1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1982, 1986 Regents of the University of California. 29 * All rights reserved. The Berkeley software License Agreement 30 * specifies the terms and conditions for redistribution. 31 */ 32 33 #include <sys/param.h> 34 #include <sys/user.h> 35 #include <sys/vnode.h> 36 #include <sys/proc.h> 37 #include <sys/time.h> 38 #include <sys/systm.h> 39 #include <sys/kmem.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cpuvar.h> 42 #include <sys/timer.h> 43 #include <sys/debug.h> 44 #include <sys/sysmacros.h> 45 #include <sys/cyclic.h> 46 47 static void realitexpire(void *); 48 static void realprofexpire(void *); 49 static void timeval_advance(struct timeval *, struct timeval *); 50 51 kmutex_t tod_lock; /* protects time-of-day stuff */ 52 53 /* 54 * Constant to define the minimum interval value of the ITIMER_REALPROF timer. 55 * Value is in microseconds; defaults to 500 usecs. Setting this value 56 * significantly lower may allow for denial-of-service attacks. 57 */ 58 int itimer_realprof_minimum = 500; 59 60 /* 61 * macro to compare a timeval to a timestruc 62 */ 63 64 #define TVTSCMP(tvp, tsp, cmp) \ 65 /* CSTYLED */ \ 66 ((tvp)->tv_sec cmp (tsp)->tv_sec || \ 67 ((tvp)->tv_sec == (tsp)->tv_sec && \ 68 /* CSTYLED */ \ 69 (tvp)->tv_usec * 1000 cmp (tsp)->tv_nsec)) 70 71 /* 72 * Time of day and interval timer support. 73 * 74 * These routines provide the kernel entry points to get and set 75 * the time-of-day and per-process interval timers. Subroutines 76 * here provide support for adding and subtracting timeval structures 77 * and decrementing interval timers, optionally reloading the interval 78 * timers when they expire. 79 */ 80 81 /* 82 * SunOS function to generate monotonically increasing time values. 83 */ 84 void 85 uniqtime(struct timeval *tv) 86 { 87 static struct timeval last; 88 static int last_timechanged; 89 timestruc_t ts; 90 time_t sec; 91 int usec, nsec; 92 93 /* 94 * protect modification of last 95 */ 96 mutex_enter(&tod_lock); 97 gethrestime(&ts); 98 99 /* 100 * Fast algorithm to convert nsec to usec -- see hrt2ts() 101 * in common/os/timers.c for a full description. 102 */ 103 nsec = ts.tv_nsec; 104 usec = nsec + (nsec >> 2); 105 usec = nsec + (usec >> 1); 106 usec = nsec + (usec >> 2); 107 usec = nsec + (usec >> 4); 108 usec = nsec - (usec >> 3); 109 usec = nsec + (usec >> 2); 110 usec = nsec + (usec >> 3); 111 usec = nsec + (usec >> 4); 112 usec = nsec + (usec >> 1); 113 usec = nsec + (usec >> 6); 114 usec = usec >> 10; 115 sec = ts.tv_sec; 116 117 /* 118 * If the system hres time has been changed since the last time 119 * we are called. then all bets are off; just update our 120 * local copy of timechanged and accept the reported time as is. 121 */ 122 if (last_timechanged != timechanged) { 123 last_timechanged = timechanged; 124 } 125 /* 126 * Try to keep timestamps unique, but don't be obsessive about 127 * it in the face of large differences. 128 */ 129 else if ((sec <= last.tv_sec) && /* same or lower seconds, and */ 130 ((sec != last.tv_sec) || /* either different second or */ 131 (usec <= last.tv_usec)) && /* lower microsecond, and */ 132 ((last.tv_sec - sec) <= 5)) { /* not way back in time */ 133 sec = last.tv_sec; 134 usec = last.tv_usec + 1; 135 if (usec >= MICROSEC) { 136 usec -= MICROSEC; 137 sec++; 138 } 139 } 140 last.tv_sec = sec; 141 last.tv_usec = usec; 142 mutex_exit(&tod_lock); 143 144 tv->tv_sec = sec; 145 tv->tv_usec = usec; 146 } 147 148 /* 149 * Timestamps are exported from the kernel in several places. 150 * Such timestamps are commonly used for either uniqueness or for 151 * sequencing - truncation to 32-bits is fine for uniqueness, 152 * but sequencing is going to take more work as we get closer to 2038! 153 */ 154 void 155 uniqtime32(struct timeval32 *tv32p) 156 { 157 struct timeval tv; 158 159 uniqtime(&tv); 160 TIMEVAL_TO_TIMEVAL32(tv32p, &tv); 161 } 162 163 int 164 gettimeofday(struct timeval *tp) 165 { 166 struct timeval atv; 167 168 if (tp) { 169 uniqtime(&atv); 170 if (get_udatamodel() == DATAMODEL_NATIVE) { 171 if (copyout(&atv, tp, sizeof (atv))) 172 return (set_errno(EFAULT)); 173 } else { 174 struct timeval32 tv32; 175 176 if (TIMEVAL_OVERFLOW(&atv)) 177 return (set_errno(EOVERFLOW)); 178 TIMEVAL_TO_TIMEVAL32(&tv32, &atv); 179 180 if (copyout(&tv32, tp, sizeof (tv32))) 181 return (set_errno(EFAULT)); 182 } 183 } 184 return (0); 185 } 186 187 int 188 getitimer(uint_t which, struct itimerval *itv) 189 { 190 int error; 191 192 if (get_udatamodel() == DATAMODEL_NATIVE) 193 error = xgetitimer(which, itv, 0); 194 else { 195 struct itimerval kitv; 196 197 if ((error = xgetitimer(which, &kitv, 1)) == 0) { 198 if (ITIMERVAL_OVERFLOW(&kitv)) { 199 error = EOVERFLOW; 200 } else { 201 struct itimerval32 itv32; 202 203 ITIMERVAL_TO_ITIMERVAL32(&itv32, &kitv); 204 if (copyout(&itv32, itv, sizeof (itv32)) != 0) 205 error = EFAULT; 206 } 207 } 208 } 209 210 return (error ? (set_errno(error)) : 0); 211 } 212 213 int 214 xgetitimer(uint_t which, struct itimerval *itv, int iskaddr) 215 { 216 struct proc *p = curproc; 217 struct timeval now; 218 struct itimerval aitv; 219 hrtime_t ts, first, interval, remain; 220 221 mutex_enter(&p->p_lock); 222 223 switch (which) { 224 case ITIMER_VIRTUAL: 225 case ITIMER_PROF: 226 aitv = ttolwp(curthread)->lwp_timer[which]; 227 break; 228 229 case ITIMER_REAL: 230 uniqtime(&now); 231 aitv = p->p_realitimer; 232 233 if (timerisset(&aitv.it_value)) { 234 /*CSTYLED*/ 235 if (timercmp(&aitv.it_value, &now, <)) { 236 timerclear(&aitv.it_value); 237 } else { 238 timevalsub(&aitv.it_value, &now); 239 } 240 } 241 break; 242 243 case ITIMER_REALPROF: 244 if (curproc->p_rprof_cyclic == CYCLIC_NONE) { 245 bzero(&aitv, sizeof (aitv)); 246 break; 247 } 248 249 aitv = curproc->p_rprof_timer; 250 251 first = tv2hrt(&aitv.it_value); 252 interval = tv2hrt(&aitv.it_interval); 253 254 if ((ts = gethrtime()) < first) { 255 /* 256 * We haven't gone off for the first time; the time 257 * remaining is simply the first time we will go 258 * off minus the current time. 259 */ 260 remain = first - ts; 261 } else { 262 if (interval == 0) { 263 /* 264 * This was set as a one-shot, and we've 265 * already gone off; there is no time 266 * remaining. 267 */ 268 remain = 0; 269 } else { 270 /* 271 * We have a non-zero interval; we need to 272 * determine how far we are into the current 273 * interval, and subtract that from the 274 * interval to determine the time remaining. 275 */ 276 remain = interval - ((ts - first) % interval); 277 } 278 } 279 280 hrt2tv(remain, &aitv.it_value); 281 break; 282 283 default: 284 mutex_exit(&p->p_lock); 285 return (EINVAL); 286 } 287 288 mutex_exit(&p->p_lock); 289 290 if (iskaddr) { 291 bcopy(&aitv, itv, sizeof (*itv)); 292 } else { 293 ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 294 if (copyout(&aitv, itv, sizeof (*itv))) 295 return (EFAULT); 296 } 297 298 return (0); 299 } 300 301 302 int 303 setitimer(uint_t which, struct itimerval *itv, struct itimerval *oitv) 304 { 305 int error; 306 307 if (oitv != NULL) 308 if ((error = getitimer(which, oitv)) != 0) 309 return (error); 310 311 if (itv == NULL) 312 return (0); 313 314 if (get_udatamodel() == DATAMODEL_NATIVE) 315 error = xsetitimer(which, itv, 0); 316 else { 317 struct itimerval32 itv32; 318 struct itimerval kitv; 319 320 if (copyin(itv, &itv32, sizeof (itv32))) 321 error = EFAULT; 322 ITIMERVAL32_TO_ITIMERVAL(&kitv, &itv32); 323 error = xsetitimer(which, &kitv, 1); 324 } 325 326 return (error ? (set_errno(error)) : 0); 327 } 328 329 int 330 xsetitimer(uint_t which, struct itimerval *itv, int iskaddr) 331 { 332 struct itimerval aitv; 333 struct timeval now; 334 struct proc *p = curproc; 335 kthread_t *t; 336 timeout_id_t tmp_id; 337 cyc_handler_t hdlr; 338 cyc_time_t when; 339 cyclic_id_t cyclic; 340 hrtime_t ts; 341 int min; 342 343 if (itv == NULL) 344 return (0); 345 346 if (iskaddr) { 347 bcopy(itv, &aitv, sizeof (aitv)); 348 } else { 349 ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 350 if (copyin(itv, &aitv, sizeof (aitv))) 351 return (EFAULT); 352 } 353 354 if (which == ITIMER_REALPROF) { 355 min = MAX((int)(cyclic_getres() / (NANOSEC / MICROSEC)), 356 itimer_realprof_minimum); 357 } else { 358 min = usec_per_tick; 359 } 360 361 if (itimerfix(&aitv.it_value, min) || 362 (itimerfix(&aitv.it_interval, min) && timerisset(&aitv.it_value))) 363 return (EINVAL); 364 365 mutex_enter(&p->p_lock); 366 switch (which) { 367 case ITIMER_REAL: 368 /* 369 * The SITBUSY flag prevents conflicts with multiple 370 * threads attempting to perform setitimer(ITIMER_REAL) 371 * at the same time, even when we drop p->p_lock below. 372 * Any blocked thread returns successfully because the 373 * effect is the same as if it got here first, finished, 374 * and the other thread then came through and destroyed 375 * what it did. We are just protecting the system from 376 * malfunctioning due to the race condition. 377 */ 378 if (p->p_flag & SITBUSY) { 379 mutex_exit(&p->p_lock); 380 return (0); 381 } 382 p->p_flag |= SITBUSY; 383 while ((tmp_id = p->p_itimerid) != 0) { 384 /* 385 * Avoid deadlock in callout_delete (called from 386 * untimeout) which may go to sleep (while holding 387 * p_lock). Drop p_lock and re-acquire it after 388 * untimeout returns. Need to clear p_itimerid 389 * while holding p_lock. 390 */ 391 p->p_itimerid = 0; 392 mutex_exit(&p->p_lock); 393 (void) untimeout(tmp_id); 394 mutex_enter(&p->p_lock); 395 } 396 if (timerisset(&aitv.it_value)) { 397 uniqtime(&now); 398 timevaladd(&aitv.it_value, &now); 399 p->p_itimerid = realtime_timeout(realitexpire, 400 p, hzto(&aitv.it_value)); 401 } 402 p->p_realitimer = aitv; 403 p->p_flag &= ~SITBUSY; 404 break; 405 406 case ITIMER_REALPROF: 407 cyclic = p->p_rprof_cyclic; 408 p->p_rprof_cyclic = CYCLIC_NONE; 409 410 mutex_exit(&p->p_lock); 411 412 /* 413 * We're now going to acquire cpu_lock, remove the old cyclic 414 * if necessary, and add our new cyclic. 415 */ 416 mutex_enter(&cpu_lock); 417 418 if (cyclic != CYCLIC_NONE) 419 cyclic_remove(cyclic); 420 421 if (!timerisset(&aitv.it_value)) { 422 /* 423 * If we were passed a value of 0, we're done. 424 */ 425 mutex_exit(&cpu_lock); 426 return (0); 427 } 428 429 hdlr.cyh_func = realprofexpire; 430 hdlr.cyh_arg = p; 431 hdlr.cyh_level = CY_LOW_LEVEL; 432 433 when.cyt_when = (ts = gethrtime() + tv2hrt(&aitv.it_value)); 434 when.cyt_interval = tv2hrt(&aitv.it_interval); 435 436 if (when.cyt_interval == 0) { 437 /* 438 * Using the same logic as for CLOCK_HIGHRES timers, we 439 * set the interval to be INT64_MAX - when.cyt_when to 440 * effect a one-shot; see the comment in clock_highres.c 441 * for more details on why this works. 442 */ 443 when.cyt_interval = INT64_MAX - when.cyt_when; 444 } 445 446 cyclic = cyclic_add(&hdlr, &when); 447 448 mutex_exit(&cpu_lock); 449 450 /* 451 * We have now successfully added the cyclic. Reacquire 452 * p_lock, and see if anyone has snuck in. 453 */ 454 mutex_enter(&p->p_lock); 455 456 if (p->p_rprof_cyclic != CYCLIC_NONE) { 457 /* 458 * We're racing with another thread establishing an 459 * ITIMER_REALPROF interval timer. We'll let the other 460 * thread win (this is a race at the application level, 461 * so letting the other thread win is acceptable). 462 */ 463 mutex_exit(&p->p_lock); 464 mutex_enter(&cpu_lock); 465 cyclic_remove(cyclic); 466 mutex_exit(&cpu_lock); 467 468 return (0); 469 } 470 471 /* 472 * Success. Set our tracking variables in the proc structure, 473 * cancel any outstanding ITIMER_PROF, and allocate the 474 * per-thread SIGPROF buffers, if possible. 475 */ 476 hrt2tv(ts, &aitv.it_value); 477 p->p_rprof_timer = aitv; 478 p->p_rprof_cyclic = cyclic; 479 480 t = p->p_tlist; 481 do { 482 struct itimerval *itvp; 483 484 itvp = &ttolwp(t)->lwp_timer[ITIMER_PROF]; 485 timerclear(&itvp->it_interval); 486 timerclear(&itvp->it_value); 487 488 if (t->t_rprof != NULL) 489 continue; 490 491 t->t_rprof = 492 kmem_zalloc(sizeof (struct rprof), KM_NOSLEEP); 493 aston(t); 494 } while ((t = t->t_forw) != p->p_tlist); 495 496 break; 497 498 case ITIMER_VIRTUAL: 499 ttolwp(curthread)->lwp_timer[ITIMER_VIRTUAL] = aitv; 500 break; 501 502 case ITIMER_PROF: 503 if (p->p_rprof_cyclic != CYCLIC_NONE) { 504 /* 505 * Silently ignore ITIMER_PROF if ITIMER_REALPROF 506 * is in effect. 507 */ 508 break; 509 } 510 511 ttolwp(curthread)->lwp_timer[ITIMER_PROF] = aitv; 512 break; 513 514 default: 515 mutex_exit(&p->p_lock); 516 return (EINVAL); 517 } 518 mutex_exit(&p->p_lock); 519 return (0); 520 } 521 522 /* 523 * Delete the ITIMER_REALPROF interval timer. 524 * Called only from exec_args() when exec occurs. 525 * The other ITIMER_* interval timers are specified 526 * to be inherited across exec(), so leave them alone. 527 */ 528 void 529 delete_itimer_realprof(void) 530 { 531 kthread_t *t = curthread; 532 struct proc *p = ttoproc(t); 533 klwp_t *lwp = ttolwp(t); 534 cyclic_id_t cyclic; 535 536 mutex_enter(&p->p_lock); 537 538 /* we are performing execve(); assert we are single-threaded */ 539 ASSERT(t == p->p_tlist && t == t->t_forw); 540 541 if ((cyclic = p->p_rprof_cyclic) == CYCLIC_NONE) { 542 mutex_exit(&p->p_lock); 543 } else { 544 p->p_rprof_cyclic = CYCLIC_NONE; 545 /* 546 * Delete any current instance of SIGPROF. 547 */ 548 if (lwp->lwp_cursig == SIGPROF) { 549 lwp->lwp_cursig = 0; 550 lwp->lwp_extsig = 0; 551 if (lwp->lwp_curinfo) { 552 siginfofree(lwp->lwp_curinfo); 553 lwp->lwp_curinfo = NULL; 554 } 555 } 556 /* 557 * Delete any pending instances of SIGPROF. 558 */ 559 sigdelset(&p->p_sig, SIGPROF); 560 sigdelset(&p->p_extsig, SIGPROF); 561 sigdelq(p, NULL, SIGPROF); 562 sigdelset(&t->t_sig, SIGPROF); 563 sigdelset(&t->t_extsig, SIGPROF); 564 sigdelq(p, t, SIGPROF); 565 566 mutex_exit(&p->p_lock); 567 568 /* 569 * Remove the ITIMER_REALPROF cyclic. 570 */ 571 mutex_enter(&cpu_lock); 572 cyclic_remove(cyclic); 573 mutex_exit(&cpu_lock); 574 } 575 } 576 577 /* 578 * Real interval timer expired: 579 * send process whose timer expired an alarm signal. 580 * If time is not set up to reload, then just return. 581 * Else compute next time timer should go off which is > current time. 582 * This is where delay in processing this timeout causes multiple 583 * SIGALRM calls to be compressed into one. 584 */ 585 static void 586 realitexpire(void *arg) 587 { 588 struct proc *p = arg; 589 struct timeval *valp = &p->p_realitimer.it_value; 590 struct timeval *intervalp = &p->p_realitimer.it_interval; 591 #if !defined(_LP64) 592 clock_t ticks; 593 #endif 594 595 mutex_enter(&p->p_lock); 596 #if !defined(_LP64) 597 if ((ticks = hzto(valp)) > 1) { 598 /* 599 * If we are executing before we were meant to, it must be 600 * because of an overflow in a prior hzto() calculation. 601 * In this case, we want to go to sleep for the recalculated 602 * number of ticks. For the special meaning of the value "1" 603 * see comment in timespectohz(). 604 */ 605 p->p_itimerid = realtime_timeout(realitexpire, p, ticks); 606 mutex_exit(&p->p_lock); 607 return; 608 } 609 #endif 610 sigtoproc(p, NULL, SIGALRM); 611 if (!timerisset(intervalp)) { 612 timerclear(valp); 613 p->p_itimerid = 0; 614 } else { 615 /* advance timer value past current time */ 616 timeval_advance(valp, intervalp); 617 p->p_itimerid = realtime_timeout(realitexpire, p, hzto(valp)); 618 } 619 mutex_exit(&p->p_lock); 620 } 621 622 /* 623 * Real time profiling interval timer expired: 624 * Increment microstate counters for each lwp in the process 625 * and ensure that running lwps are kicked into the kernel. 626 * If time is not set up to reload, then just return. 627 * Else compute next time timer should go off which is > current time, 628 * as above. 629 */ 630 static void 631 realprofexpire(void *arg) 632 { 633 struct proc *p = arg; 634 kthread_t *t; 635 636 mutex_enter(&p->p_lock); 637 if (p->p_rprof_cyclic == CYCLIC_NONE || 638 (t = p->p_tlist) == NULL) { 639 mutex_exit(&p->p_lock); 640 return; 641 } 642 do { 643 int mstate; 644 645 /* 646 * Attempt to allocate the SIGPROF buffer, but don't sleep. 647 */ 648 if (t->t_rprof == NULL) 649 t->t_rprof = kmem_zalloc(sizeof (struct rprof), 650 KM_NOSLEEP); 651 if (t->t_rprof == NULL) 652 continue; 653 654 thread_lock(t); 655 switch (t->t_state) { 656 case TS_SLEEP: 657 /* 658 * Don't touch the lwp is it is swapped out. 659 */ 660 if (!(t->t_schedflag & TS_LOAD)) { 661 mstate = LMS_SLEEP; 662 break; 663 } 664 switch (mstate = ttolwp(t)->lwp_mstate.ms_prev) { 665 case LMS_TFAULT: 666 case LMS_DFAULT: 667 case LMS_KFAULT: 668 case LMS_USER_LOCK: 669 break; 670 default: 671 mstate = LMS_SLEEP; 672 break; 673 } 674 break; 675 case TS_RUN: 676 case TS_WAIT: 677 mstate = LMS_WAIT_CPU; 678 break; 679 case TS_ONPROC: 680 switch (mstate = t->t_mstate) { 681 case LMS_USER: 682 case LMS_SYSTEM: 683 case LMS_TRAP: 684 break; 685 default: 686 mstate = LMS_SYSTEM; 687 break; 688 } 689 break; 690 default: 691 mstate = t->t_mstate; 692 break; 693 } 694 t->t_rprof->rp_anystate = 1; 695 t->t_rprof->rp_state[mstate]++; 696 aston(t); 697 /* 698 * force the thread into the kernel 699 * if it is not already there. 700 */ 701 if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 702 poke_cpu(t->t_cpu->cpu_id); 703 thread_unlock(t); 704 } while ((t = t->t_forw) != p->p_tlist); 705 706 mutex_exit(&p->p_lock); 707 } 708 709 /* 710 * Advances timer value past the current time of day. See the detailed 711 * comment for this logic in realitsexpire(), above. 712 */ 713 static void 714 timeval_advance(struct timeval *valp, struct timeval *intervalp) 715 { 716 int cnt2nth; 717 struct timeval interval2nth; 718 719 for (;;) { 720 interval2nth = *intervalp; 721 for (cnt2nth = 0; ; cnt2nth++) { 722 timevaladd(valp, &interval2nth); 723 /*CSTYLED*/ 724 if (TVTSCMP(valp, &hrestime, >)) 725 break; 726 timevaladd(&interval2nth, &interval2nth); 727 } 728 if (cnt2nth == 0) 729 break; 730 timevalsub(valp, &interval2nth); 731 } 732 } 733 734 /* 735 * Check that a proposed value to load into the .it_value or .it_interval 736 * part of an interval timer is acceptable, and set it to at least a 737 * specified minimal value. 738 */ 739 int 740 itimerfix(struct timeval *tv, int minimum) 741 { 742 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 743 tv->tv_usec < 0 || tv->tv_usec >= MICROSEC) 744 return (EINVAL); 745 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < minimum) 746 tv->tv_usec = minimum; 747 return (0); 748 } 749 750 /* 751 * Same as itimerfix, except a) it takes a timespec instead of a timeval and 752 * b) it doesn't truncate based on timeout granularity; consumers of this 753 * interface (e.g. timer_settime()) depend on the passed timespec not being 754 * modified implicitly. 755 */ 756 int 757 itimerspecfix(timespec_t *tv) 758 { 759 if (tv->tv_sec < 0 || tv->tv_nsec < 0 || tv->tv_nsec >= NANOSEC) 760 return (EINVAL); 761 return (0); 762 } 763 764 /* 765 * Decrement an interval timer by a specified number 766 * of microseconds, which must be less than a second, 767 * i.e. < 1000000. If the timer expires, then reload 768 * it. In this case, carry over (usec - old value) to 769 * reducint the value reloaded into the timer so that 770 * the timer does not drift. This routine assumes 771 * that it is called in a context where the timers 772 * on which it is operating cannot change in value. 773 */ 774 int 775 itimerdecr(struct itimerval *itp, int usec) 776 { 777 if (itp->it_value.tv_usec < usec) { 778 if (itp->it_value.tv_sec == 0) { 779 /* expired, and already in next interval */ 780 usec -= itp->it_value.tv_usec; 781 goto expire; 782 } 783 itp->it_value.tv_usec += MICROSEC; 784 itp->it_value.tv_sec--; 785 } 786 itp->it_value.tv_usec -= usec; 787 usec = 0; 788 if (timerisset(&itp->it_value)) 789 return (1); 790 /* expired, exactly at end of interval */ 791 expire: 792 if (timerisset(&itp->it_interval)) { 793 itp->it_value = itp->it_interval; 794 itp->it_value.tv_usec -= usec; 795 if (itp->it_value.tv_usec < 0) { 796 itp->it_value.tv_usec += MICROSEC; 797 itp->it_value.tv_sec--; 798 } 799 } else 800 itp->it_value.tv_usec = 0; /* sec is already 0 */ 801 return (0); 802 } 803 804 /* 805 * Add and subtract routines for timevals. 806 * N.B.: subtract routine doesn't deal with 807 * results which are before the beginning, 808 * it just gets very confused in this case. 809 * Caveat emptor. 810 */ 811 void 812 timevaladd(struct timeval *t1, struct timeval *t2) 813 { 814 t1->tv_sec += t2->tv_sec; 815 t1->tv_usec += t2->tv_usec; 816 timevalfix(t1); 817 } 818 819 void 820 timevalsub(struct timeval *t1, struct timeval *t2) 821 { 822 t1->tv_sec -= t2->tv_sec; 823 t1->tv_usec -= t2->tv_usec; 824 timevalfix(t1); 825 } 826 827 void 828 timevalfix(struct timeval *t1) 829 { 830 if (t1->tv_usec < 0) { 831 t1->tv_sec--; 832 t1->tv_usec += MICROSEC; 833 } 834 if (t1->tv_usec >= MICROSEC) { 835 t1->tv_sec++; 836 t1->tv_usec -= MICROSEC; 837 } 838 } 839 840 /* 841 * Same as the routines above. These routines take a timespec instead 842 * of a timeval. 843 */ 844 void 845 timespecadd(timespec_t *t1, timespec_t *t2) 846 { 847 t1->tv_sec += t2->tv_sec; 848 t1->tv_nsec += t2->tv_nsec; 849 timespecfix(t1); 850 } 851 852 void 853 timespecsub(timespec_t *t1, timespec_t *t2) 854 { 855 t1->tv_sec -= t2->tv_sec; 856 t1->tv_nsec -= t2->tv_nsec; 857 timespecfix(t1); 858 } 859 860 void 861 timespecfix(timespec_t *t1) 862 { 863 if (t1->tv_nsec < 0) { 864 t1->tv_sec--; 865 t1->tv_nsec += NANOSEC; 866 } else { 867 if (t1->tv_nsec >= NANOSEC) { 868 t1->tv_sec++; 869 t1->tv_nsec -= NANOSEC; 870 } 871 } 872 } 873 874 /* 875 * Compute number of hz until specified time. 876 * Used to compute third argument to timeout() from an absolute time. 877 */ 878 clock_t 879 hzto(struct timeval *tv) 880 { 881 timespec_t ts, now; 882 883 ts.tv_sec = tv->tv_sec; 884 ts.tv_nsec = tv->tv_usec * 1000; 885 gethrestime_lasttick(&now); 886 887 return (timespectohz(&ts, now)); 888 } 889 890 /* 891 * Compute number of hz until specified time for a given timespec value. 892 * Used to compute third argument to timeout() from an absolute time. 893 */ 894 clock_t 895 timespectohz(timespec_t *tv, timespec_t now) 896 { 897 clock_t ticks; 898 time_t sec; 899 int nsec; 900 901 /* 902 * Compute number of ticks we will see between now and 903 * the target time; returns "1" if the destination time 904 * is before the next tick, so we always get some delay, 905 * and returns LONG_MAX ticks if we would overflow. 906 */ 907 sec = tv->tv_sec - now.tv_sec; 908 nsec = tv->tv_nsec - now.tv_nsec + nsec_per_tick - 1; 909 910 if (nsec < 0) { 911 sec--; 912 nsec += NANOSEC; 913 } else if (nsec >= NANOSEC) { 914 sec++; 915 nsec -= NANOSEC; 916 } 917 918 ticks = NSEC_TO_TICK(nsec); 919 920 /* 921 * Compute ticks, accounting for negative and overflow as above. 922 * Overflow protection kicks in at about 70 weeks for hz=50 923 * and at about 35 weeks for hz=100. (Rather longer for the 64-bit 924 * kernel :-) 925 */ 926 if (sec < 0 || (sec == 0 && ticks < 1)) 927 ticks = 1; /* protect vs nonpositive */ 928 else if (sec > (LONG_MAX - ticks) / hz) 929 ticks = LONG_MAX; /* protect vs overflow */ 930 else 931 ticks += sec * hz; /* common case */ 932 933 return (ticks); 934 } 935 936 /* 937 * Compute number of hz with the timespec tv specified. 938 * The return type must be 64 bit integer. 939 */ 940 int64_t 941 timespectohz64(timespec_t *tv) 942 { 943 int64_t ticks; 944 int64_t sec; 945 int64_t nsec; 946 947 sec = tv->tv_sec; 948 nsec = tv->tv_nsec + nsec_per_tick - 1; 949 950 if (nsec < 0) { 951 sec--; 952 nsec += NANOSEC; 953 } else if (nsec >= NANOSEC) { 954 sec++; 955 nsec -= NANOSEC; 956 } 957 958 ticks = NSEC_TO_TICK(nsec); 959 960 /* 961 * Compute ticks, accounting for negative and overflow as above. 962 * Overflow protection kicks in at about 70 weeks for hz=50 963 * and at about 35 weeks for hz=100. (Rather longer for the 64-bit 964 * kernel 965 */ 966 if (sec < 0 || (sec == 0 && ticks < 1)) 967 ticks = 1; /* protect vs nonpositive */ 968 else if (sec > (((~0ULL) >> 1) - ticks) / hz) 969 ticks = (~0ULL) >> 1; /* protect vs overflow */ 970 else 971 ticks += sec * hz; /* common case */ 972 973 return (ticks); 974 } 975 976 /* 977 * hrt2ts(): convert from hrtime_t to timestruc_t. 978 * 979 * All this routine really does is: 980 * 981 * tsp->sec = hrt / NANOSEC; 982 * tsp->nsec = hrt % NANOSEC; 983 * 984 * The black magic below avoids doing a 64-bit by 32-bit integer divide, 985 * which is quite expensive. There's actually much more going on here than 986 * it might first appear -- don't try this at home. 987 * 988 * For the adventuresome, here's an explanation of how it works. 989 * 990 * Multiplication by a fixed constant is easy -- you just do the appropriate 991 * shifts and adds. For example, to multiply by 10, we observe that 992 * 993 * x * 10 = x * (8 + 2) 994 * = (x * 8) + (x * 2) 995 * = (x << 3) + (x << 1). 996 * 997 * In general, you can read the algorithm right off the bits: the number 10 998 * is 1010 in binary; bits 1 and 3 are ones, so x * 10 = (x << 1) + (x << 3). 999 * 1000 * Sometimes you can do better. For example, 15 is 1111 binary, so the normal 1001 * shift/add computation is x * 15 = (x << 0) + (x << 1) + (x << 2) + (x << 3). 1002 * But, it's cheaper if you capitalize on the fact that you have a run of ones: 1003 * 1111 = 10000 - 1, hence x * 15 = (x << 4) - (x << 0). [You would never 1004 * actually perform the operation << 0, since it's a no-op; I'm just writing 1005 * it that way for clarity.] 1006 * 1007 * The other way you can win is if you get lucky with the prime factorization 1008 * of your constant. The number 1,000,000,000, which we have to multiply 1009 * by below, is a good example. One billion is 111011100110101100101000000000 1010 * in binary. If you apply the bit-grouping trick, it doesn't buy you very 1011 * much, because it's only a win for groups of three or more equal bits: 1012 * 1013 * 111011100110101100101000000000 = 1000000000000000000000000000000 1014 * - 000100011001010011011000000000 1015 * 1016 * Thus, instead of the 13 shift/add pairs (26 operations) implied by the LHS, 1017 * we have reduced this to 10 shift/add pairs (20 operations) on the RHS. 1018 * This is better, but not great. 1019 * 1020 * However, we can factor 1,000,000,000 = 2^9 * 5^9 = 2^9 * 125 * 125 * 125, 1021 * and multiply by each factor. Multiplication by 125 is particularly easy, 1022 * since 128 is nearby: x * 125 = (x << 7) - x - x - x, which is just four 1023 * operations. So, to multiply by 1,000,000,000, we perform three multipli- 1024 * cations by 125, then << 9, a total of only 3 * 4 + 1 = 13 operations. 1025 * This is the algorithm we actually use in both hrt2ts() and ts2hrt(). 1026 * 1027 * Division is harder; there is no equivalent of the simple shift-add algorithm 1028 * we used for multiplication. However, we can convert the division problem 1029 * into a multiplication problem by pre-computing the binary representation 1030 * of the reciprocal of the divisor. For the case of interest, we have 1031 * 1032 * 1 / 1,000,000,000 = 1.0001001011100000101111101000001B-30, 1033 * 1034 * to 32 bits of precision. (The notation B-30 means "* 2^-30", just like 1035 * E-18 means "* 10^-18".) 1036 * 1037 * So, to compute x / 1,000,000,000, we just multiply x by the 32-bit 1038 * integer 10001001011100000101111101000001, then normalize (shift) the 1039 * result. This constant has several large bits runs, so the multiply 1040 * is relatively cheap: 1041 * 1042 * 10001001011100000101111101000001 = 10001001100000000110000001000001 1043 * - 00000000000100000000000100000000 1044 * 1045 * Again, you can just read the algorithm right off the bits: 1046 * 1047 * sec = hrt; 1048 * sec += (hrt << 6); 1049 * sec -= (hrt << 8); 1050 * sec += (hrt << 13); 1051 * sec += (hrt << 14); 1052 * sec -= (hrt << 20); 1053 * sec += (hrt << 23); 1054 * sec += (hrt << 24); 1055 * sec += (hrt << 27); 1056 * sec += (hrt << 31); 1057 * sec >>= (32 + 30); 1058 * 1059 * Voila! The only problem is, since hrt is 64 bits, we need to use 96-bit 1060 * arithmetic to perform this calculation. That's a waste, because ultimately 1061 * we only need the highest 32 bits of the result. 1062 * 1063 * The first thing we do is to realize that we don't need to use all of hrt 1064 * in the calculation. The lowest 30 bits can contribute at most 1 to the 1065 * quotient (2^30 / 1,000,000,000 = 1.07...), so we'll deal with them later. 1066 * The highest 2 bits have to be zero, or hrt won't fit in a timestruc_t. 1067 * Thus, the only bits of hrt that matter for division are bits 30..61. 1068 * These 32 bits are just the lower-order word of (hrt >> 30). This brings 1069 * us down from 96-bit math to 64-bit math, and our algorithm becomes: 1070 * 1071 * tmp = (uint32_t) (hrt >> 30); 1072 * sec = tmp; 1073 * sec += (tmp << 6); 1074 * sec -= (tmp << 8); 1075 * sec += (tmp << 13); 1076 * sec += (tmp << 14); 1077 * sec -= (tmp << 20); 1078 * sec += (tmp << 23); 1079 * sec += (tmp << 24); 1080 * sec += (tmp << 27); 1081 * sec += (tmp << 31); 1082 * sec >>= 32; 1083 * 1084 * Next, we're going to reduce this 64-bit computation to a 32-bit 1085 * computation. We begin by rewriting the above algorithm to use relative 1086 * shifts instead of absolute shifts. That is, instead of computing 1087 * tmp << 6, tmp << 8, tmp << 13, etc, we'll just shift incrementally: 1088 * tmp <<= 6, tmp <<= 2 (== 8 - 6), tmp <<= 5 (== 13 - 8), etc: 1089 * 1090 * tmp = (uint32_t) (hrt >> 30); 1091 * sec = tmp; 1092 * tmp <<= 6; sec += tmp; 1093 * tmp <<= 2; sec -= tmp; 1094 * tmp <<= 5; sec += tmp; 1095 * tmp <<= 1; sec += tmp; 1096 * tmp <<= 6; sec -= tmp; 1097 * tmp <<= 3; sec += tmp; 1098 * tmp <<= 1; sec += tmp; 1099 * tmp <<= 3; sec += tmp; 1100 * tmp <<= 4; sec += tmp; 1101 * sec >>= 32; 1102 * 1103 * Now for the final step. Instead of throwing away the low 32 bits at 1104 * the end, we can throw them away as we go, only keeping the high 32 bits 1105 * of the product at each step. So, for example, where we now have 1106 * 1107 * tmp <<= 6; sec = sec + tmp; 1108 * we will instead have 1109 * tmp <<= 6; sec = (sec + tmp) >> 6; 1110 * which is equivalent to 1111 * sec = (sec >> 6) + tmp; 1112 * 1113 * The final shift ("sec >>= 32") goes away. 1114 * 1115 * All we're really doing here is long multiplication, just like we learned in 1116 * grade school, except that at each step, we only look at the leftmost 32 1117 * columns. The cumulative error is, at most, the sum of all the bits we 1118 * throw away, which is 2^-32 + 2^-31 + ... + 2^-2 + 2^-1 == 1 - 2^-32. 1119 * Thus, the final result ("sec") is correct to +/- 1. 1120 * 1121 * It turns out to be important to keep "sec" positive at each step, because 1122 * we don't want to have to explicitly extend the sign bit. Therefore, 1123 * starting with the last line of code above, each line that would have read 1124 * "sec = (sec >> n) - tmp" must be changed to "sec = tmp - (sec >> n)", and 1125 * the operators (+ or -) in all previous lines must be toggled accordingly. 1126 * Thus, we end up with: 1127 * 1128 * tmp = (uint32_t) (hrt >> 30); 1129 * sec = tmp + (sec >> 6); 1130 * sec = tmp - (tmp >> 2); 1131 * sec = tmp - (sec >> 5); 1132 * sec = tmp + (sec >> 1); 1133 * sec = tmp - (sec >> 6); 1134 * sec = tmp - (sec >> 3); 1135 * sec = tmp + (sec >> 1); 1136 * sec = tmp + (sec >> 3); 1137 * sec = tmp + (sec >> 4); 1138 * 1139 * This yields a value for sec that is accurate to +1/-1, so we have two 1140 * cases to deal with. The mysterious-looking "+ 7" in the code below biases 1141 * the rounding toward zero, so that sec is always less than or equal to 1142 * the correct value. With this modified code, sec is accurate to +0/-2, with 1143 * the -2 case being very rare in practice. With this change, we only have to 1144 * deal with one case (sec too small) in the cleanup code. 1145 * 1146 * The other modification we make is to delete the second line above 1147 * ("sec = tmp + (sec >> 6);"), since it only has an effect when bit 31 is 1148 * set, and the cleanup code can handle that rare case. This reduces the 1149 * *guaranteed* accuracy of sec to +0/-3, but speeds up the common cases. 1150 * 1151 * Finally, we compute nsec = hrt - (sec * 1,000,000,000). nsec will always 1152 * be positive (since sec is never too large), and will at most be equal to 1153 * the error in sec (times 1,000,000,000) plus the low-order 30 bits of hrt. 1154 * Thus, nsec < 3 * 1,000,000,000 + 2^30, which is less than 2^32, so we can 1155 * safely assume that nsec fits in 32 bits. Consequently, when we compute 1156 * sec * 1,000,000,000, we only need the low 32 bits, so we can just do 32-bit 1157 * arithmetic and let the high-order bits fall off the end. 1158 * 1159 * Since nsec < 3 * 1,000,000,000 + 2^30 == 4,073,741,824, the cleanup loop: 1160 * 1161 * while (nsec >= NANOSEC) { 1162 * nsec -= NANOSEC; 1163 * sec++; 1164 * } 1165 * 1166 * is guaranteed to complete in at most 4 iterations. In practice, the loop 1167 * completes in 0 or 1 iteration over 95% of the time. 1168 * 1169 * On an SS2, this implementation of hrt2ts() takes 1.7 usec, versus about 1170 * 35 usec for software division -- about 20 times faster. 1171 */ 1172 void 1173 hrt2ts(hrtime_t hrt, timestruc_t *tsp) 1174 { 1175 uint32_t sec, nsec, tmp; 1176 1177 tmp = (uint32_t)(hrt >> 30); 1178 sec = tmp - (tmp >> 2); 1179 sec = tmp - (sec >> 5); 1180 sec = tmp + (sec >> 1); 1181 sec = tmp - (sec >> 6) + 7; 1182 sec = tmp - (sec >> 3); 1183 sec = tmp + (sec >> 1); 1184 sec = tmp + (sec >> 3); 1185 sec = tmp + (sec >> 4); 1186 tmp = (sec << 7) - sec - sec - sec; 1187 tmp = (tmp << 7) - tmp - tmp - tmp; 1188 tmp = (tmp << 7) - tmp - tmp - tmp; 1189 nsec = (uint32_t)hrt - (tmp << 9); 1190 while (nsec >= NANOSEC) { 1191 nsec -= NANOSEC; 1192 sec++; 1193 } 1194 tsp->tv_sec = (time_t)sec; 1195 tsp->tv_nsec = nsec; 1196 } 1197 1198 /* 1199 * Convert from timestruc_t to hrtime_t. 1200 * 1201 * The code below is equivalent to: 1202 * 1203 * hrt = tsp->tv_sec * NANOSEC + tsp->tv_nsec; 1204 * 1205 * but requires no integer multiply. 1206 */ 1207 hrtime_t 1208 ts2hrt(const timestruc_t *tsp) 1209 { 1210 hrtime_t hrt; 1211 1212 hrt = tsp->tv_sec; 1213 hrt = (hrt << 7) - hrt - hrt - hrt; 1214 hrt = (hrt << 7) - hrt - hrt - hrt; 1215 hrt = (hrt << 7) - hrt - hrt - hrt; 1216 hrt = (hrt << 9) + tsp->tv_nsec; 1217 return (hrt); 1218 } 1219 1220 /* 1221 * For the various 32-bit "compatibility" paths in the system. 1222 */ 1223 void 1224 hrt2ts32(hrtime_t hrt, timestruc32_t *ts32p) 1225 { 1226 timestruc_t ts; 1227 1228 hrt2ts(hrt, &ts); 1229 TIMESPEC_TO_TIMESPEC32(ts32p, &ts); 1230 } 1231 1232 /* 1233 * If this ever becomes performance critical (ha!), we can borrow the 1234 * code from ts2hrt(), above, to multiply tv_sec by 1,000,000 and the 1235 * straightforward (x << 10) - (x << 5) + (x << 3) to multiply tv_usec by 1236 * 1,000. For now, we'll opt for readability (besides, the compiler does 1237 * a passable job of optimizing constant multiplication into shifts and adds). 1238 */ 1239 hrtime_t 1240 tv2hrt(struct timeval *tvp) 1241 { 1242 return ((hrtime_t)tvp->tv_sec * NANOSEC + 1243 (hrtime_t)tvp->tv_usec * (NANOSEC / MICROSEC)); 1244 } 1245 1246 void 1247 hrt2tv(hrtime_t hrt, struct timeval *tvp) 1248 { 1249 uint32_t sec, nsec, tmp; 1250 uint32_t q, r, t; 1251 1252 tmp = (uint32_t)(hrt >> 30); 1253 sec = tmp - (tmp >> 2); 1254 sec = tmp - (sec >> 5); 1255 sec = tmp + (sec >> 1); 1256 sec = tmp - (sec >> 6) + 7; 1257 sec = tmp - (sec >> 3); 1258 sec = tmp + (sec >> 1); 1259 sec = tmp + (sec >> 3); 1260 sec = tmp + (sec >> 4); 1261 tmp = (sec << 7) - sec - sec - sec; 1262 tmp = (tmp << 7) - tmp - tmp - tmp; 1263 tmp = (tmp << 7) - tmp - tmp - tmp; 1264 nsec = (uint32_t)hrt - (tmp << 9); 1265 while (nsec >= NANOSEC) { 1266 nsec -= NANOSEC; 1267 sec++; 1268 } 1269 tvp->tv_sec = (time_t)sec; 1270 /* 1271 * this routine is very similar to hr2ts, but requires microseconds 1272 * instead of nanoseconds, so an interger divide by 1000 routine 1273 * completes the conversion 1274 */ 1275 t = (nsec >> 7) + (nsec >> 8) + (nsec >> 12); 1276 q = (nsec >> 1) + t + (nsec >> 15) + (t >> 11) + (t >> 14); 1277 q = q >> 9; 1278 r = nsec - q*1000; 1279 tvp->tv_usec = q + ((r + 24) >> 10); 1280 1281 } 1282 1283 int 1284 nanosleep(timespec_t *rqtp, timespec_t *rmtp) 1285 { 1286 timespec_t rqtime; 1287 timespec_t rmtime; 1288 timespec_t now; 1289 int timecheck; 1290 int ret = 1; 1291 model_t datamodel = get_udatamodel(); 1292 1293 timecheck = timechanged; 1294 gethrestime(&now); 1295 1296 if (datamodel == DATAMODEL_NATIVE) { 1297 if (copyin(rqtp, &rqtime, sizeof (rqtime))) 1298 return (set_errno(EFAULT)); 1299 } else { 1300 timespec32_t rqtime32; 1301 1302 if (copyin(rqtp, &rqtime32, sizeof (rqtime32))) 1303 return (set_errno(EFAULT)); 1304 TIMESPEC32_TO_TIMESPEC(&rqtime, &rqtime32); 1305 } 1306 1307 if (rqtime.tv_sec < 0 || rqtime.tv_nsec < 0 || 1308 rqtime.tv_nsec >= NANOSEC) 1309 return (set_errno(EINVAL)); 1310 1311 if (timerspecisset(&rqtime)) { 1312 timespecadd(&rqtime, &now); 1313 mutex_enter(&curthread->t_delay_lock); 1314 while ((ret = cv_waituntil_sig(&curthread->t_delay_cv, 1315 &curthread->t_delay_lock, &rqtime, timecheck)) > 0) 1316 continue; 1317 mutex_exit(&curthread->t_delay_lock); 1318 } 1319 1320 if (rmtp) { 1321 /* 1322 * If cv_waituntil_sig() returned due to a signal, and 1323 * there is time remaining, then set the time remaining. 1324 * Else set time remaining to zero 1325 */ 1326 rmtime.tv_sec = rmtime.tv_nsec = 0; 1327 if (ret == 0) { 1328 timespec_t delta = rqtime; 1329 1330 gethrestime(&now); 1331 timespecsub(&delta, &now); 1332 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 1333 delta.tv_nsec > 0)) 1334 rmtime = delta; 1335 } 1336 1337 if (datamodel == DATAMODEL_NATIVE) { 1338 if (copyout(&rmtime, rmtp, sizeof (rmtime))) 1339 return (set_errno(EFAULT)); 1340 } else { 1341 timespec32_t rmtime32; 1342 1343 TIMESPEC_TO_TIMESPEC32(&rmtime32, &rmtime); 1344 if (copyout(&rmtime32, rmtp, sizeof (rmtime32))) 1345 return (set_errno(EFAULT)); 1346 } 1347 } 1348 1349 if (ret == 0) 1350 return (set_errno(EINTR)); 1351 return (0); 1352 } 1353 1354 /* 1355 * Routines to convert standard UNIX time (seconds since Jan 1, 1970) 1356 * into year/month/day/hour/minute/second format, and back again. 1357 * Note: these routines require tod_lock held to protect cached state. 1358 */ 1359 static int days_thru_month[64] = { 1360 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366, 0, 0, 1361 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1362 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1363 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1364 }; 1365 1366 todinfo_t saved_tod; 1367 int saved_utc = -60; 1368 1369 todinfo_t 1370 utc_to_tod(time_t utc) 1371 { 1372 long dse, day, month, year; 1373 todinfo_t tod; 1374 1375 ASSERT(MUTEX_HELD(&tod_lock)); 1376 1377 /* 1378 * Note that tod_set_prev() assumes utc will be set to zero in 1379 * the case of it being negative. Consequently, any change made 1380 * to this behavior would have to be reflected in that function 1381 * as well. 1382 */ 1383 if (utc < 0) /* should never happen */ 1384 utc = 0; 1385 1386 saved_tod.tod_sec += utc - saved_utc; 1387 saved_utc = utc; 1388 if (saved_tod.tod_sec >= 0 && saved_tod.tod_sec < 60) 1389 return (saved_tod); /* only the seconds changed */ 1390 1391 dse = utc / 86400; /* days since epoch */ 1392 1393 tod.tod_sec = utc % 60; 1394 tod.tod_min = (utc % 3600) / 60; 1395 tod.tod_hour = (utc % 86400) / 3600; 1396 tod.tod_dow = (dse + 4) % 7 + 1; /* epoch was a Thursday */ 1397 1398 year = dse / 365 + 72; /* first guess -- always a bit too large */ 1399 do { 1400 year--; 1401 day = dse - 365 * (year - 70) - ((year - 69) >> 2); 1402 } while (day < 0); 1403 1404 month = ((year & 3) << 4) + 1; 1405 while (day >= days_thru_month[month + 1]) 1406 month++; 1407 1408 tod.tod_day = day - days_thru_month[month] + 1; 1409 tod.tod_month = month & 15; 1410 tod.tod_year = year; 1411 1412 saved_tod = tod; 1413 return (tod); 1414 } 1415 1416 time_t 1417 tod_to_utc(todinfo_t tod) 1418 { 1419 time_t utc; 1420 int year = tod.tod_year; 1421 int month = tod.tod_month + ((year & 3) << 4); 1422 #ifdef DEBUG 1423 /* only warn once, not each time called */ 1424 static int year_warn = 1; 1425 static int month_warn = 1; 1426 static int day_warn = 1; 1427 static int hour_warn = 1; 1428 static int min_warn = 1; 1429 static int sec_warn = 1; 1430 int days_diff = days_thru_month[month + 1] - days_thru_month[month]; 1431 #endif 1432 1433 ASSERT(MUTEX_HELD(&tod_lock)); 1434 1435 #ifdef DEBUG 1436 if (year_warn && (year < 70 || year > 8029)) { 1437 cmn_err(CE_WARN, 1438 "The hardware real-time clock appears to have the " 1439 "wrong years value %d -- time needs to be reset\n", 1440 year); 1441 year_warn = 0; 1442 } 1443 1444 if (month_warn && (tod.tod_month < 1 || tod.tod_month > 12)) { 1445 cmn_err(CE_WARN, 1446 "The hardware real-time clock appears to have the " 1447 "wrong months value %d -- time needs to be reset\n", 1448 tod.tod_month); 1449 month_warn = 0; 1450 } 1451 1452 if (day_warn && (tod.tod_day < 1 || tod.tod_day > days_diff)) { 1453 cmn_err(CE_WARN, 1454 "The hardware real-time clock appears to have the " 1455 "wrong days value %d -- time needs to be reset\n", 1456 tod.tod_day); 1457 day_warn = 0; 1458 } 1459 1460 if (hour_warn && (tod.tod_hour < 0 || tod.tod_hour > 23)) { 1461 cmn_err(CE_WARN, 1462 "The hardware real-time clock appears to have the " 1463 "wrong hours value %d -- time needs to be reset\n", 1464 tod.tod_hour); 1465 hour_warn = 0; 1466 } 1467 1468 if (min_warn && (tod.tod_min < 0 || tod.tod_min > 59)) { 1469 cmn_err(CE_WARN, 1470 "The hardware real-time clock appears to have the " 1471 "wrong minutes value %d -- time needs to be reset\n", 1472 tod.tod_min); 1473 min_warn = 0; 1474 } 1475 1476 if (sec_warn && (tod.tod_sec < 0 || tod.tod_sec > 59)) { 1477 cmn_err(CE_WARN, 1478 "The hardware real-time clock appears to have the " 1479 "wrong seconds value %d -- time needs to be reset\n", 1480 tod.tod_sec); 1481 sec_warn = 0; 1482 } 1483 #endif 1484 1485 utc = (year - 70); /* next 3 lines: utc = 365y + y/4 */ 1486 utc += (utc << 3) + (utc << 6); 1487 utc += (utc << 2) + ((year - 69) >> 2); 1488 utc += days_thru_month[month] + tod.tod_day - 1; 1489 utc = (utc << 3) + (utc << 4) + tod.tod_hour; /* 24 * day + hour */ 1490 utc = (utc << 6) - (utc << 2) + tod.tod_min; /* 60 * hour + min */ 1491 utc = (utc << 6) - (utc << 2) + tod.tod_sec; /* 60 * min + sec */ 1492 1493 return (utc); 1494 } 1495