1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Big Theory Statement for the virtual memory allocator. 28 * 29 * For a more complete description of the main ideas, see: 30 * 31 * Jeff Bonwick and Jonathan Adams, 32 * 33 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 34 * Arbitrary Resources. 35 * 36 * Proceedings of the 2001 Usenix Conference. 37 * Available as http://www.usenix.org/event/usenix01/bonwick.html 38 * 39 * 40 * 1. General Concepts 41 * ------------------- 42 * 43 * 1.1 Overview 44 * ------------ 45 * We divide the kernel address space into a number of logically distinct 46 * pieces, or *arenas*: text, data, heap, stack, and so on. Within these 47 * arenas we often subdivide further; for example, we use heap addresses 48 * not only for the kernel heap (kmem_alloc() space), but also for DVMA, 49 * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip. 50 * The kernel address space, therefore, is most accurately described as 51 * a tree of arenas in which each node of the tree *imports* some subset 52 * of its parent. The virtual memory allocator manages these arenas and 53 * supports their natural hierarchical structure. 54 * 55 * 1.2 Arenas 56 * ---------- 57 * An arena is nothing more than a set of integers. These integers most 58 * commonly represent virtual addresses, but in fact they can represent 59 * anything at all. For example, we could use an arena containing the 60 * integers minpid through maxpid to allocate process IDs. vmem_create() 61 * and vmem_destroy() create and destroy vmem arenas. In order to 62 * differentiate between arenas used for adresses and arenas used for 63 * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create(). This 64 * prevents identifier exhaustion from being diagnosed as general memory 65 * failure. 66 * 67 * 1.3 Spans 68 * --------- 69 * We represent the integers in an arena as a collection of *spans*, or 70 * contiguous ranges of integers. For example, the kernel heap consists 71 * of just one span: [kernelheap, ekernelheap). Spans can be added to an 72 * arena in two ways: explicitly, by vmem_add(), or implicitly, by 73 * importing, as described in Section 1.5 below. 74 * 75 * 1.4 Segments 76 * ------------ 77 * Spans are subdivided into *segments*, each of which is either allocated 78 * or free. A segment, like a span, is a contiguous range of integers. 79 * Each allocated segment [addr, addr + size) represents exactly one 80 * vmem_alloc(size) that returned addr. Free segments represent the space 81 * between allocated segments. If two free segments are adjacent, we 82 * coalesce them into one larger segment; that is, if segments [a, b) and 83 * [b, c) are both free, we merge them into a single segment [a, c). 84 * The segments within a span are linked together in increasing-address order 85 * so we can easily determine whether coalescing is possible. 86 * 87 * Segments never cross span boundaries. When all segments within 88 * an imported span become free, we return the span to its source. 89 * 90 * 1.5 Imported Memory 91 * ------------------- 92 * As mentioned in the overview, some arenas are logical subsets of 93 * other arenas. For example, kmem_va_arena (a virtual address cache 94 * that satisfies most kmem_slab_create() requests) is just a subset 95 * of heap_arena (the kernel heap) that provides caching for the most 96 * common slab sizes. When kmem_va_arena runs out of virtual memory, 97 * it *imports* more from the heap; we say that heap_arena is the 98 * *vmem source* for kmem_va_arena. vmem_create() allows you to 99 * specify any existing vmem arena as the source for your new arena. 100 * Topologically, since every arena is a child of at most one source, 101 * the set of all arenas forms a collection of trees. 102 * 103 * 1.6 Constrained Allocations 104 * --------------------------- 105 * Some vmem clients are quite picky about the kind of address they want. 106 * For example, the DVMA code may need an address that is at a particular 107 * phase with respect to some alignment (to get good cache coloring), or 108 * that lies within certain limits (the addressable range of a device), 109 * or that doesn't cross some boundary (a DMA counter restriction) -- 110 * or all of the above. vmem_xalloc() allows the client to specify any 111 * or all of these constraints. 112 * 113 * 1.7 The Vmem Quantum 114 * -------------------- 115 * Every arena has a notion of 'quantum', specified at vmem_create() time, 116 * that defines the arena's minimum unit of currency. Most commonly the 117 * quantum is either 1 or PAGESIZE, but any power of 2 is legal. 118 * All vmem allocations are guaranteed to be quantum-aligned. 119 * 120 * 1.8 Quantum Caching 121 * ------------------- 122 * A vmem arena may be so hot (frequently used) that the scalability of vmem 123 * allocation is a significant concern. We address this by allowing the most 124 * common allocation sizes to be serviced by the kernel memory allocator, 125 * which provides low-latency per-cpu caching. The qcache_max argument to 126 * vmem_create() specifies the largest allocation size to cache. 127 * 128 * 1.9 Relationship to Kernel Memory Allocator 129 * ------------------------------------------- 130 * Every kmem cache has a vmem arena as its slab supplier. The kernel memory 131 * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs. 132 * 133 * 134 * 2. Implementation 135 * ----------------- 136 * 137 * 2.1 Segment lists and markers 138 * ----------------------------- 139 * The segment structure (vmem_seg_t) contains two doubly-linked lists. 140 * 141 * The arena list (vs_anext/vs_aprev) links all segments in the arena. 142 * In addition to the allocated and free segments, the arena contains 143 * special marker segments at span boundaries. Span markers simplify 144 * coalescing and importing logic by making it easy to tell both when 145 * we're at a span boundary (so we don't coalesce across it), and when 146 * a span is completely free (its neighbors will both be span markers). 147 * 148 * Imported spans will have vs_import set. 149 * 150 * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type: 151 * (1) for allocated segments, vs_knext is the hash chain linkage; 152 * (2) for free segments, vs_knext is the freelist linkage; 153 * (3) for span marker segments, vs_knext is the next span marker. 154 * 155 * 2.2 Allocation hashing 156 * ---------------------- 157 * We maintain a hash table of all allocated segments, hashed by address. 158 * This allows vmem_free() to discover the target segment in constant time. 159 * vmem_update() periodically resizes hash tables to keep hash chains short. 160 * 161 * 2.3 Freelist management 162 * ----------------------- 163 * We maintain power-of-2 freelists for free segments, i.e. free segments 164 * of size >= 2^n reside in vmp->vm_freelist[n]. To ensure constant-time 165 * allocation, vmem_xalloc() looks not in the first freelist that *might* 166 * satisfy the allocation, but in the first freelist that *definitely* 167 * satisfies the allocation (unless VM_BESTFIT is specified, or all larger 168 * freelists are empty). For example, a 1000-byte allocation will be 169 * satisfied not from the 512..1023-byte freelist, whose members *might* 170 * contains a 1000-byte segment, but from a 1024-byte or larger freelist, 171 * the first member of which will *definitely* satisfy the allocation. 172 * This ensures that vmem_xalloc() works in constant time. 173 * 174 * We maintain a bit map to determine quickly which freelists are non-empty. 175 * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty. 176 * 177 * The different freelists are linked together into one large freelist, 178 * with the freelist heads serving as markers. Freelist markers simplify 179 * the maintenance of vm_freemap by making it easy to tell when we're taking 180 * the last member of a freelist (both of its neighbors will be markers). 181 * 182 * 2.4 Vmem Locking 183 * ---------------- 184 * For simplicity, all arena state is protected by a per-arena lock. 185 * For very hot arenas, use quantum caching for scalability. 186 * 187 * 2.5 Vmem Population 188 * ------------------- 189 * Any internal vmem routine that might need to allocate new segment 190 * structures must prepare in advance by calling vmem_populate(), which 191 * will preallocate enough vmem_seg_t's to get is through the entire 192 * operation without dropping the arena lock. 193 * 194 * 2.6 Auditing 195 * ------------ 196 * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well. 197 * Since virtual addresses cannot be scribbled on, there is no equivalent 198 * in vmem to redzone checking, deadbeef, or other kmem debugging features. 199 * Moreover, we do not audit frees because segment coalescing destroys the 200 * association between an address and its segment structure. Auditing is 201 * thus intended primarily to keep track of who's consuming the arena. 202 * Debugging support could certainly be extended in the future if it proves 203 * necessary, but we do so much live checking via the allocation hash table 204 * that even non-DEBUG systems get quite a bit of sanity checking already. 205 */ 206 207 #include <sys/vmem_impl.h> 208 #include <sys/kmem.h> 209 #include <sys/kstat.h> 210 #include <sys/param.h> 211 #include <sys/systm.h> 212 #include <sys/atomic.h> 213 #include <sys/bitmap.h> 214 #include <sys/sysmacros.h> 215 #include <sys/cmn_err.h> 216 #include <sys/debug.h> 217 #include <sys/panic.h> 218 219 #define VMEM_INITIAL 10 /* early vmem arenas */ 220 #define VMEM_SEG_INITIAL 200 /* early segments */ 221 222 /* 223 * Adding a new span to an arena requires two segment structures: one to 224 * represent the span, and one to represent the free segment it contains. 225 */ 226 #define VMEM_SEGS_PER_SPAN_CREATE 2 227 228 /* 229 * Allocating a piece of an existing segment requires 0-2 segment structures 230 * depending on how much of the segment we're allocating. 231 * 232 * To allocate the entire segment, no new segment structures are needed; we 233 * simply move the existing segment structure from the freelist to the 234 * allocation hash table. 235 * 236 * To allocate a piece from the left or right end of the segment, we must 237 * split the segment into two pieces (allocated part and remainder), so we 238 * need one new segment structure to represent the remainder. 239 * 240 * To allocate from the middle of a segment, we need two new segment strucures 241 * to represent the remainders on either side of the allocated part. 242 */ 243 #define VMEM_SEGS_PER_EXACT_ALLOC 0 244 #define VMEM_SEGS_PER_LEFT_ALLOC 1 245 #define VMEM_SEGS_PER_RIGHT_ALLOC 1 246 #define VMEM_SEGS_PER_MIDDLE_ALLOC 2 247 248 /* 249 * vmem_populate() preallocates segment structures for vmem to do its work. 250 * It must preallocate enough for the worst case, which is when we must import 251 * a new span and then allocate from the middle of it. 252 */ 253 #define VMEM_SEGS_PER_ALLOC_MAX \ 254 (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC) 255 256 /* 257 * The segment structures themselves are allocated from vmem_seg_arena, so 258 * we have a recursion problem when vmem_seg_arena needs to populate itself. 259 * We address this by working out the maximum number of segment structures 260 * this act will require, and multiplying by the maximum number of threads 261 * that we'll allow to do it simultaneously. 262 * 263 * The worst-case segment consumption to populate vmem_seg_arena is as 264 * follows (depicted as a stack trace to indicate why events are occurring): 265 * 266 * (In order to lower the fragmentation in the heap_arena, we specify a 267 * minimum import size for the vmem_metadata_arena which is the same size 268 * as the kmem_va quantum cache allocations. This causes the worst-case 269 * allocation from the vmem_metadata_arena to be 3 segments.) 270 * 271 * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc) 272 * segkmem_alloc(vmem_metadata_arena) 273 * vmem_alloc(vmem_metadata_arena) -> 3 segs (span create + left alloc) 274 * vmem_alloc(heap_arena) -> 1 seg (left alloc) 275 * page_create() 276 * hat_memload() 277 * kmem_cache_alloc() 278 * kmem_slab_create() 279 * vmem_alloc(hat_memload_arena) -> 2 segs (span create + exact alloc) 280 * segkmem_alloc(heap_arena) 281 * vmem_alloc(heap_arena) -> 1 seg (left alloc) 282 * page_create() 283 * hat_memload() -> (hat layer won't recurse further) 284 * 285 * The worst-case consumption for each arena is 3 segment structures. 286 * Of course, a 3-seg reserve could easily be blown by multiple threads. 287 * Therefore, we serialize all allocations from vmem_seg_arena (which is OK 288 * because they're rare). We cannot allow a non-blocking allocation to get 289 * tied up behind a blocking allocation, however, so we use separate locks 290 * for VM_SLEEP and VM_NOSLEEP allocations. Similarly, VM_PUSHPAGE allocations 291 * must not block behind ordinary VM_SLEEPs. In addition, if the system is 292 * panicking then we must keep enough resources for panic_thread to do its 293 * work. Thus we have at most four threads trying to allocate from 294 * vmem_seg_arena, and each thread consumes at most three segment structures, 295 * so we must maintain a 12-seg reserve. 296 */ 297 #define VMEM_POPULATE_RESERVE 12 298 299 /* 300 * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures 301 * so that it can satisfy the worst-case allocation *and* participate in 302 * worst-case allocation from vmem_seg_arena. 303 */ 304 #define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX) 305 306 static vmem_t vmem0[VMEM_INITIAL]; 307 static vmem_t *vmem_populator[VMEM_INITIAL]; 308 static uint32_t vmem_id; 309 static uint32_t vmem_populators; 310 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL]; 311 static vmem_seg_t *vmem_segfree; 312 static kmutex_t vmem_list_lock; 313 static kmutex_t vmem_segfree_lock; 314 static kmutex_t vmem_sleep_lock; 315 static kmutex_t vmem_nosleep_lock; 316 static kmutex_t vmem_pushpage_lock; 317 static kmutex_t vmem_panic_lock; 318 static vmem_t *vmem_list; 319 static vmem_t *vmem_metadata_arena; 320 static vmem_t *vmem_seg_arena; 321 static vmem_t *vmem_hash_arena; 322 static vmem_t *vmem_vmem_arena; 323 static long vmem_update_interval = 15; /* vmem_update() every 15 seconds */ 324 uint32_t vmem_mtbf; /* mean time between failures [default: off] */ 325 size_t vmem_seg_size = sizeof (vmem_seg_t); 326 327 static vmem_kstat_t vmem_kstat_template = { 328 { "mem_inuse", KSTAT_DATA_UINT64 }, 329 { "mem_import", KSTAT_DATA_UINT64 }, 330 { "mem_total", KSTAT_DATA_UINT64 }, 331 { "vmem_source", KSTAT_DATA_UINT32 }, 332 { "alloc", KSTAT_DATA_UINT64 }, 333 { "free", KSTAT_DATA_UINT64 }, 334 { "wait", KSTAT_DATA_UINT64 }, 335 { "fail", KSTAT_DATA_UINT64 }, 336 { "lookup", KSTAT_DATA_UINT64 }, 337 { "search", KSTAT_DATA_UINT64 }, 338 { "populate_wait", KSTAT_DATA_UINT64 }, 339 { "populate_fail", KSTAT_DATA_UINT64 }, 340 { "contains", KSTAT_DATA_UINT64 }, 341 { "contains_search", KSTAT_DATA_UINT64 }, 342 }; 343 344 /* 345 * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k'). 346 */ 347 #define VMEM_INSERT(vprev, vsp, type) \ 348 { \ 349 vmem_seg_t *vnext = (vprev)->vs_##type##next; \ 350 (vsp)->vs_##type##next = (vnext); \ 351 (vsp)->vs_##type##prev = (vprev); \ 352 (vprev)->vs_##type##next = (vsp); \ 353 (vnext)->vs_##type##prev = (vsp); \ 354 } 355 356 #define VMEM_DELETE(vsp, type) \ 357 { \ 358 vmem_seg_t *vprev = (vsp)->vs_##type##prev; \ 359 vmem_seg_t *vnext = (vsp)->vs_##type##next; \ 360 (vprev)->vs_##type##next = (vnext); \ 361 (vnext)->vs_##type##prev = (vprev); \ 362 } 363 364 /* 365 * Get a vmem_seg_t from the global segfree list. 366 */ 367 static vmem_seg_t * 368 vmem_getseg_global(void) 369 { 370 vmem_seg_t *vsp; 371 372 mutex_enter(&vmem_segfree_lock); 373 if ((vsp = vmem_segfree) != NULL) 374 vmem_segfree = vsp->vs_knext; 375 mutex_exit(&vmem_segfree_lock); 376 377 return (vsp); 378 } 379 380 /* 381 * Put a vmem_seg_t on the global segfree list. 382 */ 383 static void 384 vmem_putseg_global(vmem_seg_t *vsp) 385 { 386 mutex_enter(&vmem_segfree_lock); 387 vsp->vs_knext = vmem_segfree; 388 vmem_segfree = vsp; 389 mutex_exit(&vmem_segfree_lock); 390 } 391 392 /* 393 * Get a vmem_seg_t from vmp's segfree list. 394 */ 395 static vmem_seg_t * 396 vmem_getseg(vmem_t *vmp) 397 { 398 vmem_seg_t *vsp; 399 400 ASSERT(vmp->vm_nsegfree > 0); 401 402 vsp = vmp->vm_segfree; 403 vmp->vm_segfree = vsp->vs_knext; 404 vmp->vm_nsegfree--; 405 406 return (vsp); 407 } 408 409 /* 410 * Put a vmem_seg_t on vmp's segfree list. 411 */ 412 static void 413 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp) 414 { 415 vsp->vs_knext = vmp->vm_segfree; 416 vmp->vm_segfree = vsp; 417 vmp->vm_nsegfree++; 418 } 419 420 /* 421 * Add vsp to the appropriate freelist. 422 */ 423 static void 424 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp) 425 { 426 vmem_seg_t *vprev; 427 428 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); 429 430 vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1]; 431 vsp->vs_type = VMEM_FREE; 432 vmp->vm_freemap |= VS_SIZE(vprev); 433 VMEM_INSERT(vprev, vsp, k); 434 435 cv_broadcast(&vmp->vm_cv); 436 } 437 438 /* 439 * Take vsp from the freelist. 440 */ 441 static void 442 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp) 443 { 444 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); 445 ASSERT(vsp->vs_type == VMEM_FREE); 446 447 if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) { 448 /* 449 * The segments on both sides of 'vsp' are freelist heads, 450 * so taking vsp leaves the freelist at vsp->vs_kprev empty. 451 */ 452 ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev)); 453 vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev); 454 } 455 VMEM_DELETE(vsp, k); 456 } 457 458 /* 459 * Add vsp to the allocated-segment hash table and update kstats. 460 */ 461 static void 462 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp) 463 { 464 vmem_seg_t **bucket; 465 466 vsp->vs_type = VMEM_ALLOC; 467 bucket = VMEM_HASH(vmp, vsp->vs_start); 468 vsp->vs_knext = *bucket; 469 *bucket = vsp; 470 471 if (vmem_seg_size == sizeof (vmem_seg_t)) { 472 vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack, 473 VMEM_STACK_DEPTH); 474 vsp->vs_thread = curthread; 475 vsp->vs_timestamp = gethrtime(); 476 } else { 477 vsp->vs_depth = 0; 478 } 479 480 vmp->vm_kstat.vk_alloc.value.ui64++; 481 vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp); 482 } 483 484 /* 485 * Remove vsp from the allocated-segment hash table and update kstats. 486 */ 487 static vmem_seg_t * 488 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size) 489 { 490 vmem_seg_t *vsp, **prev_vspp; 491 492 prev_vspp = VMEM_HASH(vmp, addr); 493 while ((vsp = *prev_vspp) != NULL) { 494 if (vsp->vs_start == addr) { 495 *prev_vspp = vsp->vs_knext; 496 break; 497 } 498 vmp->vm_kstat.vk_lookup.value.ui64++; 499 prev_vspp = &vsp->vs_knext; 500 } 501 502 if (vsp == NULL) 503 panic("vmem_hash_delete(%p, %lx, %lu): bad free", 504 (void *)vmp, addr, size); 505 if (VS_SIZE(vsp) != size) 506 panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)", 507 (void *)vmp, addr, size, VS_SIZE(vsp)); 508 509 vmp->vm_kstat.vk_free.value.ui64++; 510 vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size; 511 512 return (vsp); 513 } 514 515 /* 516 * Create a segment spanning the range [start, end) and add it to the arena. 517 */ 518 static vmem_seg_t * 519 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end) 520 { 521 vmem_seg_t *newseg = vmem_getseg(vmp); 522 523 newseg->vs_start = start; 524 newseg->vs_end = end; 525 newseg->vs_type = 0; 526 newseg->vs_import = 0; 527 528 VMEM_INSERT(vprev, newseg, a); 529 530 return (newseg); 531 } 532 533 /* 534 * Remove segment vsp from the arena. 535 */ 536 static void 537 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp) 538 { 539 ASSERT(vsp->vs_type != VMEM_ROTOR); 540 VMEM_DELETE(vsp, a); 541 542 vmem_putseg(vmp, vsp); 543 } 544 545 /* 546 * Add the span [vaddr, vaddr + size) to vmp and update kstats. 547 */ 548 static vmem_seg_t * 549 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import) 550 { 551 vmem_seg_t *newseg, *span; 552 uintptr_t start = (uintptr_t)vaddr; 553 uintptr_t end = start + size; 554 555 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 556 557 if ((start | end) & (vmp->vm_quantum - 1)) 558 panic("vmem_span_create(%p, %p, %lu): misaligned", 559 (void *)vmp, vaddr, size); 560 561 span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end); 562 span->vs_type = VMEM_SPAN; 563 span->vs_import = import; 564 VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k); 565 566 newseg = vmem_seg_create(vmp, span, start, end); 567 vmem_freelist_insert(vmp, newseg); 568 569 if (import) 570 vmp->vm_kstat.vk_mem_import.value.ui64 += size; 571 vmp->vm_kstat.vk_mem_total.value.ui64 += size; 572 573 return (newseg); 574 } 575 576 /* 577 * Remove span vsp from vmp and update kstats. 578 */ 579 static void 580 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp) 581 { 582 vmem_seg_t *span = vsp->vs_aprev; 583 size_t size = VS_SIZE(vsp); 584 585 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 586 ASSERT(span->vs_type == VMEM_SPAN); 587 588 if (span->vs_import) 589 vmp->vm_kstat.vk_mem_import.value.ui64 -= size; 590 vmp->vm_kstat.vk_mem_total.value.ui64 -= size; 591 592 VMEM_DELETE(span, k); 593 594 vmem_seg_destroy(vmp, vsp); 595 vmem_seg_destroy(vmp, span); 596 } 597 598 /* 599 * Allocate the subrange [addr, addr + size) from segment vsp. 600 * If there are leftovers on either side, place them on the freelist. 601 * Returns a pointer to the segment representing [addr, addr + size). 602 */ 603 static vmem_seg_t * 604 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size) 605 { 606 uintptr_t vs_start = vsp->vs_start; 607 uintptr_t vs_end = vsp->vs_end; 608 size_t vs_size = vs_end - vs_start; 609 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); 610 uintptr_t addr_end = addr + realsize; 611 612 ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0); 613 ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0); 614 ASSERT(vsp->vs_type == VMEM_FREE); 615 ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1); 616 ASSERT(addr - 1 <= addr_end - 1); 617 618 /* 619 * If we're allocating from the start of the segment, and the 620 * remainder will be on the same freelist, we can save quite 621 * a bit of work. 622 */ 623 if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) { 624 ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); 625 vsp->vs_start = addr_end; 626 vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size); 627 vmem_hash_insert(vmp, vsp); 628 return (vsp); 629 } 630 631 vmem_freelist_delete(vmp, vsp); 632 633 if (vs_end != addr_end) 634 vmem_freelist_insert(vmp, 635 vmem_seg_create(vmp, vsp, addr_end, vs_end)); 636 637 if (vs_start != addr) 638 vmem_freelist_insert(vmp, 639 vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr)); 640 641 vsp->vs_start = addr; 642 vsp->vs_end = addr + size; 643 644 vmem_hash_insert(vmp, vsp); 645 return (vsp); 646 } 647 648 /* 649 * Returns 1 if we are populating, 0 otherwise. 650 * Call it if we want to prevent recursion from HAT. 651 */ 652 int 653 vmem_is_populator() 654 { 655 return (mutex_owner(&vmem_sleep_lock) == curthread || 656 mutex_owner(&vmem_nosleep_lock) == curthread || 657 mutex_owner(&vmem_pushpage_lock) == curthread || 658 mutex_owner(&vmem_panic_lock) == curthread); 659 } 660 661 /* 662 * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures. 663 */ 664 static int 665 vmem_populate(vmem_t *vmp, int vmflag) 666 { 667 char *p; 668 vmem_seg_t *vsp; 669 ssize_t nseg; 670 size_t size; 671 kmutex_t *lp; 672 int i; 673 674 while (vmp->vm_nsegfree < VMEM_MINFREE && 675 (vsp = vmem_getseg_global()) != NULL) 676 vmem_putseg(vmp, vsp); 677 678 if (vmp->vm_nsegfree >= VMEM_MINFREE) 679 return (1); 680 681 /* 682 * If we're already populating, tap the reserve. 683 */ 684 if (vmem_is_populator()) { 685 ASSERT(vmp->vm_cflags & VMC_POPULATOR); 686 return (1); 687 } 688 689 mutex_exit(&vmp->vm_lock); 690 691 if (panic_thread == curthread) 692 lp = &vmem_panic_lock; 693 else if (vmflag & VM_NOSLEEP) 694 lp = &vmem_nosleep_lock; 695 else if (vmflag & VM_PUSHPAGE) 696 lp = &vmem_pushpage_lock; 697 else 698 lp = &vmem_sleep_lock; 699 700 mutex_enter(lp); 701 702 nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE; 703 size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum); 704 nseg = size / vmem_seg_size; 705 706 /* 707 * The following vmem_alloc() may need to populate vmem_seg_arena 708 * and all the things it imports from. When doing so, it will tap 709 * each arena's reserve to prevent recursion (see the block comment 710 * above the definition of VMEM_POPULATE_RESERVE). 711 */ 712 p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS); 713 if (p == NULL) { 714 mutex_exit(lp); 715 mutex_enter(&vmp->vm_lock); 716 vmp->vm_kstat.vk_populate_fail.value.ui64++; 717 return (0); 718 } 719 720 /* 721 * Restock the arenas that may have been depleted during population. 722 */ 723 for (i = 0; i < vmem_populators; i++) { 724 mutex_enter(&vmem_populator[i]->vm_lock); 725 while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE) 726 vmem_putseg(vmem_populator[i], 727 (vmem_seg_t *)(p + --nseg * vmem_seg_size)); 728 mutex_exit(&vmem_populator[i]->vm_lock); 729 } 730 731 mutex_exit(lp); 732 mutex_enter(&vmp->vm_lock); 733 734 /* 735 * Now take our own segments. 736 */ 737 ASSERT(nseg >= VMEM_MINFREE); 738 while (vmp->vm_nsegfree < VMEM_MINFREE) 739 vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size)); 740 741 /* 742 * Give the remainder to charity. 743 */ 744 while (nseg > 0) 745 vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size)); 746 747 return (1); 748 } 749 750 /* 751 * Advance a walker from its previous position to 'afterme'. 752 * Note: may drop and reacquire vmp->vm_lock. 753 */ 754 static void 755 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme) 756 { 757 vmem_seg_t *vprev = walker->vs_aprev; 758 vmem_seg_t *vnext = walker->vs_anext; 759 vmem_seg_t *vsp = NULL; 760 761 VMEM_DELETE(walker, a); 762 763 if (afterme != NULL) 764 VMEM_INSERT(afterme, walker, a); 765 766 /* 767 * The walker segment's presence may have prevented its neighbors 768 * from coalescing. If so, coalesce them now. 769 */ 770 if (vprev->vs_type == VMEM_FREE) { 771 if (vnext->vs_type == VMEM_FREE) { 772 ASSERT(vprev->vs_end == vnext->vs_start); 773 vmem_freelist_delete(vmp, vnext); 774 vmem_freelist_delete(vmp, vprev); 775 vprev->vs_end = vnext->vs_end; 776 vmem_freelist_insert(vmp, vprev); 777 vmem_seg_destroy(vmp, vnext); 778 } 779 vsp = vprev; 780 } else if (vnext->vs_type == VMEM_FREE) { 781 vsp = vnext; 782 } 783 784 /* 785 * vsp could represent a complete imported span, 786 * in which case we must return it to the source. 787 */ 788 if (vsp != NULL && vsp->vs_aprev->vs_import && 789 vmp->vm_source_free != NULL && 790 vsp->vs_aprev->vs_type == VMEM_SPAN && 791 vsp->vs_anext->vs_type == VMEM_SPAN) { 792 void *vaddr = (void *)vsp->vs_start; 793 size_t size = VS_SIZE(vsp); 794 ASSERT(size == VS_SIZE(vsp->vs_aprev)); 795 vmem_freelist_delete(vmp, vsp); 796 vmem_span_destroy(vmp, vsp); 797 mutex_exit(&vmp->vm_lock); 798 vmp->vm_source_free(vmp->vm_source, vaddr, size); 799 mutex_enter(&vmp->vm_lock); 800 } 801 } 802 803 /* 804 * VM_NEXTFIT allocations deliberately cycle through all virtual addresses 805 * in an arena, so that we avoid reusing addresses for as long as possible. 806 * This helps to catch used-after-freed bugs. It's also the perfect policy 807 * for allocating things like process IDs, where we want to cycle through 808 * all values in order. 809 */ 810 static void * 811 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag) 812 { 813 vmem_seg_t *vsp, *rotor; 814 uintptr_t addr; 815 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); 816 size_t vs_size; 817 818 mutex_enter(&vmp->vm_lock); 819 820 if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) { 821 mutex_exit(&vmp->vm_lock); 822 return (NULL); 823 } 824 825 /* 826 * The common case is that the segment right after the rotor is free, 827 * and large enough that extracting 'size' bytes won't change which 828 * freelist it's on. In this case we can avoid a *lot* of work. 829 * Instead of the normal vmem_seg_alloc(), we just advance the start 830 * address of the victim segment. Instead of moving the rotor, we 831 * create the new segment structure *behind the rotor*, which has 832 * the same effect. And finally, we know we don't have to coalesce 833 * the rotor's neighbors because the new segment lies between them. 834 */ 835 rotor = &vmp->vm_rotor; 836 vsp = rotor->vs_anext; 837 if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize && 838 P2SAMEHIGHBIT(vs_size, vs_size - realsize)) { 839 ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); 840 addr = vsp->vs_start; 841 vsp->vs_start = addr + realsize; 842 vmem_hash_insert(vmp, 843 vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size)); 844 mutex_exit(&vmp->vm_lock); 845 return ((void *)addr); 846 } 847 848 /* 849 * Starting at the rotor, look for a segment large enough to 850 * satisfy the allocation. 851 */ 852 for (;;) { 853 vmp->vm_kstat.vk_search.value.ui64++; 854 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) 855 break; 856 vsp = vsp->vs_anext; 857 if (vsp == rotor) { 858 /* 859 * We've come full circle. One possibility is that the 860 * there's actually enough space, but the rotor itself 861 * is preventing the allocation from succeeding because 862 * it's sitting between two free segments. Therefore, 863 * we advance the rotor and see if that liberates a 864 * suitable segment. 865 */ 866 vmem_advance(vmp, rotor, rotor->vs_anext); 867 vsp = rotor->vs_aprev; 868 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) 869 break; 870 /* 871 * If there's a lower arena we can import from, or it's 872 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it. 873 * Otherwise, wait until another thread frees something. 874 */ 875 if (vmp->vm_source_alloc != NULL || 876 (vmflag & VM_NOSLEEP)) { 877 mutex_exit(&vmp->vm_lock); 878 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 879 0, 0, NULL, NULL, vmflag & VM_KMFLAGS)); 880 } 881 vmp->vm_kstat.vk_wait.value.ui64++; 882 cv_wait(&vmp->vm_cv, &vmp->vm_lock); 883 vsp = rotor->vs_anext; 884 } 885 } 886 887 /* 888 * We found a segment. Extract enough space to satisfy the allocation. 889 */ 890 addr = vsp->vs_start; 891 vsp = vmem_seg_alloc(vmp, vsp, addr, size); 892 ASSERT(vsp->vs_type == VMEM_ALLOC && 893 vsp->vs_start == addr && vsp->vs_end == addr + size); 894 895 /* 896 * Advance the rotor to right after the newly-allocated segment. 897 * That's where the next VM_NEXTFIT allocation will begin searching. 898 */ 899 vmem_advance(vmp, rotor, vsp); 900 mutex_exit(&vmp->vm_lock); 901 return ((void *)addr); 902 } 903 904 /* 905 * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its 906 * freelist. If size is not a power-of-2, it can return a false-negative. 907 * 908 * Used to decide if a newly imported span is superfluous after re-acquiring 909 * the arena lock. 910 */ 911 static int 912 vmem_canalloc(vmem_t *vmp, size_t size) 913 { 914 int hb; 915 int flist = 0; 916 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 917 918 if ((size & (size - 1)) == 0) 919 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 920 else if ((hb = highbit(size)) < VMEM_FREELISTS) 921 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 922 923 return (flist); 924 } 925 926 /* 927 * Allocate size bytes at offset phase from an align boundary such that the 928 * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr) 929 * that does not straddle a nocross-aligned boundary. 930 */ 931 void * 932 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase, 933 size_t nocross, void *minaddr, void *maxaddr, int vmflag) 934 { 935 vmem_seg_t *vsp; 936 vmem_seg_t *vbest = NULL; 937 uintptr_t addr, taddr, start, end; 938 uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum; 939 void *vaddr, *xvaddr = NULL; 940 size_t xsize; 941 int hb, flist, resv; 942 uint32_t mtbf; 943 944 if ((align | phase | nocross) & (vmp->vm_quantum - 1)) 945 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 946 "parameters not vm_quantum aligned", 947 (void *)vmp, size, align_arg, phase, nocross, 948 minaddr, maxaddr, vmflag); 949 950 if (nocross != 0 && 951 (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) 952 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 953 "overconstrained allocation", 954 (void *)vmp, size, align_arg, phase, nocross, 955 minaddr, maxaddr, vmflag); 956 957 if (phase >= align || (align & (align - 1)) != 0 || 958 (nocross & (nocross - 1)) != 0) 959 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 960 "parameters inconsistent or invalid", 961 (void *)vmp, size, align_arg, phase, nocross, 962 minaddr, maxaddr, vmflag); 963 964 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && 965 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) 966 return (NULL); 967 968 mutex_enter(&vmp->vm_lock); 969 for (;;) { 970 if (vmp->vm_nsegfree < VMEM_MINFREE && 971 !vmem_populate(vmp, vmflag)) 972 break; 973 do_alloc: 974 /* 975 * highbit() returns the highest bit + 1, which is exactly 976 * what we want: we want to search the first freelist whose 977 * members are *definitely* large enough to satisfy our 978 * allocation. However, there are certain cases in which we 979 * want to look at the next-smallest freelist (which *might* 980 * be able to satisfy the allocation): 981 * 982 * (1) The size is exactly a power of 2, in which case 983 * the smaller freelist is always big enough; 984 * 985 * (2) All other freelists are empty; 986 * 987 * (3) We're in the highest possible freelist, which is 988 * always empty (e.g. the 4GB freelist on 32-bit systems); 989 * 990 * (4) We're doing a best-fit or first-fit allocation. 991 */ 992 if ((size & (size - 1)) == 0) { 993 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 994 } else { 995 hb = highbit(size); 996 if ((vmp->vm_freemap >> hb) == 0 || 997 hb == VMEM_FREELISTS || 998 (vmflag & (VM_BESTFIT | VM_FIRSTFIT))) 999 hb--; 1000 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 1001 } 1002 1003 for (vbest = NULL, vsp = (flist == 0) ? NULL : 1004 vmp->vm_freelist[flist - 1].vs_knext; 1005 vsp != NULL; vsp = vsp->vs_knext) { 1006 vmp->vm_kstat.vk_search.value.ui64++; 1007 if (vsp->vs_start == 0) { 1008 /* 1009 * We're moving up to a larger freelist, 1010 * so if we've already found a candidate, 1011 * the fit can't possibly get any better. 1012 */ 1013 if (vbest != NULL) 1014 break; 1015 /* 1016 * Find the next non-empty freelist. 1017 */ 1018 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1019 VS_SIZE(vsp))); 1020 if (flist-- == 0) 1021 break; 1022 vsp = (vmem_seg_t *)&vmp->vm_freelist[flist]; 1023 ASSERT(vsp->vs_knext->vs_type == VMEM_FREE); 1024 continue; 1025 } 1026 if (vsp->vs_end - 1 < (uintptr_t)minaddr) 1027 continue; 1028 if (vsp->vs_start > (uintptr_t)maxaddr - 1) 1029 continue; 1030 start = MAX(vsp->vs_start, (uintptr_t)minaddr); 1031 end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1; 1032 taddr = P2PHASEUP(start, align, phase); 1033 if (P2BOUNDARY(taddr, size, nocross)) 1034 taddr += 1035 P2ROUNDUP(P2NPHASE(taddr, nocross), align); 1036 if ((taddr - start) + size > end - start || 1037 (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest))) 1038 continue; 1039 vbest = vsp; 1040 addr = taddr; 1041 if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size) 1042 break; 1043 } 1044 if (vbest != NULL) 1045 break; 1046 ASSERT(xvaddr == NULL); 1047 if (size == 0) 1048 panic("vmem_xalloc(): size == 0"); 1049 if (vmp->vm_source_alloc != NULL && nocross == 0 && 1050 minaddr == NULL && maxaddr == NULL) { 1051 size_t aneeded, asize; 1052 size_t aquantum = MAX(vmp->vm_quantum, 1053 vmp->vm_source->vm_quantum); 1054 size_t aphase = phase; 1055 if ((align > aquantum) && 1056 !(vmp->vm_cflags & VMC_XALIGN)) { 1057 aphase = (P2PHASE(phase, aquantum) != 0) ? 1058 align - vmp->vm_quantum : align - aquantum; 1059 ASSERT(aphase >= phase); 1060 } 1061 aneeded = MAX(size + aphase, vmp->vm_min_import); 1062 asize = P2ROUNDUP(aneeded, aquantum); 1063 1064 /* 1065 * Determine how many segment structures we'll consume. 1066 * The calculation must be precise because if we're 1067 * here on behalf of vmem_populate(), we are taking 1068 * segments from a very limited reserve. 1069 */ 1070 if (size == asize && !(vmp->vm_cflags & VMC_XALLOC)) 1071 resv = VMEM_SEGS_PER_SPAN_CREATE + 1072 VMEM_SEGS_PER_EXACT_ALLOC; 1073 else if (phase == 0 && 1074 align <= vmp->vm_source->vm_quantum) 1075 resv = VMEM_SEGS_PER_SPAN_CREATE + 1076 VMEM_SEGS_PER_LEFT_ALLOC; 1077 else 1078 resv = VMEM_SEGS_PER_ALLOC_MAX; 1079 1080 ASSERT(vmp->vm_nsegfree >= resv); 1081 vmp->vm_nsegfree -= resv; /* reserve our segs */ 1082 mutex_exit(&vmp->vm_lock); 1083 if (vmp->vm_cflags & VMC_XALLOC) { 1084 size_t oasize = asize; 1085 vaddr = ((vmem_ximport_t *) 1086 vmp->vm_source_alloc)(vmp->vm_source, 1087 &asize, align, vmflag & VM_KMFLAGS); 1088 ASSERT(asize >= oasize); 1089 ASSERT(P2PHASE(asize, 1090 vmp->vm_source->vm_quantum) == 0); 1091 ASSERT(!(vmp->vm_cflags & VMC_XALIGN) || 1092 IS_P2ALIGNED(vaddr, align)); 1093 } else { 1094 vaddr = vmp->vm_source_alloc(vmp->vm_source, 1095 asize, vmflag & VM_KMFLAGS); 1096 } 1097 mutex_enter(&vmp->vm_lock); 1098 vmp->vm_nsegfree += resv; /* claim reservation */ 1099 aneeded = size + align - vmp->vm_quantum; 1100 aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum); 1101 if (vaddr != NULL) { 1102 /* 1103 * Since we dropped the vmem lock while 1104 * calling the import function, other 1105 * threads could have imported space 1106 * and made our import unnecessary. In 1107 * order to save space, we return 1108 * excess imports immediately. 1109 */ 1110 if (asize > aneeded && 1111 vmp->vm_source_free != NULL && 1112 vmem_canalloc(vmp, aneeded)) { 1113 ASSERT(resv >= 1114 VMEM_SEGS_PER_MIDDLE_ALLOC); 1115 xvaddr = vaddr; 1116 xsize = asize; 1117 goto do_alloc; 1118 } 1119 vbest = vmem_span_create(vmp, vaddr, asize, 1); 1120 addr = P2PHASEUP(vbest->vs_start, align, phase); 1121 break; 1122 } else if (vmem_canalloc(vmp, aneeded)) { 1123 /* 1124 * Our import failed, but another thread 1125 * added sufficient free memory to the arena 1126 * to satisfy our request. Go back and 1127 * grab it. 1128 */ 1129 ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC); 1130 goto do_alloc; 1131 } 1132 } 1133 1134 /* 1135 * If the requestor chooses to fail the allocation attempt 1136 * rather than reap wait and retry - get out of the loop. 1137 */ 1138 if (vmflag & VM_ABORT) 1139 break; 1140 mutex_exit(&vmp->vm_lock); 1141 if (vmp->vm_cflags & VMC_IDENTIFIER) 1142 kmem_reap_idspace(); 1143 else 1144 kmem_reap(); 1145 mutex_enter(&vmp->vm_lock); 1146 if (vmflag & VM_NOSLEEP) 1147 break; 1148 vmp->vm_kstat.vk_wait.value.ui64++; 1149 cv_wait(&vmp->vm_cv, &vmp->vm_lock); 1150 } 1151 if (vbest != NULL) { 1152 ASSERT(vbest->vs_type == VMEM_FREE); 1153 ASSERT(vbest->vs_knext != vbest); 1154 /* re-position to end of buffer */ 1155 if (vmflag & VM_ENDALLOC) { 1156 addr += ((vbest->vs_end - (addr + size)) / align) * 1157 align; 1158 } 1159 (void) vmem_seg_alloc(vmp, vbest, addr, size); 1160 mutex_exit(&vmp->vm_lock); 1161 if (xvaddr) 1162 vmp->vm_source_free(vmp->vm_source, xvaddr, xsize); 1163 ASSERT(P2PHASE(addr, align) == phase); 1164 ASSERT(!P2BOUNDARY(addr, size, nocross)); 1165 ASSERT(addr >= (uintptr_t)minaddr); 1166 ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1); 1167 return ((void *)addr); 1168 } 1169 vmp->vm_kstat.vk_fail.value.ui64++; 1170 mutex_exit(&vmp->vm_lock); 1171 if (vmflag & VM_PANIC) 1172 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 1173 "cannot satisfy mandatory allocation", 1174 (void *)vmp, size, align_arg, phase, nocross, 1175 minaddr, maxaddr, vmflag); 1176 ASSERT(xvaddr == NULL); 1177 return (NULL); 1178 } 1179 1180 /* 1181 * Free the segment [vaddr, vaddr + size), where vaddr was a constrained 1182 * allocation. vmem_xalloc() and vmem_xfree() must always be paired because 1183 * both routines bypass the quantum caches. 1184 */ 1185 void 1186 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size) 1187 { 1188 vmem_seg_t *vsp, *vnext, *vprev; 1189 1190 mutex_enter(&vmp->vm_lock); 1191 1192 vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size); 1193 vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum); 1194 1195 /* 1196 * Attempt to coalesce with the next segment. 1197 */ 1198 vnext = vsp->vs_anext; 1199 if (vnext->vs_type == VMEM_FREE) { 1200 ASSERT(vsp->vs_end == vnext->vs_start); 1201 vmem_freelist_delete(vmp, vnext); 1202 vsp->vs_end = vnext->vs_end; 1203 vmem_seg_destroy(vmp, vnext); 1204 } 1205 1206 /* 1207 * Attempt to coalesce with the previous segment. 1208 */ 1209 vprev = vsp->vs_aprev; 1210 if (vprev->vs_type == VMEM_FREE) { 1211 ASSERT(vprev->vs_end == vsp->vs_start); 1212 vmem_freelist_delete(vmp, vprev); 1213 vprev->vs_end = vsp->vs_end; 1214 vmem_seg_destroy(vmp, vsp); 1215 vsp = vprev; 1216 } 1217 1218 /* 1219 * If the entire span is free, return it to the source. 1220 */ 1221 if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL && 1222 vsp->vs_aprev->vs_type == VMEM_SPAN && 1223 vsp->vs_anext->vs_type == VMEM_SPAN) { 1224 vaddr = (void *)vsp->vs_start; 1225 size = VS_SIZE(vsp); 1226 ASSERT(size == VS_SIZE(vsp->vs_aprev)); 1227 vmem_span_destroy(vmp, vsp); 1228 mutex_exit(&vmp->vm_lock); 1229 vmp->vm_source_free(vmp->vm_source, vaddr, size); 1230 } else { 1231 vmem_freelist_insert(vmp, vsp); 1232 mutex_exit(&vmp->vm_lock); 1233 } 1234 } 1235 1236 /* 1237 * Allocate size bytes from arena vmp. Returns the allocated address 1238 * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP, 1239 * and may also specify best-fit, first-fit, or next-fit allocation policy 1240 * instead of the default instant-fit policy. VM_SLEEP allocations are 1241 * guaranteed to succeed. 1242 */ 1243 void * 1244 vmem_alloc(vmem_t *vmp, size_t size, int vmflag) 1245 { 1246 vmem_seg_t *vsp; 1247 uintptr_t addr; 1248 int hb; 1249 int flist = 0; 1250 uint32_t mtbf; 1251 1252 if (size - 1 < vmp->vm_qcache_max) 1253 return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >> 1254 vmp->vm_qshift], vmflag & VM_KMFLAGS)); 1255 1256 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && 1257 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) 1258 return (NULL); 1259 1260 if (vmflag & VM_NEXTFIT) 1261 return (vmem_nextfit_alloc(vmp, size, vmflag)); 1262 1263 if (vmflag & (VM_BESTFIT | VM_FIRSTFIT)) 1264 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0, 1265 NULL, NULL, vmflag)); 1266 1267 /* 1268 * Unconstrained instant-fit allocation from the segment list. 1269 */ 1270 mutex_enter(&vmp->vm_lock); 1271 1272 if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) { 1273 if ((size & (size - 1)) == 0) 1274 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 1275 else if ((hb = highbit(size)) < VMEM_FREELISTS) 1276 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 1277 } 1278 1279 if (flist-- == 0) { 1280 mutex_exit(&vmp->vm_lock); 1281 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 1282 0, 0, NULL, NULL, vmflag)); 1283 } 1284 1285 ASSERT(size <= (1UL << flist)); 1286 vsp = vmp->vm_freelist[flist].vs_knext; 1287 addr = vsp->vs_start; 1288 if (vmflag & VM_ENDALLOC) { 1289 addr += vsp->vs_end - (addr + size); 1290 } 1291 (void) vmem_seg_alloc(vmp, vsp, addr, size); 1292 mutex_exit(&vmp->vm_lock); 1293 return ((void *)addr); 1294 } 1295 1296 /* 1297 * Free the segment [vaddr, vaddr + size). 1298 */ 1299 void 1300 vmem_free(vmem_t *vmp, void *vaddr, size_t size) 1301 { 1302 if (size - 1 < vmp->vm_qcache_max) 1303 kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift], 1304 vaddr); 1305 else 1306 vmem_xfree(vmp, vaddr, size); 1307 } 1308 1309 /* 1310 * Determine whether arena vmp contains the segment [vaddr, vaddr + size). 1311 */ 1312 int 1313 vmem_contains(vmem_t *vmp, void *vaddr, size_t size) 1314 { 1315 uintptr_t start = (uintptr_t)vaddr; 1316 uintptr_t end = start + size; 1317 vmem_seg_t *vsp; 1318 vmem_seg_t *seg0 = &vmp->vm_seg0; 1319 1320 mutex_enter(&vmp->vm_lock); 1321 vmp->vm_kstat.vk_contains.value.ui64++; 1322 for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) { 1323 vmp->vm_kstat.vk_contains_search.value.ui64++; 1324 ASSERT(vsp->vs_type == VMEM_SPAN); 1325 if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1) 1326 break; 1327 } 1328 mutex_exit(&vmp->vm_lock); 1329 return (vsp != seg0); 1330 } 1331 1332 /* 1333 * Add the span [vaddr, vaddr + size) to arena vmp. 1334 */ 1335 void * 1336 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag) 1337 { 1338 if (vaddr == NULL || size == 0) 1339 panic("vmem_add(%p, %p, %lu): bad arguments", 1340 (void *)vmp, vaddr, size); 1341 1342 ASSERT(!vmem_contains(vmp, vaddr, size)); 1343 1344 mutex_enter(&vmp->vm_lock); 1345 if (vmem_populate(vmp, vmflag)) 1346 (void) vmem_span_create(vmp, vaddr, size, 0); 1347 else 1348 vaddr = NULL; 1349 mutex_exit(&vmp->vm_lock); 1350 return (vaddr); 1351 } 1352 1353 /* 1354 * Walk the vmp arena, applying func to each segment matching typemask. 1355 * If VMEM_REENTRANT is specified, the arena lock is dropped across each 1356 * call to func(); otherwise, it is held for the duration of vmem_walk() 1357 * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks 1358 * are *not* necessarily consistent, so they may only be used when a hint 1359 * is adequate. 1360 */ 1361 void 1362 vmem_walk(vmem_t *vmp, int typemask, 1363 void (*func)(void *, void *, size_t), void *arg) 1364 { 1365 vmem_seg_t *vsp; 1366 vmem_seg_t *seg0 = &vmp->vm_seg0; 1367 vmem_seg_t walker; 1368 1369 if (typemask & VMEM_WALKER) 1370 return; 1371 1372 bzero(&walker, sizeof (walker)); 1373 walker.vs_type = VMEM_WALKER; 1374 1375 mutex_enter(&vmp->vm_lock); 1376 VMEM_INSERT(seg0, &walker, a); 1377 for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) { 1378 if (vsp->vs_type & typemask) { 1379 void *start = (void *)vsp->vs_start; 1380 size_t size = VS_SIZE(vsp); 1381 if (typemask & VMEM_REENTRANT) { 1382 vmem_advance(vmp, &walker, vsp); 1383 mutex_exit(&vmp->vm_lock); 1384 func(arg, start, size); 1385 mutex_enter(&vmp->vm_lock); 1386 vsp = &walker; 1387 } else { 1388 func(arg, start, size); 1389 } 1390 } 1391 } 1392 vmem_advance(vmp, &walker, NULL); 1393 mutex_exit(&vmp->vm_lock); 1394 } 1395 1396 /* 1397 * Return the total amount of memory whose type matches typemask. Thus: 1398 * 1399 * typemask VMEM_ALLOC yields total memory allocated (in use). 1400 * typemask VMEM_FREE yields total memory free (available). 1401 * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size. 1402 */ 1403 size_t 1404 vmem_size(vmem_t *vmp, int typemask) 1405 { 1406 uint64_t size = 0; 1407 1408 if (typemask & VMEM_ALLOC) 1409 size += vmp->vm_kstat.vk_mem_inuse.value.ui64; 1410 if (typemask & VMEM_FREE) 1411 size += vmp->vm_kstat.vk_mem_total.value.ui64 - 1412 vmp->vm_kstat.vk_mem_inuse.value.ui64; 1413 return ((size_t)size); 1414 } 1415 1416 /* 1417 * Create an arena called name whose initial span is [base, base + size). 1418 * The arena's natural unit of currency is quantum, so vmem_alloc() 1419 * guarantees quantum-aligned results. The arena may import new spans 1420 * by invoking afunc() on source, and may return those spans by invoking 1421 * ffunc() on source. To make small allocations fast and scalable, 1422 * the arena offers high-performance caching for each integer multiple 1423 * of quantum up to qcache_max. 1424 */ 1425 static vmem_t * 1426 vmem_create_common(const char *name, void *base, size_t size, size_t quantum, 1427 void *(*afunc)(vmem_t *, size_t, int), 1428 void (*ffunc)(vmem_t *, void *, size_t), 1429 vmem_t *source, size_t qcache_max, int vmflag) 1430 { 1431 int i; 1432 size_t nqcache; 1433 vmem_t *vmp, *cur, **vmpp; 1434 vmem_seg_t *vsp; 1435 vmem_freelist_t *vfp; 1436 uint32_t id = atomic_add_32_nv(&vmem_id, 1); 1437 1438 if (vmem_vmem_arena != NULL) { 1439 vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t), 1440 vmflag & VM_KMFLAGS); 1441 } else { 1442 ASSERT(id <= VMEM_INITIAL); 1443 vmp = &vmem0[id - 1]; 1444 } 1445 1446 /* An identifier arena must inherit from another identifier arena */ 1447 ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) == 1448 (vmflag & VMC_IDENTIFIER))); 1449 1450 if (vmp == NULL) 1451 return (NULL); 1452 bzero(vmp, sizeof (vmem_t)); 1453 1454 (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name); 1455 mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL); 1456 cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL); 1457 vmp->vm_cflags = vmflag; 1458 vmflag &= VM_KMFLAGS; 1459 1460 vmp->vm_quantum = quantum; 1461 vmp->vm_qshift = highbit(quantum) - 1; 1462 nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX); 1463 1464 for (i = 0; i <= VMEM_FREELISTS; i++) { 1465 vfp = &vmp->vm_freelist[i]; 1466 vfp->vs_end = 1UL << i; 1467 vfp->vs_knext = (vmem_seg_t *)(vfp + 1); 1468 vfp->vs_kprev = (vmem_seg_t *)(vfp - 1); 1469 } 1470 1471 vmp->vm_freelist[0].vs_kprev = NULL; 1472 vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL; 1473 vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0; 1474 vmp->vm_hash_table = vmp->vm_hash0; 1475 vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1; 1476 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); 1477 1478 vsp = &vmp->vm_seg0; 1479 vsp->vs_anext = vsp; 1480 vsp->vs_aprev = vsp; 1481 vsp->vs_knext = vsp; 1482 vsp->vs_kprev = vsp; 1483 vsp->vs_type = VMEM_SPAN; 1484 1485 vsp = &vmp->vm_rotor; 1486 vsp->vs_type = VMEM_ROTOR; 1487 VMEM_INSERT(&vmp->vm_seg0, vsp, a); 1488 1489 bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t)); 1490 1491 vmp->vm_id = id; 1492 if (source != NULL) 1493 vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id; 1494 vmp->vm_source = source; 1495 vmp->vm_source_alloc = afunc; 1496 vmp->vm_source_free = ffunc; 1497 1498 /* 1499 * Some arenas (like vmem_metadata and kmem_metadata) cannot 1500 * use quantum caching to lower fragmentation. Instead, we 1501 * increase their imports, giving a similar effect. 1502 */ 1503 if (vmp->vm_cflags & VMC_NO_QCACHE) { 1504 vmp->vm_min_import = 1505 VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift); 1506 nqcache = 0; 1507 } 1508 1509 if (nqcache != 0) { 1510 ASSERT(!(vmflag & VM_NOSLEEP)); 1511 vmp->vm_qcache_max = nqcache << vmp->vm_qshift; 1512 for (i = 0; i < nqcache; i++) { 1513 char buf[VMEM_NAMELEN + 21]; 1514 (void) sprintf(buf, "%s_%lu", vmp->vm_name, 1515 (i + 1) * quantum); 1516 vmp->vm_qcache[i] = kmem_cache_create(buf, 1517 (i + 1) * quantum, quantum, NULL, NULL, NULL, 1518 NULL, vmp, KMC_QCACHE | KMC_NOTOUCH); 1519 } 1520 } 1521 1522 if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name, 1523 "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) / 1524 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) { 1525 vmp->vm_ksp->ks_data = &vmp->vm_kstat; 1526 kstat_install(vmp->vm_ksp); 1527 } 1528 1529 mutex_enter(&vmem_list_lock); 1530 vmpp = &vmem_list; 1531 while ((cur = *vmpp) != NULL) 1532 vmpp = &cur->vm_next; 1533 *vmpp = vmp; 1534 mutex_exit(&vmem_list_lock); 1535 1536 if (vmp->vm_cflags & VMC_POPULATOR) { 1537 ASSERT(vmem_populators < VMEM_INITIAL); 1538 vmem_populator[atomic_add_32_nv(&vmem_populators, 1) - 1] = vmp; 1539 mutex_enter(&vmp->vm_lock); 1540 (void) vmem_populate(vmp, vmflag | VM_PANIC); 1541 mutex_exit(&vmp->vm_lock); 1542 } 1543 1544 if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) { 1545 vmem_destroy(vmp); 1546 return (NULL); 1547 } 1548 1549 return (vmp); 1550 } 1551 1552 vmem_t * 1553 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum, 1554 vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source, 1555 size_t qcache_max, int vmflag) 1556 { 1557 ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC))); 1558 vmflag &= ~(VMC_POPULATOR | VMC_XALLOC); 1559 1560 return (vmem_create_common(name, base, size, quantum, 1561 (vmem_alloc_t *)afunc, ffunc, source, qcache_max, 1562 vmflag | VMC_XALLOC)); 1563 } 1564 1565 vmem_t * 1566 vmem_create(const char *name, void *base, size_t size, size_t quantum, 1567 vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source, 1568 size_t qcache_max, int vmflag) 1569 { 1570 ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN))); 1571 vmflag &= ~(VMC_XALLOC | VMC_XALIGN); 1572 1573 return (vmem_create_common(name, base, size, quantum, 1574 afunc, ffunc, source, qcache_max, vmflag)); 1575 } 1576 1577 /* 1578 * Destroy arena vmp. 1579 */ 1580 void 1581 vmem_destroy(vmem_t *vmp) 1582 { 1583 vmem_t *cur, **vmpp; 1584 vmem_seg_t *seg0 = &vmp->vm_seg0; 1585 vmem_seg_t *vsp, *anext; 1586 size_t leaked; 1587 int i; 1588 1589 mutex_enter(&vmem_list_lock); 1590 vmpp = &vmem_list; 1591 while ((cur = *vmpp) != vmp) 1592 vmpp = &cur->vm_next; 1593 *vmpp = vmp->vm_next; 1594 mutex_exit(&vmem_list_lock); 1595 1596 for (i = 0; i < VMEM_NQCACHE_MAX; i++) 1597 if (vmp->vm_qcache[i]) 1598 kmem_cache_destroy(vmp->vm_qcache[i]); 1599 1600 leaked = vmem_size(vmp, VMEM_ALLOC); 1601 if (leaked != 0) 1602 cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s", 1603 vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ? 1604 "identifiers" : "bytes"); 1605 1606 if (vmp->vm_hash_table != vmp->vm_hash0) 1607 vmem_free(vmem_hash_arena, vmp->vm_hash_table, 1608 (vmp->vm_hash_mask + 1) * sizeof (void *)); 1609 1610 /* 1611 * Give back the segment structures for anything that's left in the 1612 * arena, e.g. the primary spans and their free segments. 1613 */ 1614 VMEM_DELETE(&vmp->vm_rotor, a); 1615 for (vsp = seg0->vs_anext; vsp != seg0; vsp = anext) { 1616 anext = vsp->vs_anext; 1617 vmem_putseg_global(vsp); 1618 } 1619 1620 while (vmp->vm_nsegfree > 0) 1621 vmem_putseg_global(vmem_getseg(vmp)); 1622 1623 kstat_delete(vmp->vm_ksp); 1624 1625 mutex_destroy(&vmp->vm_lock); 1626 cv_destroy(&vmp->vm_cv); 1627 vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t)); 1628 } 1629 1630 /* 1631 * Resize vmp's hash table to keep the average lookup depth near 1.0. 1632 */ 1633 static void 1634 vmem_hash_rescale(vmem_t *vmp) 1635 { 1636 vmem_seg_t **old_table, **new_table, *vsp; 1637 size_t old_size, new_size, h, nseg; 1638 1639 nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 - 1640 vmp->vm_kstat.vk_free.value.ui64); 1641 1642 new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2)); 1643 old_size = vmp->vm_hash_mask + 1; 1644 1645 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 1646 return; 1647 1648 new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *), 1649 VM_NOSLEEP); 1650 if (new_table == NULL) 1651 return; 1652 bzero(new_table, new_size * sizeof (void *)); 1653 1654 mutex_enter(&vmp->vm_lock); 1655 1656 old_size = vmp->vm_hash_mask + 1; 1657 old_table = vmp->vm_hash_table; 1658 1659 vmp->vm_hash_mask = new_size - 1; 1660 vmp->vm_hash_table = new_table; 1661 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); 1662 1663 for (h = 0; h < old_size; h++) { 1664 vsp = old_table[h]; 1665 while (vsp != NULL) { 1666 uintptr_t addr = vsp->vs_start; 1667 vmem_seg_t *next_vsp = vsp->vs_knext; 1668 vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr); 1669 vsp->vs_knext = *hash_bucket; 1670 *hash_bucket = vsp; 1671 vsp = next_vsp; 1672 } 1673 } 1674 1675 mutex_exit(&vmp->vm_lock); 1676 1677 if (old_table != vmp->vm_hash0) 1678 vmem_free(vmem_hash_arena, old_table, 1679 old_size * sizeof (void *)); 1680 } 1681 1682 /* 1683 * Perform periodic maintenance on all vmem arenas. 1684 */ 1685 void 1686 vmem_update(void *dummy) 1687 { 1688 vmem_t *vmp; 1689 1690 mutex_enter(&vmem_list_lock); 1691 for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) { 1692 /* 1693 * If threads are waiting for resources, wake them up 1694 * periodically so they can issue another kmem_reap() 1695 * to reclaim resources cached by the slab allocator. 1696 */ 1697 cv_broadcast(&vmp->vm_cv); 1698 1699 /* 1700 * Rescale the hash table to keep the hash chains short. 1701 */ 1702 vmem_hash_rescale(vmp); 1703 } 1704 mutex_exit(&vmem_list_lock); 1705 1706 (void) timeout(vmem_update, dummy, vmem_update_interval * hz); 1707 } 1708 1709 /* 1710 * Prepare vmem for use. 1711 */ 1712 vmem_t * 1713 vmem_init(const char *heap_name, 1714 void *heap_start, size_t heap_size, size_t heap_quantum, 1715 void *(*heap_alloc)(vmem_t *, size_t, int), 1716 void (*heap_free)(vmem_t *, void *, size_t)) 1717 { 1718 uint32_t id; 1719 int nseg = VMEM_SEG_INITIAL; 1720 vmem_t *heap; 1721 1722 while (--nseg >= 0) 1723 vmem_putseg_global(&vmem_seg0[nseg]); 1724 1725 heap = vmem_create(heap_name, 1726 heap_start, heap_size, heap_quantum, 1727 NULL, NULL, NULL, 0, 1728 VM_SLEEP | VMC_POPULATOR); 1729 1730 vmem_metadata_arena = vmem_create("vmem_metadata", 1731 NULL, 0, heap_quantum, 1732 vmem_alloc, vmem_free, heap, 8 * heap_quantum, 1733 VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE); 1734 1735 vmem_seg_arena = vmem_create("vmem_seg", 1736 NULL, 0, heap_quantum, 1737 heap_alloc, heap_free, vmem_metadata_arena, 0, 1738 VM_SLEEP | VMC_POPULATOR); 1739 1740 vmem_hash_arena = vmem_create("vmem_hash", 1741 NULL, 0, 8, 1742 heap_alloc, heap_free, vmem_metadata_arena, 0, 1743 VM_SLEEP); 1744 1745 vmem_vmem_arena = vmem_create("vmem_vmem", 1746 vmem0, sizeof (vmem0), 1, 1747 heap_alloc, heap_free, vmem_metadata_arena, 0, 1748 VM_SLEEP); 1749 1750 for (id = 0; id < vmem_id; id++) 1751 (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t), 1752 1, 0, 0, &vmem0[id], &vmem0[id + 1], 1753 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1754 1755 return (heap); 1756 } 1757