 uint_t ntasks; 3468 3469 mutex_enter(&zone->zone_lock); 3470 if ((ntasks = zone->zone_ntasks) != 1) { 3471 /* 3472 * There's still stuff running. 3473 */ 3474 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3475 } 3476 mutex_exit(&zone->zone_lock); 3477 if (ntasks == 1) { 3478 /* 3479 * The only way to create another task is through 3480 * zone_enter(), which will block until we drop 3481 * zonehash_lock. The zone is empty. 3482 */ 3483 if (zone->zone_kthreads == NULL) { 3484 /* 3485 * Skip ahead to ZONE_IS_DOWN 3486 */ 3487 zone_status_set(zone, ZONE_IS_DOWN); 3488 } else { 3489 zone_status_set(zone, ZONE_IS_EMPTY); 3490 } 3491 } 3492 } 3493 zone_hold(zone); /* so we can use the zone_t later */ 3494 mutex_exit(&zone_status_lock); 3495 mutex_exit(&zonehash_lock); 3496 resume_mounts(); 3497 3498 if (error = zone_empty(zone)) { 3499 zone_rele(zone); 3500 return (set_errno(error)); 3501 } 3502 /* 3503 * After the zone status goes to ZONE_IS_DOWN this zone will no 3504 * longer be notified of changes to the pools configuration, so 3505 * in order to not end up with a stale pool pointer, we point 3506 * ourselves at the default pool and remove all resource 3507 * visibility. This is especially important as the zone_t may 3508 * languish on the deathrow for a very long time waiting for 3509 * cred's to drain out. 3510 * 3511 * This rebinding of the zone can happen multiple times 3512 * (presumably due to interrupted or parallel systemcalls) 3513 * without any adverse effects. 3514 */ 3515 if (pool_lock_intr() != 0) { 3516 zone_rele(zone); 3517 return (set_errno(EINTR)); 3518 } 3519 if (pool_state == POOL_ENABLED) { 3520 mutex_enter(&cpu_lock); 3521 zone_pool_set(zone, pool_default); 3522 /* 3523 * The zone no longer needs to be able to see any cpus. 3524 */ 3525 zone_pset_set(zone, ZONE_PS_INVAL); 3526 mutex_exit(&cpu_lock); 3527 } 3528 pool_unlock(); 3529 3530 /* 3531 * ZSD shutdown callbacks can be executed multiple times, hence 3532 * it is safe to not be holding any locks across this call. 3533 */ 3534 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 3535 3536 mutex_enter(&zone_status_lock); 3537 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 3538 zone_status_set(zone, ZONE_IS_DOWN); 3539 mutex_exit(&zone_status_lock); 3540 3541 /* 3542 * Wait for kernel threads to drain. 3543 */ 3544 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 3545 zone_rele(zone); 3546 return (set_errno(EINTR)); 3547 } 3548 3549 brand_unregister_zone(zone->zone_brand); 3550 3551 zone_rele(zone); 3552 return (0); 3553 } 3554 3555 /* 3556 * Systemcall entry point to finalize the zone halt process. The caller 3557 * must have already successfully called zone_shutdown(). 3558 * 3559 * Upon successful completion, the zone will have been fully destroyed: 3560 * zsched will have exited, destructor callbacks executed, and the zone 3561 * removed from the list of active zones. 3562 */ 3563 static int 3564 zone_destroy(zoneid_t zoneid) 3565 { 3566 uint64_t uniqid; 3567 zone_t *zone; 3568 zone_status_t status; 3569 3570 if (secpolicy_zone_config(CRED()) != 0) 3571 return (set_errno(EPERM)); 3572 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3573 return (set_errno(EINVAL)); 3574 3575 mutex_enter(&zonehash_lock); 3576 /* 3577 * Look for zone under hash lock to prevent races with other 3578 * calls to zone_destroy. 3579 */ 3580 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3581 mutex_exit(&zonehash_lock); 3582 return (set_errno(EINVAL)); 3583 } 3584 3585 if (zone_mount_count(zone->zone_rootpath) != 0) { 3586 mutex_exit(&zonehash_lock); 3587 return (set_errno(EBUSY)); 3588 } 3589 mutex_enter(&zone_status_lock); 3590 status = zone_status_get(zone); 3591 if (status < ZONE_IS_DOWN) { 3592 mutex_exit(&zone_status_lock); 3593 mutex_exit(&zonehash_lock); 3594 return (set_errno(EBUSY)); 3595 } else if (status == ZONE_IS_DOWN) { 3596 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 3597 } 3598 mutex_exit(&zone_status_lock); 3599 zone_hold(zone); 3600 mutex_exit(&zonehash_lock); 3601 3602 /* 3603 * wait for zsched to exit 3604 */ 3605 zone_status_wait(zone, ZONE_IS_DEAD); 3606 zone_zsd_callbacks(zone, ZSD_DESTROY); 3607 uniqid = zone->zone_uniqid; 3608 zone_rele(zone); 3609 zone = NULL; /* potentially free'd */ 3610 3611 mutex_enter(&zonehash_lock); 3612 for (; /* ever */; ) { 3613 boolean_t unref; 3614 3615 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 3616 zone->zone_uniqid != uniqid) { 3617 /* 3618 * The zone has gone away. Necessary conditions 3619 * are met, so we return success. 3620 */ 3621 mutex_exit(&zonehash_lock); 3622 return (0); 3623 } 3624 mutex_enter(&zone->zone_lock); 3625 unref = ZONE_IS_UNREF(zone); 3626 mutex_exit(&zone->zone_lock); 3627 if (unref) { 3628 /* 3629 * There is only one reference to the zone -- that 3630 * added when the zone was added to the hashtables -- 3631 * and things will remain this way until we drop 3632 * zonehash_lock... we can go ahead and cleanup the 3633 * zone. 3634 */ 3635 break; 3636 } 3637 3638 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 3639 /* Signaled */ 3640 mutex_exit(&zonehash_lock); 3641 return (set_errno(EINTR)); 3642 } 3643 3644 } 3645 3646 /* 3647 * It is now safe to let the zone be recreated; remove it from the 3648 * lists. The memory will not be freed until the last cred 3649 * reference goes away. 3650 */ 3651 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 3652 zonecount--; 3653 /* remove from active list and hash tables */ 3654 list_remove(&zone_active, zone); 3655 (void) mod_hash_destroy(zonehashbyname, 3656 (mod_hash_key_t)zone->zone_name); 3657 (void) mod_hash_destroy(zonehashbyid, 3658 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3659 if (zone->zone_flags & ZF_HASHED_LABEL) 3660 (void) mod_hash_destroy(zonehashbylabel, 3661 (mod_hash_key_t)zone->zone_slabel); 3662 mutex_exit(&zonehash_lock); 3663 3664 /* 3665 * Release the root vnode; we're not using it anymore. Nor should any 3666 * other thread that might access it exist. 3667 */ 3668 if (zone->zone_rootvp != NULL) { 3669 VN_RELE(zone->zone_rootvp); 3670 zone->zone_rootvp = NULL; 3671 } 3672 3673 /* add to deathrow list */ 3674 mutex_enter(&zone_deathrow_lock); 3675 list_insert_tail(&zone_deathrow, zone); 3676 mutex_exit(&zone_deathrow_lock); 3677 3678 /* 3679 * Drop last reference (which was added by zsched()), this will 3680 * free the zone unless there are outstanding cred references. 3681 */ 3682 zone_rele(zone); 3683 return (0); 3684 } 3685 3686 /* 3687 * Systemcall entry point for zone_getattr(2). 3688 */ 3689 static ssize_t 3690 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 3691 { 3692 size_t size; 3693 int error = 0, err; 3694 zone_t *zone; 3695 char *zonepath; 3696 char *outstr; 3697 zone_status_t zone_status; 3698 pid_t initpid; 3699 boolean_t global = (curproc->p_zone == global_zone); 3700 boolean_t curzone = (curproc->p_zone->zone_id == zoneid); 3701 3702 mutex_enter(&zonehash_lock); 3703 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3704 mutex_exit(&zonehash_lock); 3705 return (set_errno(EINVAL)); 3706 } 3707 zone_status = zone_status_get(zone); 3708 if (zone_status < ZONE_IS_READY) { 3709 mutex_exit(&zonehash_lock); 3710 return (set_errno(EINVAL)); 3711 } 3712 zone_hold(zone); 3713 mutex_exit(&zonehash_lock); 3714 3715 /* 3716 * If not in the global zone, don't show information about other zones, 3717 * unless the system is labeled and the local zone's label dominates 3718 * the other zone. 3719 */ 3720 if (!zone_list_access(zone)) { 3721 zone_rele(zone); 3722 return (set_errno(EINVAL)); 3723 } 3724 3725 switch (attr) { 3726 case ZONE_ATTR_ROOT: 3727 if (global) { 3728 /* 3729 * Copy the path to trim the trailing "/" (except for 3730 * the global zone). 3731 */ 3732 if (zone != global_zone) 3733 size = zone->zone_rootpathlen - 1; 3734 else 3735 size = zone->zone_rootpathlen; 3736 zonepath = kmem_alloc(size, KM_SLEEP); 3737 bcopy(zone->zone_rootpath, zonepath, size); 3738 zonepath[size - 1] = '\0'; 3739 } else { 3740 if (curzone || !is_system_labeled()) { 3741 /* 3742 * Caller is not in the global zone. 3743 * if the query is on the current zone 3744 * or the system is not labeled, 3745 * just return faked-up path for current zone. 3746 */ 3747 zonepath = "/"; 3748 size = 2; 3749 } else { 3750 /* 3751 * Return related path for current zone. 3752 */ 3753 int prefix_len = strlen(zone_prefix); 3754 int zname_len = strlen(zone->zone_name); 3755 3756 size = prefix_len + zname_len + 1; 3757 zonepath = kmem_alloc(size, KM_SLEEP); 3758 bcopy(zone_prefix, zonepath, prefix_len); 3759 bcopy(zone->zone_name, zonepath + 3760 prefix_len, zname_len); 3761 zonepath[size - 1] = '\0'; 3762 } 3763 } 3764 if (bufsize > size) 3765 bufsize = size; 3766 if (buf != NULL) { 3767 err = copyoutstr(zonepath, buf, bufsize, NULL); 3768 if (err != 0 && err != ENAMETOOLONG) 3769 error = EFAULT; 3770 } 3771 if (global || (is_system_labeled() && !curzone)) 3772 kmem_free(zonepath, size); 3773 break; 3774 3775 case ZONE_ATTR_NAME: 3776 size = strlen(zone->zone_name) + 1; 3777 if (bufsize > size) 3778 bufsize = size; 3779 if (buf != NULL) { 3780 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 3781 if (err != 0 && err != ENAMETOOLONG) 3782 error = EFAULT; 3783 } 3784 break; 3785 3786 case ZONE_ATTR_STATUS: 3787 /* 3788 * Since we're not holding zonehash_lock, the zone status 3789 * may be anything; leave it up to userland to sort it out. 3790 */ 3791 size = sizeof (zone_status); 3792 if (bufsize > size) 3793 bufsize = size; 3794 zone_status = zone_status_get(zone); 3795 if (buf != NULL && 3796 copyout(&zone_status, buf, bufsize) != 0) 3797 error = EFAULT; 3798 break; 3799 case ZONE_ATTR_PRIVSET: 3800 size = sizeof (priv_set_t); 3801 if (bufsize > size) 3802 bufsize = size; 3803 if (buf != NULL && 3804 copyout(zone->zone_privset, buf, bufsize) != 0) 3805 error = EFAULT; 3806 break; 3807 case ZONE_ATTR_UNIQID: 3808 size = sizeof (zone->zone_uniqid); 3809 if (bufsize > size) 3810 bufsize = size; 3811 if (buf != NULL && 3812 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 3813 error = EFAULT; 3814 break; 3815 case ZONE_ATTR_POOLID: 3816 { 3817 pool_t *pool; 3818 poolid_t poolid; 3819 3820 if (pool_lock_intr() != 0) { 3821 error = EINTR; 3822 break; 3823 } 3824 pool = zone_pool_get(zone); 3825 poolid = pool->pool_id; 3826 pool_unlock(); 3827 size = sizeof (poolid); 3828 if (bufsize > size) 3829 bufsize = size; 3830 if (buf != NULL && copyout(&poolid, buf, size) != 0) 3831 error = EFAULT; 3832 } 3833 break; 3834 case ZONE_ATTR_SLBL: 3835 size = sizeof (bslabel_t); 3836 if (bufsize > size) 3837 bufsize = size; 3838 if (zone->zone_slabel == NULL) 3839 error = EINVAL; 3840 else if (buf != NULL && 3841 copyout(label2bslabel(zone->zone_slabel), buf, 3842 bufsize) != 0) 3843 error = EFAULT; 3844 break; 3845 case ZONE_ATTR_INITPID: 3846 size = sizeof (initpid); 3847 if (bufsize > size) 3848 bufsize = size; 3849 initpid = zone->zone_proc_initpid; 3850 if (initpid == -1) { 3851 error = ESRCH; 3852 break; 3853 } 3854 if (buf != NULL && 3855 copyout(&initpid, buf, bufsize) != 0) 3856 error = EFAULT; 3857 break; 3858 case ZONE_ATTR_BRAND: 3859 size = strlen(zone->zone_brand->b_name) + 1; 3860 3861 if (bufsize > size) 3862 bufsize = size; 3863 if (buf != NULL) { 3864 err = copyoutstr(zone->zone_brand->b_name, buf, 3865 bufsize, NULL); 3866 if (err != 0 && err != ENAMETOOLONG) 3867 error = EFAULT; 3868 } 3869 break; 3870 case ZONE_ATTR_INITNAME: 3871 size = strlen(zone->zone_initname) + 1; 3872 if (bufsize > size) 3873 bufsize = size; 3874 if (buf != NULL) { 3875 err = copyoutstr(zone->zone_initname, buf, bufsize, 3876 NULL); 3877 if (err != 0 && err != ENAMETOOLONG) 3878 error = EFAULT; 3879 } 3880 break; 3881 case ZONE_ATTR_BOOTARGS: 3882 if (zone->zone_bootargs == NULL) 3883 outstr = ""; 3884 else 3885 outstr = zone->zone_bootargs; 3886 size = strlen(outstr) + 1; 3887 if (bufsize > size) 3888 bufsize = size; 3889 if (buf != NULL) { 3890 err = copyoutstr(outstr, buf, bufsize, NULL); 3891 if (err != 0 && err != ENAMETOOLONG) 3892 error = EFAULT; 3893 } 3894 break; 3895 default: 3896 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 3897 size = bufsize; 3898 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 3899 } else { 3900 error = EINVAL; 3901 } 3902 } 3903 zone_rele(zone); 3904 3905 if (error) 3906 return (set_errno(error)); 3907 return ((ssize_t)size); 3908 } 3909 3910 /* 3911 * Systemcall entry point for zone_setattr(2). 3912 */ 3913 /*ARGSUSED*/ 3914 static int 3915 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 3916 { 3917 zone_t *zone; 3918 zone_status_t zone_status; 3919 struct brand_attr *attrp; 3920 int err; 3921 3922 if (secpolicy_zone_config(CRED()) != 0) 3923 return (set_errno(EPERM)); 3924 3925 /* 3926 * At present, attributes can only be set on non-running, 3927 * non-global zones. 3928 */ 3929 if (zoneid == GLOBAL_ZONEID) { 3930 return (set_errno(EINVAL)); 3931 } 3932 3933 mutex_enter(&zonehash_lock); 3934 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3935 mutex_exit(&zonehash_lock); 3936 return (set_errno(EINVAL)); 3937 } 3938 zone_hold(zone); 3939 mutex_exit(&zonehash_lock); 3940 3941 zone_status = zone_status_get(zone); 3942 if (zone_status > ZONE_IS_READY) 3943 goto done; 3944 3945 switch (attr) { 3946 case ZONE_ATTR_INITNAME: 3947 err = zone_set_initname(zone, (const char *)buf); 3948 break; 3949 case ZONE_ATTR_BOOTARGS: 3950 err = zone_set_bootargs(zone, (const char *)buf); 3951 break; 3952 case ZONE_ATTR_BRAND: 3953 ASSERT(!ZONE_IS_BRANDED(zone)); 3954 err = 0; 3955 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 3956 if ((buf == NULL) || 3957 (copyin(buf, attrp, sizeof (struct brand_attr)) != 0)) { 3958 kmem_free(attrp, sizeof (struct brand_attr)); 3959 err = EFAULT; 3960 break; 3961 } 3962 3963 if (is_system_labeled() && strncmp(attrp->ba_brandname, 3964 NATIVE_BRAND_NAME, MAXNAMELEN) != 0) { 3965 err = EPERM; 3966 break; 3967 } 3968 3969 zone->zone_brand = brand_register_zone(attrp); 3970 kmem_free(attrp, sizeof (struct brand_attr)); 3971 if (zone->zone_brand == NULL) 3972 err = EINVAL; 3973 break; 3974 default: 3975 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 3976 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 3977 else 3978 err = EINVAL; 3979 } 3980 3981 done: 3982 zone_rele(zone); 3983 return (err != 0 ? set_errno(err) : 0); 3984 } 3985 3986 /* 3987 * Return zero if the process has at least one vnode mapped in to its 3988 * address space which shouldn't be allowed to change zones. 3989 */ 3990 static int 3991 as_can_change_zones(void) 3992 { 3993 proc_t *pp = curproc; 3994 struct seg *seg; 3995 struct as *as = pp->p_as; 3996 vnode_t *vp; 3997 int allow = 1; 3998 3999 ASSERT(pp->p_as != &kas); 4000 AS_LOCK_ENTER(&as, &as->a_lock, RW_READER); 4001 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 4002 /* 4003 * if we can't get a backing vnode for this segment then skip 4004 * it. 4005 */ 4006 vp = NULL; 4007 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 4008 continue; 4009 if (!vn_can_change_zones(vp)) { /* bail on first match */ 4010 allow = 0; 4011 break; 4012 } 4013 } 4014 AS_LOCK_EXIT(&as, &as->a_lock); 4015 return (allow); 4016 } 4017 4018 /* 4019 * Systemcall entry point for zone_enter(). 4020 * 4021 * The current process is injected into said zone. In the process 4022 * it will change its project membership, privileges, rootdir/cwd, 4023 * zone-wide rctls, and pool association to match those of the zone. 4024 * 4025 * The first zone_enter() called while the zone is in the ZONE_IS_READY 4026 * state will transition it to ZONE_IS_RUNNING. Processes may only 4027 * enter a zone that is "ready" or "running". 4028 */ 4029 static int 4030 zone_enter(zoneid_t zoneid) 4031 { 4032 zone_t *zone; 4033 vnode_t *vp; 4034 proc_t *pp = curproc; 4035 contract_t *ct; 4036 cont_process_t *ctp; 4037 task_t *tk, *oldtk; 4038 kproject_t *zone_proj0; 4039 cred_t *cr, *newcr; 4040 pool_t *oldpool, *newpool; 4041 sess_t *sp; 4042 uid_t uid; 4043 zone_status_t status; 4044 int err = 0; 4045 rctl_entity_p_t e; 4046 4047 if (secpolicy_zone_config(CRED()) != 0) 4048 return (set_errno(EPERM)); 4049 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4050 return (set_errno(EINVAL)); 4051 4052 /* 4053 * Stop all lwps so we don't need to hold a lock to look at 4054 * curproc->p_zone. This needs to happen before we grab any 4055 * locks to avoid deadlock (another lwp in the process could 4056 * be waiting for the held lock). 4057 */ 4058 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 4059 return (set_errno(EINTR)); 4060 4061 /* 4062 * Make sure we're not changing zones with files open or mapped in 4063 * to our address space which shouldn't be changing zones. 4064 */ 4065 if (!files_can_change_zones()) { 4066 err = EBADF; 4067 goto out; 4068 } 4069 if (!as_can_change_zones()) { 4070 err = EFAULT; 4071 goto out; 4072 } 4073 4074 mutex_enter(&zonehash_lock); 4075 if (pp->p_zone != global_zone) { 4076 mutex_exit(&zonehash_lock); 4077 err = EINVAL; 4078 goto out; 4079 } 4080 4081 zone = zone_find_all_by_id(zoneid); 4082 if (zone == NULL) { 4083 mutex_exit(&zonehash_lock); 4084 err = EINVAL; 4085 goto out; 4086 } 4087 4088 /* 4089 * To prevent processes in a zone from holding contracts on 4090 * extrazonal resources, and to avoid process contract 4091 * memberships which span zones, contract holders and processes 4092 * which aren't the sole members of their encapsulating process 4093 * contracts are not allowed to zone_enter. 4094 */ 4095 ctp = pp->p_ct_process; 4096 ct = &ctp->conp_contract; 4097 mutex_enter(&ct->ct_lock); 4098 mutex_enter(&pp->p_lock); 4099 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 4100 mutex_exit(&pp->p_lock); 4101 mutex_exit(&ct->ct_lock); 4102 mutex_exit(&zonehash_lock); 4103 pool_unlock(); 4104 err = EINVAL; 4105 goto out; 4106 } 4107 4108 /* 4109 * Moreover, we don't allow processes whose encapsulating 4110 * process contracts have inherited extrazonal contracts. 4111 * While it would be easier to eliminate all process contracts 4112 * with inherited contracts, we need to be able to give a 4113 * restarted init (or other zone-penetrating process) its 4114 * predecessor's contracts. 4115 */ 4116 if (ctp->conp_ninherited != 0) { 4117 contract_t *next; 4118 for (next = list_head(&ctp->conp_inherited); next; 4119 next = list_next(&ctp->conp_inherited, next)) { 4120 if (contract_getzuniqid(next) != zone->zone_uniqid) { 4121 mutex_exit(&pp->p_lock); 4122 mutex_exit(&ct->ct_lock); 4123 mutex_exit(&zonehash_lock); 4124 pool_unlock(); 4125 err = EINVAL; 4126 goto out; 4127 } 4128 } 4129 } 4130 mutex_exit(&pp->p_lock); 4131 mutex_exit(&ct->ct_lock); 4132 4133 status = zone_status_get(zone); 4134 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 4135 /* 4136 * Can't join 4137 */ 4138 mutex_exit(&zonehash_lock); 4139 err = EINVAL; 4140 goto out; 4141 } 4142 4143 /* 4144 * Make sure new priv set is within the permitted set for caller 4145 */ 4146 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 4147 mutex_exit(&zonehash_lock); 4148 err = EPERM; 4149 goto out; 4150 } 4151 /* 4152 * We want to momentarily drop zonehash_lock while we optimistically 4153 * bind curproc to the pool it should be running in. This is safe 4154 * since the zone can't disappear (we have a hold on it). 4155 */ 4156 zone_hold(zone); 4157 mutex_exit(&zonehash_lock); 4158 4159 /* 4160 * Grab pool_lock to keep the pools configuration from changing 4161 * and to stop ourselves from getting rebound to another pool 4162 * until we join the zone. 4163 */ 4164 if (pool_lock_intr() != 0) { 4165 zone_rele(zone); 4166 err = EINTR; 4167 goto out; 4168 } 4169 ASSERT(secpolicy_pool(CRED()) == 0); 4170 /* 4171 * Bind ourselves to the pool currently associated with the zone. 4172 */ 4173 oldpool = curproc->p_pool; 4174 newpool = zone_pool_get(zone); 4175 if (pool_state == POOL_ENABLED && newpool != oldpool && 4176 (err = pool_do_bind(newpool, P_PID, P_MYID, 4177 POOL_BIND_ALL)) != 0) { 4178 pool_unlock(); 4179 zone_rele(zone); 4180 goto out; 4181 } 4182 4183 /* 4184 * Grab cpu_lock now; we'll need it later when we call 4185 * task_join(). 4186 */ 4187 mutex_enter(&cpu_lock); 4188 mutex_enter(&zonehash_lock); 4189 /* 4190 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 4191 */ 4192 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 4193 /* 4194 * Can't join anymore. 4195 */ 4196 mutex_exit(&zonehash_lock); 4197 mutex_exit(&cpu_lock); 4198 if (pool_state == POOL_ENABLED && 4199 newpool != oldpool) 4200 (void) pool_do_bind(oldpool, P_PID, P_MYID, 4201 POOL_BIND_ALL); 4202 pool_unlock(); 4203 zone_rele(zone); 4204 err = EINVAL; 4205 goto out; 4206 } 4207 4208 mutex_enter(&pp->p_lock); 4209 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 4210 /* verify that we do not exceed and task or lwp limits */ 4211 mutex_enter(&zone->zone_nlwps_lock); 4212 /* add new lwps to zone and zone's proj0 */ 4213 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 4214 zone->zone_nlwps += pp->p_lwpcnt; 4215 /* add 1 task to zone's proj0 */ 4216 zone_proj0->kpj_ntasks += 1; 4217 mutex_exit(&zone->zone_nlwps_lock); 4218 4219 mutex_enter(&zone->zone_rctl_lock); 4220 zone->zone_locked_mem += pp->p_locked_mem; 4221 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 4222 mutex_exit(&zone->zone_rctl_lock); 4223 4224 /* remove lwps from proc's old zone and old project */ 4225 mutex_enter(&pp->p_zone->zone_nlwps_lock); 4226 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 4227 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 4228 mutex_exit(&pp->p_zone->zone_nlwps_lock); 4229 4230 mutex_enter(&pp->p_zone->zone_rctl_lock); 4231 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 4232 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 4233 mutex_exit(&pp->p_zone->zone_rctl_lock); 4234 4235 mutex_exit(&pp->p_lock); 4236 4237 /* 4238 * Joining the zone cannot fail from now on. 4239 * 4240 * This means that a lot of the following code can be commonized and 4241 * shared with zsched(). 4242 */ 4243 4244 /* 4245 * Reset the encapsulating process contract's zone. 4246 */ 4247 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 4248 contract_setzuniqid(ct, zone->zone_uniqid); 4249 4250 /* 4251 * Create a new task and associate the process with the project keyed 4252 * by (projid,zoneid). 4253 * 4254 * We might as well be in project 0; the global zone's projid doesn't 4255 * make much sense in a zone anyhow. 4256 * 4257 * This also increments zone_ntasks, and returns with p_lock held. 4258 */ 4259 tk = task_create(0, zone); 4260 oldtk = task_join(tk, 0); 4261 mutex_exit(&cpu_lock); 4262 4263 pp->p_flag |= SZONETOP; 4264 pp->p_zone = zone; 4265 4266 /* 4267 * call RCTLOP_SET functions on this proc 4268 */ 4269 e.rcep_p.zone = zone; 4270 e.rcep_t = RCENTITY_ZONE; 4271 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 4272 RCD_CALLBACK); 4273 mutex_exit(&pp->p_lock); 4274 4275 /* 4276 * We don't need to hold any of zsched's locks here; not only do we know 4277 * the process and zone aren't going away, we know its session isn't 4278 * changing either. 4279 * 4280 * By joining zsched's session here, we mimic the behavior in the 4281 * global zone of init's sid being the pid of sched. We extend this 4282 * to all zlogin-like zone_enter()'ing processes as well. 4283 */ 4284 mutex_enter(&pidlock); 4285 sp = zone->zone_zsched->p_sessp; 4286 sess_hold(zone->zone_zsched); 4287 mutex_enter(&pp->p_lock); 4288 pgexit(pp); 4289 sess_rele(pp->p_sessp, B_TRUE); 4290 pp->p_sessp = sp; 4291 pgjoin(pp, zone->zone_zsched->p_pidp); 4292 mutex_exit(&pp->p_lock); 4293 mutex_exit(&pidlock); 4294 4295 mutex_exit(&zonehash_lock); 4296 /* 4297 * We're firmly in the zone; let pools progress. 4298 */ 4299 pool_unlock(); 4300 task_rele(oldtk); 4301 /* 4302 * We don't need to retain a hold on the zone since we already 4303 * incremented zone_ntasks, so the zone isn't going anywhere. 4304 */ 4305 zone_rele(zone); 4306 4307 /* 4308 * Chroot 4309 */ 4310 vp = zone->zone_rootvp; 4311 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 4312 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 4313 4314 /* 4315 * Change process credentials 4316 */ 4317 newcr = cralloc(); 4318 mutex_enter(&pp->p_crlock); 4319 cr = pp->p_cred; 4320 crcopy_to(cr, newcr); 4321 crsetzone(newcr, zone); 4322 pp->p_cred = newcr; 4323 4324 /* 4325 * Restrict all process privilege sets to zone limit 4326 */ 4327 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 4328 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 4329 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 4330 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 4331 mutex_exit(&pp->p_crlock); 4332 crset(pp, newcr); 4333 4334 /* 4335 * Adjust upcount to reflect zone entry. 4336 */ 4337 uid = crgetruid(newcr); 4338 mutex_enter(&pidlock); 4339 upcount_dec(uid, GLOBAL_ZONEID); 4340 upcount_inc(uid, zoneid); 4341 mutex_exit(&pidlock); 4342 4343 /* 4344 * Set up core file path and content. 4345 */ 4346 set_core_defaults(); 4347 4348 out: 4349 /* 4350 * Let the other lwps continue. 4351 */ 4352 mutex_enter(&pp->p_lock); 4353 if (curthread != pp->p_agenttp) 4354 continuelwps(pp); 4355 mutex_exit(&pp->p_lock); 4356 4357 return (err != 0 ? set_errno(err) : 0); 4358 } 4359 4360 /* 4361 * Systemcall entry point for zone_list(2). 4362 * 4363 * Processes running in a (non-global) zone only see themselves. 4364 * On labeled systems, they see all zones whose label they dominate. 4365 */ 4366 static int 4367 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 4368 { 4369 zoneid_t *zoneids; 4370 zone_t *zone, *myzone; 4371 uint_t user_nzones, real_nzones; 4372 uint_t domi_nzones; 4373 int error; 4374 4375 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 4376 return (set_errno(EFAULT)); 4377 4378 myzone = curproc->p_zone; 4379 if (myzone != global_zone) { 4380 bslabel_t *mybslab; 4381 4382 if (!is_system_labeled()) { 4383 /* just return current zone */ 4384 real_nzones = domi_nzones = 1; 4385 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 4386 zoneids[0] = myzone->zone_id; 4387 } else { 4388 /* return all zones that are dominated */ 4389 mutex_enter(&zonehash_lock); 4390 real_nzones = zonecount; 4391 domi_nzones = 0; 4392 if (real_nzones > 0) { 4393 zoneids = kmem_alloc(real_nzones * 4394 sizeof (zoneid_t), KM_SLEEP); 4395 mybslab = label2bslabel(myzone->zone_slabel); 4396 for (zone = list_head(&zone_active); 4397 zone != NULL; 4398 zone = list_next(&zone_active, zone)) { 4399 if (zone->zone_id == GLOBAL_ZONEID) 4400 continue; 4401 if (zone != myzone && 4402 (zone->zone_flags & ZF_IS_SCRATCH)) 4403 continue; 4404 /* 4405 * Note that a label always dominates 4406 * itself, so myzone is always included 4407 * in the list. 4408 */ 4409 if (bldominates(mybslab, 4410 label2bslabel(zone->zone_slabel))) { 4411 zoneids[domi_nzones++] = 4412 zone->zone_id; 4413 } 4414 } 4415 } 4416 mutex_exit(&zonehash_lock); 4417 } 4418 } else { 4419 mutex_enter(&zonehash_lock); 4420 real_nzones = zonecount; 4421 domi_nzones = 0; 4422 if (real_nzones > 0) { 4423 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 4424 KM_SLEEP); 4425 for (zone = list_head(&zone_active); zone != NULL; 4426 zone = list_next(&zone_active, zone)) 4427 zoneids[domi_nzones++] = zone->zone_id; 4428 ASSERT(domi_nzones == real_nzones); 4429 } 4430 mutex_exit(&zonehash_lock); 4431 } 4432 4433 /* 4434 * If user has allocated space for fewer entries than we found, then 4435 * return only up to his limit. Either way, tell him exactly how many 4436 * we found. 4437 */ 4438 if (domi_nzones < user_nzones) 4439 user_nzones = domi_nzones; 4440 error = 0; 4441 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 4442 error = EFAULT; 4443 } else if (zoneidlist != NULL && user_nzones != 0) { 4444 if (copyout(zoneids, zoneidlist, 4445 user_nzones * sizeof (zoneid_t)) != 0) 4446 error = EFAULT; 4447 } 4448 4449 if (real_nzones > 0) 4450 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 4451 4452 if (error != 0) 4453 return (set_errno(error)); 4454 else 4455 return (0); 4456 } 4457 4458 /* 4459 * Systemcall entry point for zone_lookup(2). 4460 * 4461 * Non-global zones are only able to see themselves and (on labeled systems) 4462 * the zones they dominate. 4463 */ 4464 static zoneid_t 4465 zone_lookup(const char *zone_name) 4466 { 4467 char *kname; 4468 zone_t *zone; 4469 zoneid_t zoneid; 4470 int err; 4471 4472 if (zone_name == NULL) { 4473 /* return caller's zone id */ 4474 return (getzoneid()); 4475 } 4476 4477 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 4478 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 4479 kmem_free(kname, ZONENAME_MAX); 4480 return (set_errno(err)); 4481 } 4482 4483 mutex_enter(&zonehash_lock); 4484 zone = zone_find_all_by_name(kname); 4485 kmem_free(kname, ZONENAME_MAX); 4486 /* 4487 * In a non-global zone, can only lookup global and own name. 4488 * In Trusted Extensions zone label dominance rules apply. 4489 */ 4490 if (zone == NULL || 4491 zone_status_get(zone) < ZONE_IS_READY || 4492 !zone_list_access(zone)) { 4493 mutex_exit(&zonehash_lock); 4494 return (set_errno(EINVAL)); 4495 } else { 4496 zoneid = zone->zone_id; 4497 mutex_exit(&zonehash_lock); 4498 return (zoneid); 4499 } 4500 } 4501 4502 static int 4503 zone_version(int *version_arg) 4504 { 4505 int version = ZONE_SYSCALL_API_VERSION; 4506 4507 if (copyout(&version, version_arg, sizeof (int)) != 0) 4508 return (set_errno(EFAULT)); 4509 return (0); 4510 } 4511 4512 /* ARGSUSED */ 4513 long 4514 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 4515 { 4516 zone_def zs; 4517 4518 switch (cmd) { 4519 case ZONE_CREATE: 4520 if (get_udatamodel() == DATAMODEL_NATIVE) { 4521 if (copyin(arg1, &zs, sizeof (zone_def))) { 4522 return (set_errno(EFAULT)); 4523 } 4524 } else { 4525 #ifdef _SYSCALL32_IMPL 4526 zone_def32 zs32; 4527 4528 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 4529 return (set_errno(EFAULT)); 4530 } 4531 zs.zone_name = 4532 (const char *)(unsigned long)zs32.zone_name; 4533 zs.zone_root = 4534 (const char *)(unsigned long)zs32.zone_root; 4535 zs.zone_privs = 4536 (const struct priv_set *) 4537 (unsigned long)zs32.zone_privs; 4538 zs.zone_privssz = zs32.zone_privssz; 4539 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 4540 zs.rctlbufsz = zs32.rctlbufsz; 4541 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 4542 zs.zfsbufsz = zs32.zfsbufsz; 4543 zs.extended_error = 4544 (int *)(unsigned long)zs32.extended_error; 4545 zs.match = zs32.match; 4546 zs.doi = zs32.doi; 4547 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 4548 #else 4549 panic("get_udatamodel() returned bogus result\n"); 4550 #endif 4551 } 4552 4553 return (zone_create(zs.zone_name, zs.zone_root, 4554 zs.zone_privs, zs.zone_privssz, 4555 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 4556 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 4557 zs.extended_error, zs.match, zs.doi, 4558 zs.label)); 4559 case ZONE_BOOT: 4560 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 4561 case ZONE_DESTROY: 4562 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 4563 case ZONE_GETATTR: 4564 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 4565 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 4566 case ZONE_SETATTR: 4567 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 4568 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 4569 case ZONE_ENTER: 4570 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 4571 case ZONE_LIST: 4572 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 4573 case ZONE_SHUTDOWN: 4574 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 4575 case ZONE_LOOKUP: 4576 return (zone_lookup((const char *)arg1)); 4577 case ZONE_VERSION: 4578 return (zone_version((int *)arg1)); 4579 default: 4580 return (set_errno(EINVAL)); 4581 } 4582 } 4583 4584 struct zarg { 4585 zone_t *zone; 4586 zone_cmd_arg_t arg; 4587 }; 4588 4589 static int 4590 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 4591 { 4592 char *buf; 4593 size_t buflen; 4594 int error; 4595 4596 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 4597 buf = kmem_alloc(buflen, KM_SLEEP); 4598 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 4599 error = door_ki_open(buf, doorp); 4600 kmem_free(buf, buflen); 4601 return (error); 4602 } 4603 4604 static void 4605 zone_release_door(door_handle_t *doorp) 4606 { 4607 door_ki_rele(*doorp); 4608 *doorp = NULL; 4609 } 4610 4611 static void 4612 zone_ki_call_zoneadmd(struct zarg *zargp) 4613 { 4614 door_handle_t door = NULL; 4615 door_arg_t darg, save_arg; 4616 char *zone_name; 4617 size_t zone_namelen; 4618 zoneid_t zoneid; 4619 zone_t *zone; 4620 zone_cmd_arg_t arg; 4621 uint64_t uniqid; 4622 size_t size; 4623 int error; 4624 int retry; 4625 4626 zone = zargp->zone; 4627 arg = zargp->arg; 4628 kmem_free(zargp, sizeof (*zargp)); 4629 4630 zone_namelen = strlen(zone->zone_name) + 1; 4631 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 4632 bcopy(zone->zone_name, zone_name, zone_namelen); 4633 zoneid = zone->zone_id; 4634 uniqid = zone->zone_uniqid; 4635 /* 4636 * zoneadmd may be down, but at least we can empty out the zone. 4637 * We can ignore the return value of zone_empty() since we're called 4638 * from a kernel thread and know we won't be delivered any signals. 4639 */ 4640 ASSERT(curproc == &p0); 4641 (void) zone_empty(zone); 4642 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 4643 zone_rele(zone); 4644 4645 size = sizeof (arg); 4646 darg.rbuf = (char *)&arg; 4647 darg.data_ptr = (char *)&arg; 4648 darg.rsize = size; 4649 darg.data_size = size; 4650 darg.desc_ptr = NULL; 4651 darg.desc_num = 0; 4652 4653 save_arg = darg; 4654 /* 4655 * Since we're not holding a reference to the zone, any number of 4656 * things can go wrong, including the zone disappearing before we get a 4657 * chance to talk to zoneadmd. 4658 */ 4659 for (retry = 0; /* forever */; retry++) { 4660 if (door == NULL && 4661 (error = zone_lookup_door(zone_name, &door)) != 0) { 4662 goto next; 4663 } 4664 ASSERT(door != NULL); 4665 4666 if ((error = door_ki_upcall(door, &darg)) == 0) { 4667 break; 4668 } 4669 switch (error) { 4670 case EINTR: 4671 /* FALLTHROUGH */ 4672 case EAGAIN: /* process may be forking */ 4673 /* 4674 * Back off for a bit 4675 */ 4676 break; 4677 case EBADF: 4678 zone_release_door(&door); 4679 if (zone_lookup_door(zone_name, &door) != 0) { 4680 /* 4681 * zoneadmd may be dead, but it may come back to 4682 * life later. 4683 */ 4684 break; 4685 } 4686 break; 4687 default: 4688 cmn_err(CE_WARN, 4689 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 4690 error); 4691 goto out; 4692 } 4693 next: 4694 /* 4695 * If this isn't the same zone_t that we originally had in mind, 4696 * then this is the same as if two kadmin requests come in at 4697 * the same time: the first one wins. This means we lose, so we 4698 * bail. 4699 */ 4700 if ((zone = zone_find_by_id(zoneid)) == NULL) { 4701 /* 4702 * Problem is solved. 4703 */ 4704 break; 4705 } 4706 if (zone->zone_uniqid != uniqid) { 4707 /* 4708 * zoneid recycled 4709 */ 4710 zone_rele(zone); 4711 break; 4712 } 4713 /* 4714 * We could zone_status_timedwait(), but there doesn't seem to 4715 * be much point in doing that (plus, it would mean that 4716 * zone_free() isn't called until this thread exits). 4717 */ 4718 zone_rele(zone); 4719 delay(hz); 4720 darg = save_arg; 4721 } 4722 out: 4723 if (door != NULL) { 4724 zone_release_door(&door); 4725 } 4726 kmem_free(zone_name, zone_namelen); 4727 thread_exit(); 4728 } 4729 4730 /* 4731 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 4732 * kadmin(). The caller is a process in the zone. 4733 * 4734 * In order to shutdown the zone, we will hand off control to zoneadmd 4735 * (running in the global zone) via a door. We do a half-hearted job at 4736 * killing all processes in the zone, create a kernel thread to contact 4737 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 4738 * a form of generation number used to let zoneadmd (as well as 4739 * zone_destroy()) know exactly which zone they're re talking about. 4740 */ 4741 int 4742 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 4743 { 4744 struct zarg *zargp; 4745 zone_cmd_t zcmd; 4746 zone_t *zone; 4747 4748 zone = curproc->p_zone; 4749 ASSERT(getzoneid() != GLOBAL_ZONEID); 4750 4751 switch (cmd) { 4752 case A_SHUTDOWN: 4753 switch (fcn) { 4754 case AD_HALT: 4755 case AD_POWEROFF: 4756 zcmd = Z_HALT; 4757 break; 4758 case AD_BOOT: 4759 zcmd = Z_REBOOT; 4760 break; 4761 case AD_IBOOT: 4762 case AD_SBOOT: 4763 case AD_SIBOOT: 4764 case AD_NOSYNC: 4765 return (ENOTSUP); 4766 default: 4767 return (EINVAL); 4768 } 4769 break; 4770 case A_REBOOT: 4771 zcmd = Z_REBOOT; 4772 break; 4773 case A_FTRACE: 4774 case A_REMOUNT: 4775 case A_FREEZE: 4776 case A_DUMP: 4777 return (ENOTSUP); 4778 default: 4779 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 4780 return (EINVAL); 4781 } 4782 4783 if (secpolicy_zone_admin(credp, B_FALSE)) 4784 return (EPERM); 4785 mutex_enter(&zone_status_lock); 4786 4787 /* 4788 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 4789 * is in the zone. 4790 */ 4791 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 4792 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 4793 /* 4794 * This zone is already on its way down. 4795 */ 4796 mutex_exit(&zone_status_lock); 4797 return (0); 4798 } 4799 /* 4800 * Prevent future zone_enter()s 4801 */ 4802 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4803 mutex_exit(&zone_status_lock); 4804 4805 /* 4806 * Kill everyone now and call zoneadmd later. 4807 * zone_ki_call_zoneadmd() will do a more thorough job of this 4808 * later. 4809 */ 4810 killall(zone->zone_id); 4811 /* 4812 * Now, create the thread to contact zoneadmd and do the rest of the 4813 * work. This thread can't be created in our zone otherwise 4814 * zone_destroy() would deadlock. 4815 */ 4816 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 4817 zargp->arg.cmd = zcmd; 4818 zargp->arg.uniqid = zone->zone_uniqid; 4819 zargp->zone = zone; 4820 (void) strcpy(zargp->arg.locale, "C"); 4821 /* mdep was already copied in for us by uadmin */ 4822 if (mdep != NULL) 4823 (void) strlcpy(zargp->arg.bootbuf, mdep, 4824 sizeof (zargp->arg.bootbuf)); 4825 zone_hold(zone); 4826 4827 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 4828 TS_RUN, minclsyspri); 4829 exit(CLD_EXITED, 0); 4830 4831 return (EINVAL); 4832 } 4833 4834 /* 4835 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 4836 * status to ZONE_IS_SHUTTING_DOWN. 4837 */ 4838 void 4839 zone_shutdown_global(void) 4840 { 4841 ASSERT(curproc->p_zone == global_zone); 4842 4843 mutex_enter(&zone_status_lock); 4844 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 4845 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 4846 mutex_exit(&zone_status_lock); 4847 } 4848 4849 /* 4850 * Returns true if the named dataset is visible in the current zone. 4851 * The 'write' parameter is set to 1 if the dataset is also writable. 4852 */ 4853 int 4854 zone_dataset_visible(const char *dataset, int *write) 4855 { 4856 zone_dataset_t *zd; 4857 size_t len; 4858 zone_t *zone = curproc->p_zone; 4859 4860 if (dataset[0] == '\0') 4861 return (0); 4862 4863 /* 4864 * Walk the list once, looking for datasets which match exactly, or 4865 * specify a dataset underneath an exported dataset. If found, return 4866 * true and note that it is writable. 4867 */ 4868 for (zd = list_head(&zone->zone_datasets); zd != NULL; 4869 zd = list_next(&zone->zone_datasets, zd)) { 4870 4871 len = strlen(zd->zd_dataset); 4872 if (strlen(dataset) >= len && 4873 bcmp(dataset, zd->zd_dataset, len) == 0 && 4874 (dataset[len] == '\0' || dataset[len] == '/' || 4875 dataset[len] == '@')) { 4876 if (write) 4877 *write = 1; 4878 return (1); 4879 } 4880 } 4881 4882 /* 4883 * Walk the list a second time, searching for datasets which are parents 4884 * of exported datasets. These should be visible, but read-only. 4885 * 4886 * Note that we also have to support forms such as 'pool/dataset/', with 4887 * a trailing slash. 4888 */ 4889 for (zd = list_head(&zone->zone_datasets); zd != NULL; 4890 zd = list_next(&zone->zone_datasets, zd)) { 4891 4892 len = strlen(dataset); 4893 if (dataset[len - 1] == '/') 4894 len--; /* Ignore trailing slash */ 4895 if (len < strlen(zd->zd_dataset) && 4896 bcmp(dataset, zd->zd_dataset, len) == 0 && 4897 zd->zd_dataset[len] == '/') { 4898 if (write) 4899 *write = 0; 4900 return (1); 4901 } 4902 } 4903 4904 return (0); 4905 } 4906 4907 /* 4908 * zone_find_by_any_path() - 4909 * 4910 * kernel-private routine similar to zone_find_by_path(), but which 4911 * effectively compares against zone paths rather than zonerootpath 4912 * (i.e., the last component of zonerootpaths, which should be "root/", 4913 * are not compared.) This is done in order to accurately identify all 4914 * paths, whether zone-visible or not, including those which are parallel 4915 * to /root/, such as /dev/, /home/, etc... 4916 * 4917 * If the specified path does not fall under any zone path then global 4918 * zone is returned. 4919 * 4920 * The treat_abs parameter indicates whether the path should be treated as 4921 * an absolute path although it does not begin with "/". (This supports 4922 * nfs mount syntax such as host:any/path.) 4923 * 4924 * The caller is responsible for zone_rele of the returned zone. 4925 */ 4926 zone_t * 4927 zone_find_by_any_path(const char *path, boolean_t treat_abs) 4928 { 4929 zone_t *zone; 4930 int path_offset = 0; 4931 4932 if (path == NULL) { 4933 zone_hold(global_zone); 4934 return (global_zone); 4935 } 4936 4937 if (*path != '/') { 4938 ASSERT(treat_abs); 4939 path_offset = 1; 4940 } 4941 4942 mutex_enter(&zonehash_lock); 4943 for (zone = list_head(&zone_active); zone != NULL; 4944 zone = list_next(&zone_active, zone)) { 4945 char *c; 4946 size_t pathlen; 4947 char *rootpath_start; 4948 4949 if (zone == global_zone) /* skip global zone */ 4950 continue; 4951 4952 /* scan backwards to find start of last component */ 4953 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 4954 do { 4955 c--; 4956 } while (*c != '/'); 4957 4958 pathlen = c - zone->zone_rootpath + 1 - path_offset; 4959 rootpath_start = (zone->zone_rootpath + path_offset); 4960 if (strncmp(path, rootpath_start, pathlen) == 0) 4961 break; 4962 } 4963 if (zone == NULL) 4964 zone = global_zone; 4965 zone_hold(zone); 4966 mutex_exit(&zonehash_lock); 4967 return (zone); 4968 } 4969