1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * Zones 28 * 29 * A zone is a named collection of processes, namespace constraints, 30 * and other system resources which comprise a secure and manageable 31 * application containment facility. 32 * 33 * Zones (represented by the reference counted zone_t) are tracked in 34 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 35 * (zoneid_t) are used to track zone association. Zone IDs are 36 * dynamically generated when the zone is created; if a persistent 37 * identifier is needed (core files, accounting logs, audit trail, 38 * etc.), the zone name should be used. 39 * 40 * 41 * Global Zone: 42 * 43 * The global zone (zoneid 0) is automatically associated with all 44 * system resources that have not been bound to a user-created zone. 45 * This means that even systems where zones are not in active use 46 * have a global zone, and all processes, mounts, etc. are 47 * associated with that zone. The global zone is generally 48 * unconstrained in terms of privileges and access, though the usual 49 * credential and privilege based restrictions apply. 50 * 51 * 52 * Zone States: 53 * 54 * The states in which a zone may be in and the transitions are as 55 * follows: 56 * 57 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 58 * initialized zone is added to the list of active zones on the system but 59 * isn't accessible. 60 * 61 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 62 * not yet completed. Not possible to enter the zone, but attributes can 63 * be retrieved. 64 * 65 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 66 * ready. The zone is made visible after the ZSD constructor callbacks are 67 * executed. A zone remains in this state until it transitions into 68 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 69 * 70 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 71 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 72 * state. 73 * 74 * ZONE_IS_RUNNING: The zone is open for business: zsched has 75 * successfully started init. A zone remains in this state until 76 * zone_shutdown() is called. 77 * 78 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 79 * killing all processes running in the zone. The zone remains 80 * in this state until there are no more user processes running in the zone. 81 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 82 * Since zone_shutdown() is restartable, it may be called successfully 83 * multiple times for the same zone_t. Setting of the zone's state to 84 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 85 * the zone's status without worrying about it being a moving target. 86 * 87 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 88 * are no more user processes in the zone. The zone remains in this 89 * state until there are no more kernel threads associated with the 90 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 91 * fail. 92 * 93 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 94 * have exited. zone_shutdown() returns. Henceforth it is not possible to 95 * join the zone or create kernel threads therein. 96 * 97 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 98 * remains in this state until zsched exits. Calls to zone_find_by_*() 99 * return NULL from now on. 100 * 101 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 102 * processes or threads doing work on behalf of the zone. The zone is 103 * removed from the list of active zones. zone_destroy() returns, and 104 * the zone can be recreated. 105 * 106 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 107 * callbacks are executed, and all memory associated with the zone is 108 * freed. 109 * 110 * Threads can wait for the zone to enter a requested state by using 111 * zone_status_wait() or zone_status_timedwait() with the desired 112 * state passed in as an argument. Zone state transitions are 113 * uni-directional; it is not possible to move back to an earlier state. 114 * 115 * 116 * Zone-Specific Data: 117 * 118 * Subsystems needing to maintain zone-specific data can store that 119 * data using the ZSD mechanism. This provides a zone-specific data 120 * store, similar to thread-specific data (see pthread_getspecific(3C) 121 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 122 * to register callbacks to be invoked when a zone is created, shut 123 * down, or destroyed. This can be used to initialize zone-specific 124 * data for new zones and to clean up when zones go away. 125 * 126 * 127 * Data Structures: 128 * 129 * The per-zone structure (zone_t) is reference counted, and freed 130 * when all references are released. zone_hold and zone_rele can be 131 * used to adjust the reference count. In addition, reference counts 132 * associated with the cred_t structure are tracked separately using 133 * zone_cred_hold and zone_cred_rele. 134 * 135 * Pointers to active zone_t's are stored in two hash tables; one 136 * for searching by id, the other for searching by name. Lookups 137 * can be performed on either basis, using zone_find_by_id and 138 * zone_find_by_name. Both return zone_t pointers with the zone 139 * held, so zone_rele should be called when the pointer is no longer 140 * needed. Zones can also be searched by path; zone_find_by_path 141 * returns the zone with which a path name is associated (global 142 * zone if the path is not within some other zone's file system 143 * hierarchy). This currently requires iterating through each zone, 144 * so it is slower than an id or name search via a hash table. 145 * 146 * 147 * Locking: 148 * 149 * zonehash_lock: This is a top-level global lock used to protect the 150 * zone hash tables and lists. Zones cannot be created or destroyed 151 * while this lock is held. 152 * zone_status_lock: This is a global lock protecting zone state. 153 * Zones cannot change state while this lock is held. It also 154 * protects the list of kernel threads associated with a zone. 155 * zone_lock: This is a per-zone lock used to protect several fields of 156 * the zone_t (see <sys/zone.h> for details). In addition, holding 157 * this lock means that the zone cannot go away. 158 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 159 * related to the zone.max-lwps rctl. 160 * zone_mem_lock: This is a per-zone lock used to protect the fields 161 * related to the zone.max-locked-memory and zone.max-swap rctls. 162 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 163 * currently just max_lofi 164 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 165 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 166 * list (a list of zones in the ZONE_IS_DEAD state). 167 * 168 * Ordering requirements: 169 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 170 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 171 * 172 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 173 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 175 * 176 * Blocking memory allocations are permitted while holding any of the 177 * zone locks. 178 * 179 * 180 * System Call Interface: 181 * 182 * The zone subsystem can be managed and queried from user level with 183 * the following system calls (all subcodes of the primary "zone" 184 * system call): 185 * - zone_create: creates a zone with selected attributes (name, 186 * root path, privileges, resource controls, ZFS datasets) 187 * - zone_enter: allows the current process to enter a zone 188 * - zone_getattr: reports attributes of a zone 189 * - zone_setattr: set attributes of a zone 190 * - zone_boot: set 'init' running for the zone 191 * - zone_list: lists all zones active in the system 192 * - zone_lookup: looks up zone id based on name 193 * - zone_shutdown: initiates shutdown process (see states above) 194 * - zone_destroy: completes shutdown process (see states above) 195 * 196 */ 197 198 #include <sys/priv_impl.h> 199 #include <sys/cred.h> 200 #include <c2/audit.h> 201 #include <sys/debug.h> 202 #include <sys/file.h> 203 #include <sys/kmem.h> 204 #include <sys/kstat.h> 205 #include <sys/mutex.h> 206 #include <sys/note.h> 207 #include <sys/pathname.h> 208 #include <sys/proc.h> 209 #include <sys/project.h> 210 #include <sys/sysevent.h> 211 #include <sys/task.h> 212 #include <sys/systm.h> 213 #include <sys/types.h> 214 #include <sys/utsname.h> 215 #include <sys/vnode.h> 216 #include <sys/vfs.h> 217 #include <sys/systeminfo.h> 218 #include <sys/policy.h> 219 #include <sys/cred_impl.h> 220 #include <sys/contract_impl.h> 221 #include <sys/contract/process_impl.h> 222 #include <sys/class.h> 223 #include <sys/pool.h> 224 #include <sys/pool_pset.h> 225 #include <sys/pset.h> 226 #include <sys/strlog.h> 227 #include <sys/sysmacros.h> 228 #include <sys/callb.h> 229 #include <sys/vmparam.h> 230 #include <sys/corectl.h> 231 #include <sys/ipc_impl.h> 232 #include <sys/klpd.h> 233 234 #include <sys/door.h> 235 #include <sys/cpuvar.h> 236 #include <sys/sdt.h> 237 238 #include <sys/uadmin.h> 239 #include <sys/session.h> 240 #include <sys/cmn_err.h> 241 #include <sys/modhash.h> 242 #include <sys/sunddi.h> 243 #include <sys/nvpair.h> 244 #include <sys/rctl.h> 245 #include <sys/fss.h> 246 #include <sys/brand.h> 247 #include <sys/zone.h> 248 #include <net/if.h> 249 #include <sys/cpucaps.h> 250 #include <vm/seg.h> 251 #include <sys/mac.h> 252 253 /* 254 * This constant specifies the number of seconds that threads waiting for 255 * subsystems to release a zone's general-purpose references will wait before 256 * they log the zone's reference counts. The constant's value shouldn't 257 * be so small that reference counts are unnecessarily reported for zones 258 * whose references are slowly released. On the other hand, it shouldn't be so 259 * large that users reboot their systems out of frustration over hung zones 260 * before the system logs the zones' reference counts. 261 */ 262 #define ZONE_DESTROY_TIMEOUT_SECS 60 263 264 /* List of data link IDs which are accessible from the zone */ 265 typedef struct zone_dl { 266 datalink_id_t zdl_id; 267 nvlist_t *zdl_net; 268 list_node_t zdl_linkage; 269 } zone_dl_t; 270 271 /* 272 * cv used to signal that all references to the zone have been released. This 273 * needs to be global since there may be multiple waiters, and the first to 274 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 275 */ 276 static kcondvar_t zone_destroy_cv; 277 /* 278 * Lock used to serialize access to zone_cv. This could have been per-zone, 279 * but then we'd need another lock for zone_destroy_cv, and why bother? 280 */ 281 static kmutex_t zone_status_lock; 282 283 /* 284 * ZSD-related global variables. 285 */ 286 static kmutex_t zsd_key_lock; /* protects the following two */ 287 /* 288 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 289 */ 290 static zone_key_t zsd_keyval = 0; 291 /* 292 * Global list of registered keys. We use this when a new zone is created. 293 */ 294 static list_t zsd_registered_keys; 295 296 int zone_hash_size = 256; 297 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 298 static kmutex_t zonehash_lock; 299 static uint_t zonecount; 300 static id_space_t *zoneid_space; 301 302 /* 303 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 304 * kernel proper runs, and which manages all other zones. 305 * 306 * Although not declared as static, the variable "zone0" should not be used 307 * except for by code that needs to reference the global zone early on in boot, 308 * before it is fully initialized. All other consumers should use 309 * 'global_zone'. 310 */ 311 zone_t zone0; 312 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 313 314 /* 315 * List of active zones, protected by zonehash_lock. 316 */ 317 static list_t zone_active; 318 319 /* 320 * List of destroyed zones that still have outstanding cred references. 321 * Used for debugging. Uses a separate lock to avoid lock ordering 322 * problems in zone_free. 323 */ 324 static list_t zone_deathrow; 325 static kmutex_t zone_deathrow_lock; 326 327 /* number of zones is limited by virtual interface limit in IP */ 328 uint_t maxzones = 8192; 329 330 /* Event channel to sent zone state change notifications */ 331 evchan_t *zone_event_chan; 332 333 /* 334 * This table holds the mapping from kernel zone states to 335 * states visible in the state notification API. 336 * The idea is that we only expose "obvious" states and 337 * do not expose states which are just implementation details. 338 */ 339 const char *zone_status_table[] = { 340 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 341 ZONE_EVENT_INITIALIZED, /* initialized */ 342 ZONE_EVENT_READY, /* ready */ 343 ZONE_EVENT_READY, /* booting */ 344 ZONE_EVENT_RUNNING, /* running */ 345 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 346 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 347 ZONE_EVENT_SHUTTING_DOWN, /* down */ 348 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 349 ZONE_EVENT_UNINITIALIZED, /* dead */ 350 }; 351 352 /* 353 * This array contains the names of the subsystems listed in zone_ref_subsys_t 354 * (see sys/zone.h). 355 */ 356 static char *zone_ref_subsys_names[] = { 357 "NFS", /* ZONE_REF_NFS */ 358 "NFSv4", /* ZONE_REF_NFSV4 */ 359 "SMBFS", /* ZONE_REF_SMBFS */ 360 "MNTFS", /* ZONE_REF_MNTFS */ 361 "LOFI", /* ZONE_REF_LOFI */ 362 "VFS", /* ZONE_REF_VFS */ 363 "IPC" /* ZONE_REF_IPC */ 364 }; 365 366 /* 367 * This isn't static so lint doesn't complain. 368 */ 369 rctl_hndl_t rc_zone_cpu_shares; 370 rctl_hndl_t rc_zone_locked_mem; 371 rctl_hndl_t rc_zone_max_swap; 372 rctl_hndl_t rc_zone_max_lofi; 373 rctl_hndl_t rc_zone_cpu_cap; 374 rctl_hndl_t rc_zone_nlwps; 375 rctl_hndl_t rc_zone_nprocs; 376 rctl_hndl_t rc_zone_shmmax; 377 rctl_hndl_t rc_zone_shmmni; 378 rctl_hndl_t rc_zone_semmni; 379 rctl_hndl_t rc_zone_msgmni; 380 /* 381 * Synchronization primitives used to synchronize between mounts and zone 382 * creation/destruction. 383 */ 384 static int mounts_in_progress; 385 static kcondvar_t mount_cv; 386 static kmutex_t mount_lock; 387 388 const char * const zone_default_initname = "/sbin/init"; 389 static char * const zone_prefix = "/zone/"; 390 static int zone_shutdown(zoneid_t zoneid); 391 static int zone_add_datalink(zoneid_t, datalink_id_t); 392 static int zone_remove_datalink(zoneid_t, datalink_id_t); 393 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 394 static int zone_set_network(zoneid_t, zone_net_data_t *); 395 static int zone_get_network(zoneid_t, zone_net_data_t *); 396 397 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 398 399 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 400 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 401 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 402 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 403 zone_key_t); 404 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 405 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 406 kmutex_t *); 407 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 408 kmutex_t *); 409 410 /* 411 * Bump this number when you alter the zone syscall interfaces; this is 412 * because we need to have support for previous API versions in libc 413 * to support patching; libc calls into the kernel to determine this number. 414 * 415 * Version 1 of the API is the version originally shipped with Solaris 10 416 * Version 2 alters the zone_create system call in order to support more 417 * arguments by moving the args into a structure; and to do better 418 * error reporting when zone_create() fails. 419 * Version 3 alters the zone_create system call in order to support the 420 * import of ZFS datasets to zones. 421 * Version 4 alters the zone_create system call in order to support 422 * Trusted Extensions. 423 * Version 5 alters the zone_boot system call, and converts its old 424 * bootargs parameter to be set by the zone_setattr API instead. 425 * Version 6 adds the flag argument to zone_create. 426 */ 427 static const int ZONE_SYSCALL_API_VERSION = 6; 428 429 /* 430 * Certain filesystems (such as NFS and autofs) need to know which zone 431 * the mount is being placed in. Because of this, we need to be able to 432 * ensure that a zone isn't in the process of being created such that 433 * nfs_mount() thinks it is in the global zone, while by the time it 434 * gets added the list of mounted zones, it ends up on zoneA's mount 435 * list. 436 * 437 * The following functions: block_mounts()/resume_mounts() and 438 * mount_in_progress()/mount_completed() are used by zones and the VFS 439 * layer (respectively) to synchronize zone creation and new mounts. 440 * 441 * The semantics are like a reader-reader lock such that there may 442 * either be multiple mounts (or zone creations, if that weren't 443 * serialized by zonehash_lock) in progress at the same time, but not 444 * both. 445 * 446 * We use cv's so the user can ctrl-C out of the operation if it's 447 * taking too long. 448 * 449 * The semantics are such that there is unfair bias towards the 450 * "current" operation. This means that zone creations may starve if 451 * there is a rapid succession of new mounts coming in to the system, or 452 * there is a remote possibility that zones will be created at such a 453 * rate that new mounts will not be able to proceed. 454 */ 455 /* 456 * Prevent new mounts from progressing to the point of calling 457 * VFS_MOUNT(). If there are already mounts in this "region", wait for 458 * them to complete. 459 */ 460 static int 461 block_mounts(void) 462 { 463 int retval = 0; 464 465 /* 466 * Since it may block for a long time, block_mounts() shouldn't be 467 * called with zonehash_lock held. 468 */ 469 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 470 mutex_enter(&mount_lock); 471 while (mounts_in_progress > 0) { 472 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 473 goto signaled; 474 } 475 /* 476 * A negative value of mounts_in_progress indicates that mounts 477 * have been blocked by (-mounts_in_progress) different callers. 478 */ 479 mounts_in_progress--; 480 retval = 1; 481 signaled: 482 mutex_exit(&mount_lock); 483 return (retval); 484 } 485 486 /* 487 * The VFS layer may progress with new mounts as far as we're concerned. 488 * Allow them to progress if we were the last obstacle. 489 */ 490 static void 491 resume_mounts(void) 492 { 493 mutex_enter(&mount_lock); 494 if (++mounts_in_progress == 0) 495 cv_broadcast(&mount_cv); 496 mutex_exit(&mount_lock); 497 } 498 499 /* 500 * The VFS layer is busy with a mount; zones should wait until all 501 * mounts are completed to progress. 502 */ 503 void 504 mount_in_progress(void) 505 { 506 mutex_enter(&mount_lock); 507 while (mounts_in_progress < 0) 508 cv_wait(&mount_cv, &mount_lock); 509 mounts_in_progress++; 510 mutex_exit(&mount_lock); 511 } 512 513 /* 514 * VFS is done with one mount; wake up any waiting block_mounts() 515 * callers if this is the last mount. 516 */ 517 void 518 mount_completed(void) 519 { 520 mutex_enter(&mount_lock); 521 if (--mounts_in_progress == 0) 522 cv_broadcast(&mount_cv); 523 mutex_exit(&mount_lock); 524 } 525 526 /* 527 * ZSD routines. 528 * 529 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 530 * defined by the pthread_key_create() and related interfaces. 531 * 532 * Kernel subsystems may register one or more data items and/or 533 * callbacks to be executed when a zone is created, shutdown, or 534 * destroyed. 535 * 536 * Unlike the thread counterpart, destructor callbacks will be executed 537 * even if the data pointer is NULL and/or there are no constructor 538 * callbacks, so it is the responsibility of such callbacks to check for 539 * NULL data values if necessary. 540 * 541 * The locking strategy and overall picture is as follows: 542 * 543 * When someone calls zone_key_create(), a template ZSD entry is added to the 544 * global list "zsd_registered_keys", protected by zsd_key_lock. While 545 * holding that lock all the existing zones are marked as 546 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 547 * zone_zsd list (protected by zone_lock). The global list is updated first 548 * (under zone_key_lock) to make sure that newly created zones use the 549 * most recent list of keys. Then under zonehash_lock we walk the zones 550 * and mark them. Similar locking is used in zone_key_delete(). 551 * 552 * The actual create, shutdown, and destroy callbacks are done without 553 * holding any lock. And zsd_flags are used to ensure that the operations 554 * completed so that when zone_key_create (and zone_create) is done, as well as 555 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 556 * are completed. 557 * 558 * When new zones are created constructor callbacks for all registered ZSD 559 * entries will be called. That also uses the above two phases of marking 560 * what needs to be done, and then running the callbacks without holding 561 * any locks. 562 * 563 * The framework does not provide any locking around zone_getspecific() and 564 * zone_setspecific() apart from that needed for internal consistency, so 565 * callers interested in atomic "test-and-set" semantics will need to provide 566 * their own locking. 567 */ 568 569 /* 570 * Helper function to find the zsd_entry associated with the key in the 571 * given list. 572 */ 573 static struct zsd_entry * 574 zsd_find(list_t *l, zone_key_t key) 575 { 576 struct zsd_entry *zsd; 577 578 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 579 if (zsd->zsd_key == key) { 580 return (zsd); 581 } 582 } 583 return (NULL); 584 } 585 586 /* 587 * Helper function to find the zsd_entry associated with the key in the 588 * given list. Move it to the front of the list. 589 */ 590 static struct zsd_entry * 591 zsd_find_mru(list_t *l, zone_key_t key) 592 { 593 struct zsd_entry *zsd; 594 595 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 596 if (zsd->zsd_key == key) { 597 /* 598 * Move to head of list to keep list in MRU order. 599 */ 600 if (zsd != list_head(l)) { 601 list_remove(l, zsd); 602 list_insert_head(l, zsd); 603 } 604 return (zsd); 605 } 606 } 607 return (NULL); 608 } 609 610 void 611 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 612 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 613 { 614 struct zsd_entry *zsdp; 615 struct zsd_entry *t; 616 struct zone *zone; 617 zone_key_t key; 618 619 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 620 zsdp->zsd_data = NULL; 621 zsdp->zsd_create = create; 622 zsdp->zsd_shutdown = shutdown; 623 zsdp->zsd_destroy = destroy; 624 625 /* 626 * Insert in global list of callbacks. Makes future zone creations 627 * see it. 628 */ 629 mutex_enter(&zsd_key_lock); 630 key = zsdp->zsd_key = ++zsd_keyval; 631 ASSERT(zsd_keyval != 0); 632 list_insert_tail(&zsd_registered_keys, zsdp); 633 mutex_exit(&zsd_key_lock); 634 635 /* 636 * Insert for all existing zones and mark them as needing 637 * a create callback. 638 */ 639 mutex_enter(&zonehash_lock); /* stop the world */ 640 for (zone = list_head(&zone_active); zone != NULL; 641 zone = list_next(&zone_active, zone)) { 642 zone_status_t status; 643 644 mutex_enter(&zone->zone_lock); 645 646 /* Skip zones that are on the way down or not yet up */ 647 status = zone_status_get(zone); 648 if (status >= ZONE_IS_DOWN || 649 status == ZONE_IS_UNINITIALIZED) { 650 mutex_exit(&zone->zone_lock); 651 continue; 652 } 653 654 t = zsd_find_mru(&zone->zone_zsd, key); 655 if (t != NULL) { 656 /* 657 * A zsd_configure already inserted it after 658 * we dropped zsd_key_lock above. 659 */ 660 mutex_exit(&zone->zone_lock); 661 continue; 662 } 663 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 664 t->zsd_key = key; 665 t->zsd_create = create; 666 t->zsd_shutdown = shutdown; 667 t->zsd_destroy = destroy; 668 if (create != NULL) { 669 t->zsd_flags = ZSD_CREATE_NEEDED; 670 DTRACE_PROBE2(zsd__create__needed, 671 zone_t *, zone, zone_key_t, key); 672 } 673 list_insert_tail(&zone->zone_zsd, t); 674 mutex_exit(&zone->zone_lock); 675 } 676 mutex_exit(&zonehash_lock); 677 678 if (create != NULL) { 679 /* Now call the create callback for this key */ 680 zsd_apply_all_zones(zsd_apply_create, key); 681 } 682 /* 683 * It is safe for consumers to use the key now, make it 684 * globally visible. Specifically zone_getspecific() will 685 * always successfully return the zone specific data associated 686 * with the key. 687 */ 688 *keyp = key; 689 690 } 691 692 /* 693 * Function called when a module is being unloaded, or otherwise wishes 694 * to unregister its ZSD key and callbacks. 695 * 696 * Remove from the global list and determine the functions that need to 697 * be called under a global lock. Then call the functions without 698 * holding any locks. Finally free up the zone_zsd entries. (The apply 699 * functions need to access the zone_zsd entries to find zsd_data etc.) 700 */ 701 int 702 zone_key_delete(zone_key_t key) 703 { 704 struct zsd_entry *zsdp = NULL; 705 zone_t *zone; 706 707 mutex_enter(&zsd_key_lock); 708 zsdp = zsd_find_mru(&zsd_registered_keys, key); 709 if (zsdp == NULL) { 710 mutex_exit(&zsd_key_lock); 711 return (-1); 712 } 713 list_remove(&zsd_registered_keys, zsdp); 714 mutex_exit(&zsd_key_lock); 715 716 mutex_enter(&zonehash_lock); 717 for (zone = list_head(&zone_active); zone != NULL; 718 zone = list_next(&zone_active, zone)) { 719 struct zsd_entry *del; 720 721 mutex_enter(&zone->zone_lock); 722 del = zsd_find_mru(&zone->zone_zsd, key); 723 if (del == NULL) { 724 /* 725 * Somebody else got here first e.g the zone going 726 * away. 727 */ 728 mutex_exit(&zone->zone_lock); 729 continue; 730 } 731 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 732 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 733 if (del->zsd_shutdown != NULL && 734 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 735 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 736 DTRACE_PROBE2(zsd__shutdown__needed, 737 zone_t *, zone, zone_key_t, key); 738 } 739 if (del->zsd_destroy != NULL && 740 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 741 del->zsd_flags |= ZSD_DESTROY_NEEDED; 742 DTRACE_PROBE2(zsd__destroy__needed, 743 zone_t *, zone, zone_key_t, key); 744 } 745 mutex_exit(&zone->zone_lock); 746 } 747 mutex_exit(&zonehash_lock); 748 kmem_free(zsdp, sizeof (*zsdp)); 749 750 /* Now call the shutdown and destroy callback for this key */ 751 zsd_apply_all_zones(zsd_apply_shutdown, key); 752 zsd_apply_all_zones(zsd_apply_destroy, key); 753 754 /* Now we can free up the zsdp structures in each zone */ 755 mutex_enter(&zonehash_lock); 756 for (zone = list_head(&zone_active); zone != NULL; 757 zone = list_next(&zone_active, zone)) { 758 struct zsd_entry *del; 759 760 mutex_enter(&zone->zone_lock); 761 del = zsd_find(&zone->zone_zsd, key); 762 if (del != NULL) { 763 list_remove(&zone->zone_zsd, del); 764 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 765 kmem_free(del, sizeof (*del)); 766 } 767 mutex_exit(&zone->zone_lock); 768 } 769 mutex_exit(&zonehash_lock); 770 771 return (0); 772 } 773 774 /* 775 * ZSD counterpart of pthread_setspecific(). 776 * 777 * Since all zsd callbacks, including those with no create function, 778 * have an entry in zone_zsd, if the key is registered it is part of 779 * the zone_zsd list. 780 * Return an error if the key wasn't registerd. 781 */ 782 int 783 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 784 { 785 struct zsd_entry *t; 786 787 mutex_enter(&zone->zone_lock); 788 t = zsd_find_mru(&zone->zone_zsd, key); 789 if (t != NULL) { 790 /* 791 * Replace old value with new 792 */ 793 t->zsd_data = (void *)data; 794 mutex_exit(&zone->zone_lock); 795 return (0); 796 } 797 mutex_exit(&zone->zone_lock); 798 return (-1); 799 } 800 801 /* 802 * ZSD counterpart of pthread_getspecific(). 803 */ 804 void * 805 zone_getspecific(zone_key_t key, zone_t *zone) 806 { 807 struct zsd_entry *t; 808 void *data; 809 810 mutex_enter(&zone->zone_lock); 811 t = zsd_find_mru(&zone->zone_zsd, key); 812 data = (t == NULL ? NULL : t->zsd_data); 813 mutex_exit(&zone->zone_lock); 814 return (data); 815 } 816 817 /* 818 * Function used to initialize a zone's list of ZSD callbacks and data 819 * when the zone is being created. The callbacks are initialized from 820 * the template list (zsd_registered_keys). The constructor callback is 821 * executed later (once the zone exists and with locks dropped). 822 */ 823 static void 824 zone_zsd_configure(zone_t *zone) 825 { 826 struct zsd_entry *zsdp; 827 struct zsd_entry *t; 828 829 ASSERT(MUTEX_HELD(&zonehash_lock)); 830 ASSERT(list_head(&zone->zone_zsd) == NULL); 831 mutex_enter(&zone->zone_lock); 832 mutex_enter(&zsd_key_lock); 833 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 834 zsdp = list_next(&zsd_registered_keys, zsdp)) { 835 /* 836 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 837 * should not have added anything to it. 838 */ 839 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 840 841 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 842 t->zsd_key = zsdp->zsd_key; 843 t->zsd_create = zsdp->zsd_create; 844 t->zsd_shutdown = zsdp->zsd_shutdown; 845 t->zsd_destroy = zsdp->zsd_destroy; 846 if (zsdp->zsd_create != NULL) { 847 t->zsd_flags = ZSD_CREATE_NEEDED; 848 DTRACE_PROBE2(zsd__create__needed, 849 zone_t *, zone, zone_key_t, zsdp->zsd_key); 850 } 851 list_insert_tail(&zone->zone_zsd, t); 852 } 853 mutex_exit(&zsd_key_lock); 854 mutex_exit(&zone->zone_lock); 855 } 856 857 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 858 859 /* 860 * Helper function to execute shutdown or destructor callbacks. 861 */ 862 static void 863 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 864 { 865 struct zsd_entry *t; 866 867 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 868 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 869 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 870 871 /* 872 * Run the callback solely based on what is registered for the zone 873 * in zone_zsd. The global list can change independently of this 874 * as keys are registered and unregistered and we don't register new 875 * callbacks for a zone that is in the process of going away. 876 */ 877 mutex_enter(&zone->zone_lock); 878 for (t = list_head(&zone->zone_zsd); t != NULL; 879 t = list_next(&zone->zone_zsd, t)) { 880 zone_key_t key = t->zsd_key; 881 882 /* Skip if no callbacks registered */ 883 884 if (ct == ZSD_SHUTDOWN) { 885 if (t->zsd_shutdown != NULL && 886 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 887 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 888 DTRACE_PROBE2(zsd__shutdown__needed, 889 zone_t *, zone, zone_key_t, key); 890 } 891 } else { 892 if (t->zsd_destroy != NULL && 893 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 894 t->zsd_flags |= ZSD_DESTROY_NEEDED; 895 DTRACE_PROBE2(zsd__destroy__needed, 896 zone_t *, zone, zone_key_t, key); 897 } 898 } 899 } 900 mutex_exit(&zone->zone_lock); 901 902 /* Now call the shutdown and destroy callback for this key */ 903 zsd_apply_all_keys(zsd_apply_shutdown, zone); 904 zsd_apply_all_keys(zsd_apply_destroy, zone); 905 906 } 907 908 /* 909 * Called when the zone is going away; free ZSD-related memory, and 910 * destroy the zone_zsd list. 911 */ 912 static void 913 zone_free_zsd(zone_t *zone) 914 { 915 struct zsd_entry *t, *next; 916 917 /* 918 * Free all the zsd_entry's we had on this zone. 919 */ 920 mutex_enter(&zone->zone_lock); 921 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 922 next = list_next(&zone->zone_zsd, t); 923 list_remove(&zone->zone_zsd, t); 924 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 925 kmem_free(t, sizeof (*t)); 926 } 927 list_destroy(&zone->zone_zsd); 928 mutex_exit(&zone->zone_lock); 929 930 } 931 932 /* 933 * Apply a function to all zones for particular key value. 934 * 935 * The applyfn has to drop zonehash_lock if it does some work, and 936 * then reacquire it before it returns. 937 * When the lock is dropped we don't follow list_next even 938 * if it is possible to do so without any hazards. This is 939 * because we want the design to allow for the list of zones 940 * to change in any arbitrary way during the time the 941 * lock was dropped. 942 * 943 * It is safe to restart the loop at list_head since the applyfn 944 * changes the zsd_flags as it does work, so a subsequent 945 * pass through will have no effect in applyfn, hence the loop will terminate 946 * in at worst O(N^2). 947 */ 948 static void 949 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 950 { 951 zone_t *zone; 952 953 mutex_enter(&zonehash_lock); 954 zone = list_head(&zone_active); 955 while (zone != NULL) { 956 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 957 /* Lock dropped - restart at head */ 958 zone = list_head(&zone_active); 959 } else { 960 zone = list_next(&zone_active, zone); 961 } 962 } 963 mutex_exit(&zonehash_lock); 964 } 965 966 /* 967 * Apply a function to all keys for a particular zone. 968 * 969 * The applyfn has to drop zonehash_lock if it does some work, and 970 * then reacquire it before it returns. 971 * When the lock is dropped we don't follow list_next even 972 * if it is possible to do so without any hazards. This is 973 * because we want the design to allow for the list of zsd callbacks 974 * to change in any arbitrary way during the time the 975 * lock was dropped. 976 * 977 * It is safe to restart the loop at list_head since the applyfn 978 * changes the zsd_flags as it does work, so a subsequent 979 * pass through will have no effect in applyfn, hence the loop will terminate 980 * in at worst O(N^2). 981 */ 982 static void 983 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 984 { 985 struct zsd_entry *t; 986 987 mutex_enter(&zone->zone_lock); 988 t = list_head(&zone->zone_zsd); 989 while (t != NULL) { 990 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 991 /* Lock dropped - restart at head */ 992 t = list_head(&zone->zone_zsd); 993 } else { 994 t = list_next(&zone->zone_zsd, t); 995 } 996 } 997 mutex_exit(&zone->zone_lock); 998 } 999 1000 /* 1001 * Call the create function for the zone and key if CREATE_NEEDED 1002 * is set. 1003 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1004 * we wait for that thread to complete so that we can ensure that 1005 * all the callbacks are done when we've looped over all zones/keys. 1006 * 1007 * When we call the create function, we drop the global held by the 1008 * caller, and return true to tell the caller it needs to re-evalute the 1009 * state. 1010 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1011 * remains held on exit. 1012 */ 1013 static boolean_t 1014 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1015 zone_t *zone, zone_key_t key) 1016 { 1017 void *result; 1018 struct zsd_entry *t; 1019 boolean_t dropped; 1020 1021 if (lockp != NULL) { 1022 ASSERT(MUTEX_HELD(lockp)); 1023 } 1024 if (zone_lock_held) { 1025 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1026 } else { 1027 mutex_enter(&zone->zone_lock); 1028 } 1029 1030 t = zsd_find(&zone->zone_zsd, key); 1031 if (t == NULL) { 1032 /* 1033 * Somebody else got here first e.g the zone going 1034 * away. 1035 */ 1036 if (!zone_lock_held) 1037 mutex_exit(&zone->zone_lock); 1038 return (B_FALSE); 1039 } 1040 dropped = B_FALSE; 1041 if (zsd_wait_for_inprogress(zone, t, lockp)) 1042 dropped = B_TRUE; 1043 1044 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1045 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1046 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1047 DTRACE_PROBE2(zsd__create__inprogress, 1048 zone_t *, zone, zone_key_t, key); 1049 mutex_exit(&zone->zone_lock); 1050 if (lockp != NULL) 1051 mutex_exit(lockp); 1052 1053 dropped = B_TRUE; 1054 ASSERT(t->zsd_create != NULL); 1055 DTRACE_PROBE2(zsd__create__start, 1056 zone_t *, zone, zone_key_t, key); 1057 1058 result = (*t->zsd_create)(zone->zone_id); 1059 1060 DTRACE_PROBE2(zsd__create__end, 1061 zone_t *, zone, voidn *, result); 1062 1063 ASSERT(result != NULL); 1064 if (lockp != NULL) 1065 mutex_enter(lockp); 1066 mutex_enter(&zone->zone_lock); 1067 t->zsd_data = result; 1068 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1069 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1070 cv_broadcast(&t->zsd_cv); 1071 DTRACE_PROBE2(zsd__create__completed, 1072 zone_t *, zone, zone_key_t, key); 1073 } 1074 if (!zone_lock_held) 1075 mutex_exit(&zone->zone_lock); 1076 return (dropped); 1077 } 1078 1079 /* 1080 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1081 * is set. 1082 * If some other thread gets here first and sets *_INPROGRESS, then 1083 * we wait for that thread to complete so that we can ensure that 1084 * all the callbacks are done when we've looped over all zones/keys. 1085 * 1086 * When we call the shutdown function, we drop the global held by the 1087 * caller, and return true to tell the caller it needs to re-evalute the 1088 * state. 1089 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1090 * remains held on exit. 1091 */ 1092 static boolean_t 1093 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1094 zone_t *zone, zone_key_t key) 1095 { 1096 struct zsd_entry *t; 1097 void *data; 1098 boolean_t dropped; 1099 1100 if (lockp != NULL) { 1101 ASSERT(MUTEX_HELD(lockp)); 1102 } 1103 if (zone_lock_held) { 1104 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1105 } else { 1106 mutex_enter(&zone->zone_lock); 1107 } 1108 1109 t = zsd_find(&zone->zone_zsd, key); 1110 if (t == NULL) { 1111 /* 1112 * Somebody else got here first e.g the zone going 1113 * away. 1114 */ 1115 if (!zone_lock_held) 1116 mutex_exit(&zone->zone_lock); 1117 return (B_FALSE); 1118 } 1119 dropped = B_FALSE; 1120 if (zsd_wait_for_creator(zone, t, lockp)) 1121 dropped = B_TRUE; 1122 1123 if (zsd_wait_for_inprogress(zone, t, lockp)) 1124 dropped = B_TRUE; 1125 1126 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1127 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1128 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1129 DTRACE_PROBE2(zsd__shutdown__inprogress, 1130 zone_t *, zone, zone_key_t, key); 1131 mutex_exit(&zone->zone_lock); 1132 if (lockp != NULL) 1133 mutex_exit(lockp); 1134 dropped = B_TRUE; 1135 1136 ASSERT(t->zsd_shutdown != NULL); 1137 data = t->zsd_data; 1138 1139 DTRACE_PROBE2(zsd__shutdown__start, 1140 zone_t *, zone, zone_key_t, key); 1141 1142 (t->zsd_shutdown)(zone->zone_id, data); 1143 DTRACE_PROBE2(zsd__shutdown__end, 1144 zone_t *, zone, zone_key_t, key); 1145 1146 if (lockp != NULL) 1147 mutex_enter(lockp); 1148 mutex_enter(&zone->zone_lock); 1149 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1150 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1151 cv_broadcast(&t->zsd_cv); 1152 DTRACE_PROBE2(zsd__shutdown__completed, 1153 zone_t *, zone, zone_key_t, key); 1154 } 1155 if (!zone_lock_held) 1156 mutex_exit(&zone->zone_lock); 1157 return (dropped); 1158 } 1159 1160 /* 1161 * Call the destroy function for the zone and key if DESTROY_NEEDED 1162 * is set. 1163 * If some other thread gets here first and sets *_INPROGRESS, then 1164 * we wait for that thread to complete so that we can ensure that 1165 * all the callbacks are done when we've looped over all zones/keys. 1166 * 1167 * When we call the destroy function, we drop the global held by the 1168 * caller, and return true to tell the caller it needs to re-evalute the 1169 * state. 1170 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1171 * remains held on exit. 1172 */ 1173 static boolean_t 1174 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1175 zone_t *zone, zone_key_t key) 1176 { 1177 struct zsd_entry *t; 1178 void *data; 1179 boolean_t dropped; 1180 1181 if (lockp != NULL) { 1182 ASSERT(MUTEX_HELD(lockp)); 1183 } 1184 if (zone_lock_held) { 1185 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1186 } else { 1187 mutex_enter(&zone->zone_lock); 1188 } 1189 1190 t = zsd_find(&zone->zone_zsd, key); 1191 if (t == NULL) { 1192 /* 1193 * Somebody else got here first e.g the zone going 1194 * away. 1195 */ 1196 if (!zone_lock_held) 1197 mutex_exit(&zone->zone_lock); 1198 return (B_FALSE); 1199 } 1200 dropped = B_FALSE; 1201 if (zsd_wait_for_creator(zone, t, lockp)) 1202 dropped = B_TRUE; 1203 1204 if (zsd_wait_for_inprogress(zone, t, lockp)) 1205 dropped = B_TRUE; 1206 1207 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1208 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1209 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1210 DTRACE_PROBE2(zsd__destroy__inprogress, 1211 zone_t *, zone, zone_key_t, key); 1212 mutex_exit(&zone->zone_lock); 1213 if (lockp != NULL) 1214 mutex_exit(lockp); 1215 dropped = B_TRUE; 1216 1217 ASSERT(t->zsd_destroy != NULL); 1218 data = t->zsd_data; 1219 DTRACE_PROBE2(zsd__destroy__start, 1220 zone_t *, zone, zone_key_t, key); 1221 1222 (t->zsd_destroy)(zone->zone_id, data); 1223 DTRACE_PROBE2(zsd__destroy__end, 1224 zone_t *, zone, zone_key_t, key); 1225 1226 if (lockp != NULL) 1227 mutex_enter(lockp); 1228 mutex_enter(&zone->zone_lock); 1229 t->zsd_data = NULL; 1230 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1231 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1232 cv_broadcast(&t->zsd_cv); 1233 DTRACE_PROBE2(zsd__destroy__completed, 1234 zone_t *, zone, zone_key_t, key); 1235 } 1236 if (!zone_lock_held) 1237 mutex_exit(&zone->zone_lock); 1238 return (dropped); 1239 } 1240 1241 /* 1242 * Wait for any CREATE_NEEDED flag to be cleared. 1243 * Returns true if lockp was temporarily dropped while waiting. 1244 */ 1245 static boolean_t 1246 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1247 { 1248 boolean_t dropped = B_FALSE; 1249 1250 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1251 DTRACE_PROBE2(zsd__wait__for__creator, 1252 zone_t *, zone, struct zsd_entry *, t); 1253 if (lockp != NULL) { 1254 dropped = B_TRUE; 1255 mutex_exit(lockp); 1256 } 1257 cv_wait(&t->zsd_cv, &zone->zone_lock); 1258 if (lockp != NULL) { 1259 /* First drop zone_lock to preserve order */ 1260 mutex_exit(&zone->zone_lock); 1261 mutex_enter(lockp); 1262 mutex_enter(&zone->zone_lock); 1263 } 1264 } 1265 return (dropped); 1266 } 1267 1268 /* 1269 * Wait for any INPROGRESS flag to be cleared. 1270 * Returns true if lockp was temporarily dropped while waiting. 1271 */ 1272 static boolean_t 1273 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1274 { 1275 boolean_t dropped = B_FALSE; 1276 1277 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1278 DTRACE_PROBE2(zsd__wait__for__inprogress, 1279 zone_t *, zone, struct zsd_entry *, t); 1280 if (lockp != NULL) { 1281 dropped = B_TRUE; 1282 mutex_exit(lockp); 1283 } 1284 cv_wait(&t->zsd_cv, &zone->zone_lock); 1285 if (lockp != NULL) { 1286 /* First drop zone_lock to preserve order */ 1287 mutex_exit(&zone->zone_lock); 1288 mutex_enter(lockp); 1289 mutex_enter(&zone->zone_lock); 1290 } 1291 } 1292 return (dropped); 1293 } 1294 1295 /* 1296 * Frees memory associated with the zone dataset list. 1297 */ 1298 static void 1299 zone_free_datasets(zone_t *zone) 1300 { 1301 zone_dataset_t *t, *next; 1302 1303 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1304 next = list_next(&zone->zone_datasets, t); 1305 list_remove(&zone->zone_datasets, t); 1306 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1307 kmem_free(t, sizeof (*t)); 1308 } 1309 list_destroy(&zone->zone_datasets); 1310 } 1311 1312 /* 1313 * zone.cpu-shares resource control support. 1314 */ 1315 /*ARGSUSED*/ 1316 static rctl_qty_t 1317 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1318 { 1319 ASSERT(MUTEX_HELD(&p->p_lock)); 1320 return (p->p_zone->zone_shares); 1321 } 1322 1323 /*ARGSUSED*/ 1324 static int 1325 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1326 rctl_qty_t nv) 1327 { 1328 ASSERT(MUTEX_HELD(&p->p_lock)); 1329 ASSERT(e->rcep_t == RCENTITY_ZONE); 1330 if (e->rcep_p.zone == NULL) 1331 return (0); 1332 1333 e->rcep_p.zone->zone_shares = nv; 1334 return (0); 1335 } 1336 1337 static rctl_ops_t zone_cpu_shares_ops = { 1338 rcop_no_action, 1339 zone_cpu_shares_usage, 1340 zone_cpu_shares_set, 1341 rcop_no_test 1342 }; 1343 1344 /* 1345 * zone.cpu-cap resource control support. 1346 */ 1347 /*ARGSUSED*/ 1348 static rctl_qty_t 1349 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1350 { 1351 ASSERT(MUTEX_HELD(&p->p_lock)); 1352 return (cpucaps_zone_get(p->p_zone)); 1353 } 1354 1355 /*ARGSUSED*/ 1356 static int 1357 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1358 rctl_qty_t nv) 1359 { 1360 zone_t *zone = e->rcep_p.zone; 1361 1362 ASSERT(MUTEX_HELD(&p->p_lock)); 1363 ASSERT(e->rcep_t == RCENTITY_ZONE); 1364 1365 if (zone == NULL) 1366 return (0); 1367 1368 /* 1369 * set cap to the new value. 1370 */ 1371 return (cpucaps_zone_set(zone, nv)); 1372 } 1373 1374 static rctl_ops_t zone_cpu_cap_ops = { 1375 rcop_no_action, 1376 zone_cpu_cap_get, 1377 zone_cpu_cap_set, 1378 rcop_no_test 1379 }; 1380 1381 /*ARGSUSED*/ 1382 static rctl_qty_t 1383 zone_lwps_usage(rctl_t *r, proc_t *p) 1384 { 1385 rctl_qty_t nlwps; 1386 zone_t *zone = p->p_zone; 1387 1388 ASSERT(MUTEX_HELD(&p->p_lock)); 1389 1390 mutex_enter(&zone->zone_nlwps_lock); 1391 nlwps = zone->zone_nlwps; 1392 mutex_exit(&zone->zone_nlwps_lock); 1393 1394 return (nlwps); 1395 } 1396 1397 /*ARGSUSED*/ 1398 static int 1399 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1400 rctl_qty_t incr, uint_t flags) 1401 { 1402 rctl_qty_t nlwps; 1403 1404 ASSERT(MUTEX_HELD(&p->p_lock)); 1405 ASSERT(e->rcep_t == RCENTITY_ZONE); 1406 if (e->rcep_p.zone == NULL) 1407 return (0); 1408 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1409 nlwps = e->rcep_p.zone->zone_nlwps; 1410 1411 if (nlwps + incr > rcntl->rcv_value) 1412 return (1); 1413 1414 return (0); 1415 } 1416 1417 /*ARGSUSED*/ 1418 static int 1419 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1420 { 1421 ASSERT(MUTEX_HELD(&p->p_lock)); 1422 ASSERT(e->rcep_t == RCENTITY_ZONE); 1423 if (e->rcep_p.zone == NULL) 1424 return (0); 1425 e->rcep_p.zone->zone_nlwps_ctl = nv; 1426 return (0); 1427 } 1428 1429 static rctl_ops_t zone_lwps_ops = { 1430 rcop_no_action, 1431 zone_lwps_usage, 1432 zone_lwps_set, 1433 zone_lwps_test, 1434 }; 1435 1436 /*ARGSUSED*/ 1437 static rctl_qty_t 1438 zone_procs_usage(rctl_t *r, proc_t *p) 1439 { 1440 rctl_qty_t nprocs; 1441 zone_t *zone = p->p_zone; 1442 1443 ASSERT(MUTEX_HELD(&p->p_lock)); 1444 1445 mutex_enter(&zone->zone_nlwps_lock); 1446 nprocs = zone->zone_nprocs; 1447 mutex_exit(&zone->zone_nlwps_lock); 1448 1449 return (nprocs); 1450 } 1451 1452 /*ARGSUSED*/ 1453 static int 1454 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1455 rctl_qty_t incr, uint_t flags) 1456 { 1457 rctl_qty_t nprocs; 1458 1459 ASSERT(MUTEX_HELD(&p->p_lock)); 1460 ASSERT(e->rcep_t == RCENTITY_ZONE); 1461 if (e->rcep_p.zone == NULL) 1462 return (0); 1463 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1464 nprocs = e->rcep_p.zone->zone_nprocs; 1465 1466 if (nprocs + incr > rcntl->rcv_value) 1467 return (1); 1468 1469 return (0); 1470 } 1471 1472 /*ARGSUSED*/ 1473 static int 1474 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1475 { 1476 ASSERT(MUTEX_HELD(&p->p_lock)); 1477 ASSERT(e->rcep_t == RCENTITY_ZONE); 1478 if (e->rcep_p.zone == NULL) 1479 return (0); 1480 e->rcep_p.zone->zone_nprocs_ctl = nv; 1481 return (0); 1482 } 1483 1484 static rctl_ops_t zone_procs_ops = { 1485 rcop_no_action, 1486 zone_procs_usage, 1487 zone_procs_set, 1488 zone_procs_test, 1489 }; 1490 1491 /*ARGSUSED*/ 1492 static int 1493 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1494 rctl_qty_t incr, uint_t flags) 1495 { 1496 rctl_qty_t v; 1497 ASSERT(MUTEX_HELD(&p->p_lock)); 1498 ASSERT(e->rcep_t == RCENTITY_ZONE); 1499 v = e->rcep_p.zone->zone_shmmax + incr; 1500 if (v > rval->rcv_value) 1501 return (1); 1502 return (0); 1503 } 1504 1505 static rctl_ops_t zone_shmmax_ops = { 1506 rcop_no_action, 1507 rcop_no_usage, 1508 rcop_no_set, 1509 zone_shmmax_test 1510 }; 1511 1512 /*ARGSUSED*/ 1513 static int 1514 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1515 rctl_qty_t incr, uint_t flags) 1516 { 1517 rctl_qty_t v; 1518 ASSERT(MUTEX_HELD(&p->p_lock)); 1519 ASSERT(e->rcep_t == RCENTITY_ZONE); 1520 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1521 if (v > rval->rcv_value) 1522 return (1); 1523 return (0); 1524 } 1525 1526 static rctl_ops_t zone_shmmni_ops = { 1527 rcop_no_action, 1528 rcop_no_usage, 1529 rcop_no_set, 1530 zone_shmmni_test 1531 }; 1532 1533 /*ARGSUSED*/ 1534 static int 1535 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1536 rctl_qty_t incr, uint_t flags) 1537 { 1538 rctl_qty_t v; 1539 ASSERT(MUTEX_HELD(&p->p_lock)); 1540 ASSERT(e->rcep_t == RCENTITY_ZONE); 1541 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1542 if (v > rval->rcv_value) 1543 return (1); 1544 return (0); 1545 } 1546 1547 static rctl_ops_t zone_semmni_ops = { 1548 rcop_no_action, 1549 rcop_no_usage, 1550 rcop_no_set, 1551 zone_semmni_test 1552 }; 1553 1554 /*ARGSUSED*/ 1555 static int 1556 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1557 rctl_qty_t incr, uint_t flags) 1558 { 1559 rctl_qty_t v; 1560 ASSERT(MUTEX_HELD(&p->p_lock)); 1561 ASSERT(e->rcep_t == RCENTITY_ZONE); 1562 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1563 if (v > rval->rcv_value) 1564 return (1); 1565 return (0); 1566 } 1567 1568 static rctl_ops_t zone_msgmni_ops = { 1569 rcop_no_action, 1570 rcop_no_usage, 1571 rcop_no_set, 1572 zone_msgmni_test 1573 }; 1574 1575 /*ARGSUSED*/ 1576 static rctl_qty_t 1577 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1578 { 1579 rctl_qty_t q; 1580 ASSERT(MUTEX_HELD(&p->p_lock)); 1581 mutex_enter(&p->p_zone->zone_mem_lock); 1582 q = p->p_zone->zone_locked_mem; 1583 mutex_exit(&p->p_zone->zone_mem_lock); 1584 return (q); 1585 } 1586 1587 /*ARGSUSED*/ 1588 static int 1589 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1590 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1591 { 1592 rctl_qty_t q; 1593 zone_t *z; 1594 1595 z = e->rcep_p.zone; 1596 ASSERT(MUTEX_HELD(&p->p_lock)); 1597 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1598 q = z->zone_locked_mem; 1599 if (q + incr > rcntl->rcv_value) 1600 return (1); 1601 return (0); 1602 } 1603 1604 /*ARGSUSED*/ 1605 static int 1606 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1607 rctl_qty_t nv) 1608 { 1609 ASSERT(MUTEX_HELD(&p->p_lock)); 1610 ASSERT(e->rcep_t == RCENTITY_ZONE); 1611 if (e->rcep_p.zone == NULL) 1612 return (0); 1613 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1614 return (0); 1615 } 1616 1617 static rctl_ops_t zone_locked_mem_ops = { 1618 rcop_no_action, 1619 zone_locked_mem_usage, 1620 zone_locked_mem_set, 1621 zone_locked_mem_test 1622 }; 1623 1624 /*ARGSUSED*/ 1625 static rctl_qty_t 1626 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1627 { 1628 rctl_qty_t q; 1629 zone_t *z = p->p_zone; 1630 1631 ASSERT(MUTEX_HELD(&p->p_lock)); 1632 mutex_enter(&z->zone_mem_lock); 1633 q = z->zone_max_swap; 1634 mutex_exit(&z->zone_mem_lock); 1635 return (q); 1636 } 1637 1638 /*ARGSUSED*/ 1639 static int 1640 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1641 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1642 { 1643 rctl_qty_t q; 1644 zone_t *z; 1645 1646 z = e->rcep_p.zone; 1647 ASSERT(MUTEX_HELD(&p->p_lock)); 1648 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1649 q = z->zone_max_swap; 1650 if (q + incr > rcntl->rcv_value) 1651 return (1); 1652 return (0); 1653 } 1654 1655 /*ARGSUSED*/ 1656 static int 1657 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1658 rctl_qty_t nv) 1659 { 1660 ASSERT(MUTEX_HELD(&p->p_lock)); 1661 ASSERT(e->rcep_t == RCENTITY_ZONE); 1662 if (e->rcep_p.zone == NULL) 1663 return (0); 1664 e->rcep_p.zone->zone_max_swap_ctl = nv; 1665 return (0); 1666 } 1667 1668 static rctl_ops_t zone_max_swap_ops = { 1669 rcop_no_action, 1670 zone_max_swap_usage, 1671 zone_max_swap_set, 1672 zone_max_swap_test 1673 }; 1674 1675 /*ARGSUSED*/ 1676 static rctl_qty_t 1677 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1678 { 1679 rctl_qty_t q; 1680 zone_t *z = p->p_zone; 1681 1682 ASSERT(MUTEX_HELD(&p->p_lock)); 1683 mutex_enter(&z->zone_rctl_lock); 1684 q = z->zone_max_lofi; 1685 mutex_exit(&z->zone_rctl_lock); 1686 return (q); 1687 } 1688 1689 /*ARGSUSED*/ 1690 static int 1691 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1692 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1693 { 1694 rctl_qty_t q; 1695 zone_t *z; 1696 1697 z = e->rcep_p.zone; 1698 ASSERT(MUTEX_HELD(&p->p_lock)); 1699 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1700 q = z->zone_max_lofi; 1701 if (q + incr > rcntl->rcv_value) 1702 return (1); 1703 return (0); 1704 } 1705 1706 /*ARGSUSED*/ 1707 static int 1708 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1709 rctl_qty_t nv) 1710 { 1711 ASSERT(MUTEX_HELD(&p->p_lock)); 1712 ASSERT(e->rcep_t == RCENTITY_ZONE); 1713 if (e->rcep_p.zone == NULL) 1714 return (0); 1715 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1716 return (0); 1717 } 1718 1719 static rctl_ops_t zone_max_lofi_ops = { 1720 rcop_no_action, 1721 zone_max_lofi_usage, 1722 zone_max_lofi_set, 1723 zone_max_lofi_test 1724 }; 1725 1726 /* 1727 * Helper function to brand the zone with a unique ID. 1728 */ 1729 static void 1730 zone_uniqid(zone_t *zone) 1731 { 1732 static uint64_t uniqid = 0; 1733 1734 ASSERT(MUTEX_HELD(&zonehash_lock)); 1735 zone->zone_uniqid = uniqid++; 1736 } 1737 1738 /* 1739 * Returns a held pointer to the "kcred" for the specified zone. 1740 */ 1741 struct cred * 1742 zone_get_kcred(zoneid_t zoneid) 1743 { 1744 zone_t *zone; 1745 cred_t *cr; 1746 1747 if ((zone = zone_find_by_id(zoneid)) == NULL) 1748 return (NULL); 1749 cr = zone->zone_kcred; 1750 crhold(cr); 1751 zone_rele(zone); 1752 return (cr); 1753 } 1754 1755 static int 1756 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1757 { 1758 zone_t *zone = ksp->ks_private; 1759 zone_kstat_t *zk = ksp->ks_data; 1760 1761 if (rw == KSTAT_WRITE) 1762 return (EACCES); 1763 1764 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1765 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1766 return (0); 1767 } 1768 1769 static int 1770 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1771 { 1772 zone_t *zone = ksp->ks_private; 1773 zone_kstat_t *zk = ksp->ks_data; 1774 1775 if (rw == KSTAT_WRITE) 1776 return (EACCES); 1777 1778 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1779 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1780 return (0); 1781 } 1782 1783 static int 1784 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1785 { 1786 zone_t *zone = ksp->ks_private; 1787 zone_kstat_t *zk = ksp->ks_data; 1788 1789 if (rw == KSTAT_WRITE) 1790 return (EACCES); 1791 1792 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1793 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1794 return (0); 1795 } 1796 1797 static kstat_t * 1798 zone_kstat_create_common(zone_t *zone, char *name, 1799 int (*updatefunc) (kstat_t *, int)) 1800 { 1801 kstat_t *ksp; 1802 zone_kstat_t *zk; 1803 1804 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1805 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1806 KSTAT_FLAG_VIRTUAL); 1807 1808 if (ksp == NULL) 1809 return (NULL); 1810 1811 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1812 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1813 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1814 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1815 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1816 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1817 ksp->ks_update = updatefunc; 1818 ksp->ks_private = zone; 1819 kstat_install(ksp); 1820 return (ksp); 1821 } 1822 1823 static void 1824 zone_kstat_create(zone_t *zone) 1825 { 1826 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1827 "lockedmem", zone_lockedmem_kstat_update); 1828 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1829 "swapresv", zone_swapresv_kstat_update); 1830 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 1831 "nprocs", zone_nprocs_kstat_update); 1832 } 1833 1834 static void 1835 zone_kstat_delete_common(kstat_t **pkstat) 1836 { 1837 void *data; 1838 1839 if (*pkstat != NULL) { 1840 data = (*pkstat)->ks_data; 1841 kstat_delete(*pkstat); 1842 kmem_free(data, sizeof (zone_kstat_t)); 1843 *pkstat = NULL; 1844 } 1845 } 1846 1847 static void 1848 zone_kstat_delete(zone_t *zone) 1849 { 1850 zone_kstat_delete_common(&zone->zone_lockedmem_kstat); 1851 zone_kstat_delete_common(&zone->zone_swapresv_kstat); 1852 zone_kstat_delete_common(&zone->zone_nprocs_kstat); 1853 } 1854 1855 /* 1856 * Called very early on in boot to initialize the ZSD list so that 1857 * zone_key_create() can be called before zone_init(). It also initializes 1858 * portions of zone0 which may be used before zone_init() is called. The 1859 * variable "global_zone" will be set when zone0 is fully initialized by 1860 * zone_init(). 1861 */ 1862 void 1863 zone_zsd_init(void) 1864 { 1865 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1866 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1867 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1868 offsetof(struct zsd_entry, zsd_linkage)); 1869 list_create(&zone_active, sizeof (zone_t), 1870 offsetof(zone_t, zone_linkage)); 1871 list_create(&zone_deathrow, sizeof (zone_t), 1872 offsetof(zone_t, zone_linkage)); 1873 1874 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1875 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1876 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1877 zone0.zone_shares = 1; 1878 zone0.zone_nlwps = 0; 1879 zone0.zone_nlwps_ctl = INT_MAX; 1880 zone0.zone_nprocs = 0; 1881 zone0.zone_nprocs_ctl = INT_MAX; 1882 zone0.zone_locked_mem = 0; 1883 zone0.zone_locked_mem_ctl = UINT64_MAX; 1884 ASSERT(zone0.zone_max_swap == 0); 1885 zone0.zone_max_swap_ctl = UINT64_MAX; 1886 zone0.zone_max_lofi = 0; 1887 zone0.zone_max_lofi_ctl = UINT64_MAX; 1888 zone0.zone_shmmax = 0; 1889 zone0.zone_ipc.ipcq_shmmni = 0; 1890 zone0.zone_ipc.ipcq_semmni = 0; 1891 zone0.zone_ipc.ipcq_msgmni = 0; 1892 zone0.zone_name = GLOBAL_ZONENAME; 1893 zone0.zone_nodename = utsname.nodename; 1894 zone0.zone_domain = srpc_domain; 1895 zone0.zone_hostid = HW_INVALID_HOSTID; 1896 zone0.zone_fs_allowed = NULL; 1897 zone0.zone_ref = 1; 1898 zone0.zone_id = GLOBAL_ZONEID; 1899 zone0.zone_status = ZONE_IS_RUNNING; 1900 zone0.zone_rootpath = "/"; 1901 zone0.zone_rootpathlen = 2; 1902 zone0.zone_psetid = ZONE_PS_INVAL; 1903 zone0.zone_ncpus = 0; 1904 zone0.zone_ncpus_online = 0; 1905 zone0.zone_proc_initpid = 1; 1906 zone0.zone_initname = initname; 1907 zone0.zone_lockedmem_kstat = NULL; 1908 zone0.zone_swapresv_kstat = NULL; 1909 zone0.zone_nprocs_kstat = NULL; 1910 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 1911 offsetof(zone_ref_t, zref_linkage)); 1912 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1913 offsetof(struct zsd_entry, zsd_linkage)); 1914 list_insert_head(&zone_active, &zone0); 1915 1916 /* 1917 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1918 * to anything meaningful. It is assigned to be 'rootdir' in 1919 * vfs_mountroot(). 1920 */ 1921 zone0.zone_rootvp = NULL; 1922 zone0.zone_vfslist = NULL; 1923 zone0.zone_bootargs = initargs; 1924 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1925 /* 1926 * The global zone has all privileges 1927 */ 1928 priv_fillset(zone0.zone_privset); 1929 /* 1930 * Add p0 to the global zone 1931 */ 1932 zone0.zone_zsched = &p0; 1933 p0.p_zone = &zone0; 1934 } 1935 1936 /* 1937 * Compute a hash value based on the contents of the label and the DOI. The 1938 * hash algorithm is somewhat arbitrary, but is based on the observation that 1939 * humans will likely pick labels that differ by amounts that work out to be 1940 * multiples of the number of hash chains, and thus stirring in some primes 1941 * should help. 1942 */ 1943 static uint_t 1944 hash_bylabel(void *hdata, mod_hash_key_t key) 1945 { 1946 const ts_label_t *lab = (ts_label_t *)key; 1947 const uint32_t *up, *ue; 1948 uint_t hash; 1949 int i; 1950 1951 _NOTE(ARGUNUSED(hdata)); 1952 1953 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1954 /* we depend on alignment of label, but not representation */ 1955 up = (const uint32_t *)&lab->tsl_label; 1956 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1957 i = 1; 1958 while (up < ue) { 1959 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1960 hash += *up + (*up << ((i % 16) + 1)); 1961 up++; 1962 i++; 1963 } 1964 return (hash); 1965 } 1966 1967 /* 1968 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1969 * equal). This may need to be changed if less than / greater than is ever 1970 * needed. 1971 */ 1972 static int 1973 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1974 { 1975 ts_label_t *lab1 = (ts_label_t *)key1; 1976 ts_label_t *lab2 = (ts_label_t *)key2; 1977 1978 return (label_equal(lab1, lab2) ? 0 : 1); 1979 } 1980 1981 /* 1982 * Called by main() to initialize the zones framework. 1983 */ 1984 void 1985 zone_init(void) 1986 { 1987 rctl_dict_entry_t *rde; 1988 rctl_val_t *dval; 1989 rctl_set_t *set; 1990 rctl_alloc_gp_t *gp; 1991 rctl_entity_p_t e; 1992 int res; 1993 1994 ASSERT(curproc == &p0); 1995 1996 /* 1997 * Create ID space for zone IDs. ID 0 is reserved for the 1998 * global zone. 1999 */ 2000 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2001 2002 /* 2003 * Initialize generic zone resource controls, if any. 2004 */ 2005 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2006 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2007 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2008 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2009 2010 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2011 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2012 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2013 RCTL_GLOBAL_INFINITE, 2014 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2015 2016 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2017 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2018 INT_MAX, INT_MAX, &zone_lwps_ops); 2019 2020 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2021 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2022 INT_MAX, INT_MAX, &zone_procs_ops); 2023 2024 /* 2025 * System V IPC resource controls 2026 */ 2027 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2028 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2029 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2030 2031 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2032 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2033 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2034 2035 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2036 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2037 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2038 2039 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2040 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2041 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2042 2043 /* 2044 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2045 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2046 */ 2047 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2048 bzero(dval, sizeof (rctl_val_t)); 2049 dval->rcv_value = 1; 2050 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2051 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2052 dval->rcv_action_recip_pid = -1; 2053 2054 rde = rctl_dict_lookup("zone.cpu-shares"); 2055 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2056 2057 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2058 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2059 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2060 &zone_locked_mem_ops); 2061 2062 rc_zone_max_swap = rctl_register("zone.max-swap", 2063 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2064 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2065 &zone_max_swap_ops); 2066 2067 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2068 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2069 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2070 &zone_max_lofi_ops); 2071 2072 /* 2073 * Initialize the ``global zone''. 2074 */ 2075 set = rctl_set_create(); 2076 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2077 mutex_enter(&p0.p_lock); 2078 e.rcep_p.zone = &zone0; 2079 e.rcep_t = RCENTITY_ZONE; 2080 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2081 gp); 2082 2083 zone0.zone_nlwps = p0.p_lwpcnt; 2084 zone0.zone_nprocs = 1; 2085 zone0.zone_ntasks = 1; 2086 mutex_exit(&p0.p_lock); 2087 zone0.zone_restart_init = B_TRUE; 2088 zone0.zone_brand = &native_brand; 2089 rctl_prealloc_destroy(gp); 2090 /* 2091 * pool_default hasn't been initialized yet, so we let pool_init() 2092 * take care of making sure the global zone is in the default pool. 2093 */ 2094 2095 /* 2096 * Initialize global zone kstats 2097 */ 2098 zone_kstat_create(&zone0); 2099 2100 /* 2101 * Initialize zone label. 2102 * mlp are initialized when tnzonecfg is loaded. 2103 */ 2104 zone0.zone_slabel = l_admin_low; 2105 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2106 label_hold(l_admin_low); 2107 2108 /* 2109 * Initialise the lock for the database structure used by mntfs. 2110 */ 2111 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2112 2113 mutex_enter(&zonehash_lock); 2114 zone_uniqid(&zone0); 2115 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2116 2117 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2118 mod_hash_null_valdtor); 2119 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2120 zone_hash_size, mod_hash_null_valdtor); 2121 /* 2122 * maintain zonehashbylabel only for labeled systems 2123 */ 2124 if (is_system_labeled()) 2125 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2126 zone_hash_size, mod_hash_null_keydtor, 2127 mod_hash_null_valdtor, hash_bylabel, NULL, 2128 hash_labelkey_cmp, KM_SLEEP); 2129 zonecount = 1; 2130 2131 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2132 (mod_hash_val_t)&zone0); 2133 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2134 (mod_hash_val_t)&zone0); 2135 if (is_system_labeled()) { 2136 zone0.zone_flags |= ZF_HASHED_LABEL; 2137 (void) mod_hash_insert(zonehashbylabel, 2138 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2139 } 2140 mutex_exit(&zonehash_lock); 2141 2142 /* 2143 * We avoid setting zone_kcred until now, since kcred is initialized 2144 * sometime after zone_zsd_init() and before zone_init(). 2145 */ 2146 zone0.zone_kcred = kcred; 2147 /* 2148 * The global zone is fully initialized (except for zone_rootvp which 2149 * will be set when the root filesystem is mounted). 2150 */ 2151 global_zone = &zone0; 2152 2153 /* 2154 * Setup an event channel to send zone status change notifications on 2155 */ 2156 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2157 EVCH_CREAT); 2158 2159 if (res) 2160 panic("Sysevent_evc_bind failed during zone setup.\n"); 2161 2162 } 2163 2164 static void 2165 zone_free(zone_t *zone) 2166 { 2167 ASSERT(zone != global_zone); 2168 ASSERT(zone->zone_ntasks == 0); 2169 ASSERT(zone->zone_nlwps == 0); 2170 ASSERT(zone->zone_nprocs == 0); 2171 ASSERT(zone->zone_cred_ref == 0); 2172 ASSERT(zone->zone_kcred == NULL); 2173 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2174 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2175 ASSERT(list_is_empty(&zone->zone_ref_list)); 2176 2177 /* 2178 * Remove any zone caps. 2179 */ 2180 cpucaps_zone_remove(zone); 2181 2182 ASSERT(zone->zone_cpucap == NULL); 2183 2184 /* remove from deathrow list */ 2185 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2186 ASSERT(zone->zone_ref == 0); 2187 mutex_enter(&zone_deathrow_lock); 2188 list_remove(&zone_deathrow, zone); 2189 mutex_exit(&zone_deathrow_lock); 2190 } 2191 2192 list_destroy(&zone->zone_ref_list); 2193 zone_free_zsd(zone); 2194 zone_free_datasets(zone); 2195 list_destroy(&zone->zone_dl_list); 2196 2197 if (zone->zone_rootvp != NULL) 2198 VN_RELE(zone->zone_rootvp); 2199 if (zone->zone_rootpath) 2200 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2201 if (zone->zone_name != NULL) 2202 kmem_free(zone->zone_name, ZONENAME_MAX); 2203 if (zone->zone_slabel != NULL) 2204 label_rele(zone->zone_slabel); 2205 if (zone->zone_nodename != NULL) 2206 kmem_free(zone->zone_nodename, _SYS_NMLN); 2207 if (zone->zone_domain != NULL) 2208 kmem_free(zone->zone_domain, _SYS_NMLN); 2209 if (zone->zone_privset != NULL) 2210 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2211 if (zone->zone_rctls != NULL) 2212 rctl_set_free(zone->zone_rctls); 2213 if (zone->zone_bootargs != NULL) 2214 strfree(zone->zone_bootargs); 2215 if (zone->zone_initname != NULL) 2216 strfree(zone->zone_initname); 2217 if (zone->zone_fs_allowed != NULL) 2218 strfree(zone->zone_fs_allowed); 2219 if (zone->zone_pfexecd != NULL) 2220 klpd_freelist(&zone->zone_pfexecd); 2221 id_free(zoneid_space, zone->zone_id); 2222 mutex_destroy(&zone->zone_lock); 2223 cv_destroy(&zone->zone_cv); 2224 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2225 rw_destroy(&zone->zone_mntfs_db_lock); 2226 kmem_free(zone, sizeof (zone_t)); 2227 } 2228 2229 /* 2230 * See block comment at the top of this file for information about zone 2231 * status values. 2232 */ 2233 /* 2234 * Convenience function for setting zone status. 2235 */ 2236 static void 2237 zone_status_set(zone_t *zone, zone_status_t status) 2238 { 2239 2240 nvlist_t *nvl = NULL; 2241 ASSERT(MUTEX_HELD(&zone_status_lock)); 2242 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2243 status >= zone_status_get(zone)); 2244 2245 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2246 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2247 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2248 zone_status_table[status]) || 2249 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2250 zone_status_table[zone->zone_status]) || 2251 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2252 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2253 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2254 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2255 #ifdef DEBUG 2256 (void) printf( 2257 "Failed to allocate and send zone state change event.\n"); 2258 #endif 2259 } 2260 nvlist_free(nvl); 2261 2262 zone->zone_status = status; 2263 2264 cv_broadcast(&zone->zone_cv); 2265 } 2266 2267 /* 2268 * Public function to retrieve the zone status. The zone status may 2269 * change after it is retrieved. 2270 */ 2271 zone_status_t 2272 zone_status_get(zone_t *zone) 2273 { 2274 return (zone->zone_status); 2275 } 2276 2277 static int 2278 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2279 { 2280 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2281 int err = 0; 2282 2283 ASSERT(zone != global_zone); 2284 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2285 goto done; /* EFAULT or ENAMETOOLONG */ 2286 2287 if (zone->zone_bootargs != NULL) 2288 strfree(zone->zone_bootargs); 2289 2290 zone->zone_bootargs = strdup(buf); 2291 2292 done: 2293 kmem_free(buf, BOOTARGS_MAX); 2294 return (err); 2295 } 2296 2297 static int 2298 zone_set_brand(zone_t *zone, const char *brand) 2299 { 2300 struct brand_attr *attrp; 2301 brand_t *bp; 2302 2303 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2304 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2305 kmem_free(attrp, sizeof (struct brand_attr)); 2306 return (EFAULT); 2307 } 2308 2309 bp = brand_register_zone(attrp); 2310 kmem_free(attrp, sizeof (struct brand_attr)); 2311 if (bp == NULL) 2312 return (EINVAL); 2313 2314 /* 2315 * This is the only place where a zone can change it's brand. 2316 * We already need to hold zone_status_lock to check the zone 2317 * status, so we'll just use that lock to serialize zone 2318 * branding requests as well. 2319 */ 2320 mutex_enter(&zone_status_lock); 2321 2322 /* Re-Branding is not allowed and the zone can't be booted yet */ 2323 if ((ZONE_IS_BRANDED(zone)) || 2324 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2325 mutex_exit(&zone_status_lock); 2326 brand_unregister_zone(bp); 2327 return (EINVAL); 2328 } 2329 2330 /* set up the brand specific data */ 2331 zone->zone_brand = bp; 2332 ZBROP(zone)->b_init_brand_data(zone); 2333 2334 mutex_exit(&zone_status_lock); 2335 return (0); 2336 } 2337 2338 static int 2339 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2340 { 2341 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2342 int err = 0; 2343 2344 ASSERT(zone != global_zone); 2345 if ((err = copyinstr(zone_fs_allowed, buf, 2346 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2347 goto done; 2348 2349 if (zone->zone_fs_allowed != NULL) 2350 strfree(zone->zone_fs_allowed); 2351 2352 zone->zone_fs_allowed = strdup(buf); 2353 2354 done: 2355 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2356 return (err); 2357 } 2358 2359 static int 2360 zone_set_initname(zone_t *zone, const char *zone_initname) 2361 { 2362 char initname[INITNAME_SZ]; 2363 size_t len; 2364 int err = 0; 2365 2366 ASSERT(zone != global_zone); 2367 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2368 return (err); /* EFAULT or ENAMETOOLONG */ 2369 2370 if (zone->zone_initname != NULL) 2371 strfree(zone->zone_initname); 2372 2373 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2374 (void) strcpy(zone->zone_initname, initname); 2375 return (0); 2376 } 2377 2378 static int 2379 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2380 { 2381 uint64_t mcap; 2382 int err = 0; 2383 2384 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2385 zone->zone_phys_mcap = mcap; 2386 2387 return (err); 2388 } 2389 2390 static int 2391 zone_set_sched_class(zone_t *zone, const char *new_class) 2392 { 2393 char sched_class[PC_CLNMSZ]; 2394 id_t classid; 2395 int err; 2396 2397 ASSERT(zone != global_zone); 2398 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2399 return (err); /* EFAULT or ENAMETOOLONG */ 2400 2401 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2402 return (set_errno(EINVAL)); 2403 zone->zone_defaultcid = classid; 2404 ASSERT(zone->zone_defaultcid > 0 && 2405 zone->zone_defaultcid < loaded_classes); 2406 2407 return (0); 2408 } 2409 2410 /* 2411 * Block indefinitely waiting for (zone_status >= status) 2412 */ 2413 void 2414 zone_status_wait(zone_t *zone, zone_status_t status) 2415 { 2416 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2417 2418 mutex_enter(&zone_status_lock); 2419 while (zone->zone_status < status) { 2420 cv_wait(&zone->zone_cv, &zone_status_lock); 2421 } 2422 mutex_exit(&zone_status_lock); 2423 } 2424 2425 /* 2426 * Private CPR-safe version of zone_status_wait(). 2427 */ 2428 static void 2429 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2430 { 2431 callb_cpr_t cprinfo; 2432 2433 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2434 2435 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2436 str); 2437 mutex_enter(&zone_status_lock); 2438 while (zone->zone_status < status) { 2439 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2440 cv_wait(&zone->zone_cv, &zone_status_lock); 2441 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2442 } 2443 /* 2444 * zone_status_lock is implicitly released by the following. 2445 */ 2446 CALLB_CPR_EXIT(&cprinfo); 2447 } 2448 2449 /* 2450 * Block until zone enters requested state or signal is received. Return (0) 2451 * if signaled, non-zero otherwise. 2452 */ 2453 int 2454 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2455 { 2456 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2457 2458 mutex_enter(&zone_status_lock); 2459 while (zone->zone_status < status) { 2460 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2461 mutex_exit(&zone_status_lock); 2462 return (0); 2463 } 2464 } 2465 mutex_exit(&zone_status_lock); 2466 return (1); 2467 } 2468 2469 /* 2470 * Block until the zone enters the requested state or the timeout expires, 2471 * whichever happens first. Return (-1) if operation timed out, time remaining 2472 * otherwise. 2473 */ 2474 clock_t 2475 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2476 { 2477 clock_t timeleft = 0; 2478 2479 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2480 2481 mutex_enter(&zone_status_lock); 2482 while (zone->zone_status < status && timeleft != -1) { 2483 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2484 } 2485 mutex_exit(&zone_status_lock); 2486 return (timeleft); 2487 } 2488 2489 /* 2490 * Block until the zone enters the requested state, the current process is 2491 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2492 * operation timed out, 0 if signaled, time remaining otherwise. 2493 */ 2494 clock_t 2495 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2496 { 2497 clock_t timeleft = tim - ddi_get_lbolt(); 2498 2499 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2500 2501 mutex_enter(&zone_status_lock); 2502 while (zone->zone_status < status) { 2503 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2504 tim); 2505 if (timeleft <= 0) 2506 break; 2507 } 2508 mutex_exit(&zone_status_lock); 2509 return (timeleft); 2510 } 2511 2512 /* 2513 * Zones have two reference counts: one for references from credential 2514 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2515 * This is so we can allow a zone to be rebooted while there are still 2516 * outstanding cred references, since certain drivers cache dblks (which 2517 * implicitly results in cached creds). We wait for zone_ref to drop to 2518 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2519 * later freed when the zone_cred_ref drops to 0, though nothing other 2520 * than the zone id and privilege set should be accessed once the zone 2521 * is "dead". 2522 * 2523 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2524 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2525 * to 0. This can be useful to flush out other sources of cached creds 2526 * that may be less innocuous than the driver case. 2527 * 2528 * Zones also provide a tracked reference counting mechanism in which zone 2529 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2530 * debuggers determine the sources of leaked zone references. See 2531 * zone_hold_ref() and zone_rele_ref() below for more information. 2532 */ 2533 2534 int zone_wait_for_cred = 0; 2535 2536 static void 2537 zone_hold_locked(zone_t *z) 2538 { 2539 ASSERT(MUTEX_HELD(&z->zone_lock)); 2540 z->zone_ref++; 2541 ASSERT(z->zone_ref != 0); 2542 } 2543 2544 /* 2545 * Increment the specified zone's reference count. The zone's zone_t structure 2546 * will not be freed as long as the zone's reference count is nonzero. 2547 * Decrement the zone's reference count via zone_rele(). 2548 * 2549 * NOTE: This function should only be used to hold zones for short periods of 2550 * time. Use zone_hold_ref() if the zone must be held for a long time. 2551 */ 2552 void 2553 zone_hold(zone_t *z) 2554 { 2555 mutex_enter(&z->zone_lock); 2556 zone_hold_locked(z); 2557 mutex_exit(&z->zone_lock); 2558 } 2559 2560 /* 2561 * If the non-cred ref count drops to 1 and either the cred ref count 2562 * is 0 or we aren't waiting for cred references, the zone is ready to 2563 * be destroyed. 2564 */ 2565 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2566 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2567 2568 /* 2569 * Common zone reference release function invoked by zone_rele() and 2570 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2571 * zone's subsystem-specific reference counters are not affected by the 2572 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2573 * removed from the specified zone's reference list. ref must be non-NULL iff 2574 * subsys is not ZONE_REF_NUM_SUBSYS. 2575 */ 2576 static void 2577 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2578 { 2579 boolean_t wakeup; 2580 2581 mutex_enter(&z->zone_lock); 2582 ASSERT(z->zone_ref != 0); 2583 z->zone_ref--; 2584 if (subsys != ZONE_REF_NUM_SUBSYS) { 2585 ASSERT(z->zone_subsys_ref[subsys] != 0); 2586 z->zone_subsys_ref[subsys]--; 2587 list_remove(&z->zone_ref_list, ref); 2588 } 2589 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2590 /* no more refs, free the structure */ 2591 mutex_exit(&z->zone_lock); 2592 zone_free(z); 2593 return; 2594 } 2595 /* signal zone_destroy so the zone can finish halting */ 2596 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2597 mutex_exit(&z->zone_lock); 2598 2599 if (wakeup) { 2600 /* 2601 * Grabbing zonehash_lock here effectively synchronizes with 2602 * zone_destroy() to avoid missed signals. 2603 */ 2604 mutex_enter(&zonehash_lock); 2605 cv_broadcast(&zone_destroy_cv); 2606 mutex_exit(&zonehash_lock); 2607 } 2608 } 2609 2610 /* 2611 * Decrement the specified zone's reference count. The specified zone will 2612 * cease to exist after this function returns if the reference count drops to 2613 * zero. This function should be paired with zone_hold(). 2614 */ 2615 void 2616 zone_rele(zone_t *z) 2617 { 2618 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2619 } 2620 2621 /* 2622 * Initialize a zone reference structure. This function must be invoked for 2623 * a reference structure before the structure is passed to zone_hold_ref(). 2624 */ 2625 void 2626 zone_init_ref(zone_ref_t *ref) 2627 { 2628 ref->zref_zone = NULL; 2629 list_link_init(&ref->zref_linkage); 2630 } 2631 2632 /* 2633 * Acquire a reference to zone z. The caller must specify the 2634 * zone_ref_subsys_t constant associated with its subsystem. The specified 2635 * zone_ref_t structure will represent a reference to the specified zone. Use 2636 * zone_rele_ref() to release the reference. 2637 * 2638 * The referenced zone_t structure will not be freed as long as the zone_t's 2639 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2640 * references. 2641 * 2642 * NOTE: The zone_ref_t structure must be initialized before it is used. 2643 * See zone_init_ref() above. 2644 */ 2645 void 2646 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2647 { 2648 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2649 2650 /* 2651 * Prevent consumers from reusing a reference structure before 2652 * releasing it. 2653 */ 2654 VERIFY(ref->zref_zone == NULL); 2655 2656 ref->zref_zone = z; 2657 mutex_enter(&z->zone_lock); 2658 zone_hold_locked(z); 2659 z->zone_subsys_ref[subsys]++; 2660 ASSERT(z->zone_subsys_ref[subsys] != 0); 2661 list_insert_head(&z->zone_ref_list, ref); 2662 mutex_exit(&z->zone_lock); 2663 } 2664 2665 /* 2666 * Release the zone reference represented by the specified zone_ref_t. 2667 * The reference is invalid after it's released; however, the zone_ref_t 2668 * structure can be reused without having to invoke zone_init_ref(). 2669 * subsys should be the same value that was passed to zone_hold_ref() 2670 * when the reference was acquired. 2671 */ 2672 void 2673 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2674 { 2675 zone_rele_common(ref->zref_zone, ref, subsys); 2676 2677 /* 2678 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2679 * when consumers dereference the reference. This helps us catch 2680 * consumers who use released references. Furthermore, this lets 2681 * consumers reuse the zone_ref_t structure without having to 2682 * invoke zone_init_ref(). 2683 */ 2684 ref->zref_zone = NULL; 2685 } 2686 2687 void 2688 zone_cred_hold(zone_t *z) 2689 { 2690 mutex_enter(&z->zone_lock); 2691 z->zone_cred_ref++; 2692 ASSERT(z->zone_cred_ref != 0); 2693 mutex_exit(&z->zone_lock); 2694 } 2695 2696 void 2697 zone_cred_rele(zone_t *z) 2698 { 2699 boolean_t wakeup; 2700 2701 mutex_enter(&z->zone_lock); 2702 ASSERT(z->zone_cred_ref != 0); 2703 z->zone_cred_ref--; 2704 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2705 /* no more refs, free the structure */ 2706 mutex_exit(&z->zone_lock); 2707 zone_free(z); 2708 return; 2709 } 2710 /* 2711 * If zone_destroy is waiting for the cred references to drain 2712 * out, and they have, signal it. 2713 */ 2714 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2715 zone_status_get(z) >= ZONE_IS_DEAD); 2716 mutex_exit(&z->zone_lock); 2717 2718 if (wakeup) { 2719 /* 2720 * Grabbing zonehash_lock here effectively synchronizes with 2721 * zone_destroy() to avoid missed signals. 2722 */ 2723 mutex_enter(&zonehash_lock); 2724 cv_broadcast(&zone_destroy_cv); 2725 mutex_exit(&zonehash_lock); 2726 } 2727 } 2728 2729 void 2730 zone_task_hold(zone_t *z) 2731 { 2732 mutex_enter(&z->zone_lock); 2733 z->zone_ntasks++; 2734 ASSERT(z->zone_ntasks != 0); 2735 mutex_exit(&z->zone_lock); 2736 } 2737 2738 void 2739 zone_task_rele(zone_t *zone) 2740 { 2741 uint_t refcnt; 2742 2743 mutex_enter(&zone->zone_lock); 2744 ASSERT(zone->zone_ntasks != 0); 2745 refcnt = --zone->zone_ntasks; 2746 if (refcnt > 1) { /* Common case */ 2747 mutex_exit(&zone->zone_lock); 2748 return; 2749 } 2750 zone_hold_locked(zone); /* so we can use the zone_t later */ 2751 mutex_exit(&zone->zone_lock); 2752 if (refcnt == 1) { 2753 /* 2754 * See if the zone is shutting down. 2755 */ 2756 mutex_enter(&zone_status_lock); 2757 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2758 goto out; 2759 } 2760 2761 /* 2762 * Make sure the ntasks didn't change since we 2763 * dropped zone_lock. 2764 */ 2765 mutex_enter(&zone->zone_lock); 2766 if (refcnt != zone->zone_ntasks) { 2767 mutex_exit(&zone->zone_lock); 2768 goto out; 2769 } 2770 mutex_exit(&zone->zone_lock); 2771 2772 /* 2773 * No more user processes in the zone. The zone is empty. 2774 */ 2775 zone_status_set(zone, ZONE_IS_EMPTY); 2776 goto out; 2777 } 2778 2779 ASSERT(refcnt == 0); 2780 /* 2781 * zsched has exited; the zone is dead. 2782 */ 2783 zone->zone_zsched = NULL; /* paranoia */ 2784 mutex_enter(&zone_status_lock); 2785 zone_status_set(zone, ZONE_IS_DEAD); 2786 out: 2787 mutex_exit(&zone_status_lock); 2788 zone_rele(zone); 2789 } 2790 2791 zoneid_t 2792 getzoneid(void) 2793 { 2794 return (curproc->p_zone->zone_id); 2795 } 2796 2797 /* 2798 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2799 * check the validity of a zone's state. 2800 */ 2801 static zone_t * 2802 zone_find_all_by_id(zoneid_t zoneid) 2803 { 2804 mod_hash_val_t hv; 2805 zone_t *zone = NULL; 2806 2807 ASSERT(MUTEX_HELD(&zonehash_lock)); 2808 2809 if (mod_hash_find(zonehashbyid, 2810 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2811 zone = (zone_t *)hv; 2812 return (zone); 2813 } 2814 2815 static zone_t * 2816 zone_find_all_by_label(const ts_label_t *label) 2817 { 2818 mod_hash_val_t hv; 2819 zone_t *zone = NULL; 2820 2821 ASSERT(MUTEX_HELD(&zonehash_lock)); 2822 2823 /* 2824 * zonehashbylabel is not maintained for unlabeled systems 2825 */ 2826 if (!is_system_labeled()) 2827 return (NULL); 2828 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2829 zone = (zone_t *)hv; 2830 return (zone); 2831 } 2832 2833 static zone_t * 2834 zone_find_all_by_name(char *name) 2835 { 2836 mod_hash_val_t hv; 2837 zone_t *zone = NULL; 2838 2839 ASSERT(MUTEX_HELD(&zonehash_lock)); 2840 2841 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2842 zone = (zone_t *)hv; 2843 return (zone); 2844 } 2845 2846 /* 2847 * Public interface for looking up a zone by zoneid. Only returns the zone if 2848 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2849 * Caller must call zone_rele() once it is done with the zone. 2850 * 2851 * The zone may begin the zone_destroy() sequence immediately after this 2852 * function returns, but may be safely used until zone_rele() is called. 2853 */ 2854 zone_t * 2855 zone_find_by_id(zoneid_t zoneid) 2856 { 2857 zone_t *zone; 2858 zone_status_t status; 2859 2860 mutex_enter(&zonehash_lock); 2861 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2862 mutex_exit(&zonehash_lock); 2863 return (NULL); 2864 } 2865 status = zone_status_get(zone); 2866 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2867 /* 2868 * For all practical purposes the zone doesn't exist. 2869 */ 2870 mutex_exit(&zonehash_lock); 2871 return (NULL); 2872 } 2873 zone_hold(zone); 2874 mutex_exit(&zonehash_lock); 2875 return (zone); 2876 } 2877 2878 /* 2879 * Similar to zone_find_by_id, but using zone label as the key. 2880 */ 2881 zone_t * 2882 zone_find_by_label(const ts_label_t *label) 2883 { 2884 zone_t *zone; 2885 zone_status_t status; 2886 2887 mutex_enter(&zonehash_lock); 2888 if ((zone = zone_find_all_by_label(label)) == NULL) { 2889 mutex_exit(&zonehash_lock); 2890 return (NULL); 2891 } 2892 2893 status = zone_status_get(zone); 2894 if (status > ZONE_IS_DOWN) { 2895 /* 2896 * For all practical purposes the zone doesn't exist. 2897 */ 2898 mutex_exit(&zonehash_lock); 2899 return (NULL); 2900 } 2901 zone_hold(zone); 2902 mutex_exit(&zonehash_lock); 2903 return (zone); 2904 } 2905 2906 /* 2907 * Similar to zone_find_by_id, but using zone name as the key. 2908 */ 2909 zone_t * 2910 zone_find_by_name(char *name) 2911 { 2912 zone_t *zone; 2913 zone_status_t status; 2914 2915 mutex_enter(&zonehash_lock); 2916 if ((zone = zone_find_all_by_name(name)) == NULL) { 2917 mutex_exit(&zonehash_lock); 2918 return (NULL); 2919 } 2920 status = zone_status_get(zone); 2921 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2922 /* 2923 * For all practical purposes the zone doesn't exist. 2924 */ 2925 mutex_exit(&zonehash_lock); 2926 return (NULL); 2927 } 2928 zone_hold(zone); 2929 mutex_exit(&zonehash_lock); 2930 return (zone); 2931 } 2932 2933 /* 2934 * Similar to zone_find_by_id(), using the path as a key. For instance, 2935 * if there is a zone "foo" rooted at /foo/root, and the path argument 2936 * is "/foo/root/proc", it will return the held zone_t corresponding to 2937 * zone "foo". 2938 * 2939 * zone_find_by_path() always returns a non-NULL value, since at the 2940 * very least every path will be contained in the global zone. 2941 * 2942 * As with the other zone_find_by_*() functions, the caller is 2943 * responsible for zone_rele()ing the return value of this function. 2944 */ 2945 zone_t * 2946 zone_find_by_path(const char *path) 2947 { 2948 zone_t *zone; 2949 zone_t *zret = NULL; 2950 zone_status_t status; 2951 2952 if (path == NULL) { 2953 /* 2954 * Call from rootconf(). 2955 */ 2956 zone_hold(global_zone); 2957 return (global_zone); 2958 } 2959 ASSERT(*path == '/'); 2960 mutex_enter(&zonehash_lock); 2961 for (zone = list_head(&zone_active); zone != NULL; 2962 zone = list_next(&zone_active, zone)) { 2963 if (ZONE_PATH_VISIBLE(path, zone)) 2964 zret = zone; 2965 } 2966 ASSERT(zret != NULL); 2967 status = zone_status_get(zret); 2968 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2969 /* 2970 * Zone practically doesn't exist. 2971 */ 2972 zret = global_zone; 2973 } 2974 zone_hold(zret); 2975 mutex_exit(&zonehash_lock); 2976 return (zret); 2977 } 2978 2979 /* 2980 * Get the number of cpus visible to this zone. The system-wide global 2981 * 'ncpus' is returned if pools are disabled, the caller is in the 2982 * global zone, or a NULL zone argument is passed in. 2983 */ 2984 int 2985 zone_ncpus_get(zone_t *zone) 2986 { 2987 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2988 2989 return (myncpus != 0 ? myncpus : ncpus); 2990 } 2991 2992 /* 2993 * Get the number of online cpus visible to this zone. The system-wide 2994 * global 'ncpus_online' is returned if pools are disabled, the caller 2995 * is in the global zone, or a NULL zone argument is passed in. 2996 */ 2997 int 2998 zone_ncpus_online_get(zone_t *zone) 2999 { 3000 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3001 3002 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3003 } 3004 3005 /* 3006 * Return the pool to which the zone is currently bound. 3007 */ 3008 pool_t * 3009 zone_pool_get(zone_t *zone) 3010 { 3011 ASSERT(pool_lock_held()); 3012 3013 return (zone->zone_pool); 3014 } 3015 3016 /* 3017 * Set the zone's pool pointer and update the zone's visibility to match 3018 * the resources in the new pool. 3019 */ 3020 void 3021 zone_pool_set(zone_t *zone, pool_t *pool) 3022 { 3023 ASSERT(pool_lock_held()); 3024 ASSERT(MUTEX_HELD(&cpu_lock)); 3025 3026 zone->zone_pool = pool; 3027 zone_pset_set(zone, pool->pool_pset->pset_id); 3028 } 3029 3030 /* 3031 * Return the cached value of the id of the processor set to which the 3032 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3033 * facility is disabled. 3034 */ 3035 psetid_t 3036 zone_pset_get(zone_t *zone) 3037 { 3038 ASSERT(MUTEX_HELD(&cpu_lock)); 3039 3040 return (zone->zone_psetid); 3041 } 3042 3043 /* 3044 * Set the cached value of the id of the processor set to which the zone 3045 * is currently bound. Also update the zone's visibility to match the 3046 * resources in the new processor set. 3047 */ 3048 void 3049 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3050 { 3051 psetid_t oldpsetid; 3052 3053 ASSERT(MUTEX_HELD(&cpu_lock)); 3054 oldpsetid = zone_pset_get(zone); 3055 3056 if (oldpsetid == newpsetid) 3057 return; 3058 /* 3059 * Global zone sees all. 3060 */ 3061 if (zone != global_zone) { 3062 zone->zone_psetid = newpsetid; 3063 if (newpsetid != ZONE_PS_INVAL) 3064 pool_pset_visibility_add(newpsetid, zone); 3065 if (oldpsetid != ZONE_PS_INVAL) 3066 pool_pset_visibility_remove(oldpsetid, zone); 3067 } 3068 /* 3069 * Disabling pools, so we should start using the global values 3070 * for ncpus and ncpus_online. 3071 */ 3072 if (newpsetid == ZONE_PS_INVAL) { 3073 zone->zone_ncpus = 0; 3074 zone->zone_ncpus_online = 0; 3075 } 3076 } 3077 3078 /* 3079 * Walk the list of active zones and issue the provided callback for 3080 * each of them. 3081 * 3082 * Caller must not be holding any locks that may be acquired under 3083 * zonehash_lock. See comment at the beginning of the file for a list of 3084 * common locks and their interactions with zones. 3085 */ 3086 int 3087 zone_walk(int (*cb)(zone_t *, void *), void *data) 3088 { 3089 zone_t *zone; 3090 int ret = 0; 3091 zone_status_t status; 3092 3093 mutex_enter(&zonehash_lock); 3094 for (zone = list_head(&zone_active); zone != NULL; 3095 zone = list_next(&zone_active, zone)) { 3096 /* 3097 * Skip zones that shouldn't be externally visible. 3098 */ 3099 status = zone_status_get(zone); 3100 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3101 continue; 3102 /* 3103 * Bail immediately if any callback invocation returns a 3104 * non-zero value. 3105 */ 3106 ret = (*cb)(zone, data); 3107 if (ret != 0) 3108 break; 3109 } 3110 mutex_exit(&zonehash_lock); 3111 return (ret); 3112 } 3113 3114 static int 3115 zone_set_root(zone_t *zone, const char *upath) 3116 { 3117 vnode_t *vp; 3118 int trycount; 3119 int error = 0; 3120 char *path; 3121 struct pathname upn, pn; 3122 size_t pathlen; 3123 3124 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3125 return (error); 3126 3127 pn_alloc(&pn); 3128 3129 /* prevent infinite loop */ 3130 trycount = 10; 3131 for (;;) { 3132 if (--trycount <= 0) { 3133 error = ESTALE; 3134 goto out; 3135 } 3136 3137 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3138 /* 3139 * VOP_ACCESS() may cover 'vp' with a new 3140 * filesystem, if 'vp' is an autoFS vnode. 3141 * Get the new 'vp' if so. 3142 */ 3143 if ((error = 3144 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3145 (!vn_ismntpt(vp) || 3146 (error = traverse(&vp)) == 0)) { 3147 pathlen = pn.pn_pathlen + 2; 3148 path = kmem_alloc(pathlen, KM_SLEEP); 3149 (void) strncpy(path, pn.pn_path, 3150 pn.pn_pathlen + 1); 3151 path[pathlen - 2] = '/'; 3152 path[pathlen - 1] = '\0'; 3153 pn_free(&pn); 3154 pn_free(&upn); 3155 3156 /* Success! */ 3157 break; 3158 } 3159 VN_RELE(vp); 3160 } 3161 if (error != ESTALE) 3162 goto out; 3163 } 3164 3165 ASSERT(error == 0); 3166 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3167 zone->zone_rootpath = path; 3168 zone->zone_rootpathlen = pathlen; 3169 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3170 zone->zone_flags |= ZF_IS_SCRATCH; 3171 return (0); 3172 3173 out: 3174 pn_free(&pn); 3175 pn_free(&upn); 3176 return (error); 3177 } 3178 3179 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3180 ((c) >= 'a' && (c) <= 'z') || \ 3181 ((c) >= 'A' && (c) <= 'Z')) 3182 3183 static int 3184 zone_set_name(zone_t *zone, const char *uname) 3185 { 3186 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3187 size_t len; 3188 int i, err; 3189 3190 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3191 kmem_free(kname, ZONENAME_MAX); 3192 return (err); /* EFAULT or ENAMETOOLONG */ 3193 } 3194 3195 /* must be less than ZONENAME_MAX */ 3196 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3197 kmem_free(kname, ZONENAME_MAX); 3198 return (EINVAL); 3199 } 3200 3201 /* 3202 * Name must start with an alphanumeric and must contain only 3203 * alphanumerics, '-', '_' and '.'. 3204 */ 3205 if (!isalnum(kname[0])) { 3206 kmem_free(kname, ZONENAME_MAX); 3207 return (EINVAL); 3208 } 3209 for (i = 1; i < len - 1; i++) { 3210 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3211 kname[i] != '.') { 3212 kmem_free(kname, ZONENAME_MAX); 3213 return (EINVAL); 3214 } 3215 } 3216 3217 zone->zone_name = kname; 3218 return (0); 3219 } 3220 3221 /* 3222 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3223 * is NULL or it points to a zone with no hostid emulation, then the machine's 3224 * hostid (i.e., the global zone's hostid) is returned. This function returns 3225 * zero if neither the zone nor the host machine (global zone) have hostids. It 3226 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3227 * hostid and the machine's hostid is invalid. 3228 */ 3229 uint32_t 3230 zone_get_hostid(zone_t *zonep) 3231 { 3232 unsigned long machine_hostid; 3233 3234 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3235 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3236 return (HW_INVALID_HOSTID); 3237 return ((uint32_t)machine_hostid); 3238 } 3239 return (zonep->zone_hostid); 3240 } 3241 3242 /* 3243 * Similar to thread_create(), but makes sure the thread is in the appropriate 3244 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3245 */ 3246 /*ARGSUSED*/ 3247 kthread_t * 3248 zthread_create( 3249 caddr_t stk, 3250 size_t stksize, 3251 void (*proc)(), 3252 void *arg, 3253 size_t len, 3254 pri_t pri) 3255 { 3256 kthread_t *t; 3257 zone_t *zone = curproc->p_zone; 3258 proc_t *pp = zone->zone_zsched; 3259 3260 zone_hold(zone); /* Reference to be dropped when thread exits */ 3261 3262 /* 3263 * No-one should be trying to create threads if the zone is shutting 3264 * down and there aren't any kernel threads around. See comment 3265 * in zthread_exit(). 3266 */ 3267 ASSERT(!(zone->zone_kthreads == NULL && 3268 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3269 /* 3270 * Create a thread, but don't let it run until we've finished setting 3271 * things up. 3272 */ 3273 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3274 ASSERT(t->t_forw == NULL); 3275 mutex_enter(&zone_status_lock); 3276 if (zone->zone_kthreads == NULL) { 3277 t->t_forw = t->t_back = t; 3278 } else { 3279 kthread_t *tx = zone->zone_kthreads; 3280 3281 t->t_forw = tx; 3282 t->t_back = tx->t_back; 3283 tx->t_back->t_forw = t; 3284 tx->t_back = t; 3285 } 3286 zone->zone_kthreads = t; 3287 mutex_exit(&zone_status_lock); 3288 3289 mutex_enter(&pp->p_lock); 3290 t->t_proc_flag |= TP_ZTHREAD; 3291 project_rele(t->t_proj); 3292 t->t_proj = project_hold(pp->p_task->tk_proj); 3293 3294 /* 3295 * Setup complete, let it run. 3296 */ 3297 thread_lock(t); 3298 t->t_schedflag |= TS_ALLSTART; 3299 setrun_locked(t); 3300 thread_unlock(t); 3301 3302 mutex_exit(&pp->p_lock); 3303 3304 return (t); 3305 } 3306 3307 /* 3308 * Similar to thread_exit(). Must be called by threads created via 3309 * zthread_exit(). 3310 */ 3311 void 3312 zthread_exit(void) 3313 { 3314 kthread_t *t = curthread; 3315 proc_t *pp = curproc; 3316 zone_t *zone = pp->p_zone; 3317 3318 mutex_enter(&zone_status_lock); 3319 3320 /* 3321 * Reparent to p0 3322 */ 3323 kpreempt_disable(); 3324 mutex_enter(&pp->p_lock); 3325 t->t_proc_flag &= ~TP_ZTHREAD; 3326 t->t_procp = &p0; 3327 hat_thread_exit(t); 3328 mutex_exit(&pp->p_lock); 3329 kpreempt_enable(); 3330 3331 if (t->t_back == t) { 3332 ASSERT(t->t_forw == t); 3333 /* 3334 * If the zone is empty, once the thread count 3335 * goes to zero no further kernel threads can be 3336 * created. This is because if the creator is a process 3337 * in the zone, then it must have exited before the zone 3338 * state could be set to ZONE_IS_EMPTY. 3339 * Otherwise, if the creator is a kernel thread in the 3340 * zone, the thread count is non-zero. 3341 * 3342 * This really means that non-zone kernel threads should 3343 * not create zone kernel threads. 3344 */ 3345 zone->zone_kthreads = NULL; 3346 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3347 zone_status_set(zone, ZONE_IS_DOWN); 3348 /* 3349 * Remove any CPU caps on this zone. 3350 */ 3351 cpucaps_zone_remove(zone); 3352 } 3353 } else { 3354 t->t_forw->t_back = t->t_back; 3355 t->t_back->t_forw = t->t_forw; 3356 if (zone->zone_kthreads == t) 3357 zone->zone_kthreads = t->t_forw; 3358 } 3359 mutex_exit(&zone_status_lock); 3360 zone_rele(zone); 3361 thread_exit(); 3362 /* NOTREACHED */ 3363 } 3364 3365 static void 3366 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3367 { 3368 vnode_t *oldvp; 3369 3370 /* we're going to hold a reference here to the directory */ 3371 VN_HOLD(vp); 3372 3373 /* update abs cwd/root path see c2/audit.c */ 3374 if (AU_AUDITING()) 3375 audit_chdirec(vp, vpp); 3376 3377 mutex_enter(&pp->p_lock); 3378 oldvp = *vpp; 3379 *vpp = vp; 3380 mutex_exit(&pp->p_lock); 3381 if (oldvp != NULL) 3382 VN_RELE(oldvp); 3383 } 3384 3385 /* 3386 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3387 */ 3388 static int 3389 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3390 { 3391 nvpair_t *nvp = NULL; 3392 boolean_t priv_set = B_FALSE; 3393 boolean_t limit_set = B_FALSE; 3394 boolean_t action_set = B_FALSE; 3395 3396 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3397 const char *name; 3398 uint64_t ui64; 3399 3400 name = nvpair_name(nvp); 3401 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3402 return (EINVAL); 3403 (void) nvpair_value_uint64(nvp, &ui64); 3404 if (strcmp(name, "privilege") == 0) { 3405 /* 3406 * Currently only privileged values are allowed, but 3407 * this may change in the future. 3408 */ 3409 if (ui64 != RCPRIV_PRIVILEGED) 3410 return (EINVAL); 3411 rv->rcv_privilege = ui64; 3412 priv_set = B_TRUE; 3413 } else if (strcmp(name, "limit") == 0) { 3414 rv->rcv_value = ui64; 3415 limit_set = B_TRUE; 3416 } else if (strcmp(name, "action") == 0) { 3417 if (ui64 != RCTL_LOCAL_NOACTION && 3418 ui64 != RCTL_LOCAL_DENY) 3419 return (EINVAL); 3420 rv->rcv_flagaction = ui64; 3421 action_set = B_TRUE; 3422 } else { 3423 return (EINVAL); 3424 } 3425 } 3426 3427 if (!(priv_set && limit_set && action_set)) 3428 return (EINVAL); 3429 rv->rcv_action_signal = 0; 3430 rv->rcv_action_recipient = NULL; 3431 rv->rcv_action_recip_pid = -1; 3432 rv->rcv_firing_time = 0; 3433 3434 return (0); 3435 } 3436 3437 /* 3438 * Non-global zone version of start_init. 3439 */ 3440 void 3441 zone_start_init(void) 3442 { 3443 proc_t *p = ttoproc(curthread); 3444 zone_t *z = p->p_zone; 3445 3446 ASSERT(!INGLOBALZONE(curproc)); 3447 3448 /* 3449 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3450 * storing just the pid of init is sufficient. 3451 */ 3452 z->zone_proc_initpid = p->p_pid; 3453 3454 /* 3455 * We maintain zone_boot_err so that we can return the cause of the 3456 * failure back to the caller of the zone_boot syscall. 3457 */ 3458 p->p_zone->zone_boot_err = start_init_common(); 3459 3460 /* 3461 * We will prevent booting zones from becoming running zones if the 3462 * global zone is shutting down. 3463 */ 3464 mutex_enter(&zone_status_lock); 3465 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3466 ZONE_IS_SHUTTING_DOWN) { 3467 /* 3468 * Make sure we are still in the booting state-- we could have 3469 * raced and already be shutting down, or even further along. 3470 */ 3471 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3472 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3473 } 3474 mutex_exit(&zone_status_lock); 3475 /* It's gone bad, dispose of the process */ 3476 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3477 mutex_enter(&p->p_lock); 3478 ASSERT(p->p_flag & SEXITLWPS); 3479 lwp_exit(); 3480 } 3481 } else { 3482 if (zone_status_get(z) == ZONE_IS_BOOTING) 3483 zone_status_set(z, ZONE_IS_RUNNING); 3484 mutex_exit(&zone_status_lock); 3485 /* cause the process to return to userland. */ 3486 lwp_rtt(); 3487 } 3488 } 3489 3490 struct zsched_arg { 3491 zone_t *zone; 3492 nvlist_t *nvlist; 3493 }; 3494 3495 /* 3496 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3497 * anything to do with scheduling, but rather with the fact that 3498 * per-zone kernel threads are parented to zsched, just like regular 3499 * kernel threads are parented to sched (p0). 3500 * 3501 * zsched is also responsible for launching init for the zone. 3502 */ 3503 static void 3504 zsched(void *arg) 3505 { 3506 struct zsched_arg *za = arg; 3507 proc_t *pp = curproc; 3508 proc_t *initp = proc_init; 3509 zone_t *zone = za->zone; 3510 cred_t *cr, *oldcred; 3511 rctl_set_t *set; 3512 rctl_alloc_gp_t *gp; 3513 contract_t *ct = NULL; 3514 task_t *tk, *oldtk; 3515 rctl_entity_p_t e; 3516 kproject_t *pj; 3517 3518 nvlist_t *nvl = za->nvlist; 3519 nvpair_t *nvp = NULL; 3520 3521 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3522 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3523 PTOU(pp)->u_argc = 0; 3524 PTOU(pp)->u_argv = NULL; 3525 PTOU(pp)->u_envp = NULL; 3526 closeall(P_FINFO(pp)); 3527 3528 /* 3529 * We are this zone's "zsched" process. As the zone isn't generally 3530 * visible yet we don't need to grab any locks before initializing its 3531 * zone_proc pointer. 3532 */ 3533 zone_hold(zone); /* this hold is released by zone_destroy() */ 3534 zone->zone_zsched = pp; 3535 mutex_enter(&pp->p_lock); 3536 pp->p_zone = zone; 3537 mutex_exit(&pp->p_lock); 3538 3539 /* 3540 * Disassociate process from its 'parent'; parent ourselves to init 3541 * (pid 1) and change other values as needed. 3542 */ 3543 sess_create(); 3544 3545 mutex_enter(&pidlock); 3546 proc_detach(pp); 3547 pp->p_ppid = 1; 3548 pp->p_flag |= SZONETOP; 3549 pp->p_ancpid = 1; 3550 pp->p_parent = initp; 3551 pp->p_psibling = NULL; 3552 if (initp->p_child) 3553 initp->p_child->p_psibling = pp; 3554 pp->p_sibling = initp->p_child; 3555 initp->p_child = pp; 3556 3557 /* Decrement what newproc() incremented. */ 3558 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3559 /* 3560 * Our credentials are about to become kcred-like, so we don't care 3561 * about the caller's ruid. 3562 */ 3563 upcount_inc(crgetruid(kcred), zone->zone_id); 3564 mutex_exit(&pidlock); 3565 3566 /* 3567 * getting out of global zone, so decrement lwp and process counts 3568 */ 3569 pj = pp->p_task->tk_proj; 3570 mutex_enter(&global_zone->zone_nlwps_lock); 3571 pj->kpj_nlwps -= pp->p_lwpcnt; 3572 global_zone->zone_nlwps -= pp->p_lwpcnt; 3573 pj->kpj_nprocs--; 3574 global_zone->zone_nprocs--; 3575 mutex_exit(&global_zone->zone_nlwps_lock); 3576 3577 /* 3578 * Decrement locked memory counts on old zone and project. 3579 */ 3580 mutex_enter(&global_zone->zone_mem_lock); 3581 global_zone->zone_locked_mem -= pp->p_locked_mem; 3582 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3583 mutex_exit(&global_zone->zone_mem_lock); 3584 3585 /* 3586 * Create and join a new task in project '0' of this zone. 3587 * 3588 * We don't need to call holdlwps() since we know we're the only lwp in 3589 * this process. 3590 * 3591 * task_join() returns with p_lock held. 3592 */ 3593 tk = task_create(0, zone); 3594 mutex_enter(&cpu_lock); 3595 oldtk = task_join(tk, 0); 3596 3597 pj = pp->p_task->tk_proj; 3598 3599 mutex_enter(&zone->zone_mem_lock); 3600 zone->zone_locked_mem += pp->p_locked_mem; 3601 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3602 mutex_exit(&zone->zone_mem_lock); 3603 3604 /* 3605 * add lwp and process counts to zsched's zone, and increment 3606 * project's task and process count due to the task created in 3607 * the above task_create. 3608 */ 3609 mutex_enter(&zone->zone_nlwps_lock); 3610 pj->kpj_nlwps += pp->p_lwpcnt; 3611 pj->kpj_ntasks += 1; 3612 zone->zone_nlwps += pp->p_lwpcnt; 3613 pj->kpj_nprocs++; 3614 zone->zone_nprocs++; 3615 mutex_exit(&zone->zone_nlwps_lock); 3616 3617 mutex_exit(&curproc->p_lock); 3618 mutex_exit(&cpu_lock); 3619 task_rele(oldtk); 3620 3621 /* 3622 * The process was created by a process in the global zone, hence the 3623 * credentials are wrong. We might as well have kcred-ish credentials. 3624 */ 3625 cr = zone->zone_kcred; 3626 crhold(cr); 3627 mutex_enter(&pp->p_crlock); 3628 oldcred = pp->p_cred; 3629 pp->p_cred = cr; 3630 mutex_exit(&pp->p_crlock); 3631 crfree(oldcred); 3632 3633 /* 3634 * Hold credentials again (for thread) 3635 */ 3636 crhold(cr); 3637 3638 /* 3639 * p_lwpcnt can't change since this is a kernel process. 3640 */ 3641 crset(pp, cr); 3642 3643 /* 3644 * Chroot 3645 */ 3646 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3647 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3648 3649 /* 3650 * Initialize zone's rctl set. 3651 */ 3652 set = rctl_set_create(); 3653 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3654 mutex_enter(&pp->p_lock); 3655 e.rcep_p.zone = zone; 3656 e.rcep_t = RCENTITY_ZONE; 3657 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3658 mutex_exit(&pp->p_lock); 3659 rctl_prealloc_destroy(gp); 3660 3661 /* 3662 * Apply the rctls passed in to zone_create(). This is basically a list 3663 * assignment: all of the old values are removed and the new ones 3664 * inserted. That is, if an empty list is passed in, all values are 3665 * removed. 3666 */ 3667 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3668 rctl_dict_entry_t *rde; 3669 rctl_hndl_t hndl; 3670 char *name; 3671 nvlist_t **nvlarray; 3672 uint_t i, nelem; 3673 int error; /* For ASSERT()s */ 3674 3675 name = nvpair_name(nvp); 3676 hndl = rctl_hndl_lookup(name); 3677 ASSERT(hndl != -1); 3678 rde = rctl_dict_lookup_hndl(hndl); 3679 ASSERT(rde != NULL); 3680 3681 for (; /* ever */; ) { 3682 rctl_val_t oval; 3683 3684 mutex_enter(&pp->p_lock); 3685 error = rctl_local_get(hndl, NULL, &oval, pp); 3686 mutex_exit(&pp->p_lock); 3687 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3688 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3689 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3690 break; 3691 mutex_enter(&pp->p_lock); 3692 error = rctl_local_delete(hndl, &oval, pp); 3693 mutex_exit(&pp->p_lock); 3694 ASSERT(error == 0); 3695 } 3696 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3697 ASSERT(error == 0); 3698 for (i = 0; i < nelem; i++) { 3699 rctl_val_t *nvalp; 3700 3701 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3702 error = nvlist2rctlval(nvlarray[i], nvalp); 3703 ASSERT(error == 0); 3704 /* 3705 * rctl_local_insert can fail if the value being 3706 * inserted is a duplicate; this is OK. 3707 */ 3708 mutex_enter(&pp->p_lock); 3709 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3710 kmem_cache_free(rctl_val_cache, nvalp); 3711 mutex_exit(&pp->p_lock); 3712 } 3713 } 3714 /* 3715 * Tell the world that we're done setting up. 3716 * 3717 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3718 * and atomically set the zone's processor set visibility. Once 3719 * we drop pool_lock() this zone will automatically get updated 3720 * to reflect any future changes to the pools configuration. 3721 * 3722 * Note that after we drop the locks below (zonehash_lock in 3723 * particular) other operations such as a zone_getattr call can 3724 * now proceed and observe the zone. That is the reason for doing a 3725 * state transition to the INITIALIZED state. 3726 */ 3727 pool_lock(); 3728 mutex_enter(&cpu_lock); 3729 mutex_enter(&zonehash_lock); 3730 zone_uniqid(zone); 3731 zone_zsd_configure(zone); 3732 if (pool_state == POOL_ENABLED) 3733 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3734 mutex_enter(&zone_status_lock); 3735 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3736 zone_status_set(zone, ZONE_IS_INITIALIZED); 3737 mutex_exit(&zone_status_lock); 3738 mutex_exit(&zonehash_lock); 3739 mutex_exit(&cpu_lock); 3740 pool_unlock(); 3741 3742 /* Now call the create callback for this key */ 3743 zsd_apply_all_keys(zsd_apply_create, zone); 3744 3745 /* The callbacks are complete. Mark ZONE_IS_READY */ 3746 mutex_enter(&zone_status_lock); 3747 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3748 zone_status_set(zone, ZONE_IS_READY); 3749 mutex_exit(&zone_status_lock); 3750 3751 /* 3752 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3753 * we launch init, and set the state to running. 3754 */ 3755 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3756 3757 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3758 id_t cid; 3759 3760 /* 3761 * Ok, this is a little complicated. We need to grab the 3762 * zone's pool's scheduling class ID; note that by now, we 3763 * are already bound to a pool if we need to be (zoneadmd 3764 * will have done that to us while we're in the READY 3765 * state). *But* the scheduling class for the zone's 'init' 3766 * must be explicitly passed to newproc, which doesn't 3767 * respect pool bindings. 3768 * 3769 * We hold the pool_lock across the call to newproc() to 3770 * close the obvious race: the pool's scheduling class 3771 * could change before we manage to create the LWP with 3772 * classid 'cid'. 3773 */ 3774 pool_lock(); 3775 if (zone->zone_defaultcid > 0) 3776 cid = zone->zone_defaultcid; 3777 else 3778 cid = pool_get_class(zone->zone_pool); 3779 if (cid == -1) 3780 cid = defaultcid; 3781 3782 /* 3783 * If this fails, zone_boot will ultimately fail. The 3784 * state of the zone will be set to SHUTTING_DOWN-- userland 3785 * will have to tear down the zone, and fail, or try again. 3786 */ 3787 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3788 minclsyspri - 1, &ct, 0)) != 0) { 3789 mutex_enter(&zone_status_lock); 3790 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3791 mutex_exit(&zone_status_lock); 3792 } 3793 pool_unlock(); 3794 } 3795 3796 /* 3797 * Wait for zone_destroy() to be called. This is what we spend 3798 * most of our life doing. 3799 */ 3800 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3801 3802 if (ct) 3803 /* 3804 * At this point the process contract should be empty. 3805 * (Though if it isn't, it's not the end of the world.) 3806 */ 3807 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3808 3809 /* 3810 * Allow kcred to be freed when all referring processes 3811 * (including this one) go away. We can't just do this in 3812 * zone_free because we need to wait for the zone_cred_ref to 3813 * drop to 0 before calling zone_free, and the existence of 3814 * zone_kcred will prevent that. Thus, we call crfree here to 3815 * balance the crdup in zone_create. The crhold calls earlier 3816 * in zsched will be dropped when the thread and process exit. 3817 */ 3818 crfree(zone->zone_kcred); 3819 zone->zone_kcred = NULL; 3820 3821 exit(CLD_EXITED, 0); 3822 } 3823 3824 /* 3825 * Helper function to determine if there are any submounts of the 3826 * provided path. Used to make sure the zone doesn't "inherit" any 3827 * mounts from before it is created. 3828 */ 3829 static uint_t 3830 zone_mount_count(const char *rootpath) 3831 { 3832 vfs_t *vfsp; 3833 uint_t count = 0; 3834 size_t rootpathlen = strlen(rootpath); 3835 3836 /* 3837 * Holding zonehash_lock prevents race conditions with 3838 * vfs_list_add()/vfs_list_remove() since we serialize with 3839 * zone_find_by_path(). 3840 */ 3841 ASSERT(MUTEX_HELD(&zonehash_lock)); 3842 /* 3843 * The rootpath must end with a '/' 3844 */ 3845 ASSERT(rootpath[rootpathlen - 1] == '/'); 3846 3847 /* 3848 * This intentionally does not count the rootpath itself if that 3849 * happens to be a mount point. 3850 */ 3851 vfs_list_read_lock(); 3852 vfsp = rootvfs; 3853 do { 3854 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3855 rootpathlen) == 0) 3856 count++; 3857 vfsp = vfsp->vfs_next; 3858 } while (vfsp != rootvfs); 3859 vfs_list_unlock(); 3860 return (count); 3861 } 3862 3863 /* 3864 * Helper function to make sure that a zone created on 'rootpath' 3865 * wouldn't end up containing other zones' rootpaths. 3866 */ 3867 static boolean_t 3868 zone_is_nested(const char *rootpath) 3869 { 3870 zone_t *zone; 3871 size_t rootpathlen = strlen(rootpath); 3872 size_t len; 3873 3874 ASSERT(MUTEX_HELD(&zonehash_lock)); 3875 3876 /* 3877 * zone_set_root() appended '/' and '\0' at the end of rootpath 3878 */ 3879 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 3880 (rootpath[1] == '/') && (rootpath[2] == '\0')) 3881 return (B_TRUE); 3882 3883 for (zone = list_head(&zone_active); zone != NULL; 3884 zone = list_next(&zone_active, zone)) { 3885 if (zone == global_zone) 3886 continue; 3887 len = strlen(zone->zone_rootpath); 3888 if (strncmp(rootpath, zone->zone_rootpath, 3889 MIN(rootpathlen, len)) == 0) 3890 return (B_TRUE); 3891 } 3892 return (B_FALSE); 3893 } 3894 3895 static int 3896 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3897 size_t zone_privssz) 3898 { 3899 priv_set_t *privs; 3900 3901 if (zone_privssz < sizeof (priv_set_t)) 3902 return (ENOMEM); 3903 3904 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3905 3906 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3907 kmem_free(privs, sizeof (priv_set_t)); 3908 return (EFAULT); 3909 } 3910 3911 zone->zone_privset = privs; 3912 return (0); 3913 } 3914 3915 /* 3916 * We make creative use of nvlists to pass in rctls from userland. The list is 3917 * a list of the following structures: 3918 * 3919 * (name = rctl_name, value = nvpair_list_array) 3920 * 3921 * Where each element of the nvpair_list_array is of the form: 3922 * 3923 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3924 * (name = "limit", value = uint64_t), 3925 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3926 */ 3927 static int 3928 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3929 { 3930 nvpair_t *nvp = NULL; 3931 nvlist_t *nvl = NULL; 3932 char *kbuf; 3933 int error; 3934 rctl_val_t rv; 3935 3936 *nvlp = NULL; 3937 3938 if (buflen == 0) 3939 return (0); 3940 3941 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3942 return (ENOMEM); 3943 if (copyin(ubuf, kbuf, buflen)) { 3944 error = EFAULT; 3945 goto out; 3946 } 3947 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3948 /* 3949 * nvl may have been allocated/free'd, but the value set to 3950 * non-NULL, so we reset it here. 3951 */ 3952 nvl = NULL; 3953 error = EINVAL; 3954 goto out; 3955 } 3956 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3957 rctl_dict_entry_t *rde; 3958 rctl_hndl_t hndl; 3959 nvlist_t **nvlarray; 3960 uint_t i, nelem; 3961 char *name; 3962 3963 error = EINVAL; 3964 name = nvpair_name(nvp); 3965 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3966 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3967 goto out; 3968 } 3969 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3970 goto out; 3971 } 3972 rde = rctl_dict_lookup_hndl(hndl); 3973 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3974 ASSERT(error == 0); 3975 for (i = 0; i < nelem; i++) { 3976 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3977 goto out; 3978 } 3979 if (rctl_invalid_value(rde, &rv)) { 3980 error = EINVAL; 3981 goto out; 3982 } 3983 } 3984 error = 0; 3985 *nvlp = nvl; 3986 out: 3987 kmem_free(kbuf, buflen); 3988 if (error && nvl != NULL) 3989 nvlist_free(nvl); 3990 return (error); 3991 } 3992 3993 int 3994 zone_create_error(int er_error, int er_ext, int *er_out) { 3995 if (er_out != NULL) { 3996 if (copyout(&er_ext, er_out, sizeof (int))) { 3997 return (set_errno(EFAULT)); 3998 } 3999 } 4000 return (set_errno(er_error)); 4001 } 4002 4003 static int 4004 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4005 { 4006 ts_label_t *tsl; 4007 bslabel_t blab; 4008 4009 /* Get label from user */ 4010 if (copyin(lab, &blab, sizeof (blab)) != 0) 4011 return (EFAULT); 4012 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4013 if (tsl == NULL) 4014 return (ENOMEM); 4015 4016 zone->zone_slabel = tsl; 4017 return (0); 4018 } 4019 4020 /* 4021 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4022 */ 4023 static int 4024 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4025 { 4026 char *kbuf; 4027 char *dataset, *next; 4028 zone_dataset_t *zd; 4029 size_t len; 4030 4031 if (ubuf == NULL || buflen == 0) 4032 return (0); 4033 4034 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4035 return (ENOMEM); 4036 4037 if (copyin(ubuf, kbuf, buflen) != 0) { 4038 kmem_free(kbuf, buflen); 4039 return (EFAULT); 4040 } 4041 4042 dataset = next = kbuf; 4043 for (;;) { 4044 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4045 4046 next = strchr(dataset, ','); 4047 4048 if (next == NULL) 4049 len = strlen(dataset); 4050 else 4051 len = next - dataset; 4052 4053 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4054 bcopy(dataset, zd->zd_dataset, len); 4055 zd->zd_dataset[len] = '\0'; 4056 4057 list_insert_head(&zone->zone_datasets, zd); 4058 4059 if (next == NULL) 4060 break; 4061 4062 dataset = next + 1; 4063 } 4064 4065 kmem_free(kbuf, buflen); 4066 return (0); 4067 } 4068 4069 /* 4070 * System call to create/initialize a new zone named 'zone_name', rooted 4071 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4072 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4073 * with labeling set by 'match', 'doi', and 'label'. 4074 * 4075 * If extended error is non-null, we may use it to return more detailed 4076 * error information. 4077 */ 4078 static zoneid_t 4079 zone_create(const char *zone_name, const char *zone_root, 4080 const priv_set_t *zone_privs, size_t zone_privssz, 4081 caddr_t rctlbuf, size_t rctlbufsz, 4082 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4083 int match, uint32_t doi, const bslabel_t *label, 4084 int flags) 4085 { 4086 struct zsched_arg zarg; 4087 nvlist_t *rctls = NULL; 4088 proc_t *pp = curproc; 4089 zone_t *zone, *ztmp; 4090 zoneid_t zoneid; 4091 int error; 4092 int error2 = 0; 4093 char *str; 4094 cred_t *zkcr; 4095 boolean_t insert_label_hash; 4096 4097 if (secpolicy_zone_config(CRED()) != 0) 4098 return (set_errno(EPERM)); 4099 4100 /* can't boot zone from within chroot environment */ 4101 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4102 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4103 extended_error)); 4104 4105 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4106 zoneid = zone->zone_id = id_alloc(zoneid_space); 4107 zone->zone_status = ZONE_IS_UNINITIALIZED; 4108 zone->zone_pool = pool_default; 4109 zone->zone_pool_mod = gethrtime(); 4110 zone->zone_psetid = ZONE_PS_INVAL; 4111 zone->zone_ncpus = 0; 4112 zone->zone_ncpus_online = 0; 4113 zone->zone_restart_init = B_TRUE; 4114 zone->zone_brand = &native_brand; 4115 zone->zone_initname = NULL; 4116 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4117 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4118 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4119 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4120 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4121 offsetof(zone_ref_t, zref_linkage)); 4122 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4123 offsetof(struct zsd_entry, zsd_linkage)); 4124 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4125 offsetof(zone_dataset_t, zd_linkage)); 4126 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4127 offsetof(zone_dl_t, zdl_linkage)); 4128 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4129 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4130 4131 if (flags & ZCF_NET_EXCL) { 4132 zone->zone_flags |= ZF_NET_EXCL; 4133 } 4134 4135 if ((error = zone_set_name(zone, zone_name)) != 0) { 4136 zone_free(zone); 4137 return (zone_create_error(error, 0, extended_error)); 4138 } 4139 4140 if ((error = zone_set_root(zone, zone_root)) != 0) { 4141 zone_free(zone); 4142 return (zone_create_error(error, 0, extended_error)); 4143 } 4144 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4145 zone_free(zone); 4146 return (zone_create_error(error, 0, extended_error)); 4147 } 4148 4149 /* initialize node name to be the same as zone name */ 4150 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4151 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4152 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4153 4154 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4155 zone->zone_domain[0] = '\0'; 4156 zone->zone_hostid = HW_INVALID_HOSTID; 4157 zone->zone_shares = 1; 4158 zone->zone_shmmax = 0; 4159 zone->zone_ipc.ipcq_shmmni = 0; 4160 zone->zone_ipc.ipcq_semmni = 0; 4161 zone->zone_ipc.ipcq_msgmni = 0; 4162 zone->zone_bootargs = NULL; 4163 zone->zone_fs_allowed = NULL; 4164 zone->zone_initname = 4165 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4166 (void) strcpy(zone->zone_initname, zone_default_initname); 4167 zone->zone_nlwps = 0; 4168 zone->zone_nlwps_ctl = INT_MAX; 4169 zone->zone_nprocs = 0; 4170 zone->zone_nprocs_ctl = INT_MAX; 4171 zone->zone_locked_mem = 0; 4172 zone->zone_locked_mem_ctl = UINT64_MAX; 4173 zone->zone_max_swap = 0; 4174 zone->zone_max_swap_ctl = UINT64_MAX; 4175 zone->zone_max_lofi = 0; 4176 zone->zone_max_lofi_ctl = UINT64_MAX; 4177 zone0.zone_lockedmem_kstat = NULL; 4178 zone0.zone_swapresv_kstat = NULL; 4179 4180 /* 4181 * Zsched initializes the rctls. 4182 */ 4183 zone->zone_rctls = NULL; 4184 4185 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4186 zone_free(zone); 4187 return (zone_create_error(error, 0, extended_error)); 4188 } 4189 4190 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4191 zone_free(zone); 4192 return (set_errno(error)); 4193 } 4194 4195 /* 4196 * Read in the trusted system parameters: 4197 * match flag and sensitivity label. 4198 */ 4199 zone->zone_match = match; 4200 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4201 /* Fail if requested to set doi to anything but system's doi */ 4202 if (doi != 0 && doi != default_doi) { 4203 zone_free(zone); 4204 return (set_errno(EINVAL)); 4205 } 4206 /* Always apply system's doi to the zone */ 4207 error = zone_set_label(zone, label, default_doi); 4208 if (error != 0) { 4209 zone_free(zone); 4210 return (set_errno(error)); 4211 } 4212 insert_label_hash = B_TRUE; 4213 } else { 4214 /* all zones get an admin_low label if system is not labeled */ 4215 zone->zone_slabel = l_admin_low; 4216 label_hold(l_admin_low); 4217 insert_label_hash = B_FALSE; 4218 } 4219 4220 /* 4221 * Stop all lwps since that's what normally happens as part of fork(). 4222 * This needs to happen before we grab any locks to avoid deadlock 4223 * (another lwp in the process could be waiting for the held lock). 4224 */ 4225 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4226 zone_free(zone); 4227 if (rctls) 4228 nvlist_free(rctls); 4229 return (zone_create_error(error, 0, extended_error)); 4230 } 4231 4232 if (block_mounts() == 0) { 4233 mutex_enter(&pp->p_lock); 4234 if (curthread != pp->p_agenttp) 4235 continuelwps(pp); 4236 mutex_exit(&pp->p_lock); 4237 zone_free(zone); 4238 if (rctls) 4239 nvlist_free(rctls); 4240 return (zone_create_error(error, 0, extended_error)); 4241 } 4242 4243 /* 4244 * Set up credential for kernel access. After this, any errors 4245 * should go through the dance in errout rather than calling 4246 * zone_free directly. 4247 */ 4248 zone->zone_kcred = crdup(kcred); 4249 crsetzone(zone->zone_kcred, zone); 4250 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4251 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4252 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4253 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4254 4255 mutex_enter(&zonehash_lock); 4256 /* 4257 * Make sure zone doesn't already exist. 4258 * 4259 * If the system and zone are labeled, 4260 * make sure no other zone exists that has the same label. 4261 */ 4262 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4263 (insert_label_hash && 4264 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4265 zone_status_t status; 4266 4267 status = zone_status_get(ztmp); 4268 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4269 error = EEXIST; 4270 else 4271 error = EBUSY; 4272 4273 if (insert_label_hash) 4274 error2 = ZE_LABELINUSE; 4275 4276 goto errout; 4277 } 4278 4279 /* 4280 * Don't allow zone creations which would cause one zone's rootpath to 4281 * be accessible from that of another (non-global) zone. 4282 */ 4283 if (zone_is_nested(zone->zone_rootpath)) { 4284 error = EBUSY; 4285 goto errout; 4286 } 4287 4288 ASSERT(zonecount != 0); /* check for leaks */ 4289 if (zonecount + 1 > maxzones) { 4290 error = ENOMEM; 4291 goto errout; 4292 } 4293 4294 if (zone_mount_count(zone->zone_rootpath) != 0) { 4295 error = EBUSY; 4296 error2 = ZE_AREMOUNTS; 4297 goto errout; 4298 } 4299 4300 /* 4301 * Zone is still incomplete, but we need to drop all locks while 4302 * zsched() initializes this zone's kernel process. We 4303 * optimistically add the zone to the hashtable and associated 4304 * lists so a parallel zone_create() doesn't try to create the 4305 * same zone. 4306 */ 4307 zonecount++; 4308 (void) mod_hash_insert(zonehashbyid, 4309 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4310 (mod_hash_val_t)(uintptr_t)zone); 4311 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4312 (void) strcpy(str, zone->zone_name); 4313 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4314 (mod_hash_val_t)(uintptr_t)zone); 4315 if (insert_label_hash) { 4316 (void) mod_hash_insert(zonehashbylabel, 4317 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4318 zone->zone_flags |= ZF_HASHED_LABEL; 4319 } 4320 4321 /* 4322 * Insert into active list. At this point there are no 'hold's 4323 * on the zone, but everyone else knows not to use it, so we can 4324 * continue to use it. zsched() will do a zone_hold() if the 4325 * newproc() is successful. 4326 */ 4327 list_insert_tail(&zone_active, zone); 4328 mutex_exit(&zonehash_lock); 4329 4330 zarg.zone = zone; 4331 zarg.nvlist = rctls; 4332 /* 4333 * The process, task, and project rctls are probably wrong; 4334 * we need an interface to get the default values of all rctls, 4335 * and initialize zsched appropriately. I'm not sure that that 4336 * makes much of a difference, though. 4337 */ 4338 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4339 if (error != 0) { 4340 /* 4341 * We need to undo all globally visible state. 4342 */ 4343 mutex_enter(&zonehash_lock); 4344 list_remove(&zone_active, zone); 4345 if (zone->zone_flags & ZF_HASHED_LABEL) { 4346 ASSERT(zone->zone_slabel != NULL); 4347 (void) mod_hash_destroy(zonehashbylabel, 4348 (mod_hash_key_t)zone->zone_slabel); 4349 } 4350 (void) mod_hash_destroy(zonehashbyname, 4351 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4352 (void) mod_hash_destroy(zonehashbyid, 4353 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4354 ASSERT(zonecount > 1); 4355 zonecount--; 4356 goto errout; 4357 } 4358 4359 /* 4360 * Zone creation can't fail from now on. 4361 */ 4362 4363 /* 4364 * Create zone kstats 4365 */ 4366 zone_kstat_create(zone); 4367 4368 /* 4369 * Let the other lwps continue. 4370 */ 4371 mutex_enter(&pp->p_lock); 4372 if (curthread != pp->p_agenttp) 4373 continuelwps(pp); 4374 mutex_exit(&pp->p_lock); 4375 4376 /* 4377 * Wait for zsched to finish initializing the zone. 4378 */ 4379 zone_status_wait(zone, ZONE_IS_READY); 4380 /* 4381 * The zone is fully visible, so we can let mounts progress. 4382 */ 4383 resume_mounts(); 4384 if (rctls) 4385 nvlist_free(rctls); 4386 4387 return (zoneid); 4388 4389 errout: 4390 mutex_exit(&zonehash_lock); 4391 /* 4392 * Let the other lwps continue. 4393 */ 4394 mutex_enter(&pp->p_lock); 4395 if (curthread != pp->p_agenttp) 4396 continuelwps(pp); 4397 mutex_exit(&pp->p_lock); 4398 4399 resume_mounts(); 4400 if (rctls) 4401 nvlist_free(rctls); 4402 /* 4403 * There is currently one reference to the zone, a cred_ref from 4404 * zone_kcred. To free the zone, we call crfree, which will call 4405 * zone_cred_rele, which will call zone_free. 4406 */ 4407 ASSERT(zone->zone_cred_ref == 1); 4408 ASSERT(zone->zone_kcred->cr_ref == 1); 4409 ASSERT(zone->zone_ref == 0); 4410 zkcr = zone->zone_kcred; 4411 zone->zone_kcred = NULL; 4412 crfree(zkcr); /* triggers call to zone_free */ 4413 return (zone_create_error(error, error2, extended_error)); 4414 } 4415 4416 /* 4417 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4418 * the heavy lifting. initname is the path to the program to launch 4419 * at the "top" of the zone; if this is NULL, we use the system default, 4420 * which is stored at zone_default_initname. 4421 */ 4422 static int 4423 zone_boot(zoneid_t zoneid) 4424 { 4425 int err; 4426 zone_t *zone; 4427 4428 if (secpolicy_zone_config(CRED()) != 0) 4429 return (set_errno(EPERM)); 4430 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4431 return (set_errno(EINVAL)); 4432 4433 mutex_enter(&zonehash_lock); 4434 /* 4435 * Look for zone under hash lock to prevent races with calls to 4436 * zone_shutdown, zone_destroy, etc. 4437 */ 4438 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4439 mutex_exit(&zonehash_lock); 4440 return (set_errno(EINVAL)); 4441 } 4442 4443 mutex_enter(&zone_status_lock); 4444 if (zone_status_get(zone) != ZONE_IS_READY) { 4445 mutex_exit(&zone_status_lock); 4446 mutex_exit(&zonehash_lock); 4447 return (set_errno(EINVAL)); 4448 } 4449 zone_status_set(zone, ZONE_IS_BOOTING); 4450 mutex_exit(&zone_status_lock); 4451 4452 zone_hold(zone); /* so we can use the zone_t later */ 4453 mutex_exit(&zonehash_lock); 4454 4455 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4456 zone_rele(zone); 4457 return (set_errno(EINTR)); 4458 } 4459 4460 /* 4461 * Boot (starting init) might have failed, in which case the zone 4462 * will go to the SHUTTING_DOWN state; an appropriate errno will 4463 * be placed in zone->zone_boot_err, and so we return that. 4464 */ 4465 err = zone->zone_boot_err; 4466 zone_rele(zone); 4467 return (err ? set_errno(err) : 0); 4468 } 4469 4470 /* 4471 * Kills all user processes in the zone, waiting for them all to exit 4472 * before returning. 4473 */ 4474 static int 4475 zone_empty(zone_t *zone) 4476 { 4477 int waitstatus; 4478 4479 /* 4480 * We need to drop zonehash_lock before killing all 4481 * processes, otherwise we'll deadlock with zone_find_* 4482 * which can be called from the exit path. 4483 */ 4484 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4485 while ((waitstatus = zone_status_timedwait_sig(zone, 4486 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4487 killall(zone->zone_id); 4488 } 4489 /* 4490 * return EINTR if we were signaled 4491 */ 4492 if (waitstatus == 0) 4493 return (EINTR); 4494 return (0); 4495 } 4496 4497 /* 4498 * This function implements the policy for zone visibility. 4499 * 4500 * In standard Solaris, a non-global zone can only see itself. 4501 * 4502 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4503 * it dominates. For this test, the label of the global zone is treated as 4504 * admin_high so it is special-cased instead of being checked for dominance. 4505 * 4506 * Returns true if zone attributes are viewable, false otherwise. 4507 */ 4508 static boolean_t 4509 zone_list_access(zone_t *zone) 4510 { 4511 4512 if (curproc->p_zone == global_zone || 4513 curproc->p_zone == zone) { 4514 return (B_TRUE); 4515 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4516 bslabel_t *curproc_label; 4517 bslabel_t *zone_label; 4518 4519 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4520 zone_label = label2bslabel(zone->zone_slabel); 4521 4522 if (zone->zone_id != GLOBAL_ZONEID && 4523 bldominates(curproc_label, zone_label)) { 4524 return (B_TRUE); 4525 } else { 4526 return (B_FALSE); 4527 } 4528 } else { 4529 return (B_FALSE); 4530 } 4531 } 4532 4533 /* 4534 * Systemcall to start the zone's halt sequence. By the time this 4535 * function successfully returns, all user processes and kernel threads 4536 * executing in it will have exited, ZSD shutdown callbacks executed, 4537 * and the zone status set to ZONE_IS_DOWN. 4538 * 4539 * It is possible that the call will interrupt itself if the caller is the 4540 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4541 */ 4542 static int 4543 zone_shutdown(zoneid_t zoneid) 4544 { 4545 int error; 4546 zone_t *zone; 4547 zone_status_t status; 4548 4549 if (secpolicy_zone_config(CRED()) != 0) 4550 return (set_errno(EPERM)); 4551 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4552 return (set_errno(EINVAL)); 4553 4554 /* 4555 * Block mounts so that VFS_MOUNT() can get an accurate view of 4556 * the zone's status with regards to ZONE_IS_SHUTTING down. 4557 * 4558 * e.g. NFS can fail the mount if it determines that the zone 4559 * has already begun the shutdown sequence. 4560 */ 4561 if (block_mounts() == 0) 4562 return (set_errno(EINTR)); 4563 mutex_enter(&zonehash_lock); 4564 /* 4565 * Look for zone under hash lock to prevent races with other 4566 * calls to zone_shutdown and zone_destroy. 4567 */ 4568 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4569 mutex_exit(&zonehash_lock); 4570 resume_mounts(); 4571 return (set_errno(EINVAL)); 4572 } 4573 mutex_enter(&zone_status_lock); 4574 status = zone_status_get(zone); 4575 /* 4576 * Fail if the zone isn't fully initialized yet. 4577 */ 4578 if (status < ZONE_IS_READY) { 4579 mutex_exit(&zone_status_lock); 4580 mutex_exit(&zonehash_lock); 4581 resume_mounts(); 4582 return (set_errno(EINVAL)); 4583 } 4584 /* 4585 * If conditions required for zone_shutdown() to return have been met, 4586 * return success. 4587 */ 4588 if (status >= ZONE_IS_DOWN) { 4589 mutex_exit(&zone_status_lock); 4590 mutex_exit(&zonehash_lock); 4591 resume_mounts(); 4592 return (0); 4593 } 4594 /* 4595 * If zone_shutdown() hasn't been called before, go through the motions. 4596 * If it has, there's nothing to do but wait for the kernel threads to 4597 * drain. 4598 */ 4599 if (status < ZONE_IS_EMPTY) { 4600 uint_t ntasks; 4601 4602 mutex_enter(&zone->zone_lock); 4603 if ((ntasks = zone->zone_ntasks) != 1) { 4604 /* 4605 * There's still stuff running. 4606 */ 4607 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4608 } 4609 mutex_exit(&zone->zone_lock); 4610 if (ntasks == 1) { 4611 /* 4612 * The only way to create another task is through 4613 * zone_enter(), which will block until we drop 4614 * zonehash_lock. The zone is empty. 4615 */ 4616 if (zone->zone_kthreads == NULL) { 4617 /* 4618 * Skip ahead to ZONE_IS_DOWN 4619 */ 4620 zone_status_set(zone, ZONE_IS_DOWN); 4621 } else { 4622 zone_status_set(zone, ZONE_IS_EMPTY); 4623 } 4624 } 4625 } 4626 zone_hold(zone); /* so we can use the zone_t later */ 4627 mutex_exit(&zone_status_lock); 4628 mutex_exit(&zonehash_lock); 4629 resume_mounts(); 4630 4631 if (error = zone_empty(zone)) { 4632 zone_rele(zone); 4633 return (set_errno(error)); 4634 } 4635 /* 4636 * After the zone status goes to ZONE_IS_DOWN this zone will no 4637 * longer be notified of changes to the pools configuration, so 4638 * in order to not end up with a stale pool pointer, we point 4639 * ourselves at the default pool and remove all resource 4640 * visibility. This is especially important as the zone_t may 4641 * languish on the deathrow for a very long time waiting for 4642 * cred's to drain out. 4643 * 4644 * This rebinding of the zone can happen multiple times 4645 * (presumably due to interrupted or parallel systemcalls) 4646 * without any adverse effects. 4647 */ 4648 if (pool_lock_intr() != 0) { 4649 zone_rele(zone); 4650 return (set_errno(EINTR)); 4651 } 4652 if (pool_state == POOL_ENABLED) { 4653 mutex_enter(&cpu_lock); 4654 zone_pool_set(zone, pool_default); 4655 /* 4656 * The zone no longer needs to be able to see any cpus. 4657 */ 4658 zone_pset_set(zone, ZONE_PS_INVAL); 4659 mutex_exit(&cpu_lock); 4660 } 4661 pool_unlock(); 4662 4663 /* 4664 * ZSD shutdown callbacks can be executed multiple times, hence 4665 * it is safe to not be holding any locks across this call. 4666 */ 4667 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4668 4669 mutex_enter(&zone_status_lock); 4670 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4671 zone_status_set(zone, ZONE_IS_DOWN); 4672 mutex_exit(&zone_status_lock); 4673 4674 /* 4675 * Wait for kernel threads to drain. 4676 */ 4677 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4678 zone_rele(zone); 4679 return (set_errno(EINTR)); 4680 } 4681 4682 /* 4683 * Zone can be become down/destroyable even if the above wait 4684 * returns EINTR, so any code added here may never execute. 4685 * (i.e. don't add code here) 4686 */ 4687 4688 zone_rele(zone); 4689 return (0); 4690 } 4691 4692 /* 4693 * Log the specified zone's reference counts. The caller should not be 4694 * holding the zone's zone_lock. 4695 */ 4696 static void 4697 zone_log_refcounts(zone_t *zone) 4698 { 4699 char *buffer; 4700 char *buffer_position; 4701 uint32_t buffer_size; 4702 uint32_t index; 4703 uint_t ref; 4704 uint_t cred_ref; 4705 4706 /* 4707 * Construct a string representing the subsystem-specific reference 4708 * counts. The counts are printed in ascending order by index into the 4709 * zone_t::zone_subsys_ref array. The list will be surrounded by 4710 * square brackets [] and will only contain nonzero reference counts. 4711 * 4712 * The buffer will hold two square bracket characters plus ten digits, 4713 * one colon, one space, one comma, and some characters for a 4714 * subsystem name per subsystem-specific reference count. (Unsigned 32- 4715 * bit integers have at most ten decimal digits.) The last 4716 * reference count's comma is replaced by the closing square 4717 * bracket and a NULL character to terminate the string. 4718 * 4719 * NOTE: We have to grab the zone's zone_lock to create a consistent 4720 * snapshot of the zone's reference counters. 4721 * 4722 * First, figure out how much space the string buffer will need. 4723 * The buffer's size is stored in buffer_size. 4724 */ 4725 buffer_size = 2; /* for the square brackets */ 4726 mutex_enter(&zone->zone_lock); 4727 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 4728 ref = zone->zone_ref; 4729 cred_ref = zone->zone_cred_ref; 4730 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 4731 if (zone->zone_subsys_ref[index] != 0) 4732 buffer_size += strlen(zone_ref_subsys_names[index]) + 4733 13; 4734 if (buffer_size == 2) { 4735 /* 4736 * No subsystems had nonzero reference counts. Don't bother 4737 * with allocating a buffer; just log the general-purpose and 4738 * credential reference counts. 4739 */ 4740 mutex_exit(&zone->zone_lock); 4741 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4742 "Zone '%s' (ID: %d) is shutting down, but %u zone " 4743 "references and %u credential references are still extant", 4744 zone->zone_name, zone->zone_id, ref, cred_ref); 4745 return; 4746 } 4747 4748 /* 4749 * buffer_size contains the exact number of characters that the 4750 * buffer will need. Allocate the buffer and fill it with nonzero 4751 * subsystem-specific reference counts. Surround the results with 4752 * square brackets afterwards. 4753 */ 4754 buffer = kmem_alloc(buffer_size, KM_SLEEP); 4755 buffer_position = &buffer[1]; 4756 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 4757 /* 4758 * NOTE: The DDI's version of sprintf() returns a pointer to 4759 * the modified buffer rather than the number of bytes written 4760 * (as in snprintf(3C)). This is unfortunate and annoying. 4761 * Therefore, we'll use snprintf() with INT_MAX to get the 4762 * number of bytes written. Using INT_MAX is safe because 4763 * the buffer is perfectly sized for the data: we'll never 4764 * overrun the buffer. 4765 */ 4766 if (zone->zone_subsys_ref[index] != 0) 4767 buffer_position += snprintf(buffer_position, INT_MAX, 4768 "%s: %u,", zone_ref_subsys_names[index], 4769 zone->zone_subsys_ref[index]); 4770 } 4771 mutex_exit(&zone->zone_lock); 4772 buffer[0] = '['; 4773 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 4774 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 4775 buffer_position[-1] = ']'; 4776 4777 /* 4778 * Log the reference counts and free the message buffer. 4779 */ 4780 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4781 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 4782 "%u credential references are still extant %s", zone->zone_name, 4783 zone->zone_id, ref, cred_ref, buffer); 4784 kmem_free(buffer, buffer_size); 4785 } 4786 4787 /* 4788 * Systemcall entry point to finalize the zone halt process. The caller 4789 * must have already successfully called zone_shutdown(). 4790 * 4791 * Upon successful completion, the zone will have been fully destroyed: 4792 * zsched will have exited, destructor callbacks executed, and the zone 4793 * removed from the list of active zones. 4794 */ 4795 static int 4796 zone_destroy(zoneid_t zoneid) 4797 { 4798 uint64_t uniqid; 4799 zone_t *zone; 4800 zone_status_t status; 4801 clock_t wait_time; 4802 boolean_t log_refcounts; 4803 4804 if (secpolicy_zone_config(CRED()) != 0) 4805 return (set_errno(EPERM)); 4806 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4807 return (set_errno(EINVAL)); 4808 4809 mutex_enter(&zonehash_lock); 4810 /* 4811 * Look for zone under hash lock to prevent races with other 4812 * calls to zone_destroy. 4813 */ 4814 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4815 mutex_exit(&zonehash_lock); 4816 return (set_errno(EINVAL)); 4817 } 4818 4819 if (zone_mount_count(zone->zone_rootpath) != 0) { 4820 mutex_exit(&zonehash_lock); 4821 return (set_errno(EBUSY)); 4822 } 4823 mutex_enter(&zone_status_lock); 4824 status = zone_status_get(zone); 4825 if (status < ZONE_IS_DOWN) { 4826 mutex_exit(&zone_status_lock); 4827 mutex_exit(&zonehash_lock); 4828 return (set_errno(EBUSY)); 4829 } else if (status == ZONE_IS_DOWN) { 4830 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 4831 } 4832 mutex_exit(&zone_status_lock); 4833 zone_hold(zone); 4834 mutex_exit(&zonehash_lock); 4835 4836 /* 4837 * wait for zsched to exit 4838 */ 4839 zone_status_wait(zone, ZONE_IS_DEAD); 4840 zone_zsd_callbacks(zone, ZSD_DESTROY); 4841 zone->zone_netstack = NULL; 4842 uniqid = zone->zone_uniqid; 4843 zone_rele(zone); 4844 zone = NULL; /* potentially free'd */ 4845 4846 log_refcounts = B_FALSE; 4847 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 4848 mutex_enter(&zonehash_lock); 4849 for (; /* ever */; ) { 4850 boolean_t unref; 4851 boolean_t refs_have_been_logged; 4852 4853 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 4854 zone->zone_uniqid != uniqid) { 4855 /* 4856 * The zone has gone away. Necessary conditions 4857 * are met, so we return success. 4858 */ 4859 mutex_exit(&zonehash_lock); 4860 return (0); 4861 } 4862 mutex_enter(&zone->zone_lock); 4863 unref = ZONE_IS_UNREF(zone); 4864 refs_have_been_logged = (zone->zone_flags & 4865 ZF_REFCOUNTS_LOGGED); 4866 mutex_exit(&zone->zone_lock); 4867 if (unref) { 4868 /* 4869 * There is only one reference to the zone -- that 4870 * added when the zone was added to the hashtables -- 4871 * and things will remain this way until we drop 4872 * zonehash_lock... we can go ahead and cleanup the 4873 * zone. 4874 */ 4875 break; 4876 } 4877 4878 /* 4879 * Wait for zone_rele_common() or zone_cred_rele() to signal 4880 * zone_destroy_cv. zone_destroy_cv is signaled only when 4881 * some zone's general-purpose reference count reaches one. 4882 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 4883 * on zone_destroy_cv, then log the zone's reference counts and 4884 * continue to wait for zone_rele() and zone_cred_rele(). 4885 */ 4886 if (!refs_have_been_logged) { 4887 if (!log_refcounts) { 4888 /* 4889 * This thread hasn't timed out waiting on 4890 * zone_destroy_cv yet. Wait wait_time clock 4891 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 4892 * seconds) for the zone's references to clear. 4893 */ 4894 ASSERT(wait_time > 0); 4895 wait_time = cv_reltimedwait_sig( 4896 &zone_destroy_cv, &zonehash_lock, wait_time, 4897 TR_SEC); 4898 if (wait_time > 0) { 4899 /* 4900 * A thread in zone_rele() or 4901 * zone_cred_rele() signaled 4902 * zone_destroy_cv before this thread's 4903 * wait timed out. The zone might have 4904 * only one reference left; find out! 4905 */ 4906 continue; 4907 } else if (wait_time == 0) { 4908 /* The thread's process was signaled. */ 4909 mutex_exit(&zonehash_lock); 4910 return (set_errno(EINTR)); 4911 } 4912 4913 /* 4914 * The thread timed out while waiting on 4915 * zone_destroy_cv. Even though the thread 4916 * timed out, it has to check whether another 4917 * thread woke up from zone_destroy_cv and 4918 * destroyed the zone. 4919 * 4920 * If the zone still exists and has more than 4921 * one unreleased general-purpose reference, 4922 * then log the zone's reference counts. 4923 */ 4924 log_refcounts = B_TRUE; 4925 continue; 4926 } 4927 4928 /* 4929 * The thread already timed out on zone_destroy_cv while 4930 * waiting for subsystems to release the zone's last 4931 * general-purpose references. Log the zone's reference 4932 * counts and wait indefinitely on zone_destroy_cv. 4933 */ 4934 zone_log_refcounts(zone); 4935 } 4936 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 4937 /* The thread's process was signaled. */ 4938 mutex_exit(&zonehash_lock); 4939 return (set_errno(EINTR)); 4940 } 4941 } 4942 4943 /* 4944 * Remove CPU cap for this zone now since we're not going to 4945 * fail below this point. 4946 */ 4947 cpucaps_zone_remove(zone); 4948 4949 /* Get rid of the zone's kstats */ 4950 zone_kstat_delete(zone); 4951 4952 /* remove the pfexecd doors */ 4953 if (zone->zone_pfexecd != NULL) { 4954 klpd_freelist(&zone->zone_pfexecd); 4955 zone->zone_pfexecd = NULL; 4956 } 4957 4958 /* free brand specific data */ 4959 if (ZONE_IS_BRANDED(zone)) 4960 ZBROP(zone)->b_free_brand_data(zone); 4961 4962 /* Say goodbye to brand framework. */ 4963 brand_unregister_zone(zone->zone_brand); 4964 4965 /* 4966 * It is now safe to let the zone be recreated; remove it from the 4967 * lists. The memory will not be freed until the last cred 4968 * reference goes away. 4969 */ 4970 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 4971 zonecount--; 4972 /* remove from active list and hash tables */ 4973 list_remove(&zone_active, zone); 4974 (void) mod_hash_destroy(zonehashbyname, 4975 (mod_hash_key_t)zone->zone_name); 4976 (void) mod_hash_destroy(zonehashbyid, 4977 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4978 if (zone->zone_flags & ZF_HASHED_LABEL) 4979 (void) mod_hash_destroy(zonehashbylabel, 4980 (mod_hash_key_t)zone->zone_slabel); 4981 mutex_exit(&zonehash_lock); 4982 4983 /* 4984 * Release the root vnode; we're not using it anymore. Nor should any 4985 * other thread that might access it exist. 4986 */ 4987 if (zone->zone_rootvp != NULL) { 4988 VN_RELE(zone->zone_rootvp); 4989 zone->zone_rootvp = NULL; 4990 } 4991 4992 /* add to deathrow list */ 4993 mutex_enter(&zone_deathrow_lock); 4994 list_insert_tail(&zone_deathrow, zone); 4995 mutex_exit(&zone_deathrow_lock); 4996 4997 /* 4998 * Drop last reference (which was added by zsched()), this will 4999 * free the zone unless there are outstanding cred references. 5000 */ 5001 zone_rele(zone); 5002 return (0); 5003 } 5004 5005 /* 5006 * Systemcall entry point for zone_getattr(2). 5007 */ 5008 static ssize_t 5009 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5010 { 5011 size_t size; 5012 int error = 0, err; 5013 zone_t *zone; 5014 char *zonepath; 5015 char *outstr; 5016 zone_status_t zone_status; 5017 pid_t initpid; 5018 boolean_t global = (curzone == global_zone); 5019 boolean_t inzone = (curzone->zone_id == zoneid); 5020 ushort_t flags; 5021 zone_net_data_t *zbuf; 5022 5023 mutex_enter(&zonehash_lock); 5024 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5025 mutex_exit(&zonehash_lock); 5026 return (set_errno(EINVAL)); 5027 } 5028 zone_status = zone_status_get(zone); 5029 if (zone_status < ZONE_IS_INITIALIZED) { 5030 mutex_exit(&zonehash_lock); 5031 return (set_errno(EINVAL)); 5032 } 5033 zone_hold(zone); 5034 mutex_exit(&zonehash_lock); 5035 5036 /* 5037 * If not in the global zone, don't show information about other zones, 5038 * unless the system is labeled and the local zone's label dominates 5039 * the other zone. 5040 */ 5041 if (!zone_list_access(zone)) { 5042 zone_rele(zone); 5043 return (set_errno(EINVAL)); 5044 } 5045 5046 switch (attr) { 5047 case ZONE_ATTR_ROOT: 5048 if (global) { 5049 /* 5050 * Copy the path to trim the trailing "/" (except for 5051 * the global zone). 5052 */ 5053 if (zone != global_zone) 5054 size = zone->zone_rootpathlen - 1; 5055 else 5056 size = zone->zone_rootpathlen; 5057 zonepath = kmem_alloc(size, KM_SLEEP); 5058 bcopy(zone->zone_rootpath, zonepath, size); 5059 zonepath[size - 1] = '\0'; 5060 } else { 5061 if (inzone || !is_system_labeled()) { 5062 /* 5063 * Caller is not in the global zone. 5064 * if the query is on the current zone 5065 * or the system is not labeled, 5066 * just return faked-up path for current zone. 5067 */ 5068 zonepath = "/"; 5069 size = 2; 5070 } else { 5071 /* 5072 * Return related path for current zone. 5073 */ 5074 int prefix_len = strlen(zone_prefix); 5075 int zname_len = strlen(zone->zone_name); 5076 5077 size = prefix_len + zname_len + 1; 5078 zonepath = kmem_alloc(size, KM_SLEEP); 5079 bcopy(zone_prefix, zonepath, prefix_len); 5080 bcopy(zone->zone_name, zonepath + 5081 prefix_len, zname_len); 5082 zonepath[size - 1] = '\0'; 5083 } 5084 } 5085 if (bufsize > size) 5086 bufsize = size; 5087 if (buf != NULL) { 5088 err = copyoutstr(zonepath, buf, bufsize, NULL); 5089 if (err != 0 && err != ENAMETOOLONG) 5090 error = EFAULT; 5091 } 5092 if (global || (is_system_labeled() && !inzone)) 5093 kmem_free(zonepath, size); 5094 break; 5095 5096 case ZONE_ATTR_NAME: 5097 size = strlen(zone->zone_name) + 1; 5098 if (bufsize > size) 5099 bufsize = size; 5100 if (buf != NULL) { 5101 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5102 if (err != 0 && err != ENAMETOOLONG) 5103 error = EFAULT; 5104 } 5105 break; 5106 5107 case ZONE_ATTR_STATUS: 5108 /* 5109 * Since we're not holding zonehash_lock, the zone status 5110 * may be anything; leave it up to userland to sort it out. 5111 */ 5112 size = sizeof (zone_status); 5113 if (bufsize > size) 5114 bufsize = size; 5115 zone_status = zone_status_get(zone); 5116 if (buf != NULL && 5117 copyout(&zone_status, buf, bufsize) != 0) 5118 error = EFAULT; 5119 break; 5120 case ZONE_ATTR_FLAGS: 5121 size = sizeof (zone->zone_flags); 5122 if (bufsize > size) 5123 bufsize = size; 5124 flags = zone->zone_flags; 5125 if (buf != NULL && 5126 copyout(&flags, buf, bufsize) != 0) 5127 error = EFAULT; 5128 break; 5129 case ZONE_ATTR_PRIVSET: 5130 size = sizeof (priv_set_t); 5131 if (bufsize > size) 5132 bufsize = size; 5133 if (buf != NULL && 5134 copyout(zone->zone_privset, buf, bufsize) != 0) 5135 error = EFAULT; 5136 break; 5137 case ZONE_ATTR_UNIQID: 5138 size = sizeof (zone->zone_uniqid); 5139 if (bufsize > size) 5140 bufsize = size; 5141 if (buf != NULL && 5142 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5143 error = EFAULT; 5144 break; 5145 case ZONE_ATTR_POOLID: 5146 { 5147 pool_t *pool; 5148 poolid_t poolid; 5149 5150 if (pool_lock_intr() != 0) { 5151 error = EINTR; 5152 break; 5153 } 5154 pool = zone_pool_get(zone); 5155 poolid = pool->pool_id; 5156 pool_unlock(); 5157 size = sizeof (poolid); 5158 if (bufsize > size) 5159 bufsize = size; 5160 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5161 error = EFAULT; 5162 } 5163 break; 5164 case ZONE_ATTR_SLBL: 5165 size = sizeof (bslabel_t); 5166 if (bufsize > size) 5167 bufsize = size; 5168 if (zone->zone_slabel == NULL) 5169 error = EINVAL; 5170 else if (buf != NULL && 5171 copyout(label2bslabel(zone->zone_slabel), buf, 5172 bufsize) != 0) 5173 error = EFAULT; 5174 break; 5175 case ZONE_ATTR_INITPID: 5176 size = sizeof (initpid); 5177 if (bufsize > size) 5178 bufsize = size; 5179 initpid = zone->zone_proc_initpid; 5180 if (initpid == -1) { 5181 error = ESRCH; 5182 break; 5183 } 5184 if (buf != NULL && 5185 copyout(&initpid, buf, bufsize) != 0) 5186 error = EFAULT; 5187 break; 5188 case ZONE_ATTR_BRAND: 5189 size = strlen(zone->zone_brand->b_name) + 1; 5190 5191 if (bufsize > size) 5192 bufsize = size; 5193 if (buf != NULL) { 5194 err = copyoutstr(zone->zone_brand->b_name, buf, 5195 bufsize, NULL); 5196 if (err != 0 && err != ENAMETOOLONG) 5197 error = EFAULT; 5198 } 5199 break; 5200 case ZONE_ATTR_INITNAME: 5201 size = strlen(zone->zone_initname) + 1; 5202 if (bufsize > size) 5203 bufsize = size; 5204 if (buf != NULL) { 5205 err = copyoutstr(zone->zone_initname, buf, bufsize, 5206 NULL); 5207 if (err != 0 && err != ENAMETOOLONG) 5208 error = EFAULT; 5209 } 5210 break; 5211 case ZONE_ATTR_BOOTARGS: 5212 if (zone->zone_bootargs == NULL) 5213 outstr = ""; 5214 else 5215 outstr = zone->zone_bootargs; 5216 size = strlen(outstr) + 1; 5217 if (bufsize > size) 5218 bufsize = size; 5219 if (buf != NULL) { 5220 err = copyoutstr(outstr, buf, bufsize, NULL); 5221 if (err != 0 && err != ENAMETOOLONG) 5222 error = EFAULT; 5223 } 5224 break; 5225 case ZONE_ATTR_PHYS_MCAP: 5226 size = sizeof (zone->zone_phys_mcap); 5227 if (bufsize > size) 5228 bufsize = size; 5229 if (buf != NULL && 5230 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5231 error = EFAULT; 5232 break; 5233 case ZONE_ATTR_SCHED_CLASS: 5234 mutex_enter(&class_lock); 5235 5236 if (zone->zone_defaultcid >= loaded_classes) 5237 outstr = ""; 5238 else 5239 outstr = sclass[zone->zone_defaultcid].cl_name; 5240 size = strlen(outstr) + 1; 5241 if (bufsize > size) 5242 bufsize = size; 5243 if (buf != NULL) { 5244 err = copyoutstr(outstr, buf, bufsize, NULL); 5245 if (err != 0 && err != ENAMETOOLONG) 5246 error = EFAULT; 5247 } 5248 5249 mutex_exit(&class_lock); 5250 break; 5251 case ZONE_ATTR_HOSTID: 5252 if (zone->zone_hostid != HW_INVALID_HOSTID && 5253 bufsize == sizeof (zone->zone_hostid)) { 5254 size = sizeof (zone->zone_hostid); 5255 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5256 bufsize) != 0) 5257 error = EFAULT; 5258 } else { 5259 error = EINVAL; 5260 } 5261 break; 5262 case ZONE_ATTR_FS_ALLOWED: 5263 if (zone->zone_fs_allowed == NULL) 5264 outstr = ""; 5265 else 5266 outstr = zone->zone_fs_allowed; 5267 size = strlen(outstr) + 1; 5268 if (bufsize > size) 5269 bufsize = size; 5270 if (buf != NULL) { 5271 err = copyoutstr(outstr, buf, bufsize, NULL); 5272 if (err != 0 && err != ENAMETOOLONG) 5273 error = EFAULT; 5274 } 5275 break; 5276 case ZONE_ATTR_NETWORK: 5277 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5278 if (copyin(buf, zbuf, bufsize) != 0) { 5279 error = EFAULT; 5280 } else { 5281 error = zone_get_network(zoneid, zbuf); 5282 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5283 error = EFAULT; 5284 } 5285 kmem_free(zbuf, bufsize); 5286 break; 5287 default: 5288 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5289 size = bufsize; 5290 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5291 } else { 5292 error = EINVAL; 5293 } 5294 } 5295 zone_rele(zone); 5296 5297 if (error) 5298 return (set_errno(error)); 5299 return ((ssize_t)size); 5300 } 5301 5302 /* 5303 * Systemcall entry point for zone_setattr(2). 5304 */ 5305 /*ARGSUSED*/ 5306 static int 5307 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5308 { 5309 zone_t *zone; 5310 zone_status_t zone_status; 5311 int err = -1; 5312 zone_net_data_t *zbuf; 5313 5314 if (secpolicy_zone_config(CRED()) != 0) 5315 return (set_errno(EPERM)); 5316 5317 /* 5318 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5319 * global zone. 5320 */ 5321 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5322 return (set_errno(EINVAL)); 5323 } 5324 5325 mutex_enter(&zonehash_lock); 5326 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5327 mutex_exit(&zonehash_lock); 5328 return (set_errno(EINVAL)); 5329 } 5330 zone_hold(zone); 5331 mutex_exit(&zonehash_lock); 5332 5333 /* 5334 * At present most attributes can only be set on non-running, 5335 * non-global zones. 5336 */ 5337 zone_status = zone_status_get(zone); 5338 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5339 err = EINVAL; 5340 goto done; 5341 } 5342 5343 switch (attr) { 5344 case ZONE_ATTR_INITNAME: 5345 err = zone_set_initname(zone, (const char *)buf); 5346 break; 5347 case ZONE_ATTR_BOOTARGS: 5348 err = zone_set_bootargs(zone, (const char *)buf); 5349 break; 5350 case ZONE_ATTR_BRAND: 5351 err = zone_set_brand(zone, (const char *)buf); 5352 break; 5353 case ZONE_ATTR_FS_ALLOWED: 5354 err = zone_set_fs_allowed(zone, (const char *)buf); 5355 break; 5356 case ZONE_ATTR_PHYS_MCAP: 5357 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5358 break; 5359 case ZONE_ATTR_SCHED_CLASS: 5360 err = zone_set_sched_class(zone, (const char *)buf); 5361 break; 5362 case ZONE_ATTR_HOSTID: 5363 if (bufsize == sizeof (zone->zone_hostid)) { 5364 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5365 err = 0; 5366 else 5367 err = EFAULT; 5368 } else { 5369 err = EINVAL; 5370 } 5371 break; 5372 case ZONE_ATTR_NETWORK: 5373 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5374 err = EINVAL; 5375 break; 5376 } 5377 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5378 if (copyin(buf, zbuf, bufsize) != 0) { 5379 kmem_free(zbuf, bufsize); 5380 err = EFAULT; 5381 break; 5382 } 5383 err = zone_set_network(zoneid, zbuf); 5384 kmem_free(zbuf, bufsize); 5385 break; 5386 default: 5387 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5388 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5389 else 5390 err = EINVAL; 5391 } 5392 5393 done: 5394 zone_rele(zone); 5395 ASSERT(err != -1); 5396 return (err != 0 ? set_errno(err) : 0); 5397 } 5398 5399 /* 5400 * Return zero if the process has at least one vnode mapped in to its 5401 * address space which shouldn't be allowed to change zones. 5402 * 5403 * Also return zero if the process has any shared mappings which reserve 5404 * swap. This is because the counting for zone.max-swap does not allow swap 5405 * reservation to be shared between zones. zone swap reservation is counted 5406 * on zone->zone_max_swap. 5407 */ 5408 static int 5409 as_can_change_zones(void) 5410 { 5411 proc_t *pp = curproc; 5412 struct seg *seg; 5413 struct as *as = pp->p_as; 5414 vnode_t *vp; 5415 int allow = 1; 5416 5417 ASSERT(pp->p_as != &kas); 5418 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 5419 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5420 5421 /* 5422 * Cannot enter zone with shared anon memory which 5423 * reserves swap. See comment above. 5424 */ 5425 if (seg_can_change_zones(seg) == B_FALSE) { 5426 allow = 0; 5427 break; 5428 } 5429 /* 5430 * if we can't get a backing vnode for this segment then skip 5431 * it. 5432 */ 5433 vp = NULL; 5434 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5435 continue; 5436 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5437 allow = 0; 5438 break; 5439 } 5440 } 5441 AS_LOCK_EXIT(as, &as->a_lock); 5442 return (allow); 5443 } 5444 5445 /* 5446 * Count swap reserved by curproc's address space 5447 */ 5448 static size_t 5449 as_swresv(void) 5450 { 5451 proc_t *pp = curproc; 5452 struct seg *seg; 5453 struct as *as = pp->p_as; 5454 size_t swap = 0; 5455 5456 ASSERT(pp->p_as != &kas); 5457 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 5458 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5459 swap += seg_swresv(seg); 5460 5461 return (swap); 5462 } 5463 5464 /* 5465 * Systemcall entry point for zone_enter(). 5466 * 5467 * The current process is injected into said zone. In the process 5468 * it will change its project membership, privileges, rootdir/cwd, 5469 * zone-wide rctls, and pool association to match those of the zone. 5470 * 5471 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5472 * state will transition it to ZONE_IS_RUNNING. Processes may only 5473 * enter a zone that is "ready" or "running". 5474 */ 5475 static int 5476 zone_enter(zoneid_t zoneid) 5477 { 5478 zone_t *zone; 5479 vnode_t *vp; 5480 proc_t *pp = curproc; 5481 contract_t *ct; 5482 cont_process_t *ctp; 5483 task_t *tk, *oldtk; 5484 kproject_t *zone_proj0; 5485 cred_t *cr, *newcr; 5486 pool_t *oldpool, *newpool; 5487 sess_t *sp; 5488 uid_t uid; 5489 zone_status_t status; 5490 int err = 0; 5491 rctl_entity_p_t e; 5492 size_t swap; 5493 kthread_id_t t; 5494 5495 if (secpolicy_zone_config(CRED()) != 0) 5496 return (set_errno(EPERM)); 5497 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5498 return (set_errno(EINVAL)); 5499 5500 /* 5501 * Stop all lwps so we don't need to hold a lock to look at 5502 * curproc->p_zone. This needs to happen before we grab any 5503 * locks to avoid deadlock (another lwp in the process could 5504 * be waiting for the held lock). 5505 */ 5506 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5507 return (set_errno(EINTR)); 5508 5509 /* 5510 * Make sure we're not changing zones with files open or mapped in 5511 * to our address space which shouldn't be changing zones. 5512 */ 5513 if (!files_can_change_zones()) { 5514 err = EBADF; 5515 goto out; 5516 } 5517 if (!as_can_change_zones()) { 5518 err = EFAULT; 5519 goto out; 5520 } 5521 5522 mutex_enter(&zonehash_lock); 5523 if (pp->p_zone != global_zone) { 5524 mutex_exit(&zonehash_lock); 5525 err = EINVAL; 5526 goto out; 5527 } 5528 5529 zone = zone_find_all_by_id(zoneid); 5530 if (zone == NULL) { 5531 mutex_exit(&zonehash_lock); 5532 err = EINVAL; 5533 goto out; 5534 } 5535 5536 /* 5537 * To prevent processes in a zone from holding contracts on 5538 * extrazonal resources, and to avoid process contract 5539 * memberships which span zones, contract holders and processes 5540 * which aren't the sole members of their encapsulating process 5541 * contracts are not allowed to zone_enter. 5542 */ 5543 ctp = pp->p_ct_process; 5544 ct = &ctp->conp_contract; 5545 mutex_enter(&ct->ct_lock); 5546 mutex_enter(&pp->p_lock); 5547 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5548 mutex_exit(&pp->p_lock); 5549 mutex_exit(&ct->ct_lock); 5550 mutex_exit(&zonehash_lock); 5551 err = EINVAL; 5552 goto out; 5553 } 5554 5555 /* 5556 * Moreover, we don't allow processes whose encapsulating 5557 * process contracts have inherited extrazonal contracts. 5558 * While it would be easier to eliminate all process contracts 5559 * with inherited contracts, we need to be able to give a 5560 * restarted init (or other zone-penetrating process) its 5561 * predecessor's contracts. 5562 */ 5563 if (ctp->conp_ninherited != 0) { 5564 contract_t *next; 5565 for (next = list_head(&ctp->conp_inherited); next; 5566 next = list_next(&ctp->conp_inherited, next)) { 5567 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5568 mutex_exit(&pp->p_lock); 5569 mutex_exit(&ct->ct_lock); 5570 mutex_exit(&zonehash_lock); 5571 err = EINVAL; 5572 goto out; 5573 } 5574 } 5575 } 5576 5577 mutex_exit(&pp->p_lock); 5578 mutex_exit(&ct->ct_lock); 5579 5580 status = zone_status_get(zone); 5581 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5582 /* 5583 * Can't join 5584 */ 5585 mutex_exit(&zonehash_lock); 5586 err = EINVAL; 5587 goto out; 5588 } 5589 5590 /* 5591 * Make sure new priv set is within the permitted set for caller 5592 */ 5593 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5594 mutex_exit(&zonehash_lock); 5595 err = EPERM; 5596 goto out; 5597 } 5598 /* 5599 * We want to momentarily drop zonehash_lock while we optimistically 5600 * bind curproc to the pool it should be running in. This is safe 5601 * since the zone can't disappear (we have a hold on it). 5602 */ 5603 zone_hold(zone); 5604 mutex_exit(&zonehash_lock); 5605 5606 /* 5607 * Grab pool_lock to keep the pools configuration from changing 5608 * and to stop ourselves from getting rebound to another pool 5609 * until we join the zone. 5610 */ 5611 if (pool_lock_intr() != 0) { 5612 zone_rele(zone); 5613 err = EINTR; 5614 goto out; 5615 } 5616 ASSERT(secpolicy_pool(CRED()) == 0); 5617 /* 5618 * Bind ourselves to the pool currently associated with the zone. 5619 */ 5620 oldpool = curproc->p_pool; 5621 newpool = zone_pool_get(zone); 5622 if (pool_state == POOL_ENABLED && newpool != oldpool && 5623 (err = pool_do_bind(newpool, P_PID, P_MYID, 5624 POOL_BIND_ALL)) != 0) { 5625 pool_unlock(); 5626 zone_rele(zone); 5627 goto out; 5628 } 5629 5630 /* 5631 * Grab cpu_lock now; we'll need it later when we call 5632 * task_join(). 5633 */ 5634 mutex_enter(&cpu_lock); 5635 mutex_enter(&zonehash_lock); 5636 /* 5637 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5638 */ 5639 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5640 /* 5641 * Can't join anymore. 5642 */ 5643 mutex_exit(&zonehash_lock); 5644 mutex_exit(&cpu_lock); 5645 if (pool_state == POOL_ENABLED && 5646 newpool != oldpool) 5647 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5648 POOL_BIND_ALL); 5649 pool_unlock(); 5650 zone_rele(zone); 5651 err = EINVAL; 5652 goto out; 5653 } 5654 5655 /* 5656 * a_lock must be held while transfering locked memory and swap 5657 * reservation from the global zone to the non global zone because 5658 * asynchronous faults on the processes' address space can lock 5659 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5660 * segments respectively. 5661 */ 5662 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5663 swap = as_swresv(); 5664 mutex_enter(&pp->p_lock); 5665 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5666 /* verify that we do not exceed and task or lwp limits */ 5667 mutex_enter(&zone->zone_nlwps_lock); 5668 /* add new lwps to zone and zone's proj0 */ 5669 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5670 zone->zone_nlwps += pp->p_lwpcnt; 5671 /* add 1 task to zone's proj0 */ 5672 zone_proj0->kpj_ntasks += 1; 5673 5674 zone_proj0->kpj_nprocs++; 5675 zone->zone_nprocs++; 5676 mutex_exit(&zone->zone_nlwps_lock); 5677 5678 mutex_enter(&zone->zone_mem_lock); 5679 zone->zone_locked_mem += pp->p_locked_mem; 5680 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5681 zone->zone_max_swap += swap; 5682 mutex_exit(&zone->zone_mem_lock); 5683 5684 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5685 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5686 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5687 5688 /* remove lwps and process from proc's old zone and old project */ 5689 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5690 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5691 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5692 pp->p_task->tk_proj->kpj_nprocs--; 5693 pp->p_zone->zone_nprocs--; 5694 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5695 5696 mutex_enter(&pp->p_zone->zone_mem_lock); 5697 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5698 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5699 pp->p_zone->zone_max_swap -= swap; 5700 mutex_exit(&pp->p_zone->zone_mem_lock); 5701 5702 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5703 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5704 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5705 5706 pp->p_flag |= SZONETOP; 5707 pp->p_zone = zone; 5708 mutex_exit(&pp->p_lock); 5709 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5710 5711 /* 5712 * Joining the zone cannot fail from now on. 5713 * 5714 * This means that a lot of the following code can be commonized and 5715 * shared with zsched(). 5716 */ 5717 5718 /* 5719 * If the process contract fmri was inherited, we need to 5720 * flag this so that any contract status will not leak 5721 * extra zone information, svc_fmri in this case 5722 */ 5723 if (ctp->conp_svc_ctid != ct->ct_id) { 5724 mutex_enter(&ct->ct_lock); 5725 ctp->conp_svc_zone_enter = ct->ct_id; 5726 mutex_exit(&ct->ct_lock); 5727 } 5728 5729 /* 5730 * Reset the encapsulating process contract's zone. 5731 */ 5732 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5733 contract_setzuniqid(ct, zone->zone_uniqid); 5734 5735 /* 5736 * Create a new task and associate the process with the project keyed 5737 * by (projid,zoneid). 5738 * 5739 * We might as well be in project 0; the global zone's projid doesn't 5740 * make much sense in a zone anyhow. 5741 * 5742 * This also increments zone_ntasks, and returns with p_lock held. 5743 */ 5744 tk = task_create(0, zone); 5745 oldtk = task_join(tk, 0); 5746 mutex_exit(&cpu_lock); 5747 5748 /* 5749 * call RCTLOP_SET functions on this proc 5750 */ 5751 e.rcep_p.zone = zone; 5752 e.rcep_t = RCENTITY_ZONE; 5753 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5754 RCD_CALLBACK); 5755 mutex_exit(&pp->p_lock); 5756 5757 /* 5758 * We don't need to hold any of zsched's locks here; not only do we know 5759 * the process and zone aren't going away, we know its session isn't 5760 * changing either. 5761 * 5762 * By joining zsched's session here, we mimic the behavior in the 5763 * global zone of init's sid being the pid of sched. We extend this 5764 * to all zlogin-like zone_enter()'ing processes as well. 5765 */ 5766 mutex_enter(&pidlock); 5767 sp = zone->zone_zsched->p_sessp; 5768 sess_hold(zone->zone_zsched); 5769 mutex_enter(&pp->p_lock); 5770 pgexit(pp); 5771 sess_rele(pp->p_sessp, B_TRUE); 5772 pp->p_sessp = sp; 5773 pgjoin(pp, zone->zone_zsched->p_pidp); 5774 5775 /* 5776 * If any threads are scheduled to be placed on zone wait queue they 5777 * should abandon the idea since the wait queue is changing. 5778 * We need to be holding pidlock & p_lock to do this. 5779 */ 5780 if ((t = pp->p_tlist) != NULL) { 5781 do { 5782 thread_lock(t); 5783 /* 5784 * Kick this thread so that he doesn't sit 5785 * on a wrong wait queue. 5786 */ 5787 if (ISWAITING(t)) 5788 setrun_locked(t); 5789 5790 if (t->t_schedflag & TS_ANYWAITQ) 5791 t->t_schedflag &= ~ TS_ANYWAITQ; 5792 5793 thread_unlock(t); 5794 } while ((t = t->t_forw) != pp->p_tlist); 5795 } 5796 5797 /* 5798 * If there is a default scheduling class for the zone and it is not 5799 * the class we are currently in, change all of the threads in the 5800 * process to the new class. We need to be holding pidlock & p_lock 5801 * when we call parmsset so this is a good place to do it. 5802 */ 5803 if (zone->zone_defaultcid > 0 && 5804 zone->zone_defaultcid != curthread->t_cid) { 5805 pcparms_t pcparms; 5806 5807 pcparms.pc_cid = zone->zone_defaultcid; 5808 pcparms.pc_clparms[0] = 0; 5809 5810 /* 5811 * If setting the class fails, we still want to enter the zone. 5812 */ 5813 if ((t = pp->p_tlist) != NULL) { 5814 do { 5815 (void) parmsset(&pcparms, t); 5816 } while ((t = t->t_forw) != pp->p_tlist); 5817 } 5818 } 5819 5820 mutex_exit(&pp->p_lock); 5821 mutex_exit(&pidlock); 5822 5823 mutex_exit(&zonehash_lock); 5824 /* 5825 * We're firmly in the zone; let pools progress. 5826 */ 5827 pool_unlock(); 5828 task_rele(oldtk); 5829 /* 5830 * We don't need to retain a hold on the zone since we already 5831 * incremented zone_ntasks, so the zone isn't going anywhere. 5832 */ 5833 zone_rele(zone); 5834 5835 /* 5836 * Chroot 5837 */ 5838 vp = zone->zone_rootvp; 5839 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 5840 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 5841 5842 /* 5843 * Change process credentials 5844 */ 5845 newcr = cralloc(); 5846 mutex_enter(&pp->p_crlock); 5847 cr = pp->p_cred; 5848 crcopy_to(cr, newcr); 5849 crsetzone(newcr, zone); 5850 pp->p_cred = newcr; 5851 5852 /* 5853 * Restrict all process privilege sets to zone limit 5854 */ 5855 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 5856 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 5857 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 5858 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 5859 mutex_exit(&pp->p_crlock); 5860 crset(pp, newcr); 5861 5862 /* 5863 * Adjust upcount to reflect zone entry. 5864 */ 5865 uid = crgetruid(newcr); 5866 mutex_enter(&pidlock); 5867 upcount_dec(uid, GLOBAL_ZONEID); 5868 upcount_inc(uid, zoneid); 5869 mutex_exit(&pidlock); 5870 5871 /* 5872 * Set up core file path and content. 5873 */ 5874 set_core_defaults(); 5875 5876 out: 5877 /* 5878 * Let the other lwps continue. 5879 */ 5880 mutex_enter(&pp->p_lock); 5881 if (curthread != pp->p_agenttp) 5882 continuelwps(pp); 5883 mutex_exit(&pp->p_lock); 5884 5885 return (err != 0 ? set_errno(err) : 0); 5886 } 5887 5888 /* 5889 * Systemcall entry point for zone_list(2). 5890 * 5891 * Processes running in a (non-global) zone only see themselves. 5892 * On labeled systems, they see all zones whose label they dominate. 5893 */ 5894 static int 5895 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 5896 { 5897 zoneid_t *zoneids; 5898 zone_t *zone, *myzone; 5899 uint_t user_nzones, real_nzones; 5900 uint_t domi_nzones; 5901 int error; 5902 5903 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 5904 return (set_errno(EFAULT)); 5905 5906 myzone = curproc->p_zone; 5907 if (myzone != global_zone) { 5908 bslabel_t *mybslab; 5909 5910 if (!is_system_labeled()) { 5911 /* just return current zone */ 5912 real_nzones = domi_nzones = 1; 5913 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 5914 zoneids[0] = myzone->zone_id; 5915 } else { 5916 /* return all zones that are dominated */ 5917 mutex_enter(&zonehash_lock); 5918 real_nzones = zonecount; 5919 domi_nzones = 0; 5920 if (real_nzones > 0) { 5921 zoneids = kmem_alloc(real_nzones * 5922 sizeof (zoneid_t), KM_SLEEP); 5923 mybslab = label2bslabel(myzone->zone_slabel); 5924 for (zone = list_head(&zone_active); 5925 zone != NULL; 5926 zone = list_next(&zone_active, zone)) { 5927 if (zone->zone_id == GLOBAL_ZONEID) 5928 continue; 5929 if (zone != myzone && 5930 (zone->zone_flags & ZF_IS_SCRATCH)) 5931 continue; 5932 /* 5933 * Note that a label always dominates 5934 * itself, so myzone is always included 5935 * in the list. 5936 */ 5937 if (bldominates(mybslab, 5938 label2bslabel(zone->zone_slabel))) { 5939 zoneids[domi_nzones++] = 5940 zone->zone_id; 5941 } 5942 } 5943 } 5944 mutex_exit(&zonehash_lock); 5945 } 5946 } else { 5947 mutex_enter(&zonehash_lock); 5948 real_nzones = zonecount; 5949 domi_nzones = 0; 5950 if (real_nzones > 0) { 5951 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 5952 KM_SLEEP); 5953 for (zone = list_head(&zone_active); zone != NULL; 5954 zone = list_next(&zone_active, zone)) 5955 zoneids[domi_nzones++] = zone->zone_id; 5956 ASSERT(domi_nzones == real_nzones); 5957 } 5958 mutex_exit(&zonehash_lock); 5959 } 5960 5961 /* 5962 * If user has allocated space for fewer entries than we found, then 5963 * return only up to his limit. Either way, tell him exactly how many 5964 * we found. 5965 */ 5966 if (domi_nzones < user_nzones) 5967 user_nzones = domi_nzones; 5968 error = 0; 5969 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 5970 error = EFAULT; 5971 } else if (zoneidlist != NULL && user_nzones != 0) { 5972 if (copyout(zoneids, zoneidlist, 5973 user_nzones * sizeof (zoneid_t)) != 0) 5974 error = EFAULT; 5975 } 5976 5977 if (real_nzones > 0) 5978 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 5979 5980 if (error != 0) 5981 return (set_errno(error)); 5982 else 5983 return (0); 5984 } 5985 5986 /* 5987 * Systemcall entry point for zone_lookup(2). 5988 * 5989 * Non-global zones are only able to see themselves and (on labeled systems) 5990 * the zones they dominate. 5991 */ 5992 static zoneid_t 5993 zone_lookup(const char *zone_name) 5994 { 5995 char *kname; 5996 zone_t *zone; 5997 zoneid_t zoneid; 5998 int err; 5999 6000 if (zone_name == NULL) { 6001 /* return caller's zone id */ 6002 return (getzoneid()); 6003 } 6004 6005 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6006 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6007 kmem_free(kname, ZONENAME_MAX); 6008 return (set_errno(err)); 6009 } 6010 6011 mutex_enter(&zonehash_lock); 6012 zone = zone_find_all_by_name(kname); 6013 kmem_free(kname, ZONENAME_MAX); 6014 /* 6015 * In a non-global zone, can only lookup global and own name. 6016 * In Trusted Extensions zone label dominance rules apply. 6017 */ 6018 if (zone == NULL || 6019 zone_status_get(zone) < ZONE_IS_READY || 6020 !zone_list_access(zone)) { 6021 mutex_exit(&zonehash_lock); 6022 return (set_errno(EINVAL)); 6023 } else { 6024 zoneid = zone->zone_id; 6025 mutex_exit(&zonehash_lock); 6026 return (zoneid); 6027 } 6028 } 6029 6030 static int 6031 zone_version(int *version_arg) 6032 { 6033 int version = ZONE_SYSCALL_API_VERSION; 6034 6035 if (copyout(&version, version_arg, sizeof (int)) != 0) 6036 return (set_errno(EFAULT)); 6037 return (0); 6038 } 6039 6040 /* ARGSUSED */ 6041 long 6042 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6043 { 6044 zone_def zs; 6045 int err; 6046 6047 switch (cmd) { 6048 case ZONE_CREATE: 6049 if (get_udatamodel() == DATAMODEL_NATIVE) { 6050 if (copyin(arg1, &zs, sizeof (zone_def))) { 6051 return (set_errno(EFAULT)); 6052 } 6053 } else { 6054 #ifdef _SYSCALL32_IMPL 6055 zone_def32 zs32; 6056 6057 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6058 return (set_errno(EFAULT)); 6059 } 6060 zs.zone_name = 6061 (const char *)(unsigned long)zs32.zone_name; 6062 zs.zone_root = 6063 (const char *)(unsigned long)zs32.zone_root; 6064 zs.zone_privs = 6065 (const struct priv_set *) 6066 (unsigned long)zs32.zone_privs; 6067 zs.zone_privssz = zs32.zone_privssz; 6068 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6069 zs.rctlbufsz = zs32.rctlbufsz; 6070 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6071 zs.zfsbufsz = zs32.zfsbufsz; 6072 zs.extended_error = 6073 (int *)(unsigned long)zs32.extended_error; 6074 zs.match = zs32.match; 6075 zs.doi = zs32.doi; 6076 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6077 zs.flags = zs32.flags; 6078 #else 6079 panic("get_udatamodel() returned bogus result\n"); 6080 #endif 6081 } 6082 6083 return (zone_create(zs.zone_name, zs.zone_root, 6084 zs.zone_privs, zs.zone_privssz, 6085 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6086 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6087 zs.extended_error, zs.match, zs.doi, 6088 zs.label, zs.flags)); 6089 case ZONE_BOOT: 6090 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6091 case ZONE_DESTROY: 6092 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6093 case ZONE_GETATTR: 6094 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6095 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6096 case ZONE_SETATTR: 6097 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6098 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6099 case ZONE_ENTER: 6100 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6101 case ZONE_LIST: 6102 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6103 case ZONE_SHUTDOWN: 6104 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6105 case ZONE_LOOKUP: 6106 return (zone_lookup((const char *)arg1)); 6107 case ZONE_VERSION: 6108 return (zone_version((int *)arg1)); 6109 case ZONE_ADD_DATALINK: 6110 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6111 (datalink_id_t)(uintptr_t)arg2)); 6112 case ZONE_DEL_DATALINK: 6113 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6114 (datalink_id_t)(uintptr_t)arg2)); 6115 case ZONE_CHECK_DATALINK: { 6116 zoneid_t zoneid; 6117 boolean_t need_copyout; 6118 6119 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6120 return (EFAULT); 6121 need_copyout = (zoneid == ALL_ZONES); 6122 err = zone_check_datalink(&zoneid, 6123 (datalink_id_t)(uintptr_t)arg2); 6124 if (err == 0 && need_copyout) { 6125 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6126 err = EFAULT; 6127 } 6128 return (err == 0 ? 0 : set_errno(err)); 6129 } 6130 case ZONE_LIST_DATALINK: 6131 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6132 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6133 default: 6134 return (set_errno(EINVAL)); 6135 } 6136 } 6137 6138 struct zarg { 6139 zone_t *zone; 6140 zone_cmd_arg_t arg; 6141 }; 6142 6143 static int 6144 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6145 { 6146 char *buf; 6147 size_t buflen; 6148 int error; 6149 6150 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6151 buf = kmem_alloc(buflen, KM_SLEEP); 6152 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6153 error = door_ki_open(buf, doorp); 6154 kmem_free(buf, buflen); 6155 return (error); 6156 } 6157 6158 static void 6159 zone_release_door(door_handle_t *doorp) 6160 { 6161 door_ki_rele(*doorp); 6162 *doorp = NULL; 6163 } 6164 6165 static void 6166 zone_ki_call_zoneadmd(struct zarg *zargp) 6167 { 6168 door_handle_t door = NULL; 6169 door_arg_t darg, save_arg; 6170 char *zone_name; 6171 size_t zone_namelen; 6172 zoneid_t zoneid; 6173 zone_t *zone; 6174 zone_cmd_arg_t arg; 6175 uint64_t uniqid; 6176 size_t size; 6177 int error; 6178 int retry; 6179 6180 zone = zargp->zone; 6181 arg = zargp->arg; 6182 kmem_free(zargp, sizeof (*zargp)); 6183 6184 zone_namelen = strlen(zone->zone_name) + 1; 6185 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6186 bcopy(zone->zone_name, zone_name, zone_namelen); 6187 zoneid = zone->zone_id; 6188 uniqid = zone->zone_uniqid; 6189 /* 6190 * zoneadmd may be down, but at least we can empty out the zone. 6191 * We can ignore the return value of zone_empty() since we're called 6192 * from a kernel thread and know we won't be delivered any signals. 6193 */ 6194 ASSERT(curproc == &p0); 6195 (void) zone_empty(zone); 6196 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6197 zone_rele(zone); 6198 6199 size = sizeof (arg); 6200 darg.rbuf = (char *)&arg; 6201 darg.data_ptr = (char *)&arg; 6202 darg.rsize = size; 6203 darg.data_size = size; 6204 darg.desc_ptr = NULL; 6205 darg.desc_num = 0; 6206 6207 save_arg = darg; 6208 /* 6209 * Since we're not holding a reference to the zone, any number of 6210 * things can go wrong, including the zone disappearing before we get a 6211 * chance to talk to zoneadmd. 6212 */ 6213 for (retry = 0; /* forever */; retry++) { 6214 if (door == NULL && 6215 (error = zone_lookup_door(zone_name, &door)) != 0) { 6216 goto next; 6217 } 6218 ASSERT(door != NULL); 6219 6220 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6221 SIZE_MAX, 0)) == 0) { 6222 break; 6223 } 6224 switch (error) { 6225 case EINTR: 6226 /* FALLTHROUGH */ 6227 case EAGAIN: /* process may be forking */ 6228 /* 6229 * Back off for a bit 6230 */ 6231 break; 6232 case EBADF: 6233 zone_release_door(&door); 6234 if (zone_lookup_door(zone_name, &door) != 0) { 6235 /* 6236 * zoneadmd may be dead, but it may come back to 6237 * life later. 6238 */ 6239 break; 6240 } 6241 break; 6242 default: 6243 cmn_err(CE_WARN, 6244 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6245 error); 6246 goto out; 6247 } 6248 next: 6249 /* 6250 * If this isn't the same zone_t that we originally had in mind, 6251 * then this is the same as if two kadmin requests come in at 6252 * the same time: the first one wins. This means we lose, so we 6253 * bail. 6254 */ 6255 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6256 /* 6257 * Problem is solved. 6258 */ 6259 break; 6260 } 6261 if (zone->zone_uniqid != uniqid) { 6262 /* 6263 * zoneid recycled 6264 */ 6265 zone_rele(zone); 6266 break; 6267 } 6268 /* 6269 * We could zone_status_timedwait(), but there doesn't seem to 6270 * be much point in doing that (plus, it would mean that 6271 * zone_free() isn't called until this thread exits). 6272 */ 6273 zone_rele(zone); 6274 delay(hz); 6275 darg = save_arg; 6276 } 6277 out: 6278 if (door != NULL) { 6279 zone_release_door(&door); 6280 } 6281 kmem_free(zone_name, zone_namelen); 6282 thread_exit(); 6283 } 6284 6285 /* 6286 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6287 * kadmin(). The caller is a process in the zone. 6288 * 6289 * In order to shutdown the zone, we will hand off control to zoneadmd 6290 * (running in the global zone) via a door. We do a half-hearted job at 6291 * killing all processes in the zone, create a kernel thread to contact 6292 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6293 * a form of generation number used to let zoneadmd (as well as 6294 * zone_destroy()) know exactly which zone they're re talking about. 6295 */ 6296 int 6297 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6298 { 6299 struct zarg *zargp; 6300 zone_cmd_t zcmd; 6301 zone_t *zone; 6302 6303 zone = curproc->p_zone; 6304 ASSERT(getzoneid() != GLOBAL_ZONEID); 6305 6306 switch (cmd) { 6307 case A_SHUTDOWN: 6308 switch (fcn) { 6309 case AD_HALT: 6310 case AD_POWEROFF: 6311 zcmd = Z_HALT; 6312 break; 6313 case AD_BOOT: 6314 zcmd = Z_REBOOT; 6315 break; 6316 case AD_IBOOT: 6317 case AD_SBOOT: 6318 case AD_SIBOOT: 6319 case AD_NOSYNC: 6320 return (ENOTSUP); 6321 default: 6322 return (EINVAL); 6323 } 6324 break; 6325 case A_REBOOT: 6326 zcmd = Z_REBOOT; 6327 break; 6328 case A_FTRACE: 6329 case A_REMOUNT: 6330 case A_FREEZE: 6331 case A_DUMP: 6332 case A_CONFIG: 6333 return (ENOTSUP); 6334 default: 6335 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6336 return (EINVAL); 6337 } 6338 6339 if (secpolicy_zone_admin(credp, B_FALSE)) 6340 return (EPERM); 6341 mutex_enter(&zone_status_lock); 6342 6343 /* 6344 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6345 * is in the zone. 6346 */ 6347 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6348 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6349 /* 6350 * This zone is already on its way down. 6351 */ 6352 mutex_exit(&zone_status_lock); 6353 return (0); 6354 } 6355 /* 6356 * Prevent future zone_enter()s 6357 */ 6358 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6359 mutex_exit(&zone_status_lock); 6360 6361 /* 6362 * Kill everyone now and call zoneadmd later. 6363 * zone_ki_call_zoneadmd() will do a more thorough job of this 6364 * later. 6365 */ 6366 killall(zone->zone_id); 6367 /* 6368 * Now, create the thread to contact zoneadmd and do the rest of the 6369 * work. This thread can't be created in our zone otherwise 6370 * zone_destroy() would deadlock. 6371 */ 6372 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6373 zargp->arg.cmd = zcmd; 6374 zargp->arg.uniqid = zone->zone_uniqid; 6375 zargp->zone = zone; 6376 (void) strcpy(zargp->arg.locale, "C"); 6377 /* mdep was already copied in for us by uadmin */ 6378 if (mdep != NULL) 6379 (void) strlcpy(zargp->arg.bootbuf, mdep, 6380 sizeof (zargp->arg.bootbuf)); 6381 zone_hold(zone); 6382 6383 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6384 TS_RUN, minclsyspri); 6385 exit(CLD_EXITED, 0); 6386 6387 return (EINVAL); 6388 } 6389 6390 /* 6391 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6392 * status to ZONE_IS_SHUTTING_DOWN. 6393 * 6394 * This function also shuts down all running zones to ensure that they won't 6395 * fork new processes. 6396 */ 6397 void 6398 zone_shutdown_global(void) 6399 { 6400 zone_t *current_zonep; 6401 6402 ASSERT(INGLOBALZONE(curproc)); 6403 mutex_enter(&zonehash_lock); 6404 mutex_enter(&zone_status_lock); 6405 6406 /* Modify the global zone's status first. */ 6407 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6408 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6409 6410 /* 6411 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6412 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6413 * could cause assertions to fail (e.g., assertions about a zone's 6414 * state during initialization, readying, or booting) or produce races. 6415 * We'll let threads continue to initialize and ready new zones: they'll 6416 * fail to boot the new zones when they see that the global zone is 6417 * shutting down. 6418 */ 6419 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6420 current_zonep = list_next(&zone_active, current_zonep)) { 6421 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6422 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6423 } 6424 mutex_exit(&zone_status_lock); 6425 mutex_exit(&zonehash_lock); 6426 } 6427 6428 /* 6429 * Returns true if the named dataset is visible in the current zone. 6430 * The 'write' parameter is set to 1 if the dataset is also writable. 6431 */ 6432 int 6433 zone_dataset_visible(const char *dataset, int *write) 6434 { 6435 static int zfstype = -1; 6436 zone_dataset_t *zd; 6437 size_t len; 6438 zone_t *zone = curproc->p_zone; 6439 const char *name = NULL; 6440 vfs_t *vfsp = NULL; 6441 6442 if (dataset[0] == '\0') 6443 return (0); 6444 6445 /* 6446 * Walk the list once, looking for datasets which match exactly, or 6447 * specify a dataset underneath an exported dataset. If found, return 6448 * true and note that it is writable. 6449 */ 6450 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6451 zd = list_next(&zone->zone_datasets, zd)) { 6452 6453 len = strlen(zd->zd_dataset); 6454 if (strlen(dataset) >= len && 6455 bcmp(dataset, zd->zd_dataset, len) == 0 && 6456 (dataset[len] == '\0' || dataset[len] == '/' || 6457 dataset[len] == '@')) { 6458 if (write) 6459 *write = 1; 6460 return (1); 6461 } 6462 } 6463 6464 /* 6465 * Walk the list a second time, searching for datasets which are parents 6466 * of exported datasets. These should be visible, but read-only. 6467 * 6468 * Note that we also have to support forms such as 'pool/dataset/', with 6469 * a trailing slash. 6470 */ 6471 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6472 zd = list_next(&zone->zone_datasets, zd)) { 6473 6474 len = strlen(dataset); 6475 if (dataset[len - 1] == '/') 6476 len--; /* Ignore trailing slash */ 6477 if (len < strlen(zd->zd_dataset) && 6478 bcmp(dataset, zd->zd_dataset, len) == 0 && 6479 zd->zd_dataset[len] == '/') { 6480 if (write) 6481 *write = 0; 6482 return (1); 6483 } 6484 } 6485 6486 /* 6487 * We reach here if the given dataset is not found in the zone_dataset 6488 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6489 * instead of delegation. For this we search for the dataset in the 6490 * zone_vfslist of this zone. If found, return true and note that it is 6491 * not writable. 6492 */ 6493 6494 /* 6495 * Initialize zfstype if it is not initialized yet. 6496 */ 6497 if (zfstype == -1) { 6498 struct vfssw *vswp = vfs_getvfssw("zfs"); 6499 zfstype = vswp - vfssw; 6500 vfs_unrefvfssw(vswp); 6501 } 6502 6503 vfs_list_read_lock(); 6504 vfsp = zone->zone_vfslist; 6505 do { 6506 ASSERT(vfsp); 6507 if (vfsp->vfs_fstype == zfstype) { 6508 name = refstr_value(vfsp->vfs_resource); 6509 6510 /* 6511 * Check if we have an exact match. 6512 */ 6513 if (strcmp(dataset, name) == 0) { 6514 vfs_list_unlock(); 6515 if (write) 6516 *write = 0; 6517 return (1); 6518 } 6519 /* 6520 * We need to check if we are looking for parents of 6521 * a dataset. These should be visible, but read-only. 6522 */ 6523 len = strlen(dataset); 6524 if (dataset[len - 1] == '/') 6525 len--; 6526 6527 if (len < strlen(name) && 6528 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6529 vfs_list_unlock(); 6530 if (write) 6531 *write = 0; 6532 return (1); 6533 } 6534 } 6535 vfsp = vfsp->vfs_zone_next; 6536 } while (vfsp != zone->zone_vfslist); 6537 6538 vfs_list_unlock(); 6539 return (0); 6540 } 6541 6542 /* 6543 * zone_find_by_any_path() - 6544 * 6545 * kernel-private routine similar to zone_find_by_path(), but which 6546 * effectively compares against zone paths rather than zonerootpath 6547 * (i.e., the last component of zonerootpaths, which should be "root/", 6548 * are not compared.) This is done in order to accurately identify all 6549 * paths, whether zone-visible or not, including those which are parallel 6550 * to /root/, such as /dev/, /home/, etc... 6551 * 6552 * If the specified path does not fall under any zone path then global 6553 * zone is returned. 6554 * 6555 * The treat_abs parameter indicates whether the path should be treated as 6556 * an absolute path although it does not begin with "/". (This supports 6557 * nfs mount syntax such as host:any/path.) 6558 * 6559 * The caller is responsible for zone_rele of the returned zone. 6560 */ 6561 zone_t * 6562 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6563 { 6564 zone_t *zone; 6565 int path_offset = 0; 6566 6567 if (path == NULL) { 6568 zone_hold(global_zone); 6569 return (global_zone); 6570 } 6571 6572 if (*path != '/') { 6573 ASSERT(treat_abs); 6574 path_offset = 1; 6575 } 6576 6577 mutex_enter(&zonehash_lock); 6578 for (zone = list_head(&zone_active); zone != NULL; 6579 zone = list_next(&zone_active, zone)) { 6580 char *c; 6581 size_t pathlen; 6582 char *rootpath_start; 6583 6584 if (zone == global_zone) /* skip global zone */ 6585 continue; 6586 6587 /* scan backwards to find start of last component */ 6588 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6589 do { 6590 c--; 6591 } while (*c != '/'); 6592 6593 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6594 rootpath_start = (zone->zone_rootpath + path_offset); 6595 if (strncmp(path, rootpath_start, pathlen) == 0) 6596 break; 6597 } 6598 if (zone == NULL) 6599 zone = global_zone; 6600 zone_hold(zone); 6601 mutex_exit(&zonehash_lock); 6602 return (zone); 6603 } 6604 6605 /* 6606 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6607 * zone_dl_t pointer if found, and NULL otherwise. 6608 */ 6609 static zone_dl_t * 6610 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6611 { 6612 zone_dl_t *zdl; 6613 6614 ASSERT(mutex_owned(&zone->zone_lock)); 6615 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6616 zdl = list_next(&zone->zone_dl_list, zdl)) { 6617 if (zdl->zdl_id == linkid) 6618 break; 6619 } 6620 return (zdl); 6621 } 6622 6623 static boolean_t 6624 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6625 { 6626 boolean_t exists; 6627 6628 mutex_enter(&zone->zone_lock); 6629 exists = (zone_find_dl(zone, linkid) != NULL); 6630 mutex_exit(&zone->zone_lock); 6631 return (exists); 6632 } 6633 6634 /* 6635 * Add an data link name for the zone. 6636 */ 6637 static int 6638 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6639 { 6640 zone_dl_t *zdl; 6641 zone_t *zone; 6642 zone_t *thiszone; 6643 6644 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6645 return (set_errno(ENXIO)); 6646 6647 /* Verify that the datalink ID doesn't already belong to a zone. */ 6648 mutex_enter(&zonehash_lock); 6649 for (zone = list_head(&zone_active); zone != NULL; 6650 zone = list_next(&zone_active, zone)) { 6651 if (zone_dl_exists(zone, linkid)) { 6652 mutex_exit(&zonehash_lock); 6653 zone_rele(thiszone); 6654 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6655 } 6656 } 6657 6658 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6659 zdl->zdl_id = linkid; 6660 zdl->zdl_net = NULL; 6661 mutex_enter(&thiszone->zone_lock); 6662 list_insert_head(&thiszone->zone_dl_list, zdl); 6663 mutex_exit(&thiszone->zone_lock); 6664 mutex_exit(&zonehash_lock); 6665 zone_rele(thiszone); 6666 return (0); 6667 } 6668 6669 static int 6670 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6671 { 6672 zone_dl_t *zdl; 6673 zone_t *zone; 6674 int err = 0; 6675 6676 if ((zone = zone_find_by_id(zoneid)) == NULL) 6677 return (set_errno(EINVAL)); 6678 6679 mutex_enter(&zone->zone_lock); 6680 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6681 err = ENXIO; 6682 } else { 6683 list_remove(&zone->zone_dl_list, zdl); 6684 if (zdl->zdl_net != NULL) 6685 nvlist_free(zdl->zdl_net); 6686 kmem_free(zdl, sizeof (zone_dl_t)); 6687 } 6688 mutex_exit(&zone->zone_lock); 6689 zone_rele(zone); 6690 return (err == 0 ? 0 : set_errno(err)); 6691 } 6692 6693 /* 6694 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6695 * the linkid. Otherwise we just check if the specified zoneidp has been 6696 * assigned the supplied linkid. 6697 */ 6698 int 6699 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6700 { 6701 zone_t *zone; 6702 int err = ENXIO; 6703 6704 if (*zoneidp != ALL_ZONES) { 6705 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6706 if (zone_dl_exists(zone, linkid)) 6707 err = 0; 6708 zone_rele(zone); 6709 } 6710 return (err); 6711 } 6712 6713 mutex_enter(&zonehash_lock); 6714 for (zone = list_head(&zone_active); zone != NULL; 6715 zone = list_next(&zone_active, zone)) { 6716 if (zone_dl_exists(zone, linkid)) { 6717 *zoneidp = zone->zone_id; 6718 err = 0; 6719 break; 6720 } 6721 } 6722 mutex_exit(&zonehash_lock); 6723 return (err); 6724 } 6725 6726 /* 6727 * Get the list of datalink IDs assigned to a zone. 6728 * 6729 * On input, *nump is the number of datalink IDs that can fit in the supplied 6730 * idarray. Upon return, *nump is either set to the number of datalink IDs 6731 * that were placed in the array if the array was large enough, or to the 6732 * number of datalink IDs that the function needs to place in the array if the 6733 * array is too small. 6734 */ 6735 static int 6736 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6737 { 6738 uint_t num, dlcount; 6739 zone_t *zone; 6740 zone_dl_t *zdl; 6741 datalink_id_t *idptr = idarray; 6742 6743 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6744 return (set_errno(EFAULT)); 6745 if ((zone = zone_find_by_id(zoneid)) == NULL) 6746 return (set_errno(ENXIO)); 6747 6748 num = 0; 6749 mutex_enter(&zone->zone_lock); 6750 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6751 zdl = list_next(&zone->zone_dl_list, zdl)) { 6752 /* 6753 * If the list is bigger than what the caller supplied, just 6754 * count, don't do copyout. 6755 */ 6756 if (++num > dlcount) 6757 continue; 6758 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6759 mutex_exit(&zone->zone_lock); 6760 zone_rele(zone); 6761 return (set_errno(EFAULT)); 6762 } 6763 idptr++; 6764 } 6765 mutex_exit(&zone->zone_lock); 6766 zone_rele(zone); 6767 6768 /* Increased or decreased, caller should be notified. */ 6769 if (num != dlcount) { 6770 if (copyout(&num, nump, sizeof (num)) != 0) 6771 return (set_errno(EFAULT)); 6772 } 6773 return (0); 6774 } 6775 6776 /* 6777 * Public interface for looking up a zone by zoneid. It's a customized version 6778 * for netstack_zone_create(). It can only be called from the zsd create 6779 * callbacks, since it doesn't have reference on the zone structure hence if 6780 * it is called elsewhere the zone could disappear after the zonehash_lock 6781 * is dropped. 6782 * 6783 * Furthermore it 6784 * 1. Doesn't check the status of the zone. 6785 * 2. It will be called even before zone_init is called, in that case the 6786 * address of zone0 is returned directly, and netstack_zone_create() 6787 * will only assign a value to zone0.zone_netstack, won't break anything. 6788 * 3. Returns without the zone being held. 6789 */ 6790 zone_t * 6791 zone_find_by_id_nolock(zoneid_t zoneid) 6792 { 6793 zone_t *zone; 6794 6795 mutex_enter(&zonehash_lock); 6796 if (zonehashbyid == NULL) 6797 zone = &zone0; 6798 else 6799 zone = zone_find_all_by_id(zoneid); 6800 mutex_exit(&zonehash_lock); 6801 return (zone); 6802 } 6803 6804 /* 6805 * Walk the datalinks for a given zone 6806 */ 6807 int 6808 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 6809 void *data) 6810 { 6811 zone_t *zone; 6812 zone_dl_t *zdl; 6813 datalink_id_t *idarray; 6814 uint_t idcount = 0; 6815 int i, ret = 0; 6816 6817 if ((zone = zone_find_by_id(zoneid)) == NULL) 6818 return (ENOENT); 6819 6820 /* 6821 * We first build an array of linkid's so that we can walk these and 6822 * execute the callback with the zone_lock dropped. 6823 */ 6824 mutex_enter(&zone->zone_lock); 6825 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6826 zdl = list_next(&zone->zone_dl_list, zdl)) { 6827 idcount++; 6828 } 6829 6830 if (idcount == 0) { 6831 mutex_exit(&zone->zone_lock); 6832 zone_rele(zone); 6833 return (0); 6834 } 6835 6836 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 6837 if (idarray == NULL) { 6838 mutex_exit(&zone->zone_lock); 6839 zone_rele(zone); 6840 return (ENOMEM); 6841 } 6842 6843 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6844 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 6845 idarray[i] = zdl->zdl_id; 6846 } 6847 6848 mutex_exit(&zone->zone_lock); 6849 6850 for (i = 0; i < idcount && ret == 0; i++) { 6851 if ((ret = (*cb)(idarray[i], data)) != 0) 6852 break; 6853 } 6854 6855 zone_rele(zone); 6856 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 6857 return (ret); 6858 } 6859 6860 static char * 6861 zone_net_type2name(int type) 6862 { 6863 switch (type) { 6864 case ZONE_NETWORK_ADDRESS: 6865 return (ZONE_NET_ADDRNAME); 6866 case ZONE_NETWORK_DEFROUTER: 6867 return (ZONE_NET_RTRNAME); 6868 default: 6869 return (NULL); 6870 } 6871 } 6872 6873 static int 6874 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 6875 { 6876 zone_t *zone; 6877 zone_dl_t *zdl; 6878 nvlist_t *nvl; 6879 int err = 0; 6880 uint8_t *new = NULL; 6881 char *nvname; 6882 int bufsize; 6883 datalink_id_t linkid = znbuf->zn_linkid; 6884 6885 if (secpolicy_zone_config(CRED()) != 0) 6886 return (set_errno(EPERM)); 6887 6888 if (zoneid == GLOBAL_ZONEID) 6889 return (set_errno(EINVAL)); 6890 6891 nvname = zone_net_type2name(znbuf->zn_type); 6892 bufsize = znbuf->zn_len; 6893 new = znbuf->zn_val; 6894 if (nvname == NULL) 6895 return (set_errno(EINVAL)); 6896 6897 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6898 return (set_errno(EINVAL)); 6899 } 6900 6901 mutex_enter(&zone->zone_lock); 6902 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6903 err = ENXIO; 6904 goto done; 6905 } 6906 if ((nvl = zdl->zdl_net) == NULL) { 6907 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 6908 err = ENOMEM; 6909 goto done; 6910 } else { 6911 zdl->zdl_net = nvl; 6912 } 6913 } 6914 if (nvlist_exists(nvl, nvname)) { 6915 err = EINVAL; 6916 goto done; 6917 } 6918 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 6919 ASSERT(err == 0); 6920 done: 6921 mutex_exit(&zone->zone_lock); 6922 zone_rele(zone); 6923 if (err != 0) 6924 return (set_errno(err)); 6925 else 6926 return (0); 6927 } 6928 6929 static int 6930 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 6931 { 6932 zone_t *zone; 6933 zone_dl_t *zdl; 6934 nvlist_t *nvl; 6935 uint8_t *ptr; 6936 uint_t psize; 6937 int err = 0; 6938 char *nvname; 6939 int bufsize; 6940 void *buf; 6941 datalink_id_t linkid = znbuf->zn_linkid; 6942 6943 if (zoneid == GLOBAL_ZONEID) 6944 return (set_errno(EINVAL)); 6945 6946 nvname = zone_net_type2name(znbuf->zn_type); 6947 bufsize = znbuf->zn_len; 6948 buf = znbuf->zn_val; 6949 6950 if (nvname == NULL) 6951 return (set_errno(EINVAL)); 6952 if ((zone = zone_find_by_id(zoneid)) == NULL) 6953 return (set_errno(EINVAL)); 6954 6955 mutex_enter(&zone->zone_lock); 6956 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6957 err = ENXIO; 6958 goto done; 6959 } 6960 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 6961 err = ENOENT; 6962 goto done; 6963 } 6964 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 6965 ASSERT(err == 0); 6966 6967 if (psize > bufsize) { 6968 err = ENOBUFS; 6969 goto done; 6970 } 6971 znbuf->zn_len = psize; 6972 bcopy(ptr, buf, psize); 6973 done: 6974 mutex_exit(&zone->zone_lock); 6975 zone_rele(zone); 6976 if (err != 0) 6977 return (set_errno(err)); 6978 else 6979 return (0); 6980 } 6981