1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 */ 29 30 /* 31 * Big Theory Statement for the virtual memory allocator. 32 * 33 * For a more complete description of the main ideas, see: 34 * 35 * Jeff Bonwick and Jonathan Adams, 36 * 37 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 38 * Arbitrary Resources. 39 * 40 * Proceedings of the 2001 Usenix Conference. 41 * Available as http://www.usenix.org/event/usenix01/bonwick.html 42 * 43 * 44 * 1. General Concepts 45 * ------------------- 46 * 47 * 1.1 Overview 48 * ------------ 49 * We divide the kernel address space into a number of logically distinct 50 * pieces, or *arenas*: text, data, heap, stack, and so on. Within these 51 * arenas we often subdivide further; for example, we use heap addresses 52 * not only for the kernel heap (kmem_alloc() space), but also for DVMA, 53 * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip. 54 * The kernel address space, therefore, is most accurately described as 55 * a tree of arenas in which each node of the tree *imports* some subset 56 * of its parent. The virtual memory allocator manages these arenas and 57 * supports their natural hierarchical structure. 58 * 59 * 1.2 Arenas 60 * ---------- 61 * An arena is nothing more than a set of integers. These integers most 62 * commonly represent virtual addresses, but in fact they can represent 63 * anything at all. For example, we could use an arena containing the 64 * integers minpid through maxpid to allocate process IDs. vmem_create() 65 * and vmem_destroy() create and destroy vmem arenas. In order to 66 * differentiate between arenas used for adresses and arenas used for 67 * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create(). This 68 * prevents identifier exhaustion from being diagnosed as general memory 69 * failure. 70 * 71 * 1.3 Spans 72 * --------- 73 * We represent the integers in an arena as a collection of *spans*, or 74 * contiguous ranges of integers. For example, the kernel heap consists 75 * of just one span: [kernelheap, ekernelheap). Spans can be added to an 76 * arena in two ways: explicitly, by vmem_add(), or implicitly, by 77 * importing, as described in Section 1.5 below. 78 * 79 * 1.4 Segments 80 * ------------ 81 * Spans are subdivided into *segments*, each of which is either allocated 82 * or free. A segment, like a span, is a contiguous range of integers. 83 * Each allocated segment [addr, addr + size) represents exactly one 84 * vmem_alloc(size) that returned addr. Free segments represent the space 85 * between allocated segments. If two free segments are adjacent, we 86 * coalesce them into one larger segment; that is, if segments [a, b) and 87 * [b, c) are both free, we merge them into a single segment [a, c). 88 * The segments within a span are linked together in increasing-address order 89 * so we can easily determine whether coalescing is possible. 90 * 91 * Segments never cross span boundaries. When all segments within 92 * an imported span become free, we return the span to its source. 93 * 94 * 1.5 Imported Memory 95 * ------------------- 96 * As mentioned in the overview, some arenas are logical subsets of 97 * other arenas. For example, kmem_va_arena (a virtual address cache 98 * that satisfies most kmem_slab_create() requests) is just a subset 99 * of heap_arena (the kernel heap) that provides caching for the most 100 * common slab sizes. When kmem_va_arena runs out of virtual memory, 101 * it *imports* more from the heap; we say that heap_arena is the 102 * *vmem source* for kmem_va_arena. vmem_create() allows you to 103 * specify any existing vmem arena as the source for your new arena. 104 * Topologically, since every arena is a child of at most one source, 105 * the set of all arenas forms a collection of trees. 106 * 107 * 1.6 Constrained Allocations 108 * --------------------------- 109 * Some vmem clients are quite picky about the kind of address they want. 110 * For example, the DVMA code may need an address that is at a particular 111 * phase with respect to some alignment (to get good cache coloring), or 112 * that lies within certain limits (the addressable range of a device), 113 * or that doesn't cross some boundary (a DMA counter restriction) -- 114 * or all of the above. vmem_xalloc() allows the client to specify any 115 * or all of these constraints. 116 * 117 * 1.7 The Vmem Quantum 118 * -------------------- 119 * Every arena has a notion of 'quantum', specified at vmem_create() time, 120 * that defines the arena's minimum unit of currency. Most commonly the 121 * quantum is either 1 or PAGESIZE, but any power of 2 is legal. 122 * All vmem allocations are guaranteed to be quantum-aligned. 123 * 124 * 1.8 Quantum Caching 125 * ------------------- 126 * A vmem arena may be so hot (frequently used) that the scalability of vmem 127 * allocation is a significant concern. We address this by allowing the most 128 * common allocation sizes to be serviced by the kernel memory allocator, 129 * which provides low-latency per-cpu caching. The qcache_max argument to 130 * vmem_create() specifies the largest allocation size to cache. 131 * 132 * 1.9 Relationship to Kernel Memory Allocator 133 * ------------------------------------------- 134 * Every kmem cache has a vmem arena as its slab supplier. The kernel memory 135 * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs. 136 * 137 * 138 * 2. Implementation 139 * ----------------- 140 * 141 * 2.1 Segment lists and markers 142 * ----------------------------- 143 * The segment structure (vmem_seg_t) contains two doubly-linked lists. 144 * 145 * The arena list (vs_anext/vs_aprev) links all segments in the arena. 146 * In addition to the allocated and free segments, the arena contains 147 * special marker segments at span boundaries. Span markers simplify 148 * coalescing and importing logic by making it easy to tell both when 149 * we're at a span boundary (so we don't coalesce across it), and when 150 * a span is completely free (its neighbors will both be span markers). 151 * 152 * Imported spans will have vs_import set. 153 * 154 * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type: 155 * (1) for allocated segments, vs_knext is the hash chain linkage; 156 * (2) for free segments, vs_knext is the freelist linkage; 157 * (3) for span marker segments, vs_knext is the next span marker. 158 * 159 * 2.2 Allocation hashing 160 * ---------------------- 161 * We maintain a hash table of all allocated segments, hashed by address. 162 * This allows vmem_free() to discover the target segment in constant time. 163 * vmem_update() periodically resizes hash tables to keep hash chains short. 164 * 165 * 2.3 Freelist management 166 * ----------------------- 167 * We maintain power-of-2 freelists for free segments, i.e. free segments 168 * of size >= 2^n reside in vmp->vm_freelist[n]. To ensure constant-time 169 * allocation, vmem_xalloc() looks not in the first freelist that *might* 170 * satisfy the allocation, but in the first freelist that *definitely* 171 * satisfies the allocation (unless VM_BESTFIT is specified, or all larger 172 * freelists are empty). For example, a 1000-byte allocation will be 173 * satisfied not from the 512..1023-byte freelist, whose members *might* 174 * contains a 1000-byte segment, but from a 1024-byte or larger freelist, 175 * the first member of which will *definitely* satisfy the allocation. 176 * This ensures that vmem_xalloc() works in constant time. 177 * 178 * We maintain a bit map to determine quickly which freelists are non-empty. 179 * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty. 180 * 181 * The different freelists are linked together into one large freelist, 182 * with the freelist heads serving as markers. Freelist markers simplify 183 * the maintenance of vm_freemap by making it easy to tell when we're taking 184 * the last member of a freelist (both of its neighbors will be markers). 185 * 186 * 2.4 Vmem Locking 187 * ---------------- 188 * For simplicity, all arena state is protected by a per-arena lock. 189 * For very hot arenas, use quantum caching for scalability. 190 * 191 * 2.5 Vmem Population 192 * ------------------- 193 * Any internal vmem routine that might need to allocate new segment 194 * structures must prepare in advance by calling vmem_populate(), which 195 * will preallocate enough vmem_seg_t's to get is through the entire 196 * operation without dropping the arena lock. 197 * 198 * 2.6 Auditing 199 * ------------ 200 * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well. 201 * Since virtual addresses cannot be scribbled on, there is no equivalent 202 * in vmem to redzone checking, deadbeef, or other kmem debugging features. 203 * Moreover, we do not audit frees because segment coalescing destroys the 204 * association between an address and its segment structure. Auditing is 205 * thus intended primarily to keep track of who's consuming the arena. 206 * Debugging support could certainly be extended in the future if it proves 207 * necessary, but we do so much live checking via the allocation hash table 208 * that even non-DEBUG systems get quite a bit of sanity checking already. 209 */ 210 211 #include <sys/vmem_impl.h> 212 #include <sys/kmem.h> 213 #include <sys/kstat.h> 214 #include <sys/param.h> 215 #include <sys/systm.h> 216 #include <sys/atomic.h> 217 #include <sys/bitmap.h> 218 #include <sys/sysmacros.h> 219 #include <sys/cmn_err.h> 220 #include <sys/debug.h> 221 #include <sys/panic.h> 222 223 #define VMEM_INITIAL 10 /* early vmem arenas */ 224 #define VMEM_SEG_INITIAL 200 /* early segments */ 225 226 /* 227 * Adding a new span to an arena requires two segment structures: one to 228 * represent the span, and one to represent the free segment it contains. 229 */ 230 #define VMEM_SEGS_PER_SPAN_CREATE 2 231 232 /* 233 * Allocating a piece of an existing segment requires 0-2 segment structures 234 * depending on how much of the segment we're allocating. 235 * 236 * To allocate the entire segment, no new segment structures are needed; we 237 * simply move the existing segment structure from the freelist to the 238 * allocation hash table. 239 * 240 * To allocate a piece from the left or right end of the segment, we must 241 * split the segment into two pieces (allocated part and remainder), so we 242 * need one new segment structure to represent the remainder. 243 * 244 * To allocate from the middle of a segment, we need two new segment strucures 245 * to represent the remainders on either side of the allocated part. 246 */ 247 #define VMEM_SEGS_PER_EXACT_ALLOC 0 248 #define VMEM_SEGS_PER_LEFT_ALLOC 1 249 #define VMEM_SEGS_PER_RIGHT_ALLOC 1 250 #define VMEM_SEGS_PER_MIDDLE_ALLOC 2 251 252 /* 253 * vmem_populate() preallocates segment structures for vmem to do its work. 254 * It must preallocate enough for the worst case, which is when we must import 255 * a new span and then allocate from the middle of it. 256 */ 257 #define VMEM_SEGS_PER_ALLOC_MAX \ 258 (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC) 259 260 /* 261 * The segment structures themselves are allocated from vmem_seg_arena, so 262 * we have a recursion problem when vmem_seg_arena needs to populate itself. 263 * We address this by working out the maximum number of segment structures 264 * this act will require, and multiplying by the maximum number of threads 265 * that we'll allow to do it simultaneously. 266 * 267 * The worst-case segment consumption to populate vmem_seg_arena is as 268 * follows (depicted as a stack trace to indicate why events are occurring): 269 * 270 * (In order to lower the fragmentation in the heap_arena, we specify a 271 * minimum import size for the vmem_metadata_arena which is the same size 272 * as the kmem_va quantum cache allocations. This causes the worst-case 273 * allocation from the vmem_metadata_arena to be 3 segments.) 274 * 275 * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc) 276 * segkmem_alloc(vmem_metadata_arena) 277 * vmem_alloc(vmem_metadata_arena) -> 3 segs (span create + left alloc) 278 * vmem_alloc(heap_arena) -> 1 seg (left alloc) 279 * page_create() 280 * hat_memload() 281 * kmem_cache_alloc() 282 * kmem_slab_create() 283 * vmem_alloc(hat_memload_arena) -> 2 segs (span create + exact alloc) 284 * segkmem_alloc(heap_arena) 285 * vmem_alloc(heap_arena) -> 1 seg (left alloc) 286 * page_create() 287 * hat_memload() -> (hat layer won't recurse further) 288 * 289 * The worst-case consumption for each arena is 3 segment structures. 290 * Of course, a 3-seg reserve could easily be blown by multiple threads. 291 * Therefore, we serialize all allocations from vmem_seg_arena (which is OK 292 * because they're rare). We cannot allow a non-blocking allocation to get 293 * tied up behind a blocking allocation, however, so we use separate locks 294 * for VM_SLEEP and VM_NOSLEEP allocations. Similarly, VM_PUSHPAGE allocations 295 * must not block behind ordinary VM_SLEEPs. In addition, if the system is 296 * panicking then we must keep enough resources for panic_thread to do its 297 * work. Thus we have at most four threads trying to allocate from 298 * vmem_seg_arena, and each thread consumes at most three segment structures, 299 * so we must maintain a 12-seg reserve. 300 */ 301 #define VMEM_POPULATE_RESERVE 12 302 303 /* 304 * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures 305 * so that it can satisfy the worst-case allocation *and* participate in 306 * worst-case allocation from vmem_seg_arena. 307 */ 308 #define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX) 309 310 static vmem_t vmem0[VMEM_INITIAL]; 311 static vmem_t *vmem_populator[VMEM_INITIAL]; 312 static uint32_t vmem_id; 313 static uint32_t vmem_populators; 314 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL]; 315 static vmem_seg_t *vmem_segfree; 316 static kmutex_t vmem_list_lock; 317 static kmutex_t vmem_segfree_lock; 318 static kmutex_t vmem_sleep_lock; 319 static kmutex_t vmem_nosleep_lock; 320 static kmutex_t vmem_pushpage_lock; 321 static kmutex_t vmem_panic_lock; 322 static vmem_t *vmem_list; 323 static vmem_t *vmem_metadata_arena; 324 static vmem_t *vmem_seg_arena; 325 static vmem_t *vmem_hash_arena; 326 static vmem_t *vmem_vmem_arena; 327 static long vmem_update_interval = 15; /* vmem_update() every 15 seconds */ 328 uint32_t vmem_mtbf; /* mean time between failures [default: off] */ 329 size_t vmem_seg_size = sizeof (vmem_seg_t); 330 331 static vmem_kstat_t vmem_kstat_template = { 332 { "mem_inuse", KSTAT_DATA_UINT64 }, 333 { "mem_import", KSTAT_DATA_UINT64 }, 334 { "mem_total", KSTAT_DATA_UINT64 }, 335 { "vmem_source", KSTAT_DATA_UINT32 }, 336 { "alloc", KSTAT_DATA_UINT64 }, 337 { "free", KSTAT_DATA_UINT64 }, 338 { "wait", KSTAT_DATA_UINT64 }, 339 { "fail", KSTAT_DATA_UINT64 }, 340 { "lookup", KSTAT_DATA_UINT64 }, 341 { "search", KSTAT_DATA_UINT64 }, 342 { "populate_wait", KSTAT_DATA_UINT64 }, 343 { "populate_fail", KSTAT_DATA_UINT64 }, 344 { "contains", KSTAT_DATA_UINT64 }, 345 { "contains_search", KSTAT_DATA_UINT64 }, 346 }; 347 348 /* 349 * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k'). 350 */ 351 #define VMEM_INSERT(vprev, vsp, type) \ 352 { \ 353 vmem_seg_t *vnext = (vprev)->vs_##type##next; \ 354 (vsp)->vs_##type##next = (vnext); \ 355 (vsp)->vs_##type##prev = (vprev); \ 356 (vprev)->vs_##type##next = (vsp); \ 357 (vnext)->vs_##type##prev = (vsp); \ 358 } 359 360 #define VMEM_DELETE(vsp, type) \ 361 { \ 362 vmem_seg_t *vprev = (vsp)->vs_##type##prev; \ 363 vmem_seg_t *vnext = (vsp)->vs_##type##next; \ 364 (vprev)->vs_##type##next = (vnext); \ 365 (vnext)->vs_##type##prev = (vprev); \ 366 } 367 368 /* 369 * Get a vmem_seg_t from the global segfree list. 370 */ 371 static vmem_seg_t * 372 vmem_getseg_global(void) 373 { 374 vmem_seg_t *vsp; 375 376 mutex_enter(&vmem_segfree_lock); 377 if ((vsp = vmem_segfree) != NULL) 378 vmem_segfree = vsp->vs_knext; 379 mutex_exit(&vmem_segfree_lock); 380 381 return (vsp); 382 } 383 384 /* 385 * Put a vmem_seg_t on the global segfree list. 386 */ 387 static void 388 vmem_putseg_global(vmem_seg_t *vsp) 389 { 390 mutex_enter(&vmem_segfree_lock); 391 vsp->vs_knext = vmem_segfree; 392 vmem_segfree = vsp; 393 mutex_exit(&vmem_segfree_lock); 394 } 395 396 /* 397 * Get a vmem_seg_t from vmp's segfree list. 398 */ 399 static vmem_seg_t * 400 vmem_getseg(vmem_t *vmp) 401 { 402 vmem_seg_t *vsp; 403 404 ASSERT(vmp->vm_nsegfree > 0); 405 406 vsp = vmp->vm_segfree; 407 vmp->vm_segfree = vsp->vs_knext; 408 vmp->vm_nsegfree--; 409 410 return (vsp); 411 } 412 413 /* 414 * Put a vmem_seg_t on vmp's segfree list. 415 */ 416 static void 417 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp) 418 { 419 vsp->vs_knext = vmp->vm_segfree; 420 vmp->vm_segfree = vsp; 421 vmp->vm_nsegfree++; 422 } 423 424 /* 425 * Add vsp to the appropriate freelist. 426 */ 427 static void 428 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp) 429 { 430 vmem_seg_t *vprev; 431 432 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); 433 434 vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1]; 435 vsp->vs_type = VMEM_FREE; 436 vmp->vm_freemap |= VS_SIZE(vprev); 437 VMEM_INSERT(vprev, vsp, k); 438 439 cv_broadcast(&vmp->vm_cv); 440 } 441 442 /* 443 * Take vsp from the freelist. 444 */ 445 static void 446 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp) 447 { 448 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); 449 ASSERT(vsp->vs_type == VMEM_FREE); 450 451 if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) { 452 /* 453 * The segments on both sides of 'vsp' are freelist heads, 454 * so taking vsp leaves the freelist at vsp->vs_kprev empty. 455 */ 456 ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev)); 457 vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev); 458 } 459 VMEM_DELETE(vsp, k); 460 } 461 462 /* 463 * Add vsp to the allocated-segment hash table and update kstats. 464 */ 465 static void 466 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp) 467 { 468 vmem_seg_t **bucket; 469 470 vsp->vs_type = VMEM_ALLOC; 471 bucket = VMEM_HASH(vmp, vsp->vs_start); 472 vsp->vs_knext = *bucket; 473 *bucket = vsp; 474 475 if (vmem_seg_size == sizeof (vmem_seg_t)) { 476 vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack, 477 VMEM_STACK_DEPTH); 478 vsp->vs_thread = curthread; 479 vsp->vs_timestamp = gethrtime(); 480 } else { 481 vsp->vs_depth = 0; 482 } 483 484 vmp->vm_kstat.vk_alloc.value.ui64++; 485 vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp); 486 } 487 488 /* 489 * Remove vsp from the allocated-segment hash table and update kstats. 490 */ 491 static vmem_seg_t * 492 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size) 493 { 494 vmem_seg_t *vsp, **prev_vspp; 495 496 prev_vspp = VMEM_HASH(vmp, addr); 497 while ((vsp = *prev_vspp) != NULL) { 498 if (vsp->vs_start == addr) { 499 *prev_vspp = vsp->vs_knext; 500 break; 501 } 502 vmp->vm_kstat.vk_lookup.value.ui64++; 503 prev_vspp = &vsp->vs_knext; 504 } 505 506 if (vsp == NULL) 507 panic("vmem_hash_delete(%p, %lx, %lu): bad free", 508 (void *)vmp, addr, size); 509 if (VS_SIZE(vsp) != size) 510 panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)", 511 (void *)vmp, addr, size, VS_SIZE(vsp)); 512 513 vmp->vm_kstat.vk_free.value.ui64++; 514 vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size; 515 516 return (vsp); 517 } 518 519 /* 520 * Create a segment spanning the range [start, end) and add it to the arena. 521 */ 522 static vmem_seg_t * 523 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end) 524 { 525 vmem_seg_t *newseg = vmem_getseg(vmp); 526 527 newseg->vs_start = start; 528 newseg->vs_end = end; 529 newseg->vs_type = 0; 530 newseg->vs_import = 0; 531 532 VMEM_INSERT(vprev, newseg, a); 533 534 return (newseg); 535 } 536 537 /* 538 * Remove segment vsp from the arena. 539 */ 540 static void 541 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp) 542 { 543 ASSERT(vsp->vs_type != VMEM_ROTOR); 544 VMEM_DELETE(vsp, a); 545 546 vmem_putseg(vmp, vsp); 547 } 548 549 /* 550 * Add the span [vaddr, vaddr + size) to vmp and update kstats. 551 */ 552 static vmem_seg_t * 553 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import) 554 { 555 vmem_seg_t *newseg, *span; 556 uintptr_t start = (uintptr_t)vaddr; 557 uintptr_t end = start + size; 558 559 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 560 561 if ((start | end) & (vmp->vm_quantum - 1)) 562 panic("vmem_span_create(%p, %p, %lu): misaligned", 563 (void *)vmp, vaddr, size); 564 565 span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end); 566 span->vs_type = VMEM_SPAN; 567 span->vs_import = import; 568 VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k); 569 570 newseg = vmem_seg_create(vmp, span, start, end); 571 vmem_freelist_insert(vmp, newseg); 572 573 if (import) 574 vmp->vm_kstat.vk_mem_import.value.ui64 += size; 575 vmp->vm_kstat.vk_mem_total.value.ui64 += size; 576 577 return (newseg); 578 } 579 580 /* 581 * Remove span vsp from vmp and update kstats. 582 */ 583 static void 584 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp) 585 { 586 vmem_seg_t *span = vsp->vs_aprev; 587 size_t size = VS_SIZE(vsp); 588 589 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 590 ASSERT(span->vs_type == VMEM_SPAN); 591 592 if (span->vs_import) 593 vmp->vm_kstat.vk_mem_import.value.ui64 -= size; 594 vmp->vm_kstat.vk_mem_total.value.ui64 -= size; 595 596 VMEM_DELETE(span, k); 597 598 vmem_seg_destroy(vmp, vsp); 599 vmem_seg_destroy(vmp, span); 600 } 601 602 /* 603 * Allocate the subrange [addr, addr + size) from segment vsp. 604 * If there are leftovers on either side, place them on the freelist. 605 * Returns a pointer to the segment representing [addr, addr + size). 606 */ 607 static vmem_seg_t * 608 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size) 609 { 610 uintptr_t vs_start = vsp->vs_start; 611 uintptr_t vs_end = vsp->vs_end; 612 size_t vs_size = vs_end - vs_start; 613 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); 614 uintptr_t addr_end = addr + realsize; 615 616 ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0); 617 ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0); 618 ASSERT(vsp->vs_type == VMEM_FREE); 619 ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1); 620 ASSERT(addr - 1 <= addr_end - 1); 621 622 /* 623 * If we're allocating from the start of the segment, and the 624 * remainder will be on the same freelist, we can save quite 625 * a bit of work. 626 */ 627 if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) { 628 ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); 629 vsp->vs_start = addr_end; 630 vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size); 631 vmem_hash_insert(vmp, vsp); 632 return (vsp); 633 } 634 635 vmem_freelist_delete(vmp, vsp); 636 637 if (vs_end != addr_end) 638 vmem_freelist_insert(vmp, 639 vmem_seg_create(vmp, vsp, addr_end, vs_end)); 640 641 if (vs_start != addr) 642 vmem_freelist_insert(vmp, 643 vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr)); 644 645 vsp->vs_start = addr; 646 vsp->vs_end = addr + size; 647 648 vmem_hash_insert(vmp, vsp); 649 return (vsp); 650 } 651 652 /* 653 * Returns 1 if we are populating, 0 otherwise. 654 * Call it if we want to prevent recursion from HAT. 655 */ 656 int 657 vmem_is_populator() 658 { 659 return (mutex_owner(&vmem_sleep_lock) == curthread || 660 mutex_owner(&vmem_nosleep_lock) == curthread || 661 mutex_owner(&vmem_pushpage_lock) == curthread || 662 mutex_owner(&vmem_panic_lock) == curthread); 663 } 664 665 /* 666 * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures. 667 */ 668 static int 669 vmem_populate(vmem_t *vmp, int vmflag) 670 { 671 char *p; 672 vmem_seg_t *vsp; 673 ssize_t nseg; 674 size_t size; 675 kmutex_t *lp; 676 int i; 677 678 while (vmp->vm_nsegfree < VMEM_MINFREE && 679 (vsp = vmem_getseg_global()) != NULL) 680 vmem_putseg(vmp, vsp); 681 682 if (vmp->vm_nsegfree >= VMEM_MINFREE) 683 return (1); 684 685 /* 686 * If we're already populating, tap the reserve. 687 */ 688 if (vmem_is_populator()) { 689 ASSERT(vmp->vm_cflags & VMC_POPULATOR); 690 return (1); 691 } 692 693 mutex_exit(&vmp->vm_lock); 694 695 if (panic_thread == curthread) 696 lp = &vmem_panic_lock; 697 else if (vmflag & VM_NOSLEEP) 698 lp = &vmem_nosleep_lock; 699 else if (vmflag & VM_PUSHPAGE) 700 lp = &vmem_pushpage_lock; 701 else 702 lp = &vmem_sleep_lock; 703 704 mutex_enter(lp); 705 706 nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE; 707 size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum); 708 nseg = size / vmem_seg_size; 709 710 /* 711 * The following vmem_alloc() may need to populate vmem_seg_arena 712 * and all the things it imports from. When doing so, it will tap 713 * each arena's reserve to prevent recursion (see the block comment 714 * above the definition of VMEM_POPULATE_RESERVE). 715 */ 716 p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS); 717 if (p == NULL) { 718 mutex_exit(lp); 719 mutex_enter(&vmp->vm_lock); 720 vmp->vm_kstat.vk_populate_fail.value.ui64++; 721 return (0); 722 } 723 724 /* 725 * Restock the arenas that may have been depleted during population. 726 */ 727 for (i = 0; i < vmem_populators; i++) { 728 mutex_enter(&vmem_populator[i]->vm_lock); 729 while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE) 730 vmem_putseg(vmem_populator[i], 731 (vmem_seg_t *)(p + --nseg * vmem_seg_size)); 732 mutex_exit(&vmem_populator[i]->vm_lock); 733 } 734 735 mutex_exit(lp); 736 mutex_enter(&vmp->vm_lock); 737 738 /* 739 * Now take our own segments. 740 */ 741 ASSERT(nseg >= VMEM_MINFREE); 742 while (vmp->vm_nsegfree < VMEM_MINFREE) 743 vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size)); 744 745 /* 746 * Give the remainder to charity. 747 */ 748 while (nseg > 0) 749 vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size)); 750 751 return (1); 752 } 753 754 /* 755 * Advance a walker from its previous position to 'afterme'. 756 * Note: may drop and reacquire vmp->vm_lock. 757 */ 758 static void 759 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme) 760 { 761 vmem_seg_t *vprev = walker->vs_aprev; 762 vmem_seg_t *vnext = walker->vs_anext; 763 vmem_seg_t *vsp = NULL; 764 765 VMEM_DELETE(walker, a); 766 767 if (afterme != NULL) 768 VMEM_INSERT(afterme, walker, a); 769 770 /* 771 * The walker segment's presence may have prevented its neighbors 772 * from coalescing. If so, coalesce them now. 773 */ 774 if (vprev->vs_type == VMEM_FREE) { 775 if (vnext->vs_type == VMEM_FREE) { 776 ASSERT(vprev->vs_end == vnext->vs_start); 777 vmem_freelist_delete(vmp, vnext); 778 vmem_freelist_delete(vmp, vprev); 779 vprev->vs_end = vnext->vs_end; 780 vmem_freelist_insert(vmp, vprev); 781 vmem_seg_destroy(vmp, vnext); 782 } 783 vsp = vprev; 784 } else if (vnext->vs_type == VMEM_FREE) { 785 vsp = vnext; 786 } 787 788 /* 789 * vsp could represent a complete imported span, 790 * in which case we must return it to the source. 791 */ 792 if (vsp != NULL && vsp->vs_aprev->vs_import && 793 vmp->vm_source_free != NULL && 794 vsp->vs_aprev->vs_type == VMEM_SPAN && 795 vsp->vs_anext->vs_type == VMEM_SPAN) { 796 void *vaddr = (void *)vsp->vs_start; 797 size_t size = VS_SIZE(vsp); 798 ASSERT(size == VS_SIZE(vsp->vs_aprev)); 799 vmem_freelist_delete(vmp, vsp); 800 vmem_span_destroy(vmp, vsp); 801 mutex_exit(&vmp->vm_lock); 802 vmp->vm_source_free(vmp->vm_source, vaddr, size); 803 mutex_enter(&vmp->vm_lock); 804 } 805 } 806 807 /* 808 * VM_NEXTFIT allocations deliberately cycle through all virtual addresses 809 * in an arena, so that we avoid reusing addresses for as long as possible. 810 * This helps to catch used-after-freed bugs. It's also the perfect policy 811 * for allocating things like process IDs, where we want to cycle through 812 * all values in order. 813 */ 814 static void * 815 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag) 816 { 817 vmem_seg_t *vsp, *rotor; 818 uintptr_t addr; 819 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); 820 size_t vs_size; 821 822 mutex_enter(&vmp->vm_lock); 823 824 if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) { 825 mutex_exit(&vmp->vm_lock); 826 return (NULL); 827 } 828 829 /* 830 * The common case is that the segment right after the rotor is free, 831 * and large enough that extracting 'size' bytes won't change which 832 * freelist it's on. In this case we can avoid a *lot* of work. 833 * Instead of the normal vmem_seg_alloc(), we just advance the start 834 * address of the victim segment. Instead of moving the rotor, we 835 * create the new segment structure *behind the rotor*, which has 836 * the same effect. And finally, we know we don't have to coalesce 837 * the rotor's neighbors because the new segment lies between them. 838 */ 839 rotor = &vmp->vm_rotor; 840 vsp = rotor->vs_anext; 841 if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize && 842 P2SAMEHIGHBIT(vs_size, vs_size - realsize)) { 843 ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); 844 addr = vsp->vs_start; 845 vsp->vs_start = addr + realsize; 846 vmem_hash_insert(vmp, 847 vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size)); 848 mutex_exit(&vmp->vm_lock); 849 return ((void *)addr); 850 } 851 852 /* 853 * Starting at the rotor, look for a segment large enough to 854 * satisfy the allocation. 855 */ 856 for (;;) { 857 vmp->vm_kstat.vk_search.value.ui64++; 858 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) 859 break; 860 vsp = vsp->vs_anext; 861 if (vsp == rotor) { 862 /* 863 * We've come full circle. One possibility is that the 864 * there's actually enough space, but the rotor itself 865 * is preventing the allocation from succeeding because 866 * it's sitting between two free segments. Therefore, 867 * we advance the rotor and see if that liberates a 868 * suitable segment. 869 */ 870 vmem_advance(vmp, rotor, rotor->vs_anext); 871 vsp = rotor->vs_aprev; 872 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) 873 break; 874 /* 875 * If there's a lower arena we can import from, or it's 876 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it. 877 * Otherwise, wait until another thread frees something. 878 */ 879 if (vmp->vm_source_alloc != NULL || 880 (vmflag & VM_NOSLEEP)) { 881 mutex_exit(&vmp->vm_lock); 882 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 883 0, 0, NULL, NULL, vmflag & VM_KMFLAGS)); 884 } 885 vmp->vm_kstat.vk_wait.value.ui64++; 886 cv_wait(&vmp->vm_cv, &vmp->vm_lock); 887 vsp = rotor->vs_anext; 888 } 889 } 890 891 /* 892 * We found a segment. Extract enough space to satisfy the allocation. 893 */ 894 addr = vsp->vs_start; 895 vsp = vmem_seg_alloc(vmp, vsp, addr, size); 896 ASSERT(vsp->vs_type == VMEM_ALLOC && 897 vsp->vs_start == addr && vsp->vs_end == addr + size); 898 899 /* 900 * Advance the rotor to right after the newly-allocated segment. 901 * That's where the next VM_NEXTFIT allocation will begin searching. 902 */ 903 vmem_advance(vmp, rotor, vsp); 904 mutex_exit(&vmp->vm_lock); 905 return ((void *)addr); 906 } 907 908 /* 909 * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its 910 * freelist. If size is not a power-of-2, it can return a false-negative. 911 * 912 * Used to decide if a newly imported span is superfluous after re-acquiring 913 * the arena lock. 914 */ 915 static int 916 vmem_canalloc(vmem_t *vmp, size_t size) 917 { 918 int hb; 919 int flist = 0; 920 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 921 922 if ((size & (size - 1)) == 0) 923 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 924 else if ((hb = highbit(size)) < VMEM_FREELISTS) 925 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 926 927 return (flist); 928 } 929 930 /* 931 * Allocate size bytes at offset phase from an align boundary such that the 932 * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr) 933 * that does not straddle a nocross-aligned boundary. 934 */ 935 void * 936 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase, 937 size_t nocross, void *minaddr, void *maxaddr, int vmflag) 938 { 939 vmem_seg_t *vsp; 940 vmem_seg_t *vbest = NULL; 941 uintptr_t addr, taddr, start, end; 942 uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum; 943 void *vaddr, *xvaddr = NULL; 944 size_t xsize; 945 int hb, flist, resv; 946 uint32_t mtbf; 947 948 if ((align | phase | nocross) & (vmp->vm_quantum - 1)) 949 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 950 "parameters not vm_quantum aligned", 951 (void *)vmp, size, align_arg, phase, nocross, 952 minaddr, maxaddr, vmflag); 953 954 if (nocross != 0 && 955 (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) 956 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 957 "overconstrained allocation", 958 (void *)vmp, size, align_arg, phase, nocross, 959 minaddr, maxaddr, vmflag); 960 961 if (phase >= align || (align & (align - 1)) != 0 || 962 (nocross & (nocross - 1)) != 0) 963 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 964 "parameters inconsistent or invalid", 965 (void *)vmp, size, align_arg, phase, nocross, 966 minaddr, maxaddr, vmflag); 967 968 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && 969 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) 970 return (NULL); 971 972 mutex_enter(&vmp->vm_lock); 973 for (;;) { 974 if (vmp->vm_nsegfree < VMEM_MINFREE && 975 !vmem_populate(vmp, vmflag)) 976 break; 977 do_alloc: 978 /* 979 * highbit() returns the highest bit + 1, which is exactly 980 * what we want: we want to search the first freelist whose 981 * members are *definitely* large enough to satisfy our 982 * allocation. However, there are certain cases in which we 983 * want to look at the next-smallest freelist (which *might* 984 * be able to satisfy the allocation): 985 * 986 * (1) The size is exactly a power of 2, in which case 987 * the smaller freelist is always big enough; 988 * 989 * (2) All other freelists are empty; 990 * 991 * (3) We're in the highest possible freelist, which is 992 * always empty (e.g. the 4GB freelist on 32-bit systems); 993 * 994 * (4) We're doing a best-fit or first-fit allocation. 995 */ 996 if ((size & (size - 1)) == 0) { 997 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 998 } else { 999 hb = highbit(size); 1000 if ((vmp->vm_freemap >> hb) == 0 || 1001 hb == VMEM_FREELISTS || 1002 (vmflag & (VM_BESTFIT | VM_FIRSTFIT))) 1003 hb--; 1004 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 1005 } 1006 1007 for (vbest = NULL, vsp = (flist == 0) ? NULL : 1008 vmp->vm_freelist[flist - 1].vs_knext; 1009 vsp != NULL; vsp = vsp->vs_knext) { 1010 vmp->vm_kstat.vk_search.value.ui64++; 1011 if (vsp->vs_start == 0) { 1012 /* 1013 * We're moving up to a larger freelist, 1014 * so if we've already found a candidate, 1015 * the fit can't possibly get any better. 1016 */ 1017 if (vbest != NULL) 1018 break; 1019 /* 1020 * Find the next non-empty freelist. 1021 */ 1022 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1023 VS_SIZE(vsp))); 1024 if (flist-- == 0) 1025 break; 1026 vsp = (vmem_seg_t *)&vmp->vm_freelist[flist]; 1027 ASSERT(vsp->vs_knext->vs_type == VMEM_FREE); 1028 continue; 1029 } 1030 if (vsp->vs_end - 1 < (uintptr_t)minaddr) 1031 continue; 1032 if (vsp->vs_start > (uintptr_t)maxaddr - 1) 1033 continue; 1034 start = MAX(vsp->vs_start, (uintptr_t)minaddr); 1035 end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1; 1036 taddr = P2PHASEUP(start, align, phase); 1037 if (P2BOUNDARY(taddr, size, nocross)) 1038 taddr += 1039 P2ROUNDUP(P2NPHASE(taddr, nocross), align); 1040 if ((taddr - start) + size > end - start || 1041 (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest))) 1042 continue; 1043 vbest = vsp; 1044 addr = taddr; 1045 if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size) 1046 break; 1047 } 1048 if (vbest != NULL) 1049 break; 1050 ASSERT(xvaddr == NULL); 1051 if (size == 0) 1052 panic("vmem_xalloc(): size == 0"); 1053 if (vmp->vm_source_alloc != NULL && nocross == 0 && 1054 minaddr == NULL && maxaddr == NULL) { 1055 size_t aneeded, asize; 1056 size_t aquantum = MAX(vmp->vm_quantum, 1057 vmp->vm_source->vm_quantum); 1058 size_t aphase = phase; 1059 if ((align > aquantum) && 1060 !(vmp->vm_cflags & VMC_XALIGN)) { 1061 aphase = (P2PHASE(phase, aquantum) != 0) ? 1062 align - vmp->vm_quantum : align - aquantum; 1063 ASSERT(aphase >= phase); 1064 } 1065 aneeded = MAX(size + aphase, vmp->vm_min_import); 1066 asize = P2ROUNDUP(aneeded, aquantum); 1067 1068 /* 1069 * Determine how many segment structures we'll consume. 1070 * The calculation must be precise because if we're 1071 * here on behalf of vmem_populate(), we are taking 1072 * segments from a very limited reserve. 1073 */ 1074 if (size == asize && !(vmp->vm_cflags & VMC_XALLOC)) 1075 resv = VMEM_SEGS_PER_SPAN_CREATE + 1076 VMEM_SEGS_PER_EXACT_ALLOC; 1077 else if (phase == 0 && 1078 align <= vmp->vm_source->vm_quantum) 1079 resv = VMEM_SEGS_PER_SPAN_CREATE + 1080 VMEM_SEGS_PER_LEFT_ALLOC; 1081 else 1082 resv = VMEM_SEGS_PER_ALLOC_MAX; 1083 1084 ASSERT(vmp->vm_nsegfree >= resv); 1085 vmp->vm_nsegfree -= resv; /* reserve our segs */ 1086 mutex_exit(&vmp->vm_lock); 1087 if (vmp->vm_cflags & VMC_XALLOC) { 1088 size_t oasize = asize; 1089 vaddr = ((vmem_ximport_t *) 1090 vmp->vm_source_alloc)(vmp->vm_source, 1091 &asize, align, vmflag & VM_KMFLAGS); 1092 ASSERT(asize >= oasize); 1093 ASSERT(P2PHASE(asize, 1094 vmp->vm_source->vm_quantum) == 0); 1095 ASSERT(!(vmp->vm_cflags & VMC_XALIGN) || 1096 IS_P2ALIGNED(vaddr, align)); 1097 } else { 1098 vaddr = vmp->vm_source_alloc(vmp->vm_source, 1099 asize, vmflag & VM_KMFLAGS); 1100 } 1101 mutex_enter(&vmp->vm_lock); 1102 vmp->vm_nsegfree += resv; /* claim reservation */ 1103 aneeded = size + align - vmp->vm_quantum; 1104 aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum); 1105 if (vaddr != NULL) { 1106 /* 1107 * Since we dropped the vmem lock while 1108 * calling the import function, other 1109 * threads could have imported space 1110 * and made our import unnecessary. In 1111 * order to save space, we return 1112 * excess imports immediately. 1113 */ 1114 if (asize > aneeded && 1115 vmp->vm_source_free != NULL && 1116 vmem_canalloc(vmp, aneeded)) { 1117 ASSERT(resv >= 1118 VMEM_SEGS_PER_MIDDLE_ALLOC); 1119 xvaddr = vaddr; 1120 xsize = asize; 1121 goto do_alloc; 1122 } 1123 vbest = vmem_span_create(vmp, vaddr, asize, 1); 1124 addr = P2PHASEUP(vbest->vs_start, align, phase); 1125 break; 1126 } else if (vmem_canalloc(vmp, aneeded)) { 1127 /* 1128 * Our import failed, but another thread 1129 * added sufficient free memory to the arena 1130 * to satisfy our request. Go back and 1131 * grab it. 1132 */ 1133 ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC); 1134 goto do_alloc; 1135 } 1136 } 1137 1138 /* 1139 * If the requestor chooses to fail the allocation attempt 1140 * rather than reap wait and retry - get out of the loop. 1141 */ 1142 if (vmflag & VM_ABORT) 1143 break; 1144 mutex_exit(&vmp->vm_lock); 1145 if (vmp->vm_cflags & VMC_IDENTIFIER) 1146 kmem_reap_idspace(); 1147 else 1148 kmem_reap(); 1149 mutex_enter(&vmp->vm_lock); 1150 if (vmflag & VM_NOSLEEP) 1151 break; 1152 vmp->vm_kstat.vk_wait.value.ui64++; 1153 cv_wait(&vmp->vm_cv, &vmp->vm_lock); 1154 } 1155 if (vbest != NULL) { 1156 ASSERT(vbest->vs_type == VMEM_FREE); 1157 ASSERT(vbest->vs_knext != vbest); 1158 /* re-position to end of buffer */ 1159 if (vmflag & VM_ENDALLOC) { 1160 addr += ((vbest->vs_end - (addr + size)) / align) * 1161 align; 1162 } 1163 (void) vmem_seg_alloc(vmp, vbest, addr, size); 1164 mutex_exit(&vmp->vm_lock); 1165 if (xvaddr) 1166 vmp->vm_source_free(vmp->vm_source, xvaddr, xsize); 1167 ASSERT(P2PHASE(addr, align) == phase); 1168 ASSERT(!P2BOUNDARY(addr, size, nocross)); 1169 ASSERT(addr >= (uintptr_t)minaddr); 1170 ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1); 1171 return ((void *)addr); 1172 } 1173 vmp->vm_kstat.vk_fail.value.ui64++; 1174 mutex_exit(&vmp->vm_lock); 1175 if (vmflag & VM_PANIC) 1176 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 1177 "cannot satisfy mandatory allocation", 1178 (void *)vmp, size, align_arg, phase, nocross, 1179 minaddr, maxaddr, vmflag); 1180 ASSERT(xvaddr == NULL); 1181 return (NULL); 1182 } 1183 1184 /* 1185 * Free the segment [vaddr, vaddr + size), where vaddr was a constrained 1186 * allocation. vmem_xalloc() and vmem_xfree() must always be paired because 1187 * both routines bypass the quantum caches. 1188 */ 1189 void 1190 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size) 1191 { 1192 vmem_seg_t *vsp, *vnext, *vprev; 1193 1194 mutex_enter(&vmp->vm_lock); 1195 1196 vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size); 1197 vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum); 1198 1199 /* 1200 * Attempt to coalesce with the next segment. 1201 */ 1202 vnext = vsp->vs_anext; 1203 if (vnext->vs_type == VMEM_FREE) { 1204 ASSERT(vsp->vs_end == vnext->vs_start); 1205 vmem_freelist_delete(vmp, vnext); 1206 vsp->vs_end = vnext->vs_end; 1207 vmem_seg_destroy(vmp, vnext); 1208 } 1209 1210 /* 1211 * Attempt to coalesce with the previous segment. 1212 */ 1213 vprev = vsp->vs_aprev; 1214 if (vprev->vs_type == VMEM_FREE) { 1215 ASSERT(vprev->vs_end == vsp->vs_start); 1216 vmem_freelist_delete(vmp, vprev); 1217 vprev->vs_end = vsp->vs_end; 1218 vmem_seg_destroy(vmp, vsp); 1219 vsp = vprev; 1220 } 1221 1222 /* 1223 * If the entire span is free, return it to the source. 1224 */ 1225 if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL && 1226 vsp->vs_aprev->vs_type == VMEM_SPAN && 1227 vsp->vs_anext->vs_type == VMEM_SPAN) { 1228 vaddr = (void *)vsp->vs_start; 1229 size = VS_SIZE(vsp); 1230 ASSERT(size == VS_SIZE(vsp->vs_aprev)); 1231 vmem_span_destroy(vmp, vsp); 1232 mutex_exit(&vmp->vm_lock); 1233 vmp->vm_source_free(vmp->vm_source, vaddr, size); 1234 } else { 1235 vmem_freelist_insert(vmp, vsp); 1236 mutex_exit(&vmp->vm_lock); 1237 } 1238 } 1239 1240 /* 1241 * Allocate size bytes from arena vmp. Returns the allocated address 1242 * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP, 1243 * and may also specify best-fit, first-fit, or next-fit allocation policy 1244 * instead of the default instant-fit policy. VM_SLEEP allocations are 1245 * guaranteed to succeed. 1246 */ 1247 void * 1248 vmem_alloc(vmem_t *vmp, size_t size, int vmflag) 1249 { 1250 vmem_seg_t *vsp; 1251 uintptr_t addr; 1252 int hb; 1253 int flist = 0; 1254 uint32_t mtbf; 1255 1256 if (size - 1 < vmp->vm_qcache_max) 1257 return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >> 1258 vmp->vm_qshift], vmflag & VM_KMFLAGS)); 1259 1260 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && 1261 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) 1262 return (NULL); 1263 1264 if (vmflag & VM_NEXTFIT) 1265 return (vmem_nextfit_alloc(vmp, size, vmflag)); 1266 1267 if (vmflag & (VM_BESTFIT | VM_FIRSTFIT)) 1268 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0, 1269 NULL, NULL, vmflag)); 1270 1271 /* 1272 * Unconstrained instant-fit allocation from the segment list. 1273 */ 1274 mutex_enter(&vmp->vm_lock); 1275 1276 if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) { 1277 if ((size & (size - 1)) == 0) 1278 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 1279 else if ((hb = highbit(size)) < VMEM_FREELISTS) 1280 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 1281 } 1282 1283 if (flist-- == 0) { 1284 mutex_exit(&vmp->vm_lock); 1285 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 1286 0, 0, NULL, NULL, vmflag)); 1287 } 1288 1289 ASSERT(size <= (1UL << flist)); 1290 vsp = vmp->vm_freelist[flist].vs_knext; 1291 addr = vsp->vs_start; 1292 if (vmflag & VM_ENDALLOC) { 1293 addr += vsp->vs_end - (addr + size); 1294 } 1295 (void) vmem_seg_alloc(vmp, vsp, addr, size); 1296 mutex_exit(&vmp->vm_lock); 1297 return ((void *)addr); 1298 } 1299 1300 /* 1301 * Free the segment [vaddr, vaddr + size). 1302 */ 1303 void 1304 vmem_free(vmem_t *vmp, void *vaddr, size_t size) 1305 { 1306 if (size - 1 < vmp->vm_qcache_max) 1307 kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift], 1308 vaddr); 1309 else 1310 vmem_xfree(vmp, vaddr, size); 1311 } 1312 1313 /* 1314 * Determine whether arena vmp contains the segment [vaddr, vaddr + size). 1315 */ 1316 int 1317 vmem_contains(vmem_t *vmp, void *vaddr, size_t size) 1318 { 1319 uintptr_t start = (uintptr_t)vaddr; 1320 uintptr_t end = start + size; 1321 vmem_seg_t *vsp; 1322 vmem_seg_t *seg0 = &vmp->vm_seg0; 1323 1324 mutex_enter(&vmp->vm_lock); 1325 vmp->vm_kstat.vk_contains.value.ui64++; 1326 for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) { 1327 vmp->vm_kstat.vk_contains_search.value.ui64++; 1328 ASSERT(vsp->vs_type == VMEM_SPAN); 1329 if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1) 1330 break; 1331 } 1332 mutex_exit(&vmp->vm_lock); 1333 return (vsp != seg0); 1334 } 1335 1336 /* 1337 * Add the span [vaddr, vaddr + size) to arena vmp. 1338 */ 1339 void * 1340 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag) 1341 { 1342 if (vaddr == NULL || size == 0) 1343 panic("vmem_add(%p, %p, %lu): bad arguments", 1344 (void *)vmp, vaddr, size); 1345 1346 ASSERT(!vmem_contains(vmp, vaddr, size)); 1347 1348 mutex_enter(&vmp->vm_lock); 1349 if (vmem_populate(vmp, vmflag)) 1350 (void) vmem_span_create(vmp, vaddr, size, 0); 1351 else 1352 vaddr = NULL; 1353 mutex_exit(&vmp->vm_lock); 1354 return (vaddr); 1355 } 1356 1357 /* 1358 * Walk the vmp arena, applying func to each segment matching typemask. 1359 * If VMEM_REENTRANT is specified, the arena lock is dropped across each 1360 * call to func(); otherwise, it is held for the duration of vmem_walk() 1361 * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks 1362 * are *not* necessarily consistent, so they may only be used when a hint 1363 * is adequate. 1364 */ 1365 void 1366 vmem_walk(vmem_t *vmp, int typemask, 1367 void (*func)(void *, void *, size_t), void *arg) 1368 { 1369 vmem_seg_t *vsp; 1370 vmem_seg_t *seg0 = &vmp->vm_seg0; 1371 vmem_seg_t walker; 1372 1373 if (typemask & VMEM_WALKER) 1374 return; 1375 1376 bzero(&walker, sizeof (walker)); 1377 walker.vs_type = VMEM_WALKER; 1378 1379 mutex_enter(&vmp->vm_lock); 1380 VMEM_INSERT(seg0, &walker, a); 1381 for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) { 1382 if (vsp->vs_type & typemask) { 1383 void *start = (void *)vsp->vs_start; 1384 size_t size = VS_SIZE(vsp); 1385 if (typemask & VMEM_REENTRANT) { 1386 vmem_advance(vmp, &walker, vsp); 1387 mutex_exit(&vmp->vm_lock); 1388 func(arg, start, size); 1389 mutex_enter(&vmp->vm_lock); 1390 vsp = &walker; 1391 } else { 1392 func(arg, start, size); 1393 } 1394 } 1395 } 1396 vmem_advance(vmp, &walker, NULL); 1397 mutex_exit(&vmp->vm_lock); 1398 } 1399 1400 /* 1401 * Return the total amount of memory whose type matches typemask. Thus: 1402 * 1403 * typemask VMEM_ALLOC yields total memory allocated (in use). 1404 * typemask VMEM_FREE yields total memory free (available). 1405 * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size. 1406 */ 1407 size_t 1408 vmem_size(vmem_t *vmp, int typemask) 1409 { 1410 uint64_t size = 0; 1411 1412 if (typemask & VMEM_ALLOC) 1413 size += vmp->vm_kstat.vk_mem_inuse.value.ui64; 1414 if (typemask & VMEM_FREE) 1415 size += vmp->vm_kstat.vk_mem_total.value.ui64 - 1416 vmp->vm_kstat.vk_mem_inuse.value.ui64; 1417 return ((size_t)size); 1418 } 1419 1420 /* 1421 * Create an arena called name whose initial span is [base, base + size). 1422 * The arena's natural unit of currency is quantum, so vmem_alloc() 1423 * guarantees quantum-aligned results. The arena may import new spans 1424 * by invoking afunc() on source, and may return those spans by invoking 1425 * ffunc() on source. To make small allocations fast and scalable, 1426 * the arena offers high-performance caching for each integer multiple 1427 * of quantum up to qcache_max. 1428 */ 1429 static vmem_t * 1430 vmem_create_common(const char *name, void *base, size_t size, size_t quantum, 1431 void *(*afunc)(vmem_t *, size_t, int), 1432 void (*ffunc)(vmem_t *, void *, size_t), 1433 vmem_t *source, size_t qcache_max, int vmflag) 1434 { 1435 int i; 1436 size_t nqcache; 1437 vmem_t *vmp, *cur, **vmpp; 1438 vmem_seg_t *vsp; 1439 vmem_freelist_t *vfp; 1440 uint32_t id = atomic_add_32_nv(&vmem_id, 1); 1441 1442 if (vmem_vmem_arena != NULL) { 1443 vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t), 1444 vmflag & VM_KMFLAGS); 1445 } else { 1446 ASSERT(id <= VMEM_INITIAL); 1447 vmp = &vmem0[id - 1]; 1448 } 1449 1450 /* An identifier arena must inherit from another identifier arena */ 1451 ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) == 1452 (vmflag & VMC_IDENTIFIER))); 1453 1454 if (vmp == NULL) 1455 return (NULL); 1456 bzero(vmp, sizeof (vmem_t)); 1457 1458 (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name); 1459 mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL); 1460 cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL); 1461 vmp->vm_cflags = vmflag; 1462 vmflag &= VM_KMFLAGS; 1463 1464 vmp->vm_quantum = quantum; 1465 vmp->vm_qshift = highbit(quantum) - 1; 1466 nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX); 1467 1468 for (i = 0; i <= VMEM_FREELISTS; i++) { 1469 vfp = &vmp->vm_freelist[i]; 1470 vfp->vs_end = 1UL << i; 1471 vfp->vs_knext = (vmem_seg_t *)(vfp + 1); 1472 vfp->vs_kprev = (vmem_seg_t *)(vfp - 1); 1473 } 1474 1475 vmp->vm_freelist[0].vs_kprev = NULL; 1476 vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL; 1477 vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0; 1478 vmp->vm_hash_table = vmp->vm_hash0; 1479 vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1; 1480 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); 1481 1482 vsp = &vmp->vm_seg0; 1483 vsp->vs_anext = vsp; 1484 vsp->vs_aprev = vsp; 1485 vsp->vs_knext = vsp; 1486 vsp->vs_kprev = vsp; 1487 vsp->vs_type = VMEM_SPAN; 1488 1489 vsp = &vmp->vm_rotor; 1490 vsp->vs_type = VMEM_ROTOR; 1491 VMEM_INSERT(&vmp->vm_seg0, vsp, a); 1492 1493 bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t)); 1494 1495 vmp->vm_id = id; 1496 if (source != NULL) 1497 vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id; 1498 vmp->vm_source = source; 1499 vmp->vm_source_alloc = afunc; 1500 vmp->vm_source_free = ffunc; 1501 1502 /* 1503 * Some arenas (like vmem_metadata and kmem_metadata) cannot 1504 * use quantum caching to lower fragmentation. Instead, we 1505 * increase their imports, giving a similar effect. 1506 */ 1507 if (vmp->vm_cflags & VMC_NO_QCACHE) { 1508 vmp->vm_min_import = 1509 VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift); 1510 nqcache = 0; 1511 } 1512 1513 if (nqcache != 0) { 1514 ASSERT(!(vmflag & VM_NOSLEEP)); 1515 vmp->vm_qcache_max = nqcache << vmp->vm_qshift; 1516 for (i = 0; i < nqcache; i++) { 1517 char buf[VMEM_NAMELEN + 21]; 1518 (void) sprintf(buf, "%s_%lu", vmp->vm_name, 1519 (i + 1) * quantum); 1520 vmp->vm_qcache[i] = kmem_cache_create(buf, 1521 (i + 1) * quantum, quantum, NULL, NULL, NULL, 1522 NULL, vmp, KMC_QCACHE | KMC_NOTOUCH); 1523 } 1524 } 1525 1526 if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name, 1527 "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) / 1528 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) { 1529 vmp->vm_ksp->ks_data = &vmp->vm_kstat; 1530 kstat_install(vmp->vm_ksp); 1531 } 1532 1533 mutex_enter(&vmem_list_lock); 1534 vmpp = &vmem_list; 1535 while ((cur = *vmpp) != NULL) 1536 vmpp = &cur->vm_next; 1537 *vmpp = vmp; 1538 mutex_exit(&vmem_list_lock); 1539 1540 if (vmp->vm_cflags & VMC_POPULATOR) { 1541 ASSERT(vmem_populators < VMEM_INITIAL); 1542 vmem_populator[atomic_add_32_nv(&vmem_populators, 1) - 1] = vmp; 1543 mutex_enter(&vmp->vm_lock); 1544 (void) vmem_populate(vmp, vmflag | VM_PANIC); 1545 mutex_exit(&vmp->vm_lock); 1546 } 1547 1548 if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) { 1549 vmem_destroy(vmp); 1550 return (NULL); 1551 } 1552 1553 return (vmp); 1554 } 1555 1556 vmem_t * 1557 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum, 1558 vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source, 1559 size_t qcache_max, int vmflag) 1560 { 1561 ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC))); 1562 vmflag &= ~(VMC_POPULATOR | VMC_XALLOC); 1563 1564 return (vmem_create_common(name, base, size, quantum, 1565 (vmem_alloc_t *)afunc, ffunc, source, qcache_max, 1566 vmflag | VMC_XALLOC)); 1567 } 1568 1569 vmem_t * 1570 vmem_create(const char *name, void *base, size_t size, size_t quantum, 1571 vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source, 1572 size_t qcache_max, int vmflag) 1573 { 1574 ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN))); 1575 vmflag &= ~(VMC_XALLOC | VMC_XALIGN); 1576 1577 return (vmem_create_common(name, base, size, quantum, 1578 afunc, ffunc, source, qcache_max, vmflag)); 1579 } 1580 1581 /* 1582 * Destroy arena vmp. 1583 */ 1584 void 1585 vmem_destroy(vmem_t *vmp) 1586 { 1587 vmem_t *cur, **vmpp; 1588 vmem_seg_t *seg0 = &vmp->vm_seg0; 1589 vmem_seg_t *vsp, *anext; 1590 size_t leaked; 1591 int i; 1592 1593 mutex_enter(&vmem_list_lock); 1594 vmpp = &vmem_list; 1595 while ((cur = *vmpp) != vmp) 1596 vmpp = &cur->vm_next; 1597 *vmpp = vmp->vm_next; 1598 mutex_exit(&vmem_list_lock); 1599 1600 for (i = 0; i < VMEM_NQCACHE_MAX; i++) 1601 if (vmp->vm_qcache[i]) 1602 kmem_cache_destroy(vmp->vm_qcache[i]); 1603 1604 leaked = vmem_size(vmp, VMEM_ALLOC); 1605 if (leaked != 0) 1606 cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s", 1607 vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ? 1608 "identifiers" : "bytes"); 1609 1610 if (vmp->vm_hash_table != vmp->vm_hash0) 1611 vmem_free(vmem_hash_arena, vmp->vm_hash_table, 1612 (vmp->vm_hash_mask + 1) * sizeof (void *)); 1613 1614 /* 1615 * Give back the segment structures for anything that's left in the 1616 * arena, e.g. the primary spans and their free segments. 1617 */ 1618 VMEM_DELETE(&vmp->vm_rotor, a); 1619 for (vsp = seg0->vs_anext; vsp != seg0; vsp = anext) { 1620 anext = vsp->vs_anext; 1621 vmem_putseg_global(vsp); 1622 } 1623 1624 while (vmp->vm_nsegfree > 0) 1625 vmem_putseg_global(vmem_getseg(vmp)); 1626 1627 kstat_delete(vmp->vm_ksp); 1628 1629 mutex_destroy(&vmp->vm_lock); 1630 cv_destroy(&vmp->vm_cv); 1631 vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t)); 1632 } 1633 1634 /* 1635 * Resize vmp's hash table to keep the average lookup depth near 1.0. 1636 */ 1637 static void 1638 vmem_hash_rescale(vmem_t *vmp) 1639 { 1640 vmem_seg_t **old_table, **new_table, *vsp; 1641 size_t old_size, new_size, h, nseg; 1642 1643 nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 - 1644 vmp->vm_kstat.vk_free.value.ui64); 1645 1646 new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2)); 1647 old_size = vmp->vm_hash_mask + 1; 1648 1649 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 1650 return; 1651 1652 new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *), 1653 VM_NOSLEEP); 1654 if (new_table == NULL) 1655 return; 1656 bzero(new_table, new_size * sizeof (void *)); 1657 1658 mutex_enter(&vmp->vm_lock); 1659 1660 old_size = vmp->vm_hash_mask + 1; 1661 old_table = vmp->vm_hash_table; 1662 1663 vmp->vm_hash_mask = new_size - 1; 1664 vmp->vm_hash_table = new_table; 1665 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); 1666 1667 for (h = 0; h < old_size; h++) { 1668 vsp = old_table[h]; 1669 while (vsp != NULL) { 1670 uintptr_t addr = vsp->vs_start; 1671 vmem_seg_t *next_vsp = vsp->vs_knext; 1672 vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr); 1673 vsp->vs_knext = *hash_bucket; 1674 *hash_bucket = vsp; 1675 vsp = next_vsp; 1676 } 1677 } 1678 1679 mutex_exit(&vmp->vm_lock); 1680 1681 if (old_table != vmp->vm_hash0) 1682 vmem_free(vmem_hash_arena, old_table, 1683 old_size * sizeof (void *)); 1684 } 1685 1686 /* 1687 * Perform periodic maintenance on all vmem arenas. 1688 */ 1689 void 1690 vmem_update(void *dummy) 1691 { 1692 vmem_t *vmp; 1693 1694 mutex_enter(&vmem_list_lock); 1695 for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) { 1696 /* 1697 * If threads are waiting for resources, wake them up 1698 * periodically so they can issue another kmem_reap() 1699 * to reclaim resources cached by the slab allocator. 1700 */ 1701 cv_broadcast(&vmp->vm_cv); 1702 1703 /* 1704 * Rescale the hash table to keep the hash chains short. 1705 */ 1706 vmem_hash_rescale(vmp); 1707 } 1708 mutex_exit(&vmem_list_lock); 1709 1710 (void) timeout(vmem_update, dummy, vmem_update_interval * hz); 1711 } 1712 1713 void 1714 vmem_qcache_reap(vmem_t *vmp) 1715 { 1716 int i; 1717 1718 /* 1719 * Reap any quantum caches that may be part of this vmem. 1720 */ 1721 for (i = 0; i < VMEM_NQCACHE_MAX; i++) 1722 if (vmp->vm_qcache[i]) 1723 kmem_cache_reap_now(vmp->vm_qcache[i]); 1724 } 1725 1726 /* 1727 * Prepare vmem for use. 1728 */ 1729 vmem_t * 1730 vmem_init(const char *heap_name, 1731 void *heap_start, size_t heap_size, size_t heap_quantum, 1732 void *(*heap_alloc)(vmem_t *, size_t, int), 1733 void (*heap_free)(vmem_t *, void *, size_t)) 1734 { 1735 uint32_t id; 1736 int nseg = VMEM_SEG_INITIAL; 1737 vmem_t *heap; 1738 1739 while (--nseg >= 0) 1740 vmem_putseg_global(&vmem_seg0[nseg]); 1741 1742 heap = vmem_create(heap_name, 1743 heap_start, heap_size, heap_quantum, 1744 NULL, NULL, NULL, 0, 1745 VM_SLEEP | VMC_POPULATOR); 1746 1747 vmem_metadata_arena = vmem_create("vmem_metadata", 1748 NULL, 0, heap_quantum, 1749 vmem_alloc, vmem_free, heap, 8 * heap_quantum, 1750 VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE); 1751 1752 vmem_seg_arena = vmem_create("vmem_seg", 1753 NULL, 0, heap_quantum, 1754 heap_alloc, heap_free, vmem_metadata_arena, 0, 1755 VM_SLEEP | VMC_POPULATOR); 1756 1757 vmem_hash_arena = vmem_create("vmem_hash", 1758 NULL, 0, 8, 1759 heap_alloc, heap_free, vmem_metadata_arena, 0, 1760 VM_SLEEP); 1761 1762 vmem_vmem_arena = vmem_create("vmem_vmem", 1763 vmem0, sizeof (vmem0), 1, 1764 heap_alloc, heap_free, vmem_metadata_arena, 0, 1765 VM_SLEEP); 1766 1767 for (id = 0; id < vmem_id; id++) 1768 (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t), 1769 1, 0, 0, &vmem0[id], &vmem0[id + 1], 1770 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1771 1772 return (heap); 1773 } 1774