1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 23 /* All Rights Reserved */ 24 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/types.h> 34 #include <sys/sysmacros.h> 35 #include <sys/param.h> 36 #include <sys/errno.h> 37 #include <sys/signal.h> 38 #include <sys/proc.h> 39 #include <sys/conf.h> 40 #include <sys/cred.h> 41 #include <sys/user.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/session.h> 45 #include <sys/stream.h> 46 #include <sys/strsubr.h> 47 #include <sys/stropts.h> 48 #include <sys/poll.h> 49 #include <sys/systm.h> 50 #include <sys/cpuvar.h> 51 #include <sys/uio.h> 52 #include <sys/cmn_err.h> 53 #include <sys/priocntl.h> 54 #include <sys/procset.h> 55 #include <sys/vmem.h> 56 #include <sys/bitmap.h> 57 #include <sys/kmem.h> 58 #include <sys/siginfo.h> 59 #include <sys/vtrace.h> 60 #include <sys/callb.h> 61 #include <sys/debug.h> 62 #include <sys/modctl.h> 63 #include <sys/vmsystm.h> 64 #include <vm/page.h> 65 #include <sys/atomic.h> 66 #include <sys/suntpi.h> 67 #include <sys/strlog.h> 68 #include <sys/promif.h> 69 #include <sys/project.h> 70 #include <sys/vm.h> 71 #include <sys/taskq.h> 72 #include <sys/sunddi.h> 73 #include <sys/sunldi_impl.h> 74 #include <sys/strsun.h> 75 #include <sys/isa_defs.h> 76 #include <sys/multidata.h> 77 #include <sys/pattr.h> 78 #include <sys/strft.h> 79 #include <sys/fs/snode.h> 80 #include <sys/zone.h> 81 82 #define O_SAMESTR(q) (((q)->q_next) && \ 83 (((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR))) 84 85 /* 86 * WARNING: 87 * The variables and routines in this file are private, belonging 88 * to the STREAMS subsystem. These should not be used by modules 89 * or drivers. Compatibility will not be guaranteed. 90 */ 91 92 /* 93 * Id value used to distinguish between different multiplexor links. 94 */ 95 static int32_t lnk_id = 0; 96 97 #define STREAMS_LOPRI MINCLSYSPRI 98 static pri_t streams_lopri = STREAMS_LOPRI; 99 100 #define STRSTAT(x) (str_statistics.x.value.ui64++) 101 typedef struct str_stat { 102 kstat_named_t sqenables; 103 kstat_named_t stenables; 104 kstat_named_t syncqservice; 105 kstat_named_t freebs; 106 kstat_named_t qwr_outer; 107 kstat_named_t rservice; 108 kstat_named_t strwaits; 109 kstat_named_t taskqfails; 110 kstat_named_t bufcalls; 111 kstat_named_t qhelps; 112 kstat_named_t qremoved; 113 kstat_named_t sqremoved; 114 kstat_named_t bcwaits; 115 kstat_named_t sqtoomany; 116 } str_stat_t; 117 118 static str_stat_t str_statistics = { 119 { "sqenables", KSTAT_DATA_UINT64 }, 120 { "stenables", KSTAT_DATA_UINT64 }, 121 { "syncqservice", KSTAT_DATA_UINT64 }, 122 { "freebs", KSTAT_DATA_UINT64 }, 123 { "qwr_outer", KSTAT_DATA_UINT64 }, 124 { "rservice", KSTAT_DATA_UINT64 }, 125 { "strwaits", KSTAT_DATA_UINT64 }, 126 { "taskqfails", KSTAT_DATA_UINT64 }, 127 { "bufcalls", KSTAT_DATA_UINT64 }, 128 { "qhelps", KSTAT_DATA_UINT64 }, 129 { "qremoved", KSTAT_DATA_UINT64 }, 130 { "sqremoved", KSTAT_DATA_UINT64 }, 131 { "bcwaits", KSTAT_DATA_UINT64 }, 132 { "sqtoomany", KSTAT_DATA_UINT64 }, 133 }; 134 135 static kstat_t *str_kstat; 136 137 /* 138 * qrunflag was used previously to control background scheduling of queues. It 139 * is not used anymore, but kept here in case some module still wants to access 140 * it via qready() and setqsched macros. 141 */ 142 char qrunflag; /* Unused */ 143 144 /* 145 * Most of the streams scheduling is done via task queues. Task queues may fail 146 * for non-sleep dispatches, so there are two backup threads servicing failed 147 * requests for queues and syncqs. Both of these threads also service failed 148 * dispatches freebs requests. Queues are put in the list specified by `qhead' 149 * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs 150 * requests are put into `freebs_list' which has no tail pointer. All three 151 * lists are protected by a single `service_queue' lock and use 152 * `services_to_run' condition variable for signaling background threads. Use of 153 * a single lock should not be a problem because it is only used under heavy 154 * loads when task queues start to fail and at that time it may be a good idea 155 * to throttle scheduling requests. 156 * 157 * NOTE: queues and syncqs should be scheduled by two separate threads because 158 * queue servicing may be blocked waiting for a syncq which may be also 159 * scheduled for background execution. This may create a deadlock when only one 160 * thread is used for both. 161 */ 162 163 static taskq_t *streams_taskq; /* Used for most STREAMS scheduling */ 164 165 static kmutex_t service_queue; /* protects all of servicing vars */ 166 static kcondvar_t services_to_run; /* wake up background service thread */ 167 static kcondvar_t syncqs_to_run; /* wake up background service thread */ 168 169 /* 170 * List of queues scheduled for background processing dueue to lack of resources 171 * in the task queues. Protected by service_queue lock; 172 */ 173 static struct queue *qhead; 174 static struct queue *qtail; 175 176 /* 177 * Same list for syncqs 178 */ 179 static syncq_t *sqhead; 180 static syncq_t *sqtail; 181 182 static mblk_t *freebs_list; /* list of buffers to free */ 183 184 /* 185 * Backup threads for servicing queues and syncqs 186 */ 187 kthread_t *streams_qbkgrnd_thread; 188 kthread_t *streams_sqbkgrnd_thread; 189 190 /* 191 * Bufcalls related variables. 192 */ 193 struct bclist strbcalls; /* list of waiting bufcalls */ 194 kmutex_t strbcall_lock; /* protects bufcall list (strbcalls) */ 195 kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */ 196 kmutex_t bcall_monitor; /* sleep/wakeup style monitor */ 197 kcondvar_t bcall_cv; /* wait 'till executing bufcall completes */ 198 kthread_t *bc_bkgrnd_thread; /* Thread to service bufcall requests */ 199 200 kmutex_t strresources; /* protects global resources */ 201 kmutex_t muxifier; /* single-threads multiplexor creation */ 202 203 extern void time_to_wait(clock_t *, clock_t); 204 205 /* 206 * run_queues is no longer used, but is kept in case some 3-d party 207 * module/driver decides to use it. 208 */ 209 int run_queues = 0; 210 211 /* 212 * sq_max_size is the depth of the syncq (in number of messages) before 213 * qfill_syncq() starts QFULL'ing destination queues. As its primary 214 * consumer - IP is no longer D_MTPERMOD, but there may be other 215 * modules/drivers depend on this syncq flow control, we prefer to 216 * choose a large number as the default value. For potential 217 * performance gain, this value is tunable in /etc/system. 218 */ 219 int sq_max_size = 10000; 220 221 /* 222 * the number of ciputctrl structures per syncq and stream we create when 223 * needed. 224 */ 225 int n_ciputctrl; 226 int max_n_ciputctrl = 16; 227 /* 228 * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache. 229 */ 230 int min_n_ciputctrl = 2; 231 232 static struct mux_node *mux_nodes; /* mux info for cycle checking */ 233 234 /* 235 * Per-driver/module syncqs 236 * ======================== 237 * 238 * For drivers/modules that use PERMOD or outer syncqs we keep a list of 239 * perdm structures, new entries being added (and new syncqs allocated) when 240 * setq() encounters a module/driver with a streamtab that it hasn't seen 241 * before. 242 * The reason for this mechanism is that some modules and drivers share a 243 * common streamtab and it is necessary for those modules and drivers to also 244 * share a common PERMOD syncq. 245 * 246 * perdm_list --> dm_str == streamtab_1 247 * dm_sq == syncq_1 248 * dm_ref 249 * dm_next --> dm_str == streamtab_2 250 * dm_sq == syncq_2 251 * dm_ref 252 * dm_next --> ... NULL 253 * 254 * The dm_ref field is incremented for each new driver/module that takes 255 * a reference to the perdm structure and hence shares the syncq. 256 * References are held in the fmodsw_impl_t structure for each STREAMS module 257 * or the dev_impl array (indexed by device major number) for each driver. 258 * 259 * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL 260 * ^ ^ ^ ^ 261 * | ______________/ | | 262 * | / | | 263 * dev_impl: ...|x|y|... module A module B 264 * 265 * When a module/driver is unloaded the reference count is decremented and, 266 * when it falls to zero, the perdm structure is removed from the list and 267 * the syncq is freed (see rele_dm()). 268 */ 269 perdm_t *perdm_list = NULL; 270 static krwlock_t perdm_rwlock; 271 cdevsw_impl_t *devimpl; 272 273 extern struct qinit strdata; 274 extern struct qinit stwdata; 275 276 static void runservice(queue_t *); 277 static void streams_bufcall_service(void); 278 static void streams_qbkgrnd_service(void); 279 static void streams_sqbkgrnd_service(void); 280 static syncq_t *new_syncq(void); 281 static void free_syncq(syncq_t *); 282 static void outer_insert(syncq_t *, syncq_t *); 283 static void outer_remove(syncq_t *, syncq_t *); 284 static void write_now(syncq_t *); 285 static void clr_qfull(queue_t *); 286 static void enable_svc(queue_t *); 287 static void runbufcalls(void); 288 static void sqenable(syncq_t *); 289 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)()); 290 static void wait_q_syncq(queue_t *); 291 static void backenable_insertedq(queue_t *); 292 293 static void queue_service(queue_t *); 294 static void stream_service(stdata_t *); 295 static void syncq_service(syncq_t *); 296 static void qwriter_outer_service(syncq_t *); 297 static void mblk_free(mblk_t *); 298 #ifdef DEBUG 299 static int qprocsareon(queue_t *); 300 #endif 301 302 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *); 303 static void reset_nfsrv_ptr(queue_t *, queue_t *); 304 305 static void sq_run_events(syncq_t *); 306 static int propagate_syncq(queue_t *); 307 308 static void blocksq(syncq_t *, ushort_t, int); 309 static void unblocksq(syncq_t *, ushort_t, int); 310 static int dropsq(syncq_t *, uint16_t); 311 static void emptysq(syncq_t *); 312 static sqlist_t *sqlist_alloc(struct stdata *, int); 313 static void sqlist_free(sqlist_t *); 314 static sqlist_t *sqlist_build(queue_t *, struct stdata *, boolean_t); 315 static void sqlist_insert(sqlist_t *, syncq_t *); 316 static void sqlist_insertall(sqlist_t *, queue_t *); 317 318 static void strsetuio(stdata_t *); 319 320 struct kmem_cache *stream_head_cache; 321 struct kmem_cache *queue_cache; 322 struct kmem_cache *syncq_cache; 323 struct kmem_cache *qband_cache; 324 struct kmem_cache *linkinfo_cache; 325 struct kmem_cache *ciputctrl_cache = NULL; 326 327 static linkinfo_t *linkinfo_list; 328 329 /* 330 * Qinit structure and Module_info structures 331 * for passthru read and write queues 332 */ 333 334 static void pass_wput(queue_t *, mblk_t *); 335 static queue_t *link_addpassthru(stdata_t *); 336 static void link_rempassthru(queue_t *); 337 338 struct module_info passthru_info = { 339 0, 340 "passthru", 341 0, 342 INFPSZ, 343 STRHIGH, 344 STRLOW 345 }; 346 347 struct qinit passthru_rinit = { 348 (int (*)())putnext, 349 NULL, 350 NULL, 351 NULL, 352 NULL, 353 &passthru_info, 354 NULL 355 }; 356 357 struct qinit passthru_winit = { 358 (int (*)()) pass_wput, 359 NULL, 360 NULL, 361 NULL, 362 NULL, 363 &passthru_info, 364 NULL 365 }; 366 367 /* 368 * Special form of assertion: verify that X implies Y i.e. when X is true Y 369 * should also be true. 370 */ 371 #define IMPLY(X, Y) ASSERT(!(X) || (Y)) 372 373 /* 374 * Logical equivalence. Verify that both X and Y are either TRUE or FALSE. 375 */ 376 #define EQUIV(X, Y) { IMPLY(X, Y); IMPLY(Y, X); } 377 378 /* 379 * Verify correctness of list head/tail pointers. 380 */ 381 #define LISTCHECK(head, tail, link) { \ 382 EQUIV(head, tail); \ 383 IMPLY(tail != NULL, tail->link == NULL); \ 384 } 385 386 /* 387 * Enqueue a list element `el' in the end of a list denoted by `head' and `tail' 388 * using a `link' field. 389 */ 390 #define ENQUEUE(el, head, tail, link) { \ 391 ASSERT(el->link == NULL); \ 392 LISTCHECK(head, tail, link); \ 393 if (head == NULL) \ 394 head = el; \ 395 else \ 396 tail->link = el; \ 397 tail = el; \ 398 } 399 400 /* 401 * Dequeue the first element of the list denoted by `head' and `tail' pointers 402 * using a `link' field and put result into `el'. 403 */ 404 #define DQ(el, head, tail, link) { \ 405 LISTCHECK(head, tail, link); \ 406 el = head; \ 407 if (head != NULL) { \ 408 head = head->link; \ 409 if (head == NULL) \ 410 tail = NULL; \ 411 el->link = NULL; \ 412 } \ 413 } 414 415 /* 416 * Remove `el' from the list using `chase' and `curr' pointers and return result 417 * in `succeed'. 418 */ 419 #define RMQ(el, head, tail, link, chase, curr, succeed) { \ 420 LISTCHECK(head, tail, link); \ 421 chase = NULL; \ 422 succeed = 0; \ 423 for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \ 424 chase = curr; \ 425 if (curr != NULL) { \ 426 succeed = 1; \ 427 ASSERT(curr == el); \ 428 if (chase != NULL) \ 429 chase->link = curr->link; \ 430 else \ 431 head = curr->link; \ 432 curr->link = NULL; \ 433 if (curr == tail) \ 434 tail = chase; \ 435 } \ 436 LISTCHECK(head, tail, link); \ 437 } 438 439 /* Handling of delayed messages on the inner syncq. */ 440 441 /* 442 * DEBUG versions should use function versions (to simplify tracing) and 443 * non-DEBUG kernels should use macro versions. 444 */ 445 446 /* 447 * Put a queue on the syncq list of queues. 448 * Assumes SQLOCK held. 449 */ 450 #define SQPUT_Q(sq, qp) \ 451 { \ 452 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 453 if (!(qp->q_sqflags & Q_SQQUEUED)) { \ 454 /* The queue should not be linked anywhere */ \ 455 ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \ 456 /* Head and tail may only be NULL simultaneously */ \ 457 EQUIV(sq->sq_head, sq->sq_tail); \ 458 /* Queue may be only enqueyed on its syncq */ \ 459 ASSERT(sq == qp->q_syncq); \ 460 /* Check the correctness of SQ_MESSAGES flag */ \ 461 EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES)); \ 462 /* Sanity check first/last elements of the list */ \ 463 IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\ 464 IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\ 465 /* \ 466 * Sanity check of priority field: empty queue should \ 467 * have zero priority \ 468 * and nqueues equal to zero. \ 469 */ \ 470 IMPLY(sq->sq_head == NULL, sq->sq_pri == 0); \ 471 /* Sanity check of sq_nqueues field */ \ 472 EQUIV(sq->sq_head, sq->sq_nqueues); \ 473 if (sq->sq_head == NULL) { \ 474 sq->sq_head = sq->sq_tail = qp; \ 475 sq->sq_flags |= SQ_MESSAGES; \ 476 } else if (qp->q_spri == 0) { \ 477 qp->q_sqprev = sq->sq_tail; \ 478 sq->sq_tail->q_sqnext = qp; \ 479 sq->sq_tail = qp; \ 480 } else { \ 481 /* \ 482 * Put this queue in priority order: higher \ 483 * priority gets closer to the head. \ 484 */ \ 485 queue_t **qpp = &sq->sq_tail; \ 486 queue_t *qnext = NULL; \ 487 \ 488 while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \ 489 qnext = *qpp; \ 490 qpp = &(*qpp)->q_sqprev; \ 491 } \ 492 qp->q_sqnext = qnext; \ 493 qp->q_sqprev = *qpp; \ 494 if (*qpp != NULL) { \ 495 (*qpp)->q_sqnext = qp; \ 496 } else { \ 497 sq->sq_head = qp; \ 498 sq->sq_pri = sq->sq_head->q_spri; \ 499 } \ 500 *qpp = qp; \ 501 } \ 502 qp->q_sqflags |= Q_SQQUEUED; \ 503 qp->q_sqtstamp = lbolt; \ 504 sq->sq_nqueues++; \ 505 } \ 506 } 507 508 /* 509 * Remove a queue from the syncq list 510 * Assumes SQLOCK held. 511 */ 512 #define SQRM_Q(sq, qp) \ 513 { \ 514 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 515 ASSERT(qp->q_sqflags & Q_SQQUEUED); \ 516 ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL); \ 517 ASSERT((sq->sq_flags & SQ_MESSAGES) != 0); \ 518 /* Check that the queue is actually in the list */ \ 519 ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp); \ 520 ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp); \ 521 ASSERT(sq->sq_nqueues != 0); \ 522 if (qp->q_sqprev == NULL) { \ 523 /* First queue on list, make head q_sqnext */ \ 524 sq->sq_head = qp->q_sqnext; \ 525 } else { \ 526 /* Make prev->next == next */ \ 527 qp->q_sqprev->q_sqnext = qp->q_sqnext; \ 528 } \ 529 if (qp->q_sqnext == NULL) { \ 530 /* Last queue on list, make tail sqprev */ \ 531 sq->sq_tail = qp->q_sqprev; \ 532 } else { \ 533 /* Make next->prev == prev */ \ 534 qp->q_sqnext->q_sqprev = qp->q_sqprev; \ 535 } \ 536 /* clear out references on this queue */ \ 537 qp->q_sqprev = qp->q_sqnext = NULL; \ 538 qp->q_sqflags &= ~Q_SQQUEUED; \ 539 /* If there is nothing queued, clear SQ_MESSAGES */ \ 540 if (sq->sq_head != NULL) { \ 541 sq->sq_pri = sq->sq_head->q_spri; \ 542 } else { \ 543 sq->sq_flags &= ~SQ_MESSAGES; \ 544 sq->sq_pri = 0; \ 545 } \ 546 sq->sq_nqueues--; \ 547 ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL || \ 548 (sq->sq_flags & SQ_QUEUED) == 0); \ 549 } 550 551 /* Hide the definition from the header file. */ 552 #ifdef SQPUT_MP 553 #undef SQPUT_MP 554 #endif 555 556 /* 557 * Put a message on the queue syncq. 558 * Assumes QLOCK held. 559 */ 560 #define SQPUT_MP(qp, mp) \ 561 { \ 562 ASSERT(MUTEX_HELD(QLOCK(qp))); \ 563 ASSERT(qp->q_sqhead == NULL || \ 564 (qp->q_sqtail != NULL && \ 565 qp->q_sqtail->b_next == NULL)); \ 566 qp->q_syncqmsgs++; \ 567 ASSERT(qp->q_syncqmsgs != 0); /* Wraparound */ \ 568 if (qp->q_sqhead == NULL) { \ 569 qp->q_sqhead = qp->q_sqtail = mp; \ 570 } else { \ 571 qp->q_sqtail->b_next = mp; \ 572 qp->q_sqtail = mp; \ 573 } \ 574 ASSERT(qp->q_syncqmsgs > 0); \ 575 } 576 577 #define SQ_PUTCOUNT_SETFAST_LOCKED(sq) { \ 578 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 579 if ((sq)->sq_ciputctrl != NULL) { \ 580 int i; \ 581 int nlocks = (sq)->sq_nciputctrl; \ 582 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 583 ASSERT((sq)->sq_type & SQ_CIPUT); \ 584 for (i = 0; i <= nlocks; i++) { \ 585 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 586 cip[i].ciputctrl_count |= SQ_FASTPUT; \ 587 } \ 588 } \ 589 } 590 591 592 #define SQ_PUTCOUNT_CLRFAST_LOCKED(sq) { \ 593 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 594 if ((sq)->sq_ciputctrl != NULL) { \ 595 int i; \ 596 int nlocks = (sq)->sq_nciputctrl; \ 597 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 598 ASSERT((sq)->sq_type & SQ_CIPUT); \ 599 for (i = 0; i <= nlocks; i++) { \ 600 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 601 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \ 602 } \ 603 } \ 604 } 605 606 /* 607 * Run service procedures for all queues in the stream head. 608 */ 609 #define STR_SERVICE(stp, q) { \ 610 ASSERT(MUTEX_HELD(&stp->sd_qlock)); \ 611 while (stp->sd_qhead != NULL) { \ 612 DQ(q, stp->sd_qhead, stp->sd_qtail, q_link); \ 613 ASSERT(stp->sd_nqueues > 0); \ 614 stp->sd_nqueues--; \ 615 ASSERT(!(q->q_flag & QINSERVICE)); \ 616 mutex_exit(&stp->sd_qlock); \ 617 queue_service(q); \ 618 mutex_enter(&stp->sd_qlock); \ 619 } \ 620 ASSERT(stp->sd_nqueues == 0); \ 621 ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL)); \ 622 } 623 624 /* 625 * constructor/destructor routines for the stream head cache 626 */ 627 /* ARGSUSED */ 628 static int 629 stream_head_constructor(void *buf, void *cdrarg, int kmflags) 630 { 631 stdata_t *stp = buf; 632 633 mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 634 mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL); 635 mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL); 636 cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL); 637 cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL); 638 cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL); 639 cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL); 640 cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL); 641 stp->sd_wrq = NULL; 642 643 return (0); 644 } 645 646 /* ARGSUSED */ 647 static void 648 stream_head_destructor(void *buf, void *cdrarg) 649 { 650 stdata_t *stp = buf; 651 652 mutex_destroy(&stp->sd_lock); 653 mutex_destroy(&stp->sd_reflock); 654 mutex_destroy(&stp->sd_qlock); 655 cv_destroy(&stp->sd_monitor); 656 cv_destroy(&stp->sd_iocmonitor); 657 cv_destroy(&stp->sd_refmonitor); 658 cv_destroy(&stp->sd_qcv); 659 cv_destroy(&stp->sd_zcopy_wait); 660 } 661 662 /* 663 * constructor/destructor routines for the queue cache 664 */ 665 /* ARGSUSED */ 666 static int 667 queue_constructor(void *buf, void *cdrarg, int kmflags) 668 { 669 queinfo_t *qip = buf; 670 queue_t *qp = &qip->qu_rqueue; 671 queue_t *wqp = &qip->qu_wqueue; 672 syncq_t *sq = &qip->qu_syncq; 673 674 qp->q_first = NULL; 675 qp->q_link = NULL; 676 qp->q_count = 0; 677 qp->q_mblkcnt = 0; 678 qp->q_sqhead = NULL; 679 qp->q_sqtail = NULL; 680 qp->q_sqnext = NULL; 681 qp->q_sqprev = NULL; 682 qp->q_sqflags = 0; 683 qp->q_rwcnt = 0; 684 qp->q_spri = 0; 685 686 mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL); 687 cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL); 688 689 wqp->q_first = NULL; 690 wqp->q_link = NULL; 691 wqp->q_count = 0; 692 wqp->q_mblkcnt = 0; 693 wqp->q_sqhead = NULL; 694 wqp->q_sqtail = NULL; 695 wqp->q_sqnext = NULL; 696 wqp->q_sqprev = NULL; 697 wqp->q_sqflags = 0; 698 wqp->q_rwcnt = 0; 699 wqp->q_spri = 0; 700 701 mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL); 702 cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL); 703 704 sq->sq_head = NULL; 705 sq->sq_tail = NULL; 706 sq->sq_evhead = NULL; 707 sq->sq_evtail = NULL; 708 sq->sq_callbpend = NULL; 709 sq->sq_outer = NULL; 710 sq->sq_onext = NULL; 711 sq->sq_oprev = NULL; 712 sq->sq_next = NULL; 713 sq->sq_svcflags = 0; 714 sq->sq_servcount = 0; 715 sq->sq_needexcl = 0; 716 sq->sq_nqueues = 0; 717 sq->sq_pri = 0; 718 719 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL); 720 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL); 721 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL); 722 723 return (0); 724 } 725 726 /* ARGSUSED */ 727 static void 728 queue_destructor(void *buf, void *cdrarg) 729 { 730 queinfo_t *qip = buf; 731 queue_t *qp = &qip->qu_rqueue; 732 queue_t *wqp = &qip->qu_wqueue; 733 syncq_t *sq = &qip->qu_syncq; 734 735 ASSERT(qp->q_sqhead == NULL); 736 ASSERT(wqp->q_sqhead == NULL); 737 ASSERT(qp->q_sqnext == NULL); 738 ASSERT(wqp->q_sqnext == NULL); 739 ASSERT(qp->q_rwcnt == 0); 740 ASSERT(wqp->q_rwcnt == 0); 741 742 mutex_destroy(&qp->q_lock); 743 cv_destroy(&qp->q_wait); 744 745 mutex_destroy(&wqp->q_lock); 746 cv_destroy(&wqp->q_wait); 747 748 mutex_destroy(&sq->sq_lock); 749 cv_destroy(&sq->sq_wait); 750 cv_destroy(&sq->sq_exitwait); 751 } 752 753 /* 754 * constructor/destructor routines for the syncq cache 755 */ 756 /* ARGSUSED */ 757 static int 758 syncq_constructor(void *buf, void *cdrarg, int kmflags) 759 { 760 syncq_t *sq = buf; 761 762 bzero(buf, sizeof (syncq_t)); 763 764 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL); 765 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL); 766 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL); 767 768 return (0); 769 } 770 771 /* ARGSUSED */ 772 static void 773 syncq_destructor(void *buf, void *cdrarg) 774 { 775 syncq_t *sq = buf; 776 777 ASSERT(sq->sq_head == NULL); 778 ASSERT(sq->sq_tail == NULL); 779 ASSERT(sq->sq_evhead == NULL); 780 ASSERT(sq->sq_evtail == NULL); 781 ASSERT(sq->sq_callbpend == NULL); 782 ASSERT(sq->sq_callbflags == 0); 783 ASSERT(sq->sq_outer == NULL); 784 ASSERT(sq->sq_onext == NULL); 785 ASSERT(sq->sq_oprev == NULL); 786 ASSERT(sq->sq_next == NULL); 787 ASSERT(sq->sq_needexcl == 0); 788 ASSERT(sq->sq_svcflags == 0); 789 ASSERT(sq->sq_servcount == 0); 790 ASSERT(sq->sq_nqueues == 0); 791 ASSERT(sq->sq_pri == 0); 792 ASSERT(sq->sq_count == 0); 793 ASSERT(sq->sq_rmqcount == 0); 794 ASSERT(sq->sq_cancelid == 0); 795 ASSERT(sq->sq_ciputctrl == NULL); 796 ASSERT(sq->sq_nciputctrl == 0); 797 ASSERT(sq->sq_type == 0); 798 ASSERT(sq->sq_flags == 0); 799 800 mutex_destroy(&sq->sq_lock); 801 cv_destroy(&sq->sq_wait); 802 cv_destroy(&sq->sq_exitwait); 803 } 804 805 /* ARGSUSED */ 806 static int 807 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags) 808 { 809 ciputctrl_t *cip = buf; 810 int i; 811 812 for (i = 0; i < n_ciputctrl; i++) { 813 cip[i].ciputctrl_count = SQ_FASTPUT; 814 mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL); 815 } 816 817 return (0); 818 } 819 820 /* ARGSUSED */ 821 static void 822 ciputctrl_destructor(void *buf, void *cdrarg) 823 { 824 ciputctrl_t *cip = buf; 825 int i; 826 827 for (i = 0; i < n_ciputctrl; i++) { 828 ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT); 829 mutex_destroy(&cip[i].ciputctrl_lock); 830 } 831 } 832 833 /* 834 * Init routine run from main at boot time. 835 */ 836 void 837 strinit(void) 838 { 839 int i; 840 int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus); 841 842 /* 843 * Set up mux_node structures. 844 */ 845 mux_nodes = kmem_zalloc((sizeof (struct mux_node) * devcnt), KM_SLEEP); 846 for (i = 0; i < devcnt; i++) 847 mux_nodes[i].mn_imaj = i; 848 849 stream_head_cache = kmem_cache_create("stream_head_cache", 850 sizeof (stdata_t), 0, 851 stream_head_constructor, stream_head_destructor, NULL, 852 NULL, NULL, 0); 853 854 queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0, 855 queue_constructor, queue_destructor, NULL, NULL, NULL, 0); 856 857 syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0, 858 syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0); 859 860 qband_cache = kmem_cache_create("qband_cache", 861 sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 862 863 linkinfo_cache = kmem_cache_create("linkinfo_cache", 864 sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 865 866 n_ciputctrl = ncpus; 867 n_ciputctrl = 1 << highbit(n_ciputctrl - 1); 868 ASSERT(n_ciputctrl >= 1); 869 n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl); 870 if (n_ciputctrl >= min_n_ciputctrl) { 871 ciputctrl_cache = kmem_cache_create("ciputctrl_cache", 872 sizeof (ciputctrl_t) * n_ciputctrl, 873 sizeof (ciputctrl_t), ciputctrl_constructor, 874 ciputctrl_destructor, NULL, NULL, NULL, 0); 875 } 876 877 streams_taskq = system_taskq; 878 879 if (streams_taskq == NULL) 880 panic("strinit: no memory for streams taskq!"); 881 882 bc_bkgrnd_thread = thread_create(NULL, 0, 883 streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri); 884 885 streams_qbkgrnd_thread = thread_create(NULL, 0, 886 streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri); 887 888 streams_sqbkgrnd_thread = thread_create(NULL, 0, 889 streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri); 890 891 /* 892 * Create STREAMS kstats. 893 */ 894 str_kstat = kstat_create("streams", 0, "strstat", 895 "net", KSTAT_TYPE_NAMED, 896 sizeof (str_statistics) / sizeof (kstat_named_t), 897 KSTAT_FLAG_VIRTUAL); 898 899 if (str_kstat != NULL) { 900 str_kstat->ks_data = &str_statistics; 901 kstat_install(str_kstat); 902 } 903 904 /* 905 * TPI support routine initialisation. 906 */ 907 tpi_init(); 908 } 909 910 void 911 str_sendsig(vnode_t *vp, int event, uchar_t band, int error) 912 { 913 struct stdata *stp; 914 915 ASSERT(vp->v_stream); 916 stp = vp->v_stream; 917 /* Have to hold sd_lock to prevent siglist from changing */ 918 mutex_enter(&stp->sd_lock); 919 if (stp->sd_sigflags & event) 920 strsendsig(stp->sd_siglist, event, band, error); 921 mutex_exit(&stp->sd_lock); 922 } 923 924 /* 925 * Send the "sevent" set of signals to a process. 926 * This might send more than one signal if the process is registered 927 * for multiple events. The caller should pass in an sevent that only 928 * includes the events for which the process has registered. 929 */ 930 static void 931 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info, 932 uchar_t band, int error) 933 { 934 ASSERT(MUTEX_HELD(&proc->p_lock)); 935 936 info->si_band = 0; 937 info->si_errno = 0; 938 939 if (sevent & S_ERROR) { 940 sevent &= ~S_ERROR; 941 info->si_code = POLL_ERR; 942 info->si_errno = error; 943 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 944 "strsendsig:proc %p info %p", proc, info); 945 sigaddq(proc, NULL, info, KM_NOSLEEP); 946 info->si_errno = 0; 947 } 948 if (sevent & S_HANGUP) { 949 sevent &= ~S_HANGUP; 950 info->si_code = POLL_HUP; 951 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 952 "strsendsig:proc %p info %p", proc, info); 953 sigaddq(proc, NULL, info, KM_NOSLEEP); 954 } 955 if (sevent & S_HIPRI) { 956 sevent &= ~S_HIPRI; 957 info->si_code = POLL_PRI; 958 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 959 "strsendsig:proc %p info %p", proc, info); 960 sigaddq(proc, NULL, info, KM_NOSLEEP); 961 } 962 if (sevent & S_RDBAND) { 963 sevent &= ~S_RDBAND; 964 if (events & S_BANDURG) 965 sigtoproc(proc, NULL, SIGURG); 966 else 967 sigtoproc(proc, NULL, SIGPOLL); 968 } 969 if (sevent & S_WRBAND) { 970 sevent &= ~S_WRBAND; 971 sigtoproc(proc, NULL, SIGPOLL); 972 } 973 if (sevent & S_INPUT) { 974 sevent &= ~S_INPUT; 975 info->si_code = POLL_IN; 976 info->si_band = band; 977 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 978 "strsendsig:proc %p info %p", proc, info); 979 sigaddq(proc, NULL, info, KM_NOSLEEP); 980 info->si_band = 0; 981 } 982 if (sevent & S_OUTPUT) { 983 sevent &= ~S_OUTPUT; 984 info->si_code = POLL_OUT; 985 info->si_band = band; 986 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 987 "strsendsig:proc %p info %p", proc, info); 988 sigaddq(proc, NULL, info, KM_NOSLEEP); 989 info->si_band = 0; 990 } 991 if (sevent & S_MSG) { 992 sevent &= ~S_MSG; 993 info->si_code = POLL_MSG; 994 info->si_band = band; 995 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 996 "strsendsig:proc %p info %p", proc, info); 997 sigaddq(proc, NULL, info, KM_NOSLEEP); 998 info->si_band = 0; 999 } 1000 if (sevent & S_RDNORM) { 1001 sevent &= ~S_RDNORM; 1002 sigtoproc(proc, NULL, SIGPOLL); 1003 } 1004 if (sevent != 0) { 1005 panic("strsendsig: unknown event(s) %x", sevent); 1006 } 1007 } 1008 1009 /* 1010 * Send SIGPOLL/SIGURG signal to all processes and process groups 1011 * registered on the given signal list that want a signal for at 1012 * least one of the specified events. 1013 * 1014 * Must be called with exclusive access to siglist (caller holding sd_lock). 1015 * 1016 * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding 1017 * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure 1018 * while it is in the siglist. 1019 * 1020 * For performance reasons (MP scalability) the code drops pidlock 1021 * when sending signals to a single process. 1022 * When sending to a process group the code holds 1023 * pidlock to prevent the membership in the process group from changing 1024 * while walking the p_pglink list. 1025 */ 1026 void 1027 strsendsig(strsig_t *siglist, int event, uchar_t band, int error) 1028 { 1029 strsig_t *ssp; 1030 k_siginfo_t info; 1031 struct pid *pidp; 1032 proc_t *proc; 1033 1034 info.si_signo = SIGPOLL; 1035 info.si_errno = 0; 1036 for (ssp = siglist; ssp; ssp = ssp->ss_next) { 1037 int sevent; 1038 1039 sevent = ssp->ss_events & event; 1040 if (sevent == 0) 1041 continue; 1042 1043 if ((pidp = ssp->ss_pidp) == NULL) { 1044 /* pid was released but still on event list */ 1045 continue; 1046 } 1047 1048 1049 if (ssp->ss_pid > 0) { 1050 /* 1051 * XXX This unfortunately still generates 1052 * a signal when a fd is closed but 1053 * the proc is active. 1054 */ 1055 ASSERT(ssp->ss_pid == pidp->pid_id); 1056 1057 mutex_enter(&pidlock); 1058 proc = prfind_zone(pidp->pid_id, ALL_ZONES); 1059 if (proc == NULL) { 1060 mutex_exit(&pidlock); 1061 continue; 1062 } 1063 mutex_enter(&proc->p_lock); 1064 mutex_exit(&pidlock); 1065 dosendsig(proc, ssp->ss_events, sevent, &info, 1066 band, error); 1067 mutex_exit(&proc->p_lock); 1068 } else { 1069 /* 1070 * Send to process group. Hold pidlock across 1071 * calls to dosendsig(). 1072 */ 1073 pid_t pgrp = -ssp->ss_pid; 1074 1075 mutex_enter(&pidlock); 1076 proc = pgfind_zone(pgrp, ALL_ZONES); 1077 while (proc != NULL) { 1078 mutex_enter(&proc->p_lock); 1079 dosendsig(proc, ssp->ss_events, sevent, 1080 &info, band, error); 1081 mutex_exit(&proc->p_lock); 1082 proc = proc->p_pglink; 1083 } 1084 mutex_exit(&pidlock); 1085 } 1086 } 1087 } 1088 1089 /* 1090 * Attach a stream device or module. 1091 * qp is a read queue; the new queue goes in so its next 1092 * read ptr is the argument, and the write queue corresponding 1093 * to the argument points to this queue. Return 0 on success, 1094 * or a non-zero errno on failure. 1095 */ 1096 int 1097 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp, 1098 boolean_t is_insert) 1099 { 1100 major_t major; 1101 cdevsw_impl_t *dp; 1102 struct streamtab *str; 1103 queue_t *rq; 1104 queue_t *wrq; 1105 uint32_t qflag; 1106 uint32_t sqtype; 1107 perdm_t *dmp; 1108 int error; 1109 int sflag; 1110 1111 rq = allocq(); 1112 wrq = _WR(rq); 1113 STREAM(rq) = STREAM(wrq) = STREAM(qp); 1114 1115 if (fp != NULL) { 1116 str = fp->f_str; 1117 qflag = fp->f_qflag; 1118 sqtype = fp->f_sqtype; 1119 dmp = fp->f_dmp; 1120 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL); 1121 sflag = MODOPEN; 1122 1123 /* 1124 * stash away a pointer to the module structure so we can 1125 * unref it in qdetach. 1126 */ 1127 rq->q_fp = fp; 1128 } else { 1129 ASSERT(!is_insert); 1130 1131 major = getmajor(*devp); 1132 dp = &devimpl[major]; 1133 1134 str = dp->d_str; 1135 ASSERT(str == STREAMSTAB(major)); 1136 1137 qflag = dp->d_qflag; 1138 ASSERT(qflag & QISDRV); 1139 sqtype = dp->d_sqtype; 1140 1141 /* create perdm_t if needed */ 1142 if (NEED_DM(dp->d_dmp, qflag)) 1143 dp->d_dmp = hold_dm(str, qflag, sqtype); 1144 1145 dmp = dp->d_dmp; 1146 sflag = 0; 1147 } 1148 1149 TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS, 1150 "qattach:qflag == %X(%X)", qflag, *devp); 1151 1152 /* setq might sleep in allocator - avoid holding locks. */ 1153 setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE); 1154 1155 /* 1156 * Before calling the module's open routine, set up the q_next 1157 * pointer for inserting a module in the middle of a stream. 1158 * 1159 * Note that we can always set _QINSERTING and set up q_next 1160 * pointer for both inserting and pushing a module. Then there 1161 * is no need for the is_insert parameter. In insertq(), called 1162 * by qprocson(), assume that q_next of the new module always points 1163 * to the correct queue and use it for insertion. Everything should 1164 * work out fine. But in the first release of _I_INSERT, we 1165 * distinguish between inserting and pushing to make sure that 1166 * pushing a module follows the same code path as before. 1167 */ 1168 if (is_insert) { 1169 rq->q_flag |= _QINSERTING; 1170 rq->q_next = qp; 1171 } 1172 1173 /* 1174 * If there is an outer perimeter get exclusive access during 1175 * the open procedure. Bump up the reference count on the queue. 1176 */ 1177 entersq(rq->q_syncq, SQ_OPENCLOSE); 1178 error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp); 1179 if (error != 0) 1180 goto failed; 1181 leavesq(rq->q_syncq, SQ_OPENCLOSE); 1182 ASSERT(qprocsareon(rq)); 1183 return (0); 1184 1185 failed: 1186 rq->q_flag &= ~_QINSERTING; 1187 if (backq(wrq) != NULL && backq(wrq)->q_next == wrq) 1188 qprocsoff(rq); 1189 leavesq(rq->q_syncq, SQ_OPENCLOSE); 1190 rq->q_next = wrq->q_next = NULL; 1191 qdetach(rq, 0, 0, crp, B_FALSE); 1192 return (error); 1193 } 1194 1195 /* 1196 * Handle second open of stream. For modules, set the 1197 * last argument to MODOPEN and do not pass any open flags. 1198 * Ignore dummydev since this is not the first open. 1199 */ 1200 int 1201 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp) 1202 { 1203 int error; 1204 dev_t dummydev; 1205 queue_t *wqp = _WR(qp); 1206 1207 ASSERT(qp->q_flag & QREADR); 1208 entersq(qp->q_syncq, SQ_OPENCLOSE); 1209 1210 dummydev = *devp; 1211 if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev, 1212 (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) { 1213 leavesq(qp->q_syncq, SQ_OPENCLOSE); 1214 mutex_enter(&STREAM(qp)->sd_lock); 1215 qp->q_stream->sd_flag |= STREOPENFAIL; 1216 mutex_exit(&STREAM(qp)->sd_lock); 1217 return (error); 1218 } 1219 leavesq(qp->q_syncq, SQ_OPENCLOSE); 1220 1221 /* 1222 * successful open should have done qprocson() 1223 */ 1224 ASSERT(qprocsareon(_RD(qp))); 1225 return (0); 1226 } 1227 1228 /* 1229 * Detach a stream module or device. 1230 * If clmode == 1 then the module or driver was opened and its 1231 * close routine must be called. If clmode == 0, the module 1232 * or driver was never opened or the open failed, and so its close 1233 * should not be called. 1234 */ 1235 void 1236 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove) 1237 { 1238 queue_t *wqp = _WR(qp); 1239 ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB)); 1240 1241 if (STREAM_NEEDSERVICE(STREAM(qp))) 1242 stream_runservice(STREAM(qp)); 1243 1244 if (clmode) { 1245 /* 1246 * Make sure that all the messages on the write side syncq are 1247 * processed and nothing is left. Since we are closing, no new 1248 * messages may appear there. 1249 */ 1250 wait_q_syncq(wqp); 1251 1252 entersq(qp->q_syncq, SQ_OPENCLOSE); 1253 if (is_remove) { 1254 mutex_enter(QLOCK(qp)); 1255 qp->q_flag |= _QREMOVING; 1256 mutex_exit(QLOCK(qp)); 1257 } 1258 (*qp->q_qinfo->qi_qclose)(qp, flag, crp); 1259 /* 1260 * Check that qprocsoff() was actually called. 1261 */ 1262 ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE)); 1263 1264 leavesq(qp->q_syncq, SQ_OPENCLOSE); 1265 } else { 1266 disable_svc(qp); 1267 } 1268 1269 /* 1270 * Allow any threads blocked in entersq to proceed and discover 1271 * the QWCLOSE is set. 1272 * Note: This assumes that all users of entersq check QWCLOSE. 1273 * Currently runservice is the only entersq that can happen 1274 * after removeq has finished. 1275 * Removeq will have discarded all messages destined to the closing 1276 * pair of queues from the syncq. 1277 * NOTE: Calling a function inside an assert is unconventional. 1278 * However, it does not cause any problem since flush_syncq() does 1279 * not change any state except when it returns non-zero i.e. 1280 * when the assert will trigger. 1281 */ 1282 ASSERT(flush_syncq(qp->q_syncq, qp) == 0); 1283 ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0); 1284 ASSERT((qp->q_flag & QPERMOD) || 1285 ((qp->q_syncq->sq_head == NULL) && 1286 (wqp->q_syncq->sq_head == NULL))); 1287 1288 /* 1289 * Flush the queues before q_next is set to NULL. This is needed 1290 * in order to backenable any downstream queue before we go away. 1291 * Note: we are already removed from the stream so that the 1292 * backenabling will not cause any messages to be delivered to our 1293 * put procedures. 1294 */ 1295 flushq(qp, FLUSHALL); 1296 flushq(wqp, FLUSHALL); 1297 1298 /* 1299 * wait for any pending service processing to complete 1300 */ 1301 wait_svc(qp); 1302 1303 /* Tidy up - removeq only does a half-remove from stream */ 1304 qp->q_next = wqp->q_next = NULL; 1305 ASSERT(!(qp->q_flag & QENAB)); 1306 ASSERT(!(wqp->q_flag & QENAB)); 1307 1308 /* release any fmodsw_impl_t structure held on behalf of the queue */ 1309 1310 ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV); 1311 if (qp->q_fp != NULL) 1312 fmodsw_rele(qp->q_fp); 1313 1314 /* freeq removes us from the outer perimeter if any */ 1315 freeq(qp); 1316 } 1317 1318 /* Prevent service procedures from being called */ 1319 void 1320 disable_svc(queue_t *qp) 1321 { 1322 queue_t *wqp = _WR(qp); 1323 1324 ASSERT(qp->q_flag & QREADR); 1325 mutex_enter(QLOCK(qp)); 1326 qp->q_flag |= QWCLOSE; 1327 mutex_exit(QLOCK(qp)); 1328 mutex_enter(QLOCK(wqp)); 1329 wqp->q_flag |= QWCLOSE; 1330 mutex_exit(QLOCK(wqp)); 1331 } 1332 1333 /* allow service procedures to be called again */ 1334 void 1335 enable_svc(queue_t *qp) 1336 { 1337 queue_t *wqp = _WR(qp); 1338 1339 ASSERT(qp->q_flag & QREADR); 1340 mutex_enter(QLOCK(qp)); 1341 qp->q_flag &= ~QWCLOSE; 1342 mutex_exit(QLOCK(qp)); 1343 mutex_enter(QLOCK(wqp)); 1344 wqp->q_flag &= ~QWCLOSE; 1345 mutex_exit(QLOCK(wqp)); 1346 } 1347 1348 /* 1349 * Remove queue from qhead/qtail if it is enabled. 1350 * Only reset QENAB if the queue was removed from the runlist. 1351 * A queue goes through 3 stages: 1352 * It is on the service list and QENAB is set. 1353 * It is removed from the service list but QENAB is still set. 1354 * QENAB gets changed to QINSERVICE. 1355 * QINSERVICE is reset (when the service procedure is done) 1356 * Thus we can not reset QENAB unless we actually removed it from the service 1357 * queue. 1358 */ 1359 void 1360 remove_runlist(queue_t *qp) 1361 { 1362 if (qp->q_flag & QENAB && qhead != NULL) { 1363 queue_t *q_chase; 1364 queue_t *q_curr; 1365 int removed; 1366 1367 mutex_enter(&service_queue); 1368 RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed); 1369 mutex_exit(&service_queue); 1370 if (removed) { 1371 STRSTAT(qremoved); 1372 qp->q_flag &= ~QENAB; 1373 } 1374 } 1375 } 1376 1377 1378 /* 1379 * wait for any pending service processing to complete. 1380 * The removal of queues from the runlist is not atomic with the 1381 * clearing of the QENABLED flag and setting the INSERVICE flag. 1382 * consequently it is possible for remove_runlist in strclose 1383 * to not find the queue on the runlist but for it to be QENABLED 1384 * and not yet INSERVICE -> hence wait_svc needs to check QENABLED 1385 * as well as INSERVICE. 1386 */ 1387 void 1388 wait_svc(queue_t *qp) 1389 { 1390 queue_t *wqp = _WR(qp); 1391 1392 ASSERT(qp->q_flag & QREADR); 1393 1394 /* 1395 * Try to remove queues from qhead/qtail list. 1396 */ 1397 if (qhead != NULL) { 1398 remove_runlist(qp); 1399 remove_runlist(wqp); 1400 } 1401 /* 1402 * Wait till the syncqs associated with the queue 1403 * will dissapear from background processing list. 1404 * This only needs to be done for non-PERMOD perimeters since 1405 * for PERMOD perimeters the syncq may be shared and will only be freed 1406 * when the last module/driver is unloaded. 1407 * If for PERMOD perimeters queue was on the syncq list, removeq() 1408 * should call propagate_syncq() or drain_syncq() for it. Both of these 1409 * function remove the queue from its syncq list, so sqthread will not 1410 * try to access the queue. 1411 */ 1412 if (!(qp->q_flag & QPERMOD)) { 1413 syncq_t *rsq = qp->q_syncq; 1414 syncq_t *wsq = wqp->q_syncq; 1415 1416 /* 1417 * Disable rsq and wsq and wait for any background processing of 1418 * syncq to complete. 1419 */ 1420 wait_sq_svc(rsq); 1421 if (wsq != rsq) 1422 wait_sq_svc(wsq); 1423 } 1424 1425 mutex_enter(QLOCK(qp)); 1426 while (qp->q_flag & (QINSERVICE|QENAB)) 1427 cv_wait(&qp->q_wait, QLOCK(qp)); 1428 mutex_exit(QLOCK(qp)); 1429 mutex_enter(QLOCK(wqp)); 1430 while (wqp->q_flag & (QINSERVICE|QENAB)) 1431 cv_wait(&wqp->q_wait, QLOCK(wqp)); 1432 mutex_exit(QLOCK(wqp)); 1433 } 1434 1435 /* 1436 * Put ioctl data from userland buffer `arg' into the mblk chain `bp'. 1437 * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may 1438 * also be set, and is passed through to allocb_cred_wait(). 1439 * 1440 * Returns errno on failure, zero on success. 1441 */ 1442 int 1443 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr) 1444 { 1445 mblk_t *tmp; 1446 ssize_t count; 1447 size_t n; 1448 int error = 0; 1449 1450 ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K || 1451 (flag & (U_TO_K | K_TO_K)) == K_TO_K); 1452 1453 if (bp->b_datap->db_type == M_IOCTL) { 1454 count = ((struct iocblk *)bp->b_rptr)->ioc_count; 1455 } else { 1456 ASSERT(bp->b_datap->db_type == M_COPYIN); 1457 count = ((struct copyreq *)bp->b_rptr)->cq_size; 1458 } 1459 /* 1460 * strdoioctl validates ioc_count, so if this assert fails it 1461 * cannot be due to user error. 1462 */ 1463 ASSERT(count >= 0); 1464 1465 while (count > 0) { 1466 n = MIN(MAXIOCBSZ, count); 1467 if ((tmp = allocb_cred_wait(n, (flag & STR_NOSIG), &error, 1468 cr)) == NULL) { 1469 return (error); 1470 } 1471 error = strcopyin(arg, tmp->b_wptr, n, flag & (U_TO_K|K_TO_K)); 1472 if (error != 0) { 1473 freeb(tmp); 1474 return (error); 1475 } 1476 arg += n; 1477 DB_CPID(tmp) = curproc->p_pid; 1478 tmp->b_wptr += n; 1479 count -= n; 1480 bp = (bp->b_cont = tmp); 1481 } 1482 1483 return (0); 1484 } 1485 1486 /* 1487 * Copy ioctl data to user-land. Return non-zero errno on failure, 1488 * 0 for success. 1489 */ 1490 int 1491 getiocd(mblk_t *bp, char *arg, int copymode) 1492 { 1493 ssize_t count; 1494 size_t n; 1495 int error; 1496 1497 if (bp->b_datap->db_type == M_IOCACK) 1498 count = ((struct iocblk *)bp->b_rptr)->ioc_count; 1499 else { 1500 ASSERT(bp->b_datap->db_type == M_COPYOUT); 1501 count = ((struct copyreq *)bp->b_rptr)->cq_size; 1502 } 1503 ASSERT(count >= 0); 1504 1505 for (bp = bp->b_cont; bp && count; 1506 count -= n, bp = bp->b_cont, arg += n) { 1507 n = MIN(count, bp->b_wptr - bp->b_rptr); 1508 error = strcopyout(bp->b_rptr, arg, n, copymode); 1509 if (error) 1510 return (error); 1511 } 1512 ASSERT(count == 0); 1513 return (0); 1514 } 1515 1516 /* 1517 * Allocate a linkinfo entry given the write queue of the 1518 * bottom module of the top stream and the write queue of the 1519 * stream head of the bottom stream. 1520 */ 1521 linkinfo_t * 1522 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown) 1523 { 1524 linkinfo_t *linkp; 1525 1526 linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP); 1527 1528 linkp->li_lblk.l_qtop = qup; 1529 linkp->li_lblk.l_qbot = qdown; 1530 linkp->li_fpdown = fpdown; 1531 1532 mutex_enter(&strresources); 1533 linkp->li_next = linkinfo_list; 1534 linkp->li_prev = NULL; 1535 if (linkp->li_next) 1536 linkp->li_next->li_prev = linkp; 1537 linkinfo_list = linkp; 1538 linkp->li_lblk.l_index = ++lnk_id; 1539 ASSERT(lnk_id != 0); /* this should never wrap in practice */ 1540 mutex_exit(&strresources); 1541 1542 return (linkp); 1543 } 1544 1545 /* 1546 * Free a linkinfo entry. 1547 */ 1548 void 1549 lbfree(linkinfo_t *linkp) 1550 { 1551 mutex_enter(&strresources); 1552 if (linkp->li_next) 1553 linkp->li_next->li_prev = linkp->li_prev; 1554 if (linkp->li_prev) 1555 linkp->li_prev->li_next = linkp->li_next; 1556 else 1557 linkinfo_list = linkp->li_next; 1558 mutex_exit(&strresources); 1559 1560 kmem_cache_free(linkinfo_cache, linkp); 1561 } 1562 1563 /* 1564 * Check for a potential linking cycle. 1565 * Return 1 if a link will result in a cycle, 1566 * and 0 otherwise. 1567 */ 1568 int 1569 linkcycle(stdata_t *upstp, stdata_t *lostp) 1570 { 1571 struct mux_node *np; 1572 struct mux_edge *ep; 1573 int i; 1574 major_t lomaj; 1575 major_t upmaj; 1576 /* 1577 * if the lower stream is a pipe/FIFO, return, since link 1578 * cycles can not happen on pipes/FIFOs 1579 */ 1580 if (lostp->sd_vnode->v_type == VFIFO) 1581 return (0); 1582 1583 for (i = 0; i < devcnt; i++) { 1584 np = &mux_nodes[i]; 1585 MUX_CLEAR(np); 1586 } 1587 lomaj = getmajor(lostp->sd_vnode->v_rdev); 1588 upmaj = getmajor(upstp->sd_vnode->v_rdev); 1589 np = &mux_nodes[lomaj]; 1590 for (;;) { 1591 if (!MUX_DIDVISIT(np)) { 1592 if (np->mn_imaj == upmaj) 1593 return (1); 1594 if (np->mn_outp == NULL) { 1595 MUX_VISIT(np); 1596 if (np->mn_originp == NULL) 1597 return (0); 1598 np = np->mn_originp; 1599 continue; 1600 } 1601 MUX_VISIT(np); 1602 np->mn_startp = np->mn_outp; 1603 } else { 1604 if (np->mn_startp == NULL) { 1605 if (np->mn_originp == NULL) 1606 return (0); 1607 else { 1608 np = np->mn_originp; 1609 continue; 1610 } 1611 } 1612 /* 1613 * If ep->me_nodep is a FIFO (me_nodep == NULL), 1614 * ignore the edge and move on. ep->me_nodep gets 1615 * set to NULL in mux_addedge() if it is a FIFO. 1616 * 1617 */ 1618 ep = np->mn_startp; 1619 np->mn_startp = ep->me_nextp; 1620 if (ep->me_nodep == NULL) 1621 continue; 1622 ep->me_nodep->mn_originp = np; 1623 np = ep->me_nodep; 1624 } 1625 } 1626 } 1627 1628 /* 1629 * Find linkinfo entry corresponding to the parameters. 1630 */ 1631 linkinfo_t * 1632 findlinks(stdata_t *stp, int index, int type) 1633 { 1634 linkinfo_t *linkp; 1635 struct mux_edge *mep; 1636 struct mux_node *mnp; 1637 queue_t *qup; 1638 1639 mutex_enter(&strresources); 1640 if ((type & LINKTYPEMASK) == LINKNORMAL) { 1641 qup = getendq(stp->sd_wrq); 1642 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) { 1643 if ((qup == linkp->li_lblk.l_qtop) && 1644 (!index || (index == linkp->li_lblk.l_index))) { 1645 mutex_exit(&strresources); 1646 return (linkp); 1647 } 1648 } 1649 } else { 1650 ASSERT((type & LINKTYPEMASK) == LINKPERSIST); 1651 mnp = &mux_nodes[getmajor(stp->sd_vnode->v_rdev)]; 1652 mep = mnp->mn_outp; 1653 while (mep) { 1654 if ((index == 0) || (index == mep->me_muxid)) 1655 break; 1656 mep = mep->me_nextp; 1657 } 1658 if (!mep) { 1659 mutex_exit(&strresources); 1660 return (NULL); 1661 } 1662 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) { 1663 if ((!linkp->li_lblk.l_qtop) && 1664 (mep->me_muxid == linkp->li_lblk.l_index)) { 1665 mutex_exit(&strresources); 1666 return (linkp); 1667 } 1668 } 1669 } 1670 mutex_exit(&strresources); 1671 return (NULL); 1672 } 1673 1674 /* 1675 * Given a queue ptr, follow the chain of q_next pointers until you reach the 1676 * last queue on the chain and return it. 1677 */ 1678 queue_t * 1679 getendq(queue_t *q) 1680 { 1681 ASSERT(q != NULL); 1682 while (_SAMESTR(q)) 1683 q = q->q_next; 1684 return (q); 1685 } 1686 1687 /* 1688 * wait for the syncq count to drop to zero. 1689 * sq could be either outer or inner. 1690 */ 1691 1692 static void 1693 wait_syncq(syncq_t *sq) 1694 { 1695 uint16_t count; 1696 1697 mutex_enter(SQLOCK(sq)); 1698 count = sq->sq_count; 1699 SQ_PUTLOCKS_ENTER(sq); 1700 SUM_SQ_PUTCOUNTS(sq, count); 1701 while (count != 0) { 1702 sq->sq_flags |= SQ_WANTWAKEUP; 1703 SQ_PUTLOCKS_EXIT(sq); 1704 cv_wait(&sq->sq_wait, SQLOCK(sq)); 1705 count = sq->sq_count; 1706 SQ_PUTLOCKS_ENTER(sq); 1707 SUM_SQ_PUTCOUNTS(sq, count); 1708 } 1709 SQ_PUTLOCKS_EXIT(sq); 1710 mutex_exit(SQLOCK(sq)); 1711 } 1712 1713 /* 1714 * Wait while there are any messages for the queue in its syncq. 1715 */ 1716 static void 1717 wait_q_syncq(queue_t *q) 1718 { 1719 if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) { 1720 syncq_t *sq = q->q_syncq; 1721 1722 mutex_enter(SQLOCK(sq)); 1723 while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) { 1724 sq->sq_flags |= SQ_WANTWAKEUP; 1725 cv_wait(&sq->sq_wait, SQLOCK(sq)); 1726 } 1727 mutex_exit(SQLOCK(sq)); 1728 } 1729 } 1730 1731 1732 int 1733 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp, 1734 int lhlink) 1735 { 1736 struct stdata *stp; 1737 struct strioctl strioc; 1738 struct linkinfo *linkp; 1739 struct stdata *stpdown; 1740 struct streamtab *str; 1741 queue_t *passq; 1742 syncq_t *passyncq; 1743 queue_t *rq; 1744 cdevsw_impl_t *dp; 1745 uint32_t qflag; 1746 uint32_t sqtype; 1747 perdm_t *dmp; 1748 int error = 0; 1749 1750 stp = vp->v_stream; 1751 TRACE_1(TR_FAC_STREAMS_FR, 1752 TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp); 1753 /* 1754 * Test for invalid upper stream 1755 */ 1756 if (stp->sd_flag & STRHUP) { 1757 return (ENXIO); 1758 } 1759 if (vp->v_type == VFIFO) { 1760 return (EINVAL); 1761 } 1762 if (stp->sd_strtab == NULL) { 1763 return (EINVAL); 1764 } 1765 if (!stp->sd_strtab->st_muxwinit) { 1766 return (EINVAL); 1767 } 1768 if (fpdown == NULL) { 1769 return (EBADF); 1770 } 1771 if (getmajor(stp->sd_vnode->v_rdev) >= devcnt) { 1772 return (EINVAL); 1773 } 1774 mutex_enter(&muxifier); 1775 if (stp->sd_flag & STPLEX) { 1776 mutex_exit(&muxifier); 1777 return (ENXIO); 1778 } 1779 1780 /* 1781 * Test for invalid lower stream. 1782 * The check for the v_type != VFIFO and having a major 1783 * number not >= devcnt is done to avoid problems with 1784 * adding mux_node entry past the end of mux_nodes[]. 1785 * For FIFO's we don't add an entry so this isn't a 1786 * problem. 1787 */ 1788 if (((stpdown = fpdown->f_vnode->v_stream) == NULL) || 1789 (stpdown == stp) || (stpdown->sd_flag & 1790 (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) || 1791 ((stpdown->sd_vnode->v_type != VFIFO) && 1792 (getmajor(stpdown->sd_vnode->v_rdev) >= devcnt)) || 1793 linkcycle(stp, stpdown)) { 1794 mutex_exit(&muxifier); 1795 return (EINVAL); 1796 } 1797 TRACE_1(TR_FAC_STREAMS_FR, 1798 TR_STPDOWN, "stpdown:%p", stpdown); 1799 rq = getendq(stp->sd_wrq); 1800 if (cmd == I_PLINK) 1801 rq = NULL; 1802 1803 linkp = alloclink(rq, stpdown->sd_wrq, fpdown); 1804 1805 strioc.ic_cmd = cmd; 1806 strioc.ic_timout = INFTIM; 1807 strioc.ic_len = sizeof (struct linkblk); 1808 strioc.ic_dp = (char *)&linkp->li_lblk; 1809 1810 /* 1811 * STRPLUMB protects plumbing changes and should be set before 1812 * link_addpassthru()/link_rempassthru() are called, so it is set here 1813 * and cleared in the end of mlink when passthru queue is removed. 1814 * Setting of STRPLUMB prevents reopens of the stream while passthru 1815 * queue is in-place (it is not a proper module and doesn't have open 1816 * entry point). 1817 * 1818 * STPLEX prevents any threads from entering the stream from above. It 1819 * can't be set before the call to link_addpassthru() because putnext 1820 * from below may cause stream head I/O routines to be called and these 1821 * routines assert that STPLEX is not set. After link_addpassthru() 1822 * nothing may come from below since the pass queue syncq is blocked. 1823 * Note also that STPLEX should be cleared before the call to 1824 * link_remmpassthru() since when messages start flowing to the stream 1825 * head (e.g. because of message propagation from the pass queue) stream 1826 * head I/O routines may be called with STPLEX flag set. 1827 * 1828 * When STPLEX is set, nothing may come into the stream from above and 1829 * it is safe to do a setq which will change stream head. So, the 1830 * correct sequence of actions is: 1831 * 1832 * 1) Set STRPLUMB 1833 * 2) Call link_addpassthru() 1834 * 3) Set STPLEX 1835 * 4) Call setq and update the stream state 1836 * 5) Clear STPLEX 1837 * 6) Call link_rempassthru() 1838 * 7) Clear STRPLUMB 1839 * 1840 * The same sequence applies to munlink() code. 1841 */ 1842 mutex_enter(&stpdown->sd_lock); 1843 stpdown->sd_flag |= STRPLUMB; 1844 mutex_exit(&stpdown->sd_lock); 1845 /* 1846 * Add passthru queue below lower mux. This will block 1847 * syncqs of lower muxs read queue during I_LINK/I_UNLINK. 1848 */ 1849 passq = link_addpassthru(stpdown); 1850 1851 mutex_enter(&stpdown->sd_lock); 1852 stpdown->sd_flag |= STPLEX; 1853 mutex_exit(&stpdown->sd_lock); 1854 1855 rq = _RD(stpdown->sd_wrq); 1856 /* 1857 * There may be messages in the streamhead's syncq due to messages 1858 * that arrived before link_addpassthru() was done. To avoid 1859 * background processing of the syncq happening simultaneous with 1860 * setq processing, we disable the streamhead syncq and wait until 1861 * existing background thread finishes working on it. 1862 */ 1863 wait_sq_svc(rq->q_syncq); 1864 passyncq = passq->q_syncq; 1865 if (!(passyncq->sq_flags & SQ_BLOCKED)) 1866 blocksq(passyncq, SQ_BLOCKED, 0); 1867 1868 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE); 1869 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq)); 1870 rq->q_ptr = _WR(rq)->q_ptr = NULL; 1871 1872 /* setq might sleep in allocator - avoid holding locks. */ 1873 /* Note: we are holding muxifier here. */ 1874 1875 str = stp->sd_strtab; 1876 dp = &devimpl[getmajor(vp->v_rdev)]; 1877 ASSERT(dp->d_str == str); 1878 1879 qflag = dp->d_qflag; 1880 sqtype = dp->d_sqtype; 1881 1882 /* create perdm_t if needed */ 1883 if (NEED_DM(dp->d_dmp, qflag)) 1884 dp->d_dmp = hold_dm(str, qflag, sqtype); 1885 1886 dmp = dp->d_dmp; 1887 1888 setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype, 1889 B_TRUE); 1890 1891 /* 1892 * XXX Remove any "odd" messages from the queue. 1893 * Keep only M_DATA, M_PROTO, M_PCPROTO. 1894 */ 1895 error = strdoioctl(stp, &strioc, FNATIVE, 1896 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp); 1897 if (error != 0) { 1898 lbfree(linkp); 1899 1900 if (!(passyncq->sq_flags & SQ_BLOCKED)) 1901 blocksq(passyncq, SQ_BLOCKED, 0); 1902 /* 1903 * Restore the stream head queue and then remove 1904 * the passq. Turn off STPLEX before we turn on 1905 * the stream by removing the passq. 1906 */ 1907 rq->q_ptr = _WR(rq)->q_ptr = stpdown; 1908 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, 1909 B_TRUE); 1910 1911 mutex_enter(&stpdown->sd_lock); 1912 stpdown->sd_flag &= ~STPLEX; 1913 mutex_exit(&stpdown->sd_lock); 1914 1915 link_rempassthru(passq); 1916 1917 mutex_enter(&stpdown->sd_lock); 1918 stpdown->sd_flag &= ~STRPLUMB; 1919 /* Wakeup anyone waiting for STRPLUMB to clear. */ 1920 cv_broadcast(&stpdown->sd_monitor); 1921 mutex_exit(&stpdown->sd_lock); 1922 1923 mutex_exit(&muxifier); 1924 return (error); 1925 } 1926 mutex_enter(&fpdown->f_tlock); 1927 fpdown->f_count++; 1928 mutex_exit(&fpdown->f_tlock); 1929 1930 /* 1931 * if we've made it here the linkage is all set up so we should also 1932 * set up the layered driver linkages 1933 */ 1934 1935 ASSERT((cmd == I_LINK) || (cmd == I_PLINK)); 1936 if (cmd == I_LINK) { 1937 ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL); 1938 } else { 1939 ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST); 1940 } 1941 1942 link_rempassthru(passq); 1943 1944 mux_addedge(stp, stpdown, linkp->li_lblk.l_index); 1945 1946 /* 1947 * Mark the upper stream as having dependent links 1948 * so that strclose can clean it up. 1949 */ 1950 if (cmd == I_LINK) { 1951 mutex_enter(&stp->sd_lock); 1952 stp->sd_flag |= STRHASLINKS; 1953 mutex_exit(&stp->sd_lock); 1954 } 1955 /* 1956 * Wake up any other processes that may have been 1957 * waiting on the lower stream. These will all 1958 * error out. 1959 */ 1960 mutex_enter(&stpdown->sd_lock); 1961 /* The passthru module is removed so we may release STRPLUMB */ 1962 stpdown->sd_flag &= ~STRPLUMB; 1963 cv_broadcast(&rq->q_wait); 1964 cv_broadcast(&_WR(rq)->q_wait); 1965 cv_broadcast(&stpdown->sd_monitor); 1966 mutex_exit(&stpdown->sd_lock); 1967 mutex_exit(&muxifier); 1968 *rvalp = linkp->li_lblk.l_index; 1969 return (0); 1970 } 1971 1972 int 1973 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink) 1974 { 1975 int ret; 1976 struct file *fpdown; 1977 1978 fpdown = getf(arg); 1979 ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink); 1980 if (fpdown != NULL) 1981 releasef(arg); 1982 return (ret); 1983 } 1984 1985 /* 1986 * Unlink a multiplexor link. Stp is the controlling stream for the 1987 * link, and linkp points to the link's entry in the linkinfo list. 1988 * The muxifier lock must be held on entry and is dropped on exit. 1989 * 1990 * NOTE : Currently it is assumed that mux would process all the messages 1991 * sitting on it's queue before ACKing the UNLINK. It is the responsibility 1992 * of the mux to handle all the messages that arrive before UNLINK. 1993 * If the mux has to send down messages on its lower stream before 1994 * ACKing I_UNLINK, then it *should* know to handle messages even 1995 * after the UNLINK is acked (actually it should be able to handle till we 1996 * re-block the read side of the pass queue here). If the mux does not 1997 * open up the lower stream, any messages that arrive during UNLINK 1998 * will be put in the stream head. In the case of lower stream opening 1999 * up, some messages might land in the stream head depending on when 2000 * the message arrived and when the read side of the pass queue was 2001 * re-blocked. 2002 */ 2003 int 2004 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp) 2005 { 2006 struct strioctl strioc; 2007 struct stdata *stpdown; 2008 queue_t *rq, *wrq; 2009 queue_t *passq; 2010 syncq_t *passyncq; 2011 int error = 0; 2012 file_t *fpdown; 2013 2014 ASSERT(MUTEX_HELD(&muxifier)); 2015 2016 stpdown = linkp->li_fpdown->f_vnode->v_stream; 2017 2018 /* 2019 * See the comment in mlink() concerning STRPLUMB/STPLEX flags. 2020 */ 2021 mutex_enter(&stpdown->sd_lock); 2022 stpdown->sd_flag |= STRPLUMB; 2023 mutex_exit(&stpdown->sd_lock); 2024 2025 /* 2026 * Add passthru queue below lower mux. This will block 2027 * syncqs of lower muxs read queue during I_LINK/I_UNLINK. 2028 */ 2029 passq = link_addpassthru(stpdown); 2030 2031 if ((flag & LINKTYPEMASK) == LINKNORMAL) 2032 strioc.ic_cmd = I_UNLINK; 2033 else 2034 strioc.ic_cmd = I_PUNLINK; 2035 strioc.ic_timout = INFTIM; 2036 strioc.ic_len = sizeof (struct linkblk); 2037 strioc.ic_dp = (char *)&linkp->li_lblk; 2038 2039 error = strdoioctl(stp, &strioc, FNATIVE, 2040 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp); 2041 2042 /* 2043 * If there was an error and this is not called via strclose, 2044 * return to the user. Otherwise, pretend there was no error 2045 * and close the link. 2046 */ 2047 if (error) { 2048 if (flag & LINKCLOSE) { 2049 cmn_err(CE_WARN, "KERNEL: munlink: could not perform " 2050 "unlink ioctl, closing anyway (%d)\n", error); 2051 } else { 2052 link_rempassthru(passq); 2053 mutex_enter(&stpdown->sd_lock); 2054 stpdown->sd_flag &= ~STRPLUMB; 2055 cv_broadcast(&stpdown->sd_monitor); 2056 mutex_exit(&stpdown->sd_lock); 2057 mutex_exit(&muxifier); 2058 return (error); 2059 } 2060 } 2061 2062 mux_rmvedge(stp, linkp->li_lblk.l_index); 2063 fpdown = linkp->li_fpdown; 2064 lbfree(linkp); 2065 2066 /* 2067 * We go ahead and drop muxifier here--it's a nasty global lock that 2068 * can slow others down. It's okay to since attempts to mlink() this 2069 * stream will be stopped because STPLEX is still set in the stdata 2070 * structure, and munlink() is stopped because mux_rmvedge() and 2071 * lbfree() have removed it from mux_nodes[] and linkinfo_list, 2072 * respectively. Note that we defer the closef() of fpdown until 2073 * after we drop muxifier since strclose() can call munlinkall(). 2074 */ 2075 mutex_exit(&muxifier); 2076 2077 wrq = stpdown->sd_wrq; 2078 rq = _RD(wrq); 2079 2080 /* 2081 * Get rid of outstanding service procedure runs, before we make 2082 * it a stream head, since a stream head doesn't have any service 2083 * procedure. 2084 */ 2085 disable_svc(rq); 2086 wait_svc(rq); 2087 2088 /* 2089 * Since we don't disable the syncq for QPERMOD, we wait for whatever 2090 * is queued up to be finished. mux should take care that nothing is 2091 * send down to this queue. We should do it now as we're going to block 2092 * passyncq if it was unblocked. 2093 */ 2094 if (wrq->q_flag & QPERMOD) { 2095 syncq_t *sq = wrq->q_syncq; 2096 2097 mutex_enter(SQLOCK(sq)); 2098 while (wrq->q_sqflags & Q_SQQUEUED) { 2099 sq->sq_flags |= SQ_WANTWAKEUP; 2100 cv_wait(&sq->sq_wait, SQLOCK(sq)); 2101 } 2102 mutex_exit(SQLOCK(sq)); 2103 } 2104 passyncq = passq->q_syncq; 2105 if (!(passyncq->sq_flags & SQ_BLOCKED)) { 2106 2107 syncq_t *sq, *outer; 2108 2109 /* 2110 * Messages could be flowing from underneath. We will 2111 * block the read side of the passq. This would be 2112 * sufficient for QPAIR and QPERQ muxes to ensure 2113 * that no data is flowing up into this queue 2114 * and hence no thread active in this instance of 2115 * lower mux. But for QPERMOD and QMTOUTPERIM there 2116 * could be messages on the inner and outer/inner 2117 * syncqs respectively. We will wait for them to drain. 2118 * Because passq is blocked messages end up in the syncq 2119 * And qfill_syncq could possibly end up setting QFULL 2120 * which will access the rq->q_flag. Hence, we have to 2121 * acquire the QLOCK in setq. 2122 * 2123 * XXX Messages can also flow from top into this 2124 * queue though the unlink is over (Ex. some instance 2125 * in putnext() called from top that has still not 2126 * accessed this queue. And also putq(lowerq) ?). 2127 * Solution : How about blocking the l_qtop queue ? 2128 * Do we really care about such pure D_MP muxes ? 2129 */ 2130 2131 blocksq(passyncq, SQ_BLOCKED, 0); 2132 2133 sq = rq->q_syncq; 2134 if ((outer = sq->sq_outer) != NULL) { 2135 2136 /* 2137 * We have to just wait for the outer sq_count 2138 * drop to zero. As this does not prevent new 2139 * messages to enter the outer perimeter, this 2140 * is subject to starvation. 2141 * 2142 * NOTE :Because of blocksq above, messages could 2143 * be in the inner syncq only because of some 2144 * thread holding the outer perimeter exclusively. 2145 * Hence it would be sufficient to wait for the 2146 * exclusive holder of the outer perimeter to drain 2147 * the inner and outer syncqs. But we will not depend 2148 * on this feature and hence check the inner syncqs 2149 * separately. 2150 */ 2151 wait_syncq(outer); 2152 } 2153 2154 2155 /* 2156 * There could be messages destined for 2157 * this queue. Let the exclusive holder 2158 * drain it. 2159 */ 2160 2161 wait_syncq(sq); 2162 ASSERT((rq->q_flag & QPERMOD) || 2163 ((rq->q_syncq->sq_head == NULL) && 2164 (_WR(rq)->q_syncq->sq_head == NULL))); 2165 } 2166 2167 /* 2168 * We haven't taken care of QPERMOD case yet. QPERMOD is a special 2169 * case as we don't disable its syncq or remove it off the syncq 2170 * service list. 2171 */ 2172 if (rq->q_flag & QPERMOD) { 2173 syncq_t *sq = rq->q_syncq; 2174 2175 mutex_enter(SQLOCK(sq)); 2176 while (rq->q_sqflags & Q_SQQUEUED) { 2177 sq->sq_flags |= SQ_WANTWAKEUP; 2178 cv_wait(&sq->sq_wait, SQLOCK(sq)); 2179 } 2180 mutex_exit(SQLOCK(sq)); 2181 } 2182 2183 /* 2184 * flush_syncq changes states only when there is some messages to 2185 * free. ie when it returns non-zero value to return. 2186 */ 2187 ASSERT(flush_syncq(rq->q_syncq, rq) == 0); 2188 ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0); 2189 2190 /* 2191 * No body else should know about this queue now. 2192 * If the mux did not process the messages before 2193 * acking the I_UNLINK, free them now. 2194 */ 2195 2196 flushq(rq, FLUSHALL); 2197 flushq(_WR(rq), FLUSHALL); 2198 2199 /* 2200 * Convert the mux lower queue into a stream head queue. 2201 * Turn off STPLEX before we turn on the stream by removing the passq. 2202 */ 2203 rq->q_ptr = wrq->q_ptr = stpdown; 2204 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE); 2205 2206 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE); 2207 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq)); 2208 2209 enable_svc(rq); 2210 2211 /* 2212 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still 2213 * needs to be set to prevent reopen() of the stream - such reopen may 2214 * try to call non-existent pass queue open routine and panic. 2215 */ 2216 mutex_enter(&stpdown->sd_lock); 2217 stpdown->sd_flag &= ~STPLEX; 2218 mutex_exit(&stpdown->sd_lock); 2219 2220 ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) || 2221 ((flag & LINKTYPEMASK) == LINKPERSIST)); 2222 2223 /* clean up the layered driver linkages */ 2224 if ((flag & LINKTYPEMASK) == LINKNORMAL) { 2225 ldi_munlink_fp(stp, fpdown, LINKNORMAL); 2226 } else { 2227 ldi_munlink_fp(stp, fpdown, LINKPERSIST); 2228 } 2229 2230 link_rempassthru(passq); 2231 2232 /* 2233 * Now all plumbing changes are finished and STRPLUMB is no 2234 * longer needed. 2235 */ 2236 mutex_enter(&stpdown->sd_lock); 2237 stpdown->sd_flag &= ~STRPLUMB; 2238 cv_broadcast(&stpdown->sd_monitor); 2239 mutex_exit(&stpdown->sd_lock); 2240 2241 (void) closef(fpdown); 2242 return (0); 2243 } 2244 2245 /* 2246 * Unlink all multiplexor links for which stp is the controlling stream. 2247 * Return 0, or a non-zero errno on failure. 2248 */ 2249 int 2250 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp) 2251 { 2252 linkinfo_t *linkp; 2253 int error = 0; 2254 2255 mutex_enter(&muxifier); 2256 while (linkp = findlinks(stp, 0, flag)) { 2257 /* 2258 * munlink() releases the muxifier lock. 2259 */ 2260 if (error = munlink(stp, linkp, flag, crp, rvalp)) 2261 return (error); 2262 mutex_enter(&muxifier); 2263 } 2264 mutex_exit(&muxifier); 2265 return (0); 2266 } 2267 2268 /* 2269 * A multiplexor link has been made. Add an 2270 * edge to the directed graph. 2271 */ 2272 void 2273 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid) 2274 { 2275 struct mux_node *np; 2276 struct mux_edge *ep; 2277 major_t upmaj; 2278 major_t lomaj; 2279 2280 upmaj = getmajor(upstp->sd_vnode->v_rdev); 2281 lomaj = getmajor(lostp->sd_vnode->v_rdev); 2282 np = &mux_nodes[upmaj]; 2283 if (np->mn_outp) { 2284 ep = np->mn_outp; 2285 while (ep->me_nextp) 2286 ep = ep->me_nextp; 2287 ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP); 2288 ep = ep->me_nextp; 2289 } else { 2290 np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP); 2291 ep = np->mn_outp; 2292 } 2293 ep->me_nextp = NULL; 2294 ep->me_muxid = muxid; 2295 if (lostp->sd_vnode->v_type == VFIFO) 2296 ep->me_nodep = NULL; 2297 else 2298 ep->me_nodep = &mux_nodes[lomaj]; 2299 } 2300 2301 /* 2302 * A multiplexor link has been removed. Remove the 2303 * edge in the directed graph. 2304 */ 2305 void 2306 mux_rmvedge(stdata_t *upstp, int muxid) 2307 { 2308 struct mux_node *np; 2309 struct mux_edge *ep; 2310 struct mux_edge *pep = NULL; 2311 major_t upmaj; 2312 2313 upmaj = getmajor(upstp->sd_vnode->v_rdev); 2314 np = &mux_nodes[upmaj]; 2315 ASSERT(np->mn_outp != NULL); 2316 ep = np->mn_outp; 2317 while (ep) { 2318 if (ep->me_muxid == muxid) { 2319 if (pep) 2320 pep->me_nextp = ep->me_nextp; 2321 else 2322 np->mn_outp = ep->me_nextp; 2323 kmem_free(ep, sizeof (struct mux_edge)); 2324 return; 2325 } 2326 pep = ep; 2327 ep = ep->me_nextp; 2328 } 2329 ASSERT(0); /* should not reach here */ 2330 } 2331 2332 /* 2333 * Translate the device flags (from conf.h) to the corresponding 2334 * qflag and sq_flag (type) values. 2335 */ 2336 int 2337 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp, 2338 uint32_t *sqtypep) 2339 { 2340 uint32_t qflag = 0; 2341 uint32_t sqtype = 0; 2342 2343 if (devflag & _D_OLD) 2344 goto bad; 2345 2346 /* Inner perimeter presence and scope */ 2347 switch (devflag & D_MTINNER_MASK) { 2348 case D_MP: 2349 qflag |= QMTSAFE; 2350 sqtype |= SQ_CI; 2351 break; 2352 case D_MTPERQ|D_MP: 2353 qflag |= QPERQ; 2354 break; 2355 case D_MTQPAIR|D_MP: 2356 qflag |= QPAIR; 2357 break; 2358 case D_MTPERMOD|D_MP: 2359 qflag |= QPERMOD; 2360 break; 2361 default: 2362 goto bad; 2363 } 2364 2365 /* Outer perimeter */ 2366 if (devflag & D_MTOUTPERIM) { 2367 switch (devflag & D_MTINNER_MASK) { 2368 case D_MP: 2369 case D_MTPERQ|D_MP: 2370 case D_MTQPAIR|D_MP: 2371 break; 2372 default: 2373 goto bad; 2374 } 2375 qflag |= QMTOUTPERIM; 2376 } 2377 2378 /* Inner perimeter modifiers */ 2379 if (devflag & D_MTINNER_MOD) { 2380 switch (devflag & D_MTINNER_MASK) { 2381 case D_MP: 2382 goto bad; 2383 default: 2384 break; 2385 } 2386 if (devflag & D_MTPUTSHARED) 2387 sqtype |= SQ_CIPUT; 2388 if (devflag & _D_MTOCSHARED) { 2389 /* 2390 * The code in putnext assumes that it has the 2391 * highest concurrency by not checking sq_count. 2392 * Thus _D_MTOCSHARED can only be supported when 2393 * D_MTPUTSHARED is set. 2394 */ 2395 if (!(devflag & D_MTPUTSHARED)) 2396 goto bad; 2397 sqtype |= SQ_CIOC; 2398 } 2399 if (devflag & _D_MTCBSHARED) { 2400 /* 2401 * The code in putnext assumes that it has the 2402 * highest concurrency by not checking sq_count. 2403 * Thus _D_MTCBSHARED can only be supported when 2404 * D_MTPUTSHARED is set. 2405 */ 2406 if (!(devflag & D_MTPUTSHARED)) 2407 goto bad; 2408 sqtype |= SQ_CICB; 2409 } 2410 if (devflag & _D_MTSVCSHARED) { 2411 /* 2412 * The code in putnext assumes that it has the 2413 * highest concurrency by not checking sq_count. 2414 * Thus _D_MTSVCSHARED can only be supported when 2415 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is 2416 * supported only for QPERMOD. 2417 */ 2418 if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD)) 2419 goto bad; 2420 sqtype |= SQ_CISVC; 2421 } 2422 } 2423 2424 /* Default outer perimeter concurrency */ 2425 sqtype |= SQ_CO; 2426 2427 /* Outer perimeter modifiers */ 2428 if (devflag & D_MTOCEXCL) { 2429 if (!(devflag & D_MTOUTPERIM)) { 2430 /* No outer perimeter */ 2431 goto bad; 2432 } 2433 sqtype &= ~SQ_COOC; 2434 } 2435 2436 /* Synchronous Streams extended qinit structure */ 2437 if (devflag & D_SYNCSTR) 2438 qflag |= QSYNCSTR; 2439 2440 /* 2441 * Private flag used by a transport module to indicate 2442 * to sockfs that it supports direct-access mode without 2443 * having to go through STREAMS. 2444 */ 2445 if (devflag & _D_DIRECT) { 2446 /* Reject unless the module is fully-MT (no perimeter) */ 2447 if ((qflag & QMT_TYPEMASK) != QMTSAFE) 2448 goto bad; 2449 qflag |= _QDIRECT; 2450 } 2451 2452 *qflagp = qflag; 2453 *sqtypep = sqtype; 2454 return (0); 2455 2456 bad: 2457 cmn_err(CE_WARN, 2458 "stropen: bad MT flags (0x%x) in driver '%s'", 2459 (int)(qflag & D_MTSAFETY_MASK), 2460 stp->st_rdinit->qi_minfo->mi_idname); 2461 2462 return (EINVAL); 2463 } 2464 2465 /* 2466 * Set the interface values for a pair of queues (qinit structure, 2467 * packet sizes, water marks). 2468 * setq assumes that the caller does not have a claim (entersq or claimq) 2469 * on the queue. 2470 */ 2471 void 2472 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit, 2473 perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed) 2474 { 2475 queue_t *wq; 2476 syncq_t *sq, *outer; 2477 2478 ASSERT(rq->q_flag & QREADR); 2479 ASSERT((qflag & QMT_TYPEMASK) != 0); 2480 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL); 2481 2482 wq = _WR(rq); 2483 rq->q_qinfo = rinit; 2484 rq->q_hiwat = rinit->qi_minfo->mi_hiwat; 2485 rq->q_lowat = rinit->qi_minfo->mi_lowat; 2486 rq->q_minpsz = rinit->qi_minfo->mi_minpsz; 2487 rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz; 2488 wq->q_qinfo = winit; 2489 wq->q_hiwat = winit->qi_minfo->mi_hiwat; 2490 wq->q_lowat = winit->qi_minfo->mi_lowat; 2491 wq->q_minpsz = winit->qi_minfo->mi_minpsz; 2492 wq->q_maxpsz = winit->qi_minfo->mi_maxpsz; 2493 2494 /* Remove old syncqs */ 2495 sq = rq->q_syncq; 2496 outer = sq->sq_outer; 2497 if (outer != NULL) { 2498 ASSERT(wq->q_syncq->sq_outer == outer); 2499 outer_remove(outer, rq->q_syncq); 2500 if (wq->q_syncq != rq->q_syncq) 2501 outer_remove(outer, wq->q_syncq); 2502 } 2503 ASSERT(sq->sq_outer == NULL); 2504 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL); 2505 2506 if (sq != SQ(rq)) { 2507 if (!(rq->q_flag & QPERMOD)) 2508 free_syncq(sq); 2509 if (wq->q_syncq == rq->q_syncq) 2510 wq->q_syncq = NULL; 2511 rq->q_syncq = NULL; 2512 } 2513 if (wq->q_syncq != NULL && wq->q_syncq != sq && 2514 wq->q_syncq != SQ(rq)) { 2515 free_syncq(wq->q_syncq); 2516 wq->q_syncq = NULL; 2517 } 2518 ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL && 2519 rq->q_syncq->sq_tail == NULL)); 2520 ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL && 2521 wq->q_syncq->sq_tail == NULL)); 2522 2523 if (!(rq->q_flag & QPERMOD) && 2524 rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) { 2525 ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1); 2526 SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl, 2527 rq->q_syncq->sq_nciputctrl, 0); 2528 ASSERT(ciputctrl_cache != NULL); 2529 kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl); 2530 rq->q_syncq->sq_ciputctrl = NULL; 2531 rq->q_syncq->sq_nciputctrl = 0; 2532 } 2533 2534 if (!(wq->q_flag & QPERMOD) && 2535 wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) { 2536 ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1); 2537 SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl, 2538 wq->q_syncq->sq_nciputctrl, 0); 2539 ASSERT(ciputctrl_cache != NULL); 2540 kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl); 2541 wq->q_syncq->sq_ciputctrl = NULL; 2542 wq->q_syncq->sq_nciputctrl = 0; 2543 } 2544 2545 sq = SQ(rq); 2546 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL); 2547 ASSERT(sq->sq_outer == NULL); 2548 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL); 2549 2550 /* 2551 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS 2552 * bits in sq_flag based on the sqtype. 2553 */ 2554 ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0); 2555 2556 rq->q_syncq = wq->q_syncq = sq; 2557 sq->sq_type = sqtype; 2558 sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS); 2559 2560 /* 2561 * We are making sq_svcflags zero, 2562 * resetting SQ_DISABLED in case it was set by 2563 * wait_svc() in the munlink path. 2564 * 2565 */ 2566 ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0); 2567 sq->sq_svcflags = 0; 2568 2569 /* 2570 * We need to acquire the lock here for the mlink and munlink case, 2571 * where canputnext, backenable, etc can access the q_flag. 2572 */ 2573 if (lock_needed) { 2574 mutex_enter(QLOCK(rq)); 2575 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2576 mutex_exit(QLOCK(rq)); 2577 mutex_enter(QLOCK(wq)); 2578 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2579 mutex_exit(QLOCK(wq)); 2580 } else { 2581 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2582 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2583 } 2584 2585 if (qflag & QPERQ) { 2586 /* Allocate a separate syncq for the write side */ 2587 sq = new_syncq(); 2588 sq->sq_type = rq->q_syncq->sq_type; 2589 sq->sq_flags = rq->q_syncq->sq_flags; 2590 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL && 2591 sq->sq_oprev == NULL); 2592 wq->q_syncq = sq; 2593 } 2594 if (qflag & QPERMOD) { 2595 sq = dmp->dm_sq; 2596 2597 /* 2598 * Assert that we do have an inner perimeter syncq and that it 2599 * does not have an outer perimeter associated with it. 2600 */ 2601 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL && 2602 sq->sq_oprev == NULL); 2603 rq->q_syncq = wq->q_syncq = sq; 2604 } 2605 if (qflag & QMTOUTPERIM) { 2606 outer = dmp->dm_sq; 2607 2608 ASSERT(outer->sq_outer == NULL); 2609 outer_insert(outer, rq->q_syncq); 2610 if (wq->q_syncq != rq->q_syncq) 2611 outer_insert(outer, wq->q_syncq); 2612 } 2613 ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) == 2614 (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS)); 2615 ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) == 2616 (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS)); 2617 ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK)); 2618 2619 /* 2620 * Initialize struio() types. 2621 */ 2622 rq->q_struiot = 2623 (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE; 2624 wq->q_struiot = 2625 (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE; 2626 } 2627 2628 perdm_t * 2629 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype) 2630 { 2631 syncq_t *sq; 2632 perdm_t **pp; 2633 perdm_t *p; 2634 perdm_t *dmp; 2635 2636 ASSERT(str != NULL); 2637 ASSERT(qflag & (QPERMOD | QMTOUTPERIM)); 2638 2639 rw_enter(&perdm_rwlock, RW_READER); 2640 for (p = perdm_list; p != NULL; p = p->dm_next) { 2641 if (p->dm_str == str) { /* found one */ 2642 atomic_add_32(&(p->dm_ref), 1); 2643 rw_exit(&perdm_rwlock); 2644 return (p); 2645 } 2646 } 2647 rw_exit(&perdm_rwlock); 2648 2649 sq = new_syncq(); 2650 if (qflag & QPERMOD) { 2651 sq->sq_type = sqtype | SQ_PERMOD; 2652 sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS; 2653 } else { 2654 ASSERT(qflag & QMTOUTPERIM); 2655 sq->sq_onext = sq->sq_oprev = sq; 2656 } 2657 2658 dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP); 2659 dmp->dm_sq = sq; 2660 dmp->dm_str = str; 2661 dmp->dm_ref = 1; 2662 dmp->dm_next = NULL; 2663 2664 rw_enter(&perdm_rwlock, RW_WRITER); 2665 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) { 2666 if (p->dm_str == str) { /* already present */ 2667 p->dm_ref++; 2668 rw_exit(&perdm_rwlock); 2669 free_syncq(sq); 2670 kmem_free(dmp, sizeof (perdm_t)); 2671 return (p); 2672 } 2673 } 2674 2675 *pp = dmp; 2676 rw_exit(&perdm_rwlock); 2677 return (dmp); 2678 } 2679 2680 void 2681 rele_dm(perdm_t *dmp) 2682 { 2683 perdm_t **pp; 2684 perdm_t *p; 2685 2686 rw_enter(&perdm_rwlock, RW_WRITER); 2687 ASSERT(dmp->dm_ref > 0); 2688 2689 if (--dmp->dm_ref > 0) { 2690 rw_exit(&perdm_rwlock); 2691 return; 2692 } 2693 2694 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) 2695 if (p == dmp) 2696 break; 2697 ASSERT(p == dmp); 2698 *pp = p->dm_next; 2699 rw_exit(&perdm_rwlock); 2700 2701 /* 2702 * Wait for any background processing that relies on the 2703 * syncq to complete before it is freed. 2704 */ 2705 wait_sq_svc(p->dm_sq); 2706 free_syncq(p->dm_sq); 2707 kmem_free(p, sizeof (perdm_t)); 2708 } 2709 2710 /* 2711 * Make a protocol message given control and data buffers. 2712 * n.b., this can block; be careful of what locks you hold when calling it. 2713 * 2714 * If sd_maxblk is less than *iosize this routine can fail part way through 2715 * (due to an allocation failure). In this case on return *iosize will contain 2716 * the amount that was consumed. Otherwise *iosize will not be modified 2717 * i.e. it will contain the amount that was consumed. 2718 */ 2719 int 2720 strmakemsg( 2721 struct strbuf *mctl, 2722 ssize_t *iosize, 2723 struct uio *uiop, 2724 stdata_t *stp, 2725 int32_t flag, 2726 mblk_t **mpp) 2727 { 2728 mblk_t *mpctl = NULL; 2729 mblk_t *mpdata = NULL; 2730 int error; 2731 2732 ASSERT(uiop != NULL); 2733 2734 *mpp = NULL; 2735 /* Create control part, if any */ 2736 if ((mctl != NULL) && (mctl->len >= 0)) { 2737 error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl); 2738 if (error) 2739 return (error); 2740 } 2741 /* Create data part, if any */ 2742 if (*iosize >= 0) { 2743 error = strmakedata(iosize, uiop, stp, flag, &mpdata); 2744 if (error) { 2745 freemsg(mpctl); 2746 return (error); 2747 } 2748 } 2749 if (mpctl != NULL) { 2750 if (mpdata != NULL) 2751 linkb(mpctl, mpdata); 2752 *mpp = mpctl; 2753 } else { 2754 *mpp = mpdata; 2755 } 2756 return (0); 2757 } 2758 2759 /* 2760 * Make the control part of a protocol message given a control buffer. 2761 * n.b., this can block; be careful of what locks you hold when calling it. 2762 */ 2763 int 2764 strmakectl( 2765 struct strbuf *mctl, 2766 int32_t flag, 2767 int32_t fflag, 2768 mblk_t **mpp) 2769 { 2770 mblk_t *bp = NULL; 2771 unsigned char msgtype; 2772 int error = 0; 2773 2774 *mpp = NULL; 2775 /* 2776 * Create control part of message, if any. 2777 */ 2778 if ((mctl != NULL) && (mctl->len >= 0)) { 2779 caddr_t base; 2780 int ctlcount; 2781 int allocsz; 2782 2783 if (flag & RS_HIPRI) 2784 msgtype = M_PCPROTO; 2785 else 2786 msgtype = M_PROTO; 2787 2788 ctlcount = mctl->len; 2789 base = mctl->buf; 2790 2791 /* 2792 * Give modules a better chance to reuse M_PROTO/M_PCPROTO 2793 * blocks by increasing the size to something more usable. 2794 */ 2795 allocsz = MAX(ctlcount, 64); 2796 2797 /* 2798 * Range checking has already been done; simply try 2799 * to allocate a message block for the ctl part. 2800 */ 2801 while (!(bp = allocb(allocsz, BPRI_MED))) { 2802 if (fflag & (FNDELAY|FNONBLOCK)) 2803 return (EAGAIN); 2804 if (error = strwaitbuf(allocsz, BPRI_MED)) 2805 return (error); 2806 } 2807 2808 bp->b_datap->db_type = msgtype; 2809 if (copyin(base, bp->b_wptr, ctlcount)) { 2810 freeb(bp); 2811 return (EFAULT); 2812 } 2813 bp->b_wptr += ctlcount; 2814 } 2815 *mpp = bp; 2816 return (0); 2817 } 2818 2819 /* 2820 * Make a protocol message given data buffers. 2821 * n.b., this can block; be careful of what locks you hold when calling it. 2822 * 2823 * If sd_maxblk is less than *iosize this routine can fail part way through 2824 * (due to an allocation failure). In this case on return *iosize will contain 2825 * the amount that was consumed. Otherwise *iosize will not be modified 2826 * i.e. it will contain the amount that was consumed. 2827 */ 2828 int 2829 strmakedata( 2830 ssize_t *iosize, 2831 struct uio *uiop, 2832 stdata_t *stp, 2833 int32_t flag, 2834 mblk_t **mpp) 2835 { 2836 mblk_t *mp = NULL; 2837 mblk_t *bp; 2838 int wroff = (int)stp->sd_wroff; 2839 int error = 0; 2840 ssize_t maxblk; 2841 ssize_t count = *iosize; 2842 cred_t *cr = CRED(); 2843 2844 *mpp = NULL; 2845 if (count < 0) 2846 return (0); 2847 2848 maxblk = stp->sd_maxblk; 2849 if (maxblk == INFPSZ) 2850 maxblk = count; 2851 2852 /* 2853 * Create data part of message, if any. 2854 */ 2855 do { 2856 ssize_t size; 2857 dblk_t *dp; 2858 2859 ASSERT(uiop); 2860 2861 size = MIN(count, maxblk); 2862 2863 while ((bp = allocb_cred(size + wroff, cr)) == NULL) { 2864 error = EAGAIN; 2865 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) || 2866 (error = strwaitbuf(size + wroff, BPRI_MED)) != 0) { 2867 if (count == *iosize) { 2868 freemsg(mp); 2869 return (error); 2870 } else { 2871 *iosize -= count; 2872 *mpp = mp; 2873 return (0); 2874 } 2875 } 2876 } 2877 dp = bp->b_datap; 2878 dp->db_cpid = curproc->p_pid; 2879 ASSERT(wroff <= dp->db_lim - bp->b_wptr); 2880 bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff; 2881 2882 if (flag & STRUIO_POSTPONE) { 2883 /* 2884 * Setup the stream uio portion of the 2885 * dblk for subsequent use by struioget(). 2886 */ 2887 dp->db_struioflag = STRUIO_SPEC; 2888 dp->db_cksumstart = 0; 2889 dp->db_cksumstuff = 0; 2890 dp->db_cksumend = size; 2891 *(long long *)dp->db_struioun.data = 0ll; 2892 } else { 2893 if (stp->sd_copyflag & STRCOPYCACHED) 2894 uiop->uio_extflg |= UIO_COPY_CACHED; 2895 2896 if (size != 0) { 2897 error = uiomove(bp->b_wptr, size, UIO_WRITE, 2898 uiop); 2899 if (error != 0) { 2900 freeb(bp); 2901 freemsg(mp); 2902 return (error); 2903 } 2904 } 2905 } 2906 2907 bp->b_wptr += size; 2908 count -= size; 2909 2910 if (mp == NULL) 2911 mp = bp; 2912 else 2913 linkb(mp, bp); 2914 } while (count > 0); 2915 2916 *mpp = mp; 2917 return (0); 2918 } 2919 2920 /* 2921 * Wait for a buffer to become available. Return non-zero errno 2922 * if not able to wait, 0 if buffer is probably there. 2923 */ 2924 int 2925 strwaitbuf(size_t size, int pri) 2926 { 2927 bufcall_id_t id; 2928 2929 mutex_enter(&bcall_monitor); 2930 if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast, 2931 &ttoproc(curthread)->p_flag_cv)) == 0) { 2932 mutex_exit(&bcall_monitor); 2933 return (ENOSR); 2934 } 2935 if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) { 2936 unbufcall(id); 2937 mutex_exit(&bcall_monitor); 2938 return (EINTR); 2939 } 2940 unbufcall(id); 2941 mutex_exit(&bcall_monitor); 2942 return (0); 2943 } 2944 2945 /* 2946 * This function waits for a read or write event to happen on a stream. 2947 * fmode can specify FNDELAY and/or FNONBLOCK. 2948 * The timeout is in ms with -1 meaning infinite. 2949 * The flag values work as follows: 2950 * READWAIT Check for read side errors, send M_READ 2951 * GETWAIT Check for read side errors, no M_READ 2952 * WRITEWAIT Check for write side errors. 2953 * NOINTR Do not return error if nonblocking or timeout. 2954 * STR_NOERROR Ignore all errors except STPLEX. 2955 * STR_NOSIG Ignore/hold signals during the duration of the call. 2956 * STR_PEEK Pass through the strgeterr(). 2957 */ 2958 int 2959 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout, 2960 int *done) 2961 { 2962 int slpflg, errs; 2963 int error; 2964 kcondvar_t *sleepon; 2965 mblk_t *mp; 2966 ssize_t *rd_count; 2967 clock_t rval; 2968 2969 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2970 if ((flag & READWAIT) || (flag & GETWAIT)) { 2971 slpflg = RSLEEP; 2972 sleepon = &_RD(stp->sd_wrq)->q_wait; 2973 errs = STRDERR|STPLEX; 2974 } else { 2975 slpflg = WSLEEP; 2976 sleepon = &stp->sd_wrq->q_wait; 2977 errs = STWRERR|STRHUP|STPLEX; 2978 } 2979 if (flag & STR_NOERROR) 2980 errs = STPLEX; 2981 2982 if (stp->sd_wakeq & slpflg) { 2983 /* 2984 * A strwakeq() is pending, no need to sleep. 2985 */ 2986 stp->sd_wakeq &= ~slpflg; 2987 *done = 0; 2988 return (0); 2989 } 2990 2991 if (fmode & (FNDELAY|FNONBLOCK)) { 2992 if (!(flag & NOINTR)) 2993 error = EAGAIN; 2994 else 2995 error = 0; 2996 *done = 1; 2997 return (error); 2998 } 2999 3000 if (stp->sd_flag & errs) { 3001 /* 3002 * Check for errors before going to sleep since the 3003 * caller might not have checked this while holding 3004 * sd_lock. 3005 */ 3006 error = strgeterr(stp, errs, (flag & STR_PEEK)); 3007 if (error != 0) { 3008 *done = 1; 3009 return (error); 3010 } 3011 } 3012 3013 /* 3014 * If any module downstream has requested read notification 3015 * by setting SNDMREAD flag using M_SETOPTS, send a message 3016 * down stream. 3017 */ 3018 if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) { 3019 mutex_exit(&stp->sd_lock); 3020 if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED, 3021 (flag & STR_NOSIG), &error))) { 3022 mutex_enter(&stp->sd_lock); 3023 *done = 1; 3024 return (error); 3025 } 3026 mp->b_datap->db_type = M_READ; 3027 rd_count = (ssize_t *)mp->b_wptr; 3028 *rd_count = count; 3029 mp->b_wptr += sizeof (ssize_t); 3030 /* 3031 * Send the number of bytes requested by the 3032 * read as the argument to M_READ. 3033 */ 3034 stream_willservice(stp); 3035 putnext(stp->sd_wrq, mp); 3036 stream_runservice(stp); 3037 mutex_enter(&stp->sd_lock); 3038 3039 /* 3040 * If any data arrived due to inline processing 3041 * of putnext(), don't sleep. 3042 */ 3043 if (_RD(stp->sd_wrq)->q_first != NULL) { 3044 *done = 0; 3045 return (0); 3046 } 3047 } 3048 3049 stp->sd_flag |= slpflg; 3050 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2, 3051 "strwaitq sleeps (2):%p, %X, %lX, %X, %p", 3052 stp, flag, count, fmode, done); 3053 3054 rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG); 3055 if (rval > 0) { 3056 /* EMPTY */ 3057 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2, 3058 "strwaitq awakes(2):%X, %X, %X, %X, %X", 3059 stp, flag, count, fmode, done); 3060 } else if (rval == 0) { 3061 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2, 3062 "strwaitq interrupt #2:%p, %X, %lX, %X, %p", 3063 stp, flag, count, fmode, done); 3064 stp->sd_flag &= ~slpflg; 3065 cv_broadcast(sleepon); 3066 if (!(flag & NOINTR)) 3067 error = EINTR; 3068 else 3069 error = 0; 3070 *done = 1; 3071 return (error); 3072 } else { 3073 /* timeout */ 3074 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME, 3075 "strwaitq timeout:%p, %X, %lX, %X, %p", 3076 stp, flag, count, fmode, done); 3077 *done = 1; 3078 if (!(flag & NOINTR)) 3079 return (ETIME); 3080 else 3081 return (0); 3082 } 3083 /* 3084 * If the caller implements delayed errors (i.e. queued after data) 3085 * we can not check for errors here since data as well as an 3086 * error might have arrived at the stream head. We return to 3087 * have the caller check the read queue before checking for errors. 3088 */ 3089 if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) { 3090 error = strgeterr(stp, errs, (flag & STR_PEEK)); 3091 if (error != 0) { 3092 *done = 1; 3093 return (error); 3094 } 3095 } 3096 *done = 0; 3097 return (0); 3098 } 3099 3100 /* 3101 * Perform job control discipline access checks. 3102 * Return 0 for success and the errno for failure. 3103 */ 3104 3105 #define cantsend(p, t, sig) \ 3106 (sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig)) 3107 3108 int 3109 straccess(struct stdata *stp, enum jcaccess mode) 3110 { 3111 extern kcondvar_t lbolt_cv; /* XXX: should be in a header file */ 3112 kthread_t *t = curthread; 3113 proc_t *p = ttoproc(t); 3114 sess_t *sp; 3115 3116 if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO) 3117 return (0); 3118 3119 mutex_enter(&p->p_lock); 3120 sp = p->p_sessp; 3121 3122 for (;;) { 3123 /* 3124 * If this is not the calling process's controlling terminal 3125 * or if the calling process is already in the foreground 3126 * then allow access. 3127 */ 3128 if (sp->s_dev != stp->sd_vnode->v_rdev || 3129 p->p_pgidp == stp->sd_pgidp) { 3130 mutex_exit(&p->p_lock); 3131 return (0); 3132 } 3133 3134 /* 3135 * Check to see if controlling terminal has been deallocated. 3136 */ 3137 if (sp->s_vp == NULL) { 3138 if (!cantsend(p, t, SIGHUP)) 3139 sigtoproc(p, t, SIGHUP); 3140 mutex_exit(&p->p_lock); 3141 return (EIO); 3142 } 3143 3144 if (mode == JCGETP) { 3145 mutex_exit(&p->p_lock); 3146 return (0); 3147 } 3148 3149 if (mode == JCREAD) { 3150 if (p->p_detached || cantsend(p, t, SIGTTIN)) { 3151 mutex_exit(&p->p_lock); 3152 return (EIO); 3153 } 3154 mutex_exit(&p->p_lock); 3155 pgsignal(p->p_pgidp, SIGTTIN); 3156 mutex_enter(&p->p_lock); 3157 } else { /* mode == JCWRITE or JCSETP */ 3158 if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) || 3159 cantsend(p, t, SIGTTOU)) { 3160 mutex_exit(&p->p_lock); 3161 return (0); 3162 } 3163 if (p->p_detached) { 3164 mutex_exit(&p->p_lock); 3165 return (EIO); 3166 } 3167 mutex_exit(&p->p_lock); 3168 pgsignal(p->p_pgidp, SIGTTOU); 3169 mutex_enter(&p->p_lock); 3170 } 3171 3172 /* 3173 * We call cv_wait_sig_swap() to cause the appropriate 3174 * action for the jobcontrol signal to take place. 3175 * If the signal is being caught, we will take the 3176 * EINTR error return. Otherwise, the default action 3177 * of causing the process to stop will take place. 3178 * In this case, we rely on the periodic cv_broadcast() on 3179 * &lbolt_cv to wake us up to loop around and test again. 3180 * We can't get here if the signal is ignored or 3181 * if the current thread is blocking the signal. 3182 */ 3183 if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) { 3184 mutex_exit(&p->p_lock); 3185 return (EINTR); 3186 } 3187 } 3188 } 3189 3190 /* 3191 * Return size of message of block type (bp->b_datap->db_type) 3192 */ 3193 size_t 3194 xmsgsize(mblk_t *bp) 3195 { 3196 unsigned char type; 3197 size_t count = 0; 3198 3199 type = bp->b_datap->db_type; 3200 3201 for (; bp; bp = bp->b_cont) { 3202 if (type != bp->b_datap->db_type) 3203 break; 3204 ASSERT(bp->b_wptr >= bp->b_rptr); 3205 count += bp->b_wptr - bp->b_rptr; 3206 } 3207 return (count); 3208 } 3209 3210 /* 3211 * Allocate a stream head. 3212 */ 3213 struct stdata * 3214 shalloc(queue_t *qp) 3215 { 3216 stdata_t *stp; 3217 3218 stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP); 3219 3220 stp->sd_wrq = _WR(qp); 3221 stp->sd_strtab = NULL; 3222 stp->sd_iocid = 0; 3223 stp->sd_mate = NULL; 3224 stp->sd_freezer = NULL; 3225 stp->sd_refcnt = 0; 3226 stp->sd_wakeq = 0; 3227 stp->sd_anchor = 0; 3228 stp->sd_struiowrq = NULL; 3229 stp->sd_struiordq = NULL; 3230 stp->sd_struiodnak = 0; 3231 stp->sd_struionak = NULL; 3232 #ifdef C2_AUDIT 3233 stp->sd_t_audit_data = NULL; 3234 #endif 3235 stp->sd_rput_opt = 0; 3236 stp->sd_wput_opt = 0; 3237 stp->sd_read_opt = 0; 3238 stp->sd_rprotofunc = strrput_proto; 3239 stp->sd_rmiscfunc = strrput_misc; 3240 stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL; 3241 stp->sd_ciputctrl = NULL; 3242 stp->sd_nciputctrl = 0; 3243 stp->sd_qhead = NULL; 3244 stp->sd_qtail = NULL; 3245 stp->sd_servid = NULL; 3246 stp->sd_nqueues = 0; 3247 stp->sd_svcflags = 0; 3248 stp->sd_copyflag = 0; 3249 return (stp); 3250 } 3251 3252 /* 3253 * Free a stream head. 3254 */ 3255 void 3256 shfree(stdata_t *stp) 3257 { 3258 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 3259 3260 stp->sd_wrq = NULL; 3261 3262 mutex_enter(&stp->sd_qlock); 3263 while (stp->sd_svcflags & STRS_SCHEDULED) { 3264 STRSTAT(strwaits); 3265 cv_wait(&stp->sd_qcv, &stp->sd_qlock); 3266 } 3267 mutex_exit(&stp->sd_qlock); 3268 3269 if (stp->sd_ciputctrl != NULL) { 3270 ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1); 3271 SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl, 3272 stp->sd_nciputctrl, 0); 3273 ASSERT(ciputctrl_cache != NULL); 3274 kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl); 3275 stp->sd_ciputctrl = NULL; 3276 stp->sd_nciputctrl = 0; 3277 } 3278 ASSERT(stp->sd_qhead == NULL); 3279 ASSERT(stp->sd_qtail == NULL); 3280 ASSERT(stp->sd_nqueues == 0); 3281 kmem_cache_free(stream_head_cache, stp); 3282 } 3283 3284 /* 3285 * Allocate a pair of queues and a syncq for the pair 3286 */ 3287 queue_t * 3288 allocq(void) 3289 { 3290 queinfo_t *qip; 3291 queue_t *qp, *wqp; 3292 syncq_t *sq; 3293 3294 qip = kmem_cache_alloc(queue_cache, KM_SLEEP); 3295 3296 qp = &qip->qu_rqueue; 3297 wqp = &qip->qu_wqueue; 3298 sq = &qip->qu_syncq; 3299 3300 qp->q_last = NULL; 3301 qp->q_next = NULL; 3302 qp->q_ptr = NULL; 3303 qp->q_flag = QUSE | QREADR; 3304 qp->q_bandp = NULL; 3305 qp->q_stream = NULL; 3306 qp->q_syncq = sq; 3307 qp->q_nband = 0; 3308 qp->q_nfsrv = NULL; 3309 qp->q_draining = 0; 3310 qp->q_syncqmsgs = 0; 3311 qp->q_spri = 0; 3312 qp->q_qtstamp = 0; 3313 qp->q_sqtstamp = 0; 3314 qp->q_fp = NULL; 3315 3316 wqp->q_last = NULL; 3317 wqp->q_next = NULL; 3318 wqp->q_ptr = NULL; 3319 wqp->q_flag = QUSE; 3320 wqp->q_bandp = NULL; 3321 wqp->q_stream = NULL; 3322 wqp->q_syncq = sq; 3323 wqp->q_nband = 0; 3324 wqp->q_nfsrv = NULL; 3325 wqp->q_draining = 0; 3326 wqp->q_syncqmsgs = 0; 3327 wqp->q_qtstamp = 0; 3328 wqp->q_sqtstamp = 0; 3329 wqp->q_spri = 0; 3330 3331 sq->sq_count = 0; 3332 sq->sq_rmqcount = 0; 3333 sq->sq_flags = 0; 3334 sq->sq_type = 0; 3335 sq->sq_callbflags = 0; 3336 sq->sq_cancelid = 0; 3337 sq->sq_ciputctrl = NULL; 3338 sq->sq_nciputctrl = 0; 3339 sq->sq_needexcl = 0; 3340 sq->sq_svcflags = 0; 3341 3342 return (qp); 3343 } 3344 3345 /* 3346 * Free a pair of queues and the "attached" syncq. 3347 * Discard any messages left on the syncq(s), remove the syncq(s) from the 3348 * outer perimeter, and free the syncq(s) if they are not the "attached" syncq. 3349 */ 3350 void 3351 freeq(queue_t *qp) 3352 { 3353 qband_t *qbp, *nqbp; 3354 syncq_t *sq, *outer; 3355 queue_t *wqp = _WR(qp); 3356 3357 ASSERT(qp->q_flag & QREADR); 3358 3359 (void) flush_syncq(qp->q_syncq, qp); 3360 (void) flush_syncq(wqp->q_syncq, wqp); 3361 ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0); 3362 3363 outer = qp->q_syncq->sq_outer; 3364 if (outer != NULL) { 3365 outer_remove(outer, qp->q_syncq); 3366 if (wqp->q_syncq != qp->q_syncq) 3367 outer_remove(outer, wqp->q_syncq); 3368 } 3369 /* 3370 * Free any syncqs that are outside what allocq returned. 3371 */ 3372 if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD)) 3373 free_syncq(qp->q_syncq); 3374 if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp)) 3375 free_syncq(wqp->q_syncq); 3376 3377 ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0); 3378 ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0); 3379 ASSERT(MUTEX_NOT_HELD(QLOCK(qp))); 3380 ASSERT(MUTEX_NOT_HELD(QLOCK(wqp))); 3381 sq = SQ(qp); 3382 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 3383 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL); 3384 ASSERT(sq->sq_outer == NULL); 3385 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL); 3386 ASSERT(sq->sq_callbpend == NULL); 3387 ASSERT(sq->sq_needexcl == 0); 3388 3389 if (sq->sq_ciputctrl != NULL) { 3390 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1); 3391 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl, 3392 sq->sq_nciputctrl, 0); 3393 ASSERT(ciputctrl_cache != NULL); 3394 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl); 3395 sq->sq_ciputctrl = NULL; 3396 sq->sq_nciputctrl = 0; 3397 } 3398 3399 ASSERT(qp->q_first == NULL && wqp->q_first == NULL); 3400 ASSERT(qp->q_count == 0 && wqp->q_count == 0); 3401 ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0); 3402 3403 qp->q_flag &= ~QUSE; 3404 wqp->q_flag &= ~QUSE; 3405 3406 /* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */ 3407 /* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */ 3408 3409 qbp = qp->q_bandp; 3410 while (qbp) { 3411 nqbp = qbp->qb_next; 3412 freeband(qbp); 3413 qbp = nqbp; 3414 } 3415 qbp = wqp->q_bandp; 3416 while (qbp) { 3417 nqbp = qbp->qb_next; 3418 freeband(qbp); 3419 qbp = nqbp; 3420 } 3421 kmem_cache_free(queue_cache, qp); 3422 } 3423 3424 /* 3425 * Allocate a qband structure. 3426 */ 3427 qband_t * 3428 allocband(void) 3429 { 3430 qband_t *qbp; 3431 3432 qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP); 3433 if (qbp == NULL) 3434 return (NULL); 3435 3436 qbp->qb_next = NULL; 3437 qbp->qb_count = 0; 3438 qbp->qb_mblkcnt = 0; 3439 qbp->qb_first = NULL; 3440 qbp->qb_last = NULL; 3441 qbp->qb_flag = 0; 3442 3443 return (qbp); 3444 } 3445 3446 /* 3447 * Free a qband structure. 3448 */ 3449 void 3450 freeband(qband_t *qbp) 3451 { 3452 kmem_cache_free(qband_cache, qbp); 3453 } 3454 3455 /* 3456 * Just like putnextctl(9F), except that allocb_wait() is used. 3457 * 3458 * Consolidation Private, and of course only callable from the stream head or 3459 * routines that may block. 3460 */ 3461 int 3462 putnextctl_wait(queue_t *q, int type) 3463 { 3464 mblk_t *bp; 3465 int error; 3466 3467 if ((datamsg(type) && (type != M_DELAY)) || 3468 (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL) 3469 return (0); 3470 3471 bp->b_datap->db_type = (unsigned char)type; 3472 putnext(q, bp); 3473 return (1); 3474 } 3475 3476 /* 3477 * run any possible bufcalls. 3478 */ 3479 void 3480 runbufcalls(void) 3481 { 3482 strbufcall_t *bcp; 3483 3484 mutex_enter(&bcall_monitor); 3485 mutex_enter(&strbcall_lock); 3486 3487 if (strbcalls.bc_head) { 3488 size_t count; 3489 int nevent; 3490 3491 /* 3492 * count how many events are on the list 3493 * now so we can check to avoid looping 3494 * in low memory situations 3495 */ 3496 nevent = 0; 3497 for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next) 3498 nevent++; 3499 3500 /* 3501 * get estimate of available memory from kmem_avail(). 3502 * awake all bufcall functions waiting for 3503 * memory whose request could be satisfied 3504 * by 'count' memory and let 'em fight for it. 3505 */ 3506 count = kmem_avail(); 3507 while ((bcp = strbcalls.bc_head) != NULL && nevent) { 3508 STRSTAT(bufcalls); 3509 --nevent; 3510 if (bcp->bc_size <= count) { 3511 bcp->bc_executor = curthread; 3512 mutex_exit(&strbcall_lock); 3513 (*bcp->bc_func)(bcp->bc_arg); 3514 mutex_enter(&strbcall_lock); 3515 bcp->bc_executor = NULL; 3516 cv_broadcast(&bcall_cv); 3517 strbcalls.bc_head = bcp->bc_next; 3518 kmem_free(bcp, sizeof (strbufcall_t)); 3519 } else { 3520 /* 3521 * too big, try again later - note 3522 * that nevent was decremented above 3523 * so we won't retry this one on this 3524 * iteration of the loop 3525 */ 3526 if (bcp->bc_next != NULL) { 3527 strbcalls.bc_head = bcp->bc_next; 3528 bcp->bc_next = NULL; 3529 strbcalls.bc_tail->bc_next = bcp; 3530 strbcalls.bc_tail = bcp; 3531 } 3532 } 3533 } 3534 if (strbcalls.bc_head == NULL) 3535 strbcalls.bc_tail = NULL; 3536 } 3537 3538 mutex_exit(&strbcall_lock); 3539 mutex_exit(&bcall_monitor); 3540 } 3541 3542 3543 /* 3544 * actually run queue's service routine. 3545 */ 3546 static void 3547 runservice(queue_t *q) 3548 { 3549 qband_t *qbp; 3550 3551 ASSERT(q->q_qinfo->qi_srvp); 3552 again: 3553 entersq(q->q_syncq, SQ_SVC); 3554 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START, 3555 "runservice starts:%p", q); 3556 3557 if (!(q->q_flag & QWCLOSE)) 3558 (*q->q_qinfo->qi_srvp)(q); 3559 3560 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END, 3561 "runservice ends:(%p)", q); 3562 3563 leavesq(q->q_syncq, SQ_SVC); 3564 3565 mutex_enter(QLOCK(q)); 3566 if (q->q_flag & QENAB) { 3567 q->q_flag &= ~QENAB; 3568 mutex_exit(QLOCK(q)); 3569 goto again; 3570 } 3571 q->q_flag &= ~QINSERVICE; 3572 q->q_flag &= ~QBACK; 3573 for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next) 3574 qbp->qb_flag &= ~QB_BACK; 3575 /* 3576 * Wakeup thread waiting for the service procedure 3577 * to be run (strclose and qdetach). 3578 */ 3579 cv_broadcast(&q->q_wait); 3580 3581 mutex_exit(QLOCK(q)); 3582 } 3583 3584 /* 3585 * Background processing of bufcalls. 3586 */ 3587 void 3588 streams_bufcall_service(void) 3589 { 3590 callb_cpr_t cprinfo; 3591 3592 CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr, 3593 "streams_bufcall_service"); 3594 3595 mutex_enter(&strbcall_lock); 3596 3597 for (;;) { 3598 if (strbcalls.bc_head != NULL && kmem_avail() > 0) { 3599 mutex_exit(&strbcall_lock); 3600 runbufcalls(); 3601 mutex_enter(&strbcall_lock); 3602 } 3603 if (strbcalls.bc_head != NULL) { 3604 clock_t wt, tick; 3605 3606 STRSTAT(bcwaits); 3607 /* Wait for memory to become available */ 3608 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3609 tick = SEC_TO_TICK(60); 3610 time_to_wait(&wt, tick); 3611 (void) cv_timedwait(&memavail_cv, &strbcall_lock, wt); 3612 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock); 3613 } 3614 3615 /* Wait for new work to arrive */ 3616 if (strbcalls.bc_head == NULL) { 3617 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3618 cv_wait(&strbcall_cv, &strbcall_lock); 3619 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock); 3620 } 3621 } 3622 } 3623 3624 /* 3625 * Background processing of streams background tasks which failed 3626 * taskq_dispatch. 3627 */ 3628 static void 3629 streams_qbkgrnd_service(void) 3630 { 3631 callb_cpr_t cprinfo; 3632 queue_t *q; 3633 3634 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr, 3635 "streams_bkgrnd_service"); 3636 3637 mutex_enter(&service_queue); 3638 3639 for (;;) { 3640 /* 3641 * Wait for work to arrive. 3642 */ 3643 while ((freebs_list == NULL) && (qhead == NULL)) { 3644 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3645 cv_wait(&services_to_run, &service_queue); 3646 CALLB_CPR_SAFE_END(&cprinfo, &service_queue); 3647 } 3648 /* 3649 * Handle all pending freebs requests to free memory. 3650 */ 3651 while (freebs_list != NULL) { 3652 mblk_t *mp = freebs_list; 3653 freebs_list = mp->b_next; 3654 mutex_exit(&service_queue); 3655 mblk_free(mp); 3656 mutex_enter(&service_queue); 3657 } 3658 /* 3659 * Run pending queues. 3660 */ 3661 while (qhead != NULL) { 3662 DQ(q, qhead, qtail, q_link); 3663 ASSERT(q != NULL); 3664 mutex_exit(&service_queue); 3665 queue_service(q); 3666 mutex_enter(&service_queue); 3667 } 3668 ASSERT(qhead == NULL && qtail == NULL); 3669 } 3670 } 3671 3672 /* 3673 * Background processing of streams background tasks which failed 3674 * taskq_dispatch. 3675 */ 3676 static void 3677 streams_sqbkgrnd_service(void) 3678 { 3679 callb_cpr_t cprinfo; 3680 syncq_t *sq; 3681 3682 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr, 3683 "streams_sqbkgrnd_service"); 3684 3685 mutex_enter(&service_queue); 3686 3687 for (;;) { 3688 /* 3689 * Wait for work to arrive. 3690 */ 3691 while (sqhead == NULL) { 3692 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3693 cv_wait(&syncqs_to_run, &service_queue); 3694 CALLB_CPR_SAFE_END(&cprinfo, &service_queue); 3695 } 3696 3697 /* 3698 * Run pending syncqs. 3699 */ 3700 while (sqhead != NULL) { 3701 DQ(sq, sqhead, sqtail, sq_next); 3702 ASSERT(sq != NULL); 3703 ASSERT(sq->sq_svcflags & SQ_BGTHREAD); 3704 mutex_exit(&service_queue); 3705 syncq_service(sq); 3706 mutex_enter(&service_queue); 3707 } 3708 } 3709 } 3710 3711 /* 3712 * Disable the syncq and wait for background syncq processing to complete. 3713 * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the 3714 * list. 3715 */ 3716 void 3717 wait_sq_svc(syncq_t *sq) 3718 { 3719 mutex_enter(SQLOCK(sq)); 3720 sq->sq_svcflags |= SQ_DISABLED; 3721 if (sq->sq_svcflags & SQ_BGTHREAD) { 3722 syncq_t *sq_chase; 3723 syncq_t *sq_curr; 3724 int removed; 3725 3726 ASSERT(sq->sq_servcount == 1); 3727 mutex_enter(&service_queue); 3728 RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed); 3729 mutex_exit(&service_queue); 3730 if (removed) { 3731 sq->sq_svcflags &= ~SQ_BGTHREAD; 3732 sq->sq_servcount = 0; 3733 STRSTAT(sqremoved); 3734 goto done; 3735 } 3736 } 3737 while (sq->sq_servcount != 0) { 3738 sq->sq_flags |= SQ_WANTWAKEUP; 3739 cv_wait(&sq->sq_wait, SQLOCK(sq)); 3740 } 3741 done: 3742 mutex_exit(SQLOCK(sq)); 3743 } 3744 3745 /* 3746 * Put a syncq on the list of syncq's to be serviced by the sqthread. 3747 * Add the argument to the end of the sqhead list and set the flag 3748 * indicating this syncq has been enabled. If it has already been 3749 * enabled, don't do anything. 3750 * This routine assumes that SQLOCK is held. 3751 * NOTE that the lock order is to have the SQLOCK first, 3752 * so if the service_syncq lock is held, we need to release it 3753 * before aquiring the SQLOCK (mostly relevant for the background 3754 * thread, and this seems to be common among the STREAMS global locks). 3755 * Note the the sq_svcflags are protected by the SQLOCK. 3756 */ 3757 void 3758 sqenable(syncq_t *sq) 3759 { 3760 /* 3761 * This is probably not important except for where I believe it 3762 * is being called. At that point, it should be held (and it 3763 * is a pain to release it just for this routine, so don't do 3764 * it). 3765 */ 3766 ASSERT(MUTEX_HELD(SQLOCK(sq))); 3767 3768 IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL); 3769 IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD); 3770 3771 /* 3772 * Do not put on list if background thread is scheduled or 3773 * syncq is disabled. 3774 */ 3775 if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD)) 3776 return; 3777 3778 /* 3779 * Check whether we should enable sq at all. 3780 * Non PERMOD syncqs may be drained by at most one thread. 3781 * PERMOD syncqs may be drained by several threads but we limit the 3782 * total amount to the lesser of 3783 * Number of queues on the squeue and 3784 * Number of CPUs. 3785 */ 3786 if (sq->sq_servcount != 0) { 3787 if (((sq->sq_type & SQ_PERMOD) == 0) || 3788 (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) { 3789 STRSTAT(sqtoomany); 3790 return; 3791 } 3792 } 3793 3794 sq->sq_tstamp = lbolt; 3795 STRSTAT(sqenables); 3796 3797 /* Attempt a taskq dispatch */ 3798 sq->sq_servid = (void *)taskq_dispatch(streams_taskq, 3799 (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE); 3800 if (sq->sq_servid != NULL) { 3801 sq->sq_servcount++; 3802 return; 3803 } 3804 3805 /* 3806 * This taskq dispatch failed, but a previous one may have succeeded. 3807 * Don't try to schedule on the background thread whilst there is 3808 * outstanding taskq processing. 3809 */ 3810 if (sq->sq_servcount != 0) 3811 return; 3812 3813 /* 3814 * System is low on resources and can't perform a non-sleeping 3815 * dispatch. Schedule the syncq for a background thread and mark the 3816 * syncq to avoid any further taskq dispatch attempts. 3817 */ 3818 mutex_enter(&service_queue); 3819 STRSTAT(taskqfails); 3820 ENQUEUE(sq, sqhead, sqtail, sq_next); 3821 sq->sq_svcflags |= SQ_BGTHREAD; 3822 sq->sq_servcount = 1; 3823 cv_signal(&syncqs_to_run); 3824 mutex_exit(&service_queue); 3825 } 3826 3827 /* 3828 * Note: fifo_close() depends on the mblk_t on the queue being freed 3829 * asynchronously. The asynchronous freeing of messages breaks the 3830 * recursive call chain of fifo_close() while there are I_SENDFD type of 3831 * messages refering other file pointers on the queue. Then when 3832 * closing pipes it can avoid stack overflow in case of daisy-chained 3833 * pipes, and also avoid deadlock in case of fifonode_t pairs (which 3834 * share the same fifolock_t). 3835 */ 3836 3837 /* ARGSUSED */ 3838 void 3839 freebs_enqueue(mblk_t *mp, dblk_t *dbp) 3840 { 3841 ASSERT(dbp->db_mblk == mp); 3842 3843 /* 3844 * Check data sanity. The dblock should have non-empty free function. 3845 * It is better to panic here then later when the dblock is freed 3846 * asynchronously when the context is lost. 3847 */ 3848 if (dbp->db_frtnp->free_func == NULL) { 3849 panic("freebs_enqueue: dblock %p has a NULL free callback", 3850 (void *) dbp); 3851 } 3852 3853 STRSTAT(freebs); 3854 if (taskq_dispatch(streams_taskq, (task_func_t *)mblk_free, mp, 3855 TQ_NOSLEEP) == NULL) { 3856 /* 3857 * System is low on resources and can't perform a non-sleeping 3858 * dispatch. Schedule for a background thread. 3859 */ 3860 mutex_enter(&service_queue); 3861 STRSTAT(taskqfails); 3862 mp->b_next = freebs_list; 3863 freebs_list = mp; 3864 cv_signal(&services_to_run); 3865 mutex_exit(&service_queue); 3866 } 3867 } 3868 3869 /* 3870 * Set the QBACK or QB_BACK flag in the given queue for 3871 * the given priority band. 3872 */ 3873 void 3874 setqback(queue_t *q, unsigned char pri) 3875 { 3876 int i; 3877 qband_t *qbp; 3878 qband_t **qbpp; 3879 3880 ASSERT(MUTEX_HELD(QLOCK(q))); 3881 if (pri != 0) { 3882 if (pri > q->q_nband) { 3883 qbpp = &q->q_bandp; 3884 while (*qbpp) 3885 qbpp = &(*qbpp)->qb_next; 3886 while (pri > q->q_nband) { 3887 if ((*qbpp = allocband()) == NULL) { 3888 cmn_err(CE_WARN, 3889 "setqback: can't allocate qband\n"); 3890 return; 3891 } 3892 (*qbpp)->qb_hiwat = q->q_hiwat; 3893 (*qbpp)->qb_lowat = q->q_lowat; 3894 q->q_nband++; 3895 qbpp = &(*qbpp)->qb_next; 3896 } 3897 } 3898 qbp = q->q_bandp; 3899 i = pri; 3900 while (--i) 3901 qbp = qbp->qb_next; 3902 qbp->qb_flag |= QB_BACK; 3903 } else { 3904 q->q_flag |= QBACK; 3905 } 3906 } 3907 3908 int 3909 strcopyin(void *from, void *to, size_t len, int copyflag) 3910 { 3911 if (copyflag & U_TO_K) { 3912 ASSERT((copyflag & K_TO_K) == 0); 3913 if (copyin(from, to, len)) 3914 return (EFAULT); 3915 } else { 3916 ASSERT(copyflag & K_TO_K); 3917 bcopy(from, to, len); 3918 } 3919 return (0); 3920 } 3921 3922 int 3923 strcopyout(void *from, void *to, size_t len, int copyflag) 3924 { 3925 if (copyflag & U_TO_K) { 3926 if (copyout(from, to, len)) 3927 return (EFAULT); 3928 } else { 3929 ASSERT(copyflag & K_TO_K); 3930 bcopy(from, to, len); 3931 } 3932 return (0); 3933 } 3934 3935 /* 3936 * strsignal_nolock() posts a signal to the process(es) at the stream head. 3937 * It assumes that the stream head lock is already held, whereas strsignal() 3938 * acquires the lock first. This routine was created because a few callers 3939 * release the stream head lock before calling only to re-acquire it after 3940 * it returns. 3941 */ 3942 void 3943 strsignal_nolock(stdata_t *stp, int sig, int32_t band) 3944 { 3945 ASSERT(MUTEX_HELD(&stp->sd_lock)); 3946 switch (sig) { 3947 case SIGPOLL: 3948 if (stp->sd_sigflags & S_MSG) 3949 strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0); 3950 break; 3951 3952 default: 3953 if (stp->sd_pgidp) { 3954 pgsignal(stp->sd_pgidp, sig); 3955 } 3956 break; 3957 } 3958 } 3959 3960 void 3961 strsignal(stdata_t *stp, int sig, int32_t band) 3962 { 3963 TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG, 3964 "strsignal:%p, %X, %X", stp, sig, band); 3965 3966 mutex_enter(&stp->sd_lock); 3967 switch (sig) { 3968 case SIGPOLL: 3969 if (stp->sd_sigflags & S_MSG) 3970 strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0); 3971 break; 3972 3973 default: 3974 if (stp->sd_pgidp) { 3975 pgsignal(stp->sd_pgidp, sig); 3976 } 3977 break; 3978 } 3979 mutex_exit(&stp->sd_lock); 3980 } 3981 3982 void 3983 strhup(stdata_t *stp) 3984 { 3985 pollwakeup(&stp->sd_pollist, POLLHUP); 3986 mutex_enter(&stp->sd_lock); 3987 if (stp->sd_sigflags & S_HANGUP) 3988 strsendsig(stp->sd_siglist, S_HANGUP, 0, 0); 3989 mutex_exit(&stp->sd_lock); 3990 } 3991 3992 void 3993 stralloctty(stdata_t *stp) 3994 { 3995 proc_t *p = curproc; 3996 sess_t *sp = p->p_sessp; 3997 3998 mutex_enter(&stp->sd_lock); 3999 /* 4000 * No need to hold the session lock or do a TTY_HOLD() because 4001 * this is the only thread that can be the session leader and not 4002 * have a controlling tty. 4003 */ 4004 if ((stp->sd_flag & 4005 (STRHUP|STRDERR|STWRERR|STPLEX|STRISTTY)) == STRISTTY && 4006 stp->sd_sidp == NULL && /* not allocated as ctty */ 4007 sp->s_sidp == p->p_pidp && /* session leader */ 4008 sp->s_flag != SESS_CLOSE && /* session is not closing */ 4009 sp->s_vp == NULL) { /* without ctty */ 4010 ASSERT(stp->sd_pgidp == NULL); 4011 alloctty(p, makectty(stp->sd_vnode)); 4012 4013 mutex_enter(&pidlock); 4014 stp->sd_sidp = sp->s_sidp; 4015 stp->sd_pgidp = sp->s_sidp; 4016 PID_HOLD(stp->sd_pgidp); 4017 PID_HOLD(stp->sd_sidp); 4018 mutex_exit(&pidlock); 4019 } 4020 mutex_exit(&stp->sd_lock); 4021 } 4022 4023 void 4024 strfreectty(stdata_t *stp) 4025 { 4026 mutex_enter(&stp->sd_lock); 4027 pgsignal(stp->sd_pgidp, SIGHUP); 4028 mutex_enter(&pidlock); 4029 PID_RELE(stp->sd_pgidp); 4030 PID_RELE(stp->sd_sidp); 4031 stp->sd_pgidp = NULL; 4032 stp->sd_sidp = NULL; 4033 mutex_exit(&pidlock); 4034 mutex_exit(&stp->sd_lock); 4035 if (!(stp->sd_flag & STRHUP)) 4036 strhup(stp); 4037 } 4038 /* 4039 * Backenable the first queue upstream from `q' with a service procedure. 4040 */ 4041 void 4042 backenable(queue_t *q, uchar_t pri) 4043 { 4044 queue_t *nq; 4045 4046 /* 4047 * our presence might not prevent other modules in our own 4048 * stream from popping/pushing since the caller of getq might not 4049 * have a claim on the queue (some drivers do a getq on somebody 4050 * else's queue - they know that the queue itself is not going away 4051 * but the framework has to guarantee q_next in that stream.) 4052 */ 4053 claimstr(q); 4054 4055 /* find nearest back queue with service proc */ 4056 for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) { 4057 ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq)); 4058 } 4059 4060 if (nq) { 4061 kthread_t *freezer; 4062 /* 4063 * backenable can be called either with no locks held 4064 * or with the stream frozen (the latter occurs when a module 4065 * calls rmvq with the stream frozen.) If the stream is frozen 4066 * by the caller the caller will hold all qlocks in the stream. 4067 */ 4068 freezer = STREAM(q)->sd_freezer; 4069 if (freezer != curthread) { 4070 mutex_enter(QLOCK(nq)); 4071 } 4072 #ifdef DEBUG 4073 else { 4074 ASSERT(frozenstr(q)); 4075 ASSERT(MUTEX_HELD(QLOCK(q))); 4076 ASSERT(MUTEX_HELD(QLOCK(nq))); 4077 } 4078 #endif 4079 setqback(nq, pri); 4080 qenable_locked(nq); 4081 if (freezer != curthread) 4082 mutex_exit(QLOCK(nq)); 4083 } 4084 releasestr(q); 4085 } 4086 4087 /* 4088 * Return the appropriate errno when one of flags_to_check is set 4089 * in sd_flags. Uses the exported error routines if they are set. 4090 * Will return 0 if non error is set (or if the exported error routines 4091 * do not return an error). 4092 * 4093 * If there is both a read and write error to check we prefer the read error. 4094 * Also, give preference to recorded errno's over the error functions. 4095 * The flags that are handled are: 4096 * STPLEX return EINVAL 4097 * STRDERR return sd_rerror (and clear if STRDERRNONPERSIST) 4098 * STWRERR return sd_werror (and clear if STWRERRNONPERSIST) 4099 * STRHUP return sd_werror 4100 * 4101 * If the caller indicates that the operation is a peek a nonpersistent error 4102 * is not cleared. 4103 */ 4104 int 4105 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek) 4106 { 4107 int32_t sd_flag = stp->sd_flag & flags_to_check; 4108 int error = 0; 4109 4110 ASSERT(MUTEX_HELD(&stp->sd_lock)); 4111 ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0); 4112 if (sd_flag & STPLEX) 4113 error = EINVAL; 4114 else if (sd_flag & STRDERR) { 4115 error = stp->sd_rerror; 4116 if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) { 4117 /* 4118 * Read errors are non-persistent i.e. discarded once 4119 * returned to a non-peeking caller, 4120 */ 4121 stp->sd_rerror = 0; 4122 stp->sd_flag &= ~STRDERR; 4123 } 4124 if (error == 0 && stp->sd_rderrfunc != NULL) { 4125 int clearerr = 0; 4126 4127 error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek, 4128 &clearerr); 4129 if (clearerr) { 4130 stp->sd_flag &= ~STRDERR; 4131 stp->sd_rderrfunc = NULL; 4132 } 4133 } 4134 } else if (sd_flag & STWRERR) { 4135 error = stp->sd_werror; 4136 if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) { 4137 /* 4138 * Write errors are non-persistent i.e. discarded once 4139 * returned to a non-peeking caller, 4140 */ 4141 stp->sd_werror = 0; 4142 stp->sd_flag &= ~STWRERR; 4143 } 4144 if (error == 0 && stp->sd_wrerrfunc != NULL) { 4145 int clearerr = 0; 4146 4147 error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek, 4148 &clearerr); 4149 if (clearerr) { 4150 stp->sd_flag &= ~STWRERR; 4151 stp->sd_wrerrfunc = NULL; 4152 } 4153 } 4154 } else if (sd_flag & STRHUP) { 4155 /* sd_werror set when STRHUP */ 4156 error = stp->sd_werror; 4157 } 4158 return (error); 4159 } 4160 4161 4162 /* 4163 * single-thread open/close/push/pop 4164 * for twisted streams also 4165 */ 4166 int 4167 strstartplumb(stdata_t *stp, int flag, int cmd) 4168 { 4169 int waited = 1; 4170 int error = 0; 4171 4172 if (STRMATED(stp)) { 4173 struct stdata *stmatep = stp->sd_mate; 4174 4175 STRLOCKMATES(stp); 4176 while (waited) { 4177 waited = 0; 4178 while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 4179 if ((cmd == I_POP) && 4180 (flag & (FNDELAY|FNONBLOCK))) { 4181 STRUNLOCKMATES(stp); 4182 return (EAGAIN); 4183 } 4184 waited = 1; 4185 mutex_exit(&stp->sd_lock); 4186 if (!cv_wait_sig(&stmatep->sd_monitor, 4187 &stmatep->sd_lock)) { 4188 mutex_exit(&stmatep->sd_lock); 4189 return (EINTR); 4190 } 4191 mutex_exit(&stmatep->sd_lock); 4192 STRLOCKMATES(stp); 4193 } 4194 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 4195 if ((cmd == I_POP) && 4196 (flag & (FNDELAY|FNONBLOCK))) { 4197 STRUNLOCKMATES(stp); 4198 return (EAGAIN); 4199 } 4200 waited = 1; 4201 mutex_exit(&stmatep->sd_lock); 4202 if (!cv_wait_sig(&stp->sd_monitor, 4203 &stp->sd_lock)) { 4204 mutex_exit(&stp->sd_lock); 4205 return (EINTR); 4206 } 4207 mutex_exit(&stp->sd_lock); 4208 STRLOCKMATES(stp); 4209 } 4210 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 4211 error = strgeterr(stp, 4212 STRDERR|STWRERR|STRHUP|STPLEX, 0); 4213 if (error != 0) { 4214 STRUNLOCKMATES(stp); 4215 return (error); 4216 } 4217 } 4218 } 4219 stp->sd_flag |= STRPLUMB; 4220 STRUNLOCKMATES(stp); 4221 } else { 4222 mutex_enter(&stp->sd_lock); 4223 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 4224 if (((cmd == I_POP) || (cmd == _I_REMOVE)) && 4225 (flag & (FNDELAY|FNONBLOCK))) { 4226 mutex_exit(&stp->sd_lock); 4227 return (EAGAIN); 4228 } 4229 if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) { 4230 mutex_exit(&stp->sd_lock); 4231 return (EINTR); 4232 } 4233 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 4234 error = strgeterr(stp, 4235 STRDERR|STWRERR|STRHUP|STPLEX, 0); 4236 if (error != 0) { 4237 mutex_exit(&stp->sd_lock); 4238 return (error); 4239 } 4240 } 4241 } 4242 stp->sd_flag |= STRPLUMB; 4243 mutex_exit(&stp->sd_lock); 4244 } 4245 return (0); 4246 } 4247 4248 /* 4249 * Complete the plumbing operation associated with stream `stp'. 4250 */ 4251 void 4252 strendplumb(stdata_t *stp) 4253 { 4254 ASSERT(MUTEX_HELD(&stp->sd_lock)); 4255 ASSERT(stp->sd_flag & STRPLUMB); 4256 stp->sd_flag &= ~STRPLUMB; 4257 cv_broadcast(&stp->sd_monitor); 4258 } 4259 4260 /* 4261 * This describes how the STREAMS framework handles synchronization 4262 * during open/push and close/pop. 4263 * The key interfaces for open and close are qprocson and qprocsoff, 4264 * respectively. While the close case in general is harder both open 4265 * have close have significant similarities. 4266 * 4267 * During close the STREAMS framework has to both ensure that there 4268 * are no stale references to the queue pair (and syncq) that 4269 * are being closed and also provide the guarantees that are documented 4270 * in qprocsoff(9F). 4271 * If there are stale references to the queue that is closing it can 4272 * result in kernel memory corruption or kernel panics. 4273 * 4274 * Note that is it up to the module/driver to ensure that it itself 4275 * does not have any stale references to the closing queues once its close 4276 * routine returns. This includes: 4277 * - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines 4278 * associated with the queues. For timeout and bufcall callbacks the 4279 * module/driver also has to ensure (or wait for) any callbacks that 4280 * are in progress. 4281 * - If the module/driver is using esballoc it has to ensure that any 4282 * esballoc free functions do not refer to a queue that has closed. 4283 * (Note that in general the close routine can not wait for the esballoc'ed 4284 * messages to be freed since that can cause a deadlock.) 4285 * - Cancelling any interrupts that refer to the closing queues and 4286 * also ensuring that there are no interrupts in progress that will 4287 * refer to the closing queues once the close routine returns. 4288 * - For multiplexors removing any driver global state that refers to 4289 * the closing queue and also ensuring that there are no threads in 4290 * the multiplexor that has picked up a queue pointer but not yet 4291 * finished using it. 4292 * 4293 * In addition, a driver/module can only reference the q_next pointer 4294 * in its open, close, put, or service procedures or in a 4295 * qtimeout/qbufcall callback procedure executing "on" the correct 4296 * stream. Thus it can not reference the q_next pointer in an interrupt 4297 * routine or a timeout, bufcall or esballoc callback routine. Likewise 4298 * it can not reference q_next of a different queue e.g. in a mux that 4299 * passes messages from one queues put/service procedure to another queue. 4300 * In all the cases when the driver/module can not access the q_next 4301 * field it must use the *next* versions e.g. canputnext instead of 4302 * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...). 4303 * 4304 * 4305 * Assuming that the driver/module conforms to the above constraints 4306 * the STREAMS framework has to avoid stale references to q_next for all 4307 * the framework internal cases which include (but are not limited to): 4308 * - Threads in canput/canputnext/backenable and elsewhere that are 4309 * walking q_next. 4310 * - Messages on a syncq that have a reference to the queue through b_queue. 4311 * - Messages on an outer perimeter (syncq) that have a reference to the 4312 * queue through b_queue. 4313 * - Threads that use q_nfsrv (e.g. canput) to find a queue. 4314 * Note that only canput and bcanput use q_nfsrv without any locking. 4315 * 4316 * The STREAMS framework providing the qprocsoff(9F) guarantees means that 4317 * after qprocsoff returns, the framework has to ensure that no threads can 4318 * enter the put or service routines for the closing read or write-side queue. 4319 * In addition to preventing "direct" entry into the put procedures 4320 * the framework also has to prevent messages being drained from 4321 * the syncq or the outer perimeter. 4322 * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only 4323 * mechanism to prevent qwriter(PERIM_OUTER) from running after 4324 * qprocsoff has returned. 4325 * Note that if a module/driver uses put(9F) on one of its own queues 4326 * it is up to the module/driver to ensure that the put() doesn't 4327 * get called when the queue is closing. 4328 * 4329 * 4330 * The framework aspects of the above "contract" is implemented by 4331 * qprocsoff, removeq, and strlock: 4332 * - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from 4333 * entering the service procedures. 4334 * - strlock acquires the sd_lock and sd_reflock to prevent putnext, 4335 * canputnext, backenable etc from dereferencing the q_next that will 4336 * soon change. 4337 * - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext 4338 * or other q_next walker that uses claimstr/releasestr to finish. 4339 * - optionally for every syncq in the stream strlock acquires all the 4340 * sq_lock's and waits for all sq_counts to drop to a value that indicates 4341 * that no thread executes in the put or service procedures and that no 4342 * thread is draining into the module/driver. This ensures that no 4343 * open, close, put, service, or qtimeout/qbufcall callback procedure is 4344 * currently executing hence no such thread can end up with the old stale 4345 * q_next value and no canput/backenable can have the old stale 4346 * q_nfsrv/q_next. 4347 * - qdetach (wait_svc) makes sure that any scheduled or running threads 4348 * have either finished or observed the QWCLOSE flag and gone away. 4349 */ 4350 4351 4352 /* 4353 * Get all the locks necessary to change q_next. 4354 * 4355 * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the 4356 * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that 4357 * the only threads inside the sqncq are threads currently calling removeq(). 4358 * Since threads calling removeq() are in the process of removing their queues 4359 * from the stream, we do not need to worry about them accessing a stale q_next 4360 * pointer and thus we do not need to wait for them to exit (in fact, waiting 4361 * for them can cause deadlock). 4362 * 4363 * This routine is subject to starvation since it does not set any flag to 4364 * prevent threads from entering a module in the stream(i.e. sq_count can 4365 * increase on some syncq while it is waiting on some other syncq.) 4366 * 4367 * Assumes that only one thread attempts to call strlock for a given 4368 * stream. If this is not the case the two threads would deadlock. 4369 * This assumption is guaranteed since strlock is only called by insertq 4370 * and removeq and streams plumbing changes are single-threaded for 4371 * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags. 4372 * 4373 * For pipes, it is not difficult to atomically designate a pair of streams 4374 * to be mated. Once mated atomically by the framework the twisted pair remain 4375 * configured that way until dismantled atomically by the framework. 4376 * When plumbing takes place on a twisted stream it is necessary to ensure that 4377 * this operation is done exclusively on the twisted stream since two such 4378 * operations, each initiated on different ends of the pipe will deadlock 4379 * waiting for each other to complete. 4380 * 4381 * On entry, no locks should be held. 4382 * The locks acquired and held by strlock depends on a few factors. 4383 * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired 4384 * and held on exit and all sq_count are at an acceptable level. 4385 * - In all cases, sd_lock and sd_reflock are acquired and held on exit with 4386 * sd_refcnt being zero. 4387 */ 4388 4389 static void 4390 strlock(struct stdata *stp, sqlist_t *sqlist) 4391 { 4392 syncql_t *sql, *sql2; 4393 retry: 4394 /* 4395 * Wait for any claimstr to go away. 4396 */ 4397 if (STRMATED(stp)) { 4398 struct stdata *stp1, *stp2; 4399 4400 STRLOCKMATES(stp); 4401 /* 4402 * Note that the selection of locking order is not 4403 * important, just that they are always aquired in 4404 * the same order. To assure this, we choose this 4405 * order based on the value of the pointer, and since 4406 * the pointer will not change for the life of this 4407 * pair, we will always grab the locks in the same 4408 * order (and hence, prevent deadlocks). 4409 */ 4410 if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) { 4411 stp1 = stp; 4412 stp2 = stp->sd_mate; 4413 } else { 4414 stp2 = stp; 4415 stp1 = stp->sd_mate; 4416 } 4417 mutex_enter(&stp1->sd_reflock); 4418 if (stp1->sd_refcnt > 0) { 4419 STRUNLOCKMATES(stp); 4420 cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock); 4421 mutex_exit(&stp1->sd_reflock); 4422 goto retry; 4423 } 4424 mutex_enter(&stp2->sd_reflock); 4425 if (stp2->sd_refcnt > 0) { 4426 STRUNLOCKMATES(stp); 4427 mutex_exit(&stp1->sd_reflock); 4428 cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock); 4429 mutex_exit(&stp2->sd_reflock); 4430 goto retry; 4431 } 4432 STREAM_PUTLOCKS_ENTER(stp1); 4433 STREAM_PUTLOCKS_ENTER(stp2); 4434 } else { 4435 mutex_enter(&stp->sd_lock); 4436 mutex_enter(&stp->sd_reflock); 4437 while (stp->sd_refcnt > 0) { 4438 mutex_exit(&stp->sd_lock); 4439 cv_wait(&stp->sd_refmonitor, &stp->sd_reflock); 4440 if (mutex_tryenter(&stp->sd_lock) == 0) { 4441 mutex_exit(&stp->sd_reflock); 4442 mutex_enter(&stp->sd_lock); 4443 mutex_enter(&stp->sd_reflock); 4444 } 4445 } 4446 STREAM_PUTLOCKS_ENTER(stp); 4447 } 4448 4449 if (sqlist == NULL) 4450 return; 4451 4452 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) { 4453 syncq_t *sq = sql->sql_sq; 4454 uint16_t count; 4455 4456 mutex_enter(SQLOCK(sq)); 4457 count = sq->sq_count; 4458 ASSERT(sq->sq_rmqcount <= count); 4459 SQ_PUTLOCKS_ENTER(sq); 4460 SUM_SQ_PUTCOUNTS(sq, count); 4461 if (count == sq->sq_rmqcount) 4462 continue; 4463 4464 /* Failed - drop all locks that we have acquired so far */ 4465 if (STRMATED(stp)) { 4466 STREAM_PUTLOCKS_EXIT(stp); 4467 STREAM_PUTLOCKS_EXIT(stp->sd_mate); 4468 STRUNLOCKMATES(stp); 4469 mutex_exit(&stp->sd_reflock); 4470 mutex_exit(&stp->sd_mate->sd_reflock); 4471 } else { 4472 STREAM_PUTLOCKS_EXIT(stp); 4473 mutex_exit(&stp->sd_lock); 4474 mutex_exit(&stp->sd_reflock); 4475 } 4476 for (sql2 = sqlist->sqlist_head; sql2 != sql; 4477 sql2 = sql2->sql_next) { 4478 SQ_PUTLOCKS_EXIT(sql2->sql_sq); 4479 mutex_exit(SQLOCK(sql2->sql_sq)); 4480 } 4481 4482 /* 4483 * The wait loop below may starve when there are many threads 4484 * claiming the syncq. This is especially a problem with permod 4485 * syncqs (IP). To lessen the impact of the problem we increment 4486 * sq_needexcl and clear fastbits so that putnexts will slow 4487 * down and call sqenable instead of draining right away. 4488 */ 4489 sq->sq_needexcl++; 4490 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 4491 while (count > sq->sq_rmqcount) { 4492 sq->sq_flags |= SQ_WANTWAKEUP; 4493 SQ_PUTLOCKS_EXIT(sq); 4494 cv_wait(&sq->sq_wait, SQLOCK(sq)); 4495 count = sq->sq_count; 4496 SQ_PUTLOCKS_ENTER(sq); 4497 SUM_SQ_PUTCOUNTS(sq, count); 4498 } 4499 sq->sq_needexcl--; 4500 if (sq->sq_needexcl == 0) 4501 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 4502 SQ_PUTLOCKS_EXIT(sq); 4503 ASSERT(count == sq->sq_rmqcount); 4504 mutex_exit(SQLOCK(sq)); 4505 goto retry; 4506 } 4507 } 4508 4509 /* 4510 * Drop all the locks that strlock acquired. 4511 */ 4512 static void 4513 strunlock(struct stdata *stp, sqlist_t *sqlist) 4514 { 4515 syncql_t *sql; 4516 4517 if (STRMATED(stp)) { 4518 STREAM_PUTLOCKS_EXIT(stp); 4519 STREAM_PUTLOCKS_EXIT(stp->sd_mate); 4520 STRUNLOCKMATES(stp); 4521 mutex_exit(&stp->sd_reflock); 4522 mutex_exit(&stp->sd_mate->sd_reflock); 4523 } else { 4524 STREAM_PUTLOCKS_EXIT(stp); 4525 mutex_exit(&stp->sd_lock); 4526 mutex_exit(&stp->sd_reflock); 4527 } 4528 4529 if (sqlist == NULL) 4530 return; 4531 4532 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) { 4533 SQ_PUTLOCKS_EXIT(sql->sql_sq); 4534 mutex_exit(SQLOCK(sql->sql_sq)); 4535 } 4536 } 4537 4538 /* 4539 * When the module has service procedure, we need check if the next 4540 * module which has service procedure is in flow control to trigger 4541 * the backenable. 4542 */ 4543 static void 4544 backenable_insertedq(queue_t *q) 4545 { 4546 qband_t *qbp; 4547 4548 claimstr(q); 4549 if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) { 4550 if (q->q_next->q_nfsrv->q_flag & QWANTW) 4551 backenable(q, 0); 4552 4553 qbp = q->q_next->q_nfsrv->q_bandp; 4554 for (; qbp != NULL; qbp = qbp->qb_next) 4555 if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL) 4556 backenable(q, qbp->qb_first->b_band); 4557 } 4558 releasestr(q); 4559 } 4560 4561 /* 4562 * Given two read queues, insert a new single one after another. 4563 * 4564 * This routine acquires all the necessary locks in order to change 4565 * q_next and related pointer using strlock(). 4566 * It depends on the stream head ensuring that there are no concurrent 4567 * insertq or removeq on the same stream. The stream head ensures this 4568 * using the flags STWOPEN, STRCLOSE, and STRPLUMB. 4569 * 4570 * Note that no syncq locks are held during the q_next change. This is 4571 * applied to all streams since, unlike removeq, there is no problem of stale 4572 * pointers when adding a module to the stream. Thus drivers/modules that do a 4573 * canput(rq->q_next) would never get a closed/freed queue pointer even if we 4574 * applied this optimization to all streams. 4575 */ 4576 void 4577 insertq(struct stdata *stp, queue_t *new) 4578 { 4579 queue_t *after; 4580 queue_t *wafter; 4581 queue_t *wnew = _WR(new); 4582 boolean_t have_fifo = B_FALSE; 4583 4584 if (new->q_flag & _QINSERTING) { 4585 ASSERT(stp->sd_vnode->v_type != VFIFO); 4586 after = new->q_next; 4587 wafter = _WR(new->q_next); 4588 } else { 4589 after = _RD(stp->sd_wrq); 4590 wafter = stp->sd_wrq; 4591 } 4592 4593 TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ, 4594 "insertq:%p, %p", after, new); 4595 ASSERT(after->q_flag & QREADR); 4596 ASSERT(new->q_flag & QREADR); 4597 4598 strlock(stp, NULL); 4599 4600 /* Do we have a FIFO? */ 4601 if (wafter->q_next == after) { 4602 have_fifo = B_TRUE; 4603 wnew->q_next = new; 4604 } else { 4605 wnew->q_next = wafter->q_next; 4606 } 4607 new->q_next = after; 4608 4609 set_nfsrv_ptr(new, wnew, after, wafter); 4610 /* 4611 * set_nfsrv_ptr() needs to know if this is an insertion or not, 4612 * so only reset this flag after calling it. 4613 */ 4614 new->q_flag &= ~_QINSERTING; 4615 4616 if (have_fifo) { 4617 wafter->q_next = wnew; 4618 } else { 4619 if (wafter->q_next) 4620 _OTHERQ(wafter->q_next)->q_next = new; 4621 wafter->q_next = wnew; 4622 } 4623 4624 set_qend(new); 4625 /* The QEND flag might have to be updated for the upstream guy */ 4626 set_qend(after); 4627 4628 ASSERT(_SAMESTR(new) == O_SAMESTR(new)); 4629 ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew)); 4630 ASSERT(_SAMESTR(after) == O_SAMESTR(after)); 4631 ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter)); 4632 strsetuio(stp); 4633 4634 /* 4635 * If this was a module insertion, bump the push count. 4636 */ 4637 if (!(new->q_flag & QISDRV)) 4638 stp->sd_pushcnt++; 4639 4640 strunlock(stp, NULL); 4641 4642 /* check if the write Q needs backenable */ 4643 backenable_insertedq(wnew); 4644 4645 /* check if the read Q needs backenable */ 4646 backenable_insertedq(new); 4647 } 4648 4649 /* 4650 * Given a read queue, unlink it from any neighbors. 4651 * 4652 * This routine acquires all the necessary locks in order to 4653 * change q_next and related pointers and also guard against 4654 * stale references (e.g. through q_next) to the queue that 4655 * is being removed. It also plays part of the role in ensuring 4656 * that the module's/driver's put procedure doesn't get called 4657 * after qprocsoff returns. 4658 * 4659 * Removeq depends on the stream head ensuring that there are 4660 * no concurrent insertq or removeq on the same stream. The 4661 * stream head ensures this using the flags STWOPEN, STRCLOSE and 4662 * STRPLUMB. 4663 * 4664 * The set of locks needed to remove the queue is different in 4665 * different cases: 4666 * 4667 * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after 4668 * waiting for the syncq reference count to drop to 0 indicating that no 4669 * non-close threads are present anywhere in the stream. This ensures that any 4670 * module/driver can reference q_next in its open, close, put, or service 4671 * procedures. 4672 * 4673 * The sq_rmqcount counter tracks the number of threads inside removeq(). 4674 * strlock() ensures that there is either no threads executing inside perimeter 4675 * or there is only a thread calling qprocsoff(). 4676 * 4677 * strlock() compares the value of sq_count with the number of threads inside 4678 * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup 4679 * any threads waiting in strlock() when the sq_rmqcount increases. 4680 */ 4681 4682 void 4683 removeq(queue_t *qp) 4684 { 4685 queue_t *wqp = _WR(qp); 4686 struct stdata *stp = STREAM(qp); 4687 sqlist_t *sqlist = NULL; 4688 boolean_t isdriver; 4689 int moved; 4690 syncq_t *sq = qp->q_syncq; 4691 syncq_t *wsq = wqp->q_syncq; 4692 4693 ASSERT(stp); 4694 4695 TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ, 4696 "removeq:%p %p", qp, wqp); 4697 ASSERT(qp->q_flag&QREADR); 4698 4699 /* 4700 * For queues using Synchronous streams, we must wait for all threads in 4701 * rwnext() to drain out before proceeding. 4702 */ 4703 if (qp->q_flag & QSYNCSTR) { 4704 /* First, we need wakeup any threads blocked in rwnext() */ 4705 mutex_enter(SQLOCK(sq)); 4706 if (sq->sq_flags & SQ_WANTWAKEUP) { 4707 sq->sq_flags &= ~SQ_WANTWAKEUP; 4708 cv_broadcast(&sq->sq_wait); 4709 } 4710 mutex_exit(SQLOCK(sq)); 4711 4712 if (wsq != sq) { 4713 mutex_enter(SQLOCK(wsq)); 4714 if (wsq->sq_flags & SQ_WANTWAKEUP) { 4715 wsq->sq_flags &= ~SQ_WANTWAKEUP; 4716 cv_broadcast(&wsq->sq_wait); 4717 } 4718 mutex_exit(SQLOCK(wsq)); 4719 } 4720 4721 mutex_enter(QLOCK(qp)); 4722 while (qp->q_rwcnt > 0) { 4723 qp->q_flag |= QWANTRMQSYNC; 4724 cv_wait(&qp->q_wait, QLOCK(qp)); 4725 } 4726 mutex_exit(QLOCK(qp)); 4727 4728 mutex_enter(QLOCK(wqp)); 4729 while (wqp->q_rwcnt > 0) { 4730 wqp->q_flag |= QWANTRMQSYNC; 4731 cv_wait(&wqp->q_wait, QLOCK(wqp)); 4732 } 4733 mutex_exit(QLOCK(wqp)); 4734 } 4735 4736 mutex_enter(SQLOCK(sq)); 4737 sq->sq_rmqcount++; 4738 if (sq->sq_flags & SQ_WANTWAKEUP) { 4739 sq->sq_flags &= ~SQ_WANTWAKEUP; 4740 cv_broadcast(&sq->sq_wait); 4741 } 4742 mutex_exit(SQLOCK(sq)); 4743 4744 isdriver = (qp->q_flag & QISDRV); 4745 4746 sqlist = sqlist_build(qp, stp, STRMATED(stp)); 4747 strlock(stp, sqlist); 4748 4749 reset_nfsrv_ptr(qp, wqp); 4750 4751 ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp); 4752 ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp); 4753 /* Do we have a FIFO? */ 4754 if (wqp->q_next == qp) { 4755 stp->sd_wrq->q_next = _RD(stp->sd_wrq); 4756 } else { 4757 if (wqp->q_next) 4758 backq(qp)->q_next = qp->q_next; 4759 if (qp->q_next) 4760 backq(wqp)->q_next = wqp->q_next; 4761 } 4762 4763 /* The QEND flag might have to be updated for the upstream guy */ 4764 if (qp->q_next) 4765 set_qend(qp->q_next); 4766 4767 ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq)); 4768 ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq))); 4769 4770 /* 4771 * Move any messages destined for the put procedures to the next 4772 * syncq in line. Otherwise free them. 4773 */ 4774 moved = 0; 4775 /* 4776 * Quick check to see whether there are any messages or events. 4777 */ 4778 if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS)) 4779 moved += propagate_syncq(qp); 4780 if (wqp->q_syncqmsgs != 0 || 4781 (wqp->q_syncq->sq_flags & SQ_EVENTS)) 4782 moved += propagate_syncq(wqp); 4783 4784 strsetuio(stp); 4785 4786 /* 4787 * If this was a module removal, decrement the push count. 4788 */ 4789 if (!isdriver) 4790 stp->sd_pushcnt--; 4791 4792 strunlock(stp, sqlist); 4793 sqlist_free(sqlist); 4794 4795 /* 4796 * Make sure any messages that were propagated are drained. 4797 * Also clear any QFULL bit caused by messages that were propagated. 4798 */ 4799 4800 if (qp->q_next != NULL) { 4801 clr_qfull(qp); 4802 /* 4803 * For the driver calling qprocsoff, propagate_syncq 4804 * frees all the messages instead of putting it in 4805 * the stream head 4806 */ 4807 if (!isdriver && (moved > 0)) 4808 emptysq(qp->q_next->q_syncq); 4809 } 4810 if (wqp->q_next != NULL) { 4811 clr_qfull(wqp); 4812 /* 4813 * We come here for any pop of a module except for the 4814 * case of driver being removed. We don't call emptysq 4815 * if we did not move any messages. This will avoid holding 4816 * PERMOD syncq locks in emptysq 4817 */ 4818 if (moved > 0) 4819 emptysq(wqp->q_next->q_syncq); 4820 } 4821 4822 mutex_enter(SQLOCK(sq)); 4823 sq->sq_rmqcount--; 4824 mutex_exit(SQLOCK(sq)); 4825 } 4826 4827 /* 4828 * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or 4829 * SQ_WRITER) on a syncq. 4830 * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the 4831 * sync queue and waits until sq_count reaches maxcnt. 4832 * 4833 * if maxcnt is -1 there's no need to grab sq_putlocks since the caller 4834 * does not care about putnext threads that are in the middle of calling put 4835 * entry points. 4836 * 4837 * This routine is used for both inner and outer syncqs. 4838 */ 4839 static void 4840 blocksq(syncq_t *sq, ushort_t flag, int maxcnt) 4841 { 4842 uint16_t count = 0; 4843 4844 mutex_enter(SQLOCK(sq)); 4845 /* 4846 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset. 4847 * SQ_FROZEN will be set if there is a frozen stream that has a 4848 * queue which also refers to this "shared" syncq. 4849 * SQ_BLOCKED will be set if there is "off" queue which also 4850 * refers to this "shared" syncq. 4851 */ 4852 if (maxcnt != -1) { 4853 count = sq->sq_count; 4854 SQ_PUTLOCKS_ENTER(sq); 4855 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 4856 SUM_SQ_PUTCOUNTS(sq, count); 4857 } 4858 sq->sq_needexcl++; 4859 ASSERT(sq->sq_needexcl != 0); /* wraparound */ 4860 4861 while ((sq->sq_flags & flag) || 4862 (maxcnt != -1 && count > (unsigned)maxcnt)) { 4863 sq->sq_flags |= SQ_WANTWAKEUP; 4864 if (maxcnt != -1) { 4865 SQ_PUTLOCKS_EXIT(sq); 4866 } 4867 cv_wait(&sq->sq_wait, SQLOCK(sq)); 4868 if (maxcnt != -1) { 4869 count = sq->sq_count; 4870 SQ_PUTLOCKS_ENTER(sq); 4871 SUM_SQ_PUTCOUNTS(sq, count); 4872 } 4873 } 4874 sq->sq_needexcl--; 4875 sq->sq_flags |= flag; 4876 ASSERT(maxcnt == -1 || count == maxcnt); 4877 if (maxcnt != -1) { 4878 if (sq->sq_needexcl == 0) { 4879 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 4880 } 4881 SQ_PUTLOCKS_EXIT(sq); 4882 } else if (sq->sq_needexcl == 0) { 4883 SQ_PUTCOUNT_SETFAST(sq); 4884 } 4885 4886 mutex_exit(SQLOCK(sq)); 4887 } 4888 4889 /* 4890 * Reset a flag that was set with blocksq. 4891 * 4892 * Can not use this routine to reset SQ_WRITER. 4893 * 4894 * If "isouter" is set then the syncq is assumed to be an outer perimeter 4895 * and drain_syncq is not called. Instead we rely on the qwriter_outer thread 4896 * to handle the queued qwriter operations. 4897 * 4898 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 4899 * sq_putlocks are used. 4900 */ 4901 static void 4902 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter) 4903 { 4904 uint16_t flags; 4905 4906 mutex_enter(SQLOCK(sq)); 4907 ASSERT(resetflag != SQ_WRITER); 4908 ASSERT(sq->sq_flags & resetflag); 4909 flags = sq->sq_flags & ~resetflag; 4910 sq->sq_flags = flags; 4911 if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) { 4912 if (flags & SQ_WANTWAKEUP) { 4913 flags &= ~SQ_WANTWAKEUP; 4914 cv_broadcast(&sq->sq_wait); 4915 } 4916 sq->sq_flags = flags; 4917 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) { 4918 if (!isouter) { 4919 /* drain_syncq drops SQLOCK */ 4920 drain_syncq(sq); 4921 return; 4922 } 4923 } 4924 } 4925 mutex_exit(SQLOCK(sq)); 4926 } 4927 4928 /* 4929 * Reset a flag that was set with blocksq. 4930 * Does not drain the syncq. Use emptysq() for that. 4931 * Returns 1 if SQ_QUEUED is set. Otherwise 0. 4932 * 4933 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 4934 * sq_putlocks are used. 4935 */ 4936 static int 4937 dropsq(syncq_t *sq, uint16_t resetflag) 4938 { 4939 uint16_t flags; 4940 4941 mutex_enter(SQLOCK(sq)); 4942 ASSERT(sq->sq_flags & resetflag); 4943 flags = sq->sq_flags & ~resetflag; 4944 if (flags & SQ_WANTWAKEUP) { 4945 flags &= ~SQ_WANTWAKEUP; 4946 cv_broadcast(&sq->sq_wait); 4947 } 4948 sq->sq_flags = flags; 4949 mutex_exit(SQLOCK(sq)); 4950 if (flags & SQ_QUEUED) 4951 return (1); 4952 return (0); 4953 } 4954 4955 /* 4956 * Empty all the messages on a syncq. 4957 * 4958 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 4959 * sq_putlocks are used. 4960 */ 4961 static void 4962 emptysq(syncq_t *sq) 4963 { 4964 uint16_t flags; 4965 4966 mutex_enter(SQLOCK(sq)); 4967 flags = sq->sq_flags; 4968 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) { 4969 /* 4970 * To prevent potential recursive invocation of drain_syncq we 4971 * do not call drain_syncq if count is non-zero. 4972 */ 4973 if (sq->sq_count == 0) { 4974 /* drain_syncq() drops SQLOCK */ 4975 drain_syncq(sq); 4976 return; 4977 } else 4978 sqenable(sq); 4979 } 4980 mutex_exit(SQLOCK(sq)); 4981 } 4982 4983 /* 4984 * Ordered insert while removing duplicates. 4985 */ 4986 static void 4987 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp) 4988 { 4989 syncql_t *sqlp, **prev_sqlpp, *new_sqlp; 4990 4991 prev_sqlpp = &sqlist->sqlist_head; 4992 while ((sqlp = *prev_sqlpp) != NULL) { 4993 if (sqlp->sql_sq >= sqp) { 4994 if (sqlp->sql_sq == sqp) /* duplicate */ 4995 return; 4996 break; 4997 } 4998 prev_sqlpp = &sqlp->sql_next; 4999 } 5000 new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++]; 5001 ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size); 5002 new_sqlp->sql_next = sqlp; 5003 new_sqlp->sql_sq = sqp; 5004 *prev_sqlpp = new_sqlp; 5005 } 5006 5007 /* 5008 * Walk the write side queues until we hit either the driver 5009 * or a twist in the stream (_SAMESTR will return false in both 5010 * these cases) then turn around and walk the read side queues 5011 * back up to the stream head. 5012 */ 5013 static void 5014 sqlist_insertall(sqlist_t *sqlist, queue_t *q) 5015 { 5016 while (q != NULL) { 5017 sqlist_insert(sqlist, q->q_syncq); 5018 5019 if (_SAMESTR(q)) 5020 q = q->q_next; 5021 else if (!(q->q_flag & QREADR)) 5022 q = _RD(q); 5023 else 5024 q = NULL; 5025 } 5026 } 5027 5028 /* 5029 * Allocate and build a list of all syncqs in a stream and the syncq(s) 5030 * associated with the "q" parameter. The resulting list is sorted in a 5031 * canonical order and is free of duplicates. 5032 * Assumes the passed queue is a _RD(q). 5033 */ 5034 static sqlist_t * 5035 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist) 5036 { 5037 sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP); 5038 5039 /* 5040 * start with the current queue/qpair 5041 */ 5042 ASSERT(q->q_flag & QREADR); 5043 5044 sqlist_insert(sqlist, q->q_syncq); 5045 sqlist_insert(sqlist, _WR(q)->q_syncq); 5046 5047 sqlist_insertall(sqlist, stp->sd_wrq); 5048 if (do_twist) 5049 sqlist_insertall(sqlist, stp->sd_mate->sd_wrq); 5050 5051 return (sqlist); 5052 } 5053 5054 static sqlist_t * 5055 sqlist_alloc(struct stdata *stp, int kmflag) 5056 { 5057 size_t sqlist_size; 5058 sqlist_t *sqlist; 5059 5060 /* 5061 * Allocate 2 syncql_t's for each pushed module. Note that 5062 * the sqlist_t structure already has 4 syncql_t's built in: 5063 * 2 for the stream head, and 2 for the driver/other stream head. 5064 */ 5065 sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt + 5066 sizeof (sqlist_t); 5067 if (STRMATED(stp)) 5068 sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt; 5069 sqlist = kmem_alloc(sqlist_size, kmflag); 5070 5071 sqlist->sqlist_head = NULL; 5072 sqlist->sqlist_size = sqlist_size; 5073 sqlist->sqlist_index = 0; 5074 5075 return (sqlist); 5076 } 5077 5078 /* 5079 * Free the list created by sqlist_alloc() 5080 */ 5081 static void 5082 sqlist_free(sqlist_t *sqlist) 5083 { 5084 kmem_free(sqlist, sqlist->sqlist_size); 5085 } 5086 5087 /* 5088 * Prevent any new entries into any syncq in this stream. 5089 * Used by freezestr. 5090 */ 5091 void 5092 strblock(queue_t *q) 5093 { 5094 struct stdata *stp; 5095 syncql_t *sql; 5096 sqlist_t *sqlist; 5097 5098 q = _RD(q); 5099 5100 stp = STREAM(q); 5101 ASSERT(stp != NULL); 5102 5103 /* 5104 * Get a sorted list with all the duplicates removed containing 5105 * all the syncqs referenced by this stream. 5106 */ 5107 sqlist = sqlist_build(q, stp, B_FALSE); 5108 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next) 5109 blocksq(sql->sql_sq, SQ_FROZEN, -1); 5110 sqlist_free(sqlist); 5111 } 5112 5113 /* 5114 * Release the block on new entries into this stream 5115 */ 5116 void 5117 strunblock(queue_t *q) 5118 { 5119 struct stdata *stp; 5120 syncql_t *sql; 5121 sqlist_t *sqlist; 5122 int drain_needed; 5123 5124 q = _RD(q); 5125 5126 /* 5127 * Get a sorted list with all the duplicates removed containing 5128 * all the syncqs referenced by this stream. 5129 * Have to drop the SQ_FROZEN flag on all the syncqs before 5130 * starting to drain them; otherwise the draining might 5131 * cause a freezestr in some module on the stream (which 5132 * would deadlock.) 5133 */ 5134 stp = STREAM(q); 5135 ASSERT(stp != NULL); 5136 sqlist = sqlist_build(q, stp, B_FALSE); 5137 drain_needed = 0; 5138 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next) 5139 drain_needed += dropsq(sql->sql_sq, SQ_FROZEN); 5140 if (drain_needed) { 5141 for (sql = sqlist->sqlist_head; sql != NULL; 5142 sql = sql->sql_next) 5143 emptysq(sql->sql_sq); 5144 } 5145 sqlist_free(sqlist); 5146 } 5147 5148 #ifdef DEBUG 5149 static int 5150 qprocsareon(queue_t *rq) 5151 { 5152 if (rq->q_next == NULL) 5153 return (0); 5154 return (_WR(rq->q_next)->q_next == _WR(rq)); 5155 } 5156 5157 int 5158 qclaimed(queue_t *q) 5159 { 5160 uint_t count; 5161 5162 count = q->q_syncq->sq_count; 5163 SUM_SQ_PUTCOUNTS(q->q_syncq, count); 5164 return (count != 0); 5165 } 5166 5167 /* 5168 * Check if anyone has frozen this stream with freezestr 5169 */ 5170 int 5171 frozenstr(queue_t *q) 5172 { 5173 return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0); 5174 } 5175 #endif /* DEBUG */ 5176 5177 /* 5178 * Enter a queue. 5179 * Obsoleted interface. Should not be used. 5180 */ 5181 void 5182 enterq(queue_t *q) 5183 { 5184 entersq(q->q_syncq, SQ_CALLBACK); 5185 } 5186 5187 void 5188 leaveq(queue_t *q) 5189 { 5190 leavesq(q->q_syncq, SQ_CALLBACK); 5191 } 5192 5193 /* 5194 * Enter a perimeter. c_inner and c_outer specifies which concurrency bits 5195 * to check. 5196 * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter 5197 * calls and the running of open, close and service procedures. 5198 * 5199 * if c_inner bit is set no need to grab sq_putlocks since we don't care 5200 * if other threads have entered or are entering put entry point. 5201 * 5202 * if c_inner bit is set it might have been posible to use 5203 * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize 5204 * open/close path for IP) but since the count may need to be decremented in 5205 * qwait() we wouldn't know which counter to decrement. Currently counter is 5206 * selected by current cpu_seqid and current CPU can change at any moment. XXX 5207 * in the future we might use curthread id bits to select the counter and this 5208 * would stay constant across routine calls. 5209 */ 5210 void 5211 entersq(syncq_t *sq, int entrypoint) 5212 { 5213 uint16_t count = 0; 5214 uint16_t flags; 5215 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL; 5216 uint16_t type; 5217 uint_t c_inner = entrypoint & SQ_CI; 5218 uint_t c_outer = entrypoint & SQ_CO; 5219 5220 /* 5221 * Increment ref count to keep closes out of this queue. 5222 */ 5223 ASSERT(sq); 5224 ASSERT(c_inner && c_outer); 5225 mutex_enter(SQLOCK(sq)); 5226 flags = sq->sq_flags; 5227 type = sq->sq_type; 5228 if (!(type & c_inner)) { 5229 /* Make sure all putcounts now use slowlock. */ 5230 count = sq->sq_count; 5231 SQ_PUTLOCKS_ENTER(sq); 5232 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 5233 SUM_SQ_PUTCOUNTS(sq, count); 5234 sq->sq_needexcl++; 5235 ASSERT(sq->sq_needexcl != 0); /* wraparound */ 5236 waitflags |= SQ_MESSAGES; 5237 } 5238 /* 5239 * Wait until we can enter the inner perimeter. 5240 * If we want exclusive access we wait until sq_count is 0. 5241 * We have to do this before entering the outer perimeter in order 5242 * to preserve put/close message ordering. 5243 */ 5244 while ((flags & waitflags) || (!(type & c_inner) && count != 0)) { 5245 sq->sq_flags = flags | SQ_WANTWAKEUP; 5246 if (!(type & c_inner)) { 5247 SQ_PUTLOCKS_EXIT(sq); 5248 } 5249 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5250 if (!(type & c_inner)) { 5251 count = sq->sq_count; 5252 SQ_PUTLOCKS_ENTER(sq); 5253 SUM_SQ_PUTCOUNTS(sq, count); 5254 } 5255 flags = sq->sq_flags; 5256 } 5257 5258 if (!(type & c_inner)) { 5259 ASSERT(sq->sq_needexcl > 0); 5260 sq->sq_needexcl--; 5261 if (sq->sq_needexcl == 0) { 5262 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 5263 } 5264 } 5265 5266 /* Check if we need to enter the outer perimeter */ 5267 if (!(type & c_outer)) { 5268 /* 5269 * We have to enter the outer perimeter exclusively before 5270 * we can increment sq_count to avoid deadlock. This implies 5271 * that we have to re-check sq_flags and sq_count. 5272 * 5273 * is it possible to have c_inner set when c_outer is not set? 5274 */ 5275 if (!(type & c_inner)) { 5276 SQ_PUTLOCKS_EXIT(sq); 5277 } 5278 mutex_exit(SQLOCK(sq)); 5279 outer_enter(sq->sq_outer, SQ_GOAWAY); 5280 mutex_enter(SQLOCK(sq)); 5281 flags = sq->sq_flags; 5282 /* 5283 * there should be no need to recheck sq_putcounts 5284 * because outer_enter() has already waited for them to clear 5285 * after setting SQ_WRITER. 5286 */ 5287 count = sq->sq_count; 5288 #ifdef DEBUG 5289 /* 5290 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead 5291 * of doing an ASSERT internally. Others should do 5292 * something like 5293 * ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0); 5294 * without the need to #ifdef DEBUG it. 5295 */ 5296 SUMCHECK_SQ_PUTCOUNTS(sq, 0); 5297 #endif 5298 while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) || 5299 (!(type & c_inner) && count != 0)) { 5300 sq->sq_flags = flags | SQ_WANTWAKEUP; 5301 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5302 count = sq->sq_count; 5303 flags = sq->sq_flags; 5304 } 5305 } 5306 5307 sq->sq_count++; 5308 ASSERT(sq->sq_count != 0); /* Wraparound */ 5309 if (!(type & c_inner)) { 5310 /* Exclusive entry */ 5311 ASSERT(sq->sq_count == 1); 5312 sq->sq_flags |= SQ_EXCL; 5313 if (type & c_outer) { 5314 SQ_PUTLOCKS_EXIT(sq); 5315 } 5316 } 5317 mutex_exit(SQLOCK(sq)); 5318 } 5319 5320 /* 5321 * leave a syncq. announce to framework that closes may proceed. 5322 * c_inner and c_outer specifies which concurrency bits 5323 * to check. 5324 * 5325 * must never be called from driver or module put entry point. 5326 * 5327 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5328 * sq_putlocks are used. 5329 */ 5330 void 5331 leavesq(syncq_t *sq, int entrypoint) 5332 { 5333 uint16_t flags; 5334 uint16_t type; 5335 uint_t c_outer = entrypoint & SQ_CO; 5336 #ifdef DEBUG 5337 uint_t c_inner = entrypoint & SQ_CI; 5338 #endif 5339 5340 /* 5341 * decrement ref count, drain the syncq if possible, and wake up 5342 * any waiting close. 5343 */ 5344 ASSERT(sq); 5345 ASSERT(c_inner && c_outer); 5346 mutex_enter(SQLOCK(sq)); 5347 flags = sq->sq_flags; 5348 type = sq->sq_type; 5349 if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) { 5350 5351 if (flags & SQ_WANTWAKEUP) { 5352 flags &= ~SQ_WANTWAKEUP; 5353 cv_broadcast(&sq->sq_wait); 5354 } 5355 if (flags & SQ_WANTEXWAKEUP) { 5356 flags &= ~SQ_WANTEXWAKEUP; 5357 cv_broadcast(&sq->sq_exitwait); 5358 } 5359 5360 if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) { 5361 /* 5362 * The syncq needs to be drained. "Exit" the syncq 5363 * before calling drain_syncq. 5364 */ 5365 ASSERT(sq->sq_count != 0); 5366 sq->sq_count--; 5367 ASSERT((flags & SQ_EXCL) || (type & c_inner)); 5368 sq->sq_flags = flags & ~SQ_EXCL; 5369 drain_syncq(sq); 5370 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 5371 /* Check if we need to exit the outer perimeter */ 5372 /* XXX will this ever be true? */ 5373 if (!(type & c_outer)) 5374 outer_exit(sq->sq_outer); 5375 return; 5376 } 5377 } 5378 ASSERT(sq->sq_count != 0); 5379 sq->sq_count--; 5380 ASSERT((flags & SQ_EXCL) || (type & c_inner)); 5381 sq->sq_flags = flags & ~SQ_EXCL; 5382 mutex_exit(SQLOCK(sq)); 5383 5384 /* Check if we need to exit the outer perimeter */ 5385 if (!(sq->sq_type & c_outer)) 5386 outer_exit(sq->sq_outer); 5387 } 5388 5389 /* 5390 * Prevent q_next from changing in this stream by incrementing sq_count. 5391 * 5392 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5393 * sq_putlocks are used. 5394 */ 5395 void 5396 claimq(queue_t *qp) 5397 { 5398 syncq_t *sq = qp->q_syncq; 5399 5400 mutex_enter(SQLOCK(sq)); 5401 sq->sq_count++; 5402 ASSERT(sq->sq_count != 0); /* Wraparound */ 5403 mutex_exit(SQLOCK(sq)); 5404 } 5405 5406 /* 5407 * Undo claimq. 5408 * 5409 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5410 * sq_putlocks are used. 5411 */ 5412 void 5413 releaseq(queue_t *qp) 5414 { 5415 syncq_t *sq = qp->q_syncq; 5416 uint16_t flags; 5417 5418 mutex_enter(SQLOCK(sq)); 5419 ASSERT(sq->sq_count > 0); 5420 sq->sq_count--; 5421 5422 flags = sq->sq_flags; 5423 if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) { 5424 if (flags & SQ_WANTWAKEUP) { 5425 flags &= ~SQ_WANTWAKEUP; 5426 cv_broadcast(&sq->sq_wait); 5427 } 5428 sq->sq_flags = flags; 5429 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) { 5430 /* 5431 * To prevent potential recursive invocation of 5432 * drain_syncq we do not call drain_syncq if count is 5433 * non-zero. 5434 */ 5435 if (sq->sq_count == 0) { 5436 drain_syncq(sq); 5437 return; 5438 } else 5439 sqenable(sq); 5440 } 5441 } 5442 mutex_exit(SQLOCK(sq)); 5443 } 5444 5445 /* 5446 * Prevent q_next from changing in this stream by incrementing sd_refcnt. 5447 */ 5448 void 5449 claimstr(queue_t *qp) 5450 { 5451 struct stdata *stp = STREAM(qp); 5452 5453 mutex_enter(&stp->sd_reflock); 5454 stp->sd_refcnt++; 5455 ASSERT(stp->sd_refcnt != 0); /* Wraparound */ 5456 mutex_exit(&stp->sd_reflock); 5457 } 5458 5459 /* 5460 * Undo claimstr. 5461 */ 5462 void 5463 releasestr(queue_t *qp) 5464 { 5465 struct stdata *stp = STREAM(qp); 5466 5467 mutex_enter(&stp->sd_reflock); 5468 ASSERT(stp->sd_refcnt != 0); 5469 if (--stp->sd_refcnt == 0) 5470 cv_broadcast(&stp->sd_refmonitor); 5471 mutex_exit(&stp->sd_reflock); 5472 } 5473 5474 static syncq_t * 5475 new_syncq(void) 5476 { 5477 return (kmem_cache_alloc(syncq_cache, KM_SLEEP)); 5478 } 5479 5480 static void 5481 free_syncq(syncq_t *sq) 5482 { 5483 ASSERT(sq->sq_head == NULL); 5484 ASSERT(sq->sq_outer == NULL); 5485 ASSERT(sq->sq_callbpend == NULL); 5486 ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) || 5487 (sq->sq_onext == sq && sq->sq_oprev == sq)); 5488 5489 if (sq->sq_ciputctrl != NULL) { 5490 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1); 5491 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl, 5492 sq->sq_nciputctrl, 0); 5493 ASSERT(ciputctrl_cache != NULL); 5494 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl); 5495 } 5496 5497 sq->sq_tail = NULL; 5498 sq->sq_evhead = NULL; 5499 sq->sq_evtail = NULL; 5500 sq->sq_ciputctrl = NULL; 5501 sq->sq_nciputctrl = 0; 5502 sq->sq_count = 0; 5503 sq->sq_rmqcount = 0; 5504 sq->sq_callbflags = 0; 5505 sq->sq_cancelid = 0; 5506 sq->sq_next = NULL; 5507 sq->sq_needexcl = 0; 5508 sq->sq_svcflags = 0; 5509 sq->sq_nqueues = 0; 5510 sq->sq_pri = 0; 5511 sq->sq_onext = NULL; 5512 sq->sq_oprev = NULL; 5513 sq->sq_flags = 0; 5514 sq->sq_type = 0; 5515 sq->sq_servcount = 0; 5516 5517 kmem_cache_free(syncq_cache, sq); 5518 } 5519 5520 /* Outer perimeter code */ 5521 5522 /* 5523 * The outer syncq uses the fields and flags in the syncq slightly 5524 * differently from the inner syncqs. 5525 * sq_count Incremented when there are pending or running 5526 * writers at the outer perimeter to prevent the set of 5527 * inner syncqs that belong to the outer perimeter from 5528 * changing. 5529 * sq_head/tail List of deferred qwriter(OUTER) operations. 5530 * 5531 * SQ_BLOCKED Set to prevent traversing of sq_next,sq_prev while 5532 * inner syncqs are added to or removed from the 5533 * outer perimeter. 5534 * SQ_QUEUED sq_head/tail has messages or eventsqueued. 5535 * 5536 * SQ_WRITER A thread is currently traversing all the inner syncqs 5537 * setting the SQ_WRITER flag. 5538 */ 5539 5540 /* 5541 * Get write access at the outer perimeter. 5542 * Note that read access is done by entersq, putnext, and put by simply 5543 * incrementing sq_count in the inner syncq. 5544 * 5545 * Waits until "flags" is no longer set in the outer to prevent multiple 5546 * threads from having write access at the same time. SQ_WRITER has to be part 5547 * of "flags". 5548 * 5549 * Increases sq_count on the outer syncq to keep away outer_insert/remove 5550 * until the outer_exit is finished. 5551 * 5552 * outer_enter is vulnerable to starvation since it does not prevent new 5553 * threads from entering the inner syncqs while it is waiting for sq_count to 5554 * go to zero. 5555 */ 5556 void 5557 outer_enter(syncq_t *outer, uint16_t flags) 5558 { 5559 syncq_t *sq; 5560 int wait_needed; 5561 uint16_t count; 5562 5563 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5564 outer->sq_oprev != NULL); 5565 ASSERT(flags & SQ_WRITER); 5566 5567 retry: 5568 mutex_enter(SQLOCK(outer)); 5569 while (outer->sq_flags & flags) { 5570 outer->sq_flags |= SQ_WANTWAKEUP; 5571 cv_wait(&outer->sq_wait, SQLOCK(outer)); 5572 } 5573 5574 ASSERT(!(outer->sq_flags & SQ_WRITER)); 5575 outer->sq_flags |= SQ_WRITER; 5576 outer->sq_count++; 5577 ASSERT(outer->sq_count != 0); /* wraparound */ 5578 wait_needed = 0; 5579 /* 5580 * Set SQ_WRITER on all the inner syncqs while holding 5581 * the SQLOCK on the outer syncq. This ensures that the changing 5582 * of SQ_WRITER is atomic under the outer SQLOCK. 5583 */ 5584 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) { 5585 mutex_enter(SQLOCK(sq)); 5586 count = sq->sq_count; 5587 SQ_PUTLOCKS_ENTER(sq); 5588 sq->sq_flags |= SQ_WRITER; 5589 SUM_SQ_PUTCOUNTS(sq, count); 5590 if (count != 0) 5591 wait_needed = 1; 5592 SQ_PUTLOCKS_EXIT(sq); 5593 mutex_exit(SQLOCK(sq)); 5594 } 5595 mutex_exit(SQLOCK(outer)); 5596 5597 /* 5598 * Get everybody out of the syncqs sequentially. 5599 * Note that we don't actually need to aqiure the PUTLOCKS, since 5600 * we have already cleared the fastbit, and set QWRITER. By 5601 * definition, the count can not increase since putnext will 5602 * take the slowlock path (and the purpose of aquiring the 5603 * putlocks was to make sure it didn't increase while we were 5604 * waiting). 5605 * 5606 * Note that we still aquire the PUTLOCKS to be safe. 5607 */ 5608 if (wait_needed) { 5609 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) { 5610 mutex_enter(SQLOCK(sq)); 5611 count = sq->sq_count; 5612 SQ_PUTLOCKS_ENTER(sq); 5613 SUM_SQ_PUTCOUNTS(sq, count); 5614 while (count != 0) { 5615 sq->sq_flags |= SQ_WANTWAKEUP; 5616 SQ_PUTLOCKS_EXIT(sq); 5617 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5618 count = sq->sq_count; 5619 SQ_PUTLOCKS_ENTER(sq); 5620 SUM_SQ_PUTCOUNTS(sq, count); 5621 } 5622 SQ_PUTLOCKS_EXIT(sq); 5623 mutex_exit(SQLOCK(sq)); 5624 } 5625 /* 5626 * Verify that none of the flags got set while we 5627 * were waiting for the sq_counts to drop. 5628 * If this happens we exit and retry entering the 5629 * outer perimeter. 5630 */ 5631 mutex_enter(SQLOCK(outer)); 5632 if (outer->sq_flags & (flags & ~SQ_WRITER)) { 5633 mutex_exit(SQLOCK(outer)); 5634 outer_exit(outer); 5635 goto retry; 5636 } 5637 mutex_exit(SQLOCK(outer)); 5638 } 5639 } 5640 5641 /* 5642 * Drop the write access at the outer perimeter. 5643 * Read access is dropped implicitly (by putnext, put, and leavesq) by 5644 * decrementing sq_count. 5645 */ 5646 void 5647 outer_exit(syncq_t *outer) 5648 { 5649 syncq_t *sq; 5650 int drain_needed; 5651 uint16_t flags; 5652 5653 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5654 outer->sq_oprev != NULL); 5655 ASSERT(MUTEX_NOT_HELD(SQLOCK(outer))); 5656 5657 /* 5658 * Atomically (from the perspective of threads calling become_writer) 5659 * drop the write access at the outer perimeter by holding 5660 * SQLOCK(outer) across all the dropsq calls and the resetting of 5661 * SQ_WRITER. 5662 * This defines a locking order between the outer perimeter 5663 * SQLOCK and the inner perimeter SQLOCKs. 5664 */ 5665 mutex_enter(SQLOCK(outer)); 5666 flags = outer->sq_flags; 5667 ASSERT(outer->sq_flags & SQ_WRITER); 5668 if (flags & SQ_QUEUED) { 5669 write_now(outer); 5670 flags = outer->sq_flags; 5671 } 5672 5673 /* 5674 * sq_onext is stable since sq_count has not yet been decreased. 5675 * Reset the SQ_WRITER flags in all syncqs. 5676 * After dropping SQ_WRITER on the outer syncq we empty all the 5677 * inner syncqs. 5678 */ 5679 drain_needed = 0; 5680 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) 5681 drain_needed += dropsq(sq, SQ_WRITER); 5682 ASSERT(!(outer->sq_flags & SQ_QUEUED)); 5683 flags &= ~SQ_WRITER; 5684 if (drain_needed) { 5685 outer->sq_flags = flags; 5686 mutex_exit(SQLOCK(outer)); 5687 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) 5688 emptysq(sq); 5689 mutex_enter(SQLOCK(outer)); 5690 flags = outer->sq_flags; 5691 } 5692 if (flags & SQ_WANTWAKEUP) { 5693 flags &= ~SQ_WANTWAKEUP; 5694 cv_broadcast(&outer->sq_wait); 5695 } 5696 outer->sq_flags = flags; 5697 ASSERT(outer->sq_count > 0); 5698 outer->sq_count--; 5699 mutex_exit(SQLOCK(outer)); 5700 } 5701 5702 /* 5703 * Add another syncq to an outer perimeter. 5704 * Block out all other access to the outer perimeter while it is being 5705 * changed using blocksq. 5706 * Assumes that the caller has *not* done an outer_enter. 5707 * 5708 * Vulnerable to starvation in blocksq. 5709 */ 5710 static void 5711 outer_insert(syncq_t *outer, syncq_t *sq) 5712 { 5713 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5714 outer->sq_oprev != NULL); 5715 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL && 5716 sq->sq_oprev == NULL); /* Can't be in an outer perimeter */ 5717 5718 /* Get exclusive access to the outer perimeter list */ 5719 blocksq(outer, SQ_BLOCKED, 0); 5720 ASSERT(outer->sq_flags & SQ_BLOCKED); 5721 ASSERT(!(outer->sq_flags & SQ_WRITER)); 5722 5723 mutex_enter(SQLOCK(sq)); 5724 sq->sq_outer = outer; 5725 outer->sq_onext->sq_oprev = sq; 5726 sq->sq_onext = outer->sq_onext; 5727 outer->sq_onext = sq; 5728 sq->sq_oprev = outer; 5729 mutex_exit(SQLOCK(sq)); 5730 unblocksq(outer, SQ_BLOCKED, 1); 5731 } 5732 5733 /* 5734 * Remove a syncq from an outer perimeter. 5735 * Block out all other access to the outer perimeter while it is being 5736 * changed using blocksq. 5737 * Assumes that the caller has *not* done an outer_enter. 5738 * 5739 * Vulnerable to starvation in blocksq. 5740 */ 5741 static void 5742 outer_remove(syncq_t *outer, syncq_t *sq) 5743 { 5744 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5745 outer->sq_oprev != NULL); 5746 ASSERT(sq->sq_outer == outer); 5747 5748 /* Get exclusive access to the outer perimeter list */ 5749 blocksq(outer, SQ_BLOCKED, 0); 5750 ASSERT(outer->sq_flags & SQ_BLOCKED); 5751 ASSERT(!(outer->sq_flags & SQ_WRITER)); 5752 5753 mutex_enter(SQLOCK(sq)); 5754 sq->sq_outer = NULL; 5755 sq->sq_onext->sq_oprev = sq->sq_oprev; 5756 sq->sq_oprev->sq_onext = sq->sq_onext; 5757 sq->sq_oprev = sq->sq_onext = NULL; 5758 mutex_exit(SQLOCK(sq)); 5759 unblocksq(outer, SQ_BLOCKED, 1); 5760 } 5761 5762 /* 5763 * Queue a deferred qwriter(OUTER) callback for this outer perimeter. 5764 * If this is the first callback for this outer perimeter then add 5765 * this outer perimeter to the list of outer perimeters that 5766 * the qwriter_outer_thread will process. 5767 * 5768 * Increments sq_count in the outer syncq to prevent the membership 5769 * of the outer perimeter (in terms of inner syncqs) to change while 5770 * the callback is pending. 5771 */ 5772 static void 5773 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp) 5774 { 5775 ASSERT(MUTEX_HELD(SQLOCK(outer))); 5776 5777 mp->b_prev = (mblk_t *)func; 5778 mp->b_queue = q; 5779 mp->b_next = NULL; 5780 outer->sq_count++; /* Decremented when dequeued */ 5781 ASSERT(outer->sq_count != 0); /* Wraparound */ 5782 if (outer->sq_evhead == NULL) { 5783 /* First message. */ 5784 outer->sq_evhead = outer->sq_evtail = mp; 5785 outer->sq_flags |= SQ_EVENTS; 5786 mutex_exit(SQLOCK(outer)); 5787 STRSTAT(qwr_outer); 5788 (void) taskq_dispatch(streams_taskq, 5789 (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP); 5790 } else { 5791 ASSERT(outer->sq_flags & SQ_EVENTS); 5792 outer->sq_evtail->b_next = mp; 5793 outer->sq_evtail = mp; 5794 mutex_exit(SQLOCK(outer)); 5795 } 5796 } 5797 5798 /* 5799 * Try and upgrade to write access at the outer perimeter. If this can 5800 * not be done without blocking then queue the callback to be done 5801 * by the qwriter_outer_thread. 5802 * 5803 * This routine can only be called from put or service procedures plus 5804 * asynchronous callback routines that have properly entered to 5805 * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim 5806 * on the syncq associated with q. 5807 */ 5808 void 5809 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)()) 5810 { 5811 syncq_t *osq, *sq, *outer; 5812 int failed; 5813 uint16_t flags; 5814 5815 osq = q->q_syncq; 5816 outer = osq->sq_outer; 5817 if (outer == NULL) 5818 panic("qwriter(PERIM_OUTER): no outer perimeter"); 5819 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5820 outer->sq_oprev != NULL); 5821 5822 mutex_enter(SQLOCK(outer)); 5823 flags = outer->sq_flags; 5824 /* 5825 * If some thread is traversing sq_next, or if we are blocked by 5826 * outer_insert or outer_remove, or if the we already have queued 5827 * callbacks, then queue this callback for later processing. 5828 * 5829 * Also queue the qwriter for an interrupt thread in order 5830 * to reduce the time spent running at high IPL. 5831 * to identify there are events. 5832 */ 5833 if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) { 5834 /* 5835 * Queue the become_writer request. 5836 * The queueing is atomic under SQLOCK(outer) in order 5837 * to synchronize with outer_exit. 5838 * queue_writer will drop the outer SQLOCK 5839 */ 5840 if (flags & SQ_BLOCKED) { 5841 /* Must set SQ_WRITER on inner perimeter */ 5842 mutex_enter(SQLOCK(osq)); 5843 osq->sq_flags |= SQ_WRITER; 5844 mutex_exit(SQLOCK(osq)); 5845 } else { 5846 if (!(flags & SQ_WRITER)) { 5847 /* 5848 * The outer could have been SQ_BLOCKED thus 5849 * SQ_WRITER might not be set on the inner. 5850 */ 5851 mutex_enter(SQLOCK(osq)); 5852 osq->sq_flags |= SQ_WRITER; 5853 mutex_exit(SQLOCK(osq)); 5854 } 5855 ASSERT(osq->sq_flags & SQ_WRITER); 5856 } 5857 queue_writer(outer, func, q, mp); 5858 return; 5859 } 5860 /* 5861 * We are half-way to exclusive access to the outer perimeter. 5862 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove 5863 * while the inner syncqs are traversed. 5864 */ 5865 outer->sq_count++; 5866 ASSERT(outer->sq_count != 0); /* wraparound */ 5867 flags |= SQ_WRITER; 5868 /* 5869 * Check if we can run the function immediately. Mark all 5870 * syncqs with the writer flag to prevent new entries into 5871 * put and service procedures. 5872 * 5873 * Set SQ_WRITER on all the inner syncqs while holding 5874 * the SQLOCK on the outer syncq. This ensures that the changing 5875 * of SQ_WRITER is atomic under the outer SQLOCK. 5876 */ 5877 failed = 0; 5878 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) { 5879 uint16_t count; 5880 uint_t maxcnt = (sq == osq) ? 1 : 0; 5881 5882 mutex_enter(SQLOCK(sq)); 5883 count = sq->sq_count; 5884 SQ_PUTLOCKS_ENTER(sq); 5885 SUM_SQ_PUTCOUNTS(sq, count); 5886 if (sq->sq_count > maxcnt) 5887 failed = 1; 5888 sq->sq_flags |= SQ_WRITER; 5889 SQ_PUTLOCKS_EXIT(sq); 5890 mutex_exit(SQLOCK(sq)); 5891 } 5892 if (failed) { 5893 /* 5894 * Some other thread has a read claim on the outer perimeter. 5895 * Queue the callback for deferred processing. 5896 * 5897 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER 5898 * so that other qwriter(OUTER) calls will queue their 5899 * callbacks as well. queue_writer increments sq_count so we 5900 * decrement to compensate for the our increment. 5901 * 5902 * Dropping SQ_WRITER enables the writer thread to work 5903 * on this outer perimeter. 5904 */ 5905 outer->sq_flags = flags; 5906 queue_writer(outer, func, q, mp); 5907 /* queue_writer dropper the lock */ 5908 mutex_enter(SQLOCK(outer)); 5909 ASSERT(outer->sq_count > 0); 5910 outer->sq_count--; 5911 ASSERT(outer->sq_flags & SQ_WRITER); 5912 flags = outer->sq_flags; 5913 flags &= ~SQ_WRITER; 5914 if (flags & SQ_WANTWAKEUP) { 5915 flags &= ~SQ_WANTWAKEUP; 5916 cv_broadcast(&outer->sq_wait); 5917 } 5918 outer->sq_flags = flags; 5919 mutex_exit(SQLOCK(outer)); 5920 return; 5921 } else { 5922 outer->sq_flags = flags; 5923 mutex_exit(SQLOCK(outer)); 5924 } 5925 5926 /* Can run it immediately */ 5927 (*func)(q, mp); 5928 5929 outer_exit(outer); 5930 } 5931 5932 /* 5933 * Dequeue all writer callbacks from the outer perimeter and run them. 5934 */ 5935 static void 5936 write_now(syncq_t *outer) 5937 { 5938 mblk_t *mp; 5939 queue_t *q; 5940 void (*func)(); 5941 5942 ASSERT(MUTEX_HELD(SQLOCK(outer))); 5943 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5944 outer->sq_oprev != NULL); 5945 while ((mp = outer->sq_evhead) != NULL) { 5946 /* 5947 * queues cannot be placed on the queuelist on the outer 5948 * perimiter. 5949 */ 5950 ASSERT(!(outer->sq_flags & SQ_MESSAGES)); 5951 ASSERT((outer->sq_flags & SQ_EVENTS)); 5952 5953 outer->sq_evhead = mp->b_next; 5954 if (outer->sq_evhead == NULL) { 5955 outer->sq_evtail = NULL; 5956 outer->sq_flags &= ~SQ_EVENTS; 5957 } 5958 ASSERT(outer->sq_count != 0); 5959 outer->sq_count--; /* Incremented when enqueued. */ 5960 mutex_exit(SQLOCK(outer)); 5961 /* 5962 * Drop the message if the queue is closing. 5963 * Make sure that the queue is "claimed" when the callback 5964 * is run in order to satisfy various ASSERTs. 5965 */ 5966 q = mp->b_queue; 5967 func = (void (*)())mp->b_prev; 5968 ASSERT(func != NULL); 5969 mp->b_next = mp->b_prev = NULL; 5970 if (q->q_flag & QWCLOSE) { 5971 freemsg(mp); 5972 } else { 5973 claimq(q); 5974 (*func)(q, mp); 5975 releaseq(q); 5976 } 5977 mutex_enter(SQLOCK(outer)); 5978 } 5979 ASSERT(MUTEX_HELD(SQLOCK(outer))); 5980 } 5981 5982 /* 5983 * The list of messages on the inner syncq is effectively hashed 5984 * by destination queue. These destination queues are doubly 5985 * linked lists (hopefully) in priority order. Messages are then 5986 * put on the queue referenced by the q_sqhead/q_sqtail elements. 5987 * Additional messages are linked together by the b_next/b_prev 5988 * elements in the mblk, with (similar to putq()) the first message 5989 * having a NULL b_prev and the last message having a NULL b_next. 5990 * 5991 * Events, such as qwriter callbacks, are put onto a list in FIFO 5992 * order referenced by sq_evhead, and sq_evtail. This is a singly 5993 * linked list, and messages here MUST be processed in the order queued. 5994 */ 5995 5996 /* 5997 * Run the events on the syncq event list (sq_evhead). 5998 * Assumes there is only one claim on the syncq, it is 5999 * already exclusive (SQ_EXCL set), and the SQLOCK held. 6000 * Messages here are processed in order, with the SQ_EXCL bit 6001 * held all the way through till the last message is processed. 6002 */ 6003 void 6004 sq_run_events(syncq_t *sq) 6005 { 6006 mblk_t *bp; 6007 queue_t *qp; 6008 uint16_t flags = sq->sq_flags; 6009 void (*func)(); 6010 6011 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6012 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6013 sq->sq_oprev == NULL) || 6014 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6015 sq->sq_oprev != NULL)); 6016 6017 ASSERT(flags & SQ_EXCL); 6018 ASSERT(sq->sq_count == 1); 6019 6020 /* 6021 * We need to process all of the events on this list. It 6022 * is possible that new events will be added while we are 6023 * away processing a callback, so on every loop, we start 6024 * back at the beginning of the list. 6025 */ 6026 /* 6027 * We have to reaccess sq_evhead since there is a 6028 * possibility of a new entry while we were running 6029 * the callback. 6030 */ 6031 for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) { 6032 ASSERT(bp->b_queue->q_syncq == sq); 6033 ASSERT(sq->sq_flags & SQ_EVENTS); 6034 6035 qp = bp->b_queue; 6036 func = (void (*)())bp->b_prev; 6037 ASSERT(func != NULL); 6038 6039 /* 6040 * Messages from the event queue must be taken off in 6041 * FIFO order. 6042 */ 6043 ASSERT(sq->sq_evhead == bp); 6044 sq->sq_evhead = bp->b_next; 6045 6046 if (bp->b_next == NULL) { 6047 /* Deleting last */ 6048 ASSERT(sq->sq_evtail == bp); 6049 sq->sq_evtail = NULL; 6050 sq->sq_flags &= ~SQ_EVENTS; 6051 } 6052 bp->b_prev = bp->b_next = NULL; 6053 ASSERT(bp->b_datap->db_ref != 0); 6054 6055 mutex_exit(SQLOCK(sq)); 6056 6057 (*func)(qp, bp); 6058 6059 mutex_enter(SQLOCK(sq)); 6060 /* 6061 * re-read the flags, since they could have changed. 6062 */ 6063 flags = sq->sq_flags; 6064 ASSERT(flags & SQ_EXCL); 6065 } 6066 ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL); 6067 ASSERT(!(sq->sq_flags & SQ_EVENTS)); 6068 6069 if (flags & SQ_WANTWAKEUP) { 6070 flags &= ~SQ_WANTWAKEUP; 6071 cv_broadcast(&sq->sq_wait); 6072 } 6073 if (flags & SQ_WANTEXWAKEUP) { 6074 flags &= ~SQ_WANTEXWAKEUP; 6075 cv_broadcast(&sq->sq_exitwait); 6076 } 6077 sq->sq_flags = flags; 6078 } 6079 6080 /* 6081 * Put messages on the event list. 6082 * If we can go exclusive now, do so and process the event list, otherwise 6083 * let the last claim service this list (or wake the sqthread). 6084 * This procedure assumes SQLOCK is held. To run the event list, it 6085 * must be called with no claims. 6086 */ 6087 static void 6088 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)()) 6089 { 6090 uint16_t count; 6091 6092 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6093 ASSERT(func != NULL); 6094 6095 /* 6096 * This is a callback. Add it to the list of callbacks 6097 * and see about upgrading. 6098 */ 6099 mp->b_prev = (mblk_t *)func; 6100 mp->b_queue = q; 6101 mp->b_next = NULL; 6102 if (sq->sq_evhead == NULL) { 6103 sq->sq_evhead = sq->sq_evtail = mp; 6104 sq->sq_flags |= SQ_EVENTS; 6105 } else { 6106 ASSERT(sq->sq_evtail != NULL); 6107 ASSERT(sq->sq_evtail->b_next == NULL); 6108 ASSERT(sq->sq_flags & SQ_EVENTS); 6109 sq->sq_evtail->b_next = mp; 6110 sq->sq_evtail = mp; 6111 } 6112 /* 6113 * We have set SQ_EVENTS, so threads will have to 6114 * unwind out of the perimiter, and new entries will 6115 * not grab a putlock. But we still need to know 6116 * how many threads have already made a claim to the 6117 * syncq, so grab the putlocks, and sum the counts. 6118 * If there are no claims on the syncq, we can upgrade 6119 * to exclusive, and run the event list. 6120 * NOTE: We hold the SQLOCK, so we can just grab the 6121 * putlocks. 6122 */ 6123 count = sq->sq_count; 6124 SQ_PUTLOCKS_ENTER(sq); 6125 SUM_SQ_PUTCOUNTS(sq, count); 6126 /* 6127 * We have no claim, so we need to check if there 6128 * are no others, then we can upgrade. 6129 */ 6130 /* 6131 * There are currently no claims on 6132 * the syncq by this thread (at least on this entry). The thread who has 6133 * the claim should drain syncq. 6134 */ 6135 if (count > 0) { 6136 /* 6137 * Can't upgrade - other threads inside. 6138 */ 6139 SQ_PUTLOCKS_EXIT(sq); 6140 mutex_exit(SQLOCK(sq)); 6141 return; 6142 } 6143 /* 6144 * Need to set SQ_EXCL and make a claim on the syncq. 6145 */ 6146 ASSERT((sq->sq_flags & SQ_EXCL) == 0); 6147 sq->sq_flags |= SQ_EXCL; 6148 ASSERT(sq->sq_count == 0); 6149 sq->sq_count++; 6150 SQ_PUTLOCKS_EXIT(sq); 6151 6152 /* Process the events list */ 6153 sq_run_events(sq); 6154 6155 /* 6156 * Release our claim... 6157 */ 6158 sq->sq_count--; 6159 6160 /* 6161 * And release SQ_EXCL. 6162 * We don't need to acquire the putlocks to release 6163 * SQ_EXCL, since we are exclusive, and hold the SQLOCK. 6164 */ 6165 sq->sq_flags &= ~SQ_EXCL; 6166 6167 /* 6168 * sq_run_events should have released SQ_EXCL 6169 */ 6170 ASSERT(!(sq->sq_flags & SQ_EXCL)); 6171 6172 /* 6173 * If anything happened while we were running the 6174 * events (or was there before), we need to process 6175 * them now. We shouldn't be exclusive sine we 6176 * released the perimiter above (plus, we asserted 6177 * for it). 6178 */ 6179 if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED)) 6180 drain_syncq(sq); 6181 else 6182 mutex_exit(SQLOCK(sq)); 6183 } 6184 6185 /* 6186 * Perform delayed processing. The caller has to make sure that it is safe 6187 * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are 6188 * set.) 6189 * 6190 * Assume that the caller has NO claims on the syncq. However, a claim 6191 * on the syncq does not indicate that a thread is draining the syncq. 6192 * There may be more claims on the syncq than there are threads draining 6193 * (i.e. #_threads_draining <= sq_count) 6194 * 6195 * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set 6196 * in order to preserve qwriter(OUTER) ordering constraints. 6197 * 6198 * sq_putcount only needs to be checked when dispatching the queued 6199 * writer call for CIPUT sync queue, but this is handled in sq_run_events. 6200 */ 6201 void 6202 drain_syncq(syncq_t *sq) 6203 { 6204 queue_t *qp; 6205 uint16_t count; 6206 uint16_t type = sq->sq_type; 6207 uint16_t flags = sq->sq_flags; 6208 boolean_t bg_service = sq->sq_svcflags & SQ_SERVICE; 6209 6210 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START, 6211 "drain_syncq start:%p", sq); 6212 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6213 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6214 sq->sq_oprev == NULL) || 6215 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6216 sq->sq_oprev != NULL)); 6217 6218 /* 6219 * Drop SQ_SERVICE flag. 6220 */ 6221 if (bg_service) 6222 sq->sq_svcflags &= ~SQ_SERVICE; 6223 6224 /* 6225 * If SQ_EXCL is set, someone else is processing this syncq - let him 6226 * finish the job. 6227 */ 6228 if (flags & SQ_EXCL) { 6229 if (bg_service) { 6230 ASSERT(sq->sq_servcount != 0); 6231 sq->sq_servcount--; 6232 } 6233 mutex_exit(SQLOCK(sq)); 6234 return; 6235 } 6236 6237 /* 6238 * This routine can be called by a background thread if 6239 * it was scheduled by a hi-priority thread. SO, if there are 6240 * NOT messages queued, return (remember, we have the SQLOCK, 6241 * and it cannot change until we release it). Wakeup any waiters also. 6242 */ 6243 if (!(flags & SQ_QUEUED)) { 6244 if (flags & SQ_WANTWAKEUP) { 6245 flags &= ~SQ_WANTWAKEUP; 6246 cv_broadcast(&sq->sq_wait); 6247 } 6248 if (flags & SQ_WANTEXWAKEUP) { 6249 flags &= ~SQ_WANTEXWAKEUP; 6250 cv_broadcast(&sq->sq_exitwait); 6251 } 6252 sq->sq_flags = flags; 6253 if (bg_service) { 6254 ASSERT(sq->sq_servcount != 0); 6255 sq->sq_servcount--; 6256 } 6257 mutex_exit(SQLOCK(sq)); 6258 return; 6259 } 6260 6261 /* 6262 * If this is not a concurrent put perimiter, we need to 6263 * become exclusive to drain. Also, if not CIPUT, we would 6264 * not have acquired a putlock, so we don't need to check 6265 * the putcounts. If not entering with a claim, we test 6266 * for sq_count == 0. 6267 */ 6268 type = sq->sq_type; 6269 if (!(type & SQ_CIPUT)) { 6270 if (sq->sq_count > 1) { 6271 if (bg_service) { 6272 ASSERT(sq->sq_servcount != 0); 6273 sq->sq_servcount--; 6274 } 6275 mutex_exit(SQLOCK(sq)); 6276 return; 6277 } 6278 sq->sq_flags |= SQ_EXCL; 6279 } 6280 6281 /* 6282 * This is where we make a claim to the syncq. 6283 * This can either be done by incrementing a putlock, or 6284 * the sq_count. But since we already have the SQLOCK 6285 * here, we just bump the sq_count. 6286 * 6287 * Note that after we make a claim, we need to let the code 6288 * fall through to the end of this routine to clean itself 6289 * up. A return in the while loop will put the syncq in a 6290 * very bad state. 6291 */ 6292 sq->sq_count++; 6293 ASSERT(sq->sq_count != 0); /* wraparound */ 6294 6295 while ((flags = sq->sq_flags) & SQ_QUEUED) { 6296 /* 6297 * If we are told to stayaway or went exclusive, 6298 * we are done. 6299 */ 6300 if (flags & (SQ_STAYAWAY)) { 6301 break; 6302 } 6303 6304 /* 6305 * If there are events to run, do so. 6306 * We have one claim to the syncq, so if there are 6307 * more than one, other threads are running. 6308 */ 6309 if (sq->sq_evhead != NULL) { 6310 ASSERT(sq->sq_flags & SQ_EVENTS); 6311 6312 count = sq->sq_count; 6313 SQ_PUTLOCKS_ENTER(sq); 6314 SUM_SQ_PUTCOUNTS(sq, count); 6315 if (count > 1) { 6316 SQ_PUTLOCKS_EXIT(sq); 6317 /* Can't upgrade - other threads inside */ 6318 break; 6319 } 6320 ASSERT((flags & SQ_EXCL) == 0); 6321 sq->sq_flags = flags | SQ_EXCL; 6322 SQ_PUTLOCKS_EXIT(sq); 6323 /* 6324 * we have the only claim, run the events, 6325 * sq_run_events will clear the SQ_EXCL flag. 6326 */ 6327 sq_run_events(sq); 6328 6329 /* 6330 * If this is a CIPUT perimiter, we need 6331 * to drop the SQ_EXCL flag so we can properly 6332 * continue draining the syncq. 6333 */ 6334 if (type & SQ_CIPUT) { 6335 ASSERT(sq->sq_flags & SQ_EXCL); 6336 sq->sq_flags &= ~SQ_EXCL; 6337 } 6338 6339 /* 6340 * And go back to the beginning just in case 6341 * anything changed while we were away. 6342 */ 6343 ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT)); 6344 continue; 6345 } 6346 6347 ASSERT(sq->sq_evhead == NULL); 6348 ASSERT(!(sq->sq_flags & SQ_EVENTS)); 6349 6350 /* 6351 * Find the queue that is not draining. 6352 * 6353 * q_draining is protected by QLOCK which we do not hold. 6354 * But if it was set, then a thread was draining, and if it gets 6355 * cleared, then it was because the thread has successfully 6356 * drained the syncq, or a GOAWAY state occured. For the GOAWAY 6357 * state to happen, a thread needs the SQLOCK which we hold, and 6358 * if there was such a flag, we whould have already seen it. 6359 */ 6360 6361 for (qp = sq->sq_head; 6362 qp != NULL && (qp->q_draining || 6363 (qp->q_sqflags & Q_SQDRAINING)); 6364 qp = qp->q_sqnext) 6365 ; 6366 6367 if (qp == NULL) 6368 break; 6369 6370 /* 6371 * We have a queue to work on, and we hold the 6372 * SQLOCK and one claim, call qdrain_syncq. 6373 * This means we need to release the SQLOCK and 6374 * aquire the QLOCK (OK since we have a claim). 6375 * Note that qdrain_syncq will actually dequeue 6376 * this queue from the sq_head list when it is 6377 * convinced all the work is done and release 6378 * the QLOCK before returning. 6379 */ 6380 qp->q_sqflags |= Q_SQDRAINING; 6381 mutex_exit(SQLOCK(sq)); 6382 mutex_enter(QLOCK(qp)); 6383 qdrain_syncq(sq, qp); 6384 mutex_enter(SQLOCK(sq)); 6385 6386 /* The queue is drained */ 6387 ASSERT(qp->q_sqflags & Q_SQDRAINING); 6388 qp->q_sqflags &= ~Q_SQDRAINING; 6389 /* 6390 * NOTE: After this point qp should not be used since it may be 6391 * closed. 6392 */ 6393 } 6394 6395 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6396 flags = sq->sq_flags; 6397 6398 /* 6399 * sq->sq_head cannot change because we hold the 6400 * sqlock. However, a thread CAN decide that it is no longer 6401 * going to drain that queue. However, this should be due to 6402 * a GOAWAY state, and we should see that here. 6403 * 6404 * This loop is not very efficient. One solution may be adding a second 6405 * pointer to the "draining" queue, but it is difficult to do when 6406 * queues are inserted in the middle due to priority ordering. Another 6407 * possibility is to yank the queue out of the sq list and put it onto 6408 * the "draining list" and then put it back if it can't be drained. 6409 */ 6410 6411 ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) || 6412 (type & SQ_CI) || sq->sq_head->q_draining); 6413 6414 /* Drop SQ_EXCL for non-CIPUT perimiters */ 6415 if (!(type & SQ_CIPUT)) 6416 flags &= ~SQ_EXCL; 6417 ASSERT((flags & SQ_EXCL) == 0); 6418 6419 /* Wake up any waiters. */ 6420 if (flags & SQ_WANTWAKEUP) { 6421 flags &= ~SQ_WANTWAKEUP; 6422 cv_broadcast(&sq->sq_wait); 6423 } 6424 if (flags & SQ_WANTEXWAKEUP) { 6425 flags &= ~SQ_WANTEXWAKEUP; 6426 cv_broadcast(&sq->sq_exitwait); 6427 } 6428 sq->sq_flags = flags; 6429 6430 ASSERT(sq->sq_count != 0); 6431 /* Release our claim. */ 6432 sq->sq_count--; 6433 6434 if (bg_service) { 6435 ASSERT(sq->sq_servcount != 0); 6436 sq->sq_servcount--; 6437 } 6438 6439 mutex_exit(SQLOCK(sq)); 6440 6441 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END, 6442 "drain_syncq end:%p", sq); 6443 } 6444 6445 6446 /* 6447 * 6448 * qdrain_syncq can be called (currently) from only one of two places: 6449 * drain_syncq 6450 * putnext (or some variation of it). 6451 * and eventually 6452 * qwait(_sig) 6453 * 6454 * If called from drain_syncq, we found it in the list 6455 * of queue's needing service, so there is work to be done (or it 6456 * wouldn't be on the list). 6457 * 6458 * If called from some putnext variation, it was because the 6459 * perimiter is open, but messages are blocking a putnext and 6460 * there is not a thread working on it. Now a thread could start 6461 * working on it while we are getting ready to do so ourself, but 6462 * the thread would set the q_draining flag, and we can spin out. 6463 * 6464 * As for qwait(_sig), I think I shall let it continue to call 6465 * drain_syncq directly (after all, it will get here eventually). 6466 * 6467 * qdrain_syncq has to terminate when: 6468 * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering 6469 * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering 6470 * 6471 * ASSUMES: 6472 * One claim 6473 * QLOCK held 6474 * SQLOCK not held 6475 * Will release QLOCK before returning 6476 */ 6477 void 6478 qdrain_syncq(syncq_t *sq, queue_t *q) 6479 { 6480 mblk_t *bp; 6481 boolean_t do_clr; 6482 #ifdef DEBUG 6483 uint16_t count; 6484 #endif 6485 6486 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START, 6487 "drain_syncq start:%p", sq); 6488 ASSERT(q->q_syncq == sq); 6489 ASSERT(MUTEX_HELD(QLOCK(q))); 6490 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 6491 /* 6492 * For non-CIPUT perimiters, we should be called with the 6493 * exclusive bit set already. For non-CIPUT perimiters we 6494 * will be doing a concurrent drain, so it better not be set. 6495 */ 6496 ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT))); 6497 ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL))); 6498 ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL)); 6499 /* 6500 * All outer pointers are set, or none of them are 6501 */ 6502 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6503 sq->sq_oprev == NULL) || 6504 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6505 sq->sq_oprev != NULL)); 6506 #ifdef DEBUG 6507 count = sq->sq_count; 6508 /* 6509 * This is OK without the putlocks, because we have one 6510 * claim either from the sq_count, or a putcount. We could 6511 * get an erroneous value from other counts, but ours won't 6512 * change, so one way or another, we will have at least a 6513 * value of one. 6514 */ 6515 SUM_SQ_PUTCOUNTS(sq, count); 6516 ASSERT(count >= 1); 6517 #endif /* DEBUG */ 6518 6519 /* 6520 * The first thing to do here, is find out if a thread is already 6521 * draining this queue or the queue is closing. If so, we are done, 6522 * just return. Also, if there are no messages, we are done as well. 6523 * Note that we check the q_sqhead since there is s window of 6524 * opportunity for us to enter here because Q_SQQUEUED was set, but is 6525 * not anymore. 6526 */ 6527 if (q->q_draining || (q->q_sqhead == NULL)) { 6528 mutex_exit(QLOCK(q)); 6529 return; 6530 } 6531 6532 /* 6533 * If the perimiter is exclusive, there is nothing we can 6534 * do right now, go away. 6535 * Note that there is nothing to prevent this case from changing 6536 * right after this check, but the spin-out will catch it. 6537 */ 6538 6539 /* Tell other threads that we are draining this queue */ 6540 q->q_draining = 1; /* Protected by QLOCK */ 6541 6542 for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) { 6543 6544 /* 6545 * Because we can enter this routine just because 6546 * a putnext is blocked, we need to spin out if 6547 * the perimiter wants to go exclusive as well 6548 * as just blocked. We need to spin out also if 6549 * events are queued on the syncq. 6550 * Don't check for SQ_EXCL, because non-CIPUT 6551 * perimiters would set it, and it can't become 6552 * exclusive while we hold a claim. 6553 */ 6554 if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) { 6555 break; 6556 } 6557 6558 #ifdef DEBUG 6559 /* 6560 * Since we are in qdrain_syncq, we already know the queue, 6561 * but for sanity, we want to check this against the qp that 6562 * was passed in by bp->b_queue. 6563 */ 6564 6565 ASSERT(bp->b_queue == q); 6566 ASSERT(bp->b_queue->q_syncq == sq); 6567 bp->b_queue = NULL; 6568 6569 /* 6570 * We would have the following check in the DEBUG code: 6571 * 6572 * if (bp->b_prev != NULL) { 6573 * ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp); 6574 * } 6575 * 6576 * This can't be done, however, since IP modifies qinfo 6577 * structure at run-time (switching between IPv4 qinfo and IPv6 6578 * qinfo), invalidating the check. 6579 * So the assignment to func is left here, but the ASSERT itself 6580 * is removed until the whole issue is resolved. 6581 */ 6582 #endif 6583 ASSERT(q->q_sqhead == bp); 6584 q->q_sqhead = bp->b_next; 6585 bp->b_prev = bp->b_next = NULL; 6586 ASSERT(q->q_syncqmsgs > 0); 6587 mutex_exit(QLOCK(q)); 6588 6589 ASSERT(bp->b_datap->db_ref != 0); 6590 6591 (void) (*q->q_qinfo->qi_putp)(q, bp); 6592 6593 mutex_enter(QLOCK(q)); 6594 /* 6595 * We should decrement q_syncqmsgs only after executing the 6596 * put procedure to avoid a possible race with putnext(). 6597 * In putnext() though it sees Q_SQQUEUED is set, there is 6598 * an optimization which allows putnext to call the put 6599 * procedure directly if (q_syncqmsgs == 0) and thus 6600 * a message reodering could otherwise occur. 6601 */ 6602 q->q_syncqmsgs--; 6603 6604 /* 6605 * Clear QFULL in the next service procedure queue if 6606 * this is the last message destined to that queue. 6607 * 6608 * It would make better sense to have some sort of 6609 * tunable for the low water mark, but these symantics 6610 * are not yet defined. So, alas, we use a constant. 6611 */ 6612 do_clr = (q->q_syncqmsgs == 0); 6613 mutex_exit(QLOCK(q)); 6614 6615 if (do_clr) 6616 clr_qfull(q); 6617 6618 mutex_enter(QLOCK(q)); 6619 /* 6620 * Always clear SQ_EXCL when CIPUT in order to handle 6621 * qwriter(INNER). 6622 */ 6623 /* 6624 * The putp() can call qwriter and get exclusive access 6625 * IFF this is the only claim. So, we need to test for 6626 * this possibility so we can aquire the mutex and clear 6627 * the bit. 6628 */ 6629 if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) { 6630 mutex_enter(SQLOCK(sq)); 6631 sq->sq_flags &= ~SQ_EXCL; 6632 mutex_exit(SQLOCK(sq)); 6633 } 6634 } 6635 6636 /* 6637 * We should either have no queues on the syncq, or we were 6638 * told to goaway by a waiter (which we will wake up at the 6639 * end of this function). 6640 */ 6641 ASSERT((q->q_sqhead == NULL) || 6642 (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS))); 6643 6644 ASSERT(MUTEX_HELD(QLOCK(q))); 6645 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 6646 6647 /* 6648 * Remove the q from the syncq list if all the messages are 6649 * drained. 6650 */ 6651 if (q->q_sqhead == NULL) { 6652 mutex_enter(SQLOCK(sq)); 6653 if (q->q_sqflags & Q_SQQUEUED) 6654 SQRM_Q(sq, q); 6655 mutex_exit(SQLOCK(sq)); 6656 /* 6657 * Since the queue is removed from the list, reset its priority. 6658 */ 6659 q->q_spri = 0; 6660 } 6661 6662 /* 6663 * Remember, the q_draining flag is used to let another 6664 * thread know that there is a thread currently draining 6665 * the messages for a queue. Since we are now done with 6666 * this queue (even if there may be messages still there), 6667 * we need to clear this flag so some thread will work 6668 * on it if needed. 6669 */ 6670 ASSERT(q->q_draining); 6671 q->q_draining = 0; 6672 6673 /* called with a claim, so OK to drop all locks. */ 6674 mutex_exit(QLOCK(q)); 6675 6676 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END, 6677 "drain_syncq end:%p", sq); 6678 } 6679 /* END OF QDRAIN_SYNCQ */ 6680 6681 6682 /* 6683 * This is the mate to qdrain_syncq, except that it is putting the 6684 * message onto the the queue instead draining. Since the 6685 * message is destined for the queue that is selected, there is 6686 * no need to identify the function because the message is 6687 * intended for the put routine for the queue. But this 6688 * routine will do it anyway just in case (but only for debug kernels). 6689 * 6690 * After the message is enqueued on the syncq, it calls putnext_tail() 6691 * which will schedule a background thread to actually process the message. 6692 * 6693 * Assumes that there is a claim on the syncq (sq->sq_count > 0) and 6694 * SQLOCK(sq) and QLOCK(q) are not held. 6695 */ 6696 void 6697 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp) 6698 { 6699 queue_t *fq = NULL; 6700 6701 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 6702 ASSERT(MUTEX_NOT_HELD(QLOCK(q))); 6703 ASSERT(sq->sq_count > 0); 6704 ASSERT(q->q_syncq == sq); 6705 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6706 sq->sq_oprev == NULL) || 6707 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6708 sq->sq_oprev != NULL)); 6709 6710 mutex_enter(QLOCK(q)); 6711 6712 /* 6713 * Set QFULL in next service procedure queue (that cares) if not 6714 * already set and if there are already more messages on the syncq 6715 * than sq_max_size. If sq_max_size is 0, no flow control will be 6716 * asserted on any syncq. 6717 * 6718 * The fq here is the next queue with a service procedure. 6719 * This is where we would fail canputnext, so this is where we 6720 * need to set QFULL. 6721 * 6722 * LOCKING HIERARCHY: In the case when fq != q we need to 6723 * a) Take QLOCK(fq) to set QFULL flag and 6724 * b) Take sd_reflock in the case of the hot stream to update 6725 * sd_refcnt. 6726 * We already have QLOCK at this point. To avoid cross-locks with 6727 * freezestr() which grabs all QLOCKs and with strlock() which grabs 6728 * both SQLOCK and sd_reflock, we need to drop respective locks first. 6729 */ 6730 if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) && 6731 (q->q_syncqmsgs > sq_max_size)) { 6732 if ((fq = q->q_nfsrv) == q) { 6733 fq->q_flag |= QFULL; 6734 } else { 6735 mutex_exit(QLOCK(q)); 6736 mutex_enter(QLOCK(fq)); 6737 fq->q_flag |= QFULL; 6738 mutex_exit(QLOCK(fq)); 6739 mutex_enter(QLOCK(q)); 6740 } 6741 } 6742 6743 #ifdef DEBUG 6744 /* 6745 * This is used for debug in the qfill_syncq/qdrain_syncq case 6746 * to trace the queue that the message is intended for. Note 6747 * that the original use was to identify the queue and function 6748 * to call on the drain. In the new syncq, we have the context 6749 * of the queue that we are draining, so call it's putproc and 6750 * don't rely on the saved values. But for debug this is still 6751 * usefull information. 6752 */ 6753 mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp; 6754 mp->b_queue = q; 6755 mp->b_next = NULL; 6756 #endif 6757 ASSERT(q->q_syncq == sq); 6758 /* 6759 * Enqueue the message on the list. 6760 * SQPUT_MP() accesses q_syncqmsgs. We are already holding QLOCK to 6761 * protect it. So its ok to acquire SQLOCK after SQPUT_MP(). 6762 */ 6763 SQPUT_MP(q, mp); 6764 mutex_enter(SQLOCK(sq)); 6765 6766 /* 6767 * And queue on syncq for scheduling, if not already queued. 6768 * Note that we need the SQLOCK for this, and for testing flags 6769 * at the end to see if we will drain. So grab it now, and 6770 * release it before we call qdrain_syncq or return. 6771 */ 6772 if (!(q->q_sqflags & Q_SQQUEUED)) { 6773 q->q_spri = curthread->t_pri; 6774 SQPUT_Q(sq, q); 6775 } 6776 #ifdef DEBUG 6777 else { 6778 /* 6779 * All of these conditions MUST be true! 6780 */ 6781 ASSERT(sq->sq_tail != NULL); 6782 if (sq->sq_tail == sq->sq_head) { 6783 ASSERT((q->q_sqprev == NULL) && 6784 (q->q_sqnext == NULL)); 6785 } else { 6786 ASSERT((q->q_sqprev != NULL) || 6787 (q->q_sqnext != NULL)); 6788 } 6789 ASSERT(sq->sq_flags & SQ_QUEUED); 6790 ASSERT(q->q_syncqmsgs != 0); 6791 ASSERT(q->q_sqflags & Q_SQQUEUED); 6792 } 6793 #endif 6794 mutex_exit(QLOCK(q)); 6795 /* 6796 * SQLOCK is still held, so sq_count can be safely decremented. 6797 */ 6798 sq->sq_count--; 6799 6800 putnext_tail(sq, q, 0); 6801 /* Should not reference sq or q after this point. */ 6802 } 6803 6804 /* End of qfill_syncq */ 6805 6806 /* 6807 * Remove all messages from a syncq (if qp is NULL) or remove all messages 6808 * that would be put into qp by drain_syncq. 6809 * Used when deleting the syncq (qp == NULL) or when detaching 6810 * a queue (qp != NULL). 6811 * Return non-zero if one or more messages were freed. 6812 * 6813 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 6814 * sq_putlocks are used. 6815 * 6816 * NOTE: This function assumes that it is called from the close() context and 6817 * that all the queues in the syncq are going aay. For this reason it doesn't 6818 * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is 6819 * currently valid, but it is useful to rethink this function to behave properly 6820 * in other cases. 6821 */ 6822 int 6823 flush_syncq(syncq_t *sq, queue_t *qp) 6824 { 6825 mblk_t *bp, *mp_head, *mp_next, *mp_prev; 6826 queue_t *q; 6827 int ret = 0; 6828 6829 mutex_enter(SQLOCK(sq)); 6830 6831 /* 6832 * Before we leave, we need to make sure there are no 6833 * events listed for this queue. All events for this queue 6834 * will just be freed. 6835 */ 6836 if (qp != NULL && sq->sq_evhead != NULL) { 6837 ASSERT(sq->sq_flags & SQ_EVENTS); 6838 6839 mp_prev = NULL; 6840 for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) { 6841 mp_next = bp->b_next; 6842 if (bp->b_queue == qp) { 6843 /* Delete this message */ 6844 if (mp_prev != NULL) { 6845 mp_prev->b_next = mp_next; 6846 /* 6847 * Update sq_evtail if the last element 6848 * is removed. 6849 */ 6850 if (bp == sq->sq_evtail) { 6851 ASSERT(mp_next == NULL); 6852 sq->sq_evtail = mp_prev; 6853 } 6854 } else 6855 sq->sq_evhead = mp_next; 6856 if (sq->sq_evhead == NULL) 6857 sq->sq_flags &= ~SQ_EVENTS; 6858 bp->b_prev = bp->b_next = NULL; 6859 freemsg(bp); 6860 ret++; 6861 } else { 6862 mp_prev = bp; 6863 } 6864 } 6865 } 6866 6867 /* 6868 * Walk sq_head and: 6869 * - match qp if qp is set, remove it's messages 6870 * - all if qp is not set 6871 */ 6872 q = sq->sq_head; 6873 while (q != NULL) { 6874 ASSERT(q->q_syncq == sq); 6875 if ((qp == NULL) || (qp == q)) { 6876 /* 6877 * Yank the messages as a list off the queue 6878 */ 6879 mp_head = q->q_sqhead; 6880 /* 6881 * We do not have QLOCK(q) here (which is safe due to 6882 * assumptions mentioned above). To obtain the lock we 6883 * need to release SQLOCK which may allow lots of things 6884 * to change upon us. This place requires more analysis. 6885 */ 6886 q->q_sqhead = q->q_sqtail = NULL; 6887 ASSERT(mp_head->b_queue && 6888 mp_head->b_queue->q_syncq == sq); 6889 6890 /* 6891 * Free each of the messages. 6892 */ 6893 for (bp = mp_head; bp != NULL; bp = mp_next) { 6894 mp_next = bp->b_next; 6895 bp->b_prev = bp->b_next = NULL; 6896 freemsg(bp); 6897 ret++; 6898 } 6899 /* 6900 * Now remove the queue from the syncq. 6901 */ 6902 ASSERT(q->q_sqflags & Q_SQQUEUED); 6903 SQRM_Q(sq, q); 6904 q->q_spri = 0; 6905 q->q_syncqmsgs = 0; 6906 6907 /* 6908 * If qp was specified, we are done with it and are 6909 * going to drop SQLOCK(sq) and return. We wakeup syncq 6910 * waiters while we still have the SQLOCK. 6911 */ 6912 if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) { 6913 sq->sq_flags &= ~SQ_WANTWAKEUP; 6914 cv_broadcast(&sq->sq_wait); 6915 } 6916 /* Drop SQLOCK across clr_qfull */ 6917 mutex_exit(SQLOCK(sq)); 6918 6919 /* 6920 * We avoid doing the test that drain_syncq does and 6921 * unconditionally clear qfull for every flushed 6922 * message. Since flush_syncq is only called during 6923 * close this should not be a problem. 6924 */ 6925 clr_qfull(q); 6926 if (qp != NULL) { 6927 return (ret); 6928 } else { 6929 mutex_enter(SQLOCK(sq)); 6930 /* 6931 * The head was removed by SQRM_Q above. 6932 * reread the new head and flush it. 6933 */ 6934 q = sq->sq_head; 6935 } 6936 } else { 6937 q = q->q_sqnext; 6938 } 6939 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6940 } 6941 6942 if (sq->sq_flags & SQ_WANTWAKEUP) { 6943 sq->sq_flags &= ~SQ_WANTWAKEUP; 6944 cv_broadcast(&sq->sq_wait); 6945 } 6946 6947 mutex_exit(SQLOCK(sq)); 6948 return (ret); 6949 } 6950 6951 /* 6952 * Propagate all messages from a syncq to the next syncq that are associated 6953 * with the specified queue. If the queue is attached to a driver or if the 6954 * messages have been added due to a qwriter(PERIM_INNER), free the messages. 6955 * 6956 * Assumes that the stream is strlock()'ed. We don't come here if there 6957 * are no messages to propagate. 6958 * 6959 * NOTE : If the queue is attached to a driver, all the messages are freed 6960 * as there is no point in propagating the messages from the driver syncq 6961 * to the closing stream head which will in turn get freed later. 6962 */ 6963 static int 6964 propagate_syncq(queue_t *qp) 6965 { 6966 mblk_t *bp, *head, *tail, *prev, *next; 6967 syncq_t *sq; 6968 queue_t *nqp; 6969 syncq_t *nsq; 6970 boolean_t isdriver; 6971 int moved = 0; 6972 uint16_t flags; 6973 pri_t priority = curthread->t_pri; 6974 #ifdef DEBUG 6975 void (*func)(); 6976 #endif 6977 6978 sq = qp->q_syncq; 6979 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6980 /* debug macro */ 6981 SQ_PUTLOCKS_HELD(sq); 6982 /* 6983 * As entersq() does not increment the sq_count for 6984 * the write side, check sq_count for non-QPERQ 6985 * perimeters alone. 6986 */ 6987 ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1)); 6988 6989 /* 6990 * propagate_syncq() can be called because of either messages on the 6991 * queue syncq or because on events on the queue syncq. Do actual 6992 * message propagations if there are any messages. 6993 */ 6994 if (qp->q_syncqmsgs) { 6995 isdriver = (qp->q_flag & QISDRV); 6996 6997 if (!isdriver) { 6998 nqp = qp->q_next; 6999 nsq = nqp->q_syncq; 7000 ASSERT(MUTEX_HELD(SQLOCK(nsq))); 7001 /* debug macro */ 7002 SQ_PUTLOCKS_HELD(nsq); 7003 #ifdef DEBUG 7004 func = (void (*)())nqp->q_qinfo->qi_putp; 7005 #endif 7006 } 7007 7008 SQRM_Q(sq, qp); 7009 priority = MAX(qp->q_spri, priority); 7010 qp->q_spri = 0; 7011 head = qp->q_sqhead; 7012 tail = qp->q_sqtail; 7013 qp->q_sqhead = qp->q_sqtail = NULL; 7014 qp->q_syncqmsgs = 0; 7015 7016 /* 7017 * Walk the list of messages, and free them if this is a driver, 7018 * otherwise reset the b_prev and b_queue value to the new putp. 7019 * Afterward, we will just add the head to the end of the next 7020 * syncq, and point the tail to the end of this one. 7021 */ 7022 7023 for (bp = head; bp != NULL; bp = next) { 7024 next = bp->b_next; 7025 if (isdriver) { 7026 bp->b_prev = bp->b_next = NULL; 7027 freemsg(bp); 7028 continue; 7029 } 7030 /* Change the q values for this message */ 7031 bp->b_queue = nqp; 7032 #ifdef DEBUG 7033 bp->b_prev = (mblk_t *)func; 7034 #endif 7035 moved++; 7036 } 7037 /* 7038 * Attach list of messages to the end of the new queue (if there 7039 * is a list of messages). 7040 */ 7041 7042 if (!isdriver && head != NULL) { 7043 ASSERT(tail != NULL); 7044 if (nqp->q_sqhead == NULL) { 7045 nqp->q_sqhead = head; 7046 } else { 7047 ASSERT(nqp->q_sqtail != NULL); 7048 nqp->q_sqtail->b_next = head; 7049 } 7050 nqp->q_sqtail = tail; 7051 /* 7052 * When messages are moved from high priority queue to 7053 * another queue, the destination queue priority is 7054 * upgraded. 7055 */ 7056 7057 if (priority > nqp->q_spri) 7058 nqp->q_spri = priority; 7059 7060 SQPUT_Q(nsq, nqp); 7061 7062 nqp->q_syncqmsgs += moved; 7063 ASSERT(nqp->q_syncqmsgs != 0); 7064 } 7065 } 7066 7067 /* 7068 * Before we leave, we need to make sure there are no 7069 * events listed for this queue. All events for this queue 7070 * will just be freed. 7071 */ 7072 if (sq->sq_evhead != NULL) { 7073 ASSERT(sq->sq_flags & SQ_EVENTS); 7074 prev = NULL; 7075 for (bp = sq->sq_evhead; bp != NULL; bp = next) { 7076 next = bp->b_next; 7077 if (bp->b_queue == qp) { 7078 /* Delete this message */ 7079 if (prev != NULL) { 7080 prev->b_next = next; 7081 /* 7082 * Update sq_evtail if the last element 7083 * is removed. 7084 */ 7085 if (bp == sq->sq_evtail) { 7086 ASSERT(next == NULL); 7087 sq->sq_evtail = prev; 7088 } 7089 } else 7090 sq->sq_evhead = next; 7091 if (sq->sq_evhead == NULL) 7092 sq->sq_flags &= ~SQ_EVENTS; 7093 bp->b_prev = bp->b_next = NULL; 7094 freemsg(bp); 7095 } else { 7096 prev = bp; 7097 } 7098 } 7099 } 7100 7101 flags = sq->sq_flags; 7102 7103 /* Wake up any waiter before leaving. */ 7104 if (flags & SQ_WANTWAKEUP) { 7105 flags &= ~SQ_WANTWAKEUP; 7106 cv_broadcast(&sq->sq_wait); 7107 } 7108 sq->sq_flags = flags; 7109 7110 return (moved); 7111 } 7112 7113 /* 7114 * Try and upgrade to exclusive access at the inner perimeter. If this can 7115 * not be done without blocking then request will be queued on the syncq 7116 * and drain_syncq will run it later. 7117 * 7118 * This routine can only be called from put or service procedures plus 7119 * asynchronous callback routines that have properly entered to 7120 * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim 7121 * on the syncq associated with q. 7122 */ 7123 void 7124 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)()) 7125 { 7126 syncq_t *sq = q->q_syncq; 7127 uint16_t count; 7128 7129 mutex_enter(SQLOCK(sq)); 7130 count = sq->sq_count; 7131 SQ_PUTLOCKS_ENTER(sq); 7132 SUM_SQ_PUTCOUNTS(sq, count); 7133 ASSERT(count >= 1); 7134 ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC)); 7135 7136 if (count == 1) { 7137 /* 7138 * Can upgrade. This case also handles nested qwriter calls 7139 * (when the qwriter callback function calls qwriter). In that 7140 * case SQ_EXCL is already set. 7141 */ 7142 sq->sq_flags |= SQ_EXCL; 7143 SQ_PUTLOCKS_EXIT(sq); 7144 mutex_exit(SQLOCK(sq)); 7145 (*func)(q, mp); 7146 /* 7147 * Assumes that leavesq, putnext, and drain_syncq will reset 7148 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on 7149 * until putnext, leavesq, or drain_syncq drops it. 7150 * That way we handle nested qwriter(INNER) without dropping 7151 * SQ_EXCL until the outermost qwriter callback routine is 7152 * done. 7153 */ 7154 return; 7155 } 7156 SQ_PUTLOCKS_EXIT(sq); 7157 sqfill_events(sq, q, mp, func); 7158 } 7159 7160 /* 7161 * Synchronous callback support functions 7162 */ 7163 7164 /* 7165 * Allocate a callback parameter structure. 7166 * Assumes that caller initializes the flags and the id. 7167 * Acquires SQLOCK(sq) if non-NULL is returned. 7168 */ 7169 callbparams_t * 7170 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags) 7171 { 7172 callbparams_t *cbp; 7173 size_t size = sizeof (callbparams_t); 7174 7175 cbp = kmem_alloc(size, kmflags & ~KM_PANIC); 7176 7177 /* 7178 * Only try tryhard allocation if the caller is ready to panic. 7179 * Otherwise just fail. 7180 */ 7181 if (cbp == NULL) { 7182 if (kmflags & KM_PANIC) 7183 cbp = kmem_alloc_tryhard(sizeof (callbparams_t), 7184 &size, kmflags); 7185 else 7186 return (NULL); 7187 } 7188 7189 ASSERT(size >= sizeof (callbparams_t)); 7190 cbp->cbp_size = size; 7191 cbp->cbp_sq = sq; 7192 cbp->cbp_func = func; 7193 cbp->cbp_arg = arg; 7194 mutex_enter(SQLOCK(sq)); 7195 cbp->cbp_next = sq->sq_callbpend; 7196 sq->sq_callbpend = cbp; 7197 return (cbp); 7198 } 7199 7200 void 7201 callbparams_free(syncq_t *sq, callbparams_t *cbp) 7202 { 7203 callbparams_t **pp, *p; 7204 7205 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7206 7207 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) { 7208 if (p == cbp) { 7209 *pp = p->cbp_next; 7210 kmem_free(p, p->cbp_size); 7211 return; 7212 } 7213 } 7214 (void) (STRLOG(0, 0, 0, SL_CONSOLE, 7215 "callbparams_free: not found\n")); 7216 } 7217 7218 void 7219 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag) 7220 { 7221 callbparams_t **pp, *p; 7222 7223 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7224 7225 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) { 7226 if (p->cbp_id == id && p->cbp_flags == flag) { 7227 *pp = p->cbp_next; 7228 kmem_free(p, p->cbp_size); 7229 return; 7230 } 7231 } 7232 (void) (STRLOG(0, 0, 0, SL_CONSOLE, 7233 "callbparams_free_id: not found\n")); 7234 } 7235 7236 /* 7237 * Callback wrapper function used by once-only callbacks that can be 7238 * cancelled (qtimeout and qbufcall) 7239 * Contains inline version of entersq(sq, SQ_CALLBACK) that can be 7240 * cancelled by the qun* functions. 7241 */ 7242 void 7243 qcallbwrapper(void *arg) 7244 { 7245 callbparams_t *cbp = arg; 7246 syncq_t *sq; 7247 uint16_t count = 0; 7248 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL; 7249 uint16_t type; 7250 7251 sq = cbp->cbp_sq; 7252 mutex_enter(SQLOCK(sq)); 7253 type = sq->sq_type; 7254 if (!(type & SQ_CICB)) { 7255 count = sq->sq_count; 7256 SQ_PUTLOCKS_ENTER(sq); 7257 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 7258 SUM_SQ_PUTCOUNTS(sq, count); 7259 sq->sq_needexcl++; 7260 ASSERT(sq->sq_needexcl != 0); /* wraparound */ 7261 waitflags |= SQ_MESSAGES; 7262 } 7263 /* Can not handle exlusive entry at outer perimeter */ 7264 ASSERT(type & SQ_COCB); 7265 7266 while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) { 7267 if ((sq->sq_callbflags & cbp->cbp_flags) && 7268 (sq->sq_cancelid == cbp->cbp_id)) { 7269 /* timeout has been cancelled */ 7270 sq->sq_callbflags |= SQ_CALLB_BYPASSED; 7271 callbparams_free(sq, cbp); 7272 if (!(type & SQ_CICB)) { 7273 ASSERT(sq->sq_needexcl > 0); 7274 sq->sq_needexcl--; 7275 if (sq->sq_needexcl == 0) { 7276 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 7277 } 7278 SQ_PUTLOCKS_EXIT(sq); 7279 } 7280 mutex_exit(SQLOCK(sq)); 7281 return; 7282 } 7283 sq->sq_flags |= SQ_WANTWAKEUP; 7284 if (!(type & SQ_CICB)) { 7285 SQ_PUTLOCKS_EXIT(sq); 7286 } 7287 cv_wait(&sq->sq_wait, SQLOCK(sq)); 7288 if (!(type & SQ_CICB)) { 7289 count = sq->sq_count; 7290 SQ_PUTLOCKS_ENTER(sq); 7291 SUM_SQ_PUTCOUNTS(sq, count); 7292 } 7293 } 7294 7295 sq->sq_count++; 7296 ASSERT(sq->sq_count != 0); /* Wraparound */ 7297 if (!(type & SQ_CICB)) { 7298 ASSERT(count == 0); 7299 sq->sq_flags |= SQ_EXCL; 7300 ASSERT(sq->sq_needexcl > 0); 7301 sq->sq_needexcl--; 7302 if (sq->sq_needexcl == 0) { 7303 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 7304 } 7305 SQ_PUTLOCKS_EXIT(sq); 7306 } 7307 7308 mutex_exit(SQLOCK(sq)); 7309 7310 cbp->cbp_func(cbp->cbp_arg); 7311 7312 /* 7313 * We drop the lock only for leavesq to re-acquire it. 7314 * Possible optimization is inline of leavesq. 7315 */ 7316 mutex_enter(SQLOCK(sq)); 7317 callbparams_free(sq, cbp); 7318 mutex_exit(SQLOCK(sq)); 7319 leavesq(sq, SQ_CALLBACK); 7320 } 7321 7322 /* 7323 * no need to grab sq_putlocks here. See comment in strsubr.h that 7324 * explains when sq_putlocks are used. 7325 * 7326 * sq_count (or one of the sq_putcounts) has already been 7327 * decremented by the caller, and if SQ_QUEUED, we need to call 7328 * drain_syncq (the global syncq drain). 7329 * If putnext_tail is called with the SQ_EXCL bit set, we are in 7330 * one of two states, non-CIPUT perimiter, and we need to clear 7331 * it, or we went exclusive in the put procedure. In any case, 7332 * we want to clear the bit now, and it is probably easier to do 7333 * this at the beginning of this function (remember, we hold 7334 * the SQLOCK). Lastly, if there are other messages queued 7335 * on the syncq (and not for our destination), enable the syncq 7336 * for background work. 7337 */ 7338 7339 /* ARGSUSED */ 7340 void 7341 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags) 7342 { 7343 uint16_t flags = sq->sq_flags; 7344 7345 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7346 ASSERT(MUTEX_NOT_HELD(QLOCK(qp))); 7347 7348 /* Clear SQ_EXCL if set in passflags */ 7349 if (passflags & SQ_EXCL) { 7350 flags &= ~SQ_EXCL; 7351 } 7352 if (flags & SQ_WANTWAKEUP) { 7353 flags &= ~SQ_WANTWAKEUP; 7354 cv_broadcast(&sq->sq_wait); 7355 } 7356 if (flags & SQ_WANTEXWAKEUP) { 7357 flags &= ~SQ_WANTEXWAKEUP; 7358 cv_broadcast(&sq->sq_exitwait); 7359 } 7360 sq->sq_flags = flags; 7361 7362 /* 7363 * We have cleared SQ_EXCL if we were asked to, and started 7364 * the wakeup process for waiters. If there are no writers 7365 * then we need to drain the syncq if we were told to, or 7366 * enable the background thread to do it. 7367 */ 7368 if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) { 7369 if ((passflags & SQ_QUEUED) || 7370 (sq->sq_svcflags & SQ_DISABLED)) { 7371 /* drain_syncq will take care of events in the list */ 7372 drain_syncq(sq); 7373 return; 7374 } else if (flags & SQ_QUEUED) { 7375 sqenable(sq); 7376 } 7377 } 7378 /* Drop the SQLOCK on exit */ 7379 mutex_exit(SQLOCK(sq)); 7380 TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END, 7381 "putnext_end:(%p, %p, %p) done", NULL, qp, sq); 7382 } 7383 7384 void 7385 set_qend(queue_t *q) 7386 { 7387 mutex_enter(QLOCK(q)); 7388 if (!O_SAMESTR(q)) 7389 q->q_flag |= QEND; 7390 else 7391 q->q_flag &= ~QEND; 7392 mutex_exit(QLOCK(q)); 7393 q = _OTHERQ(q); 7394 mutex_enter(QLOCK(q)); 7395 if (!O_SAMESTR(q)) 7396 q->q_flag |= QEND; 7397 else 7398 q->q_flag &= ~QEND; 7399 mutex_exit(QLOCK(q)); 7400 } 7401 7402 7403 void 7404 clr_qfull(queue_t *q) 7405 { 7406 queue_t *oq = q; 7407 7408 q = q->q_nfsrv; 7409 /* Fast check if there is any work to do before getting the lock. */ 7410 if ((q->q_flag & (QFULL|QWANTW)) == 0) { 7411 return; 7412 } 7413 7414 /* 7415 * Do not reset QFULL (and backenable) if the q_count is the reason 7416 * for QFULL being set. 7417 */ 7418 mutex_enter(QLOCK(q)); 7419 /* 7420 * If both q_count and q_mblkcnt are less than the hiwat mark 7421 */ 7422 if ((q->q_count < q->q_hiwat) && (q->q_mblkcnt < q->q_hiwat)) { 7423 q->q_flag &= ~QFULL; 7424 /* 7425 * A little more confusing, how about this way: 7426 * if someone wants to write, 7427 * AND 7428 * both counts are less than the lowat mark 7429 * OR 7430 * the lowat mark is zero 7431 * THEN 7432 * backenable 7433 */ 7434 if ((q->q_flag & QWANTW) && 7435 (((q->q_count < q->q_lowat) && 7436 (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) { 7437 q->q_flag &= ~QWANTW; 7438 mutex_exit(QLOCK(q)); 7439 backenable(oq, 0); 7440 } else 7441 mutex_exit(QLOCK(q)); 7442 } else 7443 mutex_exit(QLOCK(q)); 7444 } 7445 7446 /* 7447 * Set the forward service procedure pointer. 7448 * 7449 * Called at insert-time to cache a queue's next forward service procedure in 7450 * q_nfsrv; used by canput() and canputnext(). If the queue to be inserted 7451 * has a service procedure then q_nfsrv points to itself. If the queue to be 7452 * inserted does not have a service procedure, then q_nfsrv points to the next 7453 * queue forward that has a service procedure. If the queue is at the logical 7454 * end of the stream (driver for write side, stream head for the read side) 7455 * and does not have a service procedure, then q_nfsrv also points to itself. 7456 */ 7457 void 7458 set_nfsrv_ptr( 7459 queue_t *rnew, /* read queue pointer to new module */ 7460 queue_t *wnew, /* write queue pointer to new module */ 7461 queue_t *prev_rq, /* read queue pointer to the module above */ 7462 queue_t *prev_wq) /* write queue pointer to the module above */ 7463 { 7464 queue_t *qp; 7465 7466 if (prev_wq->q_next == NULL) { 7467 /* 7468 * Insert the driver, initialize the driver and stream head. 7469 * In this case, prev_rq/prev_wq should be the stream head. 7470 * _I_INSERT does not allow inserting a driver. Make sure 7471 * that it is not an insertion. 7472 */ 7473 ASSERT(!(rnew->q_flag & _QINSERTING)); 7474 wnew->q_nfsrv = wnew; 7475 if (rnew->q_qinfo->qi_srvp) 7476 rnew->q_nfsrv = rnew; 7477 else 7478 rnew->q_nfsrv = prev_rq; 7479 prev_rq->q_nfsrv = prev_rq; 7480 prev_wq->q_nfsrv = prev_wq; 7481 } else { 7482 /* 7483 * set up read side q_nfsrv pointer. This MUST be done 7484 * before setting the write side, because the setting of 7485 * the write side for a fifo may depend on it. 7486 * 7487 * Suppose we have a fifo that only has pipemod pushed. 7488 * pipemod has no read or write service procedures, so 7489 * nfsrv for both pipemod queues points to prev_rq (the 7490 * stream read head). Now push bufmod (which has only a 7491 * read service procedure). Doing the write side first, 7492 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which 7493 * is WRONG; the next queue forward from wnew with a 7494 * service procedure will be rnew, not the stream read head. 7495 * Since the downstream queue (which in the case of a fifo 7496 * is the read queue rnew) can affect upstream queues, it 7497 * needs to be done first. Setting up the read side first 7498 * sets nfsrv for both pipemod queues to rnew and then 7499 * when the write side is set up, wnew-q_nfsrv will also 7500 * point to rnew. 7501 */ 7502 if (rnew->q_qinfo->qi_srvp) { 7503 /* 7504 * use _OTHERQ() because, if this is a pipe, next 7505 * module may have been pushed from other end and 7506 * q_next could be a read queue. 7507 */ 7508 qp = _OTHERQ(prev_wq->q_next); 7509 while (qp && qp->q_nfsrv != qp) { 7510 qp->q_nfsrv = rnew; 7511 qp = backq(qp); 7512 } 7513 rnew->q_nfsrv = rnew; 7514 } else 7515 rnew->q_nfsrv = prev_rq->q_nfsrv; 7516 7517 /* set up write side q_nfsrv pointer */ 7518 if (wnew->q_qinfo->qi_srvp) { 7519 wnew->q_nfsrv = wnew; 7520 7521 /* 7522 * For insertion, need to update nfsrv of the modules 7523 * above which do not have a service routine. 7524 */ 7525 if (rnew->q_flag & _QINSERTING) { 7526 for (qp = prev_wq; 7527 qp != NULL && qp->q_nfsrv != qp; 7528 qp = backq(qp)) { 7529 qp->q_nfsrv = wnew->q_nfsrv; 7530 } 7531 } 7532 } else { 7533 if (prev_wq->q_next == prev_rq) 7534 /* 7535 * Since prev_wq/prev_rq are the middle of a 7536 * fifo, wnew/rnew will also be the middle of 7537 * a fifo and wnew's nfsrv is same as rnew's. 7538 */ 7539 wnew->q_nfsrv = rnew->q_nfsrv; 7540 else 7541 wnew->q_nfsrv = prev_wq->q_next->q_nfsrv; 7542 } 7543 } 7544 } 7545 7546 /* 7547 * Reset the forward service procedure pointer; called at remove-time. 7548 */ 7549 void 7550 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp) 7551 { 7552 queue_t *tmp_qp; 7553 7554 /* Reset the write side q_nfsrv pointer for _I_REMOVE */ 7555 if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) { 7556 for (tmp_qp = backq(wqp); 7557 tmp_qp != NULL && tmp_qp->q_nfsrv == wqp; 7558 tmp_qp = backq(tmp_qp)) { 7559 tmp_qp->q_nfsrv = wqp->q_nfsrv; 7560 } 7561 } 7562 7563 /* reset the read side q_nfsrv pointer */ 7564 if (rqp->q_qinfo->qi_srvp) { 7565 if (wqp->q_next) { /* non-driver case */ 7566 tmp_qp = _OTHERQ(wqp->q_next); 7567 while (tmp_qp && tmp_qp->q_nfsrv == rqp) { 7568 /* Note that rqp->q_next cannot be NULL */ 7569 ASSERT(rqp->q_next != NULL); 7570 tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv; 7571 tmp_qp = backq(tmp_qp); 7572 } 7573 } 7574 } 7575 } 7576 7577 /* 7578 * This routine should be called after all stream geometry changes to update 7579 * the stream head cached struio() rd/wr queue pointers. Note must be called 7580 * with the streamlock()ed. 7581 * 7582 * Note: only enables Synchronous STREAMS for a side of a Stream which has 7583 * an explicit synchronous barrier module queue. That is, a queue that 7584 * has specified a struio() type. 7585 */ 7586 static void 7587 strsetuio(stdata_t *stp) 7588 { 7589 queue_t *wrq; 7590 7591 if (stp->sd_flag & STPLEX) { 7592 /* 7593 * Not stremahead, but a mux, so no Synchronous STREAMS. 7594 */ 7595 stp->sd_struiowrq = NULL; 7596 stp->sd_struiordq = NULL; 7597 return; 7598 } 7599 /* 7600 * Scan the write queue(s) while synchronous 7601 * until we find a qinfo uio type specified. 7602 */ 7603 wrq = stp->sd_wrq->q_next; 7604 while (wrq) { 7605 if (wrq->q_struiot == STRUIOT_NONE) { 7606 wrq = 0; 7607 break; 7608 } 7609 if (wrq->q_struiot != STRUIOT_DONTCARE) 7610 break; 7611 if (! _SAMESTR(wrq)) { 7612 wrq = 0; 7613 break; 7614 } 7615 wrq = wrq->q_next; 7616 } 7617 stp->sd_struiowrq = wrq; 7618 /* 7619 * Scan the read queue(s) while synchronous 7620 * until we find a qinfo uio type specified. 7621 */ 7622 wrq = stp->sd_wrq->q_next; 7623 while (wrq) { 7624 if (_RD(wrq)->q_struiot == STRUIOT_NONE) { 7625 wrq = 0; 7626 break; 7627 } 7628 if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE) 7629 break; 7630 if (! _SAMESTR(wrq)) { 7631 wrq = 0; 7632 break; 7633 } 7634 wrq = wrq->q_next; 7635 } 7636 stp->sd_struiordq = wrq ? _RD(wrq) : 0; 7637 } 7638 7639 /* 7640 * pass_wput, unblocks the passthru queues, so that 7641 * messages can arrive at muxs lower read queue, before 7642 * I_LINK/I_UNLINK is acked/nacked. 7643 */ 7644 static void 7645 pass_wput(queue_t *q, mblk_t *mp) 7646 { 7647 syncq_t *sq; 7648 7649 sq = _RD(q)->q_syncq; 7650 if (sq->sq_flags & SQ_BLOCKED) 7651 unblocksq(sq, SQ_BLOCKED, 0); 7652 putnext(q, mp); 7653 } 7654 7655 /* 7656 * Set up queues for the link/unlink. 7657 * Create a new queue and block it and then insert it 7658 * below the stream head on the lower stream. 7659 * This prevents any messages from arriving during the setq 7660 * as well as while the mux is processing the LINK/I_UNLINK. 7661 * The blocked passq is unblocked once the LINK/I_UNLINK has 7662 * been acked or nacked or if a message is generated and sent 7663 * down muxs write put procedure. 7664 * see pass_wput(). 7665 * 7666 * After the new queue is inserted, all messages coming from below are 7667 * blocked. The call to strlock will ensure that all activity in the stream head 7668 * read queue syncq is stopped (sq_count drops to zero). 7669 */ 7670 static queue_t * 7671 link_addpassthru(stdata_t *stpdown) 7672 { 7673 queue_t *passq; 7674 sqlist_t sqlist; 7675 7676 passq = allocq(); 7677 STREAM(passq) = STREAM(_WR(passq)) = stpdown; 7678 /* setq might sleep in allocator - avoid holding locks. */ 7679 setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ, 7680 SQ_CI|SQ_CO, B_FALSE); 7681 claimq(passq); 7682 blocksq(passq->q_syncq, SQ_BLOCKED, 1); 7683 insertq(STREAM(passq), passq); 7684 7685 /* 7686 * Use strlock() to wait for the stream head sq_count to drop to zero 7687 * since we are going to change q_ptr in the stream head. Note that 7688 * insertq() doesn't wait for any syncq counts to drop to zero. 7689 */ 7690 sqlist.sqlist_head = NULL; 7691 sqlist.sqlist_index = 0; 7692 sqlist.sqlist_size = sizeof (sqlist_t); 7693 sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq); 7694 strlock(stpdown, &sqlist); 7695 strunlock(stpdown, &sqlist); 7696 7697 releaseq(passq); 7698 return (passq); 7699 } 7700 7701 /* 7702 * Let messages flow up into the mux by removing 7703 * the passq. 7704 */ 7705 static void 7706 link_rempassthru(queue_t *passq) 7707 { 7708 claimq(passq); 7709 removeq(passq); 7710 releaseq(passq); 7711 freeq(passq); 7712 } 7713 7714 /* 7715 * Wait for the condition variable pointed to by `cvp' to be signaled, 7716 * or for `tim' milliseconds to elapse, whichever comes first. If `tim' 7717 * is negative, then there is no time limit. If `nosigs' is non-zero, 7718 * then the wait will be non-interruptible. 7719 * 7720 * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout. 7721 */ 7722 clock_t 7723 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs) 7724 { 7725 clock_t ret, now, tick; 7726 7727 if (tim < 0) { 7728 if (nosigs) { 7729 cv_wait(cvp, mp); 7730 ret = 1; 7731 } else { 7732 ret = cv_wait_sig(cvp, mp); 7733 } 7734 } else if (tim > 0) { 7735 /* 7736 * convert milliseconds to clock ticks 7737 */ 7738 tick = MSEC_TO_TICK_ROUNDUP(tim); 7739 time_to_wait(&now, tick); 7740 if (nosigs) { 7741 ret = cv_timedwait(cvp, mp, now); 7742 } else { 7743 ret = cv_timedwait_sig(cvp, mp, now); 7744 } 7745 } else { 7746 ret = -1; 7747 } 7748 return (ret); 7749 } 7750 7751 /* 7752 * Wait until the stream head can determine if it is at the mark but 7753 * don't wait forever to prevent a race condition between the "mark" state 7754 * in the stream head and any mark state in the caller/user of this routine. 7755 * 7756 * This is used by sockets and for a socket it would be incorrect 7757 * to return a failure for SIOCATMARK when there is no data in the receive 7758 * queue and the marked urgent data is traveling up the stream. 7759 * 7760 * This routine waits until the mark is known by waiting for one of these 7761 * three events: 7762 * The stream head read queue becoming non-empty (including an EOF) 7763 * The STRATMARK flag being set. (Due to a MSGMARKNEXT message.) 7764 * The STRNOTATMARK flag being set (which indicates that the transport 7765 * has sent a MSGNOTMARKNEXT message to indicate that it is not at 7766 * the mark). 7767 * 7768 * The routine returns 1 if the stream is at the mark; 0 if it can 7769 * be determined that the stream is not at the mark. 7770 * If the wait times out and it can't determine 7771 * whether or not the stream might be at the mark the routine will return -1. 7772 * 7773 * Note: This routine should only be used when a mark is pending i.e., 7774 * in the socket case the SIGURG has been posted. 7775 * Note2: This can not wakeup just because synchronous streams indicate 7776 * that data is available since it is not possible to use the synchronous 7777 * streams interfaces to determine the b_flag value for the data queued below 7778 * the stream head. 7779 */ 7780 int 7781 strwaitmark(vnode_t *vp) 7782 { 7783 struct stdata *stp = vp->v_stream; 7784 queue_t *rq = _RD(stp->sd_wrq); 7785 int mark; 7786 7787 mutex_enter(&stp->sd_lock); 7788 while (rq->q_first == NULL && 7789 !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) { 7790 stp->sd_flag |= RSLEEP; 7791 7792 /* Wait for 100 milliseconds for any state change. */ 7793 if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) { 7794 mutex_exit(&stp->sd_lock); 7795 return (-1); 7796 } 7797 } 7798 if (stp->sd_flag & STRATMARK) 7799 mark = 1; 7800 else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK)) 7801 mark = 1; 7802 else 7803 mark = 0; 7804 7805 mutex_exit(&stp->sd_lock); 7806 return (mark); 7807 } 7808 7809 /* 7810 * Set a read side error. If persist is set change the socket error 7811 * to persistent. If errfunc is set install the function as the exported 7812 * error handler. 7813 */ 7814 void 7815 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc) 7816 { 7817 struct stdata *stp = vp->v_stream; 7818 7819 mutex_enter(&stp->sd_lock); 7820 stp->sd_rerror = error; 7821 if (error == 0 && errfunc == NULL) 7822 stp->sd_flag &= ~STRDERR; 7823 else 7824 stp->sd_flag |= STRDERR; 7825 if (persist) { 7826 stp->sd_flag &= ~STRDERRNONPERSIST; 7827 } else { 7828 stp->sd_flag |= STRDERRNONPERSIST; 7829 } 7830 stp->sd_rderrfunc = errfunc; 7831 if (error != 0 || errfunc != NULL) { 7832 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */ 7833 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */ 7834 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 7835 7836 mutex_exit(&stp->sd_lock); 7837 pollwakeup(&stp->sd_pollist, POLLERR); 7838 mutex_enter(&stp->sd_lock); 7839 7840 if (stp->sd_sigflags & S_ERROR) 7841 strsendsig(stp->sd_siglist, S_ERROR, 0, error); 7842 } 7843 mutex_exit(&stp->sd_lock); 7844 } 7845 7846 /* 7847 * Set a write side error. If persist is set change the socket error 7848 * to persistent. 7849 */ 7850 void 7851 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc) 7852 { 7853 struct stdata *stp = vp->v_stream; 7854 7855 mutex_enter(&stp->sd_lock); 7856 stp->sd_werror = error; 7857 if (error == 0 && errfunc == NULL) 7858 stp->sd_flag &= ~STWRERR; 7859 else 7860 stp->sd_flag |= STWRERR; 7861 if (persist) { 7862 stp->sd_flag &= ~STWRERRNONPERSIST; 7863 } else { 7864 stp->sd_flag |= STWRERRNONPERSIST; 7865 } 7866 stp->sd_wrerrfunc = errfunc; 7867 if (error != 0 || errfunc != NULL) { 7868 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */ 7869 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */ 7870 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 7871 7872 mutex_exit(&stp->sd_lock); 7873 pollwakeup(&stp->sd_pollist, POLLERR); 7874 mutex_enter(&stp->sd_lock); 7875 7876 if (stp->sd_sigflags & S_ERROR) 7877 strsendsig(stp->sd_siglist, S_ERROR, 0, error); 7878 } 7879 mutex_exit(&stp->sd_lock); 7880 } 7881 7882 /* 7883 * Make the stream return 0 (EOF) when all data has been read. 7884 * No effect on write side. 7885 */ 7886 void 7887 strseteof(vnode_t *vp, int eof) 7888 { 7889 struct stdata *stp = vp->v_stream; 7890 7891 mutex_enter(&stp->sd_lock); 7892 if (!eof) { 7893 stp->sd_flag &= ~STREOF; 7894 mutex_exit(&stp->sd_lock); 7895 return; 7896 } 7897 stp->sd_flag |= STREOF; 7898 if (stp->sd_flag & RSLEEP) { 7899 stp->sd_flag &= ~RSLEEP; 7900 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); 7901 } 7902 7903 mutex_exit(&stp->sd_lock); 7904 pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM); 7905 mutex_enter(&stp->sd_lock); 7906 7907 if (stp->sd_sigflags & (S_INPUT|S_RDNORM)) 7908 strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0); 7909 mutex_exit(&stp->sd_lock); 7910 } 7911 7912 void 7913 strflushrq(vnode_t *vp, int flag) 7914 { 7915 struct stdata *stp = vp->v_stream; 7916 7917 mutex_enter(&stp->sd_lock); 7918 flushq(_RD(stp->sd_wrq), flag); 7919 mutex_exit(&stp->sd_lock); 7920 } 7921 7922 void 7923 strsetrputhooks(vnode_t *vp, uint_t flags, 7924 msgfunc_t protofunc, msgfunc_t miscfunc) 7925 { 7926 struct stdata *stp = vp->v_stream; 7927 7928 mutex_enter(&stp->sd_lock); 7929 7930 if (protofunc == NULL) 7931 stp->sd_rprotofunc = strrput_proto; 7932 else 7933 stp->sd_rprotofunc = protofunc; 7934 7935 if (miscfunc == NULL) 7936 stp->sd_rmiscfunc = strrput_misc; 7937 else 7938 stp->sd_rmiscfunc = miscfunc; 7939 7940 if (flags & SH_CONSOL_DATA) 7941 stp->sd_rput_opt |= SR_CONSOL_DATA; 7942 else 7943 stp->sd_rput_opt &= ~SR_CONSOL_DATA; 7944 7945 if (flags & SH_SIGALLDATA) 7946 stp->sd_rput_opt |= SR_SIGALLDATA; 7947 else 7948 stp->sd_rput_opt &= ~SR_SIGALLDATA; 7949 7950 if (flags & SH_IGN_ZEROLEN) 7951 stp->sd_rput_opt |= SR_IGN_ZEROLEN; 7952 else 7953 stp->sd_rput_opt &= ~SR_IGN_ZEROLEN; 7954 7955 mutex_exit(&stp->sd_lock); 7956 } 7957 7958 void 7959 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime) 7960 { 7961 struct stdata *stp = vp->v_stream; 7962 7963 mutex_enter(&stp->sd_lock); 7964 stp->sd_closetime = closetime; 7965 7966 if (flags & SH_SIGPIPE) 7967 stp->sd_wput_opt |= SW_SIGPIPE; 7968 else 7969 stp->sd_wput_opt &= ~SW_SIGPIPE; 7970 if (flags & SH_RECHECK_ERR) 7971 stp->sd_wput_opt |= SW_RECHECK_ERR; 7972 else 7973 stp->sd_wput_opt &= ~SW_RECHECK_ERR; 7974 7975 mutex_exit(&stp->sd_lock); 7976 } 7977 7978 /* Used within framework when the queue is already locked */ 7979 void 7980 qenable_locked(queue_t *q) 7981 { 7982 stdata_t *stp = STREAM(q); 7983 7984 ASSERT(MUTEX_HELD(QLOCK(q))); 7985 7986 if (!q->q_qinfo->qi_srvp) 7987 return; 7988 7989 /* 7990 * Do not place on run queue if already enabled or closing. 7991 */ 7992 if (q->q_flag & (QWCLOSE|QENAB)) 7993 return; 7994 7995 /* 7996 * mark queue enabled and place on run list if it is not already being 7997 * serviced. If it is serviced, the runservice() function will detect 7998 * that QENAB is set and call service procedure before clearing 7999 * QINSERVICE flag. 8000 */ 8001 q->q_flag |= QENAB; 8002 if (q->q_flag & QINSERVICE) 8003 return; 8004 8005 /* Record the time of qenable */ 8006 q->q_qtstamp = lbolt; 8007 8008 /* 8009 * Put the queue in the stp list and schedule it for background 8010 * processing if it is not already scheduled or if stream head does not 8011 * intent to process it in the foreground later by setting 8012 * STRS_WILLSERVICE flag. 8013 */ 8014 mutex_enter(&stp->sd_qlock); 8015 /* 8016 * If there are already something on the list, stp flags should show 8017 * intention to drain it. 8018 */ 8019 IMPLY(STREAM_NEEDSERVICE(stp), 8020 (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))); 8021 8022 ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link); 8023 stp->sd_nqueues++; 8024 8025 /* 8026 * If no one will drain this stream we are the first producer and 8027 * need to schedule it for background thread. 8028 */ 8029 if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) { 8030 /* 8031 * No one will service this stream later, so we have to 8032 * schedule it now. 8033 */ 8034 STRSTAT(stenables); 8035 stp->sd_svcflags |= STRS_SCHEDULED; 8036 stp->sd_servid = (void *)taskq_dispatch(streams_taskq, 8037 (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE); 8038 8039 if (stp->sd_servid == NULL) { 8040 /* 8041 * Task queue failed so fail over to the backup 8042 * servicing thread. 8043 */ 8044 STRSTAT(taskqfails); 8045 /* 8046 * It is safe to clear STRS_SCHEDULED flag because it 8047 * was set by this thread above. 8048 */ 8049 stp->sd_svcflags &= ~STRS_SCHEDULED; 8050 8051 /* 8052 * Failover scheduling is protected by service_queue 8053 * lock. 8054 */ 8055 mutex_enter(&service_queue); 8056 ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q)); 8057 ASSERT(q->q_link == NULL); 8058 /* 8059 * Append the queue to qhead/qtail list. 8060 */ 8061 if (qhead == NULL) 8062 qhead = q; 8063 else 8064 qtail->q_link = q; 8065 qtail = q; 8066 /* 8067 * Clear stp queue list. 8068 */ 8069 stp->sd_qhead = stp->sd_qtail = NULL; 8070 stp->sd_nqueues = 0; 8071 /* 8072 * Wakeup background queue processing thread. 8073 */ 8074 cv_signal(&services_to_run); 8075 mutex_exit(&service_queue); 8076 } 8077 } 8078 mutex_exit(&stp->sd_qlock); 8079 } 8080 8081 static void 8082 queue_service(queue_t *q) 8083 { 8084 /* 8085 * The queue in the list should have 8086 * QENAB flag set and should not have 8087 * QINSERVICE flag set. QINSERVICE is 8088 * set when the queue is dequeued and 8089 * qenable_locked doesn't enqueue a 8090 * queue with QINSERVICE set. 8091 */ 8092 8093 ASSERT(!(q->q_flag & QINSERVICE)); 8094 ASSERT((q->q_flag & QENAB)); 8095 mutex_enter(QLOCK(q)); 8096 q->q_flag &= ~QENAB; 8097 q->q_flag |= QINSERVICE; 8098 mutex_exit(QLOCK(q)); 8099 runservice(q); 8100 } 8101 8102 static void 8103 syncq_service(syncq_t *sq) 8104 { 8105 STRSTAT(syncqservice); 8106 mutex_enter(SQLOCK(sq)); 8107 ASSERT(!(sq->sq_svcflags & SQ_SERVICE)); 8108 ASSERT(sq->sq_servcount != 0); 8109 ASSERT(sq->sq_next == NULL); 8110 8111 /* if we came here from the background thread, clear the flag */ 8112 if (sq->sq_svcflags & SQ_BGTHREAD) 8113 sq->sq_svcflags &= ~SQ_BGTHREAD; 8114 8115 /* let drain_syncq know that it's being called in the background */ 8116 sq->sq_svcflags |= SQ_SERVICE; 8117 drain_syncq(sq); 8118 } 8119 8120 static void 8121 qwriter_outer_service(syncq_t *outer) 8122 { 8123 /* 8124 * Note that SQ_WRITER is used on the outer perimeter 8125 * to signal that a qwriter(OUTER) is either investigating 8126 * running or that it is actually running a function. 8127 */ 8128 outer_enter(outer, SQ_BLOCKED|SQ_WRITER); 8129 8130 /* 8131 * All inner syncq are empty and have SQ_WRITER set 8132 * to block entering the outer perimeter. 8133 * 8134 * We do not need to explicitly call write_now since 8135 * outer_exit does it for us. 8136 */ 8137 outer_exit(outer); 8138 } 8139 8140 static void 8141 mblk_free(mblk_t *mp) 8142 { 8143 dblk_t *dbp = mp->b_datap; 8144 frtn_t *frp = dbp->db_frtnp; 8145 8146 mp->b_next = NULL; 8147 if (dbp->db_fthdr != NULL) 8148 str_ftfree(dbp); 8149 8150 ASSERT(dbp->db_fthdr == NULL); 8151 frp->free_func(frp->free_arg); 8152 ASSERT(dbp->db_mblk == mp); 8153 8154 if (dbp->db_credp != NULL) { 8155 crfree(dbp->db_credp); 8156 dbp->db_credp = NULL; 8157 } 8158 dbp->db_cpid = -1; 8159 dbp->db_struioflag = 0; 8160 dbp->db_struioun.cksum.flags = 0; 8161 8162 kmem_cache_free(dbp->db_cache, dbp); 8163 } 8164 8165 /* 8166 * Background processing of the stream queue list. 8167 */ 8168 static void 8169 stream_service(stdata_t *stp) 8170 { 8171 queue_t *q; 8172 8173 mutex_enter(&stp->sd_qlock); 8174 8175 STR_SERVICE(stp, q); 8176 8177 stp->sd_svcflags &= ~STRS_SCHEDULED; 8178 stp->sd_servid = NULL; 8179 cv_signal(&stp->sd_qcv); 8180 mutex_exit(&stp->sd_qlock); 8181 } 8182 8183 /* 8184 * Foreground processing of the stream queue list. 8185 */ 8186 void 8187 stream_runservice(stdata_t *stp) 8188 { 8189 queue_t *q; 8190 8191 mutex_enter(&stp->sd_qlock); 8192 STRSTAT(rservice); 8193 /* 8194 * We are going to drain this stream queue list, so qenable_locked will 8195 * not schedule it until we finish. 8196 */ 8197 stp->sd_svcflags |= STRS_WILLSERVICE; 8198 8199 STR_SERVICE(stp, q); 8200 8201 stp->sd_svcflags &= ~STRS_WILLSERVICE; 8202 mutex_exit(&stp->sd_qlock); 8203 /* 8204 * Help backup background thread to drain the qhead/qtail list. 8205 */ 8206 while (qhead != NULL) { 8207 STRSTAT(qhelps); 8208 mutex_enter(&service_queue); 8209 DQ(q, qhead, qtail, q_link); 8210 mutex_exit(&service_queue); 8211 if (q != NULL) 8212 queue_service(q); 8213 } 8214 } 8215 8216 void 8217 stream_willservice(stdata_t *stp) 8218 { 8219 mutex_enter(&stp->sd_qlock); 8220 stp->sd_svcflags |= STRS_WILLSERVICE; 8221 mutex_exit(&stp->sd_qlock); 8222 } 8223 8224 /* 8225 * Replace the cred currently in the mblk with a different one. 8226 */ 8227 void 8228 mblk_setcred(mblk_t *mp, cred_t *cr) 8229 { 8230 cred_t *ocr = DB_CRED(mp); 8231 8232 ASSERT(cr != NULL); 8233 8234 if (cr != ocr) { 8235 crhold(mp->b_datap->db_credp = cr); 8236 if (ocr != NULL) 8237 crfree(ocr); 8238 } 8239 } 8240 8241 int 8242 hcksum_assoc(mblk_t *mp, multidata_t *mmd, pdesc_t *pd, 8243 uint32_t start, uint32_t stuff, uint32_t end, uint32_t value, 8244 uint32_t flags, int km_flags) 8245 { 8246 int rc = 0; 8247 8248 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA); 8249 if (mp->b_datap->db_type == M_DATA) { 8250 /* Associate values for M_DATA type */ 8251 DB_CKSUMSTART(mp) = (intptr_t)start; 8252 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 8253 DB_CKSUMEND(mp) = (intptr_t)end; 8254 DB_CKSUMFLAGS(mp) = flags; 8255 DB_CKSUM16(mp) = (uint16_t)value; 8256 8257 } else { 8258 pattrinfo_t pa_info; 8259 8260 ASSERT(mmd != NULL); 8261 8262 pa_info.type = PATTR_HCKSUM; 8263 pa_info.len = sizeof (pattr_hcksum_t); 8264 8265 if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) { 8266 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 8267 8268 hck->hcksum_start_offset = start; 8269 hck->hcksum_stuff_offset = stuff; 8270 hck->hcksum_end_offset = end; 8271 hck->hcksum_cksum_val.inet_cksum = (uint16_t)value; 8272 hck->hcksum_flags = flags; 8273 } else { 8274 rc = -1; 8275 } 8276 } 8277 return (rc); 8278 } 8279 8280 void 8281 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd, 8282 uint32_t *start, uint32_t *stuff, uint32_t *end, 8283 uint32_t *value, uint32_t *flags) 8284 { 8285 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA); 8286 if (mp->b_datap->db_type == M_DATA) { 8287 if (flags != NULL) { 8288 *flags = DB_CKSUMFLAGS(mp); 8289 if (*flags & HCK_PARTIALCKSUM) { 8290 if (start != NULL) 8291 *start = (uint32_t)DB_CKSUMSTART(mp); 8292 if (stuff != NULL) 8293 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 8294 if (end != NULL) 8295 *end = (uint32_t)DB_CKSUMEND(mp); 8296 if (value != NULL) 8297 *value = (uint32_t)DB_CKSUM16(mp); 8298 } 8299 } 8300 } else { 8301 pattrinfo_t hck_attr = {PATTR_HCKSUM}; 8302 8303 ASSERT(mmd != NULL); 8304 8305 /* get hardware checksum attribute */ 8306 if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) { 8307 pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf; 8308 8309 ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t)); 8310 if (flags != NULL) 8311 *flags = hck->hcksum_flags; 8312 if (start != NULL) 8313 *start = hck->hcksum_start_offset; 8314 if (stuff != NULL) 8315 *stuff = hck->hcksum_stuff_offset; 8316 if (end != NULL) 8317 *end = hck->hcksum_end_offset; 8318 if (value != NULL) 8319 *value = (uint32_t) 8320 hck->hcksum_cksum_val.inet_cksum; 8321 } 8322 } 8323 } 8324 8325 /* 8326 * Checksum buffer *bp for len bytes with psum partial checksum, 8327 * or 0 if none, and return the 16 bit partial checksum. 8328 */ 8329 unsigned 8330 bcksum(uchar_t *bp, int len, unsigned int psum) 8331 { 8332 int odd = len & 1; 8333 extern unsigned int ip_ocsum(); 8334 8335 if (((intptr_t)bp & 1) == 0 && !odd) { 8336 /* 8337 * Bp is 16 bit aligned and len is multiple of 16 bit word. 8338 */ 8339 return (ip_ocsum((ushort_t *)bp, len >> 1, psum)); 8340 } 8341 if (((intptr_t)bp & 1) != 0) { 8342 /* 8343 * Bp isn't 16 bit aligned. 8344 */ 8345 unsigned int tsum; 8346 8347 #ifdef _LITTLE_ENDIAN 8348 psum += *bp; 8349 #else 8350 psum += *bp << 8; 8351 #endif 8352 len--; 8353 bp++; 8354 tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0); 8355 psum += (tsum << 8) & 0xffff | (tsum >> 8); 8356 if (len & 1) { 8357 bp += len - 1; 8358 #ifdef _LITTLE_ENDIAN 8359 psum += *bp << 8; 8360 #else 8361 psum += *bp; 8362 #endif 8363 } 8364 } else { 8365 /* 8366 * Bp is 16 bit aligned. 8367 */ 8368 psum = ip_ocsum((ushort_t *)bp, len >> 1, psum); 8369 if (odd) { 8370 bp += len - 1; 8371 #ifdef _LITTLE_ENDIAN 8372 psum += *bp; 8373 #else 8374 psum += *bp << 8; 8375 #endif 8376 } 8377 } 8378 /* 8379 * Normalize psum to 16 bits before returning the new partial 8380 * checksum. The max psum value before normalization is 0x3FDFE. 8381 */ 8382 return ((psum >> 16) + (psum & 0xFFFF)); 8383 } 8384 8385 boolean_t 8386 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd) 8387 { 8388 boolean_t rc; 8389 8390 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA); 8391 if (DB_TYPE(mp) == M_DATA) { 8392 rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0); 8393 } else { 8394 pattrinfo_t zcopy_attr = {PATTR_ZCOPY}; 8395 8396 ASSERT(mmd != NULL); 8397 rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL); 8398 } 8399 return (rc); 8400 } 8401 8402 void 8403 freemsgchain(mblk_t *mp) 8404 { 8405 mblk_t *next; 8406 8407 while (mp != NULL) { 8408 next = mp->b_next; 8409 mp->b_next = NULL; 8410 8411 freemsg(mp); 8412 mp = next; 8413 } 8414 } 8415 8416 mblk_t * 8417 copymsgchain(mblk_t *mp) 8418 { 8419 mblk_t *nmp = NULL; 8420 mblk_t **nmpp = &nmp; 8421 8422 for (; mp != NULL; mp = mp->b_next) { 8423 if ((*nmpp = copymsg(mp)) == NULL) { 8424 freemsgchain(nmp); 8425 return (NULL); 8426 } 8427 8428 nmpp = &((*nmpp)->b_next); 8429 } 8430 8431 return (nmp); 8432 } 8433 8434 /* NOTE: Do not add code after this point. */ 8435 #undef QLOCK 8436 8437 /* 8438 * replacement for QLOCK macro for those that can't use it. 8439 */ 8440 kmutex_t * 8441 QLOCK(queue_t *q) 8442 { 8443 return (&(q)->q_lock); 8444 } 8445 8446 /* 8447 * Dummy runqueues/queuerun functions functions for backwards compatibility. 8448 */ 8449 #undef runqueues 8450 void 8451 runqueues(void) 8452 { 8453 } 8454 8455 #undef queuerun 8456 void 8457 queuerun(void) 8458 { 8459 } 8460