1 /* 2 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 #pragma ident "%Z%%M% %I% %E% SMI" 7 8 /* 9 * Copyright (c) 1982, 1986 Regents of the University of California. 10 * All rights reserved. The Berkeley software License Agreement 11 * specifies the terms and conditions for redistribution. 12 */ 13 14 #include <sys/param.h> 15 #include <sys/user.h> 16 #include <sys/vnode.h> 17 #include <sys/proc.h> 18 #include <sys/time.h> 19 #include <sys/systm.h> 20 #include <sys/kmem.h> 21 #include <sys/cmn_err.h> 22 #include <sys/cpuvar.h> 23 #include <sys/timer.h> 24 #include <sys/debug.h> 25 #include <sys/sysmacros.h> 26 #include <sys/cyclic.h> 27 28 static void realitexpire(void *); 29 static void realprofexpire(void *); 30 static void timeval_advance(struct timeval *, struct timeval *); 31 32 kmutex_t tod_lock; /* protects time-of-day stuff */ 33 34 /* 35 * Constant to define the minimum interval value of the ITIMER_REALPROF timer. 36 * Value is in microseconds; defaults to 500 usecs. Setting this value 37 * significantly lower may allow for denial-of-service attacks. 38 */ 39 int itimer_realprof_minimum = 500; 40 41 /* 42 * macro to compare a timeval to a timestruc 43 */ 44 45 #define TVTSCMP(tvp, tsp, cmp) \ 46 /* CSTYLED */ \ 47 ((tvp)->tv_sec cmp (tsp)->tv_sec || \ 48 ((tvp)->tv_sec == (tsp)->tv_sec && \ 49 /* CSTYLED */ \ 50 (tvp)->tv_usec * 1000 cmp (tsp)->tv_nsec)) 51 52 /* 53 * Time of day and interval timer support. 54 * 55 * These routines provide the kernel entry points to get and set 56 * the time-of-day and per-process interval timers. Subroutines 57 * here provide support for adding and subtracting timeval structures 58 * and decrementing interval timers, optionally reloading the interval 59 * timers when they expire. 60 */ 61 62 /* 63 * SunOS function to generate monotonically increasing time values. 64 */ 65 void 66 uniqtime(struct timeval *tv) 67 { 68 static struct timeval last; 69 timestruc_t ts; 70 time_t sec; 71 int usec, nsec; 72 73 /* 74 * protect modification of last 75 */ 76 mutex_enter(&tod_lock); 77 gethrestime(&ts); 78 79 /* 80 * Fast algorithm to convert nsec to usec -- see hrt2ts() 81 * in common/os/timers.c for a full description. 82 */ 83 nsec = ts.tv_nsec; 84 usec = nsec + (nsec >> 2); 85 usec = nsec + (usec >> 1); 86 usec = nsec + (usec >> 2); 87 usec = nsec + (usec >> 4); 88 usec = nsec - (usec >> 3); 89 usec = nsec + (usec >> 2); 90 usec = nsec + (usec >> 3); 91 usec = nsec + (usec >> 4); 92 usec = nsec + (usec >> 1); 93 usec = nsec + (usec >> 6); 94 usec = usec >> 10; 95 sec = ts.tv_sec; 96 97 /* 98 * Try to keep timestamps unique, but don't be obsessive about 99 * it in the face of large differences. 100 */ 101 if ((sec <= last.tv_sec) && /* same or lower seconds, and */ 102 ((sec != last.tv_sec) || /* either different second or */ 103 (usec <= last.tv_usec)) && /* lower microsecond, and */ 104 ((last.tv_sec - sec) <= 5)) { /* not way back in time */ 105 sec = last.tv_sec; 106 usec = last.tv_usec + 1; 107 if (usec >= MICROSEC) { 108 usec -= MICROSEC; 109 sec++; 110 } 111 } 112 last.tv_sec = sec; 113 last.tv_usec = usec; 114 mutex_exit(&tod_lock); 115 116 tv->tv_sec = sec; 117 tv->tv_usec = usec; 118 } 119 120 /* 121 * Timestamps are exported from the kernel in several places. 122 * Such timestamps are commonly used for either uniqueness or for 123 * sequencing - truncation to 32-bits is fine for uniqueness, 124 * but sequencing is going to take more work as we get closer to 2038! 125 */ 126 void 127 uniqtime32(struct timeval32 *tv32p) 128 { 129 struct timeval tv; 130 131 uniqtime(&tv); 132 TIMEVAL_TO_TIMEVAL32(tv32p, &tv); 133 } 134 135 int 136 gettimeofday(struct timeval *tp) 137 { 138 struct timeval atv; 139 140 if (tp) { 141 uniqtime(&atv); 142 if (get_udatamodel() == DATAMODEL_NATIVE) { 143 if (copyout(&atv, tp, sizeof (atv))) 144 return (set_errno(EFAULT)); 145 } else { 146 struct timeval32 tv32; 147 148 if (TIMEVAL_OVERFLOW(&atv)) 149 return (set_errno(EOVERFLOW)); 150 TIMEVAL_TO_TIMEVAL32(&tv32, &atv); 151 152 if (copyout(&tv32, tp, sizeof (tv32))) 153 return (set_errno(EFAULT)); 154 } 155 } 156 return (0); 157 } 158 159 int 160 getitimer(uint_t which, struct itimerval *itv) 161 { 162 int error; 163 164 if (get_udatamodel() == DATAMODEL_NATIVE) 165 error = xgetitimer(which, itv, 0); 166 else { 167 struct itimerval kitv; 168 169 if ((error = xgetitimer(which, &kitv, 1)) == 0) { 170 if (ITIMERVAL_OVERFLOW(&kitv)) { 171 error = EOVERFLOW; 172 } else { 173 struct itimerval32 itv32; 174 175 ITIMERVAL_TO_ITIMERVAL32(&itv32, &kitv); 176 if (copyout(&itv32, itv, sizeof (itv32)) != 0) 177 error = EFAULT; 178 } 179 } 180 } 181 182 return (error ? (set_errno(error)) : 0); 183 } 184 185 int 186 xgetitimer(uint_t which, struct itimerval *itv, int iskaddr) 187 { 188 struct proc *p = curproc; 189 struct timeval now; 190 struct itimerval aitv; 191 hrtime_t ts, first, interval, remain; 192 193 mutex_enter(&p->p_lock); 194 195 switch (which) { 196 case ITIMER_VIRTUAL: 197 case ITIMER_PROF: 198 aitv = ttolwp(curthread)->lwp_timer[which]; 199 break; 200 201 case ITIMER_REAL: 202 uniqtime(&now); 203 aitv = p->p_realitimer; 204 205 if (timerisset(&aitv.it_value)) { 206 /*CSTYLED*/ 207 if (timercmp(&aitv.it_value, &now, <)) { 208 timerclear(&aitv.it_value); 209 } else { 210 timevalsub(&aitv.it_value, &now); 211 } 212 } 213 break; 214 215 case ITIMER_REALPROF: 216 if (curproc->p_rprof_cyclic == CYCLIC_NONE) { 217 bzero(&aitv, sizeof (aitv)); 218 break; 219 } 220 221 aitv = curproc->p_rprof_timer; 222 223 first = tv2hrt(&aitv.it_value); 224 interval = tv2hrt(&aitv.it_interval); 225 226 if ((ts = gethrtime()) < first) { 227 /* 228 * We haven't gone off for the first time; the time 229 * remaining is simply the first time we will go 230 * off minus the current time. 231 */ 232 remain = first - ts; 233 } else { 234 if (interval == 0) { 235 /* 236 * This was set as a one-shot, and we've 237 * already gone off; there is no time 238 * remaining. 239 */ 240 remain = 0; 241 } else { 242 /* 243 * We have a non-zero interval; we need to 244 * determine how far we are into the current 245 * interval, and subtract that from the 246 * interval to determine the time remaining. 247 */ 248 remain = interval - ((ts - first) % interval); 249 } 250 } 251 252 hrt2tv(remain, &aitv.it_value); 253 break; 254 255 default: 256 mutex_exit(&p->p_lock); 257 return (EINVAL); 258 } 259 260 mutex_exit(&p->p_lock); 261 262 if (iskaddr) { 263 bcopy(&aitv, itv, sizeof (*itv)); 264 } else { 265 ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 266 if (copyout(&aitv, itv, sizeof (*itv))) 267 return (EFAULT); 268 } 269 270 return (0); 271 } 272 273 274 int 275 setitimer(uint_t which, struct itimerval *itv, struct itimerval *oitv) 276 { 277 int error; 278 279 if (oitv != NULL) 280 if ((error = getitimer(which, oitv)) != 0) 281 return (error); 282 283 if (itv == NULL) 284 return (0); 285 286 if (get_udatamodel() == DATAMODEL_NATIVE) 287 error = xsetitimer(which, itv, 0); 288 else { 289 struct itimerval32 itv32; 290 struct itimerval kitv; 291 292 if (copyin(itv, &itv32, sizeof (itv32))) 293 error = EFAULT; 294 ITIMERVAL32_TO_ITIMERVAL(&kitv, &itv32); 295 error = xsetitimer(which, &kitv, 1); 296 } 297 298 return (error ? (set_errno(error)) : 0); 299 } 300 301 int 302 xsetitimer(uint_t which, struct itimerval *itv, int iskaddr) 303 { 304 struct itimerval aitv; 305 struct timeval now; 306 struct proc *p = curproc; 307 kthread_t *t; 308 timeout_id_t tmp_id; 309 cyc_handler_t hdlr; 310 cyc_time_t when; 311 cyclic_id_t cyclic; 312 hrtime_t ts; 313 int min; 314 315 if (itv == NULL) 316 return (0); 317 318 if (iskaddr) { 319 bcopy(itv, &aitv, sizeof (aitv)); 320 } else { 321 ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 322 if (copyin(itv, &aitv, sizeof (aitv))) 323 return (EFAULT); 324 } 325 326 if (which == ITIMER_REALPROF) { 327 min = MAX((int)(cyclic_getres() / (NANOSEC / MICROSEC)), 328 itimer_realprof_minimum); 329 } else { 330 min = usec_per_tick; 331 } 332 333 if (itimerfix(&aitv.it_value, min) || 334 (itimerfix(&aitv.it_interval, min) && timerisset(&aitv.it_value))) 335 return (EINVAL); 336 337 mutex_enter(&p->p_lock); 338 switch (which) { 339 case ITIMER_REAL: 340 /* 341 * The SITBUSY flag prevents conflicts with multiple 342 * threads attempting to perform setitimer(ITIMER_REAL) 343 * at the same time, even when we drop p->p_lock below. 344 * Any blocked thread returns successfully because the 345 * effect is the same as if it got here first, finished, 346 * and the other thread then came through and destroyed 347 * what it did. We are just protecting the system from 348 * malfunctioning due to the race condition. 349 */ 350 if (p->p_flag & SITBUSY) { 351 mutex_exit(&p->p_lock); 352 return (0); 353 } 354 p->p_flag |= SITBUSY; 355 while ((tmp_id = p->p_itimerid) != 0) { 356 /* 357 * Avoid deadlock in callout_delete (called from 358 * untimeout) which may go to sleep (while holding 359 * p_lock). Drop p_lock and re-acquire it after 360 * untimeout returns. Need to clear p_itimerid 361 * while holding p_lock. 362 */ 363 p->p_itimerid = 0; 364 mutex_exit(&p->p_lock); 365 (void) untimeout(tmp_id); 366 mutex_enter(&p->p_lock); 367 } 368 if (timerisset(&aitv.it_value)) { 369 uniqtime(&now); 370 timevaladd(&aitv.it_value, &now); 371 p->p_itimerid = realtime_timeout(realitexpire, 372 p, hzto(&aitv.it_value)); 373 } 374 p->p_realitimer = aitv; 375 p->p_flag &= ~SITBUSY; 376 break; 377 378 case ITIMER_REALPROF: 379 cyclic = p->p_rprof_cyclic; 380 p->p_rprof_cyclic = CYCLIC_NONE; 381 382 mutex_exit(&p->p_lock); 383 384 /* 385 * We're now going to acquire cpu_lock, remove the old cyclic 386 * if necessary, and add our new cyclic. 387 */ 388 mutex_enter(&cpu_lock); 389 390 if (cyclic != CYCLIC_NONE) 391 cyclic_remove(cyclic); 392 393 if (!timerisset(&aitv.it_value)) { 394 /* 395 * If we were passed a value of 0, we're done. 396 */ 397 mutex_exit(&cpu_lock); 398 return (0); 399 } 400 401 hdlr.cyh_func = realprofexpire; 402 hdlr.cyh_arg = p; 403 hdlr.cyh_level = CY_LOW_LEVEL; 404 405 when.cyt_when = (ts = gethrtime() + tv2hrt(&aitv.it_value)); 406 when.cyt_interval = tv2hrt(&aitv.it_interval); 407 408 if (when.cyt_interval == 0) { 409 /* 410 * Using the same logic as for CLOCK_HIGHRES timers, we 411 * set the interval to be INT64_MAX - when.cyt_when to 412 * effect a one-shot; see the comment in clock_highres.c 413 * for more details on why this works. 414 */ 415 when.cyt_interval = INT64_MAX - when.cyt_when; 416 } 417 418 cyclic = cyclic_add(&hdlr, &when); 419 420 mutex_exit(&cpu_lock); 421 422 /* 423 * We have now successfully added the cyclic. Reacquire 424 * p_lock, and see if anyone has snuck in. 425 */ 426 mutex_enter(&p->p_lock); 427 428 if (p->p_rprof_cyclic != CYCLIC_NONE) { 429 /* 430 * We're racing with another thread establishing an 431 * ITIMER_REALPROF interval timer. We'll let the other 432 * thread win (this is a race at the application level, 433 * so letting the other thread win is acceptable). 434 */ 435 mutex_exit(&p->p_lock); 436 mutex_enter(&cpu_lock); 437 cyclic_remove(cyclic); 438 mutex_exit(&cpu_lock); 439 440 return (0); 441 } 442 443 /* 444 * Success. Set our tracking variables in the proc structure, 445 * cancel any outstanding ITIMER_PROF, and allocate the 446 * per-thread SIGPROF buffers, if possible. 447 */ 448 hrt2tv(ts, &aitv.it_value); 449 p->p_rprof_timer = aitv; 450 p->p_rprof_cyclic = cyclic; 451 452 t = p->p_tlist; 453 do { 454 struct itimerval *itvp; 455 456 itvp = &ttolwp(t)->lwp_timer[ITIMER_PROF]; 457 timerclear(&itvp->it_interval); 458 timerclear(&itvp->it_value); 459 460 if (t->t_rprof != NULL) 461 continue; 462 463 t->t_rprof = 464 kmem_zalloc(sizeof (struct rprof), KM_NOSLEEP); 465 aston(t); 466 } while ((t = t->t_forw) != p->p_tlist); 467 468 break; 469 470 case ITIMER_VIRTUAL: 471 ttolwp(curthread)->lwp_timer[ITIMER_VIRTUAL] = aitv; 472 break; 473 474 case ITIMER_PROF: 475 if (p->p_rprof_cyclic != CYCLIC_NONE) { 476 /* 477 * Silently ignore ITIMER_PROF if ITIMER_REALPROF 478 * is in effect. 479 */ 480 break; 481 } 482 483 ttolwp(curthread)->lwp_timer[ITIMER_PROF] = aitv; 484 break; 485 486 default: 487 mutex_exit(&p->p_lock); 488 return (EINVAL); 489 } 490 mutex_exit(&p->p_lock); 491 return (0); 492 } 493 494 /* 495 * Real interval timer expired: 496 * send process whose timer expired an alarm signal. 497 * If time is not set up to reload, then just return. 498 * Else compute next time timer should go off which is > current time. 499 * This is where delay in processing this timeout causes multiple 500 * SIGALRM calls to be compressed into one. 501 */ 502 static void 503 realitexpire(void *arg) 504 { 505 struct proc *p = arg; 506 struct timeval *valp = &p->p_realitimer.it_value; 507 struct timeval *intervalp = &p->p_realitimer.it_interval; 508 #if !defined(_LP64) 509 clock_t ticks; 510 #endif 511 512 mutex_enter(&p->p_lock); 513 #if !defined(_LP64) 514 if ((ticks = hzto(valp)) > 1) { 515 /* 516 * If we are executing before we were meant to, it must be 517 * because of an overflow in a prior hzto() calculation. 518 * In this case, we want to go to sleep for the recalculated 519 * number of ticks. For the special meaning of the value "1" 520 * see comment in timespectohz(). 521 */ 522 p->p_itimerid = realtime_timeout(realitexpire, p, ticks); 523 mutex_exit(&p->p_lock); 524 return; 525 } 526 #endif 527 sigtoproc(p, NULL, SIGALRM); 528 if (!timerisset(intervalp)) { 529 timerclear(valp); 530 p->p_itimerid = 0; 531 } else { 532 /* advance timer value past current time */ 533 timeval_advance(valp, intervalp); 534 p->p_itimerid = realtime_timeout(realitexpire, p, hzto(valp)); 535 } 536 mutex_exit(&p->p_lock); 537 } 538 539 /* 540 * Real time profiling interval timer expired: 541 * Increment microstate counters for each lwp in the process 542 * and ensure that running lwps are kicked into the kernel. 543 * If time is not set up to reload, then just return. 544 * Else compute next time timer should go off which is > current time, 545 * as above. 546 */ 547 static void 548 realprofexpire(void *arg) 549 { 550 struct proc *p = arg; 551 kthread_t *t; 552 553 mutex_enter(&p->p_lock); 554 if ((t = p->p_tlist) == NULL) { 555 mutex_exit(&p->p_lock); 556 return; 557 } 558 do { 559 int mstate; 560 561 /* 562 * Attempt to allocate the SIGPROF buffer, but don't sleep. 563 */ 564 if (t->t_rprof == NULL) 565 t->t_rprof = kmem_zalloc(sizeof (struct rprof), 566 KM_NOSLEEP); 567 if (t->t_rprof == NULL) 568 continue; 569 570 thread_lock(t); 571 switch (t->t_state) { 572 case TS_SLEEP: 573 /* 574 * Don't touch the lwp is it is swapped out. 575 */ 576 if (!(t->t_schedflag & TS_LOAD)) { 577 mstate = LMS_SLEEP; 578 break; 579 } 580 switch (mstate = ttolwp(t)->lwp_mstate.ms_prev) { 581 case LMS_TFAULT: 582 case LMS_DFAULT: 583 case LMS_KFAULT: 584 case LMS_USER_LOCK: 585 break; 586 default: 587 mstate = LMS_SLEEP; 588 break; 589 } 590 break; 591 case TS_RUN: 592 case TS_WAIT: 593 mstate = LMS_WAIT_CPU; 594 break; 595 case TS_ONPROC: 596 switch (mstate = t->t_mstate) { 597 case LMS_USER: 598 case LMS_SYSTEM: 599 case LMS_TRAP: 600 break; 601 default: 602 mstate = LMS_SYSTEM; 603 break; 604 } 605 break; 606 default: 607 mstate = t->t_mstate; 608 break; 609 } 610 t->t_rprof->rp_anystate = 1; 611 t->t_rprof->rp_state[mstate]++; 612 aston(t); 613 /* 614 * force the thread into the kernel 615 * if it is not already there. 616 */ 617 if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 618 poke_cpu(t->t_cpu->cpu_id); 619 thread_unlock(t); 620 } while ((t = t->t_forw) != p->p_tlist); 621 622 mutex_exit(&p->p_lock); 623 } 624 625 /* 626 * Advances timer value past the current time of day. See the detailed 627 * comment for this logic in realitsexpire(), above. 628 */ 629 static void 630 timeval_advance(struct timeval *valp, struct timeval *intervalp) 631 { 632 int cnt2nth; 633 struct timeval interval2nth; 634 635 for (;;) { 636 interval2nth = *intervalp; 637 for (cnt2nth = 0; ; cnt2nth++) { 638 timevaladd(valp, &interval2nth); 639 /*CSTYLED*/ 640 if (TVTSCMP(valp, &hrestime, >)) 641 break; 642 timevaladd(&interval2nth, &interval2nth); 643 } 644 if (cnt2nth == 0) 645 break; 646 timevalsub(valp, &interval2nth); 647 } 648 } 649 650 /* 651 * Check that a proposed value to load into the .it_value or .it_interval 652 * part of an interval timer is acceptable, and set it to at least a 653 * specified minimal value. 654 */ 655 int 656 itimerfix(struct timeval *tv, int minimum) 657 { 658 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 659 tv->tv_usec < 0 || tv->tv_usec >= MICROSEC) 660 return (EINVAL); 661 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < minimum) 662 tv->tv_usec = minimum; 663 return (0); 664 } 665 666 /* 667 * Same as itimerfix, except a) it takes a timespec instead of a timeval and 668 * b) it doesn't truncate based on timeout granularity; consumers of this 669 * interface (e.g. timer_settime()) depend on the passed timespec not being 670 * modified implicitly. 671 */ 672 int 673 itimerspecfix(timespec_t *tv) 674 { 675 if (tv->tv_sec < 0 || tv->tv_nsec < 0 || tv->tv_nsec >= NANOSEC) 676 return (EINVAL); 677 return (0); 678 } 679 680 /* 681 * Decrement an interval timer by a specified number 682 * of microseconds, which must be less than a second, 683 * i.e. < 1000000. If the timer expires, then reload 684 * it. In this case, carry over (usec - old value) to 685 * reducint the value reloaded into the timer so that 686 * the timer does not drift. This routine assumes 687 * that it is called in a context where the timers 688 * on which it is operating cannot change in value. 689 */ 690 int 691 itimerdecr(struct itimerval *itp, int usec) 692 { 693 if (itp->it_value.tv_usec < usec) { 694 if (itp->it_value.tv_sec == 0) { 695 /* expired, and already in next interval */ 696 usec -= itp->it_value.tv_usec; 697 goto expire; 698 } 699 itp->it_value.tv_usec += MICROSEC; 700 itp->it_value.tv_sec--; 701 } 702 itp->it_value.tv_usec -= usec; 703 usec = 0; 704 if (timerisset(&itp->it_value)) 705 return (1); 706 /* expired, exactly at end of interval */ 707 expire: 708 if (timerisset(&itp->it_interval)) { 709 itp->it_value = itp->it_interval; 710 itp->it_value.tv_usec -= usec; 711 if (itp->it_value.tv_usec < 0) { 712 itp->it_value.tv_usec += MICROSEC; 713 itp->it_value.tv_sec--; 714 } 715 } else 716 itp->it_value.tv_usec = 0; /* sec is already 0 */ 717 return (0); 718 } 719 720 /* 721 * Add and subtract routines for timevals. 722 * N.B.: subtract routine doesn't deal with 723 * results which are before the beginning, 724 * it just gets very confused in this case. 725 * Caveat emptor. 726 */ 727 void 728 timevaladd(struct timeval *t1, struct timeval *t2) 729 { 730 t1->tv_sec += t2->tv_sec; 731 t1->tv_usec += t2->tv_usec; 732 timevalfix(t1); 733 } 734 735 void 736 timevalsub(struct timeval *t1, struct timeval *t2) 737 { 738 t1->tv_sec -= t2->tv_sec; 739 t1->tv_usec -= t2->tv_usec; 740 timevalfix(t1); 741 } 742 743 void 744 timevalfix(struct timeval *t1) 745 { 746 if (t1->tv_usec < 0) { 747 t1->tv_sec--; 748 t1->tv_usec += MICROSEC; 749 } 750 if (t1->tv_usec >= MICROSEC) { 751 t1->tv_sec++; 752 t1->tv_usec -= MICROSEC; 753 } 754 } 755 756 /* 757 * Same as the routines above. These routines take a timespec instead 758 * of a timeval. 759 */ 760 void 761 timespecadd(timespec_t *t1, timespec_t *t2) 762 { 763 t1->tv_sec += t2->tv_sec; 764 t1->tv_nsec += t2->tv_nsec; 765 timespecfix(t1); 766 } 767 768 void 769 timespecsub(timespec_t *t1, timespec_t *t2) 770 { 771 t1->tv_sec -= t2->tv_sec; 772 t1->tv_nsec -= t2->tv_nsec; 773 timespecfix(t1); 774 } 775 776 void 777 timespecfix(timespec_t *t1) 778 { 779 if (t1->tv_nsec < 0) { 780 t1->tv_sec--; 781 t1->tv_nsec += NANOSEC; 782 } else { 783 if (t1->tv_nsec >= NANOSEC) { 784 t1->tv_sec++; 785 t1->tv_nsec -= NANOSEC; 786 } 787 } 788 } 789 790 /* 791 * Compute number of hz until specified time. 792 * Used to compute third argument to timeout() from an absolute time. 793 */ 794 clock_t 795 hzto(struct timeval *tv) 796 { 797 timespec_t ts, now; 798 799 ts.tv_sec = tv->tv_sec; 800 ts.tv_nsec = tv->tv_usec * 1000; 801 gethrestime_lasttick(&now); 802 803 return (timespectohz(&ts, now)); 804 } 805 806 /* 807 * Compute number of hz until specified time for a given timespec value. 808 * Used to compute third argument to timeout() from an absolute time. 809 */ 810 clock_t 811 timespectohz(timespec_t *tv, timespec_t now) 812 { 813 clock_t ticks; 814 time_t sec; 815 int nsec; 816 817 /* 818 * Compute number of ticks we will see between now and 819 * the target time; returns "1" if the destination time 820 * is before the next tick, so we always get some delay, 821 * and returns LONG_MAX ticks if we would overflow. 822 */ 823 sec = tv->tv_sec - now.tv_sec; 824 nsec = tv->tv_nsec - now.tv_nsec + nsec_per_tick - 1; 825 826 if (nsec < 0) { 827 sec--; 828 nsec += NANOSEC; 829 } else if (nsec >= NANOSEC) { 830 sec++; 831 nsec -= NANOSEC; 832 } 833 834 ticks = NSEC_TO_TICK(nsec); 835 836 /* 837 * Compute ticks, accounting for negative and overflow as above. 838 * Overflow protection kicks in at about 70 weeks for hz=50 839 * and at about 35 weeks for hz=100. (Rather longer for the 64-bit 840 * kernel :-) 841 */ 842 if (sec < 0 || (sec == 0 && ticks < 1)) 843 ticks = 1; /* protect vs nonpositive */ 844 else if (sec > (LONG_MAX - ticks) / hz) 845 ticks = LONG_MAX; /* protect vs overflow */ 846 else 847 ticks += sec * hz; /* common case */ 848 849 return (ticks); 850 } 851 852 /* 853 * Same as timespectohz() except that we adjust the clock ticks down a bit. 854 * If we will be waiting for a long time, we may encounter skewing problems 855 * due to adjtime() system calls. Since we can skew up to 1/16 lbolt rate 856 * if adjtime is going crazy, we reduce the time delta since timeout() takes 857 * clock ticks rather than wallclock elapsed time. This may cause the caller 858 * (who calls timeout()) to return with a timeout prematurely and callers 859 * must accommodate this. See lwp_timeout(), queue_lwptimer() and 860 * cv_waituntil_sig(), currently the only callers of this function. 861 */ 862 clock_t 863 timespectohz_adj(timespec_t *tv, timespec_t now) 864 { 865 timespec_t wait_time = *tv; 866 867 timespecsub(&wait_time, &now); 868 wait_time.tv_sec -= wait_time.tv_sec >> 4; 869 wait_time.tv_nsec -= wait_time.tv_nsec >> 4; 870 timespecadd(&wait_time, &now); 871 return (timespectohz(&wait_time, now)); 872 } 873 874 /* 875 * hrt2ts(): convert from hrtime_t to timestruc_t. 876 * 877 * All this routine really does is: 878 * 879 * tsp->sec = hrt / NANOSEC; 880 * tsp->nsec = hrt % NANOSEC; 881 * 882 * The black magic below avoids doing a 64-bit by 32-bit integer divide, 883 * which is quite expensive. There's actually much more going on here than 884 * it might first appear -- don't try this at home. 885 * 886 * For the adventuresome, here's an explanation of how it works. 887 * 888 * Multiplication by a fixed constant is easy -- you just do the appropriate 889 * shifts and adds. For example, to multiply by 10, we observe that 890 * 891 * x * 10 = x * (8 + 2) 892 * = (x * 8) + (x * 2) 893 * = (x << 3) + (x << 1). 894 * 895 * In general, you can read the algorithm right off the bits: the number 10 896 * is 1010 in binary; bits 1 and 3 are ones, so x * 10 = (x << 1) + (x << 3). 897 * 898 * Sometimes you can do better. For example, 15 is 1111 binary, so the normal 899 * shift/add computation is x * 15 = (x << 0) + (x << 1) + (x << 2) + (x << 3). 900 * But, it's cheaper if you capitalize on the fact that you have a run of ones: 901 * 1111 = 10000 - 1, hence x * 15 = (x << 4) - (x << 0). [You would never 902 * actually perform the operation << 0, since it's a no-op; I'm just writing 903 * it that way for clarity.] 904 * 905 * The other way you can win is if you get lucky with the prime factorization 906 * of your constant. The number 1,000,000,000, which we have to multiply 907 * by below, is a good example. One billion is 111011100110101100101000000000 908 * in binary. If you apply the bit-grouping trick, it doesn't buy you very 909 * much, because it's only a win for groups of three or more equal bits: 910 * 911 * 111011100110101100101000000000 = 1000000000000000000000000000000 912 * - 000100011001010011011000000000 913 * 914 * Thus, instead of the 13 shift/add pairs (26 operations) implied by the LHS, 915 * we have reduced this to 10 shift/add pairs (20 operations) on the RHS. 916 * This is better, but not great. 917 * 918 * However, we can factor 1,000,000,000 = 2^9 * 5^9 = 2^9 * 125 * 125 * 125, 919 * and multiply by each factor. Multiplication by 125 is particularly easy, 920 * since 128 is nearby: x * 125 = (x << 7) - x - x - x, which is just four 921 * operations. So, to multiply by 1,000,000,000, we perform three multipli- 922 * cations by 125, then << 9, a total of only 3 * 4 + 1 = 13 operations. 923 * This is the algorithm we actually use in both hrt2ts() and ts2hrt(). 924 * 925 * Division is harder; there is no equivalent of the simple shift-add algorithm 926 * we used for multiplication. However, we can convert the division problem 927 * into a multiplication problem by pre-computing the binary representation 928 * of the reciprocal of the divisor. For the case of interest, we have 929 * 930 * 1 / 1,000,000,000 = 1.0001001011100000101111101000001B-30, 931 * 932 * to 32 bits of precision. (The notation B-30 means "* 2^-30", just like 933 * E-18 means "* 10^-18".) 934 * 935 * So, to compute x / 1,000,000,000, we just multiply x by the 32-bit 936 * integer 10001001011100000101111101000001, then normalize (shift) the 937 * result. This constant has several large bits runs, so the multiply 938 * is relatively cheap: 939 * 940 * 10001001011100000101111101000001 = 10001001100000000110000001000001 941 * - 00000000000100000000000100000000 942 * 943 * Again, you can just read the algorithm right off the bits: 944 * 945 * sec = hrt; 946 * sec += (hrt << 6); 947 * sec -= (hrt << 8); 948 * sec += (hrt << 13); 949 * sec += (hrt << 14); 950 * sec -= (hrt << 20); 951 * sec += (hrt << 23); 952 * sec += (hrt << 24); 953 * sec += (hrt << 27); 954 * sec += (hrt << 31); 955 * sec >>= (32 + 30); 956 * 957 * Voila! The only problem is, since hrt is 64 bits, we need to use 96-bit 958 * arithmetic to perform this calculation. That's a waste, because ultimately 959 * we only need the highest 32 bits of the result. 960 * 961 * The first thing we do is to realize that we don't need to use all of hrt 962 * in the calculation. The lowest 30 bits can contribute at most 1 to the 963 * quotient (2^30 / 1,000,000,000 = 1.07...), so we'll deal with them later. 964 * The highest 2 bits have to be zero, or hrt won't fit in a timestruc_t. 965 * Thus, the only bits of hrt that matter for division are bits 30..61. 966 * These 32 bits are just the lower-order word of (hrt >> 30). This brings 967 * us down from 96-bit math to 64-bit math, and our algorithm becomes: 968 * 969 * tmp = (uint32_t) (hrt >> 30); 970 * sec = tmp; 971 * sec += (tmp << 6); 972 * sec -= (tmp << 8); 973 * sec += (tmp << 13); 974 * sec += (tmp << 14); 975 * sec -= (tmp << 20); 976 * sec += (tmp << 23); 977 * sec += (tmp << 24); 978 * sec += (tmp << 27); 979 * sec += (tmp << 31); 980 * sec >>= 32; 981 * 982 * Next, we're going to reduce this 64-bit computation to a 32-bit 983 * computation. We begin by rewriting the above algorithm to use relative 984 * shifts instead of absolute shifts. That is, instead of computing 985 * tmp << 6, tmp << 8, tmp << 13, etc, we'll just shift incrementally: 986 * tmp <<= 6, tmp <<= 2 (== 8 - 6), tmp <<= 5 (== 13 - 8), etc: 987 * 988 * tmp = (uint32_t) (hrt >> 30); 989 * sec = tmp; 990 * tmp <<= 6; sec += tmp; 991 * tmp <<= 2; sec -= tmp; 992 * tmp <<= 5; sec += tmp; 993 * tmp <<= 1; sec += tmp; 994 * tmp <<= 6; sec -= tmp; 995 * tmp <<= 3; sec += tmp; 996 * tmp <<= 1; sec += tmp; 997 * tmp <<= 3; sec += tmp; 998 * tmp <<= 4; sec += tmp; 999 * sec >>= 32; 1000 * 1001 * Now for the final step. Instead of throwing away the low 32 bits at 1002 * the end, we can throw them away as we go, only keeping the high 32 bits 1003 * of the product at each step. So, for example, where we now have 1004 * 1005 * tmp <<= 6; sec = sec + tmp; 1006 * we will instead have 1007 * tmp <<= 6; sec = (sec + tmp) >> 6; 1008 * which is equivalent to 1009 * sec = (sec >> 6) + tmp; 1010 * 1011 * The final shift ("sec >>= 32") goes away. 1012 * 1013 * All we're really doing here is long multiplication, just like we learned in 1014 * grade school, except that at each step, we only look at the leftmost 32 1015 * columns. The cumulative error is, at most, the sum of all the bits we 1016 * throw away, which is 2^-32 + 2^-31 + ... + 2^-2 + 2^-1 == 1 - 2^-32. 1017 * Thus, the final result ("sec") is correct to +/- 1. 1018 * 1019 * It turns out to be important to keep "sec" positive at each step, because 1020 * we don't want to have to explicitly extend the sign bit. Therefore, 1021 * starting with the last line of code above, each line that would have read 1022 * "sec = (sec >> n) - tmp" must be changed to "sec = tmp - (sec >> n)", and 1023 * the operators (+ or -) in all previous lines must be toggled accordingly. 1024 * Thus, we end up with: 1025 * 1026 * tmp = (uint32_t) (hrt >> 30); 1027 * sec = tmp + (sec >> 6); 1028 * sec = tmp - (tmp >> 2); 1029 * sec = tmp - (sec >> 5); 1030 * sec = tmp + (sec >> 1); 1031 * sec = tmp - (sec >> 6); 1032 * sec = tmp - (sec >> 3); 1033 * sec = tmp + (sec >> 1); 1034 * sec = tmp + (sec >> 3); 1035 * sec = tmp + (sec >> 4); 1036 * 1037 * This yields a value for sec that is accurate to +1/-1, so we have two 1038 * cases to deal with. The mysterious-looking "+ 7" in the code below biases 1039 * the rounding toward zero, so that sec is always less than or equal to 1040 * the correct value. With this modified code, sec is accurate to +0/-2, with 1041 * the -2 case being very rare in practice. With this change, we only have to 1042 * deal with one case (sec too small) in the cleanup code. 1043 * 1044 * The other modification we make is to delete the second line above 1045 * ("sec = tmp + (sec >> 6);"), since it only has an effect when bit 31 is 1046 * set, and the cleanup code can handle that rare case. This reduces the 1047 * *guaranteed* accuracy of sec to +0/-3, but speeds up the common cases. 1048 * 1049 * Finally, we compute nsec = hrt - (sec * 1,000,000,000). nsec will always 1050 * be positive (since sec is never too large), and will at most be equal to 1051 * the error in sec (times 1,000,000,000) plus the low-order 30 bits of hrt. 1052 * Thus, nsec < 3 * 1,000,000,000 + 2^30, which is less than 2^32, so we can 1053 * safely assume that nsec fits in 32 bits. Consequently, when we compute 1054 * sec * 1,000,000,000, we only need the low 32 bits, so we can just do 32-bit 1055 * arithmetic and let the high-order bits fall off the end. 1056 * 1057 * Since nsec < 3 * 1,000,000,000 + 2^30 == 4,073,741,824, the cleanup loop: 1058 * 1059 * while (nsec >= NANOSEC) { 1060 * nsec -= NANOSEC; 1061 * sec++; 1062 * } 1063 * 1064 * is guaranteed to complete in at most 4 iterations. In practice, the loop 1065 * completes in 0 or 1 iteration over 95% of the time. 1066 * 1067 * On an SS2, this implementation of hrt2ts() takes 1.7 usec, versus about 1068 * 35 usec for software division -- about 20 times faster. 1069 */ 1070 void 1071 hrt2ts(hrtime_t hrt, timestruc_t *tsp) 1072 { 1073 uint32_t sec, nsec, tmp; 1074 1075 tmp = (uint32_t)(hrt >> 30); 1076 sec = tmp - (tmp >> 2); 1077 sec = tmp - (sec >> 5); 1078 sec = tmp + (sec >> 1); 1079 sec = tmp - (sec >> 6) + 7; 1080 sec = tmp - (sec >> 3); 1081 sec = tmp + (sec >> 1); 1082 sec = tmp + (sec >> 3); 1083 sec = tmp + (sec >> 4); 1084 tmp = (sec << 7) - sec - sec - sec; 1085 tmp = (tmp << 7) - tmp - tmp - tmp; 1086 tmp = (tmp << 7) - tmp - tmp - tmp; 1087 nsec = (uint32_t)hrt - (tmp << 9); 1088 while (nsec >= NANOSEC) { 1089 nsec -= NANOSEC; 1090 sec++; 1091 } 1092 tsp->tv_sec = (time_t)sec; 1093 tsp->tv_nsec = nsec; 1094 } 1095 1096 /* 1097 * Convert from timestruc_t to hrtime_t. 1098 * 1099 * The code below is equivalent to: 1100 * 1101 * hrt = tsp->tv_sec * NANOSEC + tsp->tv_nsec; 1102 * 1103 * but requires no integer multiply. 1104 */ 1105 hrtime_t 1106 ts2hrt(const timestruc_t *tsp) 1107 { 1108 hrtime_t hrt; 1109 1110 hrt = tsp->tv_sec; 1111 hrt = (hrt << 7) - hrt - hrt - hrt; 1112 hrt = (hrt << 7) - hrt - hrt - hrt; 1113 hrt = (hrt << 7) - hrt - hrt - hrt; 1114 hrt = (hrt << 9) + tsp->tv_nsec; 1115 return (hrt); 1116 } 1117 1118 /* 1119 * For the various 32-bit "compatibility" paths in the system. 1120 */ 1121 void 1122 hrt2ts32(hrtime_t hrt, timestruc32_t *ts32p) 1123 { 1124 timestruc_t ts; 1125 1126 hrt2ts(hrt, &ts); 1127 TIMESPEC_TO_TIMESPEC32(ts32p, &ts); 1128 } 1129 1130 /* 1131 * If this ever becomes performance critical (ha!), we can borrow the 1132 * code from ts2hrt(), above, to multiply tv_sec by 1,000,000 and the 1133 * straightforward (x << 10) - (x << 5) + (x << 3) to multiply tv_usec by 1134 * 1,000. For now, we'll opt for readability (besides, the compiler does 1135 * a passable job of optimizing constant multiplication into shifts and adds). 1136 */ 1137 hrtime_t 1138 tv2hrt(struct timeval *tvp) 1139 { 1140 return ((hrtime_t)tvp->tv_sec * NANOSEC + 1141 (hrtime_t)tvp->tv_usec * (NANOSEC / MICROSEC)); 1142 } 1143 1144 void 1145 hrt2tv(hrtime_t hrt, struct timeval *tvp) 1146 { 1147 uint32_t sec, nsec, tmp; 1148 uint32_t q, r, t; 1149 1150 tmp = (uint32_t)(hrt >> 30); 1151 sec = tmp - (tmp >> 2); 1152 sec = tmp - (sec >> 5); 1153 sec = tmp + (sec >> 1); 1154 sec = tmp - (sec >> 6) + 7; 1155 sec = tmp - (sec >> 3); 1156 sec = tmp + (sec >> 1); 1157 sec = tmp + (sec >> 3); 1158 sec = tmp + (sec >> 4); 1159 tmp = (sec << 7) - sec - sec - sec; 1160 tmp = (tmp << 7) - tmp - tmp - tmp; 1161 tmp = (tmp << 7) - tmp - tmp - tmp; 1162 nsec = (uint32_t)hrt - (tmp << 9); 1163 while (nsec >= NANOSEC) { 1164 nsec -= NANOSEC; 1165 sec++; 1166 } 1167 tvp->tv_sec = (time_t)sec; 1168 /* 1169 * this routine is very similar to hr2ts, but requires microseconds 1170 * instead of nanoseconds, so an interger divide by 1000 routine 1171 * completes the conversion 1172 */ 1173 t = (nsec >> 7) + (nsec >> 8) + (nsec >> 12); 1174 q = (nsec >> 1) + t + (nsec >> 15) + (t >> 11) + (t >> 14); 1175 q = q >> 9; 1176 r = nsec - q*1000; 1177 tvp->tv_usec = q + ((r + 24) >> 10); 1178 1179 } 1180 1181 int 1182 nanosleep(timespec_t *rqtp, timespec_t *rmtp) 1183 { 1184 timespec_t rqtime; 1185 timespec_t rmtime; 1186 timespec_t now; 1187 int timecheck; 1188 int ret = 1; 1189 model_t datamodel = get_udatamodel(); 1190 1191 if (datamodel == DATAMODEL_NATIVE) { 1192 if (copyin(rqtp, &rqtime, sizeof (rqtime))) 1193 return (set_errno(EFAULT)); 1194 } else { 1195 timespec32_t rqtime32; 1196 1197 if (copyin(rqtp, &rqtime32, sizeof (rqtime32))) 1198 return (set_errno(EFAULT)); 1199 TIMESPEC32_TO_TIMESPEC(&rqtime, &rqtime32); 1200 } 1201 1202 if (rqtime.tv_sec < 0 || rqtime.tv_nsec < 0 || 1203 rqtime.tv_nsec >= NANOSEC) 1204 return (set_errno(EINVAL)); 1205 1206 if (timerspecisset(&rqtime)) { 1207 timecheck = timechanged; 1208 gethrestime(&now); 1209 timespecadd(&rqtime, &now); 1210 mutex_enter(&curthread->t_delay_lock); 1211 while ((ret = cv_waituntil_sig(&curthread->t_delay_cv, 1212 &curthread->t_delay_lock, &rqtime, timecheck)) > 0) 1213 continue; 1214 mutex_exit(&curthread->t_delay_lock); 1215 } 1216 1217 if (rmtp) { 1218 /* 1219 * If cv_waituntil_sig() returned due to a signal, and 1220 * there is time remaining, then set the time remaining. 1221 * Else set time remaining to zero 1222 */ 1223 rmtime.tv_sec = rmtime.tv_nsec = 0; 1224 if (ret == 0) { 1225 timespec_t delta = rqtime; 1226 1227 gethrestime(&now); 1228 timespecsub(&delta, &now); 1229 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 1230 delta.tv_nsec > 0)) 1231 rmtime = delta; 1232 } 1233 1234 if (datamodel == DATAMODEL_NATIVE) { 1235 if (copyout(&rmtime, rmtp, sizeof (rmtime))) 1236 return (set_errno(EFAULT)); 1237 } else { 1238 timespec32_t rmtime32; 1239 1240 TIMESPEC_TO_TIMESPEC32(&rmtime32, &rmtime); 1241 if (copyout(&rmtime32, rmtp, sizeof (rmtime32))) 1242 return (set_errno(EFAULT)); 1243 } 1244 } 1245 1246 if (ret == 0) 1247 return (set_errno(EINTR)); 1248 return (0); 1249 } 1250 1251 /* 1252 * Routines to convert standard UNIX time (seconds since Jan 1, 1970) 1253 * into year/month/day/hour/minute/second format, and back again. 1254 * Note: these routines require tod_lock held to protect cached state. 1255 */ 1256 static int days_thru_month[64] = { 1257 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366, 0, 0, 1258 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1259 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1260 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1261 }; 1262 1263 todinfo_t saved_tod; 1264 int saved_utc = -60; 1265 1266 todinfo_t 1267 utc_to_tod(time_t utc) 1268 { 1269 long dse, day, month, year; 1270 todinfo_t tod; 1271 1272 ASSERT(MUTEX_HELD(&tod_lock)); 1273 1274 if (utc < 0) /* should never happen */ 1275 utc = 0; 1276 1277 saved_tod.tod_sec += utc - saved_utc; 1278 saved_utc = utc; 1279 if (saved_tod.tod_sec >= 0 && saved_tod.tod_sec < 60) 1280 return (saved_tod); /* only the seconds changed */ 1281 1282 dse = utc / 86400; /* days since epoch */ 1283 1284 tod.tod_sec = utc % 60; 1285 tod.tod_min = (utc % 3600) / 60; 1286 tod.tod_hour = (utc % 86400) / 3600; 1287 tod.tod_dow = (dse + 4) % 7 + 1; /* epoch was a Thursday */ 1288 1289 year = dse / 365 + 72; /* first guess -- always a bit too large */ 1290 do { 1291 year--; 1292 day = dse - 365 * (year - 70) - ((year - 69) >> 2); 1293 } while (day < 0); 1294 1295 month = ((year & 3) << 4) + 1; 1296 while (day >= days_thru_month[month + 1]) 1297 month++; 1298 1299 tod.tod_day = day - days_thru_month[month] + 1; 1300 tod.tod_month = month & 15; 1301 tod.tod_year = year; 1302 1303 saved_tod = tod; 1304 return (tod); 1305 } 1306 1307 time_t 1308 tod_to_utc(todinfo_t tod) 1309 { 1310 time_t utc; 1311 int year = tod.tod_year; 1312 int month = tod.tod_month + ((year & 3) << 4); 1313 #ifdef DEBUG 1314 /* only warn once, not each time called */ 1315 static int year_warn = 1; 1316 static int month_warn = 1; 1317 static int day_warn = 1; 1318 static int hour_warn = 1; 1319 static int min_warn = 1; 1320 static int sec_warn = 1; 1321 int days_diff = days_thru_month[month + 1] - days_thru_month[month]; 1322 #endif 1323 1324 ASSERT(MUTEX_HELD(&tod_lock)); 1325 1326 #ifdef DEBUG 1327 if (year_warn && (year < 70 || year > 8029)) { 1328 cmn_err(CE_WARN, 1329 "The hardware real-time clock appears to have the " 1330 "wrong years value %d -- time needs to be reset\n", 1331 year); 1332 year_warn = 0; 1333 } 1334 1335 if (month_warn && (tod.tod_month < 1 || tod.tod_month > 12)) { 1336 cmn_err(CE_WARN, 1337 "The hardware real-time clock appears to have the " 1338 "wrong months value %d -- time needs to be reset\n", 1339 tod.tod_month); 1340 month_warn = 0; 1341 } 1342 1343 if (day_warn && (tod.tod_day < 1 || tod.tod_day > days_diff)) { 1344 cmn_err(CE_WARN, 1345 "The hardware real-time clock appears to have the " 1346 "wrong days value %d -- time needs to be reset\n", 1347 tod.tod_day); 1348 day_warn = 0; 1349 } 1350 1351 if (hour_warn && (tod.tod_hour < 0 || tod.tod_hour > 23)) { 1352 cmn_err(CE_WARN, 1353 "The hardware real-time clock appears to have the " 1354 "wrong hours value %d -- time needs to be reset\n", 1355 tod.tod_hour); 1356 hour_warn = 0; 1357 } 1358 1359 if (min_warn && (tod.tod_min < 0 || tod.tod_min > 59)) { 1360 cmn_err(CE_WARN, 1361 "The hardware real-time clock appears to have the " 1362 "wrong minutes value %d -- time needs to be reset\n", 1363 tod.tod_min); 1364 min_warn = 0; 1365 } 1366 1367 if (sec_warn && (tod.tod_sec < 0 || tod.tod_sec > 59)) { 1368 cmn_err(CE_WARN, 1369 "The hardware real-time clock appears to have the " 1370 "wrong seconds value %d -- time needs to be reset\n", 1371 tod.tod_sec); 1372 sec_warn = 0; 1373 } 1374 #endif 1375 1376 utc = (year - 70); /* next 3 lines: utc = 365y + y/4 */ 1377 utc += (utc << 3) + (utc << 6); 1378 utc += (utc << 2) + ((year - 69) >> 2); 1379 utc += days_thru_month[month] + tod.tod_day - 1; 1380 utc = (utc << 3) + (utc << 4) + tod.tod_hour; /* 24 * day + hour */ 1381 utc = (utc << 6) - (utc << 2) + tod.tod_min; /* 60 * hour + min */ 1382 utc = (utc << 6) - (utc << 2) + tod.tod_sec; /* 60 * min + sec */ 1383 1384 return (utc); 1385 } 1386