1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/atomic.h> 26 #include <sys/callb.h> 27 #include <sys/cmn_err.h> 28 #include <sys/exacct.h> 29 #include <sys/id_space.h> 30 #include <sys/kmem.h> 31 #include <sys/kstat.h> 32 #include <sys/modhash.h> 33 #include <sys/mutex.h> 34 #include <sys/proc.h> 35 #include <sys/project.h> 36 #include <sys/rctl.h> 37 #include <sys/systm.h> 38 #include <sys/task.h> 39 #include <sys/time.h> 40 #include <sys/types.h> 41 #include <sys/zone.h> 42 #include <sys/cpuvar.h> 43 #include <sys/fss.h> 44 #include <sys/class.h> 45 #include <sys/project.h> 46 47 /* 48 * Tasks 49 * 50 * A task is a collection of processes, associated with a common project ID 51 * and related by a common initial parent. The task primarily represents a 52 * natural process sequence with known resource usage, although it can also be 53 * viewed as a convenient grouping of processes for signal delivery, processor 54 * binding, and administrative operations. 55 * 56 * Membership and observership 57 * We can conceive of situations where processes outside of the task may wish 58 * to examine the resource usage of the task. Similarly, a number of the 59 * administrative operations on a task can be performed by processes who are 60 * not members of the task. Accordingly, we must design a locking strategy 61 * where observers of the task, who wish to examine or operate on the task, 62 * and members of task, who can perform the mentioned operations, as well as 63 * leave the task, see a consistent and correct representation of the task at 64 * all times. 65 * 66 * Locking 67 * Because the task membership is a new relation between processes, its 68 * locking becomes an additional responsibility of the pidlock/p_lock locking 69 * sequence; however, tasks closely resemble sessions and the session locking 70 * model is mostly appropriate for the interaction of tasks, processes, and 71 * procfs. 72 * 73 * kmutex_t task_hash_lock 74 * task_hash_lock is a global lock protecting the contents of the task 75 * ID-to-task pointer hash. Holders of task_hash_lock must not attempt to 76 * acquire pidlock or p_lock. 77 * uint_t tk_hold_count 78 * tk_hold_count, the number of members and observers of the current task, 79 * must be manipulated atomically. 80 * proc_t *tk_memb_list 81 * proc_t *p_tasknext 82 * proc_t *p_taskprev 83 * The task's membership list is protected by pidlock, and is therefore 84 * always acquired before any of its members' p_lock mutexes. The p_task 85 * member of the proc structure is protected by pidlock or p_lock for 86 * reading, and by both pidlock and p_lock for modification, as is done for 87 * p_sessp. The key point is that only the process can modify its p_task, 88 * and not any entity on the system. (/proc will use prlock() to prevent 89 * the process from leaving, as opposed to pidlock.) 90 * kmutex_t tk_usage_lock 91 * tk_usage_lock is a per-task lock protecting the contents of the task 92 * usage structure and tk_nlwps counter for the task.max-lwps resource 93 * control. 94 */ 95 96 int task_hash_size = 256; 97 static kmutex_t task_hash_lock; 98 static mod_hash_t *task_hash; 99 100 static id_space_t *taskid_space; /* global taskid space */ 101 static kmem_cache_t *task_cache; /* kmem cache for task structures */ 102 103 rctl_hndl_t rc_task_lwps; 104 rctl_hndl_t rc_task_nprocs; 105 rctl_hndl_t rc_task_cpu_time; 106 107 /* 108 * Resource usage is committed using task queues; if taskq_dispatch() fails 109 * due to resource constraints, the task is placed on a list for background 110 * processing by the task_commit_thread() backup thread. 111 */ 112 static kmutex_t task_commit_lock; /* protects list pointers and cv */ 113 static kcondvar_t task_commit_cv; /* wakeup task_commit_thread */ 114 static task_t *task_commit_head = NULL; 115 static task_t *task_commit_tail = NULL; 116 kthread_t *task_commit_thread; 117 118 static void task_commit(); 119 static kstat_t *task_kstat_create(task_t *, zone_t *); 120 static void task_kstat_delete(task_t *); 121 122 /* 123 * static rctl_qty_t task_usage_lwps(void *taskp) 124 * 125 * Overview 126 * task_usage_lwps() is the usage operation for the resource control 127 * associated with the number of LWPs in a task. 128 * 129 * Return values 130 * The number of LWPs in the given task is returned. 131 * 132 * Caller's context 133 * The p->p_lock must be held across the call. 134 */ 135 /*ARGSUSED*/ 136 static rctl_qty_t 137 task_lwps_usage(rctl_t *r, proc_t *p) 138 { 139 task_t *t; 140 rctl_qty_t nlwps; 141 142 ASSERT(MUTEX_HELD(&p->p_lock)); 143 144 t = p->p_task; 145 mutex_enter(&p->p_zone->zone_nlwps_lock); 146 nlwps = t->tk_nlwps; 147 mutex_exit(&p->p_zone->zone_nlwps_lock); 148 149 return (nlwps); 150 } 151 152 /* 153 * static int task_test_lwps(void *taskp, rctl_val_t *, int64_t incr, 154 * int flags) 155 * 156 * Overview 157 * task_test_lwps() is the test-if-valid-increment for the resource control 158 * for the number of processes in a task. 159 * 160 * Return values 161 * 0 if the threshold limit was not passed, 1 if the limit was passed. 162 * 163 * Caller's context 164 * p->p_lock must be held across the call. 165 */ 166 /*ARGSUSED*/ 167 static int 168 task_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 169 rctl_qty_t incr, 170 uint_t flags) 171 { 172 rctl_qty_t nlwps; 173 174 ASSERT(MUTEX_HELD(&p->p_lock)); 175 ASSERT(e->rcep_t == RCENTITY_TASK); 176 if (e->rcep_p.task == NULL) 177 return (0); 178 179 ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock))); 180 nlwps = e->rcep_p.task->tk_nlwps; 181 182 if (nlwps + incr > rcntl->rcv_value) 183 return (1); 184 185 return (0); 186 } 187 188 /*ARGSUSED*/ 189 static int 190 task_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { 191 192 ASSERT(MUTEX_HELD(&p->p_lock)); 193 ASSERT(e->rcep_t == RCENTITY_TASK); 194 if (e->rcep_p.task == NULL) 195 return (0); 196 197 e->rcep_p.task->tk_nlwps_ctl = nv; 198 return (0); 199 } 200 201 /*ARGSUSED*/ 202 static rctl_qty_t 203 task_nprocs_usage(rctl_t *r, proc_t *p) 204 { 205 task_t *t; 206 rctl_qty_t nprocs; 207 208 ASSERT(MUTEX_HELD(&p->p_lock)); 209 210 t = p->p_task; 211 mutex_enter(&p->p_zone->zone_nlwps_lock); 212 nprocs = t->tk_nprocs; 213 mutex_exit(&p->p_zone->zone_nlwps_lock); 214 215 return (nprocs); 216 } 217 218 /*ARGSUSED*/ 219 static int 220 task_nprocs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 221 rctl_qty_t incr, uint_t flags) 222 { 223 rctl_qty_t nprocs; 224 225 ASSERT(MUTEX_HELD(&p->p_lock)); 226 ASSERT(e->rcep_t == RCENTITY_TASK); 227 if (e->rcep_p.task == NULL) 228 return (0); 229 230 ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock))); 231 nprocs = e->rcep_p.task->tk_nprocs; 232 233 if (nprocs + incr > rcntl->rcv_value) 234 return (1); 235 236 return (0); 237 } 238 239 /*ARGSUSED*/ 240 static int 241 task_nprocs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 242 rctl_qty_t nv) { 243 244 ASSERT(MUTEX_HELD(&p->p_lock)); 245 ASSERT(e->rcep_t == RCENTITY_TASK); 246 if (e->rcep_p.task == NULL) 247 return (0); 248 249 e->rcep_p.task->tk_nprocs_ctl = nv; 250 return (0); 251 } 252 253 /* 254 * static rctl_qty_t task_usage_cpu_secs(void *taskp) 255 * 256 * Overview 257 * task_usage_cpu_secs() is the usage operation for the resource control 258 * associated with the total accrued CPU seconds for a task. 259 * 260 * Return values 261 * The number of CPU seconds consumed by the task is returned. 262 * 263 * Caller's context 264 * The given task must be held across the call. 265 */ 266 /*ARGSUSED*/ 267 static rctl_qty_t 268 task_cpu_time_usage(rctl_t *r, proc_t *p) 269 { 270 task_t *t = p->p_task; 271 272 ASSERT(MUTEX_HELD(&p->p_lock)); 273 return (t->tk_cpu_time); 274 } 275 276 /* 277 * int task_cpu_time_incr(task_t *t, rctl_qty_t incr) 278 * 279 * Overview 280 * task_cpu_time_incr() increments the amount of CPU time used 281 * by this task. 282 * 283 * Return values 284 * 1 if a second or more time is accumulated 285 * 0 otherwise 286 * 287 * Caller's context 288 * This is called by the clock tick accounting function to charge 289 * CPU time to a task. 290 */ 291 rctl_qty_t 292 task_cpu_time_incr(task_t *t, rctl_qty_t incr) 293 { 294 rctl_qty_t ret = 0; 295 296 mutex_enter(&t->tk_cpu_time_lock); 297 t->tk_cpu_ticks += incr; 298 if (t->tk_cpu_ticks >= hz) { 299 t->tk_cpu_time += t->tk_cpu_ticks / hz; 300 t->tk_cpu_ticks = t->tk_cpu_ticks % hz; 301 ret = t->tk_cpu_time; 302 } 303 mutex_exit(&t->tk_cpu_time_lock); 304 305 return (ret); 306 } 307 308 /* 309 * static int task_test_cpu_secs(void *taskp, rctl_val_t *, int64_t incr, 310 * int flags) 311 * 312 * Overview 313 * task_test_cpu_secs() is the test-if-valid-increment for the resource 314 * control for the total accrued CPU seconds for a task. 315 * 316 * Return values 317 * 0 if the threshold limit was not passed, 1 if the limit was passed. 318 * 319 * Caller's context 320 * The given task must be held across the call. 321 */ 322 /*ARGSUSED*/ 323 static int 324 task_cpu_time_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 325 struct rctl_val *rcntl, rctl_qty_t incr, uint_t flags) 326 { 327 ASSERT(MUTEX_HELD(&p->p_lock)); 328 ASSERT(e->rcep_t == RCENTITY_TASK); 329 if (e->rcep_p.task == NULL) 330 return (0); 331 332 if (incr >= rcntl->rcv_value) 333 return (1); 334 335 return (0); 336 } 337 338 static task_t * 339 task_find(taskid_t id, zoneid_t zoneid) 340 { 341 task_t *tk; 342 343 ASSERT(MUTEX_HELD(&task_hash_lock)); 344 345 if (mod_hash_find(task_hash, (mod_hash_key_t)(uintptr_t)id, 346 (mod_hash_val_t *)&tk) == MH_ERR_NOTFOUND || 347 (zoneid != ALL_ZONES && zoneid != tk->tk_zone->zone_id)) 348 return (NULL); 349 350 return (tk); 351 } 352 353 /* 354 * task_hold_by_id(), task_hold_by_id_zone() 355 * 356 * Overview 357 * task_hold_by_id() is used to take a reference on a task by its task id, 358 * supporting the various system call interfaces for obtaining resource data, 359 * delivering signals, and so forth. 360 * 361 * Return values 362 * Returns a pointer to the task_t with taskid_t id. The task is returned 363 * with its hold count incremented by one. Returns NULL if there 364 * is no task with the requested id. 365 * 366 * Caller's context 367 * Caller must not be holding task_hash_lock. No restrictions on context. 368 */ 369 task_t * 370 task_hold_by_id_zone(taskid_t id, zoneid_t zoneid) 371 { 372 task_t *tk; 373 374 mutex_enter(&task_hash_lock); 375 if ((tk = task_find(id, zoneid)) != NULL) 376 atomic_inc_32(&tk->tk_hold_count); 377 mutex_exit(&task_hash_lock); 378 379 return (tk); 380 } 381 382 task_t * 383 task_hold_by_id(taskid_t id) 384 { 385 zoneid_t zoneid; 386 387 if (INGLOBALZONE(curproc)) 388 zoneid = ALL_ZONES; 389 else 390 zoneid = getzoneid(); 391 return (task_hold_by_id_zone(id, zoneid)); 392 } 393 394 /* 395 * void task_hold(task_t *) 396 * 397 * Overview 398 * task_hold() is used to take an additional reference to the given task. 399 * 400 * Return values 401 * None. 402 * 403 * Caller's context 404 * No restriction on context. 405 */ 406 void 407 task_hold(task_t *tk) 408 { 409 atomic_inc_32(&tk->tk_hold_count); 410 } 411 412 /* 413 * void task_rele(task_t *) 414 * 415 * Overview 416 * task_rele() relinquishes a reference on the given task, which was acquired 417 * via task_hold() or task_hold_by_id(). If this is the last member or 418 * observer of the task, dispatch it for commitment via the accounting 419 * subsystem. 420 * 421 * Return values 422 * None. 423 * 424 * Caller's context 425 * Caller must not be holding the task_hash_lock. 426 */ 427 void 428 task_rele(task_t *tk) 429 { 430 mutex_enter(&task_hash_lock); 431 if (atomic_add_32_nv(&tk->tk_hold_count, -1) > 0) { 432 mutex_exit(&task_hash_lock); 433 return; 434 } 435 436 ASSERT(tk->tk_nprocs == 0); 437 438 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 439 tk->tk_proj->kpj_ntasks--; 440 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 441 442 task_kstat_delete(tk); 443 444 if (mod_hash_destroy(task_hash, 445 (mod_hash_key_t)(uintptr_t)tk->tk_tkid) != 0) 446 panic("unable to delete task %d", tk->tk_tkid); 447 mutex_exit(&task_hash_lock); 448 449 /* 450 * At this point, there are no members or observers of the task, so we 451 * can safely send it on for commitment to the accounting subsystem. 452 * The task will be destroyed in task_end() subsequent to commitment. 453 * Since we may be called with pidlock held, taskq_dispatch() cannot 454 * sleep. Commitment is handled by a backup thread in case dispatching 455 * the task fails. 456 */ 457 if (taskq_dispatch(exacct_queue, exacct_commit_task, tk, 458 TQ_NOSLEEP | TQ_NOQUEUE) == NULL) { 459 mutex_enter(&task_commit_lock); 460 if (task_commit_head == NULL) { 461 task_commit_head = task_commit_tail = tk; 462 } else { 463 task_commit_tail->tk_commit_next = tk; 464 task_commit_tail = tk; 465 } 466 cv_signal(&task_commit_cv); 467 mutex_exit(&task_commit_lock); 468 } 469 } 470 471 /* 472 * task_t *task_create(projid_t, zone *) 473 * 474 * Overview 475 * A process constructing a new task calls task_create() to construct and 476 * preinitialize the task for the appropriate destination project. Only one 477 * task, the primordial task0, is not created with task_create(). 478 * 479 * Return values 480 * None. 481 * 482 * Caller's context 483 * Caller's context should be safe for KM_SLEEP allocations. 484 * The caller should appropriately bump the kpj_ntasks counter on the 485 * project that contains this task. 486 */ 487 task_t * 488 task_create(projid_t projid, zone_t *zone) 489 { 490 task_t *tk = kmem_cache_alloc(task_cache, KM_SLEEP); 491 task_t *ancestor_tk; 492 taskid_t tkid; 493 task_usage_t *tu = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP); 494 mod_hash_hndl_t hndl; 495 rctl_set_t *set = rctl_set_create(); 496 rctl_alloc_gp_t *gp; 497 rctl_entity_p_t e; 498 499 bzero(tk, sizeof (task_t)); 500 501 tk->tk_tkid = tkid = id_alloc(taskid_space); 502 tk->tk_nlwps = 0; 503 tk->tk_nlwps_ctl = INT_MAX; 504 tk->tk_nprocs = 0; 505 tk->tk_nprocs_ctl = INT_MAX; 506 tk->tk_usage = tu; 507 tk->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP); 508 tk->tk_proj = project_hold_by_id(projid, zone, PROJECT_HOLD_INSERT); 509 tk->tk_flags = TASK_NORMAL; 510 tk->tk_commit_next = NULL; 511 512 /* 513 * Copy ancestor task's resource controls. 514 */ 515 zone_task_hold(zone); 516 mutex_enter(&curproc->p_lock); 517 ancestor_tk = curproc->p_task; 518 task_hold(ancestor_tk); 519 tk->tk_zone = zone; 520 mutex_exit(&curproc->p_lock); 521 522 for (;;) { 523 gp = rctl_set_dup_prealloc(ancestor_tk->tk_rctls); 524 525 mutex_enter(&ancestor_tk->tk_rctls->rcs_lock); 526 if (rctl_set_dup_ready(ancestor_tk->tk_rctls, gp)) 527 break; 528 529 mutex_exit(&ancestor_tk->tk_rctls->rcs_lock); 530 531 rctl_prealloc_destroy(gp); 532 } 533 534 /* 535 * At this point, curproc does not have the appropriate linkage 536 * through the task to the project. So, rctl_set_dup should only 537 * copy the rctls, and leave the callbacks for later. 538 */ 539 e.rcep_p.task = tk; 540 e.rcep_t = RCENTITY_TASK; 541 tk->tk_rctls = rctl_set_dup(ancestor_tk->tk_rctls, curproc, curproc, &e, 542 set, gp, RCD_DUP); 543 mutex_exit(&ancestor_tk->tk_rctls->rcs_lock); 544 545 rctl_prealloc_destroy(gp); 546 547 /* 548 * Record the ancestor task's ID for use by extended accounting. 549 */ 550 tu->tu_anctaskid = ancestor_tk->tk_tkid; 551 task_rele(ancestor_tk); 552 553 /* 554 * Put new task structure in the hash table. 555 */ 556 (void) mod_hash_reserve(task_hash, &hndl); 557 mutex_enter(&task_hash_lock); 558 ASSERT(task_find(tkid, zone->zone_id) == NULL); 559 if (mod_hash_insert_reserve(task_hash, (mod_hash_key_t)(uintptr_t)tkid, 560 (mod_hash_val_t *)tk, hndl) != 0) { 561 mod_hash_cancel(task_hash, &hndl); 562 panic("unable to insert task %d(%p)", tkid, (void *)tk); 563 } 564 mutex_exit(&task_hash_lock); 565 566 tk->tk_nprocs_kstat = task_kstat_create(tk, zone); 567 return (tk); 568 } 569 570 /* 571 * void task_attach(task_t *, proc_t *) 572 * 573 * Overview 574 * task_attach() is used to attach a process to a task; this operation is only 575 * performed as a result of a fork() or settaskid() system call. The proc_t's 576 * p_tasknext and p_taskprev fields will be set such that the proc_t is a 577 * member of the doubly-linked list of proc_t's that make up the task. 578 * 579 * Return values 580 * None. 581 * 582 * Caller's context 583 * pidlock and p->p_lock must be held on entry. 584 */ 585 void 586 task_attach(task_t *tk, proc_t *p) 587 { 588 proc_t *first, *prev; 589 ASSERT(tk != NULL); 590 ASSERT(p != NULL); 591 ASSERT(MUTEX_HELD(&pidlock)); 592 ASSERT(MUTEX_HELD(&p->p_lock)); 593 594 if (tk->tk_memb_list == NULL) { 595 p->p_tasknext = p; 596 p->p_taskprev = p; 597 } else { 598 first = tk->tk_memb_list; 599 prev = first->p_taskprev; 600 first->p_taskprev = p; 601 p->p_tasknext = first; 602 p->p_taskprev = prev; 603 prev->p_tasknext = p; 604 } 605 tk->tk_memb_list = p; 606 task_hold(tk); 607 p->p_task = tk; 608 } 609 610 /* 611 * task_begin() 612 * 613 * Overview 614 * A process constructing a new task calls task_begin() to initialize the 615 * task, by attaching itself as a member. 616 * 617 * Return values 618 * None. 619 * 620 * Caller's context 621 * pidlock and p_lock must be held across the call to task_begin(). 622 */ 623 void 624 task_begin(task_t *tk, proc_t *p) 625 { 626 timestruc_t ts; 627 task_usage_t *tu; 628 rctl_entity_p_t e; 629 630 ASSERT(MUTEX_HELD(&pidlock)); 631 ASSERT(MUTEX_HELD(&p->p_lock)); 632 633 mutex_enter(&tk->tk_usage_lock); 634 tu = tk->tk_usage; 635 gethrestime(&ts); 636 tu->tu_startsec = (uint64_t)ts.tv_sec; 637 tu->tu_startnsec = (uint64_t)ts.tv_nsec; 638 mutex_exit(&tk->tk_usage_lock); 639 640 /* 641 * Join process to the task as a member. 642 */ 643 task_attach(tk, p); 644 645 /* 646 * Now that the linkage from process to task is complete, do the 647 * required callback for the task rctl set. 648 */ 649 e.rcep_p.task = tk; 650 e.rcep_t = RCENTITY_TASK; 651 (void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_rctls, NULL, 652 RCD_CALLBACK); 653 } 654 655 /* 656 * void task_detach(proc_t *) 657 * 658 * Overview 659 * task_detach() removes the specified process from its task. task_detach 660 * sets the process's task membership to NULL, in anticipation of a final exit 661 * or of joining a new task. Because task_rele() requires a context safe for 662 * KM_SLEEP allocations, a task_detach() is followed by a subsequent 663 * task_rele() once appropriate context is available. 664 * 665 * Because task_detach() involves relinquishing the process's membership in 666 * the project, any observational rctls the process may have had on the task 667 * or project are destroyed. 668 * 669 * Return values 670 * None. 671 * 672 * Caller's context 673 * pidlock and p_lock held across task_detach(). 674 */ 675 void 676 task_detach(proc_t *p) 677 { 678 task_t *tk = p->p_task; 679 680 ASSERT(MUTEX_HELD(&pidlock)); 681 ASSERT(MUTEX_HELD(&p->p_lock)); 682 ASSERT(p->p_task != NULL); 683 ASSERT(tk->tk_memb_list != NULL); 684 685 if (tk->tk_memb_list == p) 686 tk->tk_memb_list = p->p_tasknext; 687 if (tk->tk_memb_list == p) 688 tk->tk_memb_list = NULL; 689 p->p_taskprev->p_tasknext = p->p_tasknext; 690 p->p_tasknext->p_taskprev = p->p_taskprev; 691 692 rctl_set_tearoff(p->p_task->tk_rctls, p); 693 rctl_set_tearoff(p->p_task->tk_proj->kpj_rctls, p); 694 695 p->p_task = NULL; 696 p->p_tasknext = p->p_taskprev = NULL; 697 } 698 699 /* 700 * task_change(task_t *, proc_t *) 701 * 702 * Overview 703 * task_change() removes the specified process from its current task. The 704 * process is then attached to the specified task. This routine is called 705 * from settaskid() when process is being moved to a new task. 706 * 707 * Return values 708 * None. 709 * 710 * Caller's context 711 * pidlock and p_lock held across task_change() 712 */ 713 void 714 task_change(task_t *newtk, proc_t *p) 715 { 716 task_t *oldtk = p->p_task; 717 718 ASSERT(MUTEX_HELD(&pidlock)); 719 ASSERT(MUTEX_HELD(&p->p_lock)); 720 ASSERT(oldtk != NULL); 721 ASSERT(oldtk->tk_memb_list != NULL); 722 723 mutex_enter(&oldtk->tk_zone->zone_nlwps_lock); 724 oldtk->tk_nlwps -= p->p_lwpcnt; 725 oldtk->tk_nprocs--; 726 mutex_exit(&oldtk->tk_zone->zone_nlwps_lock); 727 728 mutex_enter(&newtk->tk_zone->zone_nlwps_lock); 729 newtk->tk_nlwps += p->p_lwpcnt; 730 newtk->tk_nprocs++; 731 mutex_exit(&newtk->tk_zone->zone_nlwps_lock); 732 733 task_detach(p); 734 task_begin(newtk, p); 735 exacct_move_mstate(p, oldtk, newtk); 736 } 737 738 /* 739 * task_end() 740 * 741 * Overview 742 * task_end() contains the actions executed once the final member of 743 * a task has released the task, and all actions connected with the task, such 744 * as committing an accounting record to a file, are completed. It is called 745 * by the known last consumer of the task information. Additionally, 746 * task_end() must never refer to any process in the system. 747 * 748 * Return values 749 * None. 750 * 751 * Caller's context 752 * No restrictions on context, beyond that given above. 753 */ 754 void 755 task_end(task_t *tk) 756 { 757 ASSERT(tk->tk_hold_count == 0); 758 759 project_rele(tk->tk_proj); 760 kmem_free(tk->tk_usage, sizeof (task_usage_t)); 761 kmem_free(tk->tk_inherited, sizeof (task_usage_t)); 762 if (tk->tk_prevusage != NULL) 763 kmem_free(tk->tk_prevusage, sizeof (task_usage_t)); 764 if (tk->tk_zoneusage != NULL) 765 kmem_free(tk->tk_zoneusage, sizeof (task_usage_t)); 766 rctl_set_free(tk->tk_rctls); 767 id_free(taskid_space, tk->tk_tkid); 768 zone_task_rele(tk->tk_zone); 769 kmem_cache_free(task_cache, tk); 770 } 771 772 static void 773 changeproj(proc_t *p, kproject_t *kpj, zone_t *zone, void *projbuf, 774 void *zonebuf) 775 { 776 kproject_t *oldkpj; 777 kthread_t *t; 778 779 ASSERT(MUTEX_HELD(&pidlock)); 780 ASSERT(MUTEX_HELD(&p->p_lock)); 781 782 if ((t = p->p_tlist) != NULL) { 783 do { 784 (void) project_hold(kpj); 785 786 thread_lock(t); 787 oldkpj = ttoproj(t); 788 789 /* 790 * Kick this thread so that he doesn't sit 791 * on a wrong wait queue. 792 */ 793 if (ISWAITING(t)) 794 setrun_locked(t); 795 796 /* 797 * The thread wants to go on the project wait queue, but 798 * the waitq is changing. 799 */ 800 if (t->t_schedflag & TS_PROJWAITQ) 801 t->t_schedflag &= ~ TS_PROJWAITQ; 802 803 t->t_proj = kpj; 804 t->t_pre_sys = 1; /* For cred update */ 805 thread_unlock(t); 806 fss_changeproj(t, kpj, zone, projbuf, zonebuf); 807 808 project_rele(oldkpj); 809 } while ((t = t->t_forw) != p->p_tlist); 810 } 811 } 812 813 /* 814 * task_join() 815 * 816 * Overview 817 * task_join() contains the actions that must be executed when the first 818 * member (curproc) of a newly created task joins it. It may never fail. 819 * 820 * The caller must make sure holdlwps() is called so that all other lwps are 821 * stopped prior to calling this function. 822 * 823 * NB: It returns with curproc->p_lock held. 824 * 825 * Return values 826 * Pointer to the old task. 827 * 828 * Caller's context 829 * cpu_lock must be held entering the function. It will acquire pidlock, 830 * p_crlock and p_lock during execution. 831 */ 832 task_t * 833 task_join(task_t *tk, uint_t flags) 834 { 835 proc_t *p = ttoproc(curthread); 836 task_t *prev_tk; 837 void *projbuf, *zonebuf; 838 zone_t *zone = tk->tk_zone; 839 projid_t projid = tk->tk_proj->kpj_id; 840 cred_t *oldcr; 841 842 /* 843 * We can't know for sure if holdlwps() was called, but we can check to 844 * ensure we're single-threaded. 845 */ 846 ASSERT(curthread == p->p_agenttp || p->p_lwprcnt == 1); 847 848 /* 849 * Changing the credential is always hard because we cannot 850 * allocate memory when holding locks but we don't know whether 851 * we need to change it. We first get a reference to the current 852 * cred if we need to change it. Then we create a credential 853 * with an updated project id. Finally we install it, first 854 * releasing the reference we had on the p_cred at the time we 855 * acquired the lock the first time and later we release the 856 * reference to p_cred at the time we acquired the lock the 857 * second time. 858 */ 859 mutex_enter(&p->p_crlock); 860 if (crgetprojid(p->p_cred) == projid) 861 oldcr = NULL; 862 else 863 crhold(oldcr = p->p_cred); 864 mutex_exit(&p->p_crlock); 865 866 if (oldcr != NULL) { 867 cred_t *newcr = crdup(oldcr); 868 crsetprojid(newcr, projid); 869 crfree(oldcr); 870 871 mutex_enter(&p->p_crlock); 872 oldcr = p->p_cred; 873 p->p_cred = newcr; 874 mutex_exit(&p->p_crlock); 875 crfree(oldcr); 876 } 877 878 /* 879 * Make sure that the number of processor sets is constant 880 * across this operation. 881 */ 882 ASSERT(MUTEX_HELD(&cpu_lock)); 883 884 projbuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_PROJ); 885 zonebuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_ZONE); 886 887 mutex_enter(&pidlock); 888 mutex_enter(&p->p_lock); 889 890 prev_tk = p->p_task; 891 task_change(tk, p); 892 893 /* 894 * Now move threads one by one to their new project. 895 */ 896 changeproj(p, tk->tk_proj, zone, projbuf, zonebuf); 897 if (flags & TASK_FINAL) 898 p->p_task->tk_flags |= TASK_FINAL; 899 900 mutex_exit(&pidlock); 901 902 fss_freebuf(zonebuf, FSS_ALLOC_ZONE); 903 fss_freebuf(projbuf, FSS_ALLOC_PROJ); 904 return (prev_tk); 905 } 906 907 /* 908 * rctl ops vectors 909 */ 910 static rctl_ops_t task_lwps_ops = { 911 rcop_no_action, 912 task_lwps_usage, 913 task_lwps_set, 914 task_lwps_test 915 }; 916 917 static rctl_ops_t task_procs_ops = { 918 rcop_no_action, 919 task_nprocs_usage, 920 task_nprocs_set, 921 task_nprocs_test 922 }; 923 924 static rctl_ops_t task_cpu_time_ops = { 925 rcop_no_action, 926 task_cpu_time_usage, 927 rcop_no_set, 928 task_cpu_time_test 929 }; 930 931 /*ARGSUSED*/ 932 /* 933 * void task_init(void) 934 * 935 * Overview 936 * task_init() initializes task-related hashes, caches, and the task id 937 * space. Additionally, task_init() establishes p0 as a member of task0. 938 * Called by main(). 939 * 940 * Return values 941 * None. 942 * 943 * Caller's context 944 * task_init() must be called prior to MP startup. 945 */ 946 void 947 task_init(void) 948 { 949 proc_t *p = &p0; 950 mod_hash_hndl_t hndl; 951 rctl_set_t *set; 952 rctl_alloc_gp_t *gp; 953 rctl_entity_p_t e; 954 955 /* 956 * Initialize task_cache and taskid_space. 957 */ 958 task_cache = kmem_cache_create("task_cache", sizeof (task_t), 959 0, NULL, NULL, NULL, NULL, NULL, 0); 960 taskid_space = id_space_create("taskid_space", 0, MAX_TASKID); 961 962 /* 963 * Initialize task hash table. 964 */ 965 task_hash = mod_hash_create_idhash("task_hash", task_hash_size, 966 mod_hash_null_valdtor); 967 968 /* 969 * Initialize task-based rctls. 970 */ 971 rc_task_lwps = rctl_register("task.max-lwps", RCENTITY_TASK, 972 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX, 973 &task_lwps_ops); 974 rc_task_nprocs = rctl_register("task.max-processes", RCENTITY_TASK, 975 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX, 976 &task_procs_ops); 977 rc_task_cpu_time = rctl_register("task.max-cpu-time", RCENTITY_TASK, 978 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_DENY_NEVER | 979 RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE | 980 RCTL_GLOBAL_UNOBSERVABLE | RCTL_GLOBAL_SECONDS, UINT64_MAX, 981 UINT64_MAX, &task_cpu_time_ops); 982 983 /* 984 * Create task0 and place p0 in it as a member. 985 */ 986 task0p = kmem_cache_alloc(task_cache, KM_SLEEP); 987 bzero(task0p, sizeof (task_t)); 988 989 task0p->tk_tkid = id_alloc(taskid_space); 990 task0p->tk_usage = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP); 991 task0p->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP); 992 task0p->tk_proj = project_hold_by_id(0, &zone0, 993 PROJECT_HOLD_INSERT); 994 task0p->tk_flags = TASK_NORMAL; 995 task0p->tk_nlwps = p->p_lwpcnt; 996 task0p->tk_nprocs = 1; 997 task0p->tk_zone = global_zone; 998 task0p->tk_commit_next = NULL; 999 1000 set = rctl_set_create(); 1001 gp = rctl_set_init_prealloc(RCENTITY_TASK); 1002 mutex_enter(&curproc->p_lock); 1003 e.rcep_p.task = task0p; 1004 e.rcep_t = RCENTITY_TASK; 1005 task0p->tk_rctls = rctl_set_init(RCENTITY_TASK, curproc, &e, set, gp); 1006 mutex_exit(&curproc->p_lock); 1007 rctl_prealloc_destroy(gp); 1008 1009 (void) mod_hash_reserve(task_hash, &hndl); 1010 mutex_enter(&task_hash_lock); 1011 ASSERT(task_find(task0p->tk_tkid, GLOBAL_ZONEID) == NULL); 1012 if (mod_hash_insert_reserve(task_hash, 1013 (mod_hash_key_t)(uintptr_t)task0p->tk_tkid, 1014 (mod_hash_val_t *)task0p, hndl) != 0) { 1015 mod_hash_cancel(task_hash, &hndl); 1016 panic("unable to insert task %d(%p)", task0p->tk_tkid, 1017 (void *)task0p); 1018 } 1019 mutex_exit(&task_hash_lock); 1020 1021 task0p->tk_memb_list = p; 1022 1023 task0p->tk_nprocs_kstat = task_kstat_create(task0p, task0p->tk_zone); 1024 1025 /* 1026 * Initialize task pointers for p0, including doubly linked list of task 1027 * members. 1028 */ 1029 p->p_task = task0p; 1030 p->p_taskprev = p->p_tasknext = p; 1031 task_hold(task0p); 1032 } 1033 1034 static int 1035 task_nprocs_kstat_update(kstat_t *ksp, int rw) 1036 { 1037 task_t *tk = ksp->ks_private; 1038 task_kstat_t *ktk = ksp->ks_data; 1039 1040 if (rw == KSTAT_WRITE) 1041 return (EACCES); 1042 1043 ktk->ktk_usage.value.ui64 = tk->tk_nprocs; 1044 ktk->ktk_value.value.ui64 = tk->tk_nprocs_ctl; 1045 return (0); 1046 } 1047 1048 static kstat_t * 1049 task_kstat_create(task_t *tk, zone_t *zone) 1050 { 1051 kstat_t *ksp; 1052 task_kstat_t *ktk; 1053 char *zonename = zone->zone_name; 1054 1055 ksp = rctl_kstat_create_task(tk, "nprocs", KSTAT_TYPE_NAMED, 1056 sizeof (task_kstat_t) / sizeof (kstat_named_t), 1057 KSTAT_FLAG_VIRTUAL); 1058 1059 if (ksp == NULL) 1060 return (NULL); 1061 1062 ktk = ksp->ks_data = kmem_alloc(sizeof (task_kstat_t), KM_SLEEP); 1063 ksp->ks_data_size += strlen(zonename) + 1; 1064 kstat_named_init(&ktk->ktk_zonename, "zonename", KSTAT_DATA_STRING); 1065 kstat_named_setstr(&ktk->ktk_zonename, zonename); 1066 kstat_named_init(&ktk->ktk_usage, "usage", KSTAT_DATA_UINT64); 1067 kstat_named_init(&ktk->ktk_value, "value", KSTAT_DATA_UINT64); 1068 ksp->ks_update = task_nprocs_kstat_update; 1069 ksp->ks_private = tk; 1070 kstat_install(ksp); 1071 1072 return (ksp); 1073 } 1074 1075 static void 1076 task_kstat_delete(task_t *tk) 1077 { 1078 void *data; 1079 1080 if (tk->tk_nprocs_kstat != NULL) { 1081 data = tk->tk_nprocs_kstat->ks_data; 1082 kstat_delete(tk->tk_nprocs_kstat); 1083 kmem_free(data, sizeof (task_kstat_t)); 1084 tk->tk_nprocs_kstat = NULL; 1085 } 1086 } 1087 1088 void 1089 task_commit_thread_init() 1090 { 1091 mutex_init(&task_commit_lock, NULL, MUTEX_DEFAULT, NULL); 1092 cv_init(&task_commit_cv, NULL, CV_DEFAULT, NULL); 1093 task_commit_thread = thread_create(NULL, 0, task_commit, NULL, 0, 1094 &p0, TS_RUN, minclsyspri); 1095 } 1096 1097 /* 1098 * Backup thread to commit task resource usage when taskq_dispatch() fails. 1099 */ 1100 static void 1101 task_commit() 1102 { 1103 callb_cpr_t cprinfo; 1104 1105 CALLB_CPR_INIT(&cprinfo, &task_commit_lock, callb_generic_cpr, 1106 "task_commit_thread"); 1107 1108 mutex_enter(&task_commit_lock); 1109 1110 for (;;) { 1111 while (task_commit_head == NULL) { 1112 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1113 cv_wait(&task_commit_cv, &task_commit_lock); 1114 CALLB_CPR_SAFE_END(&cprinfo, &task_commit_lock); 1115 } 1116 while (task_commit_head != NULL) { 1117 task_t *tk; 1118 1119 tk = task_commit_head; 1120 task_commit_head = task_commit_head->tk_commit_next; 1121 if (task_commit_head == NULL) 1122 task_commit_tail = NULL; 1123 mutex_exit(&task_commit_lock); 1124 exacct_commit_task(tk); 1125 mutex_enter(&task_commit_lock); 1126 } 1127 } 1128 } 1129