1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/param.h> 33 #include <sys/errno.h> 34 #include <sys/signal.h> 35 #include <sys/proc.h> 36 #include <sys/conf.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/vnode.h> 40 #include <sys/file.h> 41 #include <sys/session.h> 42 #include <sys/stream.h> 43 #include <sys/strsubr.h> 44 #include <sys/stropts.h> 45 #include <sys/poll.h> 46 #include <sys/systm.h> 47 #include <sys/cpuvar.h> 48 #include <sys/uio.h> 49 #include <sys/cmn_err.h> 50 #include <sys/priocntl.h> 51 #include <sys/procset.h> 52 #include <sys/vmem.h> 53 #include <sys/bitmap.h> 54 #include <sys/kmem.h> 55 #include <sys/siginfo.h> 56 #include <sys/vtrace.h> 57 #include <sys/callb.h> 58 #include <sys/debug.h> 59 #include <sys/modctl.h> 60 #include <sys/vmsystm.h> 61 #include <vm/page.h> 62 #include <sys/atomic.h> 63 #include <sys/suntpi.h> 64 #include <sys/strlog.h> 65 #include <sys/promif.h> 66 #include <sys/project.h> 67 #include <sys/vm.h> 68 #include <sys/taskq.h> 69 #include <sys/sunddi.h> 70 #include <sys/sunldi_impl.h> 71 #include <sys/strsun.h> 72 #include <sys/isa_defs.h> 73 #include <sys/multidata.h> 74 #include <sys/pattr.h> 75 #include <sys/strft.h> 76 #include <sys/fs/snode.h> 77 #include <sys/zone.h> 78 #include <sys/open.h> 79 #include <sys/sunldi.h> 80 #include <sys/sad.h> 81 #include <sys/netstack.h> 82 83 #define O_SAMESTR(q) (((q)->q_next) && \ 84 (((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR))) 85 86 /* 87 * WARNING: 88 * The variables and routines in this file are private, belonging 89 * to the STREAMS subsystem. These should not be used by modules 90 * or drivers. Compatibility will not be guaranteed. 91 */ 92 93 /* 94 * Id value used to distinguish between different multiplexor links. 95 */ 96 static int32_t lnk_id = 0; 97 98 #define STREAMS_LOPRI MINCLSYSPRI 99 static pri_t streams_lopri = STREAMS_LOPRI; 100 101 #define STRSTAT(x) (str_statistics.x.value.ui64++) 102 typedef struct str_stat { 103 kstat_named_t sqenables; 104 kstat_named_t stenables; 105 kstat_named_t syncqservice; 106 kstat_named_t freebs; 107 kstat_named_t qwr_outer; 108 kstat_named_t rservice; 109 kstat_named_t strwaits; 110 kstat_named_t taskqfails; 111 kstat_named_t bufcalls; 112 kstat_named_t qhelps; 113 kstat_named_t qremoved; 114 kstat_named_t sqremoved; 115 kstat_named_t bcwaits; 116 kstat_named_t sqtoomany; 117 } str_stat_t; 118 119 static str_stat_t str_statistics = { 120 { "sqenables", KSTAT_DATA_UINT64 }, 121 { "stenables", KSTAT_DATA_UINT64 }, 122 { "syncqservice", KSTAT_DATA_UINT64 }, 123 { "freebs", KSTAT_DATA_UINT64 }, 124 { "qwr_outer", KSTAT_DATA_UINT64 }, 125 { "rservice", KSTAT_DATA_UINT64 }, 126 { "strwaits", KSTAT_DATA_UINT64 }, 127 { "taskqfails", KSTAT_DATA_UINT64 }, 128 { "bufcalls", KSTAT_DATA_UINT64 }, 129 { "qhelps", KSTAT_DATA_UINT64 }, 130 { "qremoved", KSTAT_DATA_UINT64 }, 131 { "sqremoved", KSTAT_DATA_UINT64 }, 132 { "bcwaits", KSTAT_DATA_UINT64 }, 133 { "sqtoomany", KSTAT_DATA_UINT64 }, 134 }; 135 136 static kstat_t *str_kstat; 137 138 /* 139 * qrunflag was used previously to control background scheduling of queues. It 140 * is not used anymore, but kept here in case some module still wants to access 141 * it via qready() and setqsched macros. 142 */ 143 char qrunflag; /* Unused */ 144 145 /* 146 * Most of the streams scheduling is done via task queues. Task queues may fail 147 * for non-sleep dispatches, so there are two backup threads servicing failed 148 * requests for queues and syncqs. Both of these threads also service failed 149 * dispatches freebs requests. Queues are put in the list specified by `qhead' 150 * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs 151 * requests are put into `freebs_list' which has no tail pointer. All three 152 * lists are protected by a single `service_queue' lock and use 153 * `services_to_run' condition variable for signaling background threads. Use of 154 * a single lock should not be a problem because it is only used under heavy 155 * loads when task queues start to fail and at that time it may be a good idea 156 * to throttle scheduling requests. 157 * 158 * NOTE: queues and syncqs should be scheduled by two separate threads because 159 * queue servicing may be blocked waiting for a syncq which may be also 160 * scheduled for background execution. This may create a deadlock when only one 161 * thread is used for both. 162 */ 163 164 static taskq_t *streams_taskq; /* Used for most STREAMS scheduling */ 165 166 static kmutex_t service_queue; /* protects all of servicing vars */ 167 static kcondvar_t services_to_run; /* wake up background service thread */ 168 static kcondvar_t syncqs_to_run; /* wake up background service thread */ 169 170 /* 171 * List of queues scheduled for background processing dueue to lack of resources 172 * in the task queues. Protected by service_queue lock; 173 */ 174 static struct queue *qhead; 175 static struct queue *qtail; 176 177 /* 178 * Same list for syncqs 179 */ 180 static syncq_t *sqhead; 181 static syncq_t *sqtail; 182 183 static mblk_t *freebs_list; /* list of buffers to free */ 184 185 /* 186 * Backup threads for servicing queues and syncqs 187 */ 188 kthread_t *streams_qbkgrnd_thread; 189 kthread_t *streams_sqbkgrnd_thread; 190 191 /* 192 * Bufcalls related variables. 193 */ 194 struct bclist strbcalls; /* list of waiting bufcalls */ 195 kmutex_t strbcall_lock; /* protects bufcall list (strbcalls) */ 196 kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */ 197 kmutex_t bcall_monitor; /* sleep/wakeup style monitor */ 198 kcondvar_t bcall_cv; /* wait 'till executing bufcall completes */ 199 kthread_t *bc_bkgrnd_thread; /* Thread to service bufcall requests */ 200 201 kmutex_t strresources; /* protects global resources */ 202 kmutex_t muxifier; /* single-threads multiplexor creation */ 203 204 static void *str_stack_init(netstackid_t stackid, netstack_t *ns); 205 static void str_stack_shutdown(netstackid_t stackid, void *arg); 206 static void str_stack_fini(netstackid_t stackid, void *arg); 207 208 extern void time_to_wait(clock_t *, clock_t); 209 210 /* 211 * run_queues is no longer used, but is kept in case some 3-d party 212 * module/driver decides to use it. 213 */ 214 int run_queues = 0; 215 216 /* 217 * sq_max_size is the depth of the syncq (in number of messages) before 218 * qfill_syncq() starts QFULL'ing destination queues. As its primary 219 * consumer - IP is no longer D_MTPERMOD, but there may be other 220 * modules/drivers depend on this syncq flow control, we prefer to 221 * choose a large number as the default value. For potential 222 * performance gain, this value is tunable in /etc/system. 223 */ 224 int sq_max_size = 10000; 225 226 /* 227 * the number of ciputctrl structures per syncq and stream we create when 228 * needed. 229 */ 230 int n_ciputctrl; 231 int max_n_ciputctrl = 16; 232 /* 233 * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache. 234 */ 235 int min_n_ciputctrl = 2; 236 237 /* 238 * Per-driver/module syncqs 239 * ======================== 240 * 241 * For drivers/modules that use PERMOD or outer syncqs we keep a list of 242 * perdm structures, new entries being added (and new syncqs allocated) when 243 * setq() encounters a module/driver with a streamtab that it hasn't seen 244 * before. 245 * The reason for this mechanism is that some modules and drivers share a 246 * common streamtab and it is necessary for those modules and drivers to also 247 * share a common PERMOD syncq. 248 * 249 * perdm_list --> dm_str == streamtab_1 250 * dm_sq == syncq_1 251 * dm_ref 252 * dm_next --> dm_str == streamtab_2 253 * dm_sq == syncq_2 254 * dm_ref 255 * dm_next --> ... NULL 256 * 257 * The dm_ref field is incremented for each new driver/module that takes 258 * a reference to the perdm structure and hence shares the syncq. 259 * References are held in the fmodsw_impl_t structure for each STREAMS module 260 * or the dev_impl array (indexed by device major number) for each driver. 261 * 262 * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL 263 * ^ ^ ^ ^ 264 * | ______________/ | | 265 * | / | | 266 * dev_impl: ...|x|y|... module A module B 267 * 268 * When a module/driver is unloaded the reference count is decremented and, 269 * when it falls to zero, the perdm structure is removed from the list and 270 * the syncq is freed (see rele_dm()). 271 */ 272 perdm_t *perdm_list = NULL; 273 static krwlock_t perdm_rwlock; 274 cdevsw_impl_t *devimpl; 275 276 extern struct qinit strdata; 277 extern struct qinit stwdata; 278 279 static void runservice(queue_t *); 280 static void streams_bufcall_service(void); 281 static void streams_qbkgrnd_service(void); 282 static void streams_sqbkgrnd_service(void); 283 static syncq_t *new_syncq(void); 284 static void free_syncq(syncq_t *); 285 static void outer_insert(syncq_t *, syncq_t *); 286 static void outer_remove(syncq_t *, syncq_t *); 287 static void write_now(syncq_t *); 288 static void clr_qfull(queue_t *); 289 static void runbufcalls(void); 290 static void sqenable(syncq_t *); 291 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)()); 292 static void wait_q_syncq(queue_t *); 293 static void backenable_insertedq(queue_t *); 294 295 static void queue_service(queue_t *); 296 static void stream_service(stdata_t *); 297 static void syncq_service(syncq_t *); 298 static void qwriter_outer_service(syncq_t *); 299 static void mblk_free(mblk_t *); 300 #ifdef DEBUG 301 static int qprocsareon(queue_t *); 302 #endif 303 304 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *); 305 static void reset_nfsrv_ptr(queue_t *, queue_t *); 306 void set_qfull(queue_t *); 307 308 static void sq_run_events(syncq_t *); 309 static int propagate_syncq(queue_t *); 310 311 static void blocksq(syncq_t *, ushort_t, int); 312 static void unblocksq(syncq_t *, ushort_t, int); 313 static int dropsq(syncq_t *, uint16_t); 314 static void emptysq(syncq_t *); 315 static sqlist_t *sqlist_alloc(struct stdata *, int); 316 static void sqlist_free(sqlist_t *); 317 static sqlist_t *sqlist_build(queue_t *, struct stdata *, boolean_t); 318 static void sqlist_insert(sqlist_t *, syncq_t *); 319 static void sqlist_insertall(sqlist_t *, queue_t *); 320 321 static void strsetuio(stdata_t *); 322 323 struct kmem_cache *stream_head_cache; 324 struct kmem_cache *queue_cache; 325 struct kmem_cache *syncq_cache; 326 struct kmem_cache *qband_cache; 327 struct kmem_cache *linkinfo_cache; 328 struct kmem_cache *ciputctrl_cache = NULL; 329 330 static linkinfo_t *linkinfo_list; 331 332 /* global esballoc throttling queue */ 333 static esb_queue_t system_esbq; 334 335 /* 336 * esballoc tunable parameters. 337 */ 338 int esbq_max_qlen = 0x16; /* throttled queue length */ 339 clock_t esbq_timeout = 0x8; /* timeout to process esb queue */ 340 341 /* 342 * routines to handle esballoc queuing. 343 */ 344 static void esballoc_process_queue(esb_queue_t *); 345 static void esballoc_enqueue_mblk(mblk_t *); 346 static void esballoc_timer(void *); 347 static void esballoc_set_timer(esb_queue_t *, clock_t); 348 static void esballoc_mblk_free(mblk_t *); 349 350 /* 351 * Qinit structure and Module_info structures 352 * for passthru read and write queues 353 */ 354 355 static void pass_wput(queue_t *, mblk_t *); 356 static queue_t *link_addpassthru(stdata_t *); 357 static void link_rempassthru(queue_t *); 358 359 struct module_info passthru_info = { 360 0, 361 "passthru", 362 0, 363 INFPSZ, 364 STRHIGH, 365 STRLOW 366 }; 367 368 struct qinit passthru_rinit = { 369 (int (*)())putnext, 370 NULL, 371 NULL, 372 NULL, 373 NULL, 374 &passthru_info, 375 NULL 376 }; 377 378 struct qinit passthru_winit = { 379 (int (*)()) pass_wput, 380 NULL, 381 NULL, 382 NULL, 383 NULL, 384 &passthru_info, 385 NULL 386 }; 387 388 /* 389 * Special form of assertion: verify that X implies Y i.e. when X is true Y 390 * should also be true. 391 */ 392 #define IMPLY(X, Y) ASSERT(!(X) || (Y)) 393 394 /* 395 * Logical equivalence. Verify that both X and Y are either TRUE or FALSE. 396 */ 397 #define EQUIV(X, Y) { IMPLY(X, Y); IMPLY(Y, X); } 398 399 /* 400 * Verify correctness of list head/tail pointers. 401 */ 402 #define LISTCHECK(head, tail, link) { \ 403 EQUIV(head, tail); \ 404 IMPLY(tail != NULL, tail->link == NULL); \ 405 } 406 407 /* 408 * Enqueue a list element `el' in the end of a list denoted by `head' and `tail' 409 * using a `link' field. 410 */ 411 #define ENQUEUE(el, head, tail, link) { \ 412 ASSERT(el->link == NULL); \ 413 LISTCHECK(head, tail, link); \ 414 if (head == NULL) \ 415 head = el; \ 416 else \ 417 tail->link = el; \ 418 tail = el; \ 419 } 420 421 /* 422 * Dequeue the first element of the list denoted by `head' and `tail' pointers 423 * using a `link' field and put result into `el'. 424 */ 425 #define DQ(el, head, tail, link) { \ 426 LISTCHECK(head, tail, link); \ 427 el = head; \ 428 if (head != NULL) { \ 429 head = head->link; \ 430 if (head == NULL) \ 431 tail = NULL; \ 432 el->link = NULL; \ 433 } \ 434 } 435 436 /* 437 * Remove `el' from the list using `chase' and `curr' pointers and return result 438 * in `succeed'. 439 */ 440 #define RMQ(el, head, tail, link, chase, curr, succeed) { \ 441 LISTCHECK(head, tail, link); \ 442 chase = NULL; \ 443 succeed = 0; \ 444 for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \ 445 chase = curr; \ 446 if (curr != NULL) { \ 447 succeed = 1; \ 448 ASSERT(curr == el); \ 449 if (chase != NULL) \ 450 chase->link = curr->link; \ 451 else \ 452 head = curr->link; \ 453 curr->link = NULL; \ 454 if (curr == tail) \ 455 tail = chase; \ 456 } \ 457 LISTCHECK(head, tail, link); \ 458 } 459 460 /* Handling of delayed messages on the inner syncq. */ 461 462 /* 463 * DEBUG versions should use function versions (to simplify tracing) and 464 * non-DEBUG kernels should use macro versions. 465 */ 466 467 /* 468 * Put a queue on the syncq list of queues. 469 * Assumes SQLOCK held. 470 */ 471 #define SQPUT_Q(sq, qp) \ 472 { \ 473 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 474 if (!(qp->q_sqflags & Q_SQQUEUED)) { \ 475 /* The queue should not be linked anywhere */ \ 476 ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \ 477 /* Head and tail may only be NULL simultaneously */ \ 478 EQUIV(sq->sq_head, sq->sq_tail); \ 479 /* Queue may be only enqueyed on its syncq */ \ 480 ASSERT(sq == qp->q_syncq); \ 481 /* Check the correctness of SQ_MESSAGES flag */ \ 482 EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES)); \ 483 /* Sanity check first/last elements of the list */ \ 484 IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\ 485 IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\ 486 /* \ 487 * Sanity check of priority field: empty queue should \ 488 * have zero priority \ 489 * and nqueues equal to zero. \ 490 */ \ 491 IMPLY(sq->sq_head == NULL, sq->sq_pri == 0); \ 492 /* Sanity check of sq_nqueues field */ \ 493 EQUIV(sq->sq_head, sq->sq_nqueues); \ 494 if (sq->sq_head == NULL) { \ 495 sq->sq_head = sq->sq_tail = qp; \ 496 sq->sq_flags |= SQ_MESSAGES; \ 497 } else if (qp->q_spri == 0) { \ 498 qp->q_sqprev = sq->sq_tail; \ 499 sq->sq_tail->q_sqnext = qp; \ 500 sq->sq_tail = qp; \ 501 } else { \ 502 /* \ 503 * Put this queue in priority order: higher \ 504 * priority gets closer to the head. \ 505 */ \ 506 queue_t **qpp = &sq->sq_tail; \ 507 queue_t *qnext = NULL; \ 508 \ 509 while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \ 510 qnext = *qpp; \ 511 qpp = &(*qpp)->q_sqprev; \ 512 } \ 513 qp->q_sqnext = qnext; \ 514 qp->q_sqprev = *qpp; \ 515 if (*qpp != NULL) { \ 516 (*qpp)->q_sqnext = qp; \ 517 } else { \ 518 sq->sq_head = qp; \ 519 sq->sq_pri = sq->sq_head->q_spri; \ 520 } \ 521 *qpp = qp; \ 522 } \ 523 qp->q_sqflags |= Q_SQQUEUED; \ 524 qp->q_sqtstamp = lbolt; \ 525 sq->sq_nqueues++; \ 526 } \ 527 } 528 529 /* 530 * Remove a queue from the syncq list 531 * Assumes SQLOCK held. 532 */ 533 #define SQRM_Q(sq, qp) \ 534 { \ 535 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 536 ASSERT(qp->q_sqflags & Q_SQQUEUED); \ 537 ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL); \ 538 ASSERT((sq->sq_flags & SQ_MESSAGES) != 0); \ 539 /* Check that the queue is actually in the list */ \ 540 ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp); \ 541 ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp); \ 542 ASSERT(sq->sq_nqueues != 0); \ 543 if (qp->q_sqprev == NULL) { \ 544 /* First queue on list, make head q_sqnext */ \ 545 sq->sq_head = qp->q_sqnext; \ 546 } else { \ 547 /* Make prev->next == next */ \ 548 qp->q_sqprev->q_sqnext = qp->q_sqnext; \ 549 } \ 550 if (qp->q_sqnext == NULL) { \ 551 /* Last queue on list, make tail sqprev */ \ 552 sq->sq_tail = qp->q_sqprev; \ 553 } else { \ 554 /* Make next->prev == prev */ \ 555 qp->q_sqnext->q_sqprev = qp->q_sqprev; \ 556 } \ 557 /* clear out references on this queue */ \ 558 qp->q_sqprev = qp->q_sqnext = NULL; \ 559 qp->q_sqflags &= ~Q_SQQUEUED; \ 560 /* If there is nothing queued, clear SQ_MESSAGES */ \ 561 if (sq->sq_head != NULL) { \ 562 sq->sq_pri = sq->sq_head->q_spri; \ 563 } else { \ 564 sq->sq_flags &= ~SQ_MESSAGES; \ 565 sq->sq_pri = 0; \ 566 } \ 567 sq->sq_nqueues--; \ 568 ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL || \ 569 (sq->sq_flags & SQ_QUEUED) == 0); \ 570 } 571 572 /* Hide the definition from the header file. */ 573 #ifdef SQPUT_MP 574 #undef SQPUT_MP 575 #endif 576 577 /* 578 * Put a message on the queue syncq. 579 * Assumes QLOCK held. 580 */ 581 #define SQPUT_MP(qp, mp) \ 582 { \ 583 ASSERT(MUTEX_HELD(QLOCK(qp))); \ 584 ASSERT(qp->q_sqhead == NULL || \ 585 (qp->q_sqtail != NULL && \ 586 qp->q_sqtail->b_next == NULL)); \ 587 qp->q_syncqmsgs++; \ 588 ASSERT(qp->q_syncqmsgs != 0); /* Wraparound */ \ 589 if (qp->q_sqhead == NULL) { \ 590 qp->q_sqhead = qp->q_sqtail = mp; \ 591 } else { \ 592 qp->q_sqtail->b_next = mp; \ 593 qp->q_sqtail = mp; \ 594 } \ 595 ASSERT(qp->q_syncqmsgs > 0); \ 596 set_qfull(qp); \ 597 } 598 599 #define SQ_PUTCOUNT_SETFAST_LOCKED(sq) { \ 600 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 601 if ((sq)->sq_ciputctrl != NULL) { \ 602 int i; \ 603 int nlocks = (sq)->sq_nciputctrl; \ 604 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 605 ASSERT((sq)->sq_type & SQ_CIPUT); \ 606 for (i = 0; i <= nlocks; i++) { \ 607 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 608 cip[i].ciputctrl_count |= SQ_FASTPUT; \ 609 } \ 610 } \ 611 } 612 613 614 #define SQ_PUTCOUNT_CLRFAST_LOCKED(sq) { \ 615 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 616 if ((sq)->sq_ciputctrl != NULL) { \ 617 int i; \ 618 int nlocks = (sq)->sq_nciputctrl; \ 619 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 620 ASSERT((sq)->sq_type & SQ_CIPUT); \ 621 for (i = 0; i <= nlocks; i++) { \ 622 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 623 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \ 624 } \ 625 } \ 626 } 627 628 /* 629 * Run service procedures for all queues in the stream head. 630 */ 631 #define STR_SERVICE(stp, q) { \ 632 ASSERT(MUTEX_HELD(&stp->sd_qlock)); \ 633 while (stp->sd_qhead != NULL) { \ 634 DQ(q, stp->sd_qhead, stp->sd_qtail, q_link); \ 635 ASSERT(stp->sd_nqueues > 0); \ 636 stp->sd_nqueues--; \ 637 ASSERT(!(q->q_flag & QINSERVICE)); \ 638 mutex_exit(&stp->sd_qlock); \ 639 queue_service(q); \ 640 mutex_enter(&stp->sd_qlock); \ 641 } \ 642 ASSERT(stp->sd_nqueues == 0); \ 643 ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL)); \ 644 } 645 646 /* 647 * constructor/destructor routines for the stream head cache 648 */ 649 /* ARGSUSED */ 650 static int 651 stream_head_constructor(void *buf, void *cdrarg, int kmflags) 652 { 653 stdata_t *stp = buf; 654 655 mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 656 mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL); 657 mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL); 658 cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL); 659 cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL); 660 cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL); 661 cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL); 662 cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL); 663 stp->sd_wrq = NULL; 664 665 return (0); 666 } 667 668 /* ARGSUSED */ 669 static void 670 stream_head_destructor(void *buf, void *cdrarg) 671 { 672 stdata_t *stp = buf; 673 674 mutex_destroy(&stp->sd_lock); 675 mutex_destroy(&stp->sd_reflock); 676 mutex_destroy(&stp->sd_qlock); 677 cv_destroy(&stp->sd_monitor); 678 cv_destroy(&stp->sd_iocmonitor); 679 cv_destroy(&stp->sd_refmonitor); 680 cv_destroy(&stp->sd_qcv); 681 cv_destroy(&stp->sd_zcopy_wait); 682 } 683 684 /* 685 * constructor/destructor routines for the queue cache 686 */ 687 /* ARGSUSED */ 688 static int 689 queue_constructor(void *buf, void *cdrarg, int kmflags) 690 { 691 queinfo_t *qip = buf; 692 queue_t *qp = &qip->qu_rqueue; 693 queue_t *wqp = &qip->qu_wqueue; 694 syncq_t *sq = &qip->qu_syncq; 695 696 qp->q_first = NULL; 697 qp->q_link = NULL; 698 qp->q_count = 0; 699 qp->q_mblkcnt = 0; 700 qp->q_sqhead = NULL; 701 qp->q_sqtail = NULL; 702 qp->q_sqnext = NULL; 703 qp->q_sqprev = NULL; 704 qp->q_sqflags = 0; 705 qp->q_rwcnt = 0; 706 qp->q_spri = 0; 707 708 mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL); 709 cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL); 710 711 wqp->q_first = NULL; 712 wqp->q_link = NULL; 713 wqp->q_count = 0; 714 wqp->q_mblkcnt = 0; 715 wqp->q_sqhead = NULL; 716 wqp->q_sqtail = NULL; 717 wqp->q_sqnext = NULL; 718 wqp->q_sqprev = NULL; 719 wqp->q_sqflags = 0; 720 wqp->q_rwcnt = 0; 721 wqp->q_spri = 0; 722 723 mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL); 724 cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL); 725 726 sq->sq_head = NULL; 727 sq->sq_tail = NULL; 728 sq->sq_evhead = NULL; 729 sq->sq_evtail = NULL; 730 sq->sq_callbpend = NULL; 731 sq->sq_outer = NULL; 732 sq->sq_onext = NULL; 733 sq->sq_oprev = NULL; 734 sq->sq_next = NULL; 735 sq->sq_svcflags = 0; 736 sq->sq_servcount = 0; 737 sq->sq_needexcl = 0; 738 sq->sq_nqueues = 0; 739 sq->sq_pri = 0; 740 741 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL); 742 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL); 743 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL); 744 745 return (0); 746 } 747 748 /* ARGSUSED */ 749 static void 750 queue_destructor(void *buf, void *cdrarg) 751 { 752 queinfo_t *qip = buf; 753 queue_t *qp = &qip->qu_rqueue; 754 queue_t *wqp = &qip->qu_wqueue; 755 syncq_t *sq = &qip->qu_syncq; 756 757 ASSERT(qp->q_sqhead == NULL); 758 ASSERT(wqp->q_sqhead == NULL); 759 ASSERT(qp->q_sqnext == NULL); 760 ASSERT(wqp->q_sqnext == NULL); 761 ASSERT(qp->q_rwcnt == 0); 762 ASSERT(wqp->q_rwcnt == 0); 763 764 mutex_destroy(&qp->q_lock); 765 cv_destroy(&qp->q_wait); 766 767 mutex_destroy(&wqp->q_lock); 768 cv_destroy(&wqp->q_wait); 769 770 mutex_destroy(&sq->sq_lock); 771 cv_destroy(&sq->sq_wait); 772 cv_destroy(&sq->sq_exitwait); 773 } 774 775 /* 776 * constructor/destructor routines for the syncq cache 777 */ 778 /* ARGSUSED */ 779 static int 780 syncq_constructor(void *buf, void *cdrarg, int kmflags) 781 { 782 syncq_t *sq = buf; 783 784 bzero(buf, sizeof (syncq_t)); 785 786 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL); 787 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL); 788 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL); 789 790 return (0); 791 } 792 793 /* ARGSUSED */ 794 static void 795 syncq_destructor(void *buf, void *cdrarg) 796 { 797 syncq_t *sq = buf; 798 799 ASSERT(sq->sq_head == NULL); 800 ASSERT(sq->sq_tail == NULL); 801 ASSERT(sq->sq_evhead == NULL); 802 ASSERT(sq->sq_evtail == NULL); 803 ASSERT(sq->sq_callbpend == NULL); 804 ASSERT(sq->sq_callbflags == 0); 805 ASSERT(sq->sq_outer == NULL); 806 ASSERT(sq->sq_onext == NULL); 807 ASSERT(sq->sq_oprev == NULL); 808 ASSERT(sq->sq_next == NULL); 809 ASSERT(sq->sq_needexcl == 0); 810 ASSERT(sq->sq_svcflags == 0); 811 ASSERT(sq->sq_servcount == 0); 812 ASSERT(sq->sq_nqueues == 0); 813 ASSERT(sq->sq_pri == 0); 814 ASSERT(sq->sq_count == 0); 815 ASSERT(sq->sq_rmqcount == 0); 816 ASSERT(sq->sq_cancelid == 0); 817 ASSERT(sq->sq_ciputctrl == NULL); 818 ASSERT(sq->sq_nciputctrl == 0); 819 ASSERT(sq->sq_type == 0); 820 ASSERT(sq->sq_flags == 0); 821 822 mutex_destroy(&sq->sq_lock); 823 cv_destroy(&sq->sq_wait); 824 cv_destroy(&sq->sq_exitwait); 825 } 826 827 /* ARGSUSED */ 828 static int 829 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags) 830 { 831 ciputctrl_t *cip = buf; 832 int i; 833 834 for (i = 0; i < n_ciputctrl; i++) { 835 cip[i].ciputctrl_count = SQ_FASTPUT; 836 mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL); 837 } 838 839 return (0); 840 } 841 842 /* ARGSUSED */ 843 static void 844 ciputctrl_destructor(void *buf, void *cdrarg) 845 { 846 ciputctrl_t *cip = buf; 847 int i; 848 849 for (i = 0; i < n_ciputctrl; i++) { 850 ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT); 851 mutex_destroy(&cip[i].ciputctrl_lock); 852 } 853 } 854 855 /* 856 * Init routine run from main at boot time. 857 */ 858 void 859 strinit(void) 860 { 861 int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus); 862 863 stream_head_cache = kmem_cache_create("stream_head_cache", 864 sizeof (stdata_t), 0, 865 stream_head_constructor, stream_head_destructor, NULL, 866 NULL, NULL, 0); 867 868 queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0, 869 queue_constructor, queue_destructor, NULL, NULL, NULL, 0); 870 871 syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0, 872 syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0); 873 874 qband_cache = kmem_cache_create("qband_cache", 875 sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 876 877 linkinfo_cache = kmem_cache_create("linkinfo_cache", 878 sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 879 880 n_ciputctrl = ncpus; 881 n_ciputctrl = 1 << highbit(n_ciputctrl - 1); 882 ASSERT(n_ciputctrl >= 1); 883 n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl); 884 if (n_ciputctrl >= min_n_ciputctrl) { 885 ciputctrl_cache = kmem_cache_create("ciputctrl_cache", 886 sizeof (ciputctrl_t) * n_ciputctrl, 887 sizeof (ciputctrl_t), ciputctrl_constructor, 888 ciputctrl_destructor, NULL, NULL, NULL, 0); 889 } 890 891 streams_taskq = system_taskq; 892 893 if (streams_taskq == NULL) 894 panic("strinit: no memory for streams taskq!"); 895 896 bc_bkgrnd_thread = thread_create(NULL, 0, 897 streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri); 898 899 streams_qbkgrnd_thread = thread_create(NULL, 0, 900 streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri); 901 902 streams_sqbkgrnd_thread = thread_create(NULL, 0, 903 streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri); 904 905 /* 906 * Create STREAMS kstats. 907 */ 908 str_kstat = kstat_create("streams", 0, "strstat", 909 "net", KSTAT_TYPE_NAMED, 910 sizeof (str_statistics) / sizeof (kstat_named_t), 911 KSTAT_FLAG_VIRTUAL); 912 913 if (str_kstat != NULL) { 914 str_kstat->ks_data = &str_statistics; 915 kstat_install(str_kstat); 916 } 917 918 /* 919 * TPI support routine initialisation. 920 */ 921 tpi_init(); 922 923 /* 924 * Handle to have autopush and persistent link information per 925 * zone. 926 * Note: uses shutdown hook instead of destroy hook so that the 927 * persistent links can be torn down before the destroy hooks 928 * in the TCP/IP stack are called. 929 */ 930 netstack_register(NS_STR, str_stack_init, str_stack_shutdown, 931 str_stack_fini); 932 } 933 934 void 935 str_sendsig(vnode_t *vp, int event, uchar_t band, int error) 936 { 937 struct stdata *stp; 938 939 ASSERT(vp->v_stream); 940 stp = vp->v_stream; 941 /* Have to hold sd_lock to prevent siglist from changing */ 942 mutex_enter(&stp->sd_lock); 943 if (stp->sd_sigflags & event) 944 strsendsig(stp->sd_siglist, event, band, error); 945 mutex_exit(&stp->sd_lock); 946 } 947 948 /* 949 * Send the "sevent" set of signals to a process. 950 * This might send more than one signal if the process is registered 951 * for multiple events. The caller should pass in an sevent that only 952 * includes the events for which the process has registered. 953 */ 954 static void 955 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info, 956 uchar_t band, int error) 957 { 958 ASSERT(MUTEX_HELD(&proc->p_lock)); 959 960 info->si_band = 0; 961 info->si_errno = 0; 962 963 if (sevent & S_ERROR) { 964 sevent &= ~S_ERROR; 965 info->si_code = POLL_ERR; 966 info->si_errno = error; 967 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 968 "strsendsig:proc %p info %p", proc, info); 969 sigaddq(proc, NULL, info, KM_NOSLEEP); 970 info->si_errno = 0; 971 } 972 if (sevent & S_HANGUP) { 973 sevent &= ~S_HANGUP; 974 info->si_code = POLL_HUP; 975 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 976 "strsendsig:proc %p info %p", proc, info); 977 sigaddq(proc, NULL, info, KM_NOSLEEP); 978 } 979 if (sevent & S_HIPRI) { 980 sevent &= ~S_HIPRI; 981 info->si_code = POLL_PRI; 982 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 983 "strsendsig:proc %p info %p", proc, info); 984 sigaddq(proc, NULL, info, KM_NOSLEEP); 985 } 986 if (sevent & S_RDBAND) { 987 sevent &= ~S_RDBAND; 988 if (events & S_BANDURG) 989 sigtoproc(proc, NULL, SIGURG); 990 else 991 sigtoproc(proc, NULL, SIGPOLL); 992 } 993 if (sevent & S_WRBAND) { 994 sevent &= ~S_WRBAND; 995 sigtoproc(proc, NULL, SIGPOLL); 996 } 997 if (sevent & S_INPUT) { 998 sevent &= ~S_INPUT; 999 info->si_code = POLL_IN; 1000 info->si_band = band; 1001 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 1002 "strsendsig:proc %p info %p", proc, info); 1003 sigaddq(proc, NULL, info, KM_NOSLEEP); 1004 info->si_band = 0; 1005 } 1006 if (sevent & S_OUTPUT) { 1007 sevent &= ~S_OUTPUT; 1008 info->si_code = POLL_OUT; 1009 info->si_band = band; 1010 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 1011 "strsendsig:proc %p info %p", proc, info); 1012 sigaddq(proc, NULL, info, KM_NOSLEEP); 1013 info->si_band = 0; 1014 } 1015 if (sevent & S_MSG) { 1016 sevent &= ~S_MSG; 1017 info->si_code = POLL_MSG; 1018 info->si_band = band; 1019 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 1020 "strsendsig:proc %p info %p", proc, info); 1021 sigaddq(proc, NULL, info, KM_NOSLEEP); 1022 info->si_band = 0; 1023 } 1024 if (sevent & S_RDNORM) { 1025 sevent &= ~S_RDNORM; 1026 sigtoproc(proc, NULL, SIGPOLL); 1027 } 1028 if (sevent != 0) { 1029 panic("strsendsig: unknown event(s) %x", sevent); 1030 } 1031 } 1032 1033 /* 1034 * Send SIGPOLL/SIGURG signal to all processes and process groups 1035 * registered on the given signal list that want a signal for at 1036 * least one of the specified events. 1037 * 1038 * Must be called with exclusive access to siglist (caller holding sd_lock). 1039 * 1040 * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding 1041 * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure 1042 * while it is in the siglist. 1043 * 1044 * For performance reasons (MP scalability) the code drops pidlock 1045 * when sending signals to a single process. 1046 * When sending to a process group the code holds 1047 * pidlock to prevent the membership in the process group from changing 1048 * while walking the p_pglink list. 1049 */ 1050 void 1051 strsendsig(strsig_t *siglist, int event, uchar_t band, int error) 1052 { 1053 strsig_t *ssp; 1054 k_siginfo_t info; 1055 struct pid *pidp; 1056 proc_t *proc; 1057 1058 info.si_signo = SIGPOLL; 1059 info.si_errno = 0; 1060 for (ssp = siglist; ssp; ssp = ssp->ss_next) { 1061 int sevent; 1062 1063 sevent = ssp->ss_events & event; 1064 if (sevent == 0) 1065 continue; 1066 1067 if ((pidp = ssp->ss_pidp) == NULL) { 1068 /* pid was released but still on event list */ 1069 continue; 1070 } 1071 1072 1073 if (ssp->ss_pid > 0) { 1074 /* 1075 * XXX This unfortunately still generates 1076 * a signal when a fd is closed but 1077 * the proc is active. 1078 */ 1079 ASSERT(ssp->ss_pid == pidp->pid_id); 1080 1081 mutex_enter(&pidlock); 1082 proc = prfind_zone(pidp->pid_id, ALL_ZONES); 1083 if (proc == NULL) { 1084 mutex_exit(&pidlock); 1085 continue; 1086 } 1087 mutex_enter(&proc->p_lock); 1088 mutex_exit(&pidlock); 1089 dosendsig(proc, ssp->ss_events, sevent, &info, 1090 band, error); 1091 mutex_exit(&proc->p_lock); 1092 } else { 1093 /* 1094 * Send to process group. Hold pidlock across 1095 * calls to dosendsig(). 1096 */ 1097 pid_t pgrp = -ssp->ss_pid; 1098 1099 mutex_enter(&pidlock); 1100 proc = pgfind_zone(pgrp, ALL_ZONES); 1101 while (proc != NULL) { 1102 mutex_enter(&proc->p_lock); 1103 dosendsig(proc, ssp->ss_events, sevent, 1104 &info, band, error); 1105 mutex_exit(&proc->p_lock); 1106 proc = proc->p_pglink; 1107 } 1108 mutex_exit(&pidlock); 1109 } 1110 } 1111 } 1112 1113 /* 1114 * Attach a stream device or module. 1115 * qp is a read queue; the new queue goes in so its next 1116 * read ptr is the argument, and the write queue corresponding 1117 * to the argument points to this queue. Return 0 on success, 1118 * or a non-zero errno on failure. 1119 */ 1120 int 1121 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp, 1122 boolean_t is_insert) 1123 { 1124 major_t major; 1125 cdevsw_impl_t *dp; 1126 struct streamtab *str; 1127 queue_t *rq; 1128 queue_t *wrq; 1129 uint32_t qflag; 1130 uint32_t sqtype; 1131 perdm_t *dmp; 1132 int error; 1133 int sflag; 1134 1135 rq = allocq(); 1136 wrq = _WR(rq); 1137 STREAM(rq) = STREAM(wrq) = STREAM(qp); 1138 1139 if (fp != NULL) { 1140 str = fp->f_str; 1141 qflag = fp->f_qflag; 1142 sqtype = fp->f_sqtype; 1143 dmp = fp->f_dmp; 1144 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL); 1145 sflag = MODOPEN; 1146 1147 /* 1148 * stash away a pointer to the module structure so we can 1149 * unref it in qdetach. 1150 */ 1151 rq->q_fp = fp; 1152 } else { 1153 ASSERT(!is_insert); 1154 1155 major = getmajor(*devp); 1156 dp = &devimpl[major]; 1157 1158 str = dp->d_str; 1159 ASSERT(str == STREAMSTAB(major)); 1160 1161 qflag = dp->d_qflag; 1162 ASSERT(qflag & QISDRV); 1163 sqtype = dp->d_sqtype; 1164 1165 /* create perdm_t if needed */ 1166 if (NEED_DM(dp->d_dmp, qflag)) 1167 dp->d_dmp = hold_dm(str, qflag, sqtype); 1168 1169 dmp = dp->d_dmp; 1170 sflag = 0; 1171 } 1172 1173 TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS, 1174 "qattach:qflag == %X(%X)", qflag, *devp); 1175 1176 /* setq might sleep in allocator - avoid holding locks. */ 1177 setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE); 1178 1179 /* 1180 * Before calling the module's open routine, set up the q_next 1181 * pointer for inserting a module in the middle of a stream. 1182 * 1183 * Note that we can always set _QINSERTING and set up q_next 1184 * pointer for both inserting and pushing a module. Then there 1185 * is no need for the is_insert parameter. In insertq(), called 1186 * by qprocson(), assume that q_next of the new module always points 1187 * to the correct queue and use it for insertion. Everything should 1188 * work out fine. But in the first release of _I_INSERT, we 1189 * distinguish between inserting and pushing to make sure that 1190 * pushing a module follows the same code path as before. 1191 */ 1192 if (is_insert) { 1193 rq->q_flag |= _QINSERTING; 1194 rq->q_next = qp; 1195 } 1196 1197 /* 1198 * If there is an outer perimeter get exclusive access during 1199 * the open procedure. Bump up the reference count on the queue. 1200 */ 1201 entersq(rq->q_syncq, SQ_OPENCLOSE); 1202 error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp); 1203 if (error != 0) 1204 goto failed; 1205 leavesq(rq->q_syncq, SQ_OPENCLOSE); 1206 ASSERT(qprocsareon(rq)); 1207 return (0); 1208 1209 failed: 1210 rq->q_flag &= ~_QINSERTING; 1211 if (backq(wrq) != NULL && backq(wrq)->q_next == wrq) 1212 qprocsoff(rq); 1213 leavesq(rq->q_syncq, SQ_OPENCLOSE); 1214 rq->q_next = wrq->q_next = NULL; 1215 qdetach(rq, 0, 0, crp, B_FALSE); 1216 return (error); 1217 } 1218 1219 /* 1220 * Handle second open of stream. For modules, set the 1221 * last argument to MODOPEN and do not pass any open flags. 1222 * Ignore dummydev since this is not the first open. 1223 */ 1224 int 1225 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp) 1226 { 1227 int error; 1228 dev_t dummydev; 1229 queue_t *wqp = _WR(qp); 1230 1231 ASSERT(qp->q_flag & QREADR); 1232 entersq(qp->q_syncq, SQ_OPENCLOSE); 1233 1234 dummydev = *devp; 1235 if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev, 1236 (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) { 1237 leavesq(qp->q_syncq, SQ_OPENCLOSE); 1238 mutex_enter(&STREAM(qp)->sd_lock); 1239 qp->q_stream->sd_flag |= STREOPENFAIL; 1240 mutex_exit(&STREAM(qp)->sd_lock); 1241 return (error); 1242 } 1243 leavesq(qp->q_syncq, SQ_OPENCLOSE); 1244 1245 /* 1246 * successful open should have done qprocson() 1247 */ 1248 ASSERT(qprocsareon(_RD(qp))); 1249 return (0); 1250 } 1251 1252 /* 1253 * Detach a stream module or device. 1254 * If clmode == 1 then the module or driver was opened and its 1255 * close routine must be called. If clmode == 0, the module 1256 * or driver was never opened or the open failed, and so its close 1257 * should not be called. 1258 */ 1259 void 1260 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove) 1261 { 1262 queue_t *wqp = _WR(qp); 1263 ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB)); 1264 1265 if (STREAM_NEEDSERVICE(STREAM(qp))) 1266 stream_runservice(STREAM(qp)); 1267 1268 if (clmode) { 1269 /* 1270 * Make sure that all the messages on the write side syncq are 1271 * processed and nothing is left. Since we are closing, no new 1272 * messages may appear there. 1273 */ 1274 wait_q_syncq(wqp); 1275 1276 entersq(qp->q_syncq, SQ_OPENCLOSE); 1277 if (is_remove) { 1278 mutex_enter(QLOCK(qp)); 1279 qp->q_flag |= _QREMOVING; 1280 mutex_exit(QLOCK(qp)); 1281 } 1282 (*qp->q_qinfo->qi_qclose)(qp, flag, crp); 1283 /* 1284 * Check that qprocsoff() was actually called. 1285 */ 1286 ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE)); 1287 1288 leavesq(qp->q_syncq, SQ_OPENCLOSE); 1289 } else { 1290 disable_svc(qp); 1291 } 1292 1293 /* 1294 * Allow any threads blocked in entersq to proceed and discover 1295 * the QWCLOSE is set. 1296 * Note: This assumes that all users of entersq check QWCLOSE. 1297 * Currently runservice is the only entersq that can happen 1298 * after removeq has finished. 1299 * Removeq will have discarded all messages destined to the closing 1300 * pair of queues from the syncq. 1301 * NOTE: Calling a function inside an assert is unconventional. 1302 * However, it does not cause any problem since flush_syncq() does 1303 * not change any state except when it returns non-zero i.e. 1304 * when the assert will trigger. 1305 */ 1306 ASSERT(flush_syncq(qp->q_syncq, qp) == 0); 1307 ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0); 1308 ASSERT((qp->q_flag & QPERMOD) || 1309 ((qp->q_syncq->sq_head == NULL) && 1310 (wqp->q_syncq->sq_head == NULL))); 1311 1312 /* release any fmodsw_impl_t structure held on behalf of the queue */ 1313 ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV); 1314 if (qp->q_fp != NULL) 1315 fmodsw_rele(qp->q_fp); 1316 1317 /* freeq removes us from the outer perimeter if any */ 1318 freeq(qp); 1319 } 1320 1321 /* Prevent service procedures from being called */ 1322 void 1323 disable_svc(queue_t *qp) 1324 { 1325 queue_t *wqp = _WR(qp); 1326 1327 ASSERT(qp->q_flag & QREADR); 1328 mutex_enter(QLOCK(qp)); 1329 qp->q_flag |= QWCLOSE; 1330 mutex_exit(QLOCK(qp)); 1331 mutex_enter(QLOCK(wqp)); 1332 wqp->q_flag |= QWCLOSE; 1333 mutex_exit(QLOCK(wqp)); 1334 } 1335 1336 /* allow service procedures to be called again */ 1337 void 1338 enable_svc(queue_t *qp) 1339 { 1340 queue_t *wqp = _WR(qp); 1341 1342 ASSERT(qp->q_flag & QREADR); 1343 mutex_enter(QLOCK(qp)); 1344 qp->q_flag &= ~QWCLOSE; 1345 mutex_exit(QLOCK(qp)); 1346 mutex_enter(QLOCK(wqp)); 1347 wqp->q_flag &= ~QWCLOSE; 1348 mutex_exit(QLOCK(wqp)); 1349 } 1350 1351 /* 1352 * Remove queue from qhead/qtail if it is enabled. 1353 * Only reset QENAB if the queue was removed from the runlist. 1354 * A queue goes through 3 stages: 1355 * It is on the service list and QENAB is set. 1356 * It is removed from the service list but QENAB is still set. 1357 * QENAB gets changed to QINSERVICE. 1358 * QINSERVICE is reset (when the service procedure is done) 1359 * Thus we can not reset QENAB unless we actually removed it from the service 1360 * queue. 1361 */ 1362 void 1363 remove_runlist(queue_t *qp) 1364 { 1365 if (qp->q_flag & QENAB && qhead != NULL) { 1366 queue_t *q_chase; 1367 queue_t *q_curr; 1368 int removed; 1369 1370 mutex_enter(&service_queue); 1371 RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed); 1372 mutex_exit(&service_queue); 1373 if (removed) { 1374 STRSTAT(qremoved); 1375 qp->q_flag &= ~QENAB; 1376 } 1377 } 1378 } 1379 1380 1381 /* 1382 * wait for any pending service processing to complete. 1383 * The removal of queues from the runlist is not atomic with the 1384 * clearing of the QENABLED flag and setting the INSERVICE flag. 1385 * consequently it is possible for remove_runlist in strclose 1386 * to not find the queue on the runlist but for it to be QENABLED 1387 * and not yet INSERVICE -> hence wait_svc needs to check QENABLED 1388 * as well as INSERVICE. 1389 */ 1390 void 1391 wait_svc(queue_t *qp) 1392 { 1393 queue_t *wqp = _WR(qp); 1394 1395 ASSERT(qp->q_flag & QREADR); 1396 1397 /* 1398 * Try to remove queues from qhead/qtail list. 1399 */ 1400 if (qhead != NULL) { 1401 remove_runlist(qp); 1402 remove_runlist(wqp); 1403 } 1404 /* 1405 * Wait till the syncqs associated with the queue 1406 * will dissapear from background processing list. 1407 * This only needs to be done for non-PERMOD perimeters since 1408 * for PERMOD perimeters the syncq may be shared and will only be freed 1409 * when the last module/driver is unloaded. 1410 * If for PERMOD perimeters queue was on the syncq list, removeq() 1411 * should call propagate_syncq() or drain_syncq() for it. Both of these 1412 * function remove the queue from its syncq list, so sqthread will not 1413 * try to access the queue. 1414 */ 1415 if (!(qp->q_flag & QPERMOD)) { 1416 syncq_t *rsq = qp->q_syncq; 1417 syncq_t *wsq = wqp->q_syncq; 1418 1419 /* 1420 * Disable rsq and wsq and wait for any background processing of 1421 * syncq to complete. 1422 */ 1423 wait_sq_svc(rsq); 1424 if (wsq != rsq) 1425 wait_sq_svc(wsq); 1426 } 1427 1428 mutex_enter(QLOCK(qp)); 1429 while (qp->q_flag & (QINSERVICE|QENAB)) 1430 cv_wait(&qp->q_wait, QLOCK(qp)); 1431 mutex_exit(QLOCK(qp)); 1432 mutex_enter(QLOCK(wqp)); 1433 while (wqp->q_flag & (QINSERVICE|QENAB)) 1434 cv_wait(&wqp->q_wait, QLOCK(wqp)); 1435 mutex_exit(QLOCK(wqp)); 1436 } 1437 1438 /* 1439 * Put ioctl data from userland buffer `arg' into the mblk chain `bp'. 1440 * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may 1441 * also be set, and is passed through to allocb_cred_wait(). 1442 * 1443 * Returns errno on failure, zero on success. 1444 */ 1445 int 1446 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr) 1447 { 1448 mblk_t *tmp; 1449 ssize_t count; 1450 int error = 0; 1451 1452 ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K || 1453 (flag & (U_TO_K | K_TO_K)) == K_TO_K); 1454 1455 if (bp->b_datap->db_type == M_IOCTL) { 1456 count = ((struct iocblk *)bp->b_rptr)->ioc_count; 1457 } else { 1458 ASSERT(bp->b_datap->db_type == M_COPYIN); 1459 count = ((struct copyreq *)bp->b_rptr)->cq_size; 1460 } 1461 /* 1462 * strdoioctl validates ioc_count, so if this assert fails it 1463 * cannot be due to user error. 1464 */ 1465 ASSERT(count >= 0); 1466 1467 if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr, 1468 curproc->p_pid)) == NULL) { 1469 return (error); 1470 } 1471 error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K)); 1472 if (error != 0) { 1473 freeb(tmp); 1474 return (error); 1475 } 1476 DB_CPID(tmp) = curproc->p_pid; 1477 tmp->b_wptr += count; 1478 bp->b_cont = tmp; 1479 1480 return (0); 1481 } 1482 1483 /* 1484 * Copy ioctl data to user-land. Return non-zero errno on failure, 1485 * 0 for success. 1486 */ 1487 int 1488 getiocd(mblk_t *bp, char *arg, int copymode) 1489 { 1490 ssize_t count; 1491 size_t n; 1492 int error; 1493 1494 if (bp->b_datap->db_type == M_IOCACK) 1495 count = ((struct iocblk *)bp->b_rptr)->ioc_count; 1496 else { 1497 ASSERT(bp->b_datap->db_type == M_COPYOUT); 1498 count = ((struct copyreq *)bp->b_rptr)->cq_size; 1499 } 1500 ASSERT(count >= 0); 1501 1502 for (bp = bp->b_cont; bp && count; 1503 count -= n, bp = bp->b_cont, arg += n) { 1504 n = MIN(count, bp->b_wptr - bp->b_rptr); 1505 error = strcopyout(bp->b_rptr, arg, n, copymode); 1506 if (error) 1507 return (error); 1508 } 1509 ASSERT(count == 0); 1510 return (0); 1511 } 1512 1513 /* 1514 * Allocate a linkinfo entry given the write queue of the 1515 * bottom module of the top stream and the write queue of the 1516 * stream head of the bottom stream. 1517 */ 1518 linkinfo_t * 1519 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown) 1520 { 1521 linkinfo_t *linkp; 1522 1523 linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP); 1524 1525 linkp->li_lblk.l_qtop = qup; 1526 linkp->li_lblk.l_qbot = qdown; 1527 linkp->li_fpdown = fpdown; 1528 1529 mutex_enter(&strresources); 1530 linkp->li_next = linkinfo_list; 1531 linkp->li_prev = NULL; 1532 if (linkp->li_next) 1533 linkp->li_next->li_prev = linkp; 1534 linkinfo_list = linkp; 1535 linkp->li_lblk.l_index = ++lnk_id; 1536 ASSERT(lnk_id != 0); /* this should never wrap in practice */ 1537 mutex_exit(&strresources); 1538 1539 return (linkp); 1540 } 1541 1542 /* 1543 * Free a linkinfo entry. 1544 */ 1545 void 1546 lbfree(linkinfo_t *linkp) 1547 { 1548 mutex_enter(&strresources); 1549 if (linkp->li_next) 1550 linkp->li_next->li_prev = linkp->li_prev; 1551 if (linkp->li_prev) 1552 linkp->li_prev->li_next = linkp->li_next; 1553 else 1554 linkinfo_list = linkp->li_next; 1555 mutex_exit(&strresources); 1556 1557 kmem_cache_free(linkinfo_cache, linkp); 1558 } 1559 1560 /* 1561 * Check for a potential linking cycle. 1562 * Return 1 if a link will result in a cycle, 1563 * and 0 otherwise. 1564 */ 1565 int 1566 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss) 1567 { 1568 struct mux_node *np; 1569 struct mux_edge *ep; 1570 int i; 1571 major_t lomaj; 1572 major_t upmaj; 1573 /* 1574 * if the lower stream is a pipe/FIFO, return, since link 1575 * cycles can not happen on pipes/FIFOs 1576 */ 1577 if (lostp->sd_vnode->v_type == VFIFO) 1578 return (0); 1579 1580 for (i = 0; i < ss->ss_devcnt; i++) { 1581 np = &ss->ss_mux_nodes[i]; 1582 MUX_CLEAR(np); 1583 } 1584 lomaj = getmajor(lostp->sd_vnode->v_rdev); 1585 upmaj = getmajor(upstp->sd_vnode->v_rdev); 1586 np = &ss->ss_mux_nodes[lomaj]; 1587 for (;;) { 1588 if (!MUX_DIDVISIT(np)) { 1589 if (np->mn_imaj == upmaj) 1590 return (1); 1591 if (np->mn_outp == NULL) { 1592 MUX_VISIT(np); 1593 if (np->mn_originp == NULL) 1594 return (0); 1595 np = np->mn_originp; 1596 continue; 1597 } 1598 MUX_VISIT(np); 1599 np->mn_startp = np->mn_outp; 1600 } else { 1601 if (np->mn_startp == NULL) { 1602 if (np->mn_originp == NULL) 1603 return (0); 1604 else { 1605 np = np->mn_originp; 1606 continue; 1607 } 1608 } 1609 /* 1610 * If ep->me_nodep is a FIFO (me_nodep == NULL), 1611 * ignore the edge and move on. ep->me_nodep gets 1612 * set to NULL in mux_addedge() if it is a FIFO. 1613 * 1614 */ 1615 ep = np->mn_startp; 1616 np->mn_startp = ep->me_nextp; 1617 if (ep->me_nodep == NULL) 1618 continue; 1619 ep->me_nodep->mn_originp = np; 1620 np = ep->me_nodep; 1621 } 1622 } 1623 } 1624 1625 /* 1626 * Find linkinfo entry corresponding to the parameters. 1627 */ 1628 linkinfo_t * 1629 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss) 1630 { 1631 linkinfo_t *linkp; 1632 struct mux_edge *mep; 1633 struct mux_node *mnp; 1634 queue_t *qup; 1635 1636 mutex_enter(&strresources); 1637 if ((type & LINKTYPEMASK) == LINKNORMAL) { 1638 qup = getendq(stp->sd_wrq); 1639 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) { 1640 if ((qup == linkp->li_lblk.l_qtop) && 1641 (!index || (index == linkp->li_lblk.l_index))) { 1642 mutex_exit(&strresources); 1643 return (linkp); 1644 } 1645 } 1646 } else { 1647 ASSERT((type & LINKTYPEMASK) == LINKPERSIST); 1648 mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)]; 1649 mep = mnp->mn_outp; 1650 while (mep) { 1651 if ((index == 0) || (index == mep->me_muxid)) 1652 break; 1653 mep = mep->me_nextp; 1654 } 1655 if (!mep) { 1656 mutex_exit(&strresources); 1657 return (NULL); 1658 } 1659 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) { 1660 if ((!linkp->li_lblk.l_qtop) && 1661 (mep->me_muxid == linkp->li_lblk.l_index)) { 1662 mutex_exit(&strresources); 1663 return (linkp); 1664 } 1665 } 1666 } 1667 mutex_exit(&strresources); 1668 return (NULL); 1669 } 1670 1671 /* 1672 * Given a queue ptr, follow the chain of q_next pointers until you reach the 1673 * last queue on the chain and return it. 1674 */ 1675 queue_t * 1676 getendq(queue_t *q) 1677 { 1678 ASSERT(q != NULL); 1679 while (_SAMESTR(q)) 1680 q = q->q_next; 1681 return (q); 1682 } 1683 1684 /* 1685 * wait for the syncq count to drop to zero. 1686 * sq could be either outer or inner. 1687 */ 1688 1689 static void 1690 wait_syncq(syncq_t *sq) 1691 { 1692 uint16_t count; 1693 1694 mutex_enter(SQLOCK(sq)); 1695 count = sq->sq_count; 1696 SQ_PUTLOCKS_ENTER(sq); 1697 SUM_SQ_PUTCOUNTS(sq, count); 1698 while (count != 0) { 1699 sq->sq_flags |= SQ_WANTWAKEUP; 1700 SQ_PUTLOCKS_EXIT(sq); 1701 cv_wait(&sq->sq_wait, SQLOCK(sq)); 1702 count = sq->sq_count; 1703 SQ_PUTLOCKS_ENTER(sq); 1704 SUM_SQ_PUTCOUNTS(sq, count); 1705 } 1706 SQ_PUTLOCKS_EXIT(sq); 1707 mutex_exit(SQLOCK(sq)); 1708 } 1709 1710 /* 1711 * Wait while there are any messages for the queue in its syncq. 1712 */ 1713 static void 1714 wait_q_syncq(queue_t *q) 1715 { 1716 if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) { 1717 syncq_t *sq = q->q_syncq; 1718 1719 mutex_enter(SQLOCK(sq)); 1720 while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) { 1721 sq->sq_flags |= SQ_WANTWAKEUP; 1722 cv_wait(&sq->sq_wait, SQLOCK(sq)); 1723 } 1724 mutex_exit(SQLOCK(sq)); 1725 } 1726 } 1727 1728 1729 int 1730 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp, 1731 int lhlink) 1732 { 1733 struct stdata *stp; 1734 struct strioctl strioc; 1735 struct linkinfo *linkp; 1736 struct stdata *stpdown; 1737 struct streamtab *str; 1738 queue_t *passq; 1739 syncq_t *passyncq; 1740 queue_t *rq; 1741 cdevsw_impl_t *dp; 1742 uint32_t qflag; 1743 uint32_t sqtype; 1744 perdm_t *dmp; 1745 int error = 0; 1746 netstack_t *ns; 1747 str_stack_t *ss; 1748 1749 stp = vp->v_stream; 1750 TRACE_1(TR_FAC_STREAMS_FR, 1751 TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp); 1752 /* 1753 * Test for invalid upper stream 1754 */ 1755 if (stp->sd_flag & STRHUP) { 1756 return (ENXIO); 1757 } 1758 if (vp->v_type == VFIFO) { 1759 return (EINVAL); 1760 } 1761 if (stp->sd_strtab == NULL) { 1762 return (EINVAL); 1763 } 1764 if (!stp->sd_strtab->st_muxwinit) { 1765 return (EINVAL); 1766 } 1767 if (fpdown == NULL) { 1768 return (EBADF); 1769 } 1770 ns = netstack_find_by_cred(crp); 1771 ASSERT(ns != NULL); 1772 ss = ns->netstack_str; 1773 ASSERT(ss != NULL); 1774 1775 if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) { 1776 netstack_rele(ss->ss_netstack); 1777 return (EINVAL); 1778 } 1779 mutex_enter(&muxifier); 1780 if (stp->sd_flag & STPLEX) { 1781 mutex_exit(&muxifier); 1782 netstack_rele(ss->ss_netstack); 1783 return (ENXIO); 1784 } 1785 1786 /* 1787 * Test for invalid lower stream. 1788 * The check for the v_type != VFIFO and having a major 1789 * number not >= devcnt is done to avoid problems with 1790 * adding mux_node entry past the end of mux_nodes[]. 1791 * For FIFO's we don't add an entry so this isn't a 1792 * problem. 1793 */ 1794 if (((stpdown = fpdown->f_vnode->v_stream) == NULL) || 1795 (stpdown == stp) || (stpdown->sd_flag & 1796 (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) || 1797 ((stpdown->sd_vnode->v_type != VFIFO) && 1798 (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) || 1799 linkcycle(stp, stpdown, ss)) { 1800 mutex_exit(&muxifier); 1801 netstack_rele(ss->ss_netstack); 1802 return (EINVAL); 1803 } 1804 TRACE_1(TR_FAC_STREAMS_FR, 1805 TR_STPDOWN, "stpdown:%p", stpdown); 1806 rq = getendq(stp->sd_wrq); 1807 if (cmd == I_PLINK) 1808 rq = NULL; 1809 1810 linkp = alloclink(rq, stpdown->sd_wrq, fpdown); 1811 1812 strioc.ic_cmd = cmd; 1813 strioc.ic_timout = INFTIM; 1814 strioc.ic_len = sizeof (struct linkblk); 1815 strioc.ic_dp = (char *)&linkp->li_lblk; 1816 1817 /* 1818 * STRPLUMB protects plumbing changes and should be set before 1819 * link_addpassthru()/link_rempassthru() are called, so it is set here 1820 * and cleared in the end of mlink when passthru queue is removed. 1821 * Setting of STRPLUMB prevents reopens of the stream while passthru 1822 * queue is in-place (it is not a proper module and doesn't have open 1823 * entry point). 1824 * 1825 * STPLEX prevents any threads from entering the stream from above. It 1826 * can't be set before the call to link_addpassthru() because putnext 1827 * from below may cause stream head I/O routines to be called and these 1828 * routines assert that STPLEX is not set. After link_addpassthru() 1829 * nothing may come from below since the pass queue syncq is blocked. 1830 * Note also that STPLEX should be cleared before the call to 1831 * link_remmpassthru() since when messages start flowing to the stream 1832 * head (e.g. because of message propagation from the pass queue) stream 1833 * head I/O routines may be called with STPLEX flag set. 1834 * 1835 * When STPLEX is set, nothing may come into the stream from above and 1836 * it is safe to do a setq which will change stream head. So, the 1837 * correct sequence of actions is: 1838 * 1839 * 1) Set STRPLUMB 1840 * 2) Call link_addpassthru() 1841 * 3) Set STPLEX 1842 * 4) Call setq and update the stream state 1843 * 5) Clear STPLEX 1844 * 6) Call link_rempassthru() 1845 * 7) Clear STRPLUMB 1846 * 1847 * The same sequence applies to munlink() code. 1848 */ 1849 mutex_enter(&stpdown->sd_lock); 1850 stpdown->sd_flag |= STRPLUMB; 1851 mutex_exit(&stpdown->sd_lock); 1852 /* 1853 * Add passthru queue below lower mux. This will block 1854 * syncqs of lower muxs read queue during I_LINK/I_UNLINK. 1855 */ 1856 passq = link_addpassthru(stpdown); 1857 1858 mutex_enter(&stpdown->sd_lock); 1859 stpdown->sd_flag |= STPLEX; 1860 mutex_exit(&stpdown->sd_lock); 1861 1862 rq = _RD(stpdown->sd_wrq); 1863 /* 1864 * There may be messages in the streamhead's syncq due to messages 1865 * that arrived before link_addpassthru() was done. To avoid 1866 * background processing of the syncq happening simultaneous with 1867 * setq processing, we disable the streamhead syncq and wait until 1868 * existing background thread finishes working on it. 1869 */ 1870 wait_sq_svc(rq->q_syncq); 1871 passyncq = passq->q_syncq; 1872 if (!(passyncq->sq_flags & SQ_BLOCKED)) 1873 blocksq(passyncq, SQ_BLOCKED, 0); 1874 1875 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE); 1876 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq)); 1877 rq->q_ptr = _WR(rq)->q_ptr = NULL; 1878 1879 /* setq might sleep in allocator - avoid holding locks. */ 1880 /* Note: we are holding muxifier here. */ 1881 1882 str = stp->sd_strtab; 1883 dp = &devimpl[getmajor(vp->v_rdev)]; 1884 ASSERT(dp->d_str == str); 1885 1886 qflag = dp->d_qflag; 1887 sqtype = dp->d_sqtype; 1888 1889 /* create perdm_t if needed */ 1890 if (NEED_DM(dp->d_dmp, qflag)) 1891 dp->d_dmp = hold_dm(str, qflag, sqtype); 1892 1893 dmp = dp->d_dmp; 1894 1895 setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype, 1896 B_TRUE); 1897 1898 /* 1899 * XXX Remove any "odd" messages from the queue. 1900 * Keep only M_DATA, M_PROTO, M_PCPROTO. 1901 */ 1902 error = strdoioctl(stp, &strioc, FNATIVE, 1903 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp); 1904 if (error != 0) { 1905 lbfree(linkp); 1906 1907 if (!(passyncq->sq_flags & SQ_BLOCKED)) 1908 blocksq(passyncq, SQ_BLOCKED, 0); 1909 /* 1910 * Restore the stream head queue and then remove 1911 * the passq. Turn off STPLEX before we turn on 1912 * the stream by removing the passq. 1913 */ 1914 rq->q_ptr = _WR(rq)->q_ptr = stpdown; 1915 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, 1916 B_TRUE); 1917 1918 mutex_enter(&stpdown->sd_lock); 1919 stpdown->sd_flag &= ~STPLEX; 1920 mutex_exit(&stpdown->sd_lock); 1921 1922 link_rempassthru(passq); 1923 1924 mutex_enter(&stpdown->sd_lock); 1925 stpdown->sd_flag &= ~STRPLUMB; 1926 /* Wakeup anyone waiting for STRPLUMB to clear. */ 1927 cv_broadcast(&stpdown->sd_monitor); 1928 mutex_exit(&stpdown->sd_lock); 1929 1930 mutex_exit(&muxifier); 1931 netstack_rele(ss->ss_netstack); 1932 return (error); 1933 } 1934 mutex_enter(&fpdown->f_tlock); 1935 fpdown->f_count++; 1936 mutex_exit(&fpdown->f_tlock); 1937 1938 /* 1939 * if we've made it here the linkage is all set up so we should also 1940 * set up the layered driver linkages 1941 */ 1942 1943 ASSERT((cmd == I_LINK) || (cmd == I_PLINK)); 1944 if (cmd == I_LINK) { 1945 ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL); 1946 } else { 1947 ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST); 1948 } 1949 1950 link_rempassthru(passq); 1951 1952 mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss); 1953 1954 /* 1955 * Mark the upper stream as having dependent links 1956 * so that strclose can clean it up. 1957 */ 1958 if (cmd == I_LINK) { 1959 mutex_enter(&stp->sd_lock); 1960 stp->sd_flag |= STRHASLINKS; 1961 mutex_exit(&stp->sd_lock); 1962 } 1963 /* 1964 * Wake up any other processes that may have been 1965 * waiting on the lower stream. These will all 1966 * error out. 1967 */ 1968 mutex_enter(&stpdown->sd_lock); 1969 /* The passthru module is removed so we may release STRPLUMB */ 1970 stpdown->sd_flag &= ~STRPLUMB; 1971 cv_broadcast(&rq->q_wait); 1972 cv_broadcast(&_WR(rq)->q_wait); 1973 cv_broadcast(&stpdown->sd_monitor); 1974 mutex_exit(&stpdown->sd_lock); 1975 mutex_exit(&muxifier); 1976 *rvalp = linkp->li_lblk.l_index; 1977 netstack_rele(ss->ss_netstack); 1978 return (0); 1979 } 1980 1981 int 1982 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink) 1983 { 1984 int ret; 1985 struct file *fpdown; 1986 1987 fpdown = getf(arg); 1988 ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink); 1989 if (fpdown != NULL) 1990 releasef(arg); 1991 return (ret); 1992 } 1993 1994 /* 1995 * Unlink a multiplexor link. Stp is the controlling stream for the 1996 * link, and linkp points to the link's entry in the linkinfo list. 1997 * The muxifier lock must be held on entry and is dropped on exit. 1998 * 1999 * NOTE : Currently it is assumed that mux would process all the messages 2000 * sitting on it's queue before ACKing the UNLINK. It is the responsibility 2001 * of the mux to handle all the messages that arrive before UNLINK. 2002 * If the mux has to send down messages on its lower stream before 2003 * ACKing I_UNLINK, then it *should* know to handle messages even 2004 * after the UNLINK is acked (actually it should be able to handle till we 2005 * re-block the read side of the pass queue here). If the mux does not 2006 * open up the lower stream, any messages that arrive during UNLINK 2007 * will be put in the stream head. In the case of lower stream opening 2008 * up, some messages might land in the stream head depending on when 2009 * the message arrived and when the read side of the pass queue was 2010 * re-blocked. 2011 */ 2012 int 2013 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp, 2014 str_stack_t *ss) 2015 { 2016 struct strioctl strioc; 2017 struct stdata *stpdown; 2018 queue_t *rq, *wrq; 2019 queue_t *passq; 2020 syncq_t *passyncq; 2021 int error = 0; 2022 file_t *fpdown; 2023 2024 ASSERT(MUTEX_HELD(&muxifier)); 2025 2026 stpdown = linkp->li_fpdown->f_vnode->v_stream; 2027 2028 /* 2029 * See the comment in mlink() concerning STRPLUMB/STPLEX flags. 2030 */ 2031 mutex_enter(&stpdown->sd_lock); 2032 stpdown->sd_flag |= STRPLUMB; 2033 mutex_exit(&stpdown->sd_lock); 2034 2035 /* 2036 * Add passthru queue below lower mux. This will block 2037 * syncqs of lower muxs read queue during I_LINK/I_UNLINK. 2038 */ 2039 passq = link_addpassthru(stpdown); 2040 2041 if ((flag & LINKTYPEMASK) == LINKNORMAL) 2042 strioc.ic_cmd = I_UNLINK; 2043 else 2044 strioc.ic_cmd = I_PUNLINK; 2045 strioc.ic_timout = INFTIM; 2046 strioc.ic_len = sizeof (struct linkblk); 2047 strioc.ic_dp = (char *)&linkp->li_lblk; 2048 2049 error = strdoioctl(stp, &strioc, FNATIVE, 2050 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp); 2051 2052 /* 2053 * If there was an error and this is not called via strclose, 2054 * return to the user. Otherwise, pretend there was no error 2055 * and close the link. 2056 */ 2057 if (error) { 2058 if (flag & LINKCLOSE) { 2059 cmn_err(CE_WARN, "KERNEL: munlink: could not perform " 2060 "unlink ioctl, closing anyway (%d)\n", error); 2061 } else { 2062 link_rempassthru(passq); 2063 mutex_enter(&stpdown->sd_lock); 2064 stpdown->sd_flag &= ~STRPLUMB; 2065 cv_broadcast(&stpdown->sd_monitor); 2066 mutex_exit(&stpdown->sd_lock); 2067 mutex_exit(&muxifier); 2068 return (error); 2069 } 2070 } 2071 2072 mux_rmvedge(stp, linkp->li_lblk.l_index, ss); 2073 fpdown = linkp->li_fpdown; 2074 lbfree(linkp); 2075 2076 /* 2077 * We go ahead and drop muxifier here--it's a nasty global lock that 2078 * can slow others down. It's okay to since attempts to mlink() this 2079 * stream will be stopped because STPLEX is still set in the stdata 2080 * structure, and munlink() is stopped because mux_rmvedge() and 2081 * lbfree() have removed it from mux_nodes[] and linkinfo_list, 2082 * respectively. Note that we defer the closef() of fpdown until 2083 * after we drop muxifier since strclose() can call munlinkall(). 2084 */ 2085 mutex_exit(&muxifier); 2086 2087 wrq = stpdown->sd_wrq; 2088 rq = _RD(wrq); 2089 2090 /* 2091 * Get rid of outstanding service procedure runs, before we make 2092 * it a stream head, since a stream head doesn't have any service 2093 * procedure. 2094 */ 2095 disable_svc(rq); 2096 wait_svc(rq); 2097 2098 /* 2099 * Since we don't disable the syncq for QPERMOD, we wait for whatever 2100 * is queued up to be finished. mux should take care that nothing is 2101 * send down to this queue. We should do it now as we're going to block 2102 * passyncq if it was unblocked. 2103 */ 2104 if (wrq->q_flag & QPERMOD) { 2105 syncq_t *sq = wrq->q_syncq; 2106 2107 mutex_enter(SQLOCK(sq)); 2108 while (wrq->q_sqflags & Q_SQQUEUED) { 2109 sq->sq_flags |= SQ_WANTWAKEUP; 2110 cv_wait(&sq->sq_wait, SQLOCK(sq)); 2111 } 2112 mutex_exit(SQLOCK(sq)); 2113 } 2114 passyncq = passq->q_syncq; 2115 if (!(passyncq->sq_flags & SQ_BLOCKED)) { 2116 2117 syncq_t *sq, *outer; 2118 2119 /* 2120 * Messages could be flowing from underneath. We will 2121 * block the read side of the passq. This would be 2122 * sufficient for QPAIR and QPERQ muxes to ensure 2123 * that no data is flowing up into this queue 2124 * and hence no thread active in this instance of 2125 * lower mux. But for QPERMOD and QMTOUTPERIM there 2126 * could be messages on the inner and outer/inner 2127 * syncqs respectively. We will wait for them to drain. 2128 * Because passq is blocked messages end up in the syncq 2129 * And qfill_syncq could possibly end up setting QFULL 2130 * which will access the rq->q_flag. Hence, we have to 2131 * acquire the QLOCK in setq. 2132 * 2133 * XXX Messages can also flow from top into this 2134 * queue though the unlink is over (Ex. some instance 2135 * in putnext() called from top that has still not 2136 * accessed this queue. And also putq(lowerq) ?). 2137 * Solution : How about blocking the l_qtop queue ? 2138 * Do we really care about such pure D_MP muxes ? 2139 */ 2140 2141 blocksq(passyncq, SQ_BLOCKED, 0); 2142 2143 sq = rq->q_syncq; 2144 if ((outer = sq->sq_outer) != NULL) { 2145 2146 /* 2147 * We have to just wait for the outer sq_count 2148 * drop to zero. As this does not prevent new 2149 * messages to enter the outer perimeter, this 2150 * is subject to starvation. 2151 * 2152 * NOTE :Because of blocksq above, messages could 2153 * be in the inner syncq only because of some 2154 * thread holding the outer perimeter exclusively. 2155 * Hence it would be sufficient to wait for the 2156 * exclusive holder of the outer perimeter to drain 2157 * the inner and outer syncqs. But we will not depend 2158 * on this feature and hence check the inner syncqs 2159 * separately. 2160 */ 2161 wait_syncq(outer); 2162 } 2163 2164 2165 /* 2166 * There could be messages destined for 2167 * this queue. Let the exclusive holder 2168 * drain it. 2169 */ 2170 2171 wait_syncq(sq); 2172 ASSERT((rq->q_flag & QPERMOD) || 2173 ((rq->q_syncq->sq_head == NULL) && 2174 (_WR(rq)->q_syncq->sq_head == NULL))); 2175 } 2176 2177 /* 2178 * We haven't taken care of QPERMOD case yet. QPERMOD is a special 2179 * case as we don't disable its syncq or remove it off the syncq 2180 * service list. 2181 */ 2182 if (rq->q_flag & QPERMOD) { 2183 syncq_t *sq = rq->q_syncq; 2184 2185 mutex_enter(SQLOCK(sq)); 2186 while (rq->q_sqflags & Q_SQQUEUED) { 2187 sq->sq_flags |= SQ_WANTWAKEUP; 2188 cv_wait(&sq->sq_wait, SQLOCK(sq)); 2189 } 2190 mutex_exit(SQLOCK(sq)); 2191 } 2192 2193 /* 2194 * flush_syncq changes states only when there is some messages to 2195 * free. ie when it returns non-zero value to return. 2196 */ 2197 ASSERT(flush_syncq(rq->q_syncq, rq) == 0); 2198 ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0); 2199 2200 /* 2201 * No body else should know about this queue now. 2202 * If the mux did not process the messages before 2203 * acking the I_UNLINK, free them now. 2204 */ 2205 2206 flushq(rq, FLUSHALL); 2207 flushq(_WR(rq), FLUSHALL); 2208 2209 /* 2210 * Convert the mux lower queue into a stream head queue. 2211 * Turn off STPLEX before we turn on the stream by removing the passq. 2212 */ 2213 rq->q_ptr = wrq->q_ptr = stpdown; 2214 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE); 2215 2216 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE); 2217 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq)); 2218 2219 enable_svc(rq); 2220 2221 /* 2222 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still 2223 * needs to be set to prevent reopen() of the stream - such reopen may 2224 * try to call non-existent pass queue open routine and panic. 2225 */ 2226 mutex_enter(&stpdown->sd_lock); 2227 stpdown->sd_flag &= ~STPLEX; 2228 mutex_exit(&stpdown->sd_lock); 2229 2230 ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) || 2231 ((flag & LINKTYPEMASK) == LINKPERSIST)); 2232 2233 /* clean up the layered driver linkages */ 2234 if ((flag & LINKTYPEMASK) == LINKNORMAL) { 2235 ldi_munlink_fp(stp, fpdown, LINKNORMAL); 2236 } else { 2237 ldi_munlink_fp(stp, fpdown, LINKPERSIST); 2238 } 2239 2240 link_rempassthru(passq); 2241 2242 /* 2243 * Now all plumbing changes are finished and STRPLUMB is no 2244 * longer needed. 2245 */ 2246 mutex_enter(&stpdown->sd_lock); 2247 stpdown->sd_flag &= ~STRPLUMB; 2248 cv_broadcast(&stpdown->sd_monitor); 2249 mutex_exit(&stpdown->sd_lock); 2250 2251 (void) closef(fpdown); 2252 return (0); 2253 } 2254 2255 /* 2256 * Unlink all multiplexor links for which stp is the controlling stream. 2257 * Return 0, or a non-zero errno on failure. 2258 */ 2259 int 2260 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss) 2261 { 2262 linkinfo_t *linkp; 2263 int error = 0; 2264 2265 mutex_enter(&muxifier); 2266 while (linkp = findlinks(stp, 0, flag, ss)) { 2267 /* 2268 * munlink() releases the muxifier lock. 2269 */ 2270 if (error = munlink(stp, linkp, flag, crp, rvalp, ss)) 2271 return (error); 2272 mutex_enter(&muxifier); 2273 } 2274 mutex_exit(&muxifier); 2275 return (0); 2276 } 2277 2278 /* 2279 * A multiplexor link has been made. Add an 2280 * edge to the directed graph. 2281 */ 2282 void 2283 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss) 2284 { 2285 struct mux_node *np; 2286 struct mux_edge *ep; 2287 major_t upmaj; 2288 major_t lomaj; 2289 2290 upmaj = getmajor(upstp->sd_vnode->v_rdev); 2291 lomaj = getmajor(lostp->sd_vnode->v_rdev); 2292 np = &ss->ss_mux_nodes[upmaj]; 2293 if (np->mn_outp) { 2294 ep = np->mn_outp; 2295 while (ep->me_nextp) 2296 ep = ep->me_nextp; 2297 ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP); 2298 ep = ep->me_nextp; 2299 } else { 2300 np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP); 2301 ep = np->mn_outp; 2302 } 2303 ep->me_nextp = NULL; 2304 ep->me_muxid = muxid; 2305 /* 2306 * Save the dev_t for the purposes of str_stack_shutdown. 2307 * str_stack_shutdown assumes that the device allows reopen, since 2308 * this dev_t is the one after any cloning by xx_open(). 2309 * Would prefer finding the dev_t from before any cloning, 2310 * but specfs doesn't retain that. 2311 */ 2312 ep->me_dev = upstp->sd_vnode->v_rdev; 2313 if (lostp->sd_vnode->v_type == VFIFO) 2314 ep->me_nodep = NULL; 2315 else 2316 ep->me_nodep = &ss->ss_mux_nodes[lomaj]; 2317 } 2318 2319 /* 2320 * A multiplexor link has been removed. Remove the 2321 * edge in the directed graph. 2322 */ 2323 void 2324 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss) 2325 { 2326 struct mux_node *np; 2327 struct mux_edge *ep; 2328 struct mux_edge *pep = NULL; 2329 major_t upmaj; 2330 2331 upmaj = getmajor(upstp->sd_vnode->v_rdev); 2332 np = &ss->ss_mux_nodes[upmaj]; 2333 ASSERT(np->mn_outp != NULL); 2334 ep = np->mn_outp; 2335 while (ep) { 2336 if (ep->me_muxid == muxid) { 2337 if (pep) 2338 pep->me_nextp = ep->me_nextp; 2339 else 2340 np->mn_outp = ep->me_nextp; 2341 kmem_free(ep, sizeof (struct mux_edge)); 2342 return; 2343 } 2344 pep = ep; 2345 ep = ep->me_nextp; 2346 } 2347 ASSERT(0); /* should not reach here */ 2348 } 2349 2350 /* 2351 * Translate the device flags (from conf.h) to the corresponding 2352 * qflag and sq_flag (type) values. 2353 */ 2354 int 2355 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp, 2356 uint32_t *sqtypep) 2357 { 2358 uint32_t qflag = 0; 2359 uint32_t sqtype = 0; 2360 2361 if (devflag & _D_OLD) 2362 goto bad; 2363 2364 /* Inner perimeter presence and scope */ 2365 switch (devflag & D_MTINNER_MASK) { 2366 case D_MP: 2367 qflag |= QMTSAFE; 2368 sqtype |= SQ_CI; 2369 break; 2370 case D_MTPERQ|D_MP: 2371 qflag |= QPERQ; 2372 break; 2373 case D_MTQPAIR|D_MP: 2374 qflag |= QPAIR; 2375 break; 2376 case D_MTPERMOD|D_MP: 2377 qflag |= QPERMOD; 2378 break; 2379 default: 2380 goto bad; 2381 } 2382 2383 /* Outer perimeter */ 2384 if (devflag & D_MTOUTPERIM) { 2385 switch (devflag & D_MTINNER_MASK) { 2386 case D_MP: 2387 case D_MTPERQ|D_MP: 2388 case D_MTQPAIR|D_MP: 2389 break; 2390 default: 2391 goto bad; 2392 } 2393 qflag |= QMTOUTPERIM; 2394 } 2395 2396 /* Inner perimeter modifiers */ 2397 if (devflag & D_MTINNER_MOD) { 2398 switch (devflag & D_MTINNER_MASK) { 2399 case D_MP: 2400 goto bad; 2401 default: 2402 break; 2403 } 2404 if (devflag & D_MTPUTSHARED) 2405 sqtype |= SQ_CIPUT; 2406 if (devflag & _D_MTOCSHARED) { 2407 /* 2408 * The code in putnext assumes that it has the 2409 * highest concurrency by not checking sq_count. 2410 * Thus _D_MTOCSHARED can only be supported when 2411 * D_MTPUTSHARED is set. 2412 */ 2413 if (!(devflag & D_MTPUTSHARED)) 2414 goto bad; 2415 sqtype |= SQ_CIOC; 2416 } 2417 if (devflag & _D_MTCBSHARED) { 2418 /* 2419 * The code in putnext assumes that it has the 2420 * highest concurrency by not checking sq_count. 2421 * Thus _D_MTCBSHARED can only be supported when 2422 * D_MTPUTSHARED is set. 2423 */ 2424 if (!(devflag & D_MTPUTSHARED)) 2425 goto bad; 2426 sqtype |= SQ_CICB; 2427 } 2428 if (devflag & _D_MTSVCSHARED) { 2429 /* 2430 * The code in putnext assumes that it has the 2431 * highest concurrency by not checking sq_count. 2432 * Thus _D_MTSVCSHARED can only be supported when 2433 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is 2434 * supported only for QPERMOD. 2435 */ 2436 if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD)) 2437 goto bad; 2438 sqtype |= SQ_CISVC; 2439 } 2440 } 2441 2442 /* Default outer perimeter concurrency */ 2443 sqtype |= SQ_CO; 2444 2445 /* Outer perimeter modifiers */ 2446 if (devflag & D_MTOCEXCL) { 2447 if (!(devflag & D_MTOUTPERIM)) { 2448 /* No outer perimeter */ 2449 goto bad; 2450 } 2451 sqtype &= ~SQ_COOC; 2452 } 2453 2454 /* Synchronous Streams extended qinit structure */ 2455 if (devflag & D_SYNCSTR) 2456 qflag |= QSYNCSTR; 2457 2458 /* 2459 * Private flag used by a transport module to indicate 2460 * to sockfs that it supports direct-access mode without 2461 * having to go through STREAMS or the transport can use 2462 * sodirect_t sharing to bypass STREAMS for receive-side 2463 * M_DATA processing. 2464 */ 2465 if (devflag & (_D_DIRECT|_D_SODIRECT)) { 2466 /* Reject unless the module is fully-MT (no perimeter) */ 2467 if ((qflag & QMT_TYPEMASK) != QMTSAFE) 2468 goto bad; 2469 if (devflag & _D_DIRECT) 2470 qflag |= _QDIRECT; 2471 if (devflag & _D_SODIRECT) 2472 qflag |= _QSODIRECT; 2473 } 2474 2475 *qflagp = qflag; 2476 *sqtypep = sqtype; 2477 return (0); 2478 2479 bad: 2480 cmn_err(CE_WARN, 2481 "stropen: bad MT flags (0x%x) in driver '%s'", 2482 (int)(qflag & D_MTSAFETY_MASK), 2483 stp->st_rdinit->qi_minfo->mi_idname); 2484 2485 return (EINVAL); 2486 } 2487 2488 /* 2489 * Set the interface values for a pair of queues (qinit structure, 2490 * packet sizes, water marks). 2491 * setq assumes that the caller does not have a claim (entersq or claimq) 2492 * on the queue. 2493 */ 2494 void 2495 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit, 2496 perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed) 2497 { 2498 queue_t *wq; 2499 syncq_t *sq, *outer; 2500 2501 ASSERT(rq->q_flag & QREADR); 2502 ASSERT((qflag & QMT_TYPEMASK) != 0); 2503 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL); 2504 2505 wq = _WR(rq); 2506 rq->q_qinfo = rinit; 2507 rq->q_hiwat = rinit->qi_minfo->mi_hiwat; 2508 rq->q_lowat = rinit->qi_minfo->mi_lowat; 2509 rq->q_minpsz = rinit->qi_minfo->mi_minpsz; 2510 rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz; 2511 wq->q_qinfo = winit; 2512 wq->q_hiwat = winit->qi_minfo->mi_hiwat; 2513 wq->q_lowat = winit->qi_minfo->mi_lowat; 2514 wq->q_minpsz = winit->qi_minfo->mi_minpsz; 2515 wq->q_maxpsz = winit->qi_minfo->mi_maxpsz; 2516 2517 /* Remove old syncqs */ 2518 sq = rq->q_syncq; 2519 outer = sq->sq_outer; 2520 if (outer != NULL) { 2521 ASSERT(wq->q_syncq->sq_outer == outer); 2522 outer_remove(outer, rq->q_syncq); 2523 if (wq->q_syncq != rq->q_syncq) 2524 outer_remove(outer, wq->q_syncq); 2525 } 2526 ASSERT(sq->sq_outer == NULL); 2527 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL); 2528 2529 if (sq != SQ(rq)) { 2530 if (!(rq->q_flag & QPERMOD)) 2531 free_syncq(sq); 2532 if (wq->q_syncq == rq->q_syncq) 2533 wq->q_syncq = NULL; 2534 rq->q_syncq = NULL; 2535 } 2536 if (wq->q_syncq != NULL && wq->q_syncq != sq && 2537 wq->q_syncq != SQ(rq)) { 2538 free_syncq(wq->q_syncq); 2539 wq->q_syncq = NULL; 2540 } 2541 ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL && 2542 rq->q_syncq->sq_tail == NULL)); 2543 ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL && 2544 wq->q_syncq->sq_tail == NULL)); 2545 2546 if (!(rq->q_flag & QPERMOD) && 2547 rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) { 2548 ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1); 2549 SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl, 2550 rq->q_syncq->sq_nciputctrl, 0); 2551 ASSERT(ciputctrl_cache != NULL); 2552 kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl); 2553 rq->q_syncq->sq_ciputctrl = NULL; 2554 rq->q_syncq->sq_nciputctrl = 0; 2555 } 2556 2557 if (!(wq->q_flag & QPERMOD) && 2558 wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) { 2559 ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1); 2560 SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl, 2561 wq->q_syncq->sq_nciputctrl, 0); 2562 ASSERT(ciputctrl_cache != NULL); 2563 kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl); 2564 wq->q_syncq->sq_ciputctrl = NULL; 2565 wq->q_syncq->sq_nciputctrl = 0; 2566 } 2567 2568 sq = SQ(rq); 2569 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL); 2570 ASSERT(sq->sq_outer == NULL); 2571 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL); 2572 2573 /* 2574 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS 2575 * bits in sq_flag based on the sqtype. 2576 */ 2577 ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0); 2578 2579 rq->q_syncq = wq->q_syncq = sq; 2580 sq->sq_type = sqtype; 2581 sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS); 2582 2583 /* 2584 * We are making sq_svcflags zero, 2585 * resetting SQ_DISABLED in case it was set by 2586 * wait_svc() in the munlink path. 2587 * 2588 */ 2589 ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0); 2590 sq->sq_svcflags = 0; 2591 2592 /* 2593 * We need to acquire the lock here for the mlink and munlink case, 2594 * where canputnext, backenable, etc can access the q_flag. 2595 */ 2596 if (lock_needed) { 2597 mutex_enter(QLOCK(rq)); 2598 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2599 mutex_exit(QLOCK(rq)); 2600 mutex_enter(QLOCK(wq)); 2601 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2602 mutex_exit(QLOCK(wq)); 2603 } else { 2604 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2605 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2606 } 2607 2608 if (qflag & QPERQ) { 2609 /* Allocate a separate syncq for the write side */ 2610 sq = new_syncq(); 2611 sq->sq_type = rq->q_syncq->sq_type; 2612 sq->sq_flags = rq->q_syncq->sq_flags; 2613 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL && 2614 sq->sq_oprev == NULL); 2615 wq->q_syncq = sq; 2616 } 2617 if (qflag & QPERMOD) { 2618 sq = dmp->dm_sq; 2619 2620 /* 2621 * Assert that we do have an inner perimeter syncq and that it 2622 * does not have an outer perimeter associated with it. 2623 */ 2624 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL && 2625 sq->sq_oprev == NULL); 2626 rq->q_syncq = wq->q_syncq = sq; 2627 } 2628 if (qflag & QMTOUTPERIM) { 2629 outer = dmp->dm_sq; 2630 2631 ASSERT(outer->sq_outer == NULL); 2632 outer_insert(outer, rq->q_syncq); 2633 if (wq->q_syncq != rq->q_syncq) 2634 outer_insert(outer, wq->q_syncq); 2635 } 2636 ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) == 2637 (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS)); 2638 ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) == 2639 (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS)); 2640 ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK)); 2641 2642 /* 2643 * Initialize struio() types. 2644 */ 2645 rq->q_struiot = 2646 (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE; 2647 wq->q_struiot = 2648 (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE; 2649 } 2650 2651 perdm_t * 2652 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype) 2653 { 2654 syncq_t *sq; 2655 perdm_t **pp; 2656 perdm_t *p; 2657 perdm_t *dmp; 2658 2659 ASSERT(str != NULL); 2660 ASSERT(qflag & (QPERMOD | QMTOUTPERIM)); 2661 2662 rw_enter(&perdm_rwlock, RW_READER); 2663 for (p = perdm_list; p != NULL; p = p->dm_next) { 2664 if (p->dm_str == str) { /* found one */ 2665 atomic_add_32(&(p->dm_ref), 1); 2666 rw_exit(&perdm_rwlock); 2667 return (p); 2668 } 2669 } 2670 rw_exit(&perdm_rwlock); 2671 2672 sq = new_syncq(); 2673 if (qflag & QPERMOD) { 2674 sq->sq_type = sqtype | SQ_PERMOD; 2675 sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS; 2676 } else { 2677 ASSERT(qflag & QMTOUTPERIM); 2678 sq->sq_onext = sq->sq_oprev = sq; 2679 } 2680 2681 dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP); 2682 dmp->dm_sq = sq; 2683 dmp->dm_str = str; 2684 dmp->dm_ref = 1; 2685 dmp->dm_next = NULL; 2686 2687 rw_enter(&perdm_rwlock, RW_WRITER); 2688 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) { 2689 if (p->dm_str == str) { /* already present */ 2690 p->dm_ref++; 2691 rw_exit(&perdm_rwlock); 2692 free_syncq(sq); 2693 kmem_free(dmp, sizeof (perdm_t)); 2694 return (p); 2695 } 2696 } 2697 2698 *pp = dmp; 2699 rw_exit(&perdm_rwlock); 2700 return (dmp); 2701 } 2702 2703 void 2704 rele_dm(perdm_t *dmp) 2705 { 2706 perdm_t **pp; 2707 perdm_t *p; 2708 2709 rw_enter(&perdm_rwlock, RW_WRITER); 2710 ASSERT(dmp->dm_ref > 0); 2711 2712 if (--dmp->dm_ref > 0) { 2713 rw_exit(&perdm_rwlock); 2714 return; 2715 } 2716 2717 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) 2718 if (p == dmp) 2719 break; 2720 ASSERT(p == dmp); 2721 *pp = p->dm_next; 2722 rw_exit(&perdm_rwlock); 2723 2724 /* 2725 * Wait for any background processing that relies on the 2726 * syncq to complete before it is freed. 2727 */ 2728 wait_sq_svc(p->dm_sq); 2729 free_syncq(p->dm_sq); 2730 kmem_free(p, sizeof (perdm_t)); 2731 } 2732 2733 /* 2734 * Make a protocol message given control and data buffers. 2735 * n.b., this can block; be careful of what locks you hold when calling it. 2736 * 2737 * If sd_maxblk is less than *iosize this routine can fail part way through 2738 * (due to an allocation failure). In this case on return *iosize will contain 2739 * the amount that was consumed. Otherwise *iosize will not be modified 2740 * i.e. it will contain the amount that was consumed. 2741 */ 2742 int 2743 strmakemsg( 2744 struct strbuf *mctl, 2745 ssize_t *iosize, 2746 struct uio *uiop, 2747 stdata_t *stp, 2748 int32_t flag, 2749 mblk_t **mpp) 2750 { 2751 mblk_t *mpctl = NULL; 2752 mblk_t *mpdata = NULL; 2753 int error; 2754 2755 ASSERT(uiop != NULL); 2756 2757 *mpp = NULL; 2758 /* Create control part, if any */ 2759 if ((mctl != NULL) && (mctl->len >= 0)) { 2760 error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl); 2761 if (error) 2762 return (error); 2763 } 2764 /* Create data part, if any */ 2765 if (*iosize >= 0) { 2766 error = strmakedata(iosize, uiop, stp, flag, &mpdata); 2767 if (error) { 2768 freemsg(mpctl); 2769 return (error); 2770 } 2771 } 2772 if (mpctl != NULL) { 2773 if (mpdata != NULL) 2774 linkb(mpctl, mpdata); 2775 *mpp = mpctl; 2776 } else { 2777 *mpp = mpdata; 2778 } 2779 return (0); 2780 } 2781 2782 /* 2783 * Make the control part of a protocol message given a control buffer. 2784 * n.b., this can block; be careful of what locks you hold when calling it. 2785 */ 2786 int 2787 strmakectl( 2788 struct strbuf *mctl, 2789 int32_t flag, 2790 int32_t fflag, 2791 mblk_t **mpp) 2792 { 2793 mblk_t *bp = NULL; 2794 unsigned char msgtype; 2795 int error = 0; 2796 cred_t *cr = CRED(); 2797 2798 /* We do not support interrupt threads using the stream head to send */ 2799 ASSERT(cr != NULL); 2800 2801 *mpp = NULL; 2802 /* 2803 * Create control part of message, if any. 2804 */ 2805 if ((mctl != NULL) && (mctl->len >= 0)) { 2806 caddr_t base; 2807 int ctlcount; 2808 int allocsz; 2809 2810 if (flag & RS_HIPRI) 2811 msgtype = M_PCPROTO; 2812 else 2813 msgtype = M_PROTO; 2814 2815 ctlcount = mctl->len; 2816 base = mctl->buf; 2817 2818 /* 2819 * Give modules a better chance to reuse M_PROTO/M_PCPROTO 2820 * blocks by increasing the size to something more usable. 2821 */ 2822 allocsz = MAX(ctlcount, 64); 2823 2824 /* 2825 * Range checking has already been done; simply try 2826 * to allocate a message block for the ctl part. 2827 */ 2828 while ((bp = allocb_cred(allocsz, cr, 2829 curproc->p_pid)) == NULL) { 2830 if (fflag & (FNDELAY|FNONBLOCK)) 2831 return (EAGAIN); 2832 if (error = strwaitbuf(allocsz, BPRI_MED)) 2833 return (error); 2834 } 2835 2836 bp->b_datap->db_type = msgtype; 2837 if (copyin(base, bp->b_wptr, ctlcount)) { 2838 freeb(bp); 2839 return (EFAULT); 2840 } 2841 bp->b_wptr += ctlcount; 2842 } 2843 *mpp = bp; 2844 return (0); 2845 } 2846 2847 /* 2848 * Make a protocol message given data buffers. 2849 * n.b., this can block; be careful of what locks you hold when calling it. 2850 * 2851 * If sd_maxblk is less than *iosize this routine can fail part way through 2852 * (due to an allocation failure). In this case on return *iosize will contain 2853 * the amount that was consumed. Otherwise *iosize will not be modified 2854 * i.e. it will contain the amount that was consumed. 2855 */ 2856 int 2857 strmakedata( 2858 ssize_t *iosize, 2859 struct uio *uiop, 2860 stdata_t *stp, 2861 int32_t flag, 2862 mblk_t **mpp) 2863 { 2864 mblk_t *mp = NULL; 2865 mblk_t *bp; 2866 int wroff = (int)stp->sd_wroff; 2867 int tail_len = (int)stp->sd_tail; 2868 int extra = wroff + tail_len; 2869 int error = 0; 2870 ssize_t maxblk; 2871 ssize_t count = *iosize; 2872 cred_t *cr; 2873 2874 *mpp = NULL; 2875 if (count < 0) 2876 return (0); 2877 2878 /* We do not support interrupt threads using the stream head to send */ 2879 cr = CRED(); 2880 ASSERT(cr != NULL); 2881 2882 maxblk = stp->sd_maxblk; 2883 if (maxblk == INFPSZ) 2884 maxblk = count; 2885 2886 /* 2887 * Create data part of message, if any. 2888 */ 2889 do { 2890 ssize_t size; 2891 dblk_t *dp; 2892 2893 ASSERT(uiop); 2894 2895 size = MIN(count, maxblk); 2896 2897 while ((bp = allocb_cred(size + extra, cr, 2898 curproc->p_pid)) == NULL) { 2899 error = EAGAIN; 2900 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) || 2901 (error = strwaitbuf(size + extra, BPRI_MED)) != 0) { 2902 if (count == *iosize) { 2903 freemsg(mp); 2904 return (error); 2905 } else { 2906 *iosize -= count; 2907 *mpp = mp; 2908 return (0); 2909 } 2910 } 2911 } 2912 dp = bp->b_datap; 2913 dp->db_cpid = curproc->p_pid; 2914 ASSERT(wroff <= dp->db_lim - bp->b_wptr); 2915 bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff; 2916 2917 if (flag & STRUIO_POSTPONE) { 2918 /* 2919 * Setup the stream uio portion of the 2920 * dblk for subsequent use by struioget(). 2921 */ 2922 dp->db_struioflag = STRUIO_SPEC; 2923 dp->db_cksumstart = 0; 2924 dp->db_cksumstuff = 0; 2925 dp->db_cksumend = size; 2926 *(long long *)dp->db_struioun.data = 0ll; 2927 bp->b_wptr += size; 2928 } else { 2929 if (stp->sd_copyflag & STRCOPYCACHED) 2930 uiop->uio_extflg |= UIO_COPY_CACHED; 2931 2932 if (size != 0) { 2933 error = uiomove(bp->b_wptr, size, UIO_WRITE, 2934 uiop); 2935 if (error != 0) { 2936 freeb(bp); 2937 freemsg(mp); 2938 return (error); 2939 } 2940 } 2941 bp->b_wptr += size; 2942 2943 if (stp->sd_wputdatafunc != NULL) { 2944 mblk_t *newbp; 2945 2946 newbp = (stp->sd_wputdatafunc)(stp->sd_vnode, 2947 bp, NULL, NULL, NULL, NULL); 2948 if (newbp == NULL) { 2949 freeb(bp); 2950 freemsg(mp); 2951 return (ECOMM); 2952 } 2953 bp = newbp; 2954 } 2955 } 2956 2957 count -= size; 2958 2959 if (mp == NULL) 2960 mp = bp; 2961 else 2962 linkb(mp, bp); 2963 } while (count > 0); 2964 2965 *mpp = mp; 2966 return (0); 2967 } 2968 2969 /* 2970 * Wait for a buffer to become available. Return non-zero errno 2971 * if not able to wait, 0 if buffer is probably there. 2972 */ 2973 int 2974 strwaitbuf(size_t size, int pri) 2975 { 2976 bufcall_id_t id; 2977 2978 mutex_enter(&bcall_monitor); 2979 if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast, 2980 &ttoproc(curthread)->p_flag_cv)) == 0) { 2981 mutex_exit(&bcall_monitor); 2982 return (ENOSR); 2983 } 2984 if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) { 2985 unbufcall(id); 2986 mutex_exit(&bcall_monitor); 2987 return (EINTR); 2988 } 2989 unbufcall(id); 2990 mutex_exit(&bcall_monitor); 2991 return (0); 2992 } 2993 2994 /* 2995 * This function waits for a read or write event to happen on a stream. 2996 * fmode can specify FNDELAY and/or FNONBLOCK. 2997 * The timeout is in ms with -1 meaning infinite. 2998 * The flag values work as follows: 2999 * READWAIT Check for read side errors, send M_READ 3000 * GETWAIT Check for read side errors, no M_READ 3001 * WRITEWAIT Check for write side errors. 3002 * NOINTR Do not return error if nonblocking or timeout. 3003 * STR_NOERROR Ignore all errors except STPLEX. 3004 * STR_NOSIG Ignore/hold signals during the duration of the call. 3005 * STR_PEEK Pass through the strgeterr(). 3006 */ 3007 int 3008 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout, 3009 int *done) 3010 { 3011 int slpflg, errs; 3012 int error; 3013 kcondvar_t *sleepon; 3014 mblk_t *mp; 3015 ssize_t *rd_count; 3016 clock_t rval; 3017 3018 ASSERT(MUTEX_HELD(&stp->sd_lock)); 3019 if ((flag & READWAIT) || (flag & GETWAIT)) { 3020 slpflg = RSLEEP; 3021 sleepon = &_RD(stp->sd_wrq)->q_wait; 3022 errs = STRDERR|STPLEX; 3023 } else { 3024 slpflg = WSLEEP; 3025 sleepon = &stp->sd_wrq->q_wait; 3026 errs = STWRERR|STRHUP|STPLEX; 3027 } 3028 if (flag & STR_NOERROR) 3029 errs = STPLEX; 3030 3031 if (stp->sd_wakeq & slpflg) { 3032 /* 3033 * A strwakeq() is pending, no need to sleep. 3034 */ 3035 stp->sd_wakeq &= ~slpflg; 3036 *done = 0; 3037 return (0); 3038 } 3039 3040 if (stp->sd_flag & errs) { 3041 /* 3042 * Check for errors before going to sleep since the 3043 * caller might not have checked this while holding 3044 * sd_lock. 3045 */ 3046 error = strgeterr(stp, errs, (flag & STR_PEEK)); 3047 if (error != 0) { 3048 *done = 1; 3049 return (error); 3050 } 3051 } 3052 3053 /* 3054 * If any module downstream has requested read notification 3055 * by setting SNDMREAD flag using M_SETOPTS, send a message 3056 * down stream. 3057 */ 3058 if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) { 3059 mutex_exit(&stp->sd_lock); 3060 if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED, 3061 (flag & STR_NOSIG), &error))) { 3062 mutex_enter(&stp->sd_lock); 3063 *done = 1; 3064 return (error); 3065 } 3066 mp->b_datap->db_type = M_READ; 3067 rd_count = (ssize_t *)mp->b_wptr; 3068 *rd_count = count; 3069 mp->b_wptr += sizeof (ssize_t); 3070 /* 3071 * Send the number of bytes requested by the 3072 * read as the argument to M_READ. 3073 */ 3074 stream_willservice(stp); 3075 putnext(stp->sd_wrq, mp); 3076 stream_runservice(stp); 3077 mutex_enter(&stp->sd_lock); 3078 3079 /* 3080 * If any data arrived due to inline processing 3081 * of putnext(), don't sleep. 3082 */ 3083 if (_RD(stp->sd_wrq)->q_first != NULL) { 3084 *done = 0; 3085 return (0); 3086 } 3087 } 3088 3089 if (fmode & (FNDELAY|FNONBLOCK)) { 3090 if (!(flag & NOINTR)) 3091 error = EAGAIN; 3092 else 3093 error = 0; 3094 *done = 1; 3095 return (error); 3096 } 3097 3098 stp->sd_flag |= slpflg; 3099 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2, 3100 "strwaitq sleeps (2):%p, %X, %lX, %X, %p", 3101 stp, flag, count, fmode, done); 3102 3103 rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG); 3104 if (rval > 0) { 3105 /* EMPTY */ 3106 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2, 3107 "strwaitq awakes(2):%X, %X, %X, %X, %X", 3108 stp, flag, count, fmode, done); 3109 } else if (rval == 0) { 3110 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2, 3111 "strwaitq interrupt #2:%p, %X, %lX, %X, %p", 3112 stp, flag, count, fmode, done); 3113 stp->sd_flag &= ~slpflg; 3114 cv_broadcast(sleepon); 3115 if (!(flag & NOINTR)) 3116 error = EINTR; 3117 else 3118 error = 0; 3119 *done = 1; 3120 return (error); 3121 } else { 3122 /* timeout */ 3123 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME, 3124 "strwaitq timeout:%p, %X, %lX, %X, %p", 3125 stp, flag, count, fmode, done); 3126 *done = 1; 3127 if (!(flag & NOINTR)) 3128 return (ETIME); 3129 else 3130 return (0); 3131 } 3132 /* 3133 * If the caller implements delayed errors (i.e. queued after data) 3134 * we can not check for errors here since data as well as an 3135 * error might have arrived at the stream head. We return to 3136 * have the caller check the read queue before checking for errors. 3137 */ 3138 if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) { 3139 error = strgeterr(stp, errs, (flag & STR_PEEK)); 3140 if (error != 0) { 3141 *done = 1; 3142 return (error); 3143 } 3144 } 3145 *done = 0; 3146 return (0); 3147 } 3148 3149 /* 3150 * Perform job control discipline access checks. 3151 * Return 0 for success and the errno for failure. 3152 */ 3153 3154 #define cantsend(p, t, sig) \ 3155 (sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig)) 3156 3157 int 3158 straccess(struct stdata *stp, enum jcaccess mode) 3159 { 3160 extern kcondvar_t lbolt_cv; /* XXX: should be in a header file */ 3161 kthread_t *t = curthread; 3162 proc_t *p = ttoproc(t); 3163 sess_t *sp; 3164 3165 ASSERT(mutex_owned(&stp->sd_lock)); 3166 3167 if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO) 3168 return (0); 3169 3170 mutex_enter(&p->p_lock); /* protects p_pgidp */ 3171 3172 for (;;) { 3173 mutex_enter(&p->p_splock); /* protects p->p_sessp */ 3174 sp = p->p_sessp; 3175 mutex_enter(&sp->s_lock); /* protects sp->* */ 3176 3177 /* 3178 * If this is not the calling process's controlling terminal 3179 * or if the calling process is already in the foreground 3180 * then allow access. 3181 */ 3182 if (sp->s_dev != stp->sd_vnode->v_rdev || 3183 p->p_pgidp == stp->sd_pgidp) { 3184 mutex_exit(&sp->s_lock); 3185 mutex_exit(&p->p_splock); 3186 mutex_exit(&p->p_lock); 3187 return (0); 3188 } 3189 3190 /* 3191 * Check to see if controlling terminal has been deallocated. 3192 */ 3193 if (sp->s_vp == NULL) { 3194 if (!cantsend(p, t, SIGHUP)) 3195 sigtoproc(p, t, SIGHUP); 3196 mutex_exit(&sp->s_lock); 3197 mutex_exit(&p->p_splock); 3198 mutex_exit(&p->p_lock); 3199 return (EIO); 3200 } 3201 3202 mutex_exit(&sp->s_lock); 3203 mutex_exit(&p->p_splock); 3204 3205 if (mode == JCGETP) { 3206 mutex_exit(&p->p_lock); 3207 return (0); 3208 } 3209 3210 if (mode == JCREAD) { 3211 if (p->p_detached || cantsend(p, t, SIGTTIN)) { 3212 mutex_exit(&p->p_lock); 3213 return (EIO); 3214 } 3215 mutex_exit(&p->p_lock); 3216 mutex_exit(&stp->sd_lock); 3217 pgsignal(p->p_pgidp, SIGTTIN); 3218 mutex_enter(&stp->sd_lock); 3219 mutex_enter(&p->p_lock); 3220 } else { /* mode == JCWRITE or JCSETP */ 3221 if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) || 3222 cantsend(p, t, SIGTTOU)) { 3223 mutex_exit(&p->p_lock); 3224 return (0); 3225 } 3226 if (p->p_detached) { 3227 mutex_exit(&p->p_lock); 3228 return (EIO); 3229 } 3230 mutex_exit(&p->p_lock); 3231 mutex_exit(&stp->sd_lock); 3232 pgsignal(p->p_pgidp, SIGTTOU); 3233 mutex_enter(&stp->sd_lock); 3234 mutex_enter(&p->p_lock); 3235 } 3236 3237 /* 3238 * We call cv_wait_sig_swap() to cause the appropriate 3239 * action for the jobcontrol signal to take place. 3240 * If the signal is being caught, we will take the 3241 * EINTR error return. Otherwise, the default action 3242 * of causing the process to stop will take place. 3243 * In this case, we rely on the periodic cv_broadcast() on 3244 * &lbolt_cv to wake us up to loop around and test again. 3245 * We can't get here if the signal is ignored or 3246 * if the current thread is blocking the signal. 3247 */ 3248 mutex_exit(&stp->sd_lock); 3249 if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) { 3250 mutex_exit(&p->p_lock); 3251 mutex_enter(&stp->sd_lock); 3252 return (EINTR); 3253 } 3254 mutex_exit(&p->p_lock); 3255 mutex_enter(&stp->sd_lock); 3256 mutex_enter(&p->p_lock); 3257 } 3258 } 3259 3260 /* 3261 * Return size of message of block type (bp->b_datap->db_type) 3262 */ 3263 size_t 3264 xmsgsize(mblk_t *bp) 3265 { 3266 unsigned char type; 3267 size_t count = 0; 3268 3269 type = bp->b_datap->db_type; 3270 3271 for (; bp; bp = bp->b_cont) { 3272 if (type != bp->b_datap->db_type) 3273 break; 3274 ASSERT(bp->b_wptr >= bp->b_rptr); 3275 count += bp->b_wptr - bp->b_rptr; 3276 } 3277 return (count); 3278 } 3279 3280 /* 3281 * Allocate a stream head. 3282 */ 3283 struct stdata * 3284 shalloc(queue_t *qp) 3285 { 3286 stdata_t *stp; 3287 3288 stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP); 3289 3290 stp->sd_wrq = _WR(qp); 3291 stp->sd_strtab = NULL; 3292 stp->sd_iocid = 0; 3293 stp->sd_mate = NULL; 3294 stp->sd_freezer = NULL; 3295 stp->sd_refcnt = 0; 3296 stp->sd_wakeq = 0; 3297 stp->sd_anchor = 0; 3298 stp->sd_struiowrq = NULL; 3299 stp->sd_struiordq = NULL; 3300 stp->sd_struiodnak = 0; 3301 stp->sd_struionak = NULL; 3302 stp->sd_t_audit_data = NULL; 3303 stp->sd_rput_opt = 0; 3304 stp->sd_wput_opt = 0; 3305 stp->sd_read_opt = 0; 3306 stp->sd_rprotofunc = strrput_proto; 3307 stp->sd_rmiscfunc = strrput_misc; 3308 stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL; 3309 stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL; 3310 stp->sd_ciputctrl = NULL; 3311 stp->sd_nciputctrl = 0; 3312 stp->sd_qhead = NULL; 3313 stp->sd_qtail = NULL; 3314 stp->sd_servid = NULL; 3315 stp->sd_nqueues = 0; 3316 stp->sd_svcflags = 0; 3317 stp->sd_copyflag = 0; 3318 3319 return (stp); 3320 } 3321 3322 /* 3323 * Free a stream head. 3324 */ 3325 void 3326 shfree(stdata_t *stp) 3327 { 3328 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 3329 3330 stp->sd_wrq = NULL; 3331 3332 mutex_enter(&stp->sd_qlock); 3333 while (stp->sd_svcflags & STRS_SCHEDULED) { 3334 STRSTAT(strwaits); 3335 cv_wait(&stp->sd_qcv, &stp->sd_qlock); 3336 } 3337 mutex_exit(&stp->sd_qlock); 3338 3339 if (stp->sd_ciputctrl != NULL) { 3340 ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1); 3341 SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl, 3342 stp->sd_nciputctrl, 0); 3343 ASSERT(ciputctrl_cache != NULL); 3344 kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl); 3345 stp->sd_ciputctrl = NULL; 3346 stp->sd_nciputctrl = 0; 3347 } 3348 ASSERT(stp->sd_qhead == NULL); 3349 ASSERT(stp->sd_qtail == NULL); 3350 ASSERT(stp->sd_nqueues == 0); 3351 kmem_cache_free(stream_head_cache, stp); 3352 } 3353 3354 /* 3355 * Allocate a pair of queues and a syncq for the pair 3356 */ 3357 queue_t * 3358 allocq(void) 3359 { 3360 queinfo_t *qip; 3361 queue_t *qp, *wqp; 3362 syncq_t *sq; 3363 3364 qip = kmem_cache_alloc(queue_cache, KM_SLEEP); 3365 3366 qp = &qip->qu_rqueue; 3367 wqp = &qip->qu_wqueue; 3368 sq = &qip->qu_syncq; 3369 3370 qp->q_last = NULL; 3371 qp->q_next = NULL; 3372 qp->q_ptr = NULL; 3373 qp->q_flag = QUSE | QREADR; 3374 qp->q_bandp = NULL; 3375 qp->q_stream = NULL; 3376 qp->q_syncq = sq; 3377 qp->q_nband = 0; 3378 qp->q_nfsrv = NULL; 3379 qp->q_draining = 0; 3380 qp->q_syncqmsgs = 0; 3381 qp->q_spri = 0; 3382 qp->q_qtstamp = 0; 3383 qp->q_sqtstamp = 0; 3384 qp->q_fp = NULL; 3385 3386 wqp->q_last = NULL; 3387 wqp->q_next = NULL; 3388 wqp->q_ptr = NULL; 3389 wqp->q_flag = QUSE; 3390 wqp->q_bandp = NULL; 3391 wqp->q_stream = NULL; 3392 wqp->q_syncq = sq; 3393 wqp->q_nband = 0; 3394 wqp->q_nfsrv = NULL; 3395 wqp->q_draining = 0; 3396 wqp->q_syncqmsgs = 0; 3397 wqp->q_qtstamp = 0; 3398 wqp->q_sqtstamp = 0; 3399 wqp->q_spri = 0; 3400 3401 sq->sq_count = 0; 3402 sq->sq_rmqcount = 0; 3403 sq->sq_flags = 0; 3404 sq->sq_type = 0; 3405 sq->sq_callbflags = 0; 3406 sq->sq_cancelid = 0; 3407 sq->sq_ciputctrl = NULL; 3408 sq->sq_nciputctrl = 0; 3409 sq->sq_needexcl = 0; 3410 sq->sq_svcflags = 0; 3411 3412 return (qp); 3413 } 3414 3415 /* 3416 * Free a pair of queues and the "attached" syncq. 3417 * Discard any messages left on the syncq(s), remove the syncq(s) from the 3418 * outer perimeter, and free the syncq(s) if they are not the "attached" syncq. 3419 */ 3420 void 3421 freeq(queue_t *qp) 3422 { 3423 qband_t *qbp, *nqbp; 3424 syncq_t *sq, *outer; 3425 queue_t *wqp = _WR(qp); 3426 3427 ASSERT(qp->q_flag & QREADR); 3428 3429 /* 3430 * If a previously dispatched taskq job is scheduled to run 3431 * sync_service() or a service routine is scheduled for the 3432 * queues about to be freed, wait here until all service is 3433 * done on the queue and all associated queues and syncqs. 3434 */ 3435 wait_svc(qp); 3436 3437 (void) flush_syncq(qp->q_syncq, qp); 3438 (void) flush_syncq(wqp->q_syncq, wqp); 3439 ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0); 3440 3441 /* 3442 * Flush the queues before q_next is set to NULL This is needed 3443 * in order to backenable any downstream queue before we go away. 3444 * Note: we are already removed from the stream so that the 3445 * backenabling will not cause any messages to be delivered to our 3446 * put procedures. 3447 */ 3448 flushq(qp, FLUSHALL); 3449 flushq(wqp, FLUSHALL); 3450 3451 /* Tidy up - removeq only does a half-remove from stream */ 3452 qp->q_next = wqp->q_next = NULL; 3453 ASSERT(!(qp->q_flag & QENAB)); 3454 ASSERT(!(wqp->q_flag & QENAB)); 3455 3456 outer = qp->q_syncq->sq_outer; 3457 if (outer != NULL) { 3458 outer_remove(outer, qp->q_syncq); 3459 if (wqp->q_syncq != qp->q_syncq) 3460 outer_remove(outer, wqp->q_syncq); 3461 } 3462 /* 3463 * Free any syncqs that are outside what allocq returned. 3464 */ 3465 if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD)) 3466 free_syncq(qp->q_syncq); 3467 if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp)) 3468 free_syncq(wqp->q_syncq); 3469 3470 ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0); 3471 ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0); 3472 ASSERT(MUTEX_NOT_HELD(QLOCK(qp))); 3473 ASSERT(MUTEX_NOT_HELD(QLOCK(wqp))); 3474 sq = SQ(qp); 3475 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 3476 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL); 3477 ASSERT(sq->sq_outer == NULL); 3478 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL); 3479 ASSERT(sq->sq_callbpend == NULL); 3480 ASSERT(sq->sq_needexcl == 0); 3481 3482 if (sq->sq_ciputctrl != NULL) { 3483 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1); 3484 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl, 3485 sq->sq_nciputctrl, 0); 3486 ASSERT(ciputctrl_cache != NULL); 3487 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl); 3488 sq->sq_ciputctrl = NULL; 3489 sq->sq_nciputctrl = 0; 3490 } 3491 3492 ASSERT(qp->q_first == NULL && wqp->q_first == NULL); 3493 ASSERT(qp->q_count == 0 && wqp->q_count == 0); 3494 ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0); 3495 3496 qp->q_flag &= ~QUSE; 3497 wqp->q_flag &= ~QUSE; 3498 3499 /* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */ 3500 /* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */ 3501 3502 qbp = qp->q_bandp; 3503 while (qbp) { 3504 nqbp = qbp->qb_next; 3505 freeband(qbp); 3506 qbp = nqbp; 3507 } 3508 qbp = wqp->q_bandp; 3509 while (qbp) { 3510 nqbp = qbp->qb_next; 3511 freeband(qbp); 3512 qbp = nqbp; 3513 } 3514 kmem_cache_free(queue_cache, qp); 3515 } 3516 3517 /* 3518 * Allocate a qband structure. 3519 */ 3520 qband_t * 3521 allocband(void) 3522 { 3523 qband_t *qbp; 3524 3525 qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP); 3526 if (qbp == NULL) 3527 return (NULL); 3528 3529 qbp->qb_next = NULL; 3530 qbp->qb_count = 0; 3531 qbp->qb_mblkcnt = 0; 3532 qbp->qb_first = NULL; 3533 qbp->qb_last = NULL; 3534 qbp->qb_flag = 0; 3535 3536 return (qbp); 3537 } 3538 3539 /* 3540 * Free a qband structure. 3541 */ 3542 void 3543 freeband(qband_t *qbp) 3544 { 3545 kmem_cache_free(qband_cache, qbp); 3546 } 3547 3548 /* 3549 * Just like putnextctl(9F), except that allocb_wait() is used. 3550 * 3551 * Consolidation Private, and of course only callable from the stream head or 3552 * routines that may block. 3553 */ 3554 int 3555 putnextctl_wait(queue_t *q, int type) 3556 { 3557 mblk_t *bp; 3558 int error; 3559 3560 if ((datamsg(type) && (type != M_DELAY)) || 3561 (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL) 3562 return (0); 3563 3564 bp->b_datap->db_type = (unsigned char)type; 3565 putnext(q, bp); 3566 return (1); 3567 } 3568 3569 /* 3570 * run any possible bufcalls. 3571 */ 3572 void 3573 runbufcalls(void) 3574 { 3575 strbufcall_t *bcp; 3576 3577 mutex_enter(&bcall_monitor); 3578 mutex_enter(&strbcall_lock); 3579 3580 if (strbcalls.bc_head) { 3581 size_t count; 3582 int nevent; 3583 3584 /* 3585 * count how many events are on the list 3586 * now so we can check to avoid looping 3587 * in low memory situations 3588 */ 3589 nevent = 0; 3590 for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next) 3591 nevent++; 3592 3593 /* 3594 * get estimate of available memory from kmem_avail(). 3595 * awake all bufcall functions waiting for 3596 * memory whose request could be satisfied 3597 * by 'count' memory and let 'em fight for it. 3598 */ 3599 count = kmem_avail(); 3600 while ((bcp = strbcalls.bc_head) != NULL && nevent) { 3601 STRSTAT(bufcalls); 3602 --nevent; 3603 if (bcp->bc_size <= count) { 3604 bcp->bc_executor = curthread; 3605 mutex_exit(&strbcall_lock); 3606 (*bcp->bc_func)(bcp->bc_arg); 3607 mutex_enter(&strbcall_lock); 3608 bcp->bc_executor = NULL; 3609 cv_broadcast(&bcall_cv); 3610 strbcalls.bc_head = bcp->bc_next; 3611 kmem_free(bcp, sizeof (strbufcall_t)); 3612 } else { 3613 /* 3614 * too big, try again later - note 3615 * that nevent was decremented above 3616 * so we won't retry this one on this 3617 * iteration of the loop 3618 */ 3619 if (bcp->bc_next != NULL) { 3620 strbcalls.bc_head = bcp->bc_next; 3621 bcp->bc_next = NULL; 3622 strbcalls.bc_tail->bc_next = bcp; 3623 strbcalls.bc_tail = bcp; 3624 } 3625 } 3626 } 3627 if (strbcalls.bc_head == NULL) 3628 strbcalls.bc_tail = NULL; 3629 } 3630 3631 mutex_exit(&strbcall_lock); 3632 mutex_exit(&bcall_monitor); 3633 } 3634 3635 3636 /* 3637 * actually run queue's service routine. 3638 */ 3639 static void 3640 runservice(queue_t *q) 3641 { 3642 qband_t *qbp; 3643 3644 ASSERT(q->q_qinfo->qi_srvp); 3645 again: 3646 entersq(q->q_syncq, SQ_SVC); 3647 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START, 3648 "runservice starts:%p", q); 3649 3650 if (!(q->q_flag & QWCLOSE)) 3651 (*q->q_qinfo->qi_srvp)(q); 3652 3653 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END, 3654 "runservice ends:(%p)", q); 3655 3656 leavesq(q->q_syncq, SQ_SVC); 3657 3658 mutex_enter(QLOCK(q)); 3659 if (q->q_flag & QENAB) { 3660 q->q_flag &= ~QENAB; 3661 mutex_exit(QLOCK(q)); 3662 goto again; 3663 } 3664 q->q_flag &= ~QINSERVICE; 3665 q->q_flag &= ~QBACK; 3666 for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next) 3667 qbp->qb_flag &= ~QB_BACK; 3668 /* 3669 * Wakeup thread waiting for the service procedure 3670 * to be run (strclose and qdetach). 3671 */ 3672 cv_broadcast(&q->q_wait); 3673 3674 mutex_exit(QLOCK(q)); 3675 } 3676 3677 /* 3678 * Background processing of bufcalls. 3679 */ 3680 void 3681 streams_bufcall_service(void) 3682 { 3683 callb_cpr_t cprinfo; 3684 3685 CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr, 3686 "streams_bufcall_service"); 3687 3688 mutex_enter(&strbcall_lock); 3689 3690 for (;;) { 3691 if (strbcalls.bc_head != NULL && kmem_avail() > 0) { 3692 mutex_exit(&strbcall_lock); 3693 runbufcalls(); 3694 mutex_enter(&strbcall_lock); 3695 } 3696 if (strbcalls.bc_head != NULL) { 3697 clock_t wt, tick; 3698 3699 STRSTAT(bcwaits); 3700 /* Wait for memory to become available */ 3701 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3702 tick = SEC_TO_TICK(60); 3703 time_to_wait(&wt, tick); 3704 (void) cv_timedwait(&memavail_cv, &strbcall_lock, wt); 3705 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock); 3706 } 3707 3708 /* Wait for new work to arrive */ 3709 if (strbcalls.bc_head == NULL) { 3710 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3711 cv_wait(&strbcall_cv, &strbcall_lock); 3712 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock); 3713 } 3714 } 3715 } 3716 3717 /* 3718 * Background processing of streams background tasks which failed 3719 * taskq_dispatch. 3720 */ 3721 static void 3722 streams_qbkgrnd_service(void) 3723 { 3724 callb_cpr_t cprinfo; 3725 queue_t *q; 3726 3727 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr, 3728 "streams_bkgrnd_service"); 3729 3730 mutex_enter(&service_queue); 3731 3732 for (;;) { 3733 /* 3734 * Wait for work to arrive. 3735 */ 3736 while ((freebs_list == NULL) && (qhead == NULL)) { 3737 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3738 cv_wait(&services_to_run, &service_queue); 3739 CALLB_CPR_SAFE_END(&cprinfo, &service_queue); 3740 } 3741 /* 3742 * Handle all pending freebs requests to free memory. 3743 */ 3744 while (freebs_list != NULL) { 3745 mblk_t *mp = freebs_list; 3746 freebs_list = mp->b_next; 3747 mutex_exit(&service_queue); 3748 mblk_free(mp); 3749 mutex_enter(&service_queue); 3750 } 3751 /* 3752 * Run pending queues. 3753 */ 3754 while (qhead != NULL) { 3755 DQ(q, qhead, qtail, q_link); 3756 ASSERT(q != NULL); 3757 mutex_exit(&service_queue); 3758 queue_service(q); 3759 mutex_enter(&service_queue); 3760 } 3761 ASSERT(qhead == NULL && qtail == NULL); 3762 } 3763 } 3764 3765 /* 3766 * Background processing of streams background tasks which failed 3767 * taskq_dispatch. 3768 */ 3769 static void 3770 streams_sqbkgrnd_service(void) 3771 { 3772 callb_cpr_t cprinfo; 3773 syncq_t *sq; 3774 3775 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr, 3776 "streams_sqbkgrnd_service"); 3777 3778 mutex_enter(&service_queue); 3779 3780 for (;;) { 3781 /* 3782 * Wait for work to arrive. 3783 */ 3784 while (sqhead == NULL) { 3785 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3786 cv_wait(&syncqs_to_run, &service_queue); 3787 CALLB_CPR_SAFE_END(&cprinfo, &service_queue); 3788 } 3789 3790 /* 3791 * Run pending syncqs. 3792 */ 3793 while (sqhead != NULL) { 3794 DQ(sq, sqhead, sqtail, sq_next); 3795 ASSERT(sq != NULL); 3796 ASSERT(sq->sq_svcflags & SQ_BGTHREAD); 3797 mutex_exit(&service_queue); 3798 syncq_service(sq); 3799 mutex_enter(&service_queue); 3800 } 3801 } 3802 } 3803 3804 /* 3805 * Disable the syncq and wait for background syncq processing to complete. 3806 * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the 3807 * list. 3808 */ 3809 void 3810 wait_sq_svc(syncq_t *sq) 3811 { 3812 mutex_enter(SQLOCK(sq)); 3813 sq->sq_svcflags |= SQ_DISABLED; 3814 if (sq->sq_svcflags & SQ_BGTHREAD) { 3815 syncq_t *sq_chase; 3816 syncq_t *sq_curr; 3817 int removed; 3818 3819 ASSERT(sq->sq_servcount == 1); 3820 mutex_enter(&service_queue); 3821 RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed); 3822 mutex_exit(&service_queue); 3823 if (removed) { 3824 sq->sq_svcflags &= ~SQ_BGTHREAD; 3825 sq->sq_servcount = 0; 3826 STRSTAT(sqremoved); 3827 goto done; 3828 } 3829 } 3830 while (sq->sq_servcount != 0) { 3831 sq->sq_flags |= SQ_WANTWAKEUP; 3832 cv_wait(&sq->sq_wait, SQLOCK(sq)); 3833 } 3834 done: 3835 mutex_exit(SQLOCK(sq)); 3836 } 3837 3838 /* 3839 * Put a syncq on the list of syncq's to be serviced by the sqthread. 3840 * Add the argument to the end of the sqhead list and set the flag 3841 * indicating this syncq has been enabled. If it has already been 3842 * enabled, don't do anything. 3843 * This routine assumes that SQLOCK is held. 3844 * NOTE that the lock order is to have the SQLOCK first, 3845 * so if the service_syncq lock is held, we need to release it 3846 * before aquiring the SQLOCK (mostly relevant for the background 3847 * thread, and this seems to be common among the STREAMS global locks). 3848 * Note the the sq_svcflags are protected by the SQLOCK. 3849 */ 3850 void 3851 sqenable(syncq_t *sq) 3852 { 3853 /* 3854 * This is probably not important except for where I believe it 3855 * is being called. At that point, it should be held (and it 3856 * is a pain to release it just for this routine, so don't do 3857 * it). 3858 */ 3859 ASSERT(MUTEX_HELD(SQLOCK(sq))); 3860 3861 IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL); 3862 IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD); 3863 3864 /* 3865 * Do not put on list if background thread is scheduled or 3866 * syncq is disabled. 3867 */ 3868 if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD)) 3869 return; 3870 3871 /* 3872 * Check whether we should enable sq at all. 3873 * Non PERMOD syncqs may be drained by at most one thread. 3874 * PERMOD syncqs may be drained by several threads but we limit the 3875 * total amount to the lesser of 3876 * Number of queues on the squeue and 3877 * Number of CPUs. 3878 */ 3879 if (sq->sq_servcount != 0) { 3880 if (((sq->sq_type & SQ_PERMOD) == 0) || 3881 (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) { 3882 STRSTAT(sqtoomany); 3883 return; 3884 } 3885 } 3886 3887 sq->sq_tstamp = lbolt; 3888 STRSTAT(sqenables); 3889 3890 /* Attempt a taskq dispatch */ 3891 sq->sq_servid = (void *)taskq_dispatch(streams_taskq, 3892 (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE); 3893 if (sq->sq_servid != NULL) { 3894 sq->sq_servcount++; 3895 return; 3896 } 3897 3898 /* 3899 * This taskq dispatch failed, but a previous one may have succeeded. 3900 * Don't try to schedule on the background thread whilst there is 3901 * outstanding taskq processing. 3902 */ 3903 if (sq->sq_servcount != 0) 3904 return; 3905 3906 /* 3907 * System is low on resources and can't perform a non-sleeping 3908 * dispatch. Schedule the syncq for a background thread and mark the 3909 * syncq to avoid any further taskq dispatch attempts. 3910 */ 3911 mutex_enter(&service_queue); 3912 STRSTAT(taskqfails); 3913 ENQUEUE(sq, sqhead, sqtail, sq_next); 3914 sq->sq_svcflags |= SQ_BGTHREAD; 3915 sq->sq_servcount = 1; 3916 cv_signal(&syncqs_to_run); 3917 mutex_exit(&service_queue); 3918 } 3919 3920 /* 3921 * Note: fifo_close() depends on the mblk_t on the queue being freed 3922 * asynchronously. The asynchronous freeing of messages breaks the 3923 * recursive call chain of fifo_close() while there are I_SENDFD type of 3924 * messages refering other file pointers on the queue. Then when 3925 * closing pipes it can avoid stack overflow in case of daisy-chained 3926 * pipes, and also avoid deadlock in case of fifonode_t pairs (which 3927 * share the same fifolock_t). 3928 */ 3929 3930 void 3931 freebs_enqueue(mblk_t *mp, dblk_t *dbp) 3932 { 3933 esb_queue_t *eqp = &system_esbq; 3934 3935 ASSERT(dbp->db_mblk == mp); 3936 3937 /* 3938 * Check data sanity. The dblock should have non-empty free function. 3939 * It is better to panic here then later when the dblock is freed 3940 * asynchronously when the context is lost. 3941 */ 3942 if (dbp->db_frtnp->free_func == NULL) { 3943 panic("freebs_enqueue: dblock %p has a NULL free callback", 3944 (void *)dbp); 3945 } 3946 3947 mutex_enter(&eqp->eq_lock); 3948 /* queue the new mblk on the esballoc queue */ 3949 if (eqp->eq_head == NULL) { 3950 eqp->eq_head = eqp->eq_tail = mp; 3951 } else { 3952 eqp->eq_tail->b_next = mp; 3953 eqp->eq_tail = mp; 3954 } 3955 eqp->eq_len++; 3956 3957 /* If we're the first thread to reach the threshold, process */ 3958 if (eqp->eq_len >= esbq_max_qlen && 3959 !(eqp->eq_flags & ESBQ_PROCESSING)) 3960 esballoc_process_queue(eqp); 3961 3962 esballoc_set_timer(eqp, esbq_timeout); 3963 mutex_exit(&eqp->eq_lock); 3964 } 3965 3966 static void 3967 esballoc_process_queue(esb_queue_t *eqp) 3968 { 3969 mblk_t *mp; 3970 3971 ASSERT(MUTEX_HELD(&eqp->eq_lock)); 3972 3973 eqp->eq_flags |= ESBQ_PROCESSING; 3974 3975 do { 3976 /* 3977 * Detach the message chain for processing. 3978 */ 3979 mp = eqp->eq_head; 3980 eqp->eq_tail->b_next = NULL; 3981 eqp->eq_head = eqp->eq_tail = NULL; 3982 eqp->eq_len = 0; 3983 mutex_exit(&eqp->eq_lock); 3984 3985 /* 3986 * Process the message chain. 3987 */ 3988 esballoc_enqueue_mblk(mp); 3989 mutex_enter(&eqp->eq_lock); 3990 } while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0)); 3991 3992 eqp->eq_flags &= ~ESBQ_PROCESSING; 3993 } 3994 3995 /* 3996 * taskq callback routine to free esballoced mblk's 3997 */ 3998 static void 3999 esballoc_mblk_free(mblk_t *mp) 4000 { 4001 mblk_t *nextmp; 4002 4003 for (; mp != NULL; mp = nextmp) { 4004 nextmp = mp->b_next; 4005 mp->b_next = NULL; 4006 mblk_free(mp); 4007 } 4008 } 4009 4010 static void 4011 esballoc_enqueue_mblk(mblk_t *mp) 4012 { 4013 4014 if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp, 4015 TQ_NOSLEEP) == NULL) { 4016 mblk_t *first_mp = mp; 4017 /* 4018 * System is low on resources and can't perform a non-sleeping 4019 * dispatch. Schedule for a background thread. 4020 */ 4021 mutex_enter(&service_queue); 4022 STRSTAT(taskqfails); 4023 4024 while (mp->b_next != NULL) 4025 mp = mp->b_next; 4026 4027 mp->b_next = freebs_list; 4028 freebs_list = first_mp; 4029 cv_signal(&services_to_run); 4030 mutex_exit(&service_queue); 4031 } 4032 } 4033 4034 static void 4035 esballoc_timer(void *arg) 4036 { 4037 esb_queue_t *eqp = arg; 4038 4039 mutex_enter(&eqp->eq_lock); 4040 eqp->eq_flags &= ~ESBQ_TIMER; 4041 4042 if (!(eqp->eq_flags & ESBQ_PROCESSING) && 4043 eqp->eq_len > 0) 4044 esballoc_process_queue(eqp); 4045 4046 esballoc_set_timer(eqp, esbq_timeout); 4047 mutex_exit(&eqp->eq_lock); 4048 } 4049 4050 static void 4051 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout) 4052 { 4053 ASSERT(MUTEX_HELD(&eqp->eq_lock)); 4054 4055 if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) { 4056 (void) timeout(esballoc_timer, eqp, eq_timeout); 4057 eqp->eq_flags |= ESBQ_TIMER; 4058 } 4059 } 4060 4061 void 4062 esballoc_queue_init(void) 4063 { 4064 system_esbq.eq_len = 0; 4065 system_esbq.eq_head = system_esbq.eq_tail = NULL; 4066 system_esbq.eq_flags = 0; 4067 } 4068 4069 /* 4070 * Set the QBACK or QB_BACK flag in the given queue for 4071 * the given priority band. 4072 */ 4073 void 4074 setqback(queue_t *q, unsigned char pri) 4075 { 4076 int i; 4077 qband_t *qbp; 4078 qband_t **qbpp; 4079 4080 ASSERT(MUTEX_HELD(QLOCK(q))); 4081 if (pri != 0) { 4082 if (pri > q->q_nband) { 4083 qbpp = &q->q_bandp; 4084 while (*qbpp) 4085 qbpp = &(*qbpp)->qb_next; 4086 while (pri > q->q_nband) { 4087 if ((*qbpp = allocband()) == NULL) { 4088 cmn_err(CE_WARN, 4089 "setqback: can't allocate qband\n"); 4090 return; 4091 } 4092 (*qbpp)->qb_hiwat = q->q_hiwat; 4093 (*qbpp)->qb_lowat = q->q_lowat; 4094 q->q_nband++; 4095 qbpp = &(*qbpp)->qb_next; 4096 } 4097 } 4098 qbp = q->q_bandp; 4099 i = pri; 4100 while (--i) 4101 qbp = qbp->qb_next; 4102 qbp->qb_flag |= QB_BACK; 4103 } else { 4104 q->q_flag |= QBACK; 4105 } 4106 } 4107 4108 int 4109 strcopyin(void *from, void *to, size_t len, int copyflag) 4110 { 4111 if (copyflag & U_TO_K) { 4112 ASSERT((copyflag & K_TO_K) == 0); 4113 if (copyin(from, to, len)) 4114 return (EFAULT); 4115 } else { 4116 ASSERT(copyflag & K_TO_K); 4117 bcopy(from, to, len); 4118 } 4119 return (0); 4120 } 4121 4122 int 4123 strcopyout(void *from, void *to, size_t len, int copyflag) 4124 { 4125 if (copyflag & U_TO_K) { 4126 if (copyout(from, to, len)) 4127 return (EFAULT); 4128 } else { 4129 ASSERT(copyflag & K_TO_K); 4130 bcopy(from, to, len); 4131 } 4132 return (0); 4133 } 4134 4135 /* 4136 * strsignal_nolock() posts a signal to the process(es) at the stream head. 4137 * It assumes that the stream head lock is already held, whereas strsignal() 4138 * acquires the lock first. This routine was created because a few callers 4139 * release the stream head lock before calling only to re-acquire it after 4140 * it returns. 4141 */ 4142 void 4143 strsignal_nolock(stdata_t *stp, int sig, uchar_t band) 4144 { 4145 ASSERT(MUTEX_HELD(&stp->sd_lock)); 4146 switch (sig) { 4147 case SIGPOLL: 4148 if (stp->sd_sigflags & S_MSG) 4149 strsendsig(stp->sd_siglist, S_MSG, band, 0); 4150 break; 4151 default: 4152 if (stp->sd_pgidp) 4153 pgsignal(stp->sd_pgidp, sig); 4154 break; 4155 } 4156 } 4157 4158 void 4159 strsignal(stdata_t *stp, int sig, int32_t band) 4160 { 4161 TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG, 4162 "strsignal:%p, %X, %X", stp, sig, band); 4163 4164 mutex_enter(&stp->sd_lock); 4165 switch (sig) { 4166 case SIGPOLL: 4167 if (stp->sd_sigflags & S_MSG) 4168 strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0); 4169 break; 4170 4171 default: 4172 if (stp->sd_pgidp) { 4173 pgsignal(stp->sd_pgidp, sig); 4174 } 4175 break; 4176 } 4177 mutex_exit(&stp->sd_lock); 4178 } 4179 4180 void 4181 strhup(stdata_t *stp) 4182 { 4183 ASSERT(mutex_owned(&stp->sd_lock)); 4184 pollwakeup(&stp->sd_pollist, POLLHUP); 4185 if (stp->sd_sigflags & S_HANGUP) 4186 strsendsig(stp->sd_siglist, S_HANGUP, 0, 0); 4187 } 4188 4189 /* 4190 * Backenable the first queue upstream from `q' with a service procedure. 4191 */ 4192 void 4193 backenable(queue_t *q, uchar_t pri) 4194 { 4195 queue_t *nq; 4196 4197 /* 4198 * our presence might not prevent other modules in our own 4199 * stream from popping/pushing since the caller of getq might not 4200 * have a claim on the queue (some drivers do a getq on somebody 4201 * else's queue - they know that the queue itself is not going away 4202 * but the framework has to guarantee q_next in that stream.) 4203 */ 4204 claimstr(q); 4205 4206 /* find nearest back queue with service proc */ 4207 for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) { 4208 ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq)); 4209 } 4210 4211 if (nq) { 4212 kthread_t *freezer; 4213 /* 4214 * backenable can be called either with no locks held 4215 * or with the stream frozen (the latter occurs when a module 4216 * calls rmvq with the stream frozen.) If the stream is frozen 4217 * by the caller the caller will hold all qlocks in the stream. 4218 * Note that a frozen stream doesn't freeze a mated stream, 4219 * so we explicitly check for that. 4220 */ 4221 freezer = STREAM(q)->sd_freezer; 4222 if (freezer != curthread || STREAM(q) != STREAM(nq)) { 4223 mutex_enter(QLOCK(nq)); 4224 } 4225 #ifdef DEBUG 4226 else { 4227 ASSERT(frozenstr(q)); 4228 ASSERT(MUTEX_HELD(QLOCK(q))); 4229 ASSERT(MUTEX_HELD(QLOCK(nq))); 4230 } 4231 #endif 4232 setqback(nq, pri); 4233 qenable_locked(nq); 4234 if (freezer != curthread || STREAM(q) != STREAM(nq)) 4235 mutex_exit(QLOCK(nq)); 4236 } 4237 releasestr(q); 4238 } 4239 4240 /* 4241 * Return the appropriate errno when one of flags_to_check is set 4242 * in sd_flags. Uses the exported error routines if they are set. 4243 * Will return 0 if non error is set (or if the exported error routines 4244 * do not return an error). 4245 * 4246 * If there is both a read and write error to check we prefer the read error. 4247 * Also, give preference to recorded errno's over the error functions. 4248 * The flags that are handled are: 4249 * STPLEX return EINVAL 4250 * STRDERR return sd_rerror (and clear if STRDERRNONPERSIST) 4251 * STWRERR return sd_werror (and clear if STWRERRNONPERSIST) 4252 * STRHUP return sd_werror 4253 * 4254 * If the caller indicates that the operation is a peek a nonpersistent error 4255 * is not cleared. 4256 */ 4257 int 4258 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek) 4259 { 4260 int32_t sd_flag = stp->sd_flag & flags_to_check; 4261 int error = 0; 4262 4263 ASSERT(MUTEX_HELD(&stp->sd_lock)); 4264 ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0); 4265 if (sd_flag & STPLEX) 4266 error = EINVAL; 4267 else if (sd_flag & STRDERR) { 4268 error = stp->sd_rerror; 4269 if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) { 4270 /* 4271 * Read errors are non-persistent i.e. discarded once 4272 * returned to a non-peeking caller, 4273 */ 4274 stp->sd_rerror = 0; 4275 stp->sd_flag &= ~STRDERR; 4276 } 4277 if (error == 0 && stp->sd_rderrfunc != NULL) { 4278 int clearerr = 0; 4279 4280 error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek, 4281 &clearerr); 4282 if (clearerr) { 4283 stp->sd_flag &= ~STRDERR; 4284 stp->sd_rderrfunc = NULL; 4285 } 4286 } 4287 } else if (sd_flag & STWRERR) { 4288 error = stp->sd_werror; 4289 if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) { 4290 /* 4291 * Write errors are non-persistent i.e. discarded once 4292 * returned to a non-peeking caller, 4293 */ 4294 stp->sd_werror = 0; 4295 stp->sd_flag &= ~STWRERR; 4296 } 4297 if (error == 0 && stp->sd_wrerrfunc != NULL) { 4298 int clearerr = 0; 4299 4300 error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek, 4301 &clearerr); 4302 if (clearerr) { 4303 stp->sd_flag &= ~STWRERR; 4304 stp->sd_wrerrfunc = NULL; 4305 } 4306 } 4307 } else if (sd_flag & STRHUP) { 4308 /* sd_werror set when STRHUP */ 4309 error = stp->sd_werror; 4310 } 4311 return (error); 4312 } 4313 4314 4315 /* 4316 * single-thread open/close/push/pop 4317 * for twisted streams also 4318 */ 4319 int 4320 strstartplumb(stdata_t *stp, int flag, int cmd) 4321 { 4322 int waited = 1; 4323 int error = 0; 4324 4325 if (STRMATED(stp)) { 4326 struct stdata *stmatep = stp->sd_mate; 4327 4328 STRLOCKMATES(stp); 4329 while (waited) { 4330 waited = 0; 4331 while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 4332 if ((cmd == I_POP) && 4333 (flag & (FNDELAY|FNONBLOCK))) { 4334 STRUNLOCKMATES(stp); 4335 return (EAGAIN); 4336 } 4337 waited = 1; 4338 mutex_exit(&stp->sd_lock); 4339 if (!cv_wait_sig(&stmatep->sd_monitor, 4340 &stmatep->sd_lock)) { 4341 mutex_exit(&stmatep->sd_lock); 4342 return (EINTR); 4343 } 4344 mutex_exit(&stmatep->sd_lock); 4345 STRLOCKMATES(stp); 4346 } 4347 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 4348 if ((cmd == I_POP) && 4349 (flag & (FNDELAY|FNONBLOCK))) { 4350 STRUNLOCKMATES(stp); 4351 return (EAGAIN); 4352 } 4353 waited = 1; 4354 mutex_exit(&stmatep->sd_lock); 4355 if (!cv_wait_sig(&stp->sd_monitor, 4356 &stp->sd_lock)) { 4357 mutex_exit(&stp->sd_lock); 4358 return (EINTR); 4359 } 4360 mutex_exit(&stp->sd_lock); 4361 STRLOCKMATES(stp); 4362 } 4363 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 4364 error = strgeterr(stp, 4365 STRDERR|STWRERR|STRHUP|STPLEX, 0); 4366 if (error != 0) { 4367 STRUNLOCKMATES(stp); 4368 return (error); 4369 } 4370 } 4371 } 4372 stp->sd_flag |= STRPLUMB; 4373 STRUNLOCKMATES(stp); 4374 } else { 4375 mutex_enter(&stp->sd_lock); 4376 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 4377 if (((cmd == I_POP) || (cmd == _I_REMOVE)) && 4378 (flag & (FNDELAY|FNONBLOCK))) { 4379 mutex_exit(&stp->sd_lock); 4380 return (EAGAIN); 4381 } 4382 if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) { 4383 mutex_exit(&stp->sd_lock); 4384 return (EINTR); 4385 } 4386 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 4387 error = strgeterr(stp, 4388 STRDERR|STWRERR|STRHUP|STPLEX, 0); 4389 if (error != 0) { 4390 mutex_exit(&stp->sd_lock); 4391 return (error); 4392 } 4393 } 4394 } 4395 stp->sd_flag |= STRPLUMB; 4396 mutex_exit(&stp->sd_lock); 4397 } 4398 return (0); 4399 } 4400 4401 /* 4402 * Complete the plumbing operation associated with stream `stp'. 4403 */ 4404 void 4405 strendplumb(stdata_t *stp) 4406 { 4407 ASSERT(MUTEX_HELD(&stp->sd_lock)); 4408 ASSERT(stp->sd_flag & STRPLUMB); 4409 stp->sd_flag &= ~STRPLUMB; 4410 cv_broadcast(&stp->sd_monitor); 4411 } 4412 4413 /* 4414 * This describes how the STREAMS framework handles synchronization 4415 * during open/push and close/pop. 4416 * The key interfaces for open and close are qprocson and qprocsoff, 4417 * respectively. While the close case in general is harder both open 4418 * have close have significant similarities. 4419 * 4420 * During close the STREAMS framework has to both ensure that there 4421 * are no stale references to the queue pair (and syncq) that 4422 * are being closed and also provide the guarantees that are documented 4423 * in qprocsoff(9F). 4424 * If there are stale references to the queue that is closing it can 4425 * result in kernel memory corruption or kernel panics. 4426 * 4427 * Note that is it up to the module/driver to ensure that it itself 4428 * does not have any stale references to the closing queues once its close 4429 * routine returns. This includes: 4430 * - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines 4431 * associated with the queues. For timeout and bufcall callbacks the 4432 * module/driver also has to ensure (or wait for) any callbacks that 4433 * are in progress. 4434 * - If the module/driver is using esballoc it has to ensure that any 4435 * esballoc free functions do not refer to a queue that has closed. 4436 * (Note that in general the close routine can not wait for the esballoc'ed 4437 * messages to be freed since that can cause a deadlock.) 4438 * - Cancelling any interrupts that refer to the closing queues and 4439 * also ensuring that there are no interrupts in progress that will 4440 * refer to the closing queues once the close routine returns. 4441 * - For multiplexors removing any driver global state that refers to 4442 * the closing queue and also ensuring that there are no threads in 4443 * the multiplexor that has picked up a queue pointer but not yet 4444 * finished using it. 4445 * 4446 * In addition, a driver/module can only reference the q_next pointer 4447 * in its open, close, put, or service procedures or in a 4448 * qtimeout/qbufcall callback procedure executing "on" the correct 4449 * stream. Thus it can not reference the q_next pointer in an interrupt 4450 * routine or a timeout, bufcall or esballoc callback routine. Likewise 4451 * it can not reference q_next of a different queue e.g. in a mux that 4452 * passes messages from one queues put/service procedure to another queue. 4453 * In all the cases when the driver/module can not access the q_next 4454 * field it must use the *next* versions e.g. canputnext instead of 4455 * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...). 4456 * 4457 * 4458 * Assuming that the driver/module conforms to the above constraints 4459 * the STREAMS framework has to avoid stale references to q_next for all 4460 * the framework internal cases which include (but are not limited to): 4461 * - Threads in canput/canputnext/backenable and elsewhere that are 4462 * walking q_next. 4463 * - Messages on a syncq that have a reference to the queue through b_queue. 4464 * - Messages on an outer perimeter (syncq) that have a reference to the 4465 * queue through b_queue. 4466 * - Threads that use q_nfsrv (e.g. canput) to find a queue. 4467 * Note that only canput and bcanput use q_nfsrv without any locking. 4468 * 4469 * The STREAMS framework providing the qprocsoff(9F) guarantees means that 4470 * after qprocsoff returns, the framework has to ensure that no threads can 4471 * enter the put or service routines for the closing read or write-side queue. 4472 * In addition to preventing "direct" entry into the put procedures 4473 * the framework also has to prevent messages being drained from 4474 * the syncq or the outer perimeter. 4475 * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only 4476 * mechanism to prevent qwriter(PERIM_OUTER) from running after 4477 * qprocsoff has returned. 4478 * Note that if a module/driver uses put(9F) on one of its own queues 4479 * it is up to the module/driver to ensure that the put() doesn't 4480 * get called when the queue is closing. 4481 * 4482 * 4483 * The framework aspects of the above "contract" is implemented by 4484 * qprocsoff, removeq, and strlock: 4485 * - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from 4486 * entering the service procedures. 4487 * - strlock acquires the sd_lock and sd_reflock to prevent putnext, 4488 * canputnext, backenable etc from dereferencing the q_next that will 4489 * soon change. 4490 * - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext 4491 * or other q_next walker that uses claimstr/releasestr to finish. 4492 * - optionally for every syncq in the stream strlock acquires all the 4493 * sq_lock's and waits for all sq_counts to drop to a value that indicates 4494 * that no thread executes in the put or service procedures and that no 4495 * thread is draining into the module/driver. This ensures that no 4496 * open, close, put, service, or qtimeout/qbufcall callback procedure is 4497 * currently executing hence no such thread can end up with the old stale 4498 * q_next value and no canput/backenable can have the old stale 4499 * q_nfsrv/q_next. 4500 * - qdetach (wait_svc) makes sure that any scheduled or running threads 4501 * have either finished or observed the QWCLOSE flag and gone away. 4502 */ 4503 4504 4505 /* 4506 * Get all the locks necessary to change q_next. 4507 * 4508 * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the 4509 * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that 4510 * the only threads inside the sqncq are threads currently calling removeq(). 4511 * Since threads calling removeq() are in the process of removing their queues 4512 * from the stream, we do not need to worry about them accessing a stale q_next 4513 * pointer and thus we do not need to wait for them to exit (in fact, waiting 4514 * for them can cause deadlock). 4515 * 4516 * This routine is subject to starvation since it does not set any flag to 4517 * prevent threads from entering a module in the stream(i.e. sq_count can 4518 * increase on some syncq while it is waiting on some other syncq.) 4519 * 4520 * Assumes that only one thread attempts to call strlock for a given 4521 * stream. If this is not the case the two threads would deadlock. 4522 * This assumption is guaranteed since strlock is only called by insertq 4523 * and removeq and streams plumbing changes are single-threaded for 4524 * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags. 4525 * 4526 * For pipes, it is not difficult to atomically designate a pair of streams 4527 * to be mated. Once mated atomically by the framework the twisted pair remain 4528 * configured that way until dismantled atomically by the framework. 4529 * When plumbing takes place on a twisted stream it is necessary to ensure that 4530 * this operation is done exclusively on the twisted stream since two such 4531 * operations, each initiated on different ends of the pipe will deadlock 4532 * waiting for each other to complete. 4533 * 4534 * On entry, no locks should be held. 4535 * The locks acquired and held by strlock depends on a few factors. 4536 * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired 4537 * and held on exit and all sq_count are at an acceptable level. 4538 * - In all cases, sd_lock and sd_reflock are acquired and held on exit with 4539 * sd_refcnt being zero. 4540 */ 4541 4542 static void 4543 strlock(struct stdata *stp, sqlist_t *sqlist) 4544 { 4545 syncql_t *sql, *sql2; 4546 retry: 4547 /* 4548 * Wait for any claimstr to go away. 4549 */ 4550 if (STRMATED(stp)) { 4551 struct stdata *stp1, *stp2; 4552 4553 STRLOCKMATES(stp); 4554 /* 4555 * Note that the selection of locking order is not 4556 * important, just that they are always aquired in 4557 * the same order. To assure this, we choose this 4558 * order based on the value of the pointer, and since 4559 * the pointer will not change for the life of this 4560 * pair, we will always grab the locks in the same 4561 * order (and hence, prevent deadlocks). 4562 */ 4563 if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) { 4564 stp1 = stp; 4565 stp2 = stp->sd_mate; 4566 } else { 4567 stp2 = stp; 4568 stp1 = stp->sd_mate; 4569 } 4570 mutex_enter(&stp1->sd_reflock); 4571 if (stp1->sd_refcnt > 0) { 4572 STRUNLOCKMATES(stp); 4573 cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock); 4574 mutex_exit(&stp1->sd_reflock); 4575 goto retry; 4576 } 4577 mutex_enter(&stp2->sd_reflock); 4578 if (stp2->sd_refcnt > 0) { 4579 STRUNLOCKMATES(stp); 4580 mutex_exit(&stp1->sd_reflock); 4581 cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock); 4582 mutex_exit(&stp2->sd_reflock); 4583 goto retry; 4584 } 4585 STREAM_PUTLOCKS_ENTER(stp1); 4586 STREAM_PUTLOCKS_ENTER(stp2); 4587 } else { 4588 mutex_enter(&stp->sd_lock); 4589 mutex_enter(&stp->sd_reflock); 4590 while (stp->sd_refcnt > 0) { 4591 mutex_exit(&stp->sd_lock); 4592 cv_wait(&stp->sd_refmonitor, &stp->sd_reflock); 4593 if (mutex_tryenter(&stp->sd_lock) == 0) { 4594 mutex_exit(&stp->sd_reflock); 4595 mutex_enter(&stp->sd_lock); 4596 mutex_enter(&stp->sd_reflock); 4597 } 4598 } 4599 STREAM_PUTLOCKS_ENTER(stp); 4600 } 4601 4602 if (sqlist == NULL) 4603 return; 4604 4605 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) { 4606 syncq_t *sq = sql->sql_sq; 4607 uint16_t count; 4608 4609 mutex_enter(SQLOCK(sq)); 4610 count = sq->sq_count; 4611 ASSERT(sq->sq_rmqcount <= count); 4612 SQ_PUTLOCKS_ENTER(sq); 4613 SUM_SQ_PUTCOUNTS(sq, count); 4614 if (count == sq->sq_rmqcount) 4615 continue; 4616 4617 /* Failed - drop all locks that we have acquired so far */ 4618 if (STRMATED(stp)) { 4619 STREAM_PUTLOCKS_EXIT(stp); 4620 STREAM_PUTLOCKS_EXIT(stp->sd_mate); 4621 STRUNLOCKMATES(stp); 4622 mutex_exit(&stp->sd_reflock); 4623 mutex_exit(&stp->sd_mate->sd_reflock); 4624 } else { 4625 STREAM_PUTLOCKS_EXIT(stp); 4626 mutex_exit(&stp->sd_lock); 4627 mutex_exit(&stp->sd_reflock); 4628 } 4629 for (sql2 = sqlist->sqlist_head; sql2 != sql; 4630 sql2 = sql2->sql_next) { 4631 SQ_PUTLOCKS_EXIT(sql2->sql_sq); 4632 mutex_exit(SQLOCK(sql2->sql_sq)); 4633 } 4634 4635 /* 4636 * The wait loop below may starve when there are many threads 4637 * claiming the syncq. This is especially a problem with permod 4638 * syncqs (IP). To lessen the impact of the problem we increment 4639 * sq_needexcl and clear fastbits so that putnexts will slow 4640 * down and call sqenable instead of draining right away. 4641 */ 4642 sq->sq_needexcl++; 4643 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 4644 while (count > sq->sq_rmqcount) { 4645 sq->sq_flags |= SQ_WANTWAKEUP; 4646 SQ_PUTLOCKS_EXIT(sq); 4647 cv_wait(&sq->sq_wait, SQLOCK(sq)); 4648 count = sq->sq_count; 4649 SQ_PUTLOCKS_ENTER(sq); 4650 SUM_SQ_PUTCOUNTS(sq, count); 4651 } 4652 sq->sq_needexcl--; 4653 if (sq->sq_needexcl == 0) 4654 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 4655 SQ_PUTLOCKS_EXIT(sq); 4656 ASSERT(count == sq->sq_rmqcount); 4657 mutex_exit(SQLOCK(sq)); 4658 goto retry; 4659 } 4660 } 4661 4662 /* 4663 * Drop all the locks that strlock acquired. 4664 */ 4665 static void 4666 strunlock(struct stdata *stp, sqlist_t *sqlist) 4667 { 4668 syncql_t *sql; 4669 4670 if (STRMATED(stp)) { 4671 STREAM_PUTLOCKS_EXIT(stp); 4672 STREAM_PUTLOCKS_EXIT(stp->sd_mate); 4673 STRUNLOCKMATES(stp); 4674 mutex_exit(&stp->sd_reflock); 4675 mutex_exit(&stp->sd_mate->sd_reflock); 4676 } else { 4677 STREAM_PUTLOCKS_EXIT(stp); 4678 mutex_exit(&stp->sd_lock); 4679 mutex_exit(&stp->sd_reflock); 4680 } 4681 4682 if (sqlist == NULL) 4683 return; 4684 4685 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) { 4686 SQ_PUTLOCKS_EXIT(sql->sql_sq); 4687 mutex_exit(SQLOCK(sql->sql_sq)); 4688 } 4689 } 4690 4691 /* 4692 * When the module has service procedure, we need check if the next 4693 * module which has service procedure is in flow control to trigger 4694 * the backenable. 4695 */ 4696 static void 4697 backenable_insertedq(queue_t *q) 4698 { 4699 qband_t *qbp; 4700 4701 claimstr(q); 4702 if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) { 4703 if (q->q_next->q_nfsrv->q_flag & QWANTW) 4704 backenable(q, 0); 4705 4706 qbp = q->q_next->q_nfsrv->q_bandp; 4707 for (; qbp != NULL; qbp = qbp->qb_next) 4708 if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL) 4709 backenable(q, qbp->qb_first->b_band); 4710 } 4711 releasestr(q); 4712 } 4713 4714 /* 4715 * Given two read queues, insert a new single one after another. 4716 * 4717 * This routine acquires all the necessary locks in order to change 4718 * q_next and related pointer using strlock(). 4719 * It depends on the stream head ensuring that there are no concurrent 4720 * insertq or removeq on the same stream. The stream head ensures this 4721 * using the flags STWOPEN, STRCLOSE, and STRPLUMB. 4722 * 4723 * Note that no syncq locks are held during the q_next change. This is 4724 * applied to all streams since, unlike removeq, there is no problem of stale 4725 * pointers when adding a module to the stream. Thus drivers/modules that do a 4726 * canput(rq->q_next) would never get a closed/freed queue pointer even if we 4727 * applied this optimization to all streams. 4728 */ 4729 void 4730 insertq(struct stdata *stp, queue_t *new) 4731 { 4732 queue_t *after; 4733 queue_t *wafter; 4734 queue_t *wnew = _WR(new); 4735 boolean_t have_fifo = B_FALSE; 4736 4737 if (new->q_flag & _QINSERTING) { 4738 ASSERT(stp->sd_vnode->v_type != VFIFO); 4739 after = new->q_next; 4740 wafter = _WR(new->q_next); 4741 } else { 4742 after = _RD(stp->sd_wrq); 4743 wafter = stp->sd_wrq; 4744 } 4745 4746 TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ, 4747 "insertq:%p, %p", after, new); 4748 ASSERT(after->q_flag & QREADR); 4749 ASSERT(new->q_flag & QREADR); 4750 4751 strlock(stp, NULL); 4752 4753 /* Do we have a FIFO? */ 4754 if (wafter->q_next == after) { 4755 have_fifo = B_TRUE; 4756 wnew->q_next = new; 4757 } else { 4758 wnew->q_next = wafter->q_next; 4759 } 4760 new->q_next = after; 4761 4762 set_nfsrv_ptr(new, wnew, after, wafter); 4763 /* 4764 * set_nfsrv_ptr() needs to know if this is an insertion or not, 4765 * so only reset this flag after calling it. 4766 */ 4767 new->q_flag &= ~_QINSERTING; 4768 4769 if (have_fifo) { 4770 wafter->q_next = wnew; 4771 } else { 4772 if (wafter->q_next) 4773 _OTHERQ(wafter->q_next)->q_next = new; 4774 wafter->q_next = wnew; 4775 } 4776 4777 set_qend(new); 4778 /* The QEND flag might have to be updated for the upstream guy */ 4779 set_qend(after); 4780 4781 ASSERT(_SAMESTR(new) == O_SAMESTR(new)); 4782 ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew)); 4783 ASSERT(_SAMESTR(after) == O_SAMESTR(after)); 4784 ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter)); 4785 strsetuio(stp); 4786 4787 /* 4788 * If this was a module insertion, bump the push count. 4789 */ 4790 if (!(new->q_flag & QISDRV)) 4791 stp->sd_pushcnt++; 4792 4793 strunlock(stp, NULL); 4794 4795 /* check if the write Q needs backenable */ 4796 backenable_insertedq(wnew); 4797 4798 /* check if the read Q needs backenable */ 4799 backenable_insertedq(new); 4800 } 4801 4802 /* 4803 * Given a read queue, unlink it from any neighbors. 4804 * 4805 * This routine acquires all the necessary locks in order to 4806 * change q_next and related pointers and also guard against 4807 * stale references (e.g. through q_next) to the queue that 4808 * is being removed. It also plays part of the role in ensuring 4809 * that the module's/driver's put procedure doesn't get called 4810 * after qprocsoff returns. 4811 * 4812 * Removeq depends on the stream head ensuring that there are 4813 * no concurrent insertq or removeq on the same stream. The 4814 * stream head ensures this using the flags STWOPEN, STRCLOSE and 4815 * STRPLUMB. 4816 * 4817 * The set of locks needed to remove the queue is different in 4818 * different cases: 4819 * 4820 * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after 4821 * waiting for the syncq reference count to drop to 0 indicating that no 4822 * non-close threads are present anywhere in the stream. This ensures that any 4823 * module/driver can reference q_next in its open, close, put, or service 4824 * procedures. 4825 * 4826 * The sq_rmqcount counter tracks the number of threads inside removeq(). 4827 * strlock() ensures that there is either no threads executing inside perimeter 4828 * or there is only a thread calling qprocsoff(). 4829 * 4830 * strlock() compares the value of sq_count with the number of threads inside 4831 * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup 4832 * any threads waiting in strlock() when the sq_rmqcount increases. 4833 */ 4834 4835 void 4836 removeq(queue_t *qp) 4837 { 4838 queue_t *wqp = _WR(qp); 4839 struct stdata *stp = STREAM(qp); 4840 sqlist_t *sqlist = NULL; 4841 boolean_t isdriver; 4842 int moved; 4843 syncq_t *sq = qp->q_syncq; 4844 syncq_t *wsq = wqp->q_syncq; 4845 4846 ASSERT(stp); 4847 4848 TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ, 4849 "removeq:%p %p", qp, wqp); 4850 ASSERT(qp->q_flag&QREADR); 4851 4852 /* 4853 * For queues using Synchronous streams, we must wait for all threads in 4854 * rwnext() to drain out before proceeding. 4855 */ 4856 if (qp->q_flag & QSYNCSTR) { 4857 /* First, we need wakeup any threads blocked in rwnext() */ 4858 mutex_enter(SQLOCK(sq)); 4859 if (sq->sq_flags & SQ_WANTWAKEUP) { 4860 sq->sq_flags &= ~SQ_WANTWAKEUP; 4861 cv_broadcast(&sq->sq_wait); 4862 } 4863 mutex_exit(SQLOCK(sq)); 4864 4865 if (wsq != sq) { 4866 mutex_enter(SQLOCK(wsq)); 4867 if (wsq->sq_flags & SQ_WANTWAKEUP) { 4868 wsq->sq_flags &= ~SQ_WANTWAKEUP; 4869 cv_broadcast(&wsq->sq_wait); 4870 } 4871 mutex_exit(SQLOCK(wsq)); 4872 } 4873 4874 mutex_enter(QLOCK(qp)); 4875 while (qp->q_rwcnt > 0) { 4876 qp->q_flag |= QWANTRMQSYNC; 4877 cv_wait(&qp->q_wait, QLOCK(qp)); 4878 } 4879 mutex_exit(QLOCK(qp)); 4880 4881 mutex_enter(QLOCK(wqp)); 4882 while (wqp->q_rwcnt > 0) { 4883 wqp->q_flag |= QWANTRMQSYNC; 4884 cv_wait(&wqp->q_wait, QLOCK(wqp)); 4885 } 4886 mutex_exit(QLOCK(wqp)); 4887 } 4888 4889 mutex_enter(SQLOCK(sq)); 4890 sq->sq_rmqcount++; 4891 if (sq->sq_flags & SQ_WANTWAKEUP) { 4892 sq->sq_flags &= ~SQ_WANTWAKEUP; 4893 cv_broadcast(&sq->sq_wait); 4894 } 4895 mutex_exit(SQLOCK(sq)); 4896 4897 isdriver = (qp->q_flag & QISDRV); 4898 4899 sqlist = sqlist_build(qp, stp, STRMATED(stp)); 4900 strlock(stp, sqlist); 4901 4902 reset_nfsrv_ptr(qp, wqp); 4903 4904 ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp); 4905 ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp); 4906 /* Do we have a FIFO? */ 4907 if (wqp->q_next == qp) { 4908 stp->sd_wrq->q_next = _RD(stp->sd_wrq); 4909 } else { 4910 if (wqp->q_next) 4911 backq(qp)->q_next = qp->q_next; 4912 if (qp->q_next) 4913 backq(wqp)->q_next = wqp->q_next; 4914 } 4915 4916 /* The QEND flag might have to be updated for the upstream guy */ 4917 if (qp->q_next) 4918 set_qend(qp->q_next); 4919 4920 ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq)); 4921 ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq))); 4922 4923 /* 4924 * Move any messages destined for the put procedures to the next 4925 * syncq in line. Otherwise free them. 4926 */ 4927 moved = 0; 4928 /* 4929 * Quick check to see whether there are any messages or events. 4930 */ 4931 if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS)) 4932 moved += propagate_syncq(qp); 4933 if (wqp->q_syncqmsgs != 0 || 4934 (wqp->q_syncq->sq_flags & SQ_EVENTS)) 4935 moved += propagate_syncq(wqp); 4936 4937 strsetuio(stp); 4938 4939 /* 4940 * If this was a module removal, decrement the push count. 4941 */ 4942 if (!isdriver) 4943 stp->sd_pushcnt--; 4944 4945 strunlock(stp, sqlist); 4946 sqlist_free(sqlist); 4947 4948 /* 4949 * Make sure any messages that were propagated are drained. 4950 * Also clear any QFULL bit caused by messages that were propagated. 4951 */ 4952 4953 if (qp->q_next != NULL) { 4954 clr_qfull(qp); 4955 /* 4956 * For the driver calling qprocsoff, propagate_syncq 4957 * frees all the messages instead of putting it in 4958 * the stream head 4959 */ 4960 if (!isdriver && (moved > 0)) 4961 emptysq(qp->q_next->q_syncq); 4962 } 4963 if (wqp->q_next != NULL) { 4964 clr_qfull(wqp); 4965 /* 4966 * We come here for any pop of a module except for the 4967 * case of driver being removed. We don't call emptysq 4968 * if we did not move any messages. This will avoid holding 4969 * PERMOD syncq locks in emptysq 4970 */ 4971 if (moved > 0) 4972 emptysq(wqp->q_next->q_syncq); 4973 } 4974 4975 mutex_enter(SQLOCK(sq)); 4976 sq->sq_rmqcount--; 4977 mutex_exit(SQLOCK(sq)); 4978 } 4979 4980 /* 4981 * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or 4982 * SQ_WRITER) on a syncq. 4983 * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the 4984 * sync queue and waits until sq_count reaches maxcnt. 4985 * 4986 * if maxcnt is -1 there's no need to grab sq_putlocks since the caller 4987 * does not care about putnext threads that are in the middle of calling put 4988 * entry points. 4989 * 4990 * This routine is used for both inner and outer syncqs. 4991 */ 4992 static void 4993 blocksq(syncq_t *sq, ushort_t flag, int maxcnt) 4994 { 4995 uint16_t count = 0; 4996 4997 mutex_enter(SQLOCK(sq)); 4998 /* 4999 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset. 5000 * SQ_FROZEN will be set if there is a frozen stream that has a 5001 * queue which also refers to this "shared" syncq. 5002 * SQ_BLOCKED will be set if there is "off" queue which also 5003 * refers to this "shared" syncq. 5004 */ 5005 if (maxcnt != -1) { 5006 count = sq->sq_count; 5007 SQ_PUTLOCKS_ENTER(sq); 5008 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 5009 SUM_SQ_PUTCOUNTS(sq, count); 5010 } 5011 sq->sq_needexcl++; 5012 ASSERT(sq->sq_needexcl != 0); /* wraparound */ 5013 5014 while ((sq->sq_flags & flag) || 5015 (maxcnt != -1 && count > (unsigned)maxcnt)) { 5016 sq->sq_flags |= SQ_WANTWAKEUP; 5017 if (maxcnt != -1) { 5018 SQ_PUTLOCKS_EXIT(sq); 5019 } 5020 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5021 if (maxcnt != -1) { 5022 count = sq->sq_count; 5023 SQ_PUTLOCKS_ENTER(sq); 5024 SUM_SQ_PUTCOUNTS(sq, count); 5025 } 5026 } 5027 sq->sq_needexcl--; 5028 sq->sq_flags |= flag; 5029 ASSERT(maxcnt == -1 || count == maxcnt); 5030 if (maxcnt != -1) { 5031 if (sq->sq_needexcl == 0) { 5032 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 5033 } 5034 SQ_PUTLOCKS_EXIT(sq); 5035 } else if (sq->sq_needexcl == 0) { 5036 SQ_PUTCOUNT_SETFAST(sq); 5037 } 5038 5039 mutex_exit(SQLOCK(sq)); 5040 } 5041 5042 /* 5043 * Reset a flag that was set with blocksq. 5044 * 5045 * Can not use this routine to reset SQ_WRITER. 5046 * 5047 * If "isouter" is set then the syncq is assumed to be an outer perimeter 5048 * and drain_syncq is not called. Instead we rely on the qwriter_outer thread 5049 * to handle the queued qwriter operations. 5050 * 5051 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5052 * sq_putlocks are used. 5053 */ 5054 static void 5055 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter) 5056 { 5057 uint16_t flags; 5058 5059 mutex_enter(SQLOCK(sq)); 5060 ASSERT(resetflag != SQ_WRITER); 5061 ASSERT(sq->sq_flags & resetflag); 5062 flags = sq->sq_flags & ~resetflag; 5063 sq->sq_flags = flags; 5064 if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) { 5065 if (flags & SQ_WANTWAKEUP) { 5066 flags &= ~SQ_WANTWAKEUP; 5067 cv_broadcast(&sq->sq_wait); 5068 } 5069 sq->sq_flags = flags; 5070 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) { 5071 if (!isouter) { 5072 /* drain_syncq drops SQLOCK */ 5073 drain_syncq(sq); 5074 return; 5075 } 5076 } 5077 } 5078 mutex_exit(SQLOCK(sq)); 5079 } 5080 5081 /* 5082 * Reset a flag that was set with blocksq. 5083 * Does not drain the syncq. Use emptysq() for that. 5084 * Returns 1 if SQ_QUEUED is set. Otherwise 0. 5085 * 5086 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5087 * sq_putlocks are used. 5088 */ 5089 static int 5090 dropsq(syncq_t *sq, uint16_t resetflag) 5091 { 5092 uint16_t flags; 5093 5094 mutex_enter(SQLOCK(sq)); 5095 ASSERT(sq->sq_flags & resetflag); 5096 flags = sq->sq_flags & ~resetflag; 5097 if (flags & SQ_WANTWAKEUP) { 5098 flags &= ~SQ_WANTWAKEUP; 5099 cv_broadcast(&sq->sq_wait); 5100 } 5101 sq->sq_flags = flags; 5102 mutex_exit(SQLOCK(sq)); 5103 if (flags & SQ_QUEUED) 5104 return (1); 5105 return (0); 5106 } 5107 5108 /* 5109 * Empty all the messages on a syncq. 5110 * 5111 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5112 * sq_putlocks are used. 5113 */ 5114 static void 5115 emptysq(syncq_t *sq) 5116 { 5117 uint16_t flags; 5118 5119 mutex_enter(SQLOCK(sq)); 5120 flags = sq->sq_flags; 5121 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) { 5122 /* 5123 * To prevent potential recursive invocation of drain_syncq we 5124 * do not call drain_syncq if count is non-zero. 5125 */ 5126 if (sq->sq_count == 0) { 5127 /* drain_syncq() drops SQLOCK */ 5128 drain_syncq(sq); 5129 return; 5130 } else 5131 sqenable(sq); 5132 } 5133 mutex_exit(SQLOCK(sq)); 5134 } 5135 5136 /* 5137 * Ordered insert while removing duplicates. 5138 */ 5139 static void 5140 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp) 5141 { 5142 syncql_t *sqlp, **prev_sqlpp, *new_sqlp; 5143 5144 prev_sqlpp = &sqlist->sqlist_head; 5145 while ((sqlp = *prev_sqlpp) != NULL) { 5146 if (sqlp->sql_sq >= sqp) { 5147 if (sqlp->sql_sq == sqp) /* duplicate */ 5148 return; 5149 break; 5150 } 5151 prev_sqlpp = &sqlp->sql_next; 5152 } 5153 new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++]; 5154 ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size); 5155 new_sqlp->sql_next = sqlp; 5156 new_sqlp->sql_sq = sqp; 5157 *prev_sqlpp = new_sqlp; 5158 } 5159 5160 /* 5161 * Walk the write side queues until we hit either the driver 5162 * or a twist in the stream (_SAMESTR will return false in both 5163 * these cases) then turn around and walk the read side queues 5164 * back up to the stream head. 5165 */ 5166 static void 5167 sqlist_insertall(sqlist_t *sqlist, queue_t *q) 5168 { 5169 while (q != NULL) { 5170 sqlist_insert(sqlist, q->q_syncq); 5171 5172 if (_SAMESTR(q)) 5173 q = q->q_next; 5174 else if (!(q->q_flag & QREADR)) 5175 q = _RD(q); 5176 else 5177 q = NULL; 5178 } 5179 } 5180 5181 /* 5182 * Allocate and build a list of all syncqs in a stream and the syncq(s) 5183 * associated with the "q" parameter. The resulting list is sorted in a 5184 * canonical order and is free of duplicates. 5185 * Assumes the passed queue is a _RD(q). 5186 */ 5187 static sqlist_t * 5188 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist) 5189 { 5190 sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP); 5191 5192 /* 5193 * start with the current queue/qpair 5194 */ 5195 ASSERT(q->q_flag & QREADR); 5196 5197 sqlist_insert(sqlist, q->q_syncq); 5198 sqlist_insert(sqlist, _WR(q)->q_syncq); 5199 5200 sqlist_insertall(sqlist, stp->sd_wrq); 5201 if (do_twist) 5202 sqlist_insertall(sqlist, stp->sd_mate->sd_wrq); 5203 5204 return (sqlist); 5205 } 5206 5207 static sqlist_t * 5208 sqlist_alloc(struct stdata *stp, int kmflag) 5209 { 5210 size_t sqlist_size; 5211 sqlist_t *sqlist; 5212 5213 /* 5214 * Allocate 2 syncql_t's for each pushed module. Note that 5215 * the sqlist_t structure already has 4 syncql_t's built in: 5216 * 2 for the stream head, and 2 for the driver/other stream head. 5217 */ 5218 sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt + 5219 sizeof (sqlist_t); 5220 if (STRMATED(stp)) 5221 sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt; 5222 sqlist = kmem_alloc(sqlist_size, kmflag); 5223 5224 sqlist->sqlist_head = NULL; 5225 sqlist->sqlist_size = sqlist_size; 5226 sqlist->sqlist_index = 0; 5227 5228 return (sqlist); 5229 } 5230 5231 /* 5232 * Free the list created by sqlist_alloc() 5233 */ 5234 static void 5235 sqlist_free(sqlist_t *sqlist) 5236 { 5237 kmem_free(sqlist, sqlist->sqlist_size); 5238 } 5239 5240 /* 5241 * Prevent any new entries into any syncq in this stream. 5242 * Used by freezestr. 5243 */ 5244 void 5245 strblock(queue_t *q) 5246 { 5247 struct stdata *stp; 5248 syncql_t *sql; 5249 sqlist_t *sqlist; 5250 5251 q = _RD(q); 5252 5253 stp = STREAM(q); 5254 ASSERT(stp != NULL); 5255 5256 /* 5257 * Get a sorted list with all the duplicates removed containing 5258 * all the syncqs referenced by this stream. 5259 */ 5260 sqlist = sqlist_build(q, stp, B_FALSE); 5261 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next) 5262 blocksq(sql->sql_sq, SQ_FROZEN, -1); 5263 sqlist_free(sqlist); 5264 } 5265 5266 /* 5267 * Release the block on new entries into this stream 5268 */ 5269 void 5270 strunblock(queue_t *q) 5271 { 5272 struct stdata *stp; 5273 syncql_t *sql; 5274 sqlist_t *sqlist; 5275 int drain_needed; 5276 5277 q = _RD(q); 5278 5279 /* 5280 * Get a sorted list with all the duplicates removed containing 5281 * all the syncqs referenced by this stream. 5282 * Have to drop the SQ_FROZEN flag on all the syncqs before 5283 * starting to drain them; otherwise the draining might 5284 * cause a freezestr in some module on the stream (which 5285 * would deadlock.) 5286 */ 5287 stp = STREAM(q); 5288 ASSERT(stp != NULL); 5289 sqlist = sqlist_build(q, stp, B_FALSE); 5290 drain_needed = 0; 5291 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next) 5292 drain_needed += dropsq(sql->sql_sq, SQ_FROZEN); 5293 if (drain_needed) { 5294 for (sql = sqlist->sqlist_head; sql != NULL; 5295 sql = sql->sql_next) 5296 emptysq(sql->sql_sq); 5297 } 5298 sqlist_free(sqlist); 5299 } 5300 5301 #ifdef DEBUG 5302 static int 5303 qprocsareon(queue_t *rq) 5304 { 5305 if (rq->q_next == NULL) 5306 return (0); 5307 return (_WR(rq->q_next)->q_next == _WR(rq)); 5308 } 5309 5310 int 5311 qclaimed(queue_t *q) 5312 { 5313 uint_t count; 5314 5315 count = q->q_syncq->sq_count; 5316 SUM_SQ_PUTCOUNTS(q->q_syncq, count); 5317 return (count != 0); 5318 } 5319 5320 /* 5321 * Check if anyone has frozen this stream with freezestr 5322 */ 5323 int 5324 frozenstr(queue_t *q) 5325 { 5326 return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0); 5327 } 5328 #endif /* DEBUG */ 5329 5330 /* 5331 * Enter a queue. 5332 * Obsoleted interface. Should not be used. 5333 */ 5334 void 5335 enterq(queue_t *q) 5336 { 5337 entersq(q->q_syncq, SQ_CALLBACK); 5338 } 5339 5340 void 5341 leaveq(queue_t *q) 5342 { 5343 leavesq(q->q_syncq, SQ_CALLBACK); 5344 } 5345 5346 /* 5347 * Enter a perimeter. c_inner and c_outer specifies which concurrency bits 5348 * to check. 5349 * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter 5350 * calls and the running of open, close and service procedures. 5351 * 5352 * if c_inner bit is set no need to grab sq_putlocks since we don't care 5353 * if other threads have entered or are entering put entry point. 5354 * 5355 * if c_inner bit is set it might have been posible to use 5356 * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize 5357 * open/close path for IP) but since the count may need to be decremented in 5358 * qwait() we wouldn't know which counter to decrement. Currently counter is 5359 * selected by current cpu_seqid and current CPU can change at any moment. XXX 5360 * in the future we might use curthread id bits to select the counter and this 5361 * would stay constant across routine calls. 5362 */ 5363 void 5364 entersq(syncq_t *sq, int entrypoint) 5365 { 5366 uint16_t count = 0; 5367 uint16_t flags; 5368 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL; 5369 uint16_t type; 5370 uint_t c_inner = entrypoint & SQ_CI; 5371 uint_t c_outer = entrypoint & SQ_CO; 5372 5373 /* 5374 * Increment ref count to keep closes out of this queue. 5375 */ 5376 ASSERT(sq); 5377 ASSERT(c_inner && c_outer); 5378 mutex_enter(SQLOCK(sq)); 5379 flags = sq->sq_flags; 5380 type = sq->sq_type; 5381 if (!(type & c_inner)) { 5382 /* Make sure all putcounts now use slowlock. */ 5383 count = sq->sq_count; 5384 SQ_PUTLOCKS_ENTER(sq); 5385 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 5386 SUM_SQ_PUTCOUNTS(sq, count); 5387 sq->sq_needexcl++; 5388 ASSERT(sq->sq_needexcl != 0); /* wraparound */ 5389 waitflags |= SQ_MESSAGES; 5390 } 5391 /* 5392 * Wait until we can enter the inner perimeter. 5393 * If we want exclusive access we wait until sq_count is 0. 5394 * We have to do this before entering the outer perimeter in order 5395 * to preserve put/close message ordering. 5396 */ 5397 while ((flags & waitflags) || (!(type & c_inner) && count != 0)) { 5398 sq->sq_flags = flags | SQ_WANTWAKEUP; 5399 if (!(type & c_inner)) { 5400 SQ_PUTLOCKS_EXIT(sq); 5401 } 5402 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5403 if (!(type & c_inner)) { 5404 count = sq->sq_count; 5405 SQ_PUTLOCKS_ENTER(sq); 5406 SUM_SQ_PUTCOUNTS(sq, count); 5407 } 5408 flags = sq->sq_flags; 5409 } 5410 5411 if (!(type & c_inner)) { 5412 ASSERT(sq->sq_needexcl > 0); 5413 sq->sq_needexcl--; 5414 if (sq->sq_needexcl == 0) { 5415 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 5416 } 5417 } 5418 5419 /* Check if we need to enter the outer perimeter */ 5420 if (!(type & c_outer)) { 5421 /* 5422 * We have to enter the outer perimeter exclusively before 5423 * we can increment sq_count to avoid deadlock. This implies 5424 * that we have to re-check sq_flags and sq_count. 5425 * 5426 * is it possible to have c_inner set when c_outer is not set? 5427 */ 5428 if (!(type & c_inner)) { 5429 SQ_PUTLOCKS_EXIT(sq); 5430 } 5431 mutex_exit(SQLOCK(sq)); 5432 outer_enter(sq->sq_outer, SQ_GOAWAY); 5433 mutex_enter(SQLOCK(sq)); 5434 flags = sq->sq_flags; 5435 /* 5436 * there should be no need to recheck sq_putcounts 5437 * because outer_enter() has already waited for them to clear 5438 * after setting SQ_WRITER. 5439 */ 5440 count = sq->sq_count; 5441 #ifdef DEBUG 5442 /* 5443 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead 5444 * of doing an ASSERT internally. Others should do 5445 * something like 5446 * ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0); 5447 * without the need to #ifdef DEBUG it. 5448 */ 5449 SUMCHECK_SQ_PUTCOUNTS(sq, 0); 5450 #endif 5451 while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) || 5452 (!(type & c_inner) && count != 0)) { 5453 sq->sq_flags = flags | SQ_WANTWAKEUP; 5454 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5455 count = sq->sq_count; 5456 flags = sq->sq_flags; 5457 } 5458 } 5459 5460 sq->sq_count++; 5461 ASSERT(sq->sq_count != 0); /* Wraparound */ 5462 if (!(type & c_inner)) { 5463 /* Exclusive entry */ 5464 ASSERT(sq->sq_count == 1); 5465 sq->sq_flags |= SQ_EXCL; 5466 if (type & c_outer) { 5467 SQ_PUTLOCKS_EXIT(sq); 5468 } 5469 } 5470 mutex_exit(SQLOCK(sq)); 5471 } 5472 5473 /* 5474 * leave a syncq. announce to framework that closes may proceed. 5475 * c_inner and c_outer specifies which concurrency bits 5476 * to check. 5477 * 5478 * must never be called from driver or module put entry point. 5479 * 5480 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5481 * sq_putlocks are used. 5482 */ 5483 void 5484 leavesq(syncq_t *sq, int entrypoint) 5485 { 5486 uint16_t flags; 5487 uint16_t type; 5488 uint_t c_outer = entrypoint & SQ_CO; 5489 #ifdef DEBUG 5490 uint_t c_inner = entrypoint & SQ_CI; 5491 #endif 5492 5493 /* 5494 * decrement ref count, drain the syncq if possible, and wake up 5495 * any waiting close. 5496 */ 5497 ASSERT(sq); 5498 ASSERT(c_inner && c_outer); 5499 mutex_enter(SQLOCK(sq)); 5500 flags = sq->sq_flags; 5501 type = sq->sq_type; 5502 if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) { 5503 5504 if (flags & SQ_WANTWAKEUP) { 5505 flags &= ~SQ_WANTWAKEUP; 5506 cv_broadcast(&sq->sq_wait); 5507 } 5508 if (flags & SQ_WANTEXWAKEUP) { 5509 flags &= ~SQ_WANTEXWAKEUP; 5510 cv_broadcast(&sq->sq_exitwait); 5511 } 5512 5513 if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) { 5514 /* 5515 * The syncq needs to be drained. "Exit" the syncq 5516 * before calling drain_syncq. 5517 */ 5518 ASSERT(sq->sq_count != 0); 5519 sq->sq_count--; 5520 ASSERT((flags & SQ_EXCL) || (type & c_inner)); 5521 sq->sq_flags = flags & ~SQ_EXCL; 5522 drain_syncq(sq); 5523 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 5524 /* Check if we need to exit the outer perimeter */ 5525 /* XXX will this ever be true? */ 5526 if (!(type & c_outer)) 5527 outer_exit(sq->sq_outer); 5528 return; 5529 } 5530 } 5531 ASSERT(sq->sq_count != 0); 5532 sq->sq_count--; 5533 ASSERT((flags & SQ_EXCL) || (type & c_inner)); 5534 sq->sq_flags = flags & ~SQ_EXCL; 5535 mutex_exit(SQLOCK(sq)); 5536 5537 /* Check if we need to exit the outer perimeter */ 5538 if (!(sq->sq_type & c_outer)) 5539 outer_exit(sq->sq_outer); 5540 } 5541 5542 /* 5543 * Prevent q_next from changing in this stream by incrementing sq_count. 5544 * 5545 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5546 * sq_putlocks are used. 5547 */ 5548 void 5549 claimq(queue_t *qp) 5550 { 5551 syncq_t *sq = qp->q_syncq; 5552 5553 mutex_enter(SQLOCK(sq)); 5554 sq->sq_count++; 5555 ASSERT(sq->sq_count != 0); /* Wraparound */ 5556 mutex_exit(SQLOCK(sq)); 5557 } 5558 5559 /* 5560 * Undo claimq. 5561 * 5562 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5563 * sq_putlocks are used. 5564 */ 5565 void 5566 releaseq(queue_t *qp) 5567 { 5568 syncq_t *sq = qp->q_syncq; 5569 uint16_t flags; 5570 5571 mutex_enter(SQLOCK(sq)); 5572 ASSERT(sq->sq_count > 0); 5573 sq->sq_count--; 5574 5575 flags = sq->sq_flags; 5576 if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) { 5577 if (flags & SQ_WANTWAKEUP) { 5578 flags &= ~SQ_WANTWAKEUP; 5579 cv_broadcast(&sq->sq_wait); 5580 } 5581 sq->sq_flags = flags; 5582 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) { 5583 /* 5584 * To prevent potential recursive invocation of 5585 * drain_syncq we do not call drain_syncq if count is 5586 * non-zero. 5587 */ 5588 if (sq->sq_count == 0) { 5589 drain_syncq(sq); 5590 return; 5591 } else 5592 sqenable(sq); 5593 } 5594 } 5595 mutex_exit(SQLOCK(sq)); 5596 } 5597 5598 /* 5599 * Prevent q_next from changing in this stream by incrementing sd_refcnt. 5600 */ 5601 void 5602 claimstr(queue_t *qp) 5603 { 5604 struct stdata *stp = STREAM(qp); 5605 5606 mutex_enter(&stp->sd_reflock); 5607 stp->sd_refcnt++; 5608 ASSERT(stp->sd_refcnt != 0); /* Wraparound */ 5609 mutex_exit(&stp->sd_reflock); 5610 } 5611 5612 /* 5613 * Undo claimstr. 5614 */ 5615 void 5616 releasestr(queue_t *qp) 5617 { 5618 struct stdata *stp = STREAM(qp); 5619 5620 mutex_enter(&stp->sd_reflock); 5621 ASSERT(stp->sd_refcnt != 0); 5622 if (--stp->sd_refcnt == 0) 5623 cv_broadcast(&stp->sd_refmonitor); 5624 mutex_exit(&stp->sd_reflock); 5625 } 5626 5627 static syncq_t * 5628 new_syncq(void) 5629 { 5630 return (kmem_cache_alloc(syncq_cache, KM_SLEEP)); 5631 } 5632 5633 static void 5634 free_syncq(syncq_t *sq) 5635 { 5636 ASSERT(sq->sq_head == NULL); 5637 ASSERT(sq->sq_outer == NULL); 5638 ASSERT(sq->sq_callbpend == NULL); 5639 ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) || 5640 (sq->sq_onext == sq && sq->sq_oprev == sq)); 5641 5642 if (sq->sq_ciputctrl != NULL) { 5643 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1); 5644 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl, 5645 sq->sq_nciputctrl, 0); 5646 ASSERT(ciputctrl_cache != NULL); 5647 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl); 5648 } 5649 5650 sq->sq_tail = NULL; 5651 sq->sq_evhead = NULL; 5652 sq->sq_evtail = NULL; 5653 sq->sq_ciputctrl = NULL; 5654 sq->sq_nciputctrl = 0; 5655 sq->sq_count = 0; 5656 sq->sq_rmqcount = 0; 5657 sq->sq_callbflags = 0; 5658 sq->sq_cancelid = 0; 5659 sq->sq_next = NULL; 5660 sq->sq_needexcl = 0; 5661 sq->sq_svcflags = 0; 5662 sq->sq_nqueues = 0; 5663 sq->sq_pri = 0; 5664 sq->sq_onext = NULL; 5665 sq->sq_oprev = NULL; 5666 sq->sq_flags = 0; 5667 sq->sq_type = 0; 5668 sq->sq_servcount = 0; 5669 5670 kmem_cache_free(syncq_cache, sq); 5671 } 5672 5673 /* Outer perimeter code */ 5674 5675 /* 5676 * The outer syncq uses the fields and flags in the syncq slightly 5677 * differently from the inner syncqs. 5678 * sq_count Incremented when there are pending or running 5679 * writers at the outer perimeter to prevent the set of 5680 * inner syncqs that belong to the outer perimeter from 5681 * changing. 5682 * sq_head/tail List of deferred qwriter(OUTER) operations. 5683 * 5684 * SQ_BLOCKED Set to prevent traversing of sq_next,sq_prev while 5685 * inner syncqs are added to or removed from the 5686 * outer perimeter. 5687 * SQ_QUEUED sq_head/tail has messages or eventsqueued. 5688 * 5689 * SQ_WRITER A thread is currently traversing all the inner syncqs 5690 * setting the SQ_WRITER flag. 5691 */ 5692 5693 /* 5694 * Get write access at the outer perimeter. 5695 * Note that read access is done by entersq, putnext, and put by simply 5696 * incrementing sq_count in the inner syncq. 5697 * 5698 * Waits until "flags" is no longer set in the outer to prevent multiple 5699 * threads from having write access at the same time. SQ_WRITER has to be part 5700 * of "flags". 5701 * 5702 * Increases sq_count on the outer syncq to keep away outer_insert/remove 5703 * until the outer_exit is finished. 5704 * 5705 * outer_enter is vulnerable to starvation since it does not prevent new 5706 * threads from entering the inner syncqs while it is waiting for sq_count to 5707 * go to zero. 5708 */ 5709 void 5710 outer_enter(syncq_t *outer, uint16_t flags) 5711 { 5712 syncq_t *sq; 5713 int wait_needed; 5714 uint16_t count; 5715 5716 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5717 outer->sq_oprev != NULL); 5718 ASSERT(flags & SQ_WRITER); 5719 5720 retry: 5721 mutex_enter(SQLOCK(outer)); 5722 while (outer->sq_flags & flags) { 5723 outer->sq_flags |= SQ_WANTWAKEUP; 5724 cv_wait(&outer->sq_wait, SQLOCK(outer)); 5725 } 5726 5727 ASSERT(!(outer->sq_flags & SQ_WRITER)); 5728 outer->sq_flags |= SQ_WRITER; 5729 outer->sq_count++; 5730 ASSERT(outer->sq_count != 0); /* wraparound */ 5731 wait_needed = 0; 5732 /* 5733 * Set SQ_WRITER on all the inner syncqs while holding 5734 * the SQLOCK on the outer syncq. This ensures that the changing 5735 * of SQ_WRITER is atomic under the outer SQLOCK. 5736 */ 5737 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) { 5738 mutex_enter(SQLOCK(sq)); 5739 count = sq->sq_count; 5740 SQ_PUTLOCKS_ENTER(sq); 5741 sq->sq_flags |= SQ_WRITER; 5742 SUM_SQ_PUTCOUNTS(sq, count); 5743 if (count != 0) 5744 wait_needed = 1; 5745 SQ_PUTLOCKS_EXIT(sq); 5746 mutex_exit(SQLOCK(sq)); 5747 } 5748 mutex_exit(SQLOCK(outer)); 5749 5750 /* 5751 * Get everybody out of the syncqs sequentially. 5752 * Note that we don't actually need to aqiure the PUTLOCKS, since 5753 * we have already cleared the fastbit, and set QWRITER. By 5754 * definition, the count can not increase since putnext will 5755 * take the slowlock path (and the purpose of aquiring the 5756 * putlocks was to make sure it didn't increase while we were 5757 * waiting). 5758 * 5759 * Note that we still aquire the PUTLOCKS to be safe. 5760 */ 5761 if (wait_needed) { 5762 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) { 5763 mutex_enter(SQLOCK(sq)); 5764 count = sq->sq_count; 5765 SQ_PUTLOCKS_ENTER(sq); 5766 SUM_SQ_PUTCOUNTS(sq, count); 5767 while (count != 0) { 5768 sq->sq_flags |= SQ_WANTWAKEUP; 5769 SQ_PUTLOCKS_EXIT(sq); 5770 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5771 count = sq->sq_count; 5772 SQ_PUTLOCKS_ENTER(sq); 5773 SUM_SQ_PUTCOUNTS(sq, count); 5774 } 5775 SQ_PUTLOCKS_EXIT(sq); 5776 mutex_exit(SQLOCK(sq)); 5777 } 5778 /* 5779 * Verify that none of the flags got set while we 5780 * were waiting for the sq_counts to drop. 5781 * If this happens we exit and retry entering the 5782 * outer perimeter. 5783 */ 5784 mutex_enter(SQLOCK(outer)); 5785 if (outer->sq_flags & (flags & ~SQ_WRITER)) { 5786 mutex_exit(SQLOCK(outer)); 5787 outer_exit(outer); 5788 goto retry; 5789 } 5790 mutex_exit(SQLOCK(outer)); 5791 } 5792 } 5793 5794 /* 5795 * Drop the write access at the outer perimeter. 5796 * Read access is dropped implicitly (by putnext, put, and leavesq) by 5797 * decrementing sq_count. 5798 */ 5799 void 5800 outer_exit(syncq_t *outer) 5801 { 5802 syncq_t *sq; 5803 int drain_needed; 5804 uint16_t flags; 5805 5806 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5807 outer->sq_oprev != NULL); 5808 ASSERT(MUTEX_NOT_HELD(SQLOCK(outer))); 5809 5810 /* 5811 * Atomically (from the perspective of threads calling become_writer) 5812 * drop the write access at the outer perimeter by holding 5813 * SQLOCK(outer) across all the dropsq calls and the resetting of 5814 * SQ_WRITER. 5815 * This defines a locking order between the outer perimeter 5816 * SQLOCK and the inner perimeter SQLOCKs. 5817 */ 5818 mutex_enter(SQLOCK(outer)); 5819 flags = outer->sq_flags; 5820 ASSERT(outer->sq_flags & SQ_WRITER); 5821 if (flags & SQ_QUEUED) { 5822 write_now(outer); 5823 flags = outer->sq_flags; 5824 } 5825 5826 /* 5827 * sq_onext is stable since sq_count has not yet been decreased. 5828 * Reset the SQ_WRITER flags in all syncqs. 5829 * After dropping SQ_WRITER on the outer syncq we empty all the 5830 * inner syncqs. 5831 */ 5832 drain_needed = 0; 5833 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) 5834 drain_needed += dropsq(sq, SQ_WRITER); 5835 ASSERT(!(outer->sq_flags & SQ_QUEUED)); 5836 flags &= ~SQ_WRITER; 5837 if (drain_needed) { 5838 outer->sq_flags = flags; 5839 mutex_exit(SQLOCK(outer)); 5840 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) 5841 emptysq(sq); 5842 mutex_enter(SQLOCK(outer)); 5843 flags = outer->sq_flags; 5844 } 5845 if (flags & SQ_WANTWAKEUP) { 5846 flags &= ~SQ_WANTWAKEUP; 5847 cv_broadcast(&outer->sq_wait); 5848 } 5849 outer->sq_flags = flags; 5850 ASSERT(outer->sq_count > 0); 5851 outer->sq_count--; 5852 mutex_exit(SQLOCK(outer)); 5853 } 5854 5855 /* 5856 * Add another syncq to an outer perimeter. 5857 * Block out all other access to the outer perimeter while it is being 5858 * changed using blocksq. 5859 * Assumes that the caller has *not* done an outer_enter. 5860 * 5861 * Vulnerable to starvation in blocksq. 5862 */ 5863 static void 5864 outer_insert(syncq_t *outer, syncq_t *sq) 5865 { 5866 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5867 outer->sq_oprev != NULL); 5868 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL && 5869 sq->sq_oprev == NULL); /* Can't be in an outer perimeter */ 5870 5871 /* Get exclusive access to the outer perimeter list */ 5872 blocksq(outer, SQ_BLOCKED, 0); 5873 ASSERT(outer->sq_flags & SQ_BLOCKED); 5874 ASSERT(!(outer->sq_flags & SQ_WRITER)); 5875 5876 mutex_enter(SQLOCK(sq)); 5877 sq->sq_outer = outer; 5878 outer->sq_onext->sq_oprev = sq; 5879 sq->sq_onext = outer->sq_onext; 5880 outer->sq_onext = sq; 5881 sq->sq_oprev = outer; 5882 mutex_exit(SQLOCK(sq)); 5883 unblocksq(outer, SQ_BLOCKED, 1); 5884 } 5885 5886 /* 5887 * Remove a syncq from an outer perimeter. 5888 * Block out all other access to the outer perimeter while it is being 5889 * changed using blocksq. 5890 * Assumes that the caller has *not* done an outer_enter. 5891 * 5892 * Vulnerable to starvation in blocksq. 5893 */ 5894 static void 5895 outer_remove(syncq_t *outer, syncq_t *sq) 5896 { 5897 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5898 outer->sq_oprev != NULL); 5899 ASSERT(sq->sq_outer == outer); 5900 5901 /* Get exclusive access to the outer perimeter list */ 5902 blocksq(outer, SQ_BLOCKED, 0); 5903 ASSERT(outer->sq_flags & SQ_BLOCKED); 5904 ASSERT(!(outer->sq_flags & SQ_WRITER)); 5905 5906 mutex_enter(SQLOCK(sq)); 5907 sq->sq_outer = NULL; 5908 sq->sq_onext->sq_oprev = sq->sq_oprev; 5909 sq->sq_oprev->sq_onext = sq->sq_onext; 5910 sq->sq_oprev = sq->sq_onext = NULL; 5911 mutex_exit(SQLOCK(sq)); 5912 unblocksq(outer, SQ_BLOCKED, 1); 5913 } 5914 5915 /* 5916 * Queue a deferred qwriter(OUTER) callback for this outer perimeter. 5917 * If this is the first callback for this outer perimeter then add 5918 * this outer perimeter to the list of outer perimeters that 5919 * the qwriter_outer_thread will process. 5920 * 5921 * Increments sq_count in the outer syncq to prevent the membership 5922 * of the outer perimeter (in terms of inner syncqs) to change while 5923 * the callback is pending. 5924 */ 5925 static void 5926 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp) 5927 { 5928 ASSERT(MUTEX_HELD(SQLOCK(outer))); 5929 5930 mp->b_prev = (mblk_t *)func; 5931 mp->b_queue = q; 5932 mp->b_next = NULL; 5933 outer->sq_count++; /* Decremented when dequeued */ 5934 ASSERT(outer->sq_count != 0); /* Wraparound */ 5935 if (outer->sq_evhead == NULL) { 5936 /* First message. */ 5937 outer->sq_evhead = outer->sq_evtail = mp; 5938 outer->sq_flags |= SQ_EVENTS; 5939 mutex_exit(SQLOCK(outer)); 5940 STRSTAT(qwr_outer); 5941 (void) taskq_dispatch(streams_taskq, 5942 (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP); 5943 } else { 5944 ASSERT(outer->sq_flags & SQ_EVENTS); 5945 outer->sq_evtail->b_next = mp; 5946 outer->sq_evtail = mp; 5947 mutex_exit(SQLOCK(outer)); 5948 } 5949 } 5950 5951 /* 5952 * Try and upgrade to write access at the outer perimeter. If this can 5953 * not be done without blocking then queue the callback to be done 5954 * by the qwriter_outer_thread. 5955 * 5956 * This routine can only be called from put or service procedures plus 5957 * asynchronous callback routines that have properly entered to 5958 * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim 5959 * on the syncq associated with q. 5960 */ 5961 void 5962 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)()) 5963 { 5964 syncq_t *osq, *sq, *outer; 5965 int failed; 5966 uint16_t flags; 5967 5968 osq = q->q_syncq; 5969 outer = osq->sq_outer; 5970 if (outer == NULL) 5971 panic("qwriter(PERIM_OUTER): no outer perimeter"); 5972 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5973 outer->sq_oprev != NULL); 5974 5975 mutex_enter(SQLOCK(outer)); 5976 flags = outer->sq_flags; 5977 /* 5978 * If some thread is traversing sq_next, or if we are blocked by 5979 * outer_insert or outer_remove, or if the we already have queued 5980 * callbacks, then queue this callback for later processing. 5981 * 5982 * Also queue the qwriter for an interrupt thread in order 5983 * to reduce the time spent running at high IPL. 5984 * to identify there are events. 5985 */ 5986 if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) { 5987 /* 5988 * Queue the become_writer request. 5989 * The queueing is atomic under SQLOCK(outer) in order 5990 * to synchronize with outer_exit. 5991 * queue_writer will drop the outer SQLOCK 5992 */ 5993 if (flags & SQ_BLOCKED) { 5994 /* Must set SQ_WRITER on inner perimeter */ 5995 mutex_enter(SQLOCK(osq)); 5996 osq->sq_flags |= SQ_WRITER; 5997 mutex_exit(SQLOCK(osq)); 5998 } else { 5999 if (!(flags & SQ_WRITER)) { 6000 /* 6001 * The outer could have been SQ_BLOCKED thus 6002 * SQ_WRITER might not be set on the inner. 6003 */ 6004 mutex_enter(SQLOCK(osq)); 6005 osq->sq_flags |= SQ_WRITER; 6006 mutex_exit(SQLOCK(osq)); 6007 } 6008 ASSERT(osq->sq_flags & SQ_WRITER); 6009 } 6010 queue_writer(outer, func, q, mp); 6011 return; 6012 } 6013 /* 6014 * We are half-way to exclusive access to the outer perimeter. 6015 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove 6016 * while the inner syncqs are traversed. 6017 */ 6018 outer->sq_count++; 6019 ASSERT(outer->sq_count != 0); /* wraparound */ 6020 flags |= SQ_WRITER; 6021 /* 6022 * Check if we can run the function immediately. Mark all 6023 * syncqs with the writer flag to prevent new entries into 6024 * put and service procedures. 6025 * 6026 * Set SQ_WRITER on all the inner syncqs while holding 6027 * the SQLOCK on the outer syncq. This ensures that the changing 6028 * of SQ_WRITER is atomic under the outer SQLOCK. 6029 */ 6030 failed = 0; 6031 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) { 6032 uint16_t count; 6033 uint_t maxcnt = (sq == osq) ? 1 : 0; 6034 6035 mutex_enter(SQLOCK(sq)); 6036 count = sq->sq_count; 6037 SQ_PUTLOCKS_ENTER(sq); 6038 SUM_SQ_PUTCOUNTS(sq, count); 6039 if (sq->sq_count > maxcnt) 6040 failed = 1; 6041 sq->sq_flags |= SQ_WRITER; 6042 SQ_PUTLOCKS_EXIT(sq); 6043 mutex_exit(SQLOCK(sq)); 6044 } 6045 if (failed) { 6046 /* 6047 * Some other thread has a read claim on the outer perimeter. 6048 * Queue the callback for deferred processing. 6049 * 6050 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER 6051 * so that other qwriter(OUTER) calls will queue their 6052 * callbacks as well. queue_writer increments sq_count so we 6053 * decrement to compensate for the our increment. 6054 * 6055 * Dropping SQ_WRITER enables the writer thread to work 6056 * on this outer perimeter. 6057 */ 6058 outer->sq_flags = flags; 6059 queue_writer(outer, func, q, mp); 6060 /* queue_writer dropper the lock */ 6061 mutex_enter(SQLOCK(outer)); 6062 ASSERT(outer->sq_count > 0); 6063 outer->sq_count--; 6064 ASSERT(outer->sq_flags & SQ_WRITER); 6065 flags = outer->sq_flags; 6066 flags &= ~SQ_WRITER; 6067 if (flags & SQ_WANTWAKEUP) { 6068 flags &= ~SQ_WANTWAKEUP; 6069 cv_broadcast(&outer->sq_wait); 6070 } 6071 outer->sq_flags = flags; 6072 mutex_exit(SQLOCK(outer)); 6073 return; 6074 } else { 6075 outer->sq_flags = flags; 6076 mutex_exit(SQLOCK(outer)); 6077 } 6078 6079 /* Can run it immediately */ 6080 (*func)(q, mp); 6081 6082 outer_exit(outer); 6083 } 6084 6085 /* 6086 * Dequeue all writer callbacks from the outer perimeter and run them. 6087 */ 6088 static void 6089 write_now(syncq_t *outer) 6090 { 6091 mblk_t *mp; 6092 queue_t *q; 6093 void (*func)(); 6094 6095 ASSERT(MUTEX_HELD(SQLOCK(outer))); 6096 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 6097 outer->sq_oprev != NULL); 6098 while ((mp = outer->sq_evhead) != NULL) { 6099 /* 6100 * queues cannot be placed on the queuelist on the outer 6101 * perimiter. 6102 */ 6103 ASSERT(!(outer->sq_flags & SQ_MESSAGES)); 6104 ASSERT((outer->sq_flags & SQ_EVENTS)); 6105 6106 outer->sq_evhead = mp->b_next; 6107 if (outer->sq_evhead == NULL) { 6108 outer->sq_evtail = NULL; 6109 outer->sq_flags &= ~SQ_EVENTS; 6110 } 6111 ASSERT(outer->sq_count != 0); 6112 outer->sq_count--; /* Incremented when enqueued. */ 6113 mutex_exit(SQLOCK(outer)); 6114 /* 6115 * Drop the message if the queue is closing. 6116 * Make sure that the queue is "claimed" when the callback 6117 * is run in order to satisfy various ASSERTs. 6118 */ 6119 q = mp->b_queue; 6120 func = (void (*)())mp->b_prev; 6121 ASSERT(func != NULL); 6122 mp->b_next = mp->b_prev = NULL; 6123 if (q->q_flag & QWCLOSE) { 6124 freemsg(mp); 6125 } else { 6126 claimq(q); 6127 (*func)(q, mp); 6128 releaseq(q); 6129 } 6130 mutex_enter(SQLOCK(outer)); 6131 } 6132 ASSERT(MUTEX_HELD(SQLOCK(outer))); 6133 } 6134 6135 /* 6136 * The list of messages on the inner syncq is effectively hashed 6137 * by destination queue. These destination queues are doubly 6138 * linked lists (hopefully) in priority order. Messages are then 6139 * put on the queue referenced by the q_sqhead/q_sqtail elements. 6140 * Additional messages are linked together by the b_next/b_prev 6141 * elements in the mblk, with (similar to putq()) the first message 6142 * having a NULL b_prev and the last message having a NULL b_next. 6143 * 6144 * Events, such as qwriter callbacks, are put onto a list in FIFO 6145 * order referenced by sq_evhead, and sq_evtail. This is a singly 6146 * linked list, and messages here MUST be processed in the order queued. 6147 */ 6148 6149 /* 6150 * Run the events on the syncq event list (sq_evhead). 6151 * Assumes there is only one claim on the syncq, it is 6152 * already exclusive (SQ_EXCL set), and the SQLOCK held. 6153 * Messages here are processed in order, with the SQ_EXCL bit 6154 * held all the way through till the last message is processed. 6155 */ 6156 void 6157 sq_run_events(syncq_t *sq) 6158 { 6159 mblk_t *bp; 6160 queue_t *qp; 6161 uint16_t flags = sq->sq_flags; 6162 void (*func)(); 6163 6164 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6165 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6166 sq->sq_oprev == NULL) || 6167 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6168 sq->sq_oprev != NULL)); 6169 6170 ASSERT(flags & SQ_EXCL); 6171 ASSERT(sq->sq_count == 1); 6172 6173 /* 6174 * We need to process all of the events on this list. It 6175 * is possible that new events will be added while we are 6176 * away processing a callback, so on every loop, we start 6177 * back at the beginning of the list. 6178 */ 6179 /* 6180 * We have to reaccess sq_evhead since there is a 6181 * possibility of a new entry while we were running 6182 * the callback. 6183 */ 6184 for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) { 6185 ASSERT(bp->b_queue->q_syncq == sq); 6186 ASSERT(sq->sq_flags & SQ_EVENTS); 6187 6188 qp = bp->b_queue; 6189 func = (void (*)())bp->b_prev; 6190 ASSERT(func != NULL); 6191 6192 /* 6193 * Messages from the event queue must be taken off in 6194 * FIFO order. 6195 */ 6196 ASSERT(sq->sq_evhead == bp); 6197 sq->sq_evhead = bp->b_next; 6198 6199 if (bp->b_next == NULL) { 6200 /* Deleting last */ 6201 ASSERT(sq->sq_evtail == bp); 6202 sq->sq_evtail = NULL; 6203 sq->sq_flags &= ~SQ_EVENTS; 6204 } 6205 bp->b_prev = bp->b_next = NULL; 6206 ASSERT(bp->b_datap->db_ref != 0); 6207 6208 mutex_exit(SQLOCK(sq)); 6209 6210 (*func)(qp, bp); 6211 6212 mutex_enter(SQLOCK(sq)); 6213 /* 6214 * re-read the flags, since they could have changed. 6215 */ 6216 flags = sq->sq_flags; 6217 ASSERT(flags & SQ_EXCL); 6218 } 6219 ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL); 6220 ASSERT(!(sq->sq_flags & SQ_EVENTS)); 6221 6222 if (flags & SQ_WANTWAKEUP) { 6223 flags &= ~SQ_WANTWAKEUP; 6224 cv_broadcast(&sq->sq_wait); 6225 } 6226 if (flags & SQ_WANTEXWAKEUP) { 6227 flags &= ~SQ_WANTEXWAKEUP; 6228 cv_broadcast(&sq->sq_exitwait); 6229 } 6230 sq->sq_flags = flags; 6231 } 6232 6233 /* 6234 * Put messages on the event list. 6235 * If we can go exclusive now, do so and process the event list, otherwise 6236 * let the last claim service this list (or wake the sqthread). 6237 * This procedure assumes SQLOCK is held. To run the event list, it 6238 * must be called with no claims. 6239 */ 6240 static void 6241 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)()) 6242 { 6243 uint16_t count; 6244 6245 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6246 ASSERT(func != NULL); 6247 6248 /* 6249 * This is a callback. Add it to the list of callbacks 6250 * and see about upgrading. 6251 */ 6252 mp->b_prev = (mblk_t *)func; 6253 mp->b_queue = q; 6254 mp->b_next = NULL; 6255 if (sq->sq_evhead == NULL) { 6256 sq->sq_evhead = sq->sq_evtail = mp; 6257 sq->sq_flags |= SQ_EVENTS; 6258 } else { 6259 ASSERT(sq->sq_evtail != NULL); 6260 ASSERT(sq->sq_evtail->b_next == NULL); 6261 ASSERT(sq->sq_flags & SQ_EVENTS); 6262 sq->sq_evtail->b_next = mp; 6263 sq->sq_evtail = mp; 6264 } 6265 /* 6266 * We have set SQ_EVENTS, so threads will have to 6267 * unwind out of the perimiter, and new entries will 6268 * not grab a putlock. But we still need to know 6269 * how many threads have already made a claim to the 6270 * syncq, so grab the putlocks, and sum the counts. 6271 * If there are no claims on the syncq, we can upgrade 6272 * to exclusive, and run the event list. 6273 * NOTE: We hold the SQLOCK, so we can just grab the 6274 * putlocks. 6275 */ 6276 count = sq->sq_count; 6277 SQ_PUTLOCKS_ENTER(sq); 6278 SUM_SQ_PUTCOUNTS(sq, count); 6279 /* 6280 * We have no claim, so we need to check if there 6281 * are no others, then we can upgrade. 6282 */ 6283 /* 6284 * There are currently no claims on 6285 * the syncq by this thread (at least on this entry). The thread who has 6286 * the claim should drain syncq. 6287 */ 6288 if (count > 0) { 6289 /* 6290 * Can't upgrade - other threads inside. 6291 */ 6292 SQ_PUTLOCKS_EXIT(sq); 6293 mutex_exit(SQLOCK(sq)); 6294 return; 6295 } 6296 /* 6297 * Need to set SQ_EXCL and make a claim on the syncq. 6298 */ 6299 ASSERT((sq->sq_flags & SQ_EXCL) == 0); 6300 sq->sq_flags |= SQ_EXCL; 6301 ASSERT(sq->sq_count == 0); 6302 sq->sq_count++; 6303 SQ_PUTLOCKS_EXIT(sq); 6304 6305 /* Process the events list */ 6306 sq_run_events(sq); 6307 6308 /* 6309 * Release our claim... 6310 */ 6311 sq->sq_count--; 6312 6313 /* 6314 * And release SQ_EXCL. 6315 * We don't need to acquire the putlocks to release 6316 * SQ_EXCL, since we are exclusive, and hold the SQLOCK. 6317 */ 6318 sq->sq_flags &= ~SQ_EXCL; 6319 6320 /* 6321 * sq_run_events should have released SQ_EXCL 6322 */ 6323 ASSERT(!(sq->sq_flags & SQ_EXCL)); 6324 6325 /* 6326 * If anything happened while we were running the 6327 * events (or was there before), we need to process 6328 * them now. We shouldn't be exclusive sine we 6329 * released the perimiter above (plus, we asserted 6330 * for it). 6331 */ 6332 if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED)) 6333 drain_syncq(sq); 6334 else 6335 mutex_exit(SQLOCK(sq)); 6336 } 6337 6338 /* 6339 * Perform delayed processing. The caller has to make sure that it is safe 6340 * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are 6341 * set.) 6342 * 6343 * Assume that the caller has NO claims on the syncq. However, a claim 6344 * on the syncq does not indicate that a thread is draining the syncq. 6345 * There may be more claims on the syncq than there are threads draining 6346 * (i.e. #_threads_draining <= sq_count) 6347 * 6348 * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set 6349 * in order to preserve qwriter(OUTER) ordering constraints. 6350 * 6351 * sq_putcount only needs to be checked when dispatching the queued 6352 * writer call for CIPUT sync queue, but this is handled in sq_run_events. 6353 */ 6354 void 6355 drain_syncq(syncq_t *sq) 6356 { 6357 queue_t *qp; 6358 uint16_t count; 6359 uint16_t type = sq->sq_type; 6360 uint16_t flags = sq->sq_flags; 6361 boolean_t bg_service = sq->sq_svcflags & SQ_SERVICE; 6362 6363 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START, 6364 "drain_syncq start:%p", sq); 6365 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6366 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6367 sq->sq_oprev == NULL) || 6368 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6369 sq->sq_oprev != NULL)); 6370 6371 /* 6372 * Drop SQ_SERVICE flag. 6373 */ 6374 if (bg_service) 6375 sq->sq_svcflags &= ~SQ_SERVICE; 6376 6377 /* 6378 * If SQ_EXCL is set, someone else is processing this syncq - let him 6379 * finish the job. 6380 */ 6381 if (flags & SQ_EXCL) { 6382 if (bg_service) { 6383 ASSERT(sq->sq_servcount != 0); 6384 sq->sq_servcount--; 6385 } 6386 mutex_exit(SQLOCK(sq)); 6387 return; 6388 } 6389 6390 /* 6391 * This routine can be called by a background thread if 6392 * it was scheduled by a hi-priority thread. SO, if there are 6393 * NOT messages queued, return (remember, we have the SQLOCK, 6394 * and it cannot change until we release it). Wakeup any waiters also. 6395 */ 6396 if (!(flags & SQ_QUEUED)) { 6397 if (flags & SQ_WANTWAKEUP) { 6398 flags &= ~SQ_WANTWAKEUP; 6399 cv_broadcast(&sq->sq_wait); 6400 } 6401 if (flags & SQ_WANTEXWAKEUP) { 6402 flags &= ~SQ_WANTEXWAKEUP; 6403 cv_broadcast(&sq->sq_exitwait); 6404 } 6405 sq->sq_flags = flags; 6406 if (bg_service) { 6407 ASSERT(sq->sq_servcount != 0); 6408 sq->sq_servcount--; 6409 } 6410 mutex_exit(SQLOCK(sq)); 6411 return; 6412 } 6413 6414 /* 6415 * If this is not a concurrent put perimiter, we need to 6416 * become exclusive to drain. Also, if not CIPUT, we would 6417 * not have acquired a putlock, so we don't need to check 6418 * the putcounts. If not entering with a claim, we test 6419 * for sq_count == 0. 6420 */ 6421 type = sq->sq_type; 6422 if (!(type & SQ_CIPUT)) { 6423 if (sq->sq_count > 1) { 6424 if (bg_service) { 6425 ASSERT(sq->sq_servcount != 0); 6426 sq->sq_servcount--; 6427 } 6428 mutex_exit(SQLOCK(sq)); 6429 return; 6430 } 6431 sq->sq_flags |= SQ_EXCL; 6432 } 6433 6434 /* 6435 * This is where we make a claim to the syncq. 6436 * This can either be done by incrementing a putlock, or 6437 * the sq_count. But since we already have the SQLOCK 6438 * here, we just bump the sq_count. 6439 * 6440 * Note that after we make a claim, we need to let the code 6441 * fall through to the end of this routine to clean itself 6442 * up. A return in the while loop will put the syncq in a 6443 * very bad state. 6444 */ 6445 sq->sq_count++; 6446 ASSERT(sq->sq_count != 0); /* wraparound */ 6447 6448 while ((flags = sq->sq_flags) & SQ_QUEUED) { 6449 /* 6450 * If we are told to stayaway or went exclusive, 6451 * we are done. 6452 */ 6453 if (flags & (SQ_STAYAWAY)) { 6454 break; 6455 } 6456 6457 /* 6458 * If there are events to run, do so. 6459 * We have one claim to the syncq, so if there are 6460 * more than one, other threads are running. 6461 */ 6462 if (sq->sq_evhead != NULL) { 6463 ASSERT(sq->sq_flags & SQ_EVENTS); 6464 6465 count = sq->sq_count; 6466 SQ_PUTLOCKS_ENTER(sq); 6467 SUM_SQ_PUTCOUNTS(sq, count); 6468 if (count > 1) { 6469 SQ_PUTLOCKS_EXIT(sq); 6470 /* Can't upgrade - other threads inside */ 6471 break; 6472 } 6473 ASSERT((flags & SQ_EXCL) == 0); 6474 sq->sq_flags = flags | SQ_EXCL; 6475 SQ_PUTLOCKS_EXIT(sq); 6476 /* 6477 * we have the only claim, run the events, 6478 * sq_run_events will clear the SQ_EXCL flag. 6479 */ 6480 sq_run_events(sq); 6481 6482 /* 6483 * If this is a CIPUT perimiter, we need 6484 * to drop the SQ_EXCL flag so we can properly 6485 * continue draining the syncq. 6486 */ 6487 if (type & SQ_CIPUT) { 6488 ASSERT(sq->sq_flags & SQ_EXCL); 6489 sq->sq_flags &= ~SQ_EXCL; 6490 } 6491 6492 /* 6493 * And go back to the beginning just in case 6494 * anything changed while we were away. 6495 */ 6496 ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT)); 6497 continue; 6498 } 6499 6500 ASSERT(sq->sq_evhead == NULL); 6501 ASSERT(!(sq->sq_flags & SQ_EVENTS)); 6502 6503 /* 6504 * Find the queue that is not draining. 6505 * 6506 * q_draining is protected by QLOCK which we do not hold. 6507 * But if it was set, then a thread was draining, and if it gets 6508 * cleared, then it was because the thread has successfully 6509 * drained the syncq, or a GOAWAY state occured. For the GOAWAY 6510 * state to happen, a thread needs the SQLOCK which we hold, and 6511 * if there was such a flag, we whould have already seen it. 6512 */ 6513 6514 for (qp = sq->sq_head; 6515 qp != NULL && (qp->q_draining || 6516 (qp->q_sqflags & Q_SQDRAINING)); 6517 qp = qp->q_sqnext) 6518 ; 6519 6520 if (qp == NULL) 6521 break; 6522 6523 /* 6524 * We have a queue to work on, and we hold the 6525 * SQLOCK and one claim, call qdrain_syncq. 6526 * This means we need to release the SQLOCK and 6527 * aquire the QLOCK (OK since we have a claim). 6528 * Note that qdrain_syncq will actually dequeue 6529 * this queue from the sq_head list when it is 6530 * convinced all the work is done and release 6531 * the QLOCK before returning. 6532 */ 6533 qp->q_sqflags |= Q_SQDRAINING; 6534 mutex_exit(SQLOCK(sq)); 6535 mutex_enter(QLOCK(qp)); 6536 qdrain_syncq(sq, qp); 6537 mutex_enter(SQLOCK(sq)); 6538 6539 /* The queue is drained */ 6540 ASSERT(qp->q_sqflags & Q_SQDRAINING); 6541 qp->q_sqflags &= ~Q_SQDRAINING; 6542 /* 6543 * NOTE: After this point qp should not be used since it may be 6544 * closed. 6545 */ 6546 } 6547 6548 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6549 flags = sq->sq_flags; 6550 6551 /* 6552 * sq->sq_head cannot change because we hold the 6553 * sqlock. However, a thread CAN decide that it is no longer 6554 * going to drain that queue. However, this should be due to 6555 * a GOAWAY state, and we should see that here. 6556 * 6557 * This loop is not very efficient. One solution may be adding a second 6558 * pointer to the "draining" queue, but it is difficult to do when 6559 * queues are inserted in the middle due to priority ordering. Another 6560 * possibility is to yank the queue out of the sq list and put it onto 6561 * the "draining list" and then put it back if it can't be drained. 6562 */ 6563 6564 ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) || 6565 (type & SQ_CI) || sq->sq_head->q_draining); 6566 6567 /* Drop SQ_EXCL for non-CIPUT perimiters */ 6568 if (!(type & SQ_CIPUT)) 6569 flags &= ~SQ_EXCL; 6570 ASSERT((flags & SQ_EXCL) == 0); 6571 6572 /* Wake up any waiters. */ 6573 if (flags & SQ_WANTWAKEUP) { 6574 flags &= ~SQ_WANTWAKEUP; 6575 cv_broadcast(&sq->sq_wait); 6576 } 6577 if (flags & SQ_WANTEXWAKEUP) { 6578 flags &= ~SQ_WANTEXWAKEUP; 6579 cv_broadcast(&sq->sq_exitwait); 6580 } 6581 sq->sq_flags = flags; 6582 6583 ASSERT(sq->sq_count != 0); 6584 /* Release our claim. */ 6585 sq->sq_count--; 6586 6587 if (bg_service) { 6588 ASSERT(sq->sq_servcount != 0); 6589 sq->sq_servcount--; 6590 } 6591 6592 mutex_exit(SQLOCK(sq)); 6593 6594 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END, 6595 "drain_syncq end:%p", sq); 6596 } 6597 6598 6599 /* 6600 * 6601 * qdrain_syncq can be called (currently) from only one of two places: 6602 * drain_syncq 6603 * putnext (or some variation of it). 6604 * and eventually 6605 * qwait(_sig) 6606 * 6607 * If called from drain_syncq, we found it in the list 6608 * of queue's needing service, so there is work to be done (or it 6609 * wouldn't be on the list). 6610 * 6611 * If called from some putnext variation, it was because the 6612 * perimiter is open, but messages are blocking a putnext and 6613 * there is not a thread working on it. Now a thread could start 6614 * working on it while we are getting ready to do so ourself, but 6615 * the thread would set the q_draining flag, and we can spin out. 6616 * 6617 * As for qwait(_sig), I think I shall let it continue to call 6618 * drain_syncq directly (after all, it will get here eventually). 6619 * 6620 * qdrain_syncq has to terminate when: 6621 * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering 6622 * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering 6623 * 6624 * ASSUMES: 6625 * One claim 6626 * QLOCK held 6627 * SQLOCK not held 6628 * Will release QLOCK before returning 6629 */ 6630 void 6631 qdrain_syncq(syncq_t *sq, queue_t *q) 6632 { 6633 mblk_t *bp; 6634 boolean_t do_clr; 6635 #ifdef DEBUG 6636 uint16_t count; 6637 #endif 6638 6639 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START, 6640 "drain_syncq start:%p", sq); 6641 ASSERT(q->q_syncq == sq); 6642 ASSERT(MUTEX_HELD(QLOCK(q))); 6643 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 6644 /* 6645 * For non-CIPUT perimiters, we should be called with the 6646 * exclusive bit set already. For non-CIPUT perimiters we 6647 * will be doing a concurrent drain, so it better not be set. 6648 */ 6649 ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT))); 6650 ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL))); 6651 ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL)); 6652 /* 6653 * All outer pointers are set, or none of them are 6654 */ 6655 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6656 sq->sq_oprev == NULL) || 6657 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6658 sq->sq_oprev != NULL)); 6659 #ifdef DEBUG 6660 count = sq->sq_count; 6661 /* 6662 * This is OK without the putlocks, because we have one 6663 * claim either from the sq_count, or a putcount. We could 6664 * get an erroneous value from other counts, but ours won't 6665 * change, so one way or another, we will have at least a 6666 * value of one. 6667 */ 6668 SUM_SQ_PUTCOUNTS(sq, count); 6669 ASSERT(count >= 1); 6670 #endif /* DEBUG */ 6671 6672 /* 6673 * The first thing to do here, is find out if a thread is already 6674 * draining this queue or the queue is closing. If so, we are done, 6675 * just return. Also, if there are no messages, we are done as well. 6676 * Note that we check the q_sqhead since there is s window of 6677 * opportunity for us to enter here because Q_SQQUEUED was set, but is 6678 * not anymore. 6679 */ 6680 if (q->q_draining || (q->q_sqhead == NULL)) { 6681 mutex_exit(QLOCK(q)); 6682 return; 6683 } 6684 6685 /* 6686 * If the perimiter is exclusive, there is nothing we can 6687 * do right now, go away. 6688 * Note that there is nothing to prevent this case from changing 6689 * right after this check, but the spin-out will catch it. 6690 */ 6691 6692 /* Tell other threads that we are draining this queue */ 6693 q->q_draining = 1; /* Protected by QLOCK */ 6694 6695 for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) { 6696 6697 /* 6698 * Because we can enter this routine just because 6699 * a putnext is blocked, we need to spin out if 6700 * the perimiter wants to go exclusive as well 6701 * as just blocked. We need to spin out also if 6702 * events are queued on the syncq. 6703 * Don't check for SQ_EXCL, because non-CIPUT 6704 * perimiters would set it, and it can't become 6705 * exclusive while we hold a claim. 6706 */ 6707 if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) { 6708 break; 6709 } 6710 6711 #ifdef DEBUG 6712 /* 6713 * Since we are in qdrain_syncq, we already know the queue, 6714 * but for sanity, we want to check this against the qp that 6715 * was passed in by bp->b_queue. 6716 */ 6717 6718 ASSERT(bp->b_queue == q); 6719 ASSERT(bp->b_queue->q_syncq == sq); 6720 bp->b_queue = NULL; 6721 6722 /* 6723 * We would have the following check in the DEBUG code: 6724 * 6725 * if (bp->b_prev != NULL) { 6726 * ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp); 6727 * } 6728 * 6729 * This can't be done, however, since IP modifies qinfo 6730 * structure at run-time (switching between IPv4 qinfo and IPv6 6731 * qinfo), invalidating the check. 6732 * So the assignment to func is left here, but the ASSERT itself 6733 * is removed until the whole issue is resolved. 6734 */ 6735 #endif 6736 ASSERT(q->q_sqhead == bp); 6737 q->q_sqhead = bp->b_next; 6738 bp->b_prev = bp->b_next = NULL; 6739 ASSERT(q->q_syncqmsgs > 0); 6740 mutex_exit(QLOCK(q)); 6741 6742 ASSERT(bp->b_datap->db_ref != 0); 6743 6744 (void) (*q->q_qinfo->qi_putp)(q, bp); 6745 6746 mutex_enter(QLOCK(q)); 6747 /* 6748 * We should decrement q_syncqmsgs only after executing the 6749 * put procedure to avoid a possible race with putnext(). 6750 * In putnext() though it sees Q_SQQUEUED is set, there is 6751 * an optimization which allows putnext to call the put 6752 * procedure directly if (q_syncqmsgs == 0) and thus 6753 * a message reodering could otherwise occur. 6754 */ 6755 q->q_syncqmsgs--; 6756 6757 /* 6758 * Clear QFULL in the next service procedure queue if 6759 * this is the last message destined to that queue. 6760 * 6761 * It would make better sense to have some sort of 6762 * tunable for the low water mark, but these symantics 6763 * are not yet defined. So, alas, we use a constant. 6764 */ 6765 do_clr = (q->q_syncqmsgs == 0); 6766 mutex_exit(QLOCK(q)); 6767 6768 if (do_clr) 6769 clr_qfull(q); 6770 6771 mutex_enter(QLOCK(q)); 6772 /* 6773 * Always clear SQ_EXCL when CIPUT in order to handle 6774 * qwriter(INNER). 6775 */ 6776 /* 6777 * The putp() can call qwriter and get exclusive access 6778 * IFF this is the only claim. So, we need to test for 6779 * this possibility so we can aquire the mutex and clear 6780 * the bit. 6781 */ 6782 if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) { 6783 mutex_enter(SQLOCK(sq)); 6784 sq->sq_flags &= ~SQ_EXCL; 6785 mutex_exit(SQLOCK(sq)); 6786 } 6787 } 6788 6789 /* 6790 * We should either have no queues on the syncq, or we were 6791 * told to goaway by a waiter (which we will wake up at the 6792 * end of this function). 6793 */ 6794 ASSERT((q->q_sqhead == NULL) || 6795 (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS))); 6796 6797 ASSERT(MUTEX_HELD(QLOCK(q))); 6798 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 6799 6800 /* 6801 * Remove the q from the syncq list if all the messages are 6802 * drained. 6803 */ 6804 if (q->q_sqhead == NULL) { 6805 mutex_enter(SQLOCK(sq)); 6806 if (q->q_sqflags & Q_SQQUEUED) 6807 SQRM_Q(sq, q); 6808 mutex_exit(SQLOCK(sq)); 6809 /* 6810 * Since the queue is removed from the list, reset its priority. 6811 */ 6812 q->q_spri = 0; 6813 } 6814 6815 /* 6816 * Remember, the q_draining flag is used to let another 6817 * thread know that there is a thread currently draining 6818 * the messages for a queue. Since we are now done with 6819 * this queue (even if there may be messages still there), 6820 * we need to clear this flag so some thread will work 6821 * on it if needed. 6822 */ 6823 ASSERT(q->q_draining); 6824 q->q_draining = 0; 6825 6826 /* called with a claim, so OK to drop all locks. */ 6827 mutex_exit(QLOCK(q)); 6828 6829 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END, 6830 "drain_syncq end:%p", sq); 6831 } 6832 /* END OF QDRAIN_SYNCQ */ 6833 6834 6835 /* 6836 * This is the mate to qdrain_syncq, except that it is putting the 6837 * message onto the the queue instead draining. Since the 6838 * message is destined for the queue that is selected, there is 6839 * no need to identify the function because the message is 6840 * intended for the put routine for the queue. But this 6841 * routine will do it anyway just in case (but only for debug kernels). 6842 * 6843 * After the message is enqueued on the syncq, it calls putnext_tail() 6844 * which will schedule a background thread to actually process the message. 6845 * 6846 * Assumes that there is a claim on the syncq (sq->sq_count > 0) and 6847 * SQLOCK(sq) and QLOCK(q) are not held. 6848 */ 6849 void 6850 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp) 6851 { 6852 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 6853 ASSERT(MUTEX_NOT_HELD(QLOCK(q))); 6854 ASSERT(sq->sq_count > 0); 6855 ASSERT(q->q_syncq == sq); 6856 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6857 sq->sq_oprev == NULL) || 6858 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6859 sq->sq_oprev != NULL)); 6860 6861 mutex_enter(QLOCK(q)); 6862 6863 #ifdef DEBUG 6864 /* 6865 * This is used for debug in the qfill_syncq/qdrain_syncq case 6866 * to trace the queue that the message is intended for. Note 6867 * that the original use was to identify the queue and function 6868 * to call on the drain. In the new syncq, we have the context 6869 * of the queue that we are draining, so call it's putproc and 6870 * don't rely on the saved values. But for debug this is still 6871 * usefull information. 6872 */ 6873 mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp; 6874 mp->b_queue = q; 6875 mp->b_next = NULL; 6876 #endif 6877 ASSERT(q->q_syncq == sq); 6878 /* 6879 * Enqueue the message on the list. 6880 * SQPUT_MP() accesses q_syncqmsgs. We are already holding QLOCK to 6881 * protect it. So its ok to acquire SQLOCK after SQPUT_MP(). 6882 */ 6883 SQPUT_MP(q, mp); 6884 mutex_enter(SQLOCK(sq)); 6885 6886 /* 6887 * And queue on syncq for scheduling, if not already queued. 6888 * Note that we need the SQLOCK for this, and for testing flags 6889 * at the end to see if we will drain. So grab it now, and 6890 * release it before we call qdrain_syncq or return. 6891 */ 6892 if (!(q->q_sqflags & Q_SQQUEUED)) { 6893 q->q_spri = curthread->t_pri; 6894 SQPUT_Q(sq, q); 6895 } 6896 #ifdef DEBUG 6897 else { 6898 /* 6899 * All of these conditions MUST be true! 6900 */ 6901 ASSERT(sq->sq_tail != NULL); 6902 if (sq->sq_tail == sq->sq_head) { 6903 ASSERT((q->q_sqprev == NULL) && 6904 (q->q_sqnext == NULL)); 6905 } else { 6906 ASSERT((q->q_sqprev != NULL) || 6907 (q->q_sqnext != NULL)); 6908 } 6909 ASSERT(sq->sq_flags & SQ_QUEUED); 6910 ASSERT(q->q_syncqmsgs != 0); 6911 ASSERT(q->q_sqflags & Q_SQQUEUED); 6912 } 6913 #endif 6914 mutex_exit(QLOCK(q)); 6915 /* 6916 * SQLOCK is still held, so sq_count can be safely decremented. 6917 */ 6918 sq->sq_count--; 6919 6920 putnext_tail(sq, q, 0); 6921 /* Should not reference sq or q after this point. */ 6922 } 6923 6924 /* End of qfill_syncq */ 6925 6926 /* 6927 * Remove all messages from a syncq (if qp is NULL) or remove all messages 6928 * that would be put into qp by drain_syncq. 6929 * Used when deleting the syncq (qp == NULL) or when detaching 6930 * a queue (qp != NULL). 6931 * Return non-zero if one or more messages were freed. 6932 * 6933 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 6934 * sq_putlocks are used. 6935 * 6936 * NOTE: This function assumes that it is called from the close() context and 6937 * that all the queues in the syncq are going aay. For this reason it doesn't 6938 * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is 6939 * currently valid, but it is useful to rethink this function to behave properly 6940 * in other cases. 6941 */ 6942 int 6943 flush_syncq(syncq_t *sq, queue_t *qp) 6944 { 6945 mblk_t *bp, *mp_head, *mp_next, *mp_prev; 6946 queue_t *q; 6947 int ret = 0; 6948 6949 mutex_enter(SQLOCK(sq)); 6950 6951 /* 6952 * Before we leave, we need to make sure there are no 6953 * events listed for this queue. All events for this queue 6954 * will just be freed. 6955 */ 6956 if (qp != NULL && sq->sq_evhead != NULL) { 6957 ASSERT(sq->sq_flags & SQ_EVENTS); 6958 6959 mp_prev = NULL; 6960 for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) { 6961 mp_next = bp->b_next; 6962 if (bp->b_queue == qp) { 6963 /* Delete this message */ 6964 if (mp_prev != NULL) { 6965 mp_prev->b_next = mp_next; 6966 /* 6967 * Update sq_evtail if the last element 6968 * is removed. 6969 */ 6970 if (bp == sq->sq_evtail) { 6971 ASSERT(mp_next == NULL); 6972 sq->sq_evtail = mp_prev; 6973 } 6974 } else 6975 sq->sq_evhead = mp_next; 6976 if (sq->sq_evhead == NULL) 6977 sq->sq_flags &= ~SQ_EVENTS; 6978 bp->b_prev = bp->b_next = NULL; 6979 freemsg(bp); 6980 ret++; 6981 } else { 6982 mp_prev = bp; 6983 } 6984 } 6985 } 6986 6987 /* 6988 * Walk sq_head and: 6989 * - match qp if qp is set, remove it's messages 6990 * - all if qp is not set 6991 */ 6992 q = sq->sq_head; 6993 while (q != NULL) { 6994 ASSERT(q->q_syncq == sq); 6995 if ((qp == NULL) || (qp == q)) { 6996 /* 6997 * Yank the messages as a list off the queue 6998 */ 6999 mp_head = q->q_sqhead; 7000 /* 7001 * We do not have QLOCK(q) here (which is safe due to 7002 * assumptions mentioned above). To obtain the lock we 7003 * need to release SQLOCK which may allow lots of things 7004 * to change upon us. This place requires more analysis. 7005 */ 7006 q->q_sqhead = q->q_sqtail = NULL; 7007 ASSERT(mp_head->b_queue && 7008 mp_head->b_queue->q_syncq == sq); 7009 7010 /* 7011 * Free each of the messages. 7012 */ 7013 for (bp = mp_head; bp != NULL; bp = mp_next) { 7014 mp_next = bp->b_next; 7015 bp->b_prev = bp->b_next = NULL; 7016 freemsg(bp); 7017 ret++; 7018 } 7019 /* 7020 * Now remove the queue from the syncq. 7021 */ 7022 ASSERT(q->q_sqflags & Q_SQQUEUED); 7023 SQRM_Q(sq, q); 7024 q->q_spri = 0; 7025 q->q_syncqmsgs = 0; 7026 7027 /* 7028 * If qp was specified, we are done with it and are 7029 * going to drop SQLOCK(sq) and return. We wakeup syncq 7030 * waiters while we still have the SQLOCK. 7031 */ 7032 if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) { 7033 sq->sq_flags &= ~SQ_WANTWAKEUP; 7034 cv_broadcast(&sq->sq_wait); 7035 } 7036 /* Drop SQLOCK across clr_qfull */ 7037 mutex_exit(SQLOCK(sq)); 7038 7039 /* 7040 * We avoid doing the test that drain_syncq does and 7041 * unconditionally clear qfull for every flushed 7042 * message. Since flush_syncq is only called during 7043 * close this should not be a problem. 7044 */ 7045 clr_qfull(q); 7046 if (qp != NULL) { 7047 return (ret); 7048 } else { 7049 mutex_enter(SQLOCK(sq)); 7050 /* 7051 * The head was removed by SQRM_Q above. 7052 * reread the new head and flush it. 7053 */ 7054 q = sq->sq_head; 7055 } 7056 } else { 7057 q = q->q_sqnext; 7058 } 7059 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7060 } 7061 7062 if (sq->sq_flags & SQ_WANTWAKEUP) { 7063 sq->sq_flags &= ~SQ_WANTWAKEUP; 7064 cv_broadcast(&sq->sq_wait); 7065 } 7066 7067 mutex_exit(SQLOCK(sq)); 7068 return (ret); 7069 } 7070 7071 /* 7072 * Propagate all messages from a syncq to the next syncq that are associated 7073 * with the specified queue. If the queue is attached to a driver or if the 7074 * messages have been added due to a qwriter(PERIM_INNER), free the messages. 7075 * 7076 * Assumes that the stream is strlock()'ed. We don't come here if there 7077 * are no messages to propagate. 7078 * 7079 * NOTE : If the queue is attached to a driver, all the messages are freed 7080 * as there is no point in propagating the messages from the driver syncq 7081 * to the closing stream head which will in turn get freed later. 7082 */ 7083 static int 7084 propagate_syncq(queue_t *qp) 7085 { 7086 mblk_t *bp, *head, *tail, *prev, *next; 7087 syncq_t *sq; 7088 queue_t *nqp; 7089 syncq_t *nsq; 7090 boolean_t isdriver; 7091 int moved = 0; 7092 uint16_t flags; 7093 pri_t priority = curthread->t_pri; 7094 #ifdef DEBUG 7095 void (*func)(); 7096 #endif 7097 7098 sq = qp->q_syncq; 7099 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7100 /* debug macro */ 7101 SQ_PUTLOCKS_HELD(sq); 7102 /* 7103 * As entersq() does not increment the sq_count for 7104 * the write side, check sq_count for non-QPERQ 7105 * perimeters alone. 7106 */ 7107 ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1)); 7108 7109 /* 7110 * propagate_syncq() can be called because of either messages on the 7111 * queue syncq or because on events on the queue syncq. Do actual 7112 * message propagations if there are any messages. 7113 */ 7114 if (qp->q_syncqmsgs) { 7115 isdriver = (qp->q_flag & QISDRV); 7116 7117 if (!isdriver) { 7118 nqp = qp->q_next; 7119 nsq = nqp->q_syncq; 7120 ASSERT(MUTEX_HELD(SQLOCK(nsq))); 7121 /* debug macro */ 7122 SQ_PUTLOCKS_HELD(nsq); 7123 #ifdef DEBUG 7124 func = (void (*)())nqp->q_qinfo->qi_putp; 7125 #endif 7126 } 7127 7128 SQRM_Q(sq, qp); 7129 priority = MAX(qp->q_spri, priority); 7130 qp->q_spri = 0; 7131 head = qp->q_sqhead; 7132 tail = qp->q_sqtail; 7133 qp->q_sqhead = qp->q_sqtail = NULL; 7134 qp->q_syncqmsgs = 0; 7135 7136 /* 7137 * Walk the list of messages, and free them if this is a driver, 7138 * otherwise reset the b_prev and b_queue value to the new putp. 7139 * Afterward, we will just add the head to the end of the next 7140 * syncq, and point the tail to the end of this one. 7141 */ 7142 7143 for (bp = head; bp != NULL; bp = next) { 7144 next = bp->b_next; 7145 if (isdriver) { 7146 bp->b_prev = bp->b_next = NULL; 7147 freemsg(bp); 7148 continue; 7149 } 7150 /* Change the q values for this message */ 7151 bp->b_queue = nqp; 7152 #ifdef DEBUG 7153 bp->b_prev = (mblk_t *)func; 7154 #endif 7155 moved++; 7156 } 7157 /* 7158 * Attach list of messages to the end of the new queue (if there 7159 * is a list of messages). 7160 */ 7161 7162 if (!isdriver && head != NULL) { 7163 ASSERT(tail != NULL); 7164 if (nqp->q_sqhead == NULL) { 7165 nqp->q_sqhead = head; 7166 } else { 7167 ASSERT(nqp->q_sqtail != NULL); 7168 nqp->q_sqtail->b_next = head; 7169 } 7170 nqp->q_sqtail = tail; 7171 /* 7172 * When messages are moved from high priority queue to 7173 * another queue, the destination queue priority is 7174 * upgraded. 7175 */ 7176 7177 if (priority > nqp->q_spri) 7178 nqp->q_spri = priority; 7179 7180 SQPUT_Q(nsq, nqp); 7181 7182 nqp->q_syncqmsgs += moved; 7183 ASSERT(nqp->q_syncqmsgs != 0); 7184 } 7185 } 7186 7187 /* 7188 * Before we leave, we need to make sure there are no 7189 * events listed for this queue. All events for this queue 7190 * will just be freed. 7191 */ 7192 if (sq->sq_evhead != NULL) { 7193 ASSERT(sq->sq_flags & SQ_EVENTS); 7194 prev = NULL; 7195 for (bp = sq->sq_evhead; bp != NULL; bp = next) { 7196 next = bp->b_next; 7197 if (bp->b_queue == qp) { 7198 /* Delete this message */ 7199 if (prev != NULL) { 7200 prev->b_next = next; 7201 /* 7202 * Update sq_evtail if the last element 7203 * is removed. 7204 */ 7205 if (bp == sq->sq_evtail) { 7206 ASSERT(next == NULL); 7207 sq->sq_evtail = prev; 7208 } 7209 } else 7210 sq->sq_evhead = next; 7211 if (sq->sq_evhead == NULL) 7212 sq->sq_flags &= ~SQ_EVENTS; 7213 bp->b_prev = bp->b_next = NULL; 7214 freemsg(bp); 7215 } else { 7216 prev = bp; 7217 } 7218 } 7219 } 7220 7221 flags = sq->sq_flags; 7222 7223 /* Wake up any waiter before leaving. */ 7224 if (flags & SQ_WANTWAKEUP) { 7225 flags &= ~SQ_WANTWAKEUP; 7226 cv_broadcast(&sq->sq_wait); 7227 } 7228 sq->sq_flags = flags; 7229 7230 return (moved); 7231 } 7232 7233 /* 7234 * Try and upgrade to exclusive access at the inner perimeter. If this can 7235 * not be done without blocking then request will be queued on the syncq 7236 * and drain_syncq will run it later. 7237 * 7238 * This routine can only be called from put or service procedures plus 7239 * asynchronous callback routines that have properly entered to 7240 * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim 7241 * on the syncq associated with q. 7242 */ 7243 void 7244 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)()) 7245 { 7246 syncq_t *sq = q->q_syncq; 7247 uint16_t count; 7248 7249 mutex_enter(SQLOCK(sq)); 7250 count = sq->sq_count; 7251 SQ_PUTLOCKS_ENTER(sq); 7252 SUM_SQ_PUTCOUNTS(sq, count); 7253 ASSERT(count >= 1); 7254 ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC)); 7255 7256 if (count == 1) { 7257 /* 7258 * Can upgrade. This case also handles nested qwriter calls 7259 * (when the qwriter callback function calls qwriter). In that 7260 * case SQ_EXCL is already set. 7261 */ 7262 sq->sq_flags |= SQ_EXCL; 7263 SQ_PUTLOCKS_EXIT(sq); 7264 mutex_exit(SQLOCK(sq)); 7265 (*func)(q, mp); 7266 /* 7267 * Assumes that leavesq, putnext, and drain_syncq will reset 7268 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on 7269 * until putnext, leavesq, or drain_syncq drops it. 7270 * That way we handle nested qwriter(INNER) without dropping 7271 * SQ_EXCL until the outermost qwriter callback routine is 7272 * done. 7273 */ 7274 return; 7275 } 7276 SQ_PUTLOCKS_EXIT(sq); 7277 sqfill_events(sq, q, mp, func); 7278 } 7279 7280 /* 7281 * Synchronous callback support functions 7282 */ 7283 7284 /* 7285 * Allocate a callback parameter structure. 7286 * Assumes that caller initializes the flags and the id. 7287 * Acquires SQLOCK(sq) if non-NULL is returned. 7288 */ 7289 callbparams_t * 7290 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags) 7291 { 7292 callbparams_t *cbp; 7293 size_t size = sizeof (callbparams_t); 7294 7295 cbp = kmem_alloc(size, kmflags & ~KM_PANIC); 7296 7297 /* 7298 * Only try tryhard allocation if the caller is ready to panic. 7299 * Otherwise just fail. 7300 */ 7301 if (cbp == NULL) { 7302 if (kmflags & KM_PANIC) 7303 cbp = kmem_alloc_tryhard(sizeof (callbparams_t), 7304 &size, kmflags); 7305 else 7306 return (NULL); 7307 } 7308 7309 ASSERT(size >= sizeof (callbparams_t)); 7310 cbp->cbp_size = size; 7311 cbp->cbp_sq = sq; 7312 cbp->cbp_func = func; 7313 cbp->cbp_arg = arg; 7314 mutex_enter(SQLOCK(sq)); 7315 cbp->cbp_next = sq->sq_callbpend; 7316 sq->sq_callbpend = cbp; 7317 return (cbp); 7318 } 7319 7320 void 7321 callbparams_free(syncq_t *sq, callbparams_t *cbp) 7322 { 7323 callbparams_t **pp, *p; 7324 7325 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7326 7327 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) { 7328 if (p == cbp) { 7329 *pp = p->cbp_next; 7330 kmem_free(p, p->cbp_size); 7331 return; 7332 } 7333 } 7334 (void) (STRLOG(0, 0, 0, SL_CONSOLE, 7335 "callbparams_free: not found\n")); 7336 } 7337 7338 void 7339 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag) 7340 { 7341 callbparams_t **pp, *p; 7342 7343 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7344 7345 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) { 7346 if (p->cbp_id == id && p->cbp_flags == flag) { 7347 *pp = p->cbp_next; 7348 kmem_free(p, p->cbp_size); 7349 return; 7350 } 7351 } 7352 (void) (STRLOG(0, 0, 0, SL_CONSOLE, 7353 "callbparams_free_id: not found\n")); 7354 } 7355 7356 /* 7357 * Callback wrapper function used by once-only callbacks that can be 7358 * cancelled (qtimeout and qbufcall) 7359 * Contains inline version of entersq(sq, SQ_CALLBACK) that can be 7360 * cancelled by the qun* functions. 7361 */ 7362 void 7363 qcallbwrapper(void *arg) 7364 { 7365 callbparams_t *cbp = arg; 7366 syncq_t *sq; 7367 uint16_t count = 0; 7368 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL; 7369 uint16_t type; 7370 7371 sq = cbp->cbp_sq; 7372 mutex_enter(SQLOCK(sq)); 7373 type = sq->sq_type; 7374 if (!(type & SQ_CICB)) { 7375 count = sq->sq_count; 7376 SQ_PUTLOCKS_ENTER(sq); 7377 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 7378 SUM_SQ_PUTCOUNTS(sq, count); 7379 sq->sq_needexcl++; 7380 ASSERT(sq->sq_needexcl != 0); /* wraparound */ 7381 waitflags |= SQ_MESSAGES; 7382 } 7383 /* Can not handle exlusive entry at outer perimeter */ 7384 ASSERT(type & SQ_COCB); 7385 7386 while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) { 7387 if ((sq->sq_callbflags & cbp->cbp_flags) && 7388 (sq->sq_cancelid == cbp->cbp_id)) { 7389 /* timeout has been cancelled */ 7390 sq->sq_callbflags |= SQ_CALLB_BYPASSED; 7391 callbparams_free(sq, cbp); 7392 if (!(type & SQ_CICB)) { 7393 ASSERT(sq->sq_needexcl > 0); 7394 sq->sq_needexcl--; 7395 if (sq->sq_needexcl == 0) { 7396 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 7397 } 7398 SQ_PUTLOCKS_EXIT(sq); 7399 } 7400 mutex_exit(SQLOCK(sq)); 7401 return; 7402 } 7403 sq->sq_flags |= SQ_WANTWAKEUP; 7404 if (!(type & SQ_CICB)) { 7405 SQ_PUTLOCKS_EXIT(sq); 7406 } 7407 cv_wait(&sq->sq_wait, SQLOCK(sq)); 7408 if (!(type & SQ_CICB)) { 7409 count = sq->sq_count; 7410 SQ_PUTLOCKS_ENTER(sq); 7411 SUM_SQ_PUTCOUNTS(sq, count); 7412 } 7413 } 7414 7415 sq->sq_count++; 7416 ASSERT(sq->sq_count != 0); /* Wraparound */ 7417 if (!(type & SQ_CICB)) { 7418 ASSERT(count == 0); 7419 sq->sq_flags |= SQ_EXCL; 7420 ASSERT(sq->sq_needexcl > 0); 7421 sq->sq_needexcl--; 7422 if (sq->sq_needexcl == 0) { 7423 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 7424 } 7425 SQ_PUTLOCKS_EXIT(sq); 7426 } 7427 7428 mutex_exit(SQLOCK(sq)); 7429 7430 cbp->cbp_func(cbp->cbp_arg); 7431 7432 /* 7433 * We drop the lock only for leavesq to re-acquire it. 7434 * Possible optimization is inline of leavesq. 7435 */ 7436 mutex_enter(SQLOCK(sq)); 7437 callbparams_free(sq, cbp); 7438 mutex_exit(SQLOCK(sq)); 7439 leavesq(sq, SQ_CALLBACK); 7440 } 7441 7442 /* 7443 * no need to grab sq_putlocks here. See comment in strsubr.h that 7444 * explains when sq_putlocks are used. 7445 * 7446 * sq_count (or one of the sq_putcounts) has already been 7447 * decremented by the caller, and if SQ_QUEUED, we need to call 7448 * drain_syncq (the global syncq drain). 7449 * If putnext_tail is called with the SQ_EXCL bit set, we are in 7450 * one of two states, non-CIPUT perimiter, and we need to clear 7451 * it, or we went exclusive in the put procedure. In any case, 7452 * we want to clear the bit now, and it is probably easier to do 7453 * this at the beginning of this function (remember, we hold 7454 * the SQLOCK). Lastly, if there are other messages queued 7455 * on the syncq (and not for our destination), enable the syncq 7456 * for background work. 7457 */ 7458 7459 /* ARGSUSED */ 7460 void 7461 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags) 7462 { 7463 uint16_t flags = sq->sq_flags; 7464 7465 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7466 ASSERT(MUTEX_NOT_HELD(QLOCK(qp))); 7467 7468 /* Clear SQ_EXCL if set in passflags */ 7469 if (passflags & SQ_EXCL) { 7470 flags &= ~SQ_EXCL; 7471 } 7472 if (flags & SQ_WANTWAKEUP) { 7473 flags &= ~SQ_WANTWAKEUP; 7474 cv_broadcast(&sq->sq_wait); 7475 } 7476 if (flags & SQ_WANTEXWAKEUP) { 7477 flags &= ~SQ_WANTEXWAKEUP; 7478 cv_broadcast(&sq->sq_exitwait); 7479 } 7480 sq->sq_flags = flags; 7481 7482 /* 7483 * We have cleared SQ_EXCL if we were asked to, and started 7484 * the wakeup process for waiters. If there are no writers 7485 * then we need to drain the syncq if we were told to, or 7486 * enable the background thread to do it. 7487 */ 7488 if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) { 7489 if ((passflags & SQ_QUEUED) || 7490 (sq->sq_svcflags & SQ_DISABLED)) { 7491 /* drain_syncq will take care of events in the list */ 7492 drain_syncq(sq); 7493 return; 7494 } else if (flags & SQ_QUEUED) { 7495 sqenable(sq); 7496 } 7497 } 7498 /* Drop the SQLOCK on exit */ 7499 mutex_exit(SQLOCK(sq)); 7500 TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END, 7501 "putnext_end:(%p, %p, %p) done", NULL, qp, sq); 7502 } 7503 7504 void 7505 set_qend(queue_t *q) 7506 { 7507 mutex_enter(QLOCK(q)); 7508 if (!O_SAMESTR(q)) 7509 q->q_flag |= QEND; 7510 else 7511 q->q_flag &= ~QEND; 7512 mutex_exit(QLOCK(q)); 7513 q = _OTHERQ(q); 7514 mutex_enter(QLOCK(q)); 7515 if (!O_SAMESTR(q)) 7516 q->q_flag |= QEND; 7517 else 7518 q->q_flag &= ~QEND; 7519 mutex_exit(QLOCK(q)); 7520 } 7521 7522 /* 7523 * Set QFULL in next service procedure queue (that cares) if not already 7524 * set and if there are already more messages on the syncq than 7525 * sq_max_size. If sq_max_size is 0, no flow control will be asserted on 7526 * any syncq. 7527 * 7528 * The fq here is the next queue with a service procedure. This is where 7529 * we would fail canputnext, so this is where we need to set QFULL. 7530 * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag. 7531 * 7532 * We already have QLOCK at this point. To avoid cross-locks with 7533 * freezestr() which grabs all QLOCKs and with strlock() which grabs both 7534 * SQLOCK and sd_reflock, we need to drop respective locks first. 7535 */ 7536 void 7537 set_qfull(queue_t *q) 7538 { 7539 queue_t *fq = NULL; 7540 7541 ASSERT(MUTEX_HELD(QLOCK(q))); 7542 if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) && 7543 (q->q_syncqmsgs > sq_max_size)) { 7544 if ((fq = q->q_nfsrv) == q) { 7545 fq->q_flag |= QFULL; 7546 } else { 7547 mutex_exit(QLOCK(q)); 7548 mutex_enter(QLOCK(fq)); 7549 fq->q_flag |= QFULL; 7550 mutex_exit(QLOCK(fq)); 7551 mutex_enter(QLOCK(q)); 7552 } 7553 } 7554 } 7555 7556 void 7557 clr_qfull(queue_t *q) 7558 { 7559 queue_t *oq = q; 7560 7561 q = q->q_nfsrv; 7562 /* Fast check if there is any work to do before getting the lock. */ 7563 if ((q->q_flag & (QFULL|QWANTW)) == 0) { 7564 return; 7565 } 7566 7567 /* 7568 * Do not reset QFULL (and backenable) if the q_count is the reason 7569 * for QFULL being set. 7570 */ 7571 mutex_enter(QLOCK(q)); 7572 /* 7573 * If queue is empty i.e q_mblkcnt is zero, queue can not be full. 7574 * Hence clear the QFULL. 7575 * If both q_count and q_mblkcnt are less than the hiwat mark, 7576 * clear the QFULL. 7577 */ 7578 if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) && 7579 (q->q_mblkcnt < q->q_hiwat))) { 7580 q->q_flag &= ~QFULL; 7581 /* 7582 * A little more confusing, how about this way: 7583 * if someone wants to write, 7584 * AND 7585 * both counts are less than the lowat mark 7586 * OR 7587 * the lowat mark is zero 7588 * THEN 7589 * backenable 7590 */ 7591 if ((q->q_flag & QWANTW) && 7592 (((q->q_count < q->q_lowat) && 7593 (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) { 7594 q->q_flag &= ~QWANTW; 7595 mutex_exit(QLOCK(q)); 7596 backenable(oq, 0); 7597 } else 7598 mutex_exit(QLOCK(q)); 7599 } else 7600 mutex_exit(QLOCK(q)); 7601 } 7602 7603 /* 7604 * Set the forward service procedure pointer. 7605 * 7606 * Called at insert-time to cache a queue's next forward service procedure in 7607 * q_nfsrv; used by canput() and canputnext(). If the queue to be inserted 7608 * has a service procedure then q_nfsrv points to itself. If the queue to be 7609 * inserted does not have a service procedure, then q_nfsrv points to the next 7610 * queue forward that has a service procedure. If the queue is at the logical 7611 * end of the stream (driver for write side, stream head for the read side) 7612 * and does not have a service procedure, then q_nfsrv also points to itself. 7613 */ 7614 void 7615 set_nfsrv_ptr( 7616 queue_t *rnew, /* read queue pointer to new module */ 7617 queue_t *wnew, /* write queue pointer to new module */ 7618 queue_t *prev_rq, /* read queue pointer to the module above */ 7619 queue_t *prev_wq) /* write queue pointer to the module above */ 7620 { 7621 queue_t *qp; 7622 7623 if (prev_wq->q_next == NULL) { 7624 /* 7625 * Insert the driver, initialize the driver and stream head. 7626 * In this case, prev_rq/prev_wq should be the stream head. 7627 * _I_INSERT does not allow inserting a driver. Make sure 7628 * that it is not an insertion. 7629 */ 7630 ASSERT(!(rnew->q_flag & _QINSERTING)); 7631 wnew->q_nfsrv = wnew; 7632 if (rnew->q_qinfo->qi_srvp) 7633 rnew->q_nfsrv = rnew; 7634 else 7635 rnew->q_nfsrv = prev_rq; 7636 prev_rq->q_nfsrv = prev_rq; 7637 prev_wq->q_nfsrv = prev_wq; 7638 } else { 7639 /* 7640 * set up read side q_nfsrv pointer. This MUST be done 7641 * before setting the write side, because the setting of 7642 * the write side for a fifo may depend on it. 7643 * 7644 * Suppose we have a fifo that only has pipemod pushed. 7645 * pipemod has no read or write service procedures, so 7646 * nfsrv for both pipemod queues points to prev_rq (the 7647 * stream read head). Now push bufmod (which has only a 7648 * read service procedure). Doing the write side first, 7649 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which 7650 * is WRONG; the next queue forward from wnew with a 7651 * service procedure will be rnew, not the stream read head. 7652 * Since the downstream queue (which in the case of a fifo 7653 * is the read queue rnew) can affect upstream queues, it 7654 * needs to be done first. Setting up the read side first 7655 * sets nfsrv for both pipemod queues to rnew and then 7656 * when the write side is set up, wnew-q_nfsrv will also 7657 * point to rnew. 7658 */ 7659 if (rnew->q_qinfo->qi_srvp) { 7660 /* 7661 * use _OTHERQ() because, if this is a pipe, next 7662 * module may have been pushed from other end and 7663 * q_next could be a read queue. 7664 */ 7665 qp = _OTHERQ(prev_wq->q_next); 7666 while (qp && qp->q_nfsrv != qp) { 7667 qp->q_nfsrv = rnew; 7668 qp = backq(qp); 7669 } 7670 rnew->q_nfsrv = rnew; 7671 } else 7672 rnew->q_nfsrv = prev_rq->q_nfsrv; 7673 7674 /* set up write side q_nfsrv pointer */ 7675 if (wnew->q_qinfo->qi_srvp) { 7676 wnew->q_nfsrv = wnew; 7677 7678 /* 7679 * For insertion, need to update nfsrv of the modules 7680 * above which do not have a service routine. 7681 */ 7682 if (rnew->q_flag & _QINSERTING) { 7683 for (qp = prev_wq; 7684 qp != NULL && qp->q_nfsrv != qp; 7685 qp = backq(qp)) { 7686 qp->q_nfsrv = wnew->q_nfsrv; 7687 } 7688 } 7689 } else { 7690 if (prev_wq->q_next == prev_rq) 7691 /* 7692 * Since prev_wq/prev_rq are the middle of a 7693 * fifo, wnew/rnew will also be the middle of 7694 * a fifo and wnew's nfsrv is same as rnew's. 7695 */ 7696 wnew->q_nfsrv = rnew->q_nfsrv; 7697 else 7698 wnew->q_nfsrv = prev_wq->q_next->q_nfsrv; 7699 } 7700 } 7701 } 7702 7703 /* 7704 * Reset the forward service procedure pointer; called at remove-time. 7705 */ 7706 void 7707 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp) 7708 { 7709 queue_t *tmp_qp; 7710 7711 /* Reset the write side q_nfsrv pointer for _I_REMOVE */ 7712 if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) { 7713 for (tmp_qp = backq(wqp); 7714 tmp_qp != NULL && tmp_qp->q_nfsrv == wqp; 7715 tmp_qp = backq(tmp_qp)) { 7716 tmp_qp->q_nfsrv = wqp->q_nfsrv; 7717 } 7718 } 7719 7720 /* reset the read side q_nfsrv pointer */ 7721 if (rqp->q_qinfo->qi_srvp) { 7722 if (wqp->q_next) { /* non-driver case */ 7723 tmp_qp = _OTHERQ(wqp->q_next); 7724 while (tmp_qp && tmp_qp->q_nfsrv == rqp) { 7725 /* Note that rqp->q_next cannot be NULL */ 7726 ASSERT(rqp->q_next != NULL); 7727 tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv; 7728 tmp_qp = backq(tmp_qp); 7729 } 7730 } 7731 } 7732 } 7733 7734 /* 7735 * This routine should be called after all stream geometry changes to update 7736 * the stream head cached struio() rd/wr queue pointers. Note must be called 7737 * with the streamlock()ed. 7738 * 7739 * Note: only enables Synchronous STREAMS for a side of a Stream which has 7740 * an explicit synchronous barrier module queue. That is, a queue that 7741 * has specified a struio() type. 7742 */ 7743 static void 7744 strsetuio(stdata_t *stp) 7745 { 7746 queue_t *wrq; 7747 7748 if (stp->sd_flag & STPLEX) { 7749 /* 7750 * Not stremahead, but a mux, so no Synchronous STREAMS. 7751 */ 7752 stp->sd_struiowrq = NULL; 7753 stp->sd_struiordq = NULL; 7754 return; 7755 } 7756 /* 7757 * Scan the write queue(s) while synchronous 7758 * until we find a qinfo uio type specified. 7759 */ 7760 wrq = stp->sd_wrq->q_next; 7761 while (wrq) { 7762 if (wrq->q_struiot == STRUIOT_NONE) { 7763 wrq = 0; 7764 break; 7765 } 7766 if (wrq->q_struiot != STRUIOT_DONTCARE) 7767 break; 7768 if (! _SAMESTR(wrq)) { 7769 wrq = 0; 7770 break; 7771 } 7772 wrq = wrq->q_next; 7773 } 7774 stp->sd_struiowrq = wrq; 7775 /* 7776 * Scan the read queue(s) while synchronous 7777 * until we find a qinfo uio type specified. 7778 */ 7779 wrq = stp->sd_wrq->q_next; 7780 while (wrq) { 7781 if (_RD(wrq)->q_struiot == STRUIOT_NONE) { 7782 wrq = 0; 7783 break; 7784 } 7785 if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE) 7786 break; 7787 if (! _SAMESTR(wrq)) { 7788 wrq = 0; 7789 break; 7790 } 7791 wrq = wrq->q_next; 7792 } 7793 stp->sd_struiordq = wrq ? _RD(wrq) : 0; 7794 } 7795 7796 /* 7797 * pass_wput, unblocks the passthru queues, so that 7798 * messages can arrive at muxs lower read queue, before 7799 * I_LINK/I_UNLINK is acked/nacked. 7800 */ 7801 static void 7802 pass_wput(queue_t *q, mblk_t *mp) 7803 { 7804 syncq_t *sq; 7805 7806 sq = _RD(q)->q_syncq; 7807 if (sq->sq_flags & SQ_BLOCKED) 7808 unblocksq(sq, SQ_BLOCKED, 0); 7809 putnext(q, mp); 7810 } 7811 7812 /* 7813 * Set up queues for the link/unlink. 7814 * Create a new queue and block it and then insert it 7815 * below the stream head on the lower stream. 7816 * This prevents any messages from arriving during the setq 7817 * as well as while the mux is processing the LINK/I_UNLINK. 7818 * The blocked passq is unblocked once the LINK/I_UNLINK has 7819 * been acked or nacked or if a message is generated and sent 7820 * down muxs write put procedure. 7821 * see pass_wput(). 7822 * 7823 * After the new queue is inserted, all messages coming from below are 7824 * blocked. The call to strlock will ensure that all activity in the stream head 7825 * read queue syncq is stopped (sq_count drops to zero). 7826 */ 7827 static queue_t * 7828 link_addpassthru(stdata_t *stpdown) 7829 { 7830 queue_t *passq; 7831 sqlist_t sqlist; 7832 7833 passq = allocq(); 7834 STREAM(passq) = STREAM(_WR(passq)) = stpdown; 7835 /* setq might sleep in allocator - avoid holding locks. */ 7836 setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ, 7837 SQ_CI|SQ_CO, B_FALSE); 7838 claimq(passq); 7839 blocksq(passq->q_syncq, SQ_BLOCKED, 1); 7840 insertq(STREAM(passq), passq); 7841 7842 /* 7843 * Use strlock() to wait for the stream head sq_count to drop to zero 7844 * since we are going to change q_ptr in the stream head. Note that 7845 * insertq() doesn't wait for any syncq counts to drop to zero. 7846 */ 7847 sqlist.sqlist_head = NULL; 7848 sqlist.sqlist_index = 0; 7849 sqlist.sqlist_size = sizeof (sqlist_t); 7850 sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq); 7851 strlock(stpdown, &sqlist); 7852 strunlock(stpdown, &sqlist); 7853 7854 releaseq(passq); 7855 return (passq); 7856 } 7857 7858 /* 7859 * Let messages flow up into the mux by removing 7860 * the passq. 7861 */ 7862 static void 7863 link_rempassthru(queue_t *passq) 7864 { 7865 claimq(passq); 7866 removeq(passq); 7867 releaseq(passq); 7868 freeq(passq); 7869 } 7870 7871 /* 7872 * Wait for the condition variable pointed to by `cvp' to be signaled, 7873 * or for `tim' milliseconds to elapse, whichever comes first. If `tim' 7874 * is negative, then there is no time limit. If `nosigs' is non-zero, 7875 * then the wait will be non-interruptible. 7876 * 7877 * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout. 7878 */ 7879 clock_t 7880 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs) 7881 { 7882 clock_t ret, now, tick; 7883 7884 if (tim < 0) { 7885 if (nosigs) { 7886 cv_wait(cvp, mp); 7887 ret = 1; 7888 } else { 7889 ret = cv_wait_sig(cvp, mp); 7890 } 7891 } else if (tim > 0) { 7892 /* 7893 * convert milliseconds to clock ticks 7894 */ 7895 tick = MSEC_TO_TICK_ROUNDUP(tim); 7896 time_to_wait(&now, tick); 7897 if (nosigs) { 7898 ret = cv_timedwait(cvp, mp, now); 7899 } else { 7900 ret = cv_timedwait_sig(cvp, mp, now); 7901 } 7902 } else { 7903 ret = -1; 7904 } 7905 return (ret); 7906 } 7907 7908 /* 7909 * Wait until the stream head can determine if it is at the mark but 7910 * don't wait forever to prevent a race condition between the "mark" state 7911 * in the stream head and any mark state in the caller/user of this routine. 7912 * 7913 * This is used by sockets and for a socket it would be incorrect 7914 * to return a failure for SIOCATMARK when there is no data in the receive 7915 * queue and the marked urgent data is traveling up the stream. 7916 * 7917 * This routine waits until the mark is known by waiting for one of these 7918 * three events: 7919 * The stream head read queue becoming non-empty (including an EOF) 7920 * The STRATMARK flag being set. (Due to a MSGMARKNEXT message.) 7921 * The STRNOTATMARK flag being set (which indicates that the transport 7922 * has sent a MSGNOTMARKNEXT message to indicate that it is not at 7923 * the mark). 7924 * 7925 * The routine returns 1 if the stream is at the mark; 0 if it can 7926 * be determined that the stream is not at the mark. 7927 * If the wait times out and it can't determine 7928 * whether or not the stream might be at the mark the routine will return -1. 7929 * 7930 * Note: This routine should only be used when a mark is pending i.e., 7931 * in the socket case the SIGURG has been posted. 7932 * Note2: This can not wakeup just because synchronous streams indicate 7933 * that data is available since it is not possible to use the synchronous 7934 * streams interfaces to determine the b_flag value for the data queued below 7935 * the stream head. 7936 */ 7937 int 7938 strwaitmark(vnode_t *vp) 7939 { 7940 struct stdata *stp = vp->v_stream; 7941 queue_t *rq = _RD(stp->sd_wrq); 7942 int mark; 7943 7944 mutex_enter(&stp->sd_lock); 7945 while (rq->q_first == NULL && 7946 !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) { 7947 stp->sd_flag |= RSLEEP; 7948 7949 /* Wait for 100 milliseconds for any state change. */ 7950 if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) { 7951 mutex_exit(&stp->sd_lock); 7952 return (-1); 7953 } 7954 } 7955 if (stp->sd_flag & STRATMARK) 7956 mark = 1; 7957 else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK)) 7958 mark = 1; 7959 else 7960 mark = 0; 7961 7962 mutex_exit(&stp->sd_lock); 7963 return (mark); 7964 } 7965 7966 /* 7967 * Set a read side error. If persist is set change the socket error 7968 * to persistent. If errfunc is set install the function as the exported 7969 * error handler. 7970 */ 7971 void 7972 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc) 7973 { 7974 struct stdata *stp = vp->v_stream; 7975 7976 mutex_enter(&stp->sd_lock); 7977 stp->sd_rerror = error; 7978 if (error == 0 && errfunc == NULL) 7979 stp->sd_flag &= ~STRDERR; 7980 else 7981 stp->sd_flag |= STRDERR; 7982 if (persist) { 7983 stp->sd_flag &= ~STRDERRNONPERSIST; 7984 } else { 7985 stp->sd_flag |= STRDERRNONPERSIST; 7986 } 7987 stp->sd_rderrfunc = errfunc; 7988 if (error != 0 || errfunc != NULL) { 7989 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */ 7990 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */ 7991 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 7992 7993 mutex_exit(&stp->sd_lock); 7994 pollwakeup(&stp->sd_pollist, POLLERR); 7995 mutex_enter(&stp->sd_lock); 7996 7997 if (stp->sd_sigflags & S_ERROR) 7998 strsendsig(stp->sd_siglist, S_ERROR, 0, error); 7999 } 8000 mutex_exit(&stp->sd_lock); 8001 } 8002 8003 /* 8004 * Set a write side error. If persist is set change the socket error 8005 * to persistent. 8006 */ 8007 void 8008 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc) 8009 { 8010 struct stdata *stp = vp->v_stream; 8011 8012 mutex_enter(&stp->sd_lock); 8013 stp->sd_werror = error; 8014 if (error == 0 && errfunc == NULL) 8015 stp->sd_flag &= ~STWRERR; 8016 else 8017 stp->sd_flag |= STWRERR; 8018 if (persist) { 8019 stp->sd_flag &= ~STWRERRNONPERSIST; 8020 } else { 8021 stp->sd_flag |= STWRERRNONPERSIST; 8022 } 8023 stp->sd_wrerrfunc = errfunc; 8024 if (error != 0 || errfunc != NULL) { 8025 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */ 8026 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */ 8027 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 8028 8029 mutex_exit(&stp->sd_lock); 8030 pollwakeup(&stp->sd_pollist, POLLERR); 8031 mutex_enter(&stp->sd_lock); 8032 8033 if (stp->sd_sigflags & S_ERROR) 8034 strsendsig(stp->sd_siglist, S_ERROR, 0, error); 8035 } 8036 mutex_exit(&stp->sd_lock); 8037 } 8038 8039 /* 8040 * Make the stream return 0 (EOF) when all data has been read. 8041 * No effect on write side. 8042 */ 8043 void 8044 strseteof(vnode_t *vp, int eof) 8045 { 8046 struct stdata *stp = vp->v_stream; 8047 8048 mutex_enter(&stp->sd_lock); 8049 if (!eof) { 8050 stp->sd_flag &= ~STREOF; 8051 mutex_exit(&stp->sd_lock); 8052 return; 8053 } 8054 stp->sd_flag |= STREOF; 8055 if (stp->sd_flag & RSLEEP) { 8056 stp->sd_flag &= ~RSLEEP; 8057 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); 8058 } 8059 8060 mutex_exit(&stp->sd_lock); 8061 pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM); 8062 mutex_enter(&stp->sd_lock); 8063 8064 if (stp->sd_sigflags & (S_INPUT|S_RDNORM)) 8065 strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0); 8066 mutex_exit(&stp->sd_lock); 8067 } 8068 8069 void 8070 strflushrq(vnode_t *vp, int flag) 8071 { 8072 struct stdata *stp = vp->v_stream; 8073 8074 mutex_enter(&stp->sd_lock); 8075 flushq(_RD(stp->sd_wrq), flag); 8076 mutex_exit(&stp->sd_lock); 8077 } 8078 8079 void 8080 strsetrputhooks(vnode_t *vp, uint_t flags, 8081 msgfunc_t protofunc, msgfunc_t miscfunc) 8082 { 8083 struct stdata *stp = vp->v_stream; 8084 8085 mutex_enter(&stp->sd_lock); 8086 8087 if (protofunc == NULL) 8088 stp->sd_rprotofunc = strrput_proto; 8089 else 8090 stp->sd_rprotofunc = protofunc; 8091 8092 if (miscfunc == NULL) 8093 stp->sd_rmiscfunc = strrput_misc; 8094 else 8095 stp->sd_rmiscfunc = miscfunc; 8096 8097 if (flags & SH_CONSOL_DATA) 8098 stp->sd_rput_opt |= SR_CONSOL_DATA; 8099 else 8100 stp->sd_rput_opt &= ~SR_CONSOL_DATA; 8101 8102 if (flags & SH_SIGALLDATA) 8103 stp->sd_rput_opt |= SR_SIGALLDATA; 8104 else 8105 stp->sd_rput_opt &= ~SR_SIGALLDATA; 8106 8107 if (flags & SH_IGN_ZEROLEN) 8108 stp->sd_rput_opt |= SR_IGN_ZEROLEN; 8109 else 8110 stp->sd_rput_opt &= ~SR_IGN_ZEROLEN; 8111 8112 mutex_exit(&stp->sd_lock); 8113 } 8114 8115 void 8116 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime) 8117 { 8118 struct stdata *stp = vp->v_stream; 8119 8120 mutex_enter(&stp->sd_lock); 8121 stp->sd_closetime = closetime; 8122 8123 if (flags & SH_SIGPIPE) 8124 stp->sd_wput_opt |= SW_SIGPIPE; 8125 else 8126 stp->sd_wput_opt &= ~SW_SIGPIPE; 8127 if (flags & SH_RECHECK_ERR) 8128 stp->sd_wput_opt |= SW_RECHECK_ERR; 8129 else 8130 stp->sd_wput_opt &= ~SW_RECHECK_ERR; 8131 8132 mutex_exit(&stp->sd_lock); 8133 } 8134 8135 void 8136 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc) 8137 { 8138 struct stdata *stp = vp->v_stream; 8139 8140 mutex_enter(&stp->sd_lock); 8141 8142 stp->sd_rputdatafunc = rdatafunc; 8143 stp->sd_wputdatafunc = wdatafunc; 8144 8145 mutex_exit(&stp->sd_lock); 8146 } 8147 8148 /* Used within framework when the queue is already locked */ 8149 void 8150 qenable_locked(queue_t *q) 8151 { 8152 stdata_t *stp = STREAM(q); 8153 8154 ASSERT(MUTEX_HELD(QLOCK(q))); 8155 8156 if (!q->q_qinfo->qi_srvp) 8157 return; 8158 8159 /* 8160 * Do not place on run queue if already enabled or closing. 8161 */ 8162 if (q->q_flag & (QWCLOSE|QENAB)) 8163 return; 8164 8165 /* 8166 * mark queue enabled and place on run list if it is not already being 8167 * serviced. If it is serviced, the runservice() function will detect 8168 * that QENAB is set and call service procedure before clearing 8169 * QINSERVICE flag. 8170 */ 8171 q->q_flag |= QENAB; 8172 if (q->q_flag & QINSERVICE) 8173 return; 8174 8175 /* Record the time of qenable */ 8176 q->q_qtstamp = lbolt; 8177 8178 /* 8179 * Put the queue in the stp list and schedule it for background 8180 * processing if it is not already scheduled or if stream head does not 8181 * intent to process it in the foreground later by setting 8182 * STRS_WILLSERVICE flag. 8183 */ 8184 mutex_enter(&stp->sd_qlock); 8185 /* 8186 * If there are already something on the list, stp flags should show 8187 * intention to drain it. 8188 */ 8189 IMPLY(STREAM_NEEDSERVICE(stp), 8190 (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))); 8191 8192 ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link); 8193 stp->sd_nqueues++; 8194 8195 /* 8196 * If no one will drain this stream we are the first producer and 8197 * need to schedule it for background thread. 8198 */ 8199 if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) { 8200 /* 8201 * No one will service this stream later, so we have to 8202 * schedule it now. 8203 */ 8204 STRSTAT(stenables); 8205 stp->sd_svcflags |= STRS_SCHEDULED; 8206 stp->sd_servid = (void *)taskq_dispatch(streams_taskq, 8207 (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE); 8208 8209 if (stp->sd_servid == NULL) { 8210 /* 8211 * Task queue failed so fail over to the backup 8212 * servicing thread. 8213 */ 8214 STRSTAT(taskqfails); 8215 /* 8216 * It is safe to clear STRS_SCHEDULED flag because it 8217 * was set by this thread above. 8218 */ 8219 stp->sd_svcflags &= ~STRS_SCHEDULED; 8220 8221 /* 8222 * Failover scheduling is protected by service_queue 8223 * lock. 8224 */ 8225 mutex_enter(&service_queue); 8226 ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q)); 8227 ASSERT(q->q_link == NULL); 8228 /* 8229 * Append the queue to qhead/qtail list. 8230 */ 8231 if (qhead == NULL) 8232 qhead = q; 8233 else 8234 qtail->q_link = q; 8235 qtail = q; 8236 /* 8237 * Clear stp queue list. 8238 */ 8239 stp->sd_qhead = stp->sd_qtail = NULL; 8240 stp->sd_nqueues = 0; 8241 /* 8242 * Wakeup background queue processing thread. 8243 */ 8244 cv_signal(&services_to_run); 8245 mutex_exit(&service_queue); 8246 } 8247 } 8248 mutex_exit(&stp->sd_qlock); 8249 } 8250 8251 static void 8252 queue_service(queue_t *q) 8253 { 8254 /* 8255 * The queue in the list should have 8256 * QENAB flag set and should not have 8257 * QINSERVICE flag set. QINSERVICE is 8258 * set when the queue is dequeued and 8259 * qenable_locked doesn't enqueue a 8260 * queue with QINSERVICE set. 8261 */ 8262 8263 ASSERT(!(q->q_flag & QINSERVICE)); 8264 ASSERT((q->q_flag & QENAB)); 8265 mutex_enter(QLOCK(q)); 8266 q->q_flag &= ~QENAB; 8267 q->q_flag |= QINSERVICE; 8268 mutex_exit(QLOCK(q)); 8269 runservice(q); 8270 } 8271 8272 static void 8273 syncq_service(syncq_t *sq) 8274 { 8275 STRSTAT(syncqservice); 8276 mutex_enter(SQLOCK(sq)); 8277 ASSERT(!(sq->sq_svcflags & SQ_SERVICE)); 8278 ASSERT(sq->sq_servcount != 0); 8279 ASSERT(sq->sq_next == NULL); 8280 8281 /* if we came here from the background thread, clear the flag */ 8282 if (sq->sq_svcflags & SQ_BGTHREAD) 8283 sq->sq_svcflags &= ~SQ_BGTHREAD; 8284 8285 /* let drain_syncq know that it's being called in the background */ 8286 sq->sq_svcflags |= SQ_SERVICE; 8287 drain_syncq(sq); 8288 } 8289 8290 static void 8291 qwriter_outer_service(syncq_t *outer) 8292 { 8293 /* 8294 * Note that SQ_WRITER is used on the outer perimeter 8295 * to signal that a qwriter(OUTER) is either investigating 8296 * running or that it is actually running a function. 8297 */ 8298 outer_enter(outer, SQ_BLOCKED|SQ_WRITER); 8299 8300 /* 8301 * All inner syncq are empty and have SQ_WRITER set 8302 * to block entering the outer perimeter. 8303 * 8304 * We do not need to explicitly call write_now since 8305 * outer_exit does it for us. 8306 */ 8307 outer_exit(outer); 8308 } 8309 8310 static void 8311 mblk_free(mblk_t *mp) 8312 { 8313 dblk_t *dbp = mp->b_datap; 8314 frtn_t *frp = dbp->db_frtnp; 8315 8316 mp->b_next = NULL; 8317 if (dbp->db_fthdr != NULL) 8318 str_ftfree(dbp); 8319 8320 ASSERT(dbp->db_fthdr == NULL); 8321 frp->free_func(frp->free_arg); 8322 ASSERT(dbp->db_mblk == mp); 8323 8324 if (dbp->db_credp != NULL) { 8325 crfree(dbp->db_credp); 8326 dbp->db_credp = NULL; 8327 } 8328 dbp->db_cpid = -1; 8329 dbp->db_struioflag = 0; 8330 dbp->db_struioun.cksum.flags = 0; 8331 8332 kmem_cache_free(dbp->db_cache, dbp); 8333 } 8334 8335 /* 8336 * Background processing of the stream queue list. 8337 */ 8338 static void 8339 stream_service(stdata_t *stp) 8340 { 8341 queue_t *q; 8342 8343 mutex_enter(&stp->sd_qlock); 8344 8345 STR_SERVICE(stp, q); 8346 8347 stp->sd_svcflags &= ~STRS_SCHEDULED; 8348 stp->sd_servid = NULL; 8349 cv_signal(&stp->sd_qcv); 8350 mutex_exit(&stp->sd_qlock); 8351 } 8352 8353 /* 8354 * Foreground processing of the stream queue list. 8355 */ 8356 void 8357 stream_runservice(stdata_t *stp) 8358 { 8359 queue_t *q; 8360 8361 mutex_enter(&stp->sd_qlock); 8362 STRSTAT(rservice); 8363 /* 8364 * We are going to drain this stream queue list, so qenable_locked will 8365 * not schedule it until we finish. 8366 */ 8367 stp->sd_svcflags |= STRS_WILLSERVICE; 8368 8369 STR_SERVICE(stp, q); 8370 8371 stp->sd_svcflags &= ~STRS_WILLSERVICE; 8372 mutex_exit(&stp->sd_qlock); 8373 /* 8374 * Help backup background thread to drain the qhead/qtail list. 8375 */ 8376 while (qhead != NULL) { 8377 STRSTAT(qhelps); 8378 mutex_enter(&service_queue); 8379 DQ(q, qhead, qtail, q_link); 8380 mutex_exit(&service_queue); 8381 if (q != NULL) 8382 queue_service(q); 8383 } 8384 } 8385 8386 void 8387 stream_willservice(stdata_t *stp) 8388 { 8389 mutex_enter(&stp->sd_qlock); 8390 stp->sd_svcflags |= STRS_WILLSERVICE; 8391 mutex_exit(&stp->sd_qlock); 8392 } 8393 8394 /* 8395 * Replace the cred currently in the mblk with a different one. 8396 * Also update db_cpid. 8397 */ 8398 void 8399 mblk_setcred(mblk_t *mp, cred_t *cr, pid_t cpid) 8400 { 8401 dblk_t *dbp = mp->b_datap; 8402 cred_t *ocr = dbp->db_credp; 8403 8404 ASSERT(cr != NULL); 8405 8406 if (cr != ocr) { 8407 crhold(dbp->db_credp = cr); 8408 if (ocr != NULL) 8409 crfree(ocr); 8410 } 8411 /* Don't overwrite with NOPID */ 8412 if (cpid != NOPID) 8413 dbp->db_cpid = cpid; 8414 } 8415 8416 /* 8417 * If the src message has a cred, then replace the cred currently in the mblk 8418 * with it. 8419 * Also update db_cpid. 8420 */ 8421 void 8422 mblk_copycred(mblk_t *mp, const mblk_t *src) 8423 { 8424 dblk_t *dbp = mp->b_datap; 8425 cred_t *cr, *ocr; 8426 pid_t cpid; 8427 8428 cr = msg_getcred(src, &cpid); 8429 if (cr == NULL) 8430 return; 8431 8432 ocr = dbp->db_credp; 8433 if (cr != ocr) { 8434 crhold(dbp->db_credp = cr); 8435 if (ocr != NULL) 8436 crfree(ocr); 8437 } 8438 /* Don't overwrite with NOPID */ 8439 if (cpid != NOPID) 8440 dbp->db_cpid = cpid; 8441 } 8442 8443 int 8444 hcksum_assoc(mblk_t *mp, multidata_t *mmd, pdesc_t *pd, 8445 uint32_t start, uint32_t stuff, uint32_t end, uint32_t value, 8446 uint32_t flags, int km_flags) 8447 { 8448 int rc = 0; 8449 8450 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA); 8451 if (mp->b_datap->db_type == M_DATA) { 8452 /* Associate values for M_DATA type */ 8453 DB_CKSUMSTART(mp) = (intptr_t)start; 8454 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 8455 DB_CKSUMEND(mp) = (intptr_t)end; 8456 DB_CKSUMFLAGS(mp) = flags; 8457 DB_CKSUM16(mp) = (uint16_t)value; 8458 8459 } else { 8460 pattrinfo_t pa_info; 8461 8462 ASSERT(mmd != NULL); 8463 8464 pa_info.type = PATTR_HCKSUM; 8465 pa_info.len = sizeof (pattr_hcksum_t); 8466 8467 if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) { 8468 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 8469 8470 hck->hcksum_start_offset = start; 8471 hck->hcksum_stuff_offset = stuff; 8472 hck->hcksum_end_offset = end; 8473 hck->hcksum_cksum_val.inet_cksum = (uint16_t)value; 8474 hck->hcksum_flags = flags; 8475 } else { 8476 rc = -1; 8477 } 8478 } 8479 return (rc); 8480 } 8481 8482 void 8483 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd, 8484 uint32_t *start, uint32_t *stuff, uint32_t *end, 8485 uint32_t *value, uint32_t *flags) 8486 { 8487 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA); 8488 if (mp->b_datap->db_type == M_DATA) { 8489 if (flags != NULL) { 8490 *flags = DB_CKSUMFLAGS(mp) & (HCK_IPV4_HDRCKSUM | 8491 HCK_PARTIALCKSUM | HCK_FULLCKSUM | 8492 HCK_FULLCKSUM_OK); 8493 if ((*flags & (HCK_PARTIALCKSUM | 8494 HCK_FULLCKSUM)) != 0) { 8495 if (value != NULL) 8496 *value = (uint32_t)DB_CKSUM16(mp); 8497 if ((*flags & HCK_PARTIALCKSUM) != 0) { 8498 if (start != NULL) 8499 *start = 8500 (uint32_t)DB_CKSUMSTART(mp); 8501 if (stuff != NULL) 8502 *stuff = 8503 (uint32_t)DB_CKSUMSTUFF(mp); 8504 if (end != NULL) 8505 *end = 8506 (uint32_t)DB_CKSUMEND(mp); 8507 } 8508 } 8509 } 8510 } else { 8511 pattrinfo_t hck_attr = {PATTR_HCKSUM}; 8512 8513 ASSERT(mmd != NULL); 8514 8515 /* get hardware checksum attribute */ 8516 if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) { 8517 pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf; 8518 8519 ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t)); 8520 if (flags != NULL) 8521 *flags = hck->hcksum_flags; 8522 if (start != NULL) 8523 *start = hck->hcksum_start_offset; 8524 if (stuff != NULL) 8525 *stuff = hck->hcksum_stuff_offset; 8526 if (end != NULL) 8527 *end = hck->hcksum_end_offset; 8528 if (value != NULL) 8529 *value = (uint32_t) 8530 hck->hcksum_cksum_val.inet_cksum; 8531 } 8532 } 8533 } 8534 8535 void 8536 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags) 8537 { 8538 ASSERT(DB_TYPE(mp) == M_DATA); 8539 8540 /* Set the flags */ 8541 DB_LSOFLAGS(mp) |= flags; 8542 DB_LSOMSS(mp) = mss; 8543 } 8544 8545 void 8546 lso_info_get(mblk_t *mp, uint32_t *mss, uint32_t *flags) 8547 { 8548 ASSERT(DB_TYPE(mp) == M_DATA); 8549 8550 if (flags != NULL) { 8551 *flags = DB_CKSUMFLAGS(mp) & HW_LSO; 8552 if ((*flags != 0) && (mss != NULL)) 8553 *mss = (uint32_t)DB_LSOMSS(mp); 8554 } 8555 } 8556 8557 /* 8558 * Checksum buffer *bp for len bytes with psum partial checksum, 8559 * or 0 if none, and return the 16 bit partial checksum. 8560 */ 8561 unsigned 8562 bcksum(uchar_t *bp, int len, unsigned int psum) 8563 { 8564 int odd = len & 1; 8565 extern unsigned int ip_ocsum(); 8566 8567 if (((intptr_t)bp & 1) == 0 && !odd) { 8568 /* 8569 * Bp is 16 bit aligned and len is multiple of 16 bit word. 8570 */ 8571 return (ip_ocsum((ushort_t *)bp, len >> 1, psum)); 8572 } 8573 if (((intptr_t)bp & 1) != 0) { 8574 /* 8575 * Bp isn't 16 bit aligned. 8576 */ 8577 unsigned int tsum; 8578 8579 #ifdef _LITTLE_ENDIAN 8580 psum += *bp; 8581 #else 8582 psum += *bp << 8; 8583 #endif 8584 len--; 8585 bp++; 8586 tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0); 8587 psum += (tsum << 8) & 0xffff | (tsum >> 8); 8588 if (len & 1) { 8589 bp += len - 1; 8590 #ifdef _LITTLE_ENDIAN 8591 psum += *bp << 8; 8592 #else 8593 psum += *bp; 8594 #endif 8595 } 8596 } else { 8597 /* 8598 * Bp is 16 bit aligned. 8599 */ 8600 psum = ip_ocsum((ushort_t *)bp, len >> 1, psum); 8601 if (odd) { 8602 bp += len - 1; 8603 #ifdef _LITTLE_ENDIAN 8604 psum += *bp; 8605 #else 8606 psum += *bp << 8; 8607 #endif 8608 } 8609 } 8610 /* 8611 * Normalize psum to 16 bits before returning the new partial 8612 * checksum. The max psum value before normalization is 0x3FDFE. 8613 */ 8614 return ((psum >> 16) + (psum & 0xFFFF)); 8615 } 8616 8617 boolean_t 8618 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd) 8619 { 8620 boolean_t rc; 8621 8622 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA); 8623 if (DB_TYPE(mp) == M_DATA) { 8624 rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0); 8625 } else { 8626 pattrinfo_t zcopy_attr = {PATTR_ZCOPY}; 8627 8628 ASSERT(mmd != NULL); 8629 rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL); 8630 } 8631 return (rc); 8632 } 8633 8634 void 8635 freemsgchain(mblk_t *mp) 8636 { 8637 mblk_t *next; 8638 8639 while (mp != NULL) { 8640 next = mp->b_next; 8641 mp->b_next = NULL; 8642 8643 freemsg(mp); 8644 mp = next; 8645 } 8646 } 8647 8648 mblk_t * 8649 copymsgchain(mblk_t *mp) 8650 { 8651 mblk_t *nmp = NULL; 8652 mblk_t **nmpp = &nmp; 8653 8654 for (; mp != NULL; mp = mp->b_next) { 8655 if ((*nmpp = copymsg(mp)) == NULL) { 8656 freemsgchain(nmp); 8657 return (NULL); 8658 } 8659 8660 nmpp = &((*nmpp)->b_next); 8661 } 8662 8663 return (nmp); 8664 } 8665 8666 /* NOTE: Do not add code after this point. */ 8667 #undef QLOCK 8668 8669 /* 8670 * replacement for QLOCK macro for those that can't use it. 8671 */ 8672 kmutex_t * 8673 QLOCK(queue_t *q) 8674 { 8675 return (&(q)->q_lock); 8676 } 8677 8678 /* 8679 * Dummy runqueues/queuerun functions functions for backwards compatibility. 8680 */ 8681 #undef runqueues 8682 void 8683 runqueues(void) 8684 { 8685 } 8686 8687 #undef queuerun 8688 void 8689 queuerun(void) 8690 { 8691 } 8692 8693 /* 8694 * Initialize the STR stack instance, which tracks autopush and persistent 8695 * links. 8696 */ 8697 /* ARGSUSED */ 8698 static void * 8699 str_stack_init(netstackid_t stackid, netstack_t *ns) 8700 { 8701 str_stack_t *ss; 8702 int i; 8703 8704 ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP); 8705 ss->ss_netstack = ns; 8706 8707 /* 8708 * set up autopush 8709 */ 8710 sad_initspace(ss); 8711 8712 /* 8713 * set up mux_node structures. 8714 */ 8715 ss->ss_devcnt = devcnt; /* In case it should change before free */ 8716 ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) * 8717 ss->ss_devcnt), KM_SLEEP); 8718 for (i = 0; i < ss->ss_devcnt; i++) 8719 ss->ss_mux_nodes[i].mn_imaj = i; 8720 return (ss); 8721 } 8722 8723 /* 8724 * Note: run at zone shutdown and not destroy so that the PLINKs are 8725 * gone by the time other cleanup happens from the destroy callbacks. 8726 */ 8727 static void 8728 str_stack_shutdown(netstackid_t stackid, void *arg) 8729 { 8730 str_stack_t *ss = (str_stack_t *)arg; 8731 int i; 8732 cred_t *cr; 8733 8734 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 8735 ASSERT(cr != NULL); 8736 8737 /* Undo all the I_PLINKs for this zone */ 8738 for (i = 0; i < ss->ss_devcnt; i++) { 8739 struct mux_edge *ep; 8740 ldi_handle_t lh; 8741 ldi_ident_t li; 8742 int ret; 8743 int rval; 8744 dev_t rdev; 8745 8746 ep = ss->ss_mux_nodes[i].mn_outp; 8747 if (ep == NULL) 8748 continue; 8749 ret = ldi_ident_from_major((major_t)i, &li); 8750 if (ret != 0) { 8751 continue; 8752 } 8753 rdev = ep->me_dev; 8754 ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE, 8755 cr, &lh, li); 8756 if (ret != 0) { 8757 ldi_ident_release(li); 8758 continue; 8759 } 8760 8761 ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL, 8762 cr, &rval); 8763 if (ret) { 8764 (void) ldi_close(lh, FREAD|FWRITE, cr); 8765 ldi_ident_release(li); 8766 continue; 8767 } 8768 (void) ldi_close(lh, FREAD|FWRITE, cr); 8769 8770 /* Close layered handles */ 8771 ldi_ident_release(li); 8772 } 8773 crfree(cr); 8774 8775 sad_freespace(ss); 8776 8777 kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt); 8778 ss->ss_mux_nodes = NULL; 8779 } 8780 8781 /* 8782 * Free the structure; str_stack_shutdown did the other cleanup work. 8783 */ 8784 /* ARGSUSED */ 8785 static void 8786 str_stack_fini(netstackid_t stackid, void *arg) 8787 { 8788 str_stack_t *ss = (str_stack_t *)arg; 8789 8790 kmem_free(ss, sizeof (*ss)); 8791 } 8792