1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/param.h> 35 #include <sys/errno.h> 36 #include <sys/signal.h> 37 #include <sys/proc.h> 38 #include <sys/conf.h> 39 #include <sys/cred.h> 40 #include <sys/user.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/session.h> 44 #include <sys/stream.h> 45 #include <sys/strsubr.h> 46 #include <sys/stropts.h> 47 #include <sys/poll.h> 48 #include <sys/systm.h> 49 #include <sys/cpuvar.h> 50 #include <sys/uio.h> 51 #include <sys/cmn_err.h> 52 #include <sys/priocntl.h> 53 #include <sys/procset.h> 54 #include <sys/vmem.h> 55 #include <sys/bitmap.h> 56 #include <sys/kmem.h> 57 #include <sys/siginfo.h> 58 #include <sys/vtrace.h> 59 #include <sys/callb.h> 60 #include <sys/debug.h> 61 #include <sys/modctl.h> 62 #include <sys/vmsystm.h> 63 #include <vm/page.h> 64 #include <sys/atomic.h> 65 #include <sys/suntpi.h> 66 #include <sys/strlog.h> 67 #include <sys/promif.h> 68 #include <sys/project.h> 69 #include <sys/vm.h> 70 #include <sys/taskq.h> 71 #include <sys/sunddi.h> 72 #include <sys/sunldi_impl.h> 73 #include <sys/strsun.h> 74 #include <sys/isa_defs.h> 75 #include <sys/multidata.h> 76 #include <sys/pattr.h> 77 #include <sys/strft.h> 78 #include <sys/fs/snode.h> 79 #include <sys/zone.h> 80 #include <sys/open.h> 81 #include <sys/sunldi.h> 82 #include <sys/sad.h> 83 #include <sys/netstack.h> 84 85 #define O_SAMESTR(q) (((q)->q_next) && \ 86 (((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR))) 87 88 /* 89 * WARNING: 90 * The variables and routines in this file are private, belonging 91 * to the STREAMS subsystem. These should not be used by modules 92 * or drivers. Compatibility will not be guaranteed. 93 */ 94 95 /* 96 * Id value used to distinguish between different multiplexor links. 97 */ 98 static int32_t lnk_id = 0; 99 100 #define STREAMS_LOPRI MINCLSYSPRI 101 static pri_t streams_lopri = STREAMS_LOPRI; 102 103 #define STRSTAT(x) (str_statistics.x.value.ui64++) 104 typedef struct str_stat { 105 kstat_named_t sqenables; 106 kstat_named_t stenables; 107 kstat_named_t syncqservice; 108 kstat_named_t freebs; 109 kstat_named_t qwr_outer; 110 kstat_named_t rservice; 111 kstat_named_t strwaits; 112 kstat_named_t taskqfails; 113 kstat_named_t bufcalls; 114 kstat_named_t qhelps; 115 kstat_named_t qremoved; 116 kstat_named_t sqremoved; 117 kstat_named_t bcwaits; 118 kstat_named_t sqtoomany; 119 } str_stat_t; 120 121 static str_stat_t str_statistics = { 122 { "sqenables", KSTAT_DATA_UINT64 }, 123 { "stenables", KSTAT_DATA_UINT64 }, 124 { "syncqservice", KSTAT_DATA_UINT64 }, 125 { "freebs", KSTAT_DATA_UINT64 }, 126 { "qwr_outer", KSTAT_DATA_UINT64 }, 127 { "rservice", KSTAT_DATA_UINT64 }, 128 { "strwaits", KSTAT_DATA_UINT64 }, 129 { "taskqfails", KSTAT_DATA_UINT64 }, 130 { "bufcalls", KSTAT_DATA_UINT64 }, 131 { "qhelps", KSTAT_DATA_UINT64 }, 132 { "qremoved", KSTAT_DATA_UINT64 }, 133 { "sqremoved", KSTAT_DATA_UINT64 }, 134 { "bcwaits", KSTAT_DATA_UINT64 }, 135 { "sqtoomany", KSTAT_DATA_UINT64 }, 136 }; 137 138 static kstat_t *str_kstat; 139 140 /* 141 * qrunflag was used previously to control background scheduling of queues. It 142 * is not used anymore, but kept here in case some module still wants to access 143 * it via qready() and setqsched macros. 144 */ 145 char qrunflag; /* Unused */ 146 147 /* 148 * Most of the streams scheduling is done via task queues. Task queues may fail 149 * for non-sleep dispatches, so there are two backup threads servicing failed 150 * requests for queues and syncqs. Both of these threads also service failed 151 * dispatches freebs requests. Queues are put in the list specified by `qhead' 152 * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs 153 * requests are put into `freebs_list' which has no tail pointer. All three 154 * lists are protected by a single `service_queue' lock and use 155 * `services_to_run' condition variable for signaling background threads. Use of 156 * a single lock should not be a problem because it is only used under heavy 157 * loads when task queues start to fail and at that time it may be a good idea 158 * to throttle scheduling requests. 159 * 160 * NOTE: queues and syncqs should be scheduled by two separate threads because 161 * queue servicing may be blocked waiting for a syncq which may be also 162 * scheduled for background execution. This may create a deadlock when only one 163 * thread is used for both. 164 */ 165 166 static taskq_t *streams_taskq; /* Used for most STREAMS scheduling */ 167 168 static kmutex_t service_queue; /* protects all of servicing vars */ 169 static kcondvar_t services_to_run; /* wake up background service thread */ 170 static kcondvar_t syncqs_to_run; /* wake up background service thread */ 171 172 /* 173 * List of queues scheduled for background processing dueue to lack of resources 174 * in the task queues. Protected by service_queue lock; 175 */ 176 static struct queue *qhead; 177 static struct queue *qtail; 178 179 /* 180 * Same list for syncqs 181 */ 182 static syncq_t *sqhead; 183 static syncq_t *sqtail; 184 185 static mblk_t *freebs_list; /* list of buffers to free */ 186 187 /* 188 * Backup threads for servicing queues and syncqs 189 */ 190 kthread_t *streams_qbkgrnd_thread; 191 kthread_t *streams_sqbkgrnd_thread; 192 193 /* 194 * Bufcalls related variables. 195 */ 196 struct bclist strbcalls; /* list of waiting bufcalls */ 197 kmutex_t strbcall_lock; /* protects bufcall list (strbcalls) */ 198 kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */ 199 kmutex_t bcall_monitor; /* sleep/wakeup style monitor */ 200 kcondvar_t bcall_cv; /* wait 'till executing bufcall completes */ 201 kthread_t *bc_bkgrnd_thread; /* Thread to service bufcall requests */ 202 203 kmutex_t strresources; /* protects global resources */ 204 kmutex_t muxifier; /* single-threads multiplexor creation */ 205 206 static void *str_stack_init(netstackid_t stackid, netstack_t *ns); 207 static void str_stack_shutdown(netstackid_t stackid, void *arg); 208 static void str_stack_fini(netstackid_t stackid, void *arg); 209 210 extern void time_to_wait(clock_t *, clock_t); 211 212 /* 213 * run_queues is no longer used, but is kept in case some 3-d party 214 * module/driver decides to use it. 215 */ 216 int run_queues = 0; 217 218 /* 219 * sq_max_size is the depth of the syncq (in number of messages) before 220 * qfill_syncq() starts QFULL'ing destination queues. As its primary 221 * consumer - IP is no longer D_MTPERMOD, but there may be other 222 * modules/drivers depend on this syncq flow control, we prefer to 223 * choose a large number as the default value. For potential 224 * performance gain, this value is tunable in /etc/system. 225 */ 226 int sq_max_size = 10000; 227 228 /* 229 * the number of ciputctrl structures per syncq and stream we create when 230 * needed. 231 */ 232 int n_ciputctrl; 233 int max_n_ciputctrl = 16; 234 /* 235 * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache. 236 */ 237 int min_n_ciputctrl = 2; 238 239 /* 240 * Per-driver/module syncqs 241 * ======================== 242 * 243 * For drivers/modules that use PERMOD or outer syncqs we keep a list of 244 * perdm structures, new entries being added (and new syncqs allocated) when 245 * setq() encounters a module/driver with a streamtab that it hasn't seen 246 * before. 247 * The reason for this mechanism is that some modules and drivers share a 248 * common streamtab and it is necessary for those modules and drivers to also 249 * share a common PERMOD syncq. 250 * 251 * perdm_list --> dm_str == streamtab_1 252 * dm_sq == syncq_1 253 * dm_ref 254 * dm_next --> dm_str == streamtab_2 255 * dm_sq == syncq_2 256 * dm_ref 257 * dm_next --> ... NULL 258 * 259 * The dm_ref field is incremented for each new driver/module that takes 260 * a reference to the perdm structure and hence shares the syncq. 261 * References are held in the fmodsw_impl_t structure for each STREAMS module 262 * or the dev_impl array (indexed by device major number) for each driver. 263 * 264 * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL 265 * ^ ^ ^ ^ 266 * | ______________/ | | 267 * | / | | 268 * dev_impl: ...|x|y|... module A module B 269 * 270 * When a module/driver is unloaded the reference count is decremented and, 271 * when it falls to zero, the perdm structure is removed from the list and 272 * the syncq is freed (see rele_dm()). 273 */ 274 perdm_t *perdm_list = NULL; 275 static krwlock_t perdm_rwlock; 276 cdevsw_impl_t *devimpl; 277 278 extern struct qinit strdata; 279 extern struct qinit stwdata; 280 281 static void runservice(queue_t *); 282 static void streams_bufcall_service(void); 283 static void streams_qbkgrnd_service(void); 284 static void streams_sqbkgrnd_service(void); 285 static syncq_t *new_syncq(void); 286 static void free_syncq(syncq_t *); 287 static void outer_insert(syncq_t *, syncq_t *); 288 static void outer_remove(syncq_t *, syncq_t *); 289 static void write_now(syncq_t *); 290 static void clr_qfull(queue_t *); 291 static void enable_svc(queue_t *); 292 static void runbufcalls(void); 293 static void sqenable(syncq_t *); 294 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)()); 295 static void wait_q_syncq(queue_t *); 296 static void backenable_insertedq(queue_t *); 297 298 static void queue_service(queue_t *); 299 static void stream_service(stdata_t *); 300 static void syncq_service(syncq_t *); 301 static void qwriter_outer_service(syncq_t *); 302 static void mblk_free(mblk_t *); 303 #ifdef DEBUG 304 static int qprocsareon(queue_t *); 305 #endif 306 307 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *); 308 static void reset_nfsrv_ptr(queue_t *, queue_t *); 309 void set_qfull(queue_t *); 310 311 static void sq_run_events(syncq_t *); 312 static int propagate_syncq(queue_t *); 313 314 static void blocksq(syncq_t *, ushort_t, int); 315 static void unblocksq(syncq_t *, ushort_t, int); 316 static int dropsq(syncq_t *, uint16_t); 317 static void emptysq(syncq_t *); 318 static sqlist_t *sqlist_alloc(struct stdata *, int); 319 static void sqlist_free(sqlist_t *); 320 static sqlist_t *sqlist_build(queue_t *, struct stdata *, boolean_t); 321 static void sqlist_insert(sqlist_t *, syncq_t *); 322 static void sqlist_insertall(sqlist_t *, queue_t *); 323 324 static void strsetuio(stdata_t *); 325 326 struct kmem_cache *stream_head_cache; 327 struct kmem_cache *queue_cache; 328 struct kmem_cache *syncq_cache; 329 struct kmem_cache *qband_cache; 330 struct kmem_cache *linkinfo_cache; 331 struct kmem_cache *ciputctrl_cache = NULL; 332 333 static linkinfo_t *linkinfo_list; 334 335 /* global esballoc throttling queue */ 336 static esb_queue_t system_esbq; 337 338 /* 339 * esballoc tunable parameters. 340 */ 341 int esbq_max_qlen = 0x16; /* throttled queue length */ 342 clock_t esbq_timeout = 0x8; /* timeout to process esb queue */ 343 344 /* 345 * routines to handle esballoc queuing. 346 */ 347 static void esballoc_process_queue(esb_queue_t *); 348 static void esballoc_enqueue_mblk(mblk_t *); 349 static void esballoc_timer(void *); 350 static void esballoc_set_timer(esb_queue_t *, clock_t); 351 static void esballoc_mblk_free(mblk_t *); 352 353 /* 354 * Qinit structure and Module_info structures 355 * for passthru read and write queues 356 */ 357 358 static void pass_wput(queue_t *, mblk_t *); 359 static queue_t *link_addpassthru(stdata_t *); 360 static void link_rempassthru(queue_t *); 361 362 struct module_info passthru_info = { 363 0, 364 "passthru", 365 0, 366 INFPSZ, 367 STRHIGH, 368 STRLOW 369 }; 370 371 struct qinit passthru_rinit = { 372 (int (*)())putnext, 373 NULL, 374 NULL, 375 NULL, 376 NULL, 377 &passthru_info, 378 NULL 379 }; 380 381 struct qinit passthru_winit = { 382 (int (*)()) pass_wput, 383 NULL, 384 NULL, 385 NULL, 386 NULL, 387 &passthru_info, 388 NULL 389 }; 390 391 /* 392 * Special form of assertion: verify that X implies Y i.e. when X is true Y 393 * should also be true. 394 */ 395 #define IMPLY(X, Y) ASSERT(!(X) || (Y)) 396 397 /* 398 * Logical equivalence. Verify that both X and Y are either TRUE or FALSE. 399 */ 400 #define EQUIV(X, Y) { IMPLY(X, Y); IMPLY(Y, X); } 401 402 /* 403 * Verify correctness of list head/tail pointers. 404 */ 405 #define LISTCHECK(head, tail, link) { \ 406 EQUIV(head, tail); \ 407 IMPLY(tail != NULL, tail->link == NULL); \ 408 } 409 410 /* 411 * Enqueue a list element `el' in the end of a list denoted by `head' and `tail' 412 * using a `link' field. 413 */ 414 #define ENQUEUE(el, head, tail, link) { \ 415 ASSERT(el->link == NULL); \ 416 LISTCHECK(head, tail, link); \ 417 if (head == NULL) \ 418 head = el; \ 419 else \ 420 tail->link = el; \ 421 tail = el; \ 422 } 423 424 /* 425 * Dequeue the first element of the list denoted by `head' and `tail' pointers 426 * using a `link' field and put result into `el'. 427 */ 428 #define DQ(el, head, tail, link) { \ 429 LISTCHECK(head, tail, link); \ 430 el = head; \ 431 if (head != NULL) { \ 432 head = head->link; \ 433 if (head == NULL) \ 434 tail = NULL; \ 435 el->link = NULL; \ 436 } \ 437 } 438 439 /* 440 * Remove `el' from the list using `chase' and `curr' pointers and return result 441 * in `succeed'. 442 */ 443 #define RMQ(el, head, tail, link, chase, curr, succeed) { \ 444 LISTCHECK(head, tail, link); \ 445 chase = NULL; \ 446 succeed = 0; \ 447 for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \ 448 chase = curr; \ 449 if (curr != NULL) { \ 450 succeed = 1; \ 451 ASSERT(curr == el); \ 452 if (chase != NULL) \ 453 chase->link = curr->link; \ 454 else \ 455 head = curr->link; \ 456 curr->link = NULL; \ 457 if (curr == tail) \ 458 tail = chase; \ 459 } \ 460 LISTCHECK(head, tail, link); \ 461 } 462 463 /* Handling of delayed messages on the inner syncq. */ 464 465 /* 466 * DEBUG versions should use function versions (to simplify tracing) and 467 * non-DEBUG kernels should use macro versions. 468 */ 469 470 /* 471 * Put a queue on the syncq list of queues. 472 * Assumes SQLOCK held. 473 */ 474 #define SQPUT_Q(sq, qp) \ 475 { \ 476 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 477 if (!(qp->q_sqflags & Q_SQQUEUED)) { \ 478 /* The queue should not be linked anywhere */ \ 479 ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \ 480 /* Head and tail may only be NULL simultaneously */ \ 481 EQUIV(sq->sq_head, sq->sq_tail); \ 482 /* Queue may be only enqueyed on its syncq */ \ 483 ASSERT(sq == qp->q_syncq); \ 484 /* Check the correctness of SQ_MESSAGES flag */ \ 485 EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES)); \ 486 /* Sanity check first/last elements of the list */ \ 487 IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\ 488 IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\ 489 /* \ 490 * Sanity check of priority field: empty queue should \ 491 * have zero priority \ 492 * and nqueues equal to zero. \ 493 */ \ 494 IMPLY(sq->sq_head == NULL, sq->sq_pri == 0); \ 495 /* Sanity check of sq_nqueues field */ \ 496 EQUIV(sq->sq_head, sq->sq_nqueues); \ 497 if (sq->sq_head == NULL) { \ 498 sq->sq_head = sq->sq_tail = qp; \ 499 sq->sq_flags |= SQ_MESSAGES; \ 500 } else if (qp->q_spri == 0) { \ 501 qp->q_sqprev = sq->sq_tail; \ 502 sq->sq_tail->q_sqnext = qp; \ 503 sq->sq_tail = qp; \ 504 } else { \ 505 /* \ 506 * Put this queue in priority order: higher \ 507 * priority gets closer to the head. \ 508 */ \ 509 queue_t **qpp = &sq->sq_tail; \ 510 queue_t *qnext = NULL; \ 511 \ 512 while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \ 513 qnext = *qpp; \ 514 qpp = &(*qpp)->q_sqprev; \ 515 } \ 516 qp->q_sqnext = qnext; \ 517 qp->q_sqprev = *qpp; \ 518 if (*qpp != NULL) { \ 519 (*qpp)->q_sqnext = qp; \ 520 } else { \ 521 sq->sq_head = qp; \ 522 sq->sq_pri = sq->sq_head->q_spri; \ 523 } \ 524 *qpp = qp; \ 525 } \ 526 qp->q_sqflags |= Q_SQQUEUED; \ 527 qp->q_sqtstamp = lbolt; \ 528 sq->sq_nqueues++; \ 529 } \ 530 } 531 532 /* 533 * Remove a queue from the syncq list 534 * Assumes SQLOCK held. 535 */ 536 #define SQRM_Q(sq, qp) \ 537 { \ 538 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 539 ASSERT(qp->q_sqflags & Q_SQQUEUED); \ 540 ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL); \ 541 ASSERT((sq->sq_flags & SQ_MESSAGES) != 0); \ 542 /* Check that the queue is actually in the list */ \ 543 ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp); \ 544 ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp); \ 545 ASSERT(sq->sq_nqueues != 0); \ 546 if (qp->q_sqprev == NULL) { \ 547 /* First queue on list, make head q_sqnext */ \ 548 sq->sq_head = qp->q_sqnext; \ 549 } else { \ 550 /* Make prev->next == next */ \ 551 qp->q_sqprev->q_sqnext = qp->q_sqnext; \ 552 } \ 553 if (qp->q_sqnext == NULL) { \ 554 /* Last queue on list, make tail sqprev */ \ 555 sq->sq_tail = qp->q_sqprev; \ 556 } else { \ 557 /* Make next->prev == prev */ \ 558 qp->q_sqnext->q_sqprev = qp->q_sqprev; \ 559 } \ 560 /* clear out references on this queue */ \ 561 qp->q_sqprev = qp->q_sqnext = NULL; \ 562 qp->q_sqflags &= ~Q_SQQUEUED; \ 563 /* If there is nothing queued, clear SQ_MESSAGES */ \ 564 if (sq->sq_head != NULL) { \ 565 sq->sq_pri = sq->sq_head->q_spri; \ 566 } else { \ 567 sq->sq_flags &= ~SQ_MESSAGES; \ 568 sq->sq_pri = 0; \ 569 } \ 570 sq->sq_nqueues--; \ 571 ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL || \ 572 (sq->sq_flags & SQ_QUEUED) == 0); \ 573 } 574 575 /* Hide the definition from the header file. */ 576 #ifdef SQPUT_MP 577 #undef SQPUT_MP 578 #endif 579 580 /* 581 * Put a message on the queue syncq. 582 * Assumes QLOCK held. 583 */ 584 #define SQPUT_MP(qp, mp) \ 585 { \ 586 ASSERT(MUTEX_HELD(QLOCK(qp))); \ 587 ASSERT(qp->q_sqhead == NULL || \ 588 (qp->q_sqtail != NULL && \ 589 qp->q_sqtail->b_next == NULL)); \ 590 qp->q_syncqmsgs++; \ 591 ASSERT(qp->q_syncqmsgs != 0); /* Wraparound */ \ 592 if (qp->q_sqhead == NULL) { \ 593 qp->q_sqhead = qp->q_sqtail = mp; \ 594 } else { \ 595 qp->q_sqtail->b_next = mp; \ 596 qp->q_sqtail = mp; \ 597 } \ 598 ASSERT(qp->q_syncqmsgs > 0); \ 599 set_qfull(qp); \ 600 } 601 602 #define SQ_PUTCOUNT_SETFAST_LOCKED(sq) { \ 603 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 604 if ((sq)->sq_ciputctrl != NULL) { \ 605 int i; \ 606 int nlocks = (sq)->sq_nciputctrl; \ 607 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 608 ASSERT((sq)->sq_type & SQ_CIPUT); \ 609 for (i = 0; i <= nlocks; i++) { \ 610 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 611 cip[i].ciputctrl_count |= SQ_FASTPUT; \ 612 } \ 613 } \ 614 } 615 616 617 #define SQ_PUTCOUNT_CLRFAST_LOCKED(sq) { \ 618 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 619 if ((sq)->sq_ciputctrl != NULL) { \ 620 int i; \ 621 int nlocks = (sq)->sq_nciputctrl; \ 622 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 623 ASSERT((sq)->sq_type & SQ_CIPUT); \ 624 for (i = 0; i <= nlocks; i++) { \ 625 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 626 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \ 627 } \ 628 } \ 629 } 630 631 /* 632 * Run service procedures for all queues in the stream head. 633 */ 634 #define STR_SERVICE(stp, q) { \ 635 ASSERT(MUTEX_HELD(&stp->sd_qlock)); \ 636 while (stp->sd_qhead != NULL) { \ 637 DQ(q, stp->sd_qhead, stp->sd_qtail, q_link); \ 638 ASSERT(stp->sd_nqueues > 0); \ 639 stp->sd_nqueues--; \ 640 ASSERT(!(q->q_flag & QINSERVICE)); \ 641 mutex_exit(&stp->sd_qlock); \ 642 queue_service(q); \ 643 mutex_enter(&stp->sd_qlock); \ 644 } \ 645 ASSERT(stp->sd_nqueues == 0); \ 646 ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL)); \ 647 } 648 649 /* 650 * constructor/destructor routines for the stream head cache 651 */ 652 /* ARGSUSED */ 653 static int 654 stream_head_constructor(void *buf, void *cdrarg, int kmflags) 655 { 656 stdata_t *stp = buf; 657 658 mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 659 mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL); 660 mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL); 661 cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL); 662 cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL); 663 cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL); 664 cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL); 665 cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL); 666 stp->sd_wrq = NULL; 667 668 return (0); 669 } 670 671 /* ARGSUSED */ 672 static void 673 stream_head_destructor(void *buf, void *cdrarg) 674 { 675 stdata_t *stp = buf; 676 677 mutex_destroy(&stp->sd_lock); 678 mutex_destroy(&stp->sd_reflock); 679 mutex_destroy(&stp->sd_qlock); 680 cv_destroy(&stp->sd_monitor); 681 cv_destroy(&stp->sd_iocmonitor); 682 cv_destroy(&stp->sd_refmonitor); 683 cv_destroy(&stp->sd_qcv); 684 cv_destroy(&stp->sd_zcopy_wait); 685 } 686 687 /* 688 * constructor/destructor routines for the queue cache 689 */ 690 /* ARGSUSED */ 691 static int 692 queue_constructor(void *buf, void *cdrarg, int kmflags) 693 { 694 queinfo_t *qip = buf; 695 queue_t *qp = &qip->qu_rqueue; 696 queue_t *wqp = &qip->qu_wqueue; 697 syncq_t *sq = &qip->qu_syncq; 698 699 qp->q_first = NULL; 700 qp->q_link = NULL; 701 qp->q_count = 0; 702 qp->q_mblkcnt = 0; 703 qp->q_sqhead = NULL; 704 qp->q_sqtail = NULL; 705 qp->q_sqnext = NULL; 706 qp->q_sqprev = NULL; 707 qp->q_sqflags = 0; 708 qp->q_rwcnt = 0; 709 qp->q_spri = 0; 710 711 mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL); 712 cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL); 713 714 wqp->q_first = NULL; 715 wqp->q_link = NULL; 716 wqp->q_count = 0; 717 wqp->q_mblkcnt = 0; 718 wqp->q_sqhead = NULL; 719 wqp->q_sqtail = NULL; 720 wqp->q_sqnext = NULL; 721 wqp->q_sqprev = NULL; 722 wqp->q_sqflags = 0; 723 wqp->q_rwcnt = 0; 724 wqp->q_spri = 0; 725 726 mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL); 727 cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL); 728 729 sq->sq_head = NULL; 730 sq->sq_tail = NULL; 731 sq->sq_evhead = NULL; 732 sq->sq_evtail = NULL; 733 sq->sq_callbpend = NULL; 734 sq->sq_outer = NULL; 735 sq->sq_onext = NULL; 736 sq->sq_oprev = NULL; 737 sq->sq_next = NULL; 738 sq->sq_svcflags = 0; 739 sq->sq_servcount = 0; 740 sq->sq_needexcl = 0; 741 sq->sq_nqueues = 0; 742 sq->sq_pri = 0; 743 744 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL); 745 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL); 746 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL); 747 748 return (0); 749 } 750 751 /* ARGSUSED */ 752 static void 753 queue_destructor(void *buf, void *cdrarg) 754 { 755 queinfo_t *qip = buf; 756 queue_t *qp = &qip->qu_rqueue; 757 queue_t *wqp = &qip->qu_wqueue; 758 syncq_t *sq = &qip->qu_syncq; 759 760 ASSERT(qp->q_sqhead == NULL); 761 ASSERT(wqp->q_sqhead == NULL); 762 ASSERT(qp->q_sqnext == NULL); 763 ASSERT(wqp->q_sqnext == NULL); 764 ASSERT(qp->q_rwcnt == 0); 765 ASSERT(wqp->q_rwcnt == 0); 766 767 mutex_destroy(&qp->q_lock); 768 cv_destroy(&qp->q_wait); 769 770 mutex_destroy(&wqp->q_lock); 771 cv_destroy(&wqp->q_wait); 772 773 mutex_destroy(&sq->sq_lock); 774 cv_destroy(&sq->sq_wait); 775 cv_destroy(&sq->sq_exitwait); 776 } 777 778 /* 779 * constructor/destructor routines for the syncq cache 780 */ 781 /* ARGSUSED */ 782 static int 783 syncq_constructor(void *buf, void *cdrarg, int kmflags) 784 { 785 syncq_t *sq = buf; 786 787 bzero(buf, sizeof (syncq_t)); 788 789 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL); 790 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL); 791 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL); 792 793 return (0); 794 } 795 796 /* ARGSUSED */ 797 static void 798 syncq_destructor(void *buf, void *cdrarg) 799 { 800 syncq_t *sq = buf; 801 802 ASSERT(sq->sq_head == NULL); 803 ASSERT(sq->sq_tail == NULL); 804 ASSERT(sq->sq_evhead == NULL); 805 ASSERT(sq->sq_evtail == NULL); 806 ASSERT(sq->sq_callbpend == NULL); 807 ASSERT(sq->sq_callbflags == 0); 808 ASSERT(sq->sq_outer == NULL); 809 ASSERT(sq->sq_onext == NULL); 810 ASSERT(sq->sq_oprev == NULL); 811 ASSERT(sq->sq_next == NULL); 812 ASSERT(sq->sq_needexcl == 0); 813 ASSERT(sq->sq_svcflags == 0); 814 ASSERT(sq->sq_servcount == 0); 815 ASSERT(sq->sq_nqueues == 0); 816 ASSERT(sq->sq_pri == 0); 817 ASSERT(sq->sq_count == 0); 818 ASSERT(sq->sq_rmqcount == 0); 819 ASSERT(sq->sq_cancelid == 0); 820 ASSERT(sq->sq_ciputctrl == NULL); 821 ASSERT(sq->sq_nciputctrl == 0); 822 ASSERT(sq->sq_type == 0); 823 ASSERT(sq->sq_flags == 0); 824 825 mutex_destroy(&sq->sq_lock); 826 cv_destroy(&sq->sq_wait); 827 cv_destroy(&sq->sq_exitwait); 828 } 829 830 /* ARGSUSED */ 831 static int 832 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags) 833 { 834 ciputctrl_t *cip = buf; 835 int i; 836 837 for (i = 0; i < n_ciputctrl; i++) { 838 cip[i].ciputctrl_count = SQ_FASTPUT; 839 mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL); 840 } 841 842 return (0); 843 } 844 845 /* ARGSUSED */ 846 static void 847 ciputctrl_destructor(void *buf, void *cdrarg) 848 { 849 ciputctrl_t *cip = buf; 850 int i; 851 852 for (i = 0; i < n_ciputctrl; i++) { 853 ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT); 854 mutex_destroy(&cip[i].ciputctrl_lock); 855 } 856 } 857 858 /* 859 * Init routine run from main at boot time. 860 */ 861 void 862 strinit(void) 863 { 864 int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus); 865 866 stream_head_cache = kmem_cache_create("stream_head_cache", 867 sizeof (stdata_t), 0, 868 stream_head_constructor, stream_head_destructor, NULL, 869 NULL, NULL, 0); 870 871 queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0, 872 queue_constructor, queue_destructor, NULL, NULL, NULL, 0); 873 874 syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0, 875 syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0); 876 877 qband_cache = kmem_cache_create("qband_cache", 878 sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 879 880 linkinfo_cache = kmem_cache_create("linkinfo_cache", 881 sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 882 883 n_ciputctrl = ncpus; 884 n_ciputctrl = 1 << highbit(n_ciputctrl - 1); 885 ASSERT(n_ciputctrl >= 1); 886 n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl); 887 if (n_ciputctrl >= min_n_ciputctrl) { 888 ciputctrl_cache = kmem_cache_create("ciputctrl_cache", 889 sizeof (ciputctrl_t) * n_ciputctrl, 890 sizeof (ciputctrl_t), ciputctrl_constructor, 891 ciputctrl_destructor, NULL, NULL, NULL, 0); 892 } 893 894 streams_taskq = system_taskq; 895 896 if (streams_taskq == NULL) 897 panic("strinit: no memory for streams taskq!"); 898 899 bc_bkgrnd_thread = thread_create(NULL, 0, 900 streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri); 901 902 streams_qbkgrnd_thread = thread_create(NULL, 0, 903 streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri); 904 905 streams_sqbkgrnd_thread = thread_create(NULL, 0, 906 streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri); 907 908 /* 909 * Create STREAMS kstats. 910 */ 911 str_kstat = kstat_create("streams", 0, "strstat", 912 "net", KSTAT_TYPE_NAMED, 913 sizeof (str_statistics) / sizeof (kstat_named_t), 914 KSTAT_FLAG_VIRTUAL); 915 916 if (str_kstat != NULL) { 917 str_kstat->ks_data = &str_statistics; 918 kstat_install(str_kstat); 919 } 920 921 /* 922 * TPI support routine initialisation. 923 */ 924 tpi_init(); 925 926 /* 927 * Handle to have autopush and persistent link information per 928 * zone. 929 * Note: uses shutdown hook instead of destroy hook so that the 930 * persistent links can be torn down before the destroy hooks 931 * in the TCP/IP stack are called. 932 */ 933 netstack_register(NS_STR, str_stack_init, str_stack_shutdown, 934 str_stack_fini); 935 } 936 937 void 938 str_sendsig(vnode_t *vp, int event, uchar_t band, int error) 939 { 940 struct stdata *stp; 941 942 ASSERT(vp->v_stream); 943 stp = vp->v_stream; 944 /* Have to hold sd_lock to prevent siglist from changing */ 945 mutex_enter(&stp->sd_lock); 946 if (stp->sd_sigflags & event) 947 strsendsig(stp->sd_siglist, event, band, error); 948 mutex_exit(&stp->sd_lock); 949 } 950 951 /* 952 * Send the "sevent" set of signals to a process. 953 * This might send more than one signal if the process is registered 954 * for multiple events. The caller should pass in an sevent that only 955 * includes the events for which the process has registered. 956 */ 957 static void 958 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info, 959 uchar_t band, int error) 960 { 961 ASSERT(MUTEX_HELD(&proc->p_lock)); 962 963 info->si_band = 0; 964 info->si_errno = 0; 965 966 if (sevent & S_ERROR) { 967 sevent &= ~S_ERROR; 968 info->si_code = POLL_ERR; 969 info->si_errno = error; 970 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 971 "strsendsig:proc %p info %p", proc, info); 972 sigaddq(proc, NULL, info, KM_NOSLEEP); 973 info->si_errno = 0; 974 } 975 if (sevent & S_HANGUP) { 976 sevent &= ~S_HANGUP; 977 info->si_code = POLL_HUP; 978 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 979 "strsendsig:proc %p info %p", proc, info); 980 sigaddq(proc, NULL, info, KM_NOSLEEP); 981 } 982 if (sevent & S_HIPRI) { 983 sevent &= ~S_HIPRI; 984 info->si_code = POLL_PRI; 985 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 986 "strsendsig:proc %p info %p", proc, info); 987 sigaddq(proc, NULL, info, KM_NOSLEEP); 988 } 989 if (sevent & S_RDBAND) { 990 sevent &= ~S_RDBAND; 991 if (events & S_BANDURG) 992 sigtoproc(proc, NULL, SIGURG); 993 else 994 sigtoproc(proc, NULL, SIGPOLL); 995 } 996 if (sevent & S_WRBAND) { 997 sevent &= ~S_WRBAND; 998 sigtoproc(proc, NULL, SIGPOLL); 999 } 1000 if (sevent & S_INPUT) { 1001 sevent &= ~S_INPUT; 1002 info->si_code = POLL_IN; 1003 info->si_band = band; 1004 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 1005 "strsendsig:proc %p info %p", proc, info); 1006 sigaddq(proc, NULL, info, KM_NOSLEEP); 1007 info->si_band = 0; 1008 } 1009 if (sevent & S_OUTPUT) { 1010 sevent &= ~S_OUTPUT; 1011 info->si_code = POLL_OUT; 1012 info->si_band = band; 1013 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 1014 "strsendsig:proc %p info %p", proc, info); 1015 sigaddq(proc, NULL, info, KM_NOSLEEP); 1016 info->si_band = 0; 1017 } 1018 if (sevent & S_MSG) { 1019 sevent &= ~S_MSG; 1020 info->si_code = POLL_MSG; 1021 info->si_band = band; 1022 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG, 1023 "strsendsig:proc %p info %p", proc, info); 1024 sigaddq(proc, NULL, info, KM_NOSLEEP); 1025 info->si_band = 0; 1026 } 1027 if (sevent & S_RDNORM) { 1028 sevent &= ~S_RDNORM; 1029 sigtoproc(proc, NULL, SIGPOLL); 1030 } 1031 if (sevent != 0) { 1032 panic("strsendsig: unknown event(s) %x", sevent); 1033 } 1034 } 1035 1036 /* 1037 * Send SIGPOLL/SIGURG signal to all processes and process groups 1038 * registered on the given signal list that want a signal for at 1039 * least one of the specified events. 1040 * 1041 * Must be called with exclusive access to siglist (caller holding sd_lock). 1042 * 1043 * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding 1044 * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure 1045 * while it is in the siglist. 1046 * 1047 * For performance reasons (MP scalability) the code drops pidlock 1048 * when sending signals to a single process. 1049 * When sending to a process group the code holds 1050 * pidlock to prevent the membership in the process group from changing 1051 * while walking the p_pglink list. 1052 */ 1053 void 1054 strsendsig(strsig_t *siglist, int event, uchar_t band, int error) 1055 { 1056 strsig_t *ssp; 1057 k_siginfo_t info; 1058 struct pid *pidp; 1059 proc_t *proc; 1060 1061 info.si_signo = SIGPOLL; 1062 info.si_errno = 0; 1063 for (ssp = siglist; ssp; ssp = ssp->ss_next) { 1064 int sevent; 1065 1066 sevent = ssp->ss_events & event; 1067 if (sevent == 0) 1068 continue; 1069 1070 if ((pidp = ssp->ss_pidp) == NULL) { 1071 /* pid was released but still on event list */ 1072 continue; 1073 } 1074 1075 1076 if (ssp->ss_pid > 0) { 1077 /* 1078 * XXX This unfortunately still generates 1079 * a signal when a fd is closed but 1080 * the proc is active. 1081 */ 1082 ASSERT(ssp->ss_pid == pidp->pid_id); 1083 1084 mutex_enter(&pidlock); 1085 proc = prfind_zone(pidp->pid_id, ALL_ZONES); 1086 if (proc == NULL) { 1087 mutex_exit(&pidlock); 1088 continue; 1089 } 1090 mutex_enter(&proc->p_lock); 1091 mutex_exit(&pidlock); 1092 dosendsig(proc, ssp->ss_events, sevent, &info, 1093 band, error); 1094 mutex_exit(&proc->p_lock); 1095 } else { 1096 /* 1097 * Send to process group. Hold pidlock across 1098 * calls to dosendsig(). 1099 */ 1100 pid_t pgrp = -ssp->ss_pid; 1101 1102 mutex_enter(&pidlock); 1103 proc = pgfind_zone(pgrp, ALL_ZONES); 1104 while (proc != NULL) { 1105 mutex_enter(&proc->p_lock); 1106 dosendsig(proc, ssp->ss_events, sevent, 1107 &info, band, error); 1108 mutex_exit(&proc->p_lock); 1109 proc = proc->p_pglink; 1110 } 1111 mutex_exit(&pidlock); 1112 } 1113 } 1114 } 1115 1116 /* 1117 * Attach a stream device or module. 1118 * qp is a read queue; the new queue goes in so its next 1119 * read ptr is the argument, and the write queue corresponding 1120 * to the argument points to this queue. Return 0 on success, 1121 * or a non-zero errno on failure. 1122 */ 1123 int 1124 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp, 1125 boolean_t is_insert) 1126 { 1127 major_t major; 1128 cdevsw_impl_t *dp; 1129 struct streamtab *str; 1130 queue_t *rq; 1131 queue_t *wrq; 1132 uint32_t qflag; 1133 uint32_t sqtype; 1134 perdm_t *dmp; 1135 int error; 1136 int sflag; 1137 1138 rq = allocq(); 1139 wrq = _WR(rq); 1140 STREAM(rq) = STREAM(wrq) = STREAM(qp); 1141 1142 if (fp != NULL) { 1143 str = fp->f_str; 1144 qflag = fp->f_qflag; 1145 sqtype = fp->f_sqtype; 1146 dmp = fp->f_dmp; 1147 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL); 1148 sflag = MODOPEN; 1149 1150 /* 1151 * stash away a pointer to the module structure so we can 1152 * unref it in qdetach. 1153 */ 1154 rq->q_fp = fp; 1155 } else { 1156 ASSERT(!is_insert); 1157 1158 major = getmajor(*devp); 1159 dp = &devimpl[major]; 1160 1161 str = dp->d_str; 1162 ASSERT(str == STREAMSTAB(major)); 1163 1164 qflag = dp->d_qflag; 1165 ASSERT(qflag & QISDRV); 1166 sqtype = dp->d_sqtype; 1167 1168 /* create perdm_t if needed */ 1169 if (NEED_DM(dp->d_dmp, qflag)) 1170 dp->d_dmp = hold_dm(str, qflag, sqtype); 1171 1172 dmp = dp->d_dmp; 1173 sflag = 0; 1174 } 1175 1176 TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS, 1177 "qattach:qflag == %X(%X)", qflag, *devp); 1178 1179 /* setq might sleep in allocator - avoid holding locks. */ 1180 setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE); 1181 1182 /* 1183 * Before calling the module's open routine, set up the q_next 1184 * pointer for inserting a module in the middle of a stream. 1185 * 1186 * Note that we can always set _QINSERTING and set up q_next 1187 * pointer for both inserting and pushing a module. Then there 1188 * is no need for the is_insert parameter. In insertq(), called 1189 * by qprocson(), assume that q_next of the new module always points 1190 * to the correct queue and use it for insertion. Everything should 1191 * work out fine. But in the first release of _I_INSERT, we 1192 * distinguish between inserting and pushing to make sure that 1193 * pushing a module follows the same code path as before. 1194 */ 1195 if (is_insert) { 1196 rq->q_flag |= _QINSERTING; 1197 rq->q_next = qp; 1198 } 1199 1200 /* 1201 * If there is an outer perimeter get exclusive access during 1202 * the open procedure. Bump up the reference count on the queue. 1203 */ 1204 entersq(rq->q_syncq, SQ_OPENCLOSE); 1205 error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp); 1206 if (error != 0) 1207 goto failed; 1208 leavesq(rq->q_syncq, SQ_OPENCLOSE); 1209 ASSERT(qprocsareon(rq)); 1210 return (0); 1211 1212 failed: 1213 rq->q_flag &= ~_QINSERTING; 1214 if (backq(wrq) != NULL && backq(wrq)->q_next == wrq) 1215 qprocsoff(rq); 1216 leavesq(rq->q_syncq, SQ_OPENCLOSE); 1217 rq->q_next = wrq->q_next = NULL; 1218 qdetach(rq, 0, 0, crp, B_FALSE); 1219 return (error); 1220 } 1221 1222 /* 1223 * Handle second open of stream. For modules, set the 1224 * last argument to MODOPEN and do not pass any open flags. 1225 * Ignore dummydev since this is not the first open. 1226 */ 1227 int 1228 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp) 1229 { 1230 int error; 1231 dev_t dummydev; 1232 queue_t *wqp = _WR(qp); 1233 1234 ASSERT(qp->q_flag & QREADR); 1235 entersq(qp->q_syncq, SQ_OPENCLOSE); 1236 1237 dummydev = *devp; 1238 if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev, 1239 (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) { 1240 leavesq(qp->q_syncq, SQ_OPENCLOSE); 1241 mutex_enter(&STREAM(qp)->sd_lock); 1242 qp->q_stream->sd_flag |= STREOPENFAIL; 1243 mutex_exit(&STREAM(qp)->sd_lock); 1244 return (error); 1245 } 1246 leavesq(qp->q_syncq, SQ_OPENCLOSE); 1247 1248 /* 1249 * successful open should have done qprocson() 1250 */ 1251 ASSERT(qprocsareon(_RD(qp))); 1252 return (0); 1253 } 1254 1255 /* 1256 * Detach a stream module or device. 1257 * If clmode == 1 then the module or driver was opened and its 1258 * close routine must be called. If clmode == 0, the module 1259 * or driver was never opened or the open failed, and so its close 1260 * should not be called. 1261 */ 1262 void 1263 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove) 1264 { 1265 queue_t *wqp = _WR(qp); 1266 ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB)); 1267 1268 if (STREAM_NEEDSERVICE(STREAM(qp))) 1269 stream_runservice(STREAM(qp)); 1270 1271 if (clmode) { 1272 /* 1273 * Make sure that all the messages on the write side syncq are 1274 * processed and nothing is left. Since we are closing, no new 1275 * messages may appear there. 1276 */ 1277 wait_q_syncq(wqp); 1278 1279 entersq(qp->q_syncq, SQ_OPENCLOSE); 1280 if (is_remove) { 1281 mutex_enter(QLOCK(qp)); 1282 qp->q_flag |= _QREMOVING; 1283 mutex_exit(QLOCK(qp)); 1284 } 1285 (*qp->q_qinfo->qi_qclose)(qp, flag, crp); 1286 /* 1287 * Check that qprocsoff() was actually called. 1288 */ 1289 ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE)); 1290 1291 leavesq(qp->q_syncq, SQ_OPENCLOSE); 1292 } else { 1293 disable_svc(qp); 1294 } 1295 1296 /* 1297 * Allow any threads blocked in entersq to proceed and discover 1298 * the QWCLOSE is set. 1299 * Note: This assumes that all users of entersq check QWCLOSE. 1300 * Currently runservice is the only entersq that can happen 1301 * after removeq has finished. 1302 * Removeq will have discarded all messages destined to the closing 1303 * pair of queues from the syncq. 1304 * NOTE: Calling a function inside an assert is unconventional. 1305 * However, it does not cause any problem since flush_syncq() does 1306 * not change any state except when it returns non-zero i.e. 1307 * when the assert will trigger. 1308 */ 1309 ASSERT(flush_syncq(qp->q_syncq, qp) == 0); 1310 ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0); 1311 ASSERT((qp->q_flag & QPERMOD) || 1312 ((qp->q_syncq->sq_head == NULL) && 1313 (wqp->q_syncq->sq_head == NULL))); 1314 1315 /* release any fmodsw_impl_t structure held on behalf of the queue */ 1316 ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV); 1317 if (qp->q_fp != NULL) 1318 fmodsw_rele(qp->q_fp); 1319 1320 /* freeq removes us from the outer perimeter if any */ 1321 freeq(qp); 1322 } 1323 1324 /* Prevent service procedures from being called */ 1325 void 1326 disable_svc(queue_t *qp) 1327 { 1328 queue_t *wqp = _WR(qp); 1329 1330 ASSERT(qp->q_flag & QREADR); 1331 mutex_enter(QLOCK(qp)); 1332 qp->q_flag |= QWCLOSE; 1333 mutex_exit(QLOCK(qp)); 1334 mutex_enter(QLOCK(wqp)); 1335 wqp->q_flag |= QWCLOSE; 1336 mutex_exit(QLOCK(wqp)); 1337 } 1338 1339 /* allow service procedures to be called again */ 1340 void 1341 enable_svc(queue_t *qp) 1342 { 1343 queue_t *wqp = _WR(qp); 1344 1345 ASSERT(qp->q_flag & QREADR); 1346 mutex_enter(QLOCK(qp)); 1347 qp->q_flag &= ~QWCLOSE; 1348 mutex_exit(QLOCK(qp)); 1349 mutex_enter(QLOCK(wqp)); 1350 wqp->q_flag &= ~QWCLOSE; 1351 mutex_exit(QLOCK(wqp)); 1352 } 1353 1354 /* 1355 * Remove queue from qhead/qtail if it is enabled. 1356 * Only reset QENAB if the queue was removed from the runlist. 1357 * A queue goes through 3 stages: 1358 * It is on the service list and QENAB is set. 1359 * It is removed from the service list but QENAB is still set. 1360 * QENAB gets changed to QINSERVICE. 1361 * QINSERVICE is reset (when the service procedure is done) 1362 * Thus we can not reset QENAB unless we actually removed it from the service 1363 * queue. 1364 */ 1365 void 1366 remove_runlist(queue_t *qp) 1367 { 1368 if (qp->q_flag & QENAB && qhead != NULL) { 1369 queue_t *q_chase; 1370 queue_t *q_curr; 1371 int removed; 1372 1373 mutex_enter(&service_queue); 1374 RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed); 1375 mutex_exit(&service_queue); 1376 if (removed) { 1377 STRSTAT(qremoved); 1378 qp->q_flag &= ~QENAB; 1379 } 1380 } 1381 } 1382 1383 1384 /* 1385 * wait for any pending service processing to complete. 1386 * The removal of queues from the runlist is not atomic with the 1387 * clearing of the QENABLED flag and setting the INSERVICE flag. 1388 * consequently it is possible for remove_runlist in strclose 1389 * to not find the queue on the runlist but for it to be QENABLED 1390 * and not yet INSERVICE -> hence wait_svc needs to check QENABLED 1391 * as well as INSERVICE. 1392 */ 1393 void 1394 wait_svc(queue_t *qp) 1395 { 1396 queue_t *wqp = _WR(qp); 1397 1398 ASSERT(qp->q_flag & QREADR); 1399 1400 /* 1401 * Try to remove queues from qhead/qtail list. 1402 */ 1403 if (qhead != NULL) { 1404 remove_runlist(qp); 1405 remove_runlist(wqp); 1406 } 1407 /* 1408 * Wait till the syncqs associated with the queue 1409 * will dissapear from background processing list. 1410 * This only needs to be done for non-PERMOD perimeters since 1411 * for PERMOD perimeters the syncq may be shared and will only be freed 1412 * when the last module/driver is unloaded. 1413 * If for PERMOD perimeters queue was on the syncq list, removeq() 1414 * should call propagate_syncq() or drain_syncq() for it. Both of these 1415 * function remove the queue from its syncq list, so sqthread will not 1416 * try to access the queue. 1417 */ 1418 if (!(qp->q_flag & QPERMOD)) { 1419 syncq_t *rsq = qp->q_syncq; 1420 syncq_t *wsq = wqp->q_syncq; 1421 1422 /* 1423 * Disable rsq and wsq and wait for any background processing of 1424 * syncq to complete. 1425 */ 1426 wait_sq_svc(rsq); 1427 if (wsq != rsq) 1428 wait_sq_svc(wsq); 1429 } 1430 1431 mutex_enter(QLOCK(qp)); 1432 while (qp->q_flag & (QINSERVICE|QENAB)) 1433 cv_wait(&qp->q_wait, QLOCK(qp)); 1434 mutex_exit(QLOCK(qp)); 1435 mutex_enter(QLOCK(wqp)); 1436 while (wqp->q_flag & (QINSERVICE|QENAB)) 1437 cv_wait(&wqp->q_wait, QLOCK(wqp)); 1438 mutex_exit(QLOCK(wqp)); 1439 } 1440 1441 /* 1442 * Put ioctl data from userland buffer `arg' into the mblk chain `bp'. 1443 * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may 1444 * also be set, and is passed through to allocb_cred_wait(). 1445 * 1446 * Returns errno on failure, zero on success. 1447 */ 1448 int 1449 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr) 1450 { 1451 mblk_t *tmp; 1452 ssize_t count; 1453 size_t n; 1454 int error = 0; 1455 1456 ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K || 1457 (flag & (U_TO_K | K_TO_K)) == K_TO_K); 1458 1459 if (bp->b_datap->db_type == M_IOCTL) { 1460 count = ((struct iocblk *)bp->b_rptr)->ioc_count; 1461 } else { 1462 ASSERT(bp->b_datap->db_type == M_COPYIN); 1463 count = ((struct copyreq *)bp->b_rptr)->cq_size; 1464 } 1465 /* 1466 * strdoioctl validates ioc_count, so if this assert fails it 1467 * cannot be due to user error. 1468 */ 1469 ASSERT(count >= 0); 1470 1471 while (count > 0) { 1472 n = MIN(MAXIOCBSZ, count); 1473 if ((tmp = allocb_cred_wait(n, (flag & STR_NOSIG), &error, 1474 cr)) == NULL) { 1475 return (error); 1476 } 1477 error = strcopyin(arg, tmp->b_wptr, n, flag & (U_TO_K|K_TO_K)); 1478 if (error != 0) { 1479 freeb(tmp); 1480 return (error); 1481 } 1482 arg += n; 1483 DB_CPID(tmp) = curproc->p_pid; 1484 tmp->b_wptr += n; 1485 count -= n; 1486 bp = (bp->b_cont = tmp); 1487 } 1488 1489 return (0); 1490 } 1491 1492 /* 1493 * Copy ioctl data to user-land. Return non-zero errno on failure, 1494 * 0 for success. 1495 */ 1496 int 1497 getiocd(mblk_t *bp, char *arg, int copymode) 1498 { 1499 ssize_t count; 1500 size_t n; 1501 int error; 1502 1503 if (bp->b_datap->db_type == M_IOCACK) 1504 count = ((struct iocblk *)bp->b_rptr)->ioc_count; 1505 else { 1506 ASSERT(bp->b_datap->db_type == M_COPYOUT); 1507 count = ((struct copyreq *)bp->b_rptr)->cq_size; 1508 } 1509 ASSERT(count >= 0); 1510 1511 for (bp = bp->b_cont; bp && count; 1512 count -= n, bp = bp->b_cont, arg += n) { 1513 n = MIN(count, bp->b_wptr - bp->b_rptr); 1514 error = strcopyout(bp->b_rptr, arg, n, copymode); 1515 if (error) 1516 return (error); 1517 } 1518 ASSERT(count == 0); 1519 return (0); 1520 } 1521 1522 /* 1523 * Allocate a linkinfo entry given the write queue of the 1524 * bottom module of the top stream and the write queue of the 1525 * stream head of the bottom stream. 1526 */ 1527 linkinfo_t * 1528 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown) 1529 { 1530 linkinfo_t *linkp; 1531 1532 linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP); 1533 1534 linkp->li_lblk.l_qtop = qup; 1535 linkp->li_lblk.l_qbot = qdown; 1536 linkp->li_fpdown = fpdown; 1537 1538 mutex_enter(&strresources); 1539 linkp->li_next = linkinfo_list; 1540 linkp->li_prev = NULL; 1541 if (linkp->li_next) 1542 linkp->li_next->li_prev = linkp; 1543 linkinfo_list = linkp; 1544 linkp->li_lblk.l_index = ++lnk_id; 1545 ASSERT(lnk_id != 0); /* this should never wrap in practice */ 1546 mutex_exit(&strresources); 1547 1548 return (linkp); 1549 } 1550 1551 /* 1552 * Free a linkinfo entry. 1553 */ 1554 void 1555 lbfree(linkinfo_t *linkp) 1556 { 1557 mutex_enter(&strresources); 1558 if (linkp->li_next) 1559 linkp->li_next->li_prev = linkp->li_prev; 1560 if (linkp->li_prev) 1561 linkp->li_prev->li_next = linkp->li_next; 1562 else 1563 linkinfo_list = linkp->li_next; 1564 mutex_exit(&strresources); 1565 1566 kmem_cache_free(linkinfo_cache, linkp); 1567 } 1568 1569 /* 1570 * Check for a potential linking cycle. 1571 * Return 1 if a link will result in a cycle, 1572 * and 0 otherwise. 1573 */ 1574 int 1575 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss) 1576 { 1577 struct mux_node *np; 1578 struct mux_edge *ep; 1579 int i; 1580 major_t lomaj; 1581 major_t upmaj; 1582 /* 1583 * if the lower stream is a pipe/FIFO, return, since link 1584 * cycles can not happen on pipes/FIFOs 1585 */ 1586 if (lostp->sd_vnode->v_type == VFIFO) 1587 return (0); 1588 1589 for (i = 0; i < ss->ss_devcnt; i++) { 1590 np = &ss->ss_mux_nodes[i]; 1591 MUX_CLEAR(np); 1592 } 1593 lomaj = getmajor(lostp->sd_vnode->v_rdev); 1594 upmaj = getmajor(upstp->sd_vnode->v_rdev); 1595 np = &ss->ss_mux_nodes[lomaj]; 1596 for (;;) { 1597 if (!MUX_DIDVISIT(np)) { 1598 if (np->mn_imaj == upmaj) 1599 return (1); 1600 if (np->mn_outp == NULL) { 1601 MUX_VISIT(np); 1602 if (np->mn_originp == NULL) 1603 return (0); 1604 np = np->mn_originp; 1605 continue; 1606 } 1607 MUX_VISIT(np); 1608 np->mn_startp = np->mn_outp; 1609 } else { 1610 if (np->mn_startp == NULL) { 1611 if (np->mn_originp == NULL) 1612 return (0); 1613 else { 1614 np = np->mn_originp; 1615 continue; 1616 } 1617 } 1618 /* 1619 * If ep->me_nodep is a FIFO (me_nodep == NULL), 1620 * ignore the edge and move on. ep->me_nodep gets 1621 * set to NULL in mux_addedge() if it is a FIFO. 1622 * 1623 */ 1624 ep = np->mn_startp; 1625 np->mn_startp = ep->me_nextp; 1626 if (ep->me_nodep == NULL) 1627 continue; 1628 ep->me_nodep->mn_originp = np; 1629 np = ep->me_nodep; 1630 } 1631 } 1632 } 1633 1634 /* 1635 * Find linkinfo entry corresponding to the parameters. 1636 */ 1637 linkinfo_t * 1638 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss) 1639 { 1640 linkinfo_t *linkp; 1641 struct mux_edge *mep; 1642 struct mux_node *mnp; 1643 queue_t *qup; 1644 1645 mutex_enter(&strresources); 1646 if ((type & LINKTYPEMASK) == LINKNORMAL) { 1647 qup = getendq(stp->sd_wrq); 1648 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) { 1649 if ((qup == linkp->li_lblk.l_qtop) && 1650 (!index || (index == linkp->li_lblk.l_index))) { 1651 mutex_exit(&strresources); 1652 return (linkp); 1653 } 1654 } 1655 } else { 1656 ASSERT((type & LINKTYPEMASK) == LINKPERSIST); 1657 mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)]; 1658 mep = mnp->mn_outp; 1659 while (mep) { 1660 if ((index == 0) || (index == mep->me_muxid)) 1661 break; 1662 mep = mep->me_nextp; 1663 } 1664 if (!mep) { 1665 mutex_exit(&strresources); 1666 return (NULL); 1667 } 1668 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) { 1669 if ((!linkp->li_lblk.l_qtop) && 1670 (mep->me_muxid == linkp->li_lblk.l_index)) { 1671 mutex_exit(&strresources); 1672 return (linkp); 1673 } 1674 } 1675 } 1676 mutex_exit(&strresources); 1677 return (NULL); 1678 } 1679 1680 /* 1681 * Given a queue ptr, follow the chain of q_next pointers until you reach the 1682 * last queue on the chain and return it. 1683 */ 1684 queue_t * 1685 getendq(queue_t *q) 1686 { 1687 ASSERT(q != NULL); 1688 while (_SAMESTR(q)) 1689 q = q->q_next; 1690 return (q); 1691 } 1692 1693 /* 1694 * wait for the syncq count to drop to zero. 1695 * sq could be either outer or inner. 1696 */ 1697 1698 static void 1699 wait_syncq(syncq_t *sq) 1700 { 1701 uint16_t count; 1702 1703 mutex_enter(SQLOCK(sq)); 1704 count = sq->sq_count; 1705 SQ_PUTLOCKS_ENTER(sq); 1706 SUM_SQ_PUTCOUNTS(sq, count); 1707 while (count != 0) { 1708 sq->sq_flags |= SQ_WANTWAKEUP; 1709 SQ_PUTLOCKS_EXIT(sq); 1710 cv_wait(&sq->sq_wait, SQLOCK(sq)); 1711 count = sq->sq_count; 1712 SQ_PUTLOCKS_ENTER(sq); 1713 SUM_SQ_PUTCOUNTS(sq, count); 1714 } 1715 SQ_PUTLOCKS_EXIT(sq); 1716 mutex_exit(SQLOCK(sq)); 1717 } 1718 1719 /* 1720 * Wait while there are any messages for the queue in its syncq. 1721 */ 1722 static void 1723 wait_q_syncq(queue_t *q) 1724 { 1725 if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) { 1726 syncq_t *sq = q->q_syncq; 1727 1728 mutex_enter(SQLOCK(sq)); 1729 while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) { 1730 sq->sq_flags |= SQ_WANTWAKEUP; 1731 cv_wait(&sq->sq_wait, SQLOCK(sq)); 1732 } 1733 mutex_exit(SQLOCK(sq)); 1734 } 1735 } 1736 1737 1738 int 1739 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp, 1740 int lhlink) 1741 { 1742 struct stdata *stp; 1743 struct strioctl strioc; 1744 struct linkinfo *linkp; 1745 struct stdata *stpdown; 1746 struct streamtab *str; 1747 queue_t *passq; 1748 syncq_t *passyncq; 1749 queue_t *rq; 1750 cdevsw_impl_t *dp; 1751 uint32_t qflag; 1752 uint32_t sqtype; 1753 perdm_t *dmp; 1754 int error = 0; 1755 netstack_t *ns; 1756 str_stack_t *ss; 1757 1758 stp = vp->v_stream; 1759 TRACE_1(TR_FAC_STREAMS_FR, 1760 TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp); 1761 /* 1762 * Test for invalid upper stream 1763 */ 1764 if (stp->sd_flag & STRHUP) { 1765 return (ENXIO); 1766 } 1767 if (vp->v_type == VFIFO) { 1768 return (EINVAL); 1769 } 1770 if (stp->sd_strtab == NULL) { 1771 return (EINVAL); 1772 } 1773 if (!stp->sd_strtab->st_muxwinit) { 1774 return (EINVAL); 1775 } 1776 if (fpdown == NULL) { 1777 return (EBADF); 1778 } 1779 ns = netstack_find_by_cred(crp); 1780 ASSERT(ns != NULL); 1781 ss = ns->netstack_str; 1782 ASSERT(ss != NULL); 1783 1784 if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) { 1785 netstack_rele(ss->ss_netstack); 1786 return (EINVAL); 1787 } 1788 mutex_enter(&muxifier); 1789 if (stp->sd_flag & STPLEX) { 1790 mutex_exit(&muxifier); 1791 netstack_rele(ss->ss_netstack); 1792 return (ENXIO); 1793 } 1794 1795 /* 1796 * Test for invalid lower stream. 1797 * The check for the v_type != VFIFO and having a major 1798 * number not >= devcnt is done to avoid problems with 1799 * adding mux_node entry past the end of mux_nodes[]. 1800 * For FIFO's we don't add an entry so this isn't a 1801 * problem. 1802 */ 1803 if (((stpdown = fpdown->f_vnode->v_stream) == NULL) || 1804 (stpdown == stp) || (stpdown->sd_flag & 1805 (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) || 1806 ((stpdown->sd_vnode->v_type != VFIFO) && 1807 (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) || 1808 linkcycle(stp, stpdown, ss)) { 1809 mutex_exit(&muxifier); 1810 netstack_rele(ss->ss_netstack); 1811 return (EINVAL); 1812 } 1813 TRACE_1(TR_FAC_STREAMS_FR, 1814 TR_STPDOWN, "stpdown:%p", stpdown); 1815 rq = getendq(stp->sd_wrq); 1816 if (cmd == I_PLINK) 1817 rq = NULL; 1818 1819 linkp = alloclink(rq, stpdown->sd_wrq, fpdown); 1820 1821 strioc.ic_cmd = cmd; 1822 strioc.ic_timout = INFTIM; 1823 strioc.ic_len = sizeof (struct linkblk); 1824 strioc.ic_dp = (char *)&linkp->li_lblk; 1825 1826 /* 1827 * STRPLUMB protects plumbing changes and should be set before 1828 * link_addpassthru()/link_rempassthru() are called, so it is set here 1829 * and cleared in the end of mlink when passthru queue is removed. 1830 * Setting of STRPLUMB prevents reopens of the stream while passthru 1831 * queue is in-place (it is not a proper module and doesn't have open 1832 * entry point). 1833 * 1834 * STPLEX prevents any threads from entering the stream from above. It 1835 * can't be set before the call to link_addpassthru() because putnext 1836 * from below may cause stream head I/O routines to be called and these 1837 * routines assert that STPLEX is not set. After link_addpassthru() 1838 * nothing may come from below since the pass queue syncq is blocked. 1839 * Note also that STPLEX should be cleared before the call to 1840 * link_remmpassthru() since when messages start flowing to the stream 1841 * head (e.g. because of message propagation from the pass queue) stream 1842 * head I/O routines may be called with STPLEX flag set. 1843 * 1844 * When STPLEX is set, nothing may come into the stream from above and 1845 * it is safe to do a setq which will change stream head. So, the 1846 * correct sequence of actions is: 1847 * 1848 * 1) Set STRPLUMB 1849 * 2) Call link_addpassthru() 1850 * 3) Set STPLEX 1851 * 4) Call setq and update the stream state 1852 * 5) Clear STPLEX 1853 * 6) Call link_rempassthru() 1854 * 7) Clear STRPLUMB 1855 * 1856 * The same sequence applies to munlink() code. 1857 */ 1858 mutex_enter(&stpdown->sd_lock); 1859 stpdown->sd_flag |= STRPLUMB; 1860 mutex_exit(&stpdown->sd_lock); 1861 /* 1862 * Add passthru queue below lower mux. This will block 1863 * syncqs of lower muxs read queue during I_LINK/I_UNLINK. 1864 */ 1865 passq = link_addpassthru(stpdown); 1866 1867 mutex_enter(&stpdown->sd_lock); 1868 stpdown->sd_flag |= STPLEX; 1869 mutex_exit(&stpdown->sd_lock); 1870 1871 rq = _RD(stpdown->sd_wrq); 1872 /* 1873 * There may be messages in the streamhead's syncq due to messages 1874 * that arrived before link_addpassthru() was done. To avoid 1875 * background processing of the syncq happening simultaneous with 1876 * setq processing, we disable the streamhead syncq and wait until 1877 * existing background thread finishes working on it. 1878 */ 1879 wait_sq_svc(rq->q_syncq); 1880 passyncq = passq->q_syncq; 1881 if (!(passyncq->sq_flags & SQ_BLOCKED)) 1882 blocksq(passyncq, SQ_BLOCKED, 0); 1883 1884 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE); 1885 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq)); 1886 rq->q_ptr = _WR(rq)->q_ptr = NULL; 1887 1888 /* setq might sleep in allocator - avoid holding locks. */ 1889 /* Note: we are holding muxifier here. */ 1890 1891 str = stp->sd_strtab; 1892 dp = &devimpl[getmajor(vp->v_rdev)]; 1893 ASSERT(dp->d_str == str); 1894 1895 qflag = dp->d_qflag; 1896 sqtype = dp->d_sqtype; 1897 1898 /* create perdm_t if needed */ 1899 if (NEED_DM(dp->d_dmp, qflag)) 1900 dp->d_dmp = hold_dm(str, qflag, sqtype); 1901 1902 dmp = dp->d_dmp; 1903 1904 setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype, 1905 B_TRUE); 1906 1907 /* 1908 * XXX Remove any "odd" messages from the queue. 1909 * Keep only M_DATA, M_PROTO, M_PCPROTO. 1910 */ 1911 error = strdoioctl(stp, &strioc, FNATIVE, 1912 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp); 1913 if (error != 0) { 1914 lbfree(linkp); 1915 1916 if (!(passyncq->sq_flags & SQ_BLOCKED)) 1917 blocksq(passyncq, SQ_BLOCKED, 0); 1918 /* 1919 * Restore the stream head queue and then remove 1920 * the passq. Turn off STPLEX before we turn on 1921 * the stream by removing the passq. 1922 */ 1923 rq->q_ptr = _WR(rq)->q_ptr = stpdown; 1924 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, 1925 B_TRUE); 1926 1927 mutex_enter(&stpdown->sd_lock); 1928 stpdown->sd_flag &= ~STPLEX; 1929 mutex_exit(&stpdown->sd_lock); 1930 1931 link_rempassthru(passq); 1932 1933 mutex_enter(&stpdown->sd_lock); 1934 stpdown->sd_flag &= ~STRPLUMB; 1935 /* Wakeup anyone waiting for STRPLUMB to clear. */ 1936 cv_broadcast(&stpdown->sd_monitor); 1937 mutex_exit(&stpdown->sd_lock); 1938 1939 mutex_exit(&muxifier); 1940 netstack_rele(ss->ss_netstack); 1941 return (error); 1942 } 1943 mutex_enter(&fpdown->f_tlock); 1944 fpdown->f_count++; 1945 mutex_exit(&fpdown->f_tlock); 1946 1947 /* 1948 * if we've made it here the linkage is all set up so we should also 1949 * set up the layered driver linkages 1950 */ 1951 1952 ASSERT((cmd == I_LINK) || (cmd == I_PLINK)); 1953 if (cmd == I_LINK) { 1954 ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL); 1955 } else { 1956 ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST); 1957 } 1958 1959 link_rempassthru(passq); 1960 1961 mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss); 1962 1963 /* 1964 * Mark the upper stream as having dependent links 1965 * so that strclose can clean it up. 1966 */ 1967 if (cmd == I_LINK) { 1968 mutex_enter(&stp->sd_lock); 1969 stp->sd_flag |= STRHASLINKS; 1970 mutex_exit(&stp->sd_lock); 1971 } 1972 /* 1973 * Wake up any other processes that may have been 1974 * waiting on the lower stream. These will all 1975 * error out. 1976 */ 1977 mutex_enter(&stpdown->sd_lock); 1978 /* The passthru module is removed so we may release STRPLUMB */ 1979 stpdown->sd_flag &= ~STRPLUMB; 1980 cv_broadcast(&rq->q_wait); 1981 cv_broadcast(&_WR(rq)->q_wait); 1982 cv_broadcast(&stpdown->sd_monitor); 1983 mutex_exit(&stpdown->sd_lock); 1984 mutex_exit(&muxifier); 1985 *rvalp = linkp->li_lblk.l_index; 1986 netstack_rele(ss->ss_netstack); 1987 return (0); 1988 } 1989 1990 int 1991 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink) 1992 { 1993 int ret; 1994 struct file *fpdown; 1995 1996 fpdown = getf(arg); 1997 ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink); 1998 if (fpdown != NULL) 1999 releasef(arg); 2000 return (ret); 2001 } 2002 2003 /* 2004 * Unlink a multiplexor link. Stp is the controlling stream for the 2005 * link, and linkp points to the link's entry in the linkinfo list. 2006 * The muxifier lock must be held on entry and is dropped on exit. 2007 * 2008 * NOTE : Currently it is assumed that mux would process all the messages 2009 * sitting on it's queue before ACKing the UNLINK. It is the responsibility 2010 * of the mux to handle all the messages that arrive before UNLINK. 2011 * If the mux has to send down messages on its lower stream before 2012 * ACKing I_UNLINK, then it *should* know to handle messages even 2013 * after the UNLINK is acked (actually it should be able to handle till we 2014 * re-block the read side of the pass queue here). If the mux does not 2015 * open up the lower stream, any messages that arrive during UNLINK 2016 * will be put in the stream head. In the case of lower stream opening 2017 * up, some messages might land in the stream head depending on when 2018 * the message arrived and when the read side of the pass queue was 2019 * re-blocked. 2020 */ 2021 int 2022 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp, 2023 str_stack_t *ss) 2024 { 2025 struct strioctl strioc; 2026 struct stdata *stpdown; 2027 queue_t *rq, *wrq; 2028 queue_t *passq; 2029 syncq_t *passyncq; 2030 int error = 0; 2031 file_t *fpdown; 2032 2033 ASSERT(MUTEX_HELD(&muxifier)); 2034 2035 stpdown = linkp->li_fpdown->f_vnode->v_stream; 2036 2037 /* 2038 * See the comment in mlink() concerning STRPLUMB/STPLEX flags. 2039 */ 2040 mutex_enter(&stpdown->sd_lock); 2041 stpdown->sd_flag |= STRPLUMB; 2042 mutex_exit(&stpdown->sd_lock); 2043 2044 /* 2045 * Add passthru queue below lower mux. This will block 2046 * syncqs of lower muxs read queue during I_LINK/I_UNLINK. 2047 */ 2048 passq = link_addpassthru(stpdown); 2049 2050 if ((flag & LINKTYPEMASK) == LINKNORMAL) 2051 strioc.ic_cmd = I_UNLINK; 2052 else 2053 strioc.ic_cmd = I_PUNLINK; 2054 strioc.ic_timout = INFTIM; 2055 strioc.ic_len = sizeof (struct linkblk); 2056 strioc.ic_dp = (char *)&linkp->li_lblk; 2057 2058 error = strdoioctl(stp, &strioc, FNATIVE, 2059 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp); 2060 2061 /* 2062 * If there was an error and this is not called via strclose, 2063 * return to the user. Otherwise, pretend there was no error 2064 * and close the link. 2065 */ 2066 if (error) { 2067 if (flag & LINKCLOSE) { 2068 cmn_err(CE_WARN, "KERNEL: munlink: could not perform " 2069 "unlink ioctl, closing anyway (%d)\n", error); 2070 } else { 2071 link_rempassthru(passq); 2072 mutex_enter(&stpdown->sd_lock); 2073 stpdown->sd_flag &= ~STRPLUMB; 2074 cv_broadcast(&stpdown->sd_monitor); 2075 mutex_exit(&stpdown->sd_lock); 2076 mutex_exit(&muxifier); 2077 return (error); 2078 } 2079 } 2080 2081 mux_rmvedge(stp, linkp->li_lblk.l_index, ss); 2082 fpdown = linkp->li_fpdown; 2083 lbfree(linkp); 2084 2085 /* 2086 * We go ahead and drop muxifier here--it's a nasty global lock that 2087 * can slow others down. It's okay to since attempts to mlink() this 2088 * stream will be stopped because STPLEX is still set in the stdata 2089 * structure, and munlink() is stopped because mux_rmvedge() and 2090 * lbfree() have removed it from mux_nodes[] and linkinfo_list, 2091 * respectively. Note that we defer the closef() of fpdown until 2092 * after we drop muxifier since strclose() can call munlinkall(). 2093 */ 2094 mutex_exit(&muxifier); 2095 2096 wrq = stpdown->sd_wrq; 2097 rq = _RD(wrq); 2098 2099 /* 2100 * Get rid of outstanding service procedure runs, before we make 2101 * it a stream head, since a stream head doesn't have any service 2102 * procedure. 2103 */ 2104 disable_svc(rq); 2105 wait_svc(rq); 2106 2107 /* 2108 * Since we don't disable the syncq for QPERMOD, we wait for whatever 2109 * is queued up to be finished. mux should take care that nothing is 2110 * send down to this queue. We should do it now as we're going to block 2111 * passyncq if it was unblocked. 2112 */ 2113 if (wrq->q_flag & QPERMOD) { 2114 syncq_t *sq = wrq->q_syncq; 2115 2116 mutex_enter(SQLOCK(sq)); 2117 while (wrq->q_sqflags & Q_SQQUEUED) { 2118 sq->sq_flags |= SQ_WANTWAKEUP; 2119 cv_wait(&sq->sq_wait, SQLOCK(sq)); 2120 } 2121 mutex_exit(SQLOCK(sq)); 2122 } 2123 passyncq = passq->q_syncq; 2124 if (!(passyncq->sq_flags & SQ_BLOCKED)) { 2125 2126 syncq_t *sq, *outer; 2127 2128 /* 2129 * Messages could be flowing from underneath. We will 2130 * block the read side of the passq. This would be 2131 * sufficient for QPAIR and QPERQ muxes to ensure 2132 * that no data is flowing up into this queue 2133 * and hence no thread active in this instance of 2134 * lower mux. But for QPERMOD and QMTOUTPERIM there 2135 * could be messages on the inner and outer/inner 2136 * syncqs respectively. We will wait for them to drain. 2137 * Because passq is blocked messages end up in the syncq 2138 * And qfill_syncq could possibly end up setting QFULL 2139 * which will access the rq->q_flag. Hence, we have to 2140 * acquire the QLOCK in setq. 2141 * 2142 * XXX Messages can also flow from top into this 2143 * queue though the unlink is over (Ex. some instance 2144 * in putnext() called from top that has still not 2145 * accessed this queue. And also putq(lowerq) ?). 2146 * Solution : How about blocking the l_qtop queue ? 2147 * Do we really care about such pure D_MP muxes ? 2148 */ 2149 2150 blocksq(passyncq, SQ_BLOCKED, 0); 2151 2152 sq = rq->q_syncq; 2153 if ((outer = sq->sq_outer) != NULL) { 2154 2155 /* 2156 * We have to just wait for the outer sq_count 2157 * drop to zero. As this does not prevent new 2158 * messages to enter the outer perimeter, this 2159 * is subject to starvation. 2160 * 2161 * NOTE :Because of blocksq above, messages could 2162 * be in the inner syncq only because of some 2163 * thread holding the outer perimeter exclusively. 2164 * Hence it would be sufficient to wait for the 2165 * exclusive holder of the outer perimeter to drain 2166 * the inner and outer syncqs. But we will not depend 2167 * on this feature and hence check the inner syncqs 2168 * separately. 2169 */ 2170 wait_syncq(outer); 2171 } 2172 2173 2174 /* 2175 * There could be messages destined for 2176 * this queue. Let the exclusive holder 2177 * drain it. 2178 */ 2179 2180 wait_syncq(sq); 2181 ASSERT((rq->q_flag & QPERMOD) || 2182 ((rq->q_syncq->sq_head == NULL) && 2183 (_WR(rq)->q_syncq->sq_head == NULL))); 2184 } 2185 2186 /* 2187 * We haven't taken care of QPERMOD case yet. QPERMOD is a special 2188 * case as we don't disable its syncq or remove it off the syncq 2189 * service list. 2190 */ 2191 if (rq->q_flag & QPERMOD) { 2192 syncq_t *sq = rq->q_syncq; 2193 2194 mutex_enter(SQLOCK(sq)); 2195 while (rq->q_sqflags & Q_SQQUEUED) { 2196 sq->sq_flags |= SQ_WANTWAKEUP; 2197 cv_wait(&sq->sq_wait, SQLOCK(sq)); 2198 } 2199 mutex_exit(SQLOCK(sq)); 2200 } 2201 2202 /* 2203 * flush_syncq changes states only when there is some messages to 2204 * free. ie when it returns non-zero value to return. 2205 */ 2206 ASSERT(flush_syncq(rq->q_syncq, rq) == 0); 2207 ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0); 2208 2209 /* 2210 * No body else should know about this queue now. 2211 * If the mux did not process the messages before 2212 * acking the I_UNLINK, free them now. 2213 */ 2214 2215 flushq(rq, FLUSHALL); 2216 flushq(_WR(rq), FLUSHALL); 2217 2218 /* 2219 * Convert the mux lower queue into a stream head queue. 2220 * Turn off STPLEX before we turn on the stream by removing the passq. 2221 */ 2222 rq->q_ptr = wrq->q_ptr = stpdown; 2223 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE); 2224 2225 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE); 2226 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq)); 2227 2228 enable_svc(rq); 2229 2230 /* 2231 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still 2232 * needs to be set to prevent reopen() of the stream - such reopen may 2233 * try to call non-existent pass queue open routine and panic. 2234 */ 2235 mutex_enter(&stpdown->sd_lock); 2236 stpdown->sd_flag &= ~STPLEX; 2237 mutex_exit(&stpdown->sd_lock); 2238 2239 ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) || 2240 ((flag & LINKTYPEMASK) == LINKPERSIST)); 2241 2242 /* clean up the layered driver linkages */ 2243 if ((flag & LINKTYPEMASK) == LINKNORMAL) { 2244 ldi_munlink_fp(stp, fpdown, LINKNORMAL); 2245 } else { 2246 ldi_munlink_fp(stp, fpdown, LINKPERSIST); 2247 } 2248 2249 link_rempassthru(passq); 2250 2251 /* 2252 * Now all plumbing changes are finished and STRPLUMB is no 2253 * longer needed. 2254 */ 2255 mutex_enter(&stpdown->sd_lock); 2256 stpdown->sd_flag &= ~STRPLUMB; 2257 cv_broadcast(&stpdown->sd_monitor); 2258 mutex_exit(&stpdown->sd_lock); 2259 2260 (void) closef(fpdown); 2261 return (0); 2262 } 2263 2264 /* 2265 * Unlink all multiplexor links for which stp is the controlling stream. 2266 * Return 0, or a non-zero errno on failure. 2267 */ 2268 int 2269 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss) 2270 { 2271 linkinfo_t *linkp; 2272 int error = 0; 2273 2274 mutex_enter(&muxifier); 2275 while (linkp = findlinks(stp, 0, flag, ss)) { 2276 /* 2277 * munlink() releases the muxifier lock. 2278 */ 2279 if (error = munlink(stp, linkp, flag, crp, rvalp, ss)) 2280 return (error); 2281 mutex_enter(&muxifier); 2282 } 2283 mutex_exit(&muxifier); 2284 return (0); 2285 } 2286 2287 /* 2288 * A multiplexor link has been made. Add an 2289 * edge to the directed graph. 2290 */ 2291 void 2292 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss) 2293 { 2294 struct mux_node *np; 2295 struct mux_edge *ep; 2296 major_t upmaj; 2297 major_t lomaj; 2298 2299 upmaj = getmajor(upstp->sd_vnode->v_rdev); 2300 lomaj = getmajor(lostp->sd_vnode->v_rdev); 2301 np = &ss->ss_mux_nodes[upmaj]; 2302 if (np->mn_outp) { 2303 ep = np->mn_outp; 2304 while (ep->me_nextp) 2305 ep = ep->me_nextp; 2306 ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP); 2307 ep = ep->me_nextp; 2308 } else { 2309 np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP); 2310 ep = np->mn_outp; 2311 } 2312 ep->me_nextp = NULL; 2313 ep->me_muxid = muxid; 2314 /* 2315 * Save the dev_t for the purposes of str_stack_shutdown. 2316 * str_stack_shutdown assumes that the device allows reopen, since 2317 * this dev_t is the one after any cloning by xx_open(). 2318 * Would prefer finding the dev_t from before any cloning, 2319 * but specfs doesn't retain that. 2320 */ 2321 ep->me_dev = upstp->sd_vnode->v_rdev; 2322 if (lostp->sd_vnode->v_type == VFIFO) 2323 ep->me_nodep = NULL; 2324 else 2325 ep->me_nodep = &ss->ss_mux_nodes[lomaj]; 2326 } 2327 2328 /* 2329 * A multiplexor link has been removed. Remove the 2330 * edge in the directed graph. 2331 */ 2332 void 2333 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss) 2334 { 2335 struct mux_node *np; 2336 struct mux_edge *ep; 2337 struct mux_edge *pep = NULL; 2338 major_t upmaj; 2339 2340 upmaj = getmajor(upstp->sd_vnode->v_rdev); 2341 np = &ss->ss_mux_nodes[upmaj]; 2342 ASSERT(np->mn_outp != NULL); 2343 ep = np->mn_outp; 2344 while (ep) { 2345 if (ep->me_muxid == muxid) { 2346 if (pep) 2347 pep->me_nextp = ep->me_nextp; 2348 else 2349 np->mn_outp = ep->me_nextp; 2350 kmem_free(ep, sizeof (struct mux_edge)); 2351 return; 2352 } 2353 pep = ep; 2354 ep = ep->me_nextp; 2355 } 2356 ASSERT(0); /* should not reach here */ 2357 } 2358 2359 /* 2360 * Translate the device flags (from conf.h) to the corresponding 2361 * qflag and sq_flag (type) values. 2362 */ 2363 int 2364 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp, 2365 uint32_t *sqtypep) 2366 { 2367 uint32_t qflag = 0; 2368 uint32_t sqtype = 0; 2369 2370 if (devflag & _D_OLD) 2371 goto bad; 2372 2373 /* Inner perimeter presence and scope */ 2374 switch (devflag & D_MTINNER_MASK) { 2375 case D_MP: 2376 qflag |= QMTSAFE; 2377 sqtype |= SQ_CI; 2378 break; 2379 case D_MTPERQ|D_MP: 2380 qflag |= QPERQ; 2381 break; 2382 case D_MTQPAIR|D_MP: 2383 qflag |= QPAIR; 2384 break; 2385 case D_MTPERMOD|D_MP: 2386 qflag |= QPERMOD; 2387 break; 2388 default: 2389 goto bad; 2390 } 2391 2392 /* Outer perimeter */ 2393 if (devflag & D_MTOUTPERIM) { 2394 switch (devflag & D_MTINNER_MASK) { 2395 case D_MP: 2396 case D_MTPERQ|D_MP: 2397 case D_MTQPAIR|D_MP: 2398 break; 2399 default: 2400 goto bad; 2401 } 2402 qflag |= QMTOUTPERIM; 2403 } 2404 2405 /* Inner perimeter modifiers */ 2406 if (devflag & D_MTINNER_MOD) { 2407 switch (devflag & D_MTINNER_MASK) { 2408 case D_MP: 2409 goto bad; 2410 default: 2411 break; 2412 } 2413 if (devflag & D_MTPUTSHARED) 2414 sqtype |= SQ_CIPUT; 2415 if (devflag & _D_MTOCSHARED) { 2416 /* 2417 * The code in putnext assumes that it has the 2418 * highest concurrency by not checking sq_count. 2419 * Thus _D_MTOCSHARED can only be supported when 2420 * D_MTPUTSHARED is set. 2421 */ 2422 if (!(devflag & D_MTPUTSHARED)) 2423 goto bad; 2424 sqtype |= SQ_CIOC; 2425 } 2426 if (devflag & _D_MTCBSHARED) { 2427 /* 2428 * The code in putnext assumes that it has the 2429 * highest concurrency by not checking sq_count. 2430 * Thus _D_MTCBSHARED can only be supported when 2431 * D_MTPUTSHARED is set. 2432 */ 2433 if (!(devflag & D_MTPUTSHARED)) 2434 goto bad; 2435 sqtype |= SQ_CICB; 2436 } 2437 if (devflag & _D_MTSVCSHARED) { 2438 /* 2439 * The code in putnext assumes that it has the 2440 * highest concurrency by not checking sq_count. 2441 * Thus _D_MTSVCSHARED can only be supported when 2442 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is 2443 * supported only for QPERMOD. 2444 */ 2445 if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD)) 2446 goto bad; 2447 sqtype |= SQ_CISVC; 2448 } 2449 } 2450 2451 /* Default outer perimeter concurrency */ 2452 sqtype |= SQ_CO; 2453 2454 /* Outer perimeter modifiers */ 2455 if (devflag & D_MTOCEXCL) { 2456 if (!(devflag & D_MTOUTPERIM)) { 2457 /* No outer perimeter */ 2458 goto bad; 2459 } 2460 sqtype &= ~SQ_COOC; 2461 } 2462 2463 /* Synchronous Streams extended qinit structure */ 2464 if (devflag & D_SYNCSTR) 2465 qflag |= QSYNCSTR; 2466 2467 /* 2468 * Private flag used by a transport module to indicate 2469 * to sockfs that it supports direct-access mode without 2470 * having to go through STREAMS or the transport can use 2471 * sodirect_t sharing to bypass STREAMS for receive-side 2472 * M_DATA processing. 2473 */ 2474 if (devflag & (_D_DIRECT|_D_SODIRECT)) { 2475 /* Reject unless the module is fully-MT (no perimeter) */ 2476 if ((qflag & QMT_TYPEMASK) != QMTSAFE) 2477 goto bad; 2478 if (devflag & _D_DIRECT) 2479 qflag |= _QDIRECT; 2480 if (devflag & _D_SODIRECT) 2481 qflag |= _QSODIRECT; 2482 } 2483 2484 *qflagp = qflag; 2485 *sqtypep = sqtype; 2486 return (0); 2487 2488 bad: 2489 cmn_err(CE_WARN, 2490 "stropen: bad MT flags (0x%x) in driver '%s'", 2491 (int)(qflag & D_MTSAFETY_MASK), 2492 stp->st_rdinit->qi_minfo->mi_idname); 2493 2494 return (EINVAL); 2495 } 2496 2497 /* 2498 * Set the interface values for a pair of queues (qinit structure, 2499 * packet sizes, water marks). 2500 * setq assumes that the caller does not have a claim (entersq or claimq) 2501 * on the queue. 2502 */ 2503 void 2504 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit, 2505 perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed) 2506 { 2507 queue_t *wq; 2508 syncq_t *sq, *outer; 2509 2510 ASSERT(rq->q_flag & QREADR); 2511 ASSERT((qflag & QMT_TYPEMASK) != 0); 2512 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL); 2513 2514 wq = _WR(rq); 2515 rq->q_qinfo = rinit; 2516 rq->q_hiwat = rinit->qi_minfo->mi_hiwat; 2517 rq->q_lowat = rinit->qi_minfo->mi_lowat; 2518 rq->q_minpsz = rinit->qi_minfo->mi_minpsz; 2519 rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz; 2520 wq->q_qinfo = winit; 2521 wq->q_hiwat = winit->qi_minfo->mi_hiwat; 2522 wq->q_lowat = winit->qi_minfo->mi_lowat; 2523 wq->q_minpsz = winit->qi_minfo->mi_minpsz; 2524 wq->q_maxpsz = winit->qi_minfo->mi_maxpsz; 2525 2526 /* Remove old syncqs */ 2527 sq = rq->q_syncq; 2528 outer = sq->sq_outer; 2529 if (outer != NULL) { 2530 ASSERT(wq->q_syncq->sq_outer == outer); 2531 outer_remove(outer, rq->q_syncq); 2532 if (wq->q_syncq != rq->q_syncq) 2533 outer_remove(outer, wq->q_syncq); 2534 } 2535 ASSERT(sq->sq_outer == NULL); 2536 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL); 2537 2538 if (sq != SQ(rq)) { 2539 if (!(rq->q_flag & QPERMOD)) 2540 free_syncq(sq); 2541 if (wq->q_syncq == rq->q_syncq) 2542 wq->q_syncq = NULL; 2543 rq->q_syncq = NULL; 2544 } 2545 if (wq->q_syncq != NULL && wq->q_syncq != sq && 2546 wq->q_syncq != SQ(rq)) { 2547 free_syncq(wq->q_syncq); 2548 wq->q_syncq = NULL; 2549 } 2550 ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL && 2551 rq->q_syncq->sq_tail == NULL)); 2552 ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL && 2553 wq->q_syncq->sq_tail == NULL)); 2554 2555 if (!(rq->q_flag & QPERMOD) && 2556 rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) { 2557 ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1); 2558 SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl, 2559 rq->q_syncq->sq_nciputctrl, 0); 2560 ASSERT(ciputctrl_cache != NULL); 2561 kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl); 2562 rq->q_syncq->sq_ciputctrl = NULL; 2563 rq->q_syncq->sq_nciputctrl = 0; 2564 } 2565 2566 if (!(wq->q_flag & QPERMOD) && 2567 wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) { 2568 ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1); 2569 SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl, 2570 wq->q_syncq->sq_nciputctrl, 0); 2571 ASSERT(ciputctrl_cache != NULL); 2572 kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl); 2573 wq->q_syncq->sq_ciputctrl = NULL; 2574 wq->q_syncq->sq_nciputctrl = 0; 2575 } 2576 2577 sq = SQ(rq); 2578 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL); 2579 ASSERT(sq->sq_outer == NULL); 2580 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL); 2581 2582 /* 2583 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS 2584 * bits in sq_flag based on the sqtype. 2585 */ 2586 ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0); 2587 2588 rq->q_syncq = wq->q_syncq = sq; 2589 sq->sq_type = sqtype; 2590 sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS); 2591 2592 /* 2593 * We are making sq_svcflags zero, 2594 * resetting SQ_DISABLED in case it was set by 2595 * wait_svc() in the munlink path. 2596 * 2597 */ 2598 ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0); 2599 sq->sq_svcflags = 0; 2600 2601 /* 2602 * We need to acquire the lock here for the mlink and munlink case, 2603 * where canputnext, backenable, etc can access the q_flag. 2604 */ 2605 if (lock_needed) { 2606 mutex_enter(QLOCK(rq)); 2607 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2608 mutex_exit(QLOCK(rq)); 2609 mutex_enter(QLOCK(wq)); 2610 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2611 mutex_exit(QLOCK(wq)); 2612 } else { 2613 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2614 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag; 2615 } 2616 2617 if (qflag & QPERQ) { 2618 /* Allocate a separate syncq for the write side */ 2619 sq = new_syncq(); 2620 sq->sq_type = rq->q_syncq->sq_type; 2621 sq->sq_flags = rq->q_syncq->sq_flags; 2622 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL && 2623 sq->sq_oprev == NULL); 2624 wq->q_syncq = sq; 2625 } 2626 if (qflag & QPERMOD) { 2627 sq = dmp->dm_sq; 2628 2629 /* 2630 * Assert that we do have an inner perimeter syncq and that it 2631 * does not have an outer perimeter associated with it. 2632 */ 2633 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL && 2634 sq->sq_oprev == NULL); 2635 rq->q_syncq = wq->q_syncq = sq; 2636 } 2637 if (qflag & QMTOUTPERIM) { 2638 outer = dmp->dm_sq; 2639 2640 ASSERT(outer->sq_outer == NULL); 2641 outer_insert(outer, rq->q_syncq); 2642 if (wq->q_syncq != rq->q_syncq) 2643 outer_insert(outer, wq->q_syncq); 2644 } 2645 ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) == 2646 (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS)); 2647 ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) == 2648 (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS)); 2649 ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK)); 2650 2651 /* 2652 * Initialize struio() types. 2653 */ 2654 rq->q_struiot = 2655 (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE; 2656 wq->q_struiot = 2657 (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE; 2658 } 2659 2660 perdm_t * 2661 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype) 2662 { 2663 syncq_t *sq; 2664 perdm_t **pp; 2665 perdm_t *p; 2666 perdm_t *dmp; 2667 2668 ASSERT(str != NULL); 2669 ASSERT(qflag & (QPERMOD | QMTOUTPERIM)); 2670 2671 rw_enter(&perdm_rwlock, RW_READER); 2672 for (p = perdm_list; p != NULL; p = p->dm_next) { 2673 if (p->dm_str == str) { /* found one */ 2674 atomic_add_32(&(p->dm_ref), 1); 2675 rw_exit(&perdm_rwlock); 2676 return (p); 2677 } 2678 } 2679 rw_exit(&perdm_rwlock); 2680 2681 sq = new_syncq(); 2682 if (qflag & QPERMOD) { 2683 sq->sq_type = sqtype | SQ_PERMOD; 2684 sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS; 2685 } else { 2686 ASSERT(qflag & QMTOUTPERIM); 2687 sq->sq_onext = sq->sq_oprev = sq; 2688 } 2689 2690 dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP); 2691 dmp->dm_sq = sq; 2692 dmp->dm_str = str; 2693 dmp->dm_ref = 1; 2694 dmp->dm_next = NULL; 2695 2696 rw_enter(&perdm_rwlock, RW_WRITER); 2697 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) { 2698 if (p->dm_str == str) { /* already present */ 2699 p->dm_ref++; 2700 rw_exit(&perdm_rwlock); 2701 free_syncq(sq); 2702 kmem_free(dmp, sizeof (perdm_t)); 2703 return (p); 2704 } 2705 } 2706 2707 *pp = dmp; 2708 rw_exit(&perdm_rwlock); 2709 return (dmp); 2710 } 2711 2712 void 2713 rele_dm(perdm_t *dmp) 2714 { 2715 perdm_t **pp; 2716 perdm_t *p; 2717 2718 rw_enter(&perdm_rwlock, RW_WRITER); 2719 ASSERT(dmp->dm_ref > 0); 2720 2721 if (--dmp->dm_ref > 0) { 2722 rw_exit(&perdm_rwlock); 2723 return; 2724 } 2725 2726 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) 2727 if (p == dmp) 2728 break; 2729 ASSERT(p == dmp); 2730 *pp = p->dm_next; 2731 rw_exit(&perdm_rwlock); 2732 2733 /* 2734 * Wait for any background processing that relies on the 2735 * syncq to complete before it is freed. 2736 */ 2737 wait_sq_svc(p->dm_sq); 2738 free_syncq(p->dm_sq); 2739 kmem_free(p, sizeof (perdm_t)); 2740 } 2741 2742 /* 2743 * Make a protocol message given control and data buffers. 2744 * n.b., this can block; be careful of what locks you hold when calling it. 2745 * 2746 * If sd_maxblk is less than *iosize this routine can fail part way through 2747 * (due to an allocation failure). In this case on return *iosize will contain 2748 * the amount that was consumed. Otherwise *iosize will not be modified 2749 * i.e. it will contain the amount that was consumed. 2750 */ 2751 int 2752 strmakemsg( 2753 struct strbuf *mctl, 2754 ssize_t *iosize, 2755 struct uio *uiop, 2756 stdata_t *stp, 2757 int32_t flag, 2758 mblk_t **mpp) 2759 { 2760 mblk_t *mpctl = NULL; 2761 mblk_t *mpdata = NULL; 2762 int error; 2763 2764 ASSERT(uiop != NULL); 2765 2766 *mpp = NULL; 2767 /* Create control part, if any */ 2768 if ((mctl != NULL) && (mctl->len >= 0)) { 2769 error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl); 2770 if (error) 2771 return (error); 2772 } 2773 /* Create data part, if any */ 2774 if (*iosize >= 0) { 2775 error = strmakedata(iosize, uiop, stp, flag, &mpdata); 2776 if (error) { 2777 freemsg(mpctl); 2778 return (error); 2779 } 2780 } 2781 if (mpctl != NULL) { 2782 if (mpdata != NULL) 2783 linkb(mpctl, mpdata); 2784 *mpp = mpctl; 2785 } else { 2786 *mpp = mpdata; 2787 } 2788 return (0); 2789 } 2790 2791 /* 2792 * Make the control part of a protocol message given a control buffer. 2793 * n.b., this can block; be careful of what locks you hold when calling it. 2794 */ 2795 int 2796 strmakectl( 2797 struct strbuf *mctl, 2798 int32_t flag, 2799 int32_t fflag, 2800 mblk_t **mpp) 2801 { 2802 mblk_t *bp = NULL; 2803 unsigned char msgtype; 2804 int error = 0; 2805 2806 *mpp = NULL; 2807 /* 2808 * Create control part of message, if any. 2809 */ 2810 if ((mctl != NULL) && (mctl->len >= 0)) { 2811 caddr_t base; 2812 int ctlcount; 2813 int allocsz; 2814 2815 if (flag & RS_HIPRI) 2816 msgtype = M_PCPROTO; 2817 else 2818 msgtype = M_PROTO; 2819 2820 ctlcount = mctl->len; 2821 base = mctl->buf; 2822 2823 /* 2824 * Give modules a better chance to reuse M_PROTO/M_PCPROTO 2825 * blocks by increasing the size to something more usable. 2826 */ 2827 allocsz = MAX(ctlcount, 64); 2828 2829 /* 2830 * Range checking has already been done; simply try 2831 * to allocate a message block for the ctl part. 2832 */ 2833 while (!(bp = allocb(allocsz, BPRI_MED))) { 2834 if (fflag & (FNDELAY|FNONBLOCK)) 2835 return (EAGAIN); 2836 if (error = strwaitbuf(allocsz, BPRI_MED)) 2837 return (error); 2838 } 2839 2840 bp->b_datap->db_type = msgtype; 2841 if (copyin(base, bp->b_wptr, ctlcount)) { 2842 freeb(bp); 2843 return (EFAULT); 2844 } 2845 bp->b_wptr += ctlcount; 2846 } 2847 *mpp = bp; 2848 return (0); 2849 } 2850 2851 /* 2852 * Make a protocol message given data buffers. 2853 * n.b., this can block; be careful of what locks you hold when calling it. 2854 * 2855 * If sd_maxblk is less than *iosize this routine can fail part way through 2856 * (due to an allocation failure). In this case on return *iosize will contain 2857 * the amount that was consumed. Otherwise *iosize will not be modified 2858 * i.e. it will contain the amount that was consumed. 2859 */ 2860 int 2861 strmakedata( 2862 ssize_t *iosize, 2863 struct uio *uiop, 2864 stdata_t *stp, 2865 int32_t flag, 2866 mblk_t **mpp) 2867 { 2868 mblk_t *mp = NULL; 2869 mblk_t *bp; 2870 int wroff = (int)stp->sd_wroff; 2871 int tail_len = (int)stp->sd_tail; 2872 int extra = wroff + tail_len; 2873 int error = 0; 2874 ssize_t maxblk; 2875 ssize_t count = *iosize; 2876 cred_t *cr = CRED(); 2877 2878 *mpp = NULL; 2879 if (count < 0) 2880 return (0); 2881 2882 maxblk = stp->sd_maxblk; 2883 if (maxblk == INFPSZ) 2884 maxblk = count; 2885 2886 /* 2887 * Create data part of message, if any. 2888 */ 2889 do { 2890 ssize_t size; 2891 dblk_t *dp; 2892 2893 ASSERT(uiop); 2894 2895 size = MIN(count, maxblk); 2896 2897 while ((bp = allocb_cred(size + extra, cr)) == NULL) { 2898 error = EAGAIN; 2899 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) || 2900 (error = strwaitbuf(size + extra, BPRI_MED)) != 0) { 2901 if (count == *iosize) { 2902 freemsg(mp); 2903 return (error); 2904 } else { 2905 *iosize -= count; 2906 *mpp = mp; 2907 return (0); 2908 } 2909 } 2910 } 2911 dp = bp->b_datap; 2912 dp->db_cpid = curproc->p_pid; 2913 ASSERT(wroff <= dp->db_lim - bp->b_wptr); 2914 bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff; 2915 2916 if (flag & STRUIO_POSTPONE) { 2917 /* 2918 * Setup the stream uio portion of the 2919 * dblk for subsequent use by struioget(). 2920 */ 2921 dp->db_struioflag = STRUIO_SPEC; 2922 dp->db_cksumstart = 0; 2923 dp->db_cksumstuff = 0; 2924 dp->db_cksumend = size; 2925 *(long long *)dp->db_struioun.data = 0ll; 2926 bp->b_wptr += size; 2927 } else { 2928 if (stp->sd_copyflag & STRCOPYCACHED) 2929 uiop->uio_extflg |= UIO_COPY_CACHED; 2930 2931 if (size != 0) { 2932 error = uiomove(bp->b_wptr, size, UIO_WRITE, 2933 uiop); 2934 if (error != 0) { 2935 freeb(bp); 2936 freemsg(mp); 2937 return (error); 2938 } 2939 } 2940 bp->b_wptr += size; 2941 2942 if (stp->sd_wputdatafunc != NULL) { 2943 mblk_t *newbp; 2944 2945 newbp = (stp->sd_wputdatafunc)(stp->sd_vnode, 2946 bp, NULL, NULL, NULL, NULL); 2947 if (newbp == NULL) { 2948 freeb(bp); 2949 freemsg(mp); 2950 return (ECOMM); 2951 } 2952 bp = newbp; 2953 } 2954 } 2955 2956 count -= size; 2957 2958 if (mp == NULL) 2959 mp = bp; 2960 else 2961 linkb(mp, bp); 2962 } while (count > 0); 2963 2964 *mpp = mp; 2965 return (0); 2966 } 2967 2968 /* 2969 * Wait for a buffer to become available. Return non-zero errno 2970 * if not able to wait, 0 if buffer is probably there. 2971 */ 2972 int 2973 strwaitbuf(size_t size, int pri) 2974 { 2975 bufcall_id_t id; 2976 2977 mutex_enter(&bcall_monitor); 2978 if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast, 2979 &ttoproc(curthread)->p_flag_cv)) == 0) { 2980 mutex_exit(&bcall_monitor); 2981 return (ENOSR); 2982 } 2983 if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) { 2984 unbufcall(id); 2985 mutex_exit(&bcall_monitor); 2986 return (EINTR); 2987 } 2988 unbufcall(id); 2989 mutex_exit(&bcall_monitor); 2990 return (0); 2991 } 2992 2993 /* 2994 * This function waits for a read or write event to happen on a stream. 2995 * fmode can specify FNDELAY and/or FNONBLOCK. 2996 * The timeout is in ms with -1 meaning infinite. 2997 * The flag values work as follows: 2998 * READWAIT Check for read side errors, send M_READ 2999 * GETWAIT Check for read side errors, no M_READ 3000 * WRITEWAIT Check for write side errors. 3001 * NOINTR Do not return error if nonblocking or timeout. 3002 * STR_NOERROR Ignore all errors except STPLEX. 3003 * STR_NOSIG Ignore/hold signals during the duration of the call. 3004 * STR_PEEK Pass through the strgeterr(). 3005 */ 3006 int 3007 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout, 3008 int *done) 3009 { 3010 int slpflg, errs; 3011 int error; 3012 kcondvar_t *sleepon; 3013 mblk_t *mp; 3014 ssize_t *rd_count; 3015 clock_t rval; 3016 3017 ASSERT(MUTEX_HELD(&stp->sd_lock)); 3018 if ((flag & READWAIT) || (flag & GETWAIT)) { 3019 slpflg = RSLEEP; 3020 sleepon = &_RD(stp->sd_wrq)->q_wait; 3021 errs = STRDERR|STPLEX; 3022 } else { 3023 slpflg = WSLEEP; 3024 sleepon = &stp->sd_wrq->q_wait; 3025 errs = STWRERR|STRHUP|STPLEX; 3026 } 3027 if (flag & STR_NOERROR) 3028 errs = STPLEX; 3029 3030 if (stp->sd_wakeq & slpflg) { 3031 /* 3032 * A strwakeq() is pending, no need to sleep. 3033 */ 3034 stp->sd_wakeq &= ~slpflg; 3035 *done = 0; 3036 return (0); 3037 } 3038 3039 if (fmode & (FNDELAY|FNONBLOCK)) { 3040 if (!(flag & NOINTR)) 3041 error = EAGAIN; 3042 else 3043 error = 0; 3044 *done = 1; 3045 return (error); 3046 } 3047 3048 if (stp->sd_flag & errs) { 3049 /* 3050 * Check for errors before going to sleep since the 3051 * caller might not have checked this while holding 3052 * sd_lock. 3053 */ 3054 error = strgeterr(stp, errs, (flag & STR_PEEK)); 3055 if (error != 0) { 3056 *done = 1; 3057 return (error); 3058 } 3059 } 3060 3061 /* 3062 * If any module downstream has requested read notification 3063 * by setting SNDMREAD flag using M_SETOPTS, send a message 3064 * down stream. 3065 */ 3066 if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) { 3067 mutex_exit(&stp->sd_lock); 3068 if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED, 3069 (flag & STR_NOSIG), &error))) { 3070 mutex_enter(&stp->sd_lock); 3071 *done = 1; 3072 return (error); 3073 } 3074 mp->b_datap->db_type = M_READ; 3075 rd_count = (ssize_t *)mp->b_wptr; 3076 *rd_count = count; 3077 mp->b_wptr += sizeof (ssize_t); 3078 /* 3079 * Send the number of bytes requested by the 3080 * read as the argument to M_READ. 3081 */ 3082 stream_willservice(stp); 3083 putnext(stp->sd_wrq, mp); 3084 stream_runservice(stp); 3085 mutex_enter(&stp->sd_lock); 3086 3087 /* 3088 * If any data arrived due to inline processing 3089 * of putnext(), don't sleep. 3090 */ 3091 if (_RD(stp->sd_wrq)->q_first != NULL) { 3092 *done = 0; 3093 return (0); 3094 } 3095 } 3096 3097 stp->sd_flag |= slpflg; 3098 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2, 3099 "strwaitq sleeps (2):%p, %X, %lX, %X, %p", 3100 stp, flag, count, fmode, done); 3101 3102 rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG); 3103 if (rval > 0) { 3104 /* EMPTY */ 3105 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2, 3106 "strwaitq awakes(2):%X, %X, %X, %X, %X", 3107 stp, flag, count, fmode, done); 3108 } else if (rval == 0) { 3109 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2, 3110 "strwaitq interrupt #2:%p, %X, %lX, %X, %p", 3111 stp, flag, count, fmode, done); 3112 stp->sd_flag &= ~slpflg; 3113 cv_broadcast(sleepon); 3114 if (!(flag & NOINTR)) 3115 error = EINTR; 3116 else 3117 error = 0; 3118 *done = 1; 3119 return (error); 3120 } else { 3121 /* timeout */ 3122 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME, 3123 "strwaitq timeout:%p, %X, %lX, %X, %p", 3124 stp, flag, count, fmode, done); 3125 *done = 1; 3126 if (!(flag & NOINTR)) 3127 return (ETIME); 3128 else 3129 return (0); 3130 } 3131 /* 3132 * If the caller implements delayed errors (i.e. queued after data) 3133 * we can not check for errors here since data as well as an 3134 * error might have arrived at the stream head. We return to 3135 * have the caller check the read queue before checking for errors. 3136 */ 3137 if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) { 3138 error = strgeterr(stp, errs, (flag & STR_PEEK)); 3139 if (error != 0) { 3140 *done = 1; 3141 return (error); 3142 } 3143 } 3144 *done = 0; 3145 return (0); 3146 } 3147 3148 /* 3149 * Perform job control discipline access checks. 3150 * Return 0 for success and the errno for failure. 3151 */ 3152 3153 #define cantsend(p, t, sig) \ 3154 (sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig)) 3155 3156 int 3157 straccess(struct stdata *stp, enum jcaccess mode) 3158 { 3159 extern kcondvar_t lbolt_cv; /* XXX: should be in a header file */ 3160 kthread_t *t = curthread; 3161 proc_t *p = ttoproc(t); 3162 sess_t *sp; 3163 3164 ASSERT(mutex_owned(&stp->sd_lock)); 3165 3166 if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO) 3167 return (0); 3168 3169 mutex_enter(&p->p_lock); /* protects p_pgidp */ 3170 3171 for (;;) { 3172 mutex_enter(&p->p_splock); /* protects p->p_sessp */ 3173 sp = p->p_sessp; 3174 mutex_enter(&sp->s_lock); /* protects sp->* */ 3175 3176 /* 3177 * If this is not the calling process's controlling terminal 3178 * or if the calling process is already in the foreground 3179 * then allow access. 3180 */ 3181 if (sp->s_dev != stp->sd_vnode->v_rdev || 3182 p->p_pgidp == stp->sd_pgidp) { 3183 mutex_exit(&sp->s_lock); 3184 mutex_exit(&p->p_splock); 3185 mutex_exit(&p->p_lock); 3186 return (0); 3187 } 3188 3189 /* 3190 * Check to see if controlling terminal has been deallocated. 3191 */ 3192 if (sp->s_vp == NULL) { 3193 if (!cantsend(p, t, SIGHUP)) 3194 sigtoproc(p, t, SIGHUP); 3195 mutex_exit(&sp->s_lock); 3196 mutex_exit(&p->p_splock); 3197 mutex_exit(&p->p_lock); 3198 return (EIO); 3199 } 3200 3201 mutex_exit(&sp->s_lock); 3202 mutex_exit(&p->p_splock); 3203 3204 if (mode == JCGETP) { 3205 mutex_exit(&p->p_lock); 3206 return (0); 3207 } 3208 3209 if (mode == JCREAD) { 3210 if (p->p_detached || cantsend(p, t, SIGTTIN)) { 3211 mutex_exit(&p->p_lock); 3212 return (EIO); 3213 } 3214 mutex_exit(&p->p_lock); 3215 mutex_exit(&stp->sd_lock); 3216 pgsignal(p->p_pgidp, SIGTTIN); 3217 mutex_enter(&stp->sd_lock); 3218 mutex_enter(&p->p_lock); 3219 } else { /* mode == JCWRITE or JCSETP */ 3220 if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) || 3221 cantsend(p, t, SIGTTOU)) { 3222 mutex_exit(&p->p_lock); 3223 return (0); 3224 } 3225 if (p->p_detached) { 3226 mutex_exit(&p->p_lock); 3227 return (EIO); 3228 } 3229 mutex_exit(&p->p_lock); 3230 mutex_exit(&stp->sd_lock); 3231 pgsignal(p->p_pgidp, SIGTTOU); 3232 mutex_enter(&stp->sd_lock); 3233 mutex_enter(&p->p_lock); 3234 } 3235 3236 /* 3237 * We call cv_wait_sig_swap() to cause the appropriate 3238 * action for the jobcontrol signal to take place. 3239 * If the signal is being caught, we will take the 3240 * EINTR error return. Otherwise, the default action 3241 * of causing the process to stop will take place. 3242 * In this case, we rely on the periodic cv_broadcast() on 3243 * &lbolt_cv to wake us up to loop around and test again. 3244 * We can't get here if the signal is ignored or 3245 * if the current thread is blocking the signal. 3246 */ 3247 mutex_exit(&stp->sd_lock); 3248 if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) { 3249 mutex_exit(&p->p_lock); 3250 mutex_enter(&stp->sd_lock); 3251 return (EINTR); 3252 } 3253 mutex_exit(&p->p_lock); 3254 mutex_enter(&stp->sd_lock); 3255 mutex_enter(&p->p_lock); 3256 } 3257 } 3258 3259 /* 3260 * Return size of message of block type (bp->b_datap->db_type) 3261 */ 3262 size_t 3263 xmsgsize(mblk_t *bp) 3264 { 3265 unsigned char type; 3266 size_t count = 0; 3267 3268 type = bp->b_datap->db_type; 3269 3270 for (; bp; bp = bp->b_cont) { 3271 if (type != bp->b_datap->db_type) 3272 break; 3273 ASSERT(bp->b_wptr >= bp->b_rptr); 3274 count += bp->b_wptr - bp->b_rptr; 3275 } 3276 return (count); 3277 } 3278 3279 /* 3280 * Allocate a stream head. 3281 */ 3282 struct stdata * 3283 shalloc(queue_t *qp) 3284 { 3285 stdata_t *stp; 3286 3287 stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP); 3288 3289 stp->sd_wrq = _WR(qp); 3290 stp->sd_strtab = NULL; 3291 stp->sd_iocid = 0; 3292 stp->sd_mate = NULL; 3293 stp->sd_freezer = NULL; 3294 stp->sd_refcnt = 0; 3295 stp->sd_wakeq = 0; 3296 stp->sd_anchor = 0; 3297 stp->sd_struiowrq = NULL; 3298 stp->sd_struiordq = NULL; 3299 stp->sd_struiodnak = 0; 3300 stp->sd_struionak = NULL; 3301 stp->sd_t_audit_data = NULL; 3302 stp->sd_rput_opt = 0; 3303 stp->sd_wput_opt = 0; 3304 stp->sd_read_opt = 0; 3305 stp->sd_rprotofunc = strrput_proto; 3306 stp->sd_rmiscfunc = strrput_misc; 3307 stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL; 3308 stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL; 3309 stp->sd_ciputctrl = NULL; 3310 stp->sd_nciputctrl = 0; 3311 stp->sd_qhead = NULL; 3312 stp->sd_qtail = NULL; 3313 stp->sd_servid = NULL; 3314 stp->sd_nqueues = 0; 3315 stp->sd_svcflags = 0; 3316 stp->sd_copyflag = 0; 3317 3318 return (stp); 3319 } 3320 3321 /* 3322 * Free a stream head. 3323 */ 3324 void 3325 shfree(stdata_t *stp) 3326 { 3327 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 3328 3329 stp->sd_wrq = NULL; 3330 3331 mutex_enter(&stp->sd_qlock); 3332 while (stp->sd_svcflags & STRS_SCHEDULED) { 3333 STRSTAT(strwaits); 3334 cv_wait(&stp->sd_qcv, &stp->sd_qlock); 3335 } 3336 mutex_exit(&stp->sd_qlock); 3337 3338 if (stp->sd_ciputctrl != NULL) { 3339 ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1); 3340 SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl, 3341 stp->sd_nciputctrl, 0); 3342 ASSERT(ciputctrl_cache != NULL); 3343 kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl); 3344 stp->sd_ciputctrl = NULL; 3345 stp->sd_nciputctrl = 0; 3346 } 3347 ASSERT(stp->sd_qhead == NULL); 3348 ASSERT(stp->sd_qtail == NULL); 3349 ASSERT(stp->sd_nqueues == 0); 3350 kmem_cache_free(stream_head_cache, stp); 3351 } 3352 3353 /* 3354 * Allocate a pair of queues and a syncq for the pair 3355 */ 3356 queue_t * 3357 allocq(void) 3358 { 3359 queinfo_t *qip; 3360 queue_t *qp, *wqp; 3361 syncq_t *sq; 3362 3363 qip = kmem_cache_alloc(queue_cache, KM_SLEEP); 3364 3365 qp = &qip->qu_rqueue; 3366 wqp = &qip->qu_wqueue; 3367 sq = &qip->qu_syncq; 3368 3369 qp->q_last = NULL; 3370 qp->q_next = NULL; 3371 qp->q_ptr = NULL; 3372 qp->q_flag = QUSE | QREADR; 3373 qp->q_bandp = NULL; 3374 qp->q_stream = NULL; 3375 qp->q_syncq = sq; 3376 qp->q_nband = 0; 3377 qp->q_nfsrv = NULL; 3378 qp->q_draining = 0; 3379 qp->q_syncqmsgs = 0; 3380 qp->q_spri = 0; 3381 qp->q_qtstamp = 0; 3382 qp->q_sqtstamp = 0; 3383 qp->q_fp = NULL; 3384 3385 wqp->q_last = NULL; 3386 wqp->q_next = NULL; 3387 wqp->q_ptr = NULL; 3388 wqp->q_flag = QUSE; 3389 wqp->q_bandp = NULL; 3390 wqp->q_stream = NULL; 3391 wqp->q_syncq = sq; 3392 wqp->q_nband = 0; 3393 wqp->q_nfsrv = NULL; 3394 wqp->q_draining = 0; 3395 wqp->q_syncqmsgs = 0; 3396 wqp->q_qtstamp = 0; 3397 wqp->q_sqtstamp = 0; 3398 wqp->q_spri = 0; 3399 3400 sq->sq_count = 0; 3401 sq->sq_rmqcount = 0; 3402 sq->sq_flags = 0; 3403 sq->sq_type = 0; 3404 sq->sq_callbflags = 0; 3405 sq->sq_cancelid = 0; 3406 sq->sq_ciputctrl = NULL; 3407 sq->sq_nciputctrl = 0; 3408 sq->sq_needexcl = 0; 3409 sq->sq_svcflags = 0; 3410 3411 return (qp); 3412 } 3413 3414 /* 3415 * Free a pair of queues and the "attached" syncq. 3416 * Discard any messages left on the syncq(s), remove the syncq(s) from the 3417 * outer perimeter, and free the syncq(s) if they are not the "attached" syncq. 3418 */ 3419 void 3420 freeq(queue_t *qp) 3421 { 3422 qband_t *qbp, *nqbp; 3423 syncq_t *sq, *outer; 3424 queue_t *wqp = _WR(qp); 3425 3426 ASSERT(qp->q_flag & QREADR); 3427 3428 /* 3429 * If a previously dispatched taskq job is scheduled to run 3430 * sync_service() or a service routine is scheduled for the 3431 * queues about to be freed, wait here until all service is 3432 * done on the queue and all associated queues and syncqs. 3433 */ 3434 wait_svc(qp); 3435 3436 (void) flush_syncq(qp->q_syncq, qp); 3437 (void) flush_syncq(wqp->q_syncq, wqp); 3438 ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0); 3439 3440 /* 3441 * Flush the queues before q_next is set to NULL This is needed 3442 * in order to backenable any downstream queue before we go away. 3443 * Note: we are already removed from the stream so that the 3444 * backenabling will not cause any messages to be delivered to our 3445 * put procedures. 3446 */ 3447 flushq(qp, FLUSHALL); 3448 flushq(wqp, FLUSHALL); 3449 3450 /* Tidy up - removeq only does a half-remove from stream */ 3451 qp->q_next = wqp->q_next = NULL; 3452 ASSERT(!(qp->q_flag & QENAB)); 3453 ASSERT(!(wqp->q_flag & QENAB)); 3454 3455 outer = qp->q_syncq->sq_outer; 3456 if (outer != NULL) { 3457 outer_remove(outer, qp->q_syncq); 3458 if (wqp->q_syncq != qp->q_syncq) 3459 outer_remove(outer, wqp->q_syncq); 3460 } 3461 /* 3462 * Free any syncqs that are outside what allocq returned. 3463 */ 3464 if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD)) 3465 free_syncq(qp->q_syncq); 3466 if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp)) 3467 free_syncq(wqp->q_syncq); 3468 3469 ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0); 3470 ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0); 3471 ASSERT(MUTEX_NOT_HELD(QLOCK(qp))); 3472 ASSERT(MUTEX_NOT_HELD(QLOCK(wqp))); 3473 sq = SQ(qp); 3474 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 3475 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL); 3476 ASSERT(sq->sq_outer == NULL); 3477 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL); 3478 ASSERT(sq->sq_callbpend == NULL); 3479 ASSERT(sq->sq_needexcl == 0); 3480 3481 if (sq->sq_ciputctrl != NULL) { 3482 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1); 3483 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl, 3484 sq->sq_nciputctrl, 0); 3485 ASSERT(ciputctrl_cache != NULL); 3486 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl); 3487 sq->sq_ciputctrl = NULL; 3488 sq->sq_nciputctrl = 0; 3489 } 3490 3491 ASSERT(qp->q_first == NULL && wqp->q_first == NULL); 3492 ASSERT(qp->q_count == 0 && wqp->q_count == 0); 3493 ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0); 3494 3495 qp->q_flag &= ~QUSE; 3496 wqp->q_flag &= ~QUSE; 3497 3498 /* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */ 3499 /* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */ 3500 3501 qbp = qp->q_bandp; 3502 while (qbp) { 3503 nqbp = qbp->qb_next; 3504 freeband(qbp); 3505 qbp = nqbp; 3506 } 3507 qbp = wqp->q_bandp; 3508 while (qbp) { 3509 nqbp = qbp->qb_next; 3510 freeband(qbp); 3511 qbp = nqbp; 3512 } 3513 kmem_cache_free(queue_cache, qp); 3514 } 3515 3516 /* 3517 * Allocate a qband structure. 3518 */ 3519 qband_t * 3520 allocband(void) 3521 { 3522 qband_t *qbp; 3523 3524 qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP); 3525 if (qbp == NULL) 3526 return (NULL); 3527 3528 qbp->qb_next = NULL; 3529 qbp->qb_count = 0; 3530 qbp->qb_mblkcnt = 0; 3531 qbp->qb_first = NULL; 3532 qbp->qb_last = NULL; 3533 qbp->qb_flag = 0; 3534 3535 return (qbp); 3536 } 3537 3538 /* 3539 * Free a qband structure. 3540 */ 3541 void 3542 freeband(qband_t *qbp) 3543 { 3544 kmem_cache_free(qband_cache, qbp); 3545 } 3546 3547 /* 3548 * Just like putnextctl(9F), except that allocb_wait() is used. 3549 * 3550 * Consolidation Private, and of course only callable from the stream head or 3551 * routines that may block. 3552 */ 3553 int 3554 putnextctl_wait(queue_t *q, int type) 3555 { 3556 mblk_t *bp; 3557 int error; 3558 3559 if ((datamsg(type) && (type != M_DELAY)) || 3560 (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL) 3561 return (0); 3562 3563 bp->b_datap->db_type = (unsigned char)type; 3564 putnext(q, bp); 3565 return (1); 3566 } 3567 3568 /* 3569 * run any possible bufcalls. 3570 */ 3571 void 3572 runbufcalls(void) 3573 { 3574 strbufcall_t *bcp; 3575 3576 mutex_enter(&bcall_monitor); 3577 mutex_enter(&strbcall_lock); 3578 3579 if (strbcalls.bc_head) { 3580 size_t count; 3581 int nevent; 3582 3583 /* 3584 * count how many events are on the list 3585 * now so we can check to avoid looping 3586 * in low memory situations 3587 */ 3588 nevent = 0; 3589 for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next) 3590 nevent++; 3591 3592 /* 3593 * get estimate of available memory from kmem_avail(). 3594 * awake all bufcall functions waiting for 3595 * memory whose request could be satisfied 3596 * by 'count' memory and let 'em fight for it. 3597 */ 3598 count = kmem_avail(); 3599 while ((bcp = strbcalls.bc_head) != NULL && nevent) { 3600 STRSTAT(bufcalls); 3601 --nevent; 3602 if (bcp->bc_size <= count) { 3603 bcp->bc_executor = curthread; 3604 mutex_exit(&strbcall_lock); 3605 (*bcp->bc_func)(bcp->bc_arg); 3606 mutex_enter(&strbcall_lock); 3607 bcp->bc_executor = NULL; 3608 cv_broadcast(&bcall_cv); 3609 strbcalls.bc_head = bcp->bc_next; 3610 kmem_free(bcp, sizeof (strbufcall_t)); 3611 } else { 3612 /* 3613 * too big, try again later - note 3614 * that nevent was decremented above 3615 * so we won't retry this one on this 3616 * iteration of the loop 3617 */ 3618 if (bcp->bc_next != NULL) { 3619 strbcalls.bc_head = bcp->bc_next; 3620 bcp->bc_next = NULL; 3621 strbcalls.bc_tail->bc_next = bcp; 3622 strbcalls.bc_tail = bcp; 3623 } 3624 } 3625 } 3626 if (strbcalls.bc_head == NULL) 3627 strbcalls.bc_tail = NULL; 3628 } 3629 3630 mutex_exit(&strbcall_lock); 3631 mutex_exit(&bcall_monitor); 3632 } 3633 3634 3635 /* 3636 * actually run queue's service routine. 3637 */ 3638 static void 3639 runservice(queue_t *q) 3640 { 3641 qband_t *qbp; 3642 3643 ASSERT(q->q_qinfo->qi_srvp); 3644 again: 3645 entersq(q->q_syncq, SQ_SVC); 3646 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START, 3647 "runservice starts:%p", q); 3648 3649 if (!(q->q_flag & QWCLOSE)) 3650 (*q->q_qinfo->qi_srvp)(q); 3651 3652 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END, 3653 "runservice ends:(%p)", q); 3654 3655 leavesq(q->q_syncq, SQ_SVC); 3656 3657 mutex_enter(QLOCK(q)); 3658 if (q->q_flag & QENAB) { 3659 q->q_flag &= ~QENAB; 3660 mutex_exit(QLOCK(q)); 3661 goto again; 3662 } 3663 q->q_flag &= ~QINSERVICE; 3664 q->q_flag &= ~QBACK; 3665 for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next) 3666 qbp->qb_flag &= ~QB_BACK; 3667 /* 3668 * Wakeup thread waiting for the service procedure 3669 * to be run (strclose and qdetach). 3670 */ 3671 cv_broadcast(&q->q_wait); 3672 3673 mutex_exit(QLOCK(q)); 3674 } 3675 3676 /* 3677 * Background processing of bufcalls. 3678 */ 3679 void 3680 streams_bufcall_service(void) 3681 { 3682 callb_cpr_t cprinfo; 3683 3684 CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr, 3685 "streams_bufcall_service"); 3686 3687 mutex_enter(&strbcall_lock); 3688 3689 for (;;) { 3690 if (strbcalls.bc_head != NULL && kmem_avail() > 0) { 3691 mutex_exit(&strbcall_lock); 3692 runbufcalls(); 3693 mutex_enter(&strbcall_lock); 3694 } 3695 if (strbcalls.bc_head != NULL) { 3696 clock_t wt, tick; 3697 3698 STRSTAT(bcwaits); 3699 /* Wait for memory to become available */ 3700 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3701 tick = SEC_TO_TICK(60); 3702 time_to_wait(&wt, tick); 3703 (void) cv_timedwait(&memavail_cv, &strbcall_lock, wt); 3704 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock); 3705 } 3706 3707 /* Wait for new work to arrive */ 3708 if (strbcalls.bc_head == NULL) { 3709 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3710 cv_wait(&strbcall_cv, &strbcall_lock); 3711 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock); 3712 } 3713 } 3714 } 3715 3716 /* 3717 * Background processing of streams background tasks which failed 3718 * taskq_dispatch. 3719 */ 3720 static void 3721 streams_qbkgrnd_service(void) 3722 { 3723 callb_cpr_t cprinfo; 3724 queue_t *q; 3725 3726 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr, 3727 "streams_bkgrnd_service"); 3728 3729 mutex_enter(&service_queue); 3730 3731 for (;;) { 3732 /* 3733 * Wait for work to arrive. 3734 */ 3735 while ((freebs_list == NULL) && (qhead == NULL)) { 3736 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3737 cv_wait(&services_to_run, &service_queue); 3738 CALLB_CPR_SAFE_END(&cprinfo, &service_queue); 3739 } 3740 /* 3741 * Handle all pending freebs requests to free memory. 3742 */ 3743 while (freebs_list != NULL) { 3744 mblk_t *mp = freebs_list; 3745 freebs_list = mp->b_next; 3746 mutex_exit(&service_queue); 3747 mblk_free(mp); 3748 mutex_enter(&service_queue); 3749 } 3750 /* 3751 * Run pending queues. 3752 */ 3753 while (qhead != NULL) { 3754 DQ(q, qhead, qtail, q_link); 3755 ASSERT(q != NULL); 3756 mutex_exit(&service_queue); 3757 queue_service(q); 3758 mutex_enter(&service_queue); 3759 } 3760 ASSERT(qhead == NULL && qtail == NULL); 3761 } 3762 } 3763 3764 /* 3765 * Background processing of streams background tasks which failed 3766 * taskq_dispatch. 3767 */ 3768 static void 3769 streams_sqbkgrnd_service(void) 3770 { 3771 callb_cpr_t cprinfo; 3772 syncq_t *sq; 3773 3774 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr, 3775 "streams_sqbkgrnd_service"); 3776 3777 mutex_enter(&service_queue); 3778 3779 for (;;) { 3780 /* 3781 * Wait for work to arrive. 3782 */ 3783 while (sqhead == NULL) { 3784 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3785 cv_wait(&syncqs_to_run, &service_queue); 3786 CALLB_CPR_SAFE_END(&cprinfo, &service_queue); 3787 } 3788 3789 /* 3790 * Run pending syncqs. 3791 */ 3792 while (sqhead != NULL) { 3793 DQ(sq, sqhead, sqtail, sq_next); 3794 ASSERT(sq != NULL); 3795 ASSERT(sq->sq_svcflags & SQ_BGTHREAD); 3796 mutex_exit(&service_queue); 3797 syncq_service(sq); 3798 mutex_enter(&service_queue); 3799 } 3800 } 3801 } 3802 3803 /* 3804 * Disable the syncq and wait for background syncq processing to complete. 3805 * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the 3806 * list. 3807 */ 3808 void 3809 wait_sq_svc(syncq_t *sq) 3810 { 3811 mutex_enter(SQLOCK(sq)); 3812 sq->sq_svcflags |= SQ_DISABLED; 3813 if (sq->sq_svcflags & SQ_BGTHREAD) { 3814 syncq_t *sq_chase; 3815 syncq_t *sq_curr; 3816 int removed; 3817 3818 ASSERT(sq->sq_servcount == 1); 3819 mutex_enter(&service_queue); 3820 RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed); 3821 mutex_exit(&service_queue); 3822 if (removed) { 3823 sq->sq_svcflags &= ~SQ_BGTHREAD; 3824 sq->sq_servcount = 0; 3825 STRSTAT(sqremoved); 3826 goto done; 3827 } 3828 } 3829 while (sq->sq_servcount != 0) { 3830 sq->sq_flags |= SQ_WANTWAKEUP; 3831 cv_wait(&sq->sq_wait, SQLOCK(sq)); 3832 } 3833 done: 3834 mutex_exit(SQLOCK(sq)); 3835 } 3836 3837 /* 3838 * Put a syncq on the list of syncq's to be serviced by the sqthread. 3839 * Add the argument to the end of the sqhead list and set the flag 3840 * indicating this syncq has been enabled. If it has already been 3841 * enabled, don't do anything. 3842 * This routine assumes that SQLOCK is held. 3843 * NOTE that the lock order is to have the SQLOCK first, 3844 * so if the service_syncq lock is held, we need to release it 3845 * before aquiring the SQLOCK (mostly relevant for the background 3846 * thread, and this seems to be common among the STREAMS global locks). 3847 * Note the the sq_svcflags are protected by the SQLOCK. 3848 */ 3849 void 3850 sqenable(syncq_t *sq) 3851 { 3852 /* 3853 * This is probably not important except for where I believe it 3854 * is being called. At that point, it should be held (and it 3855 * is a pain to release it just for this routine, so don't do 3856 * it). 3857 */ 3858 ASSERT(MUTEX_HELD(SQLOCK(sq))); 3859 3860 IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL); 3861 IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD); 3862 3863 /* 3864 * Do not put on list if background thread is scheduled or 3865 * syncq is disabled. 3866 */ 3867 if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD)) 3868 return; 3869 3870 /* 3871 * Check whether we should enable sq at all. 3872 * Non PERMOD syncqs may be drained by at most one thread. 3873 * PERMOD syncqs may be drained by several threads but we limit the 3874 * total amount to the lesser of 3875 * Number of queues on the squeue and 3876 * Number of CPUs. 3877 */ 3878 if (sq->sq_servcount != 0) { 3879 if (((sq->sq_type & SQ_PERMOD) == 0) || 3880 (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) { 3881 STRSTAT(sqtoomany); 3882 return; 3883 } 3884 } 3885 3886 sq->sq_tstamp = lbolt; 3887 STRSTAT(sqenables); 3888 3889 /* Attempt a taskq dispatch */ 3890 sq->sq_servid = (void *)taskq_dispatch(streams_taskq, 3891 (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE); 3892 if (sq->sq_servid != NULL) { 3893 sq->sq_servcount++; 3894 return; 3895 } 3896 3897 /* 3898 * This taskq dispatch failed, but a previous one may have succeeded. 3899 * Don't try to schedule on the background thread whilst there is 3900 * outstanding taskq processing. 3901 */ 3902 if (sq->sq_servcount != 0) 3903 return; 3904 3905 /* 3906 * System is low on resources and can't perform a non-sleeping 3907 * dispatch. Schedule the syncq for a background thread and mark the 3908 * syncq to avoid any further taskq dispatch attempts. 3909 */ 3910 mutex_enter(&service_queue); 3911 STRSTAT(taskqfails); 3912 ENQUEUE(sq, sqhead, sqtail, sq_next); 3913 sq->sq_svcflags |= SQ_BGTHREAD; 3914 sq->sq_servcount = 1; 3915 cv_signal(&syncqs_to_run); 3916 mutex_exit(&service_queue); 3917 } 3918 3919 /* 3920 * Note: fifo_close() depends on the mblk_t on the queue being freed 3921 * asynchronously. The asynchronous freeing of messages breaks the 3922 * recursive call chain of fifo_close() while there are I_SENDFD type of 3923 * messages refering other file pointers on the queue. Then when 3924 * closing pipes it can avoid stack overflow in case of daisy-chained 3925 * pipes, and also avoid deadlock in case of fifonode_t pairs (which 3926 * share the same fifolock_t). 3927 */ 3928 3929 void 3930 freebs_enqueue(mblk_t *mp, dblk_t *dbp) 3931 { 3932 esb_queue_t *eqp = &system_esbq; 3933 3934 ASSERT(dbp->db_mblk == mp); 3935 3936 /* 3937 * Check data sanity. The dblock should have non-empty free function. 3938 * It is better to panic here then later when the dblock is freed 3939 * asynchronously when the context is lost. 3940 */ 3941 if (dbp->db_frtnp->free_func == NULL) { 3942 panic("freebs_enqueue: dblock %p has a NULL free callback", 3943 (void *)dbp); 3944 } 3945 3946 mutex_enter(&eqp->eq_lock); 3947 /* queue the new mblk on the esballoc queue */ 3948 if (eqp->eq_head == NULL) { 3949 eqp->eq_head = eqp->eq_tail = mp; 3950 } else { 3951 eqp->eq_tail->b_next = mp; 3952 eqp->eq_tail = mp; 3953 } 3954 eqp->eq_len++; 3955 3956 /* If we're the first thread to reach the threshold, process */ 3957 if (eqp->eq_len >= esbq_max_qlen && 3958 !(eqp->eq_flags & ESBQ_PROCESSING)) 3959 esballoc_process_queue(eqp); 3960 3961 esballoc_set_timer(eqp, esbq_timeout); 3962 mutex_exit(&eqp->eq_lock); 3963 } 3964 3965 static void 3966 esballoc_process_queue(esb_queue_t *eqp) 3967 { 3968 mblk_t *mp; 3969 3970 ASSERT(MUTEX_HELD(&eqp->eq_lock)); 3971 3972 eqp->eq_flags |= ESBQ_PROCESSING; 3973 3974 do { 3975 /* 3976 * Detach the message chain for processing. 3977 */ 3978 mp = eqp->eq_head; 3979 eqp->eq_tail->b_next = NULL; 3980 eqp->eq_head = eqp->eq_tail = NULL; 3981 eqp->eq_len = 0; 3982 mutex_exit(&eqp->eq_lock); 3983 3984 /* 3985 * Process the message chain. 3986 */ 3987 esballoc_enqueue_mblk(mp); 3988 mutex_enter(&eqp->eq_lock); 3989 } while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0)); 3990 3991 eqp->eq_flags &= ~ESBQ_PROCESSING; 3992 } 3993 3994 /* 3995 * taskq callback routine to free esballoced mblk's 3996 */ 3997 static void 3998 esballoc_mblk_free(mblk_t *mp) 3999 { 4000 mblk_t *nextmp; 4001 4002 for (; mp != NULL; mp = nextmp) { 4003 nextmp = mp->b_next; 4004 mp->b_next = NULL; 4005 mblk_free(mp); 4006 } 4007 } 4008 4009 static void 4010 esballoc_enqueue_mblk(mblk_t *mp) 4011 { 4012 4013 if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp, 4014 TQ_NOSLEEP) == NULL) { 4015 mblk_t *first_mp = mp; 4016 /* 4017 * System is low on resources and can't perform a non-sleeping 4018 * dispatch. Schedule for a background thread. 4019 */ 4020 mutex_enter(&service_queue); 4021 STRSTAT(taskqfails); 4022 4023 while (mp->b_next != NULL) 4024 mp = mp->b_next; 4025 4026 mp->b_next = freebs_list; 4027 freebs_list = first_mp; 4028 cv_signal(&services_to_run); 4029 mutex_exit(&service_queue); 4030 } 4031 } 4032 4033 static void 4034 esballoc_timer(void *arg) 4035 { 4036 esb_queue_t *eqp = arg; 4037 4038 mutex_enter(&eqp->eq_lock); 4039 eqp->eq_flags &= ~ESBQ_TIMER; 4040 4041 if (!(eqp->eq_flags & ESBQ_PROCESSING) && 4042 eqp->eq_len > 0) 4043 esballoc_process_queue(eqp); 4044 4045 esballoc_set_timer(eqp, esbq_timeout); 4046 mutex_exit(&eqp->eq_lock); 4047 } 4048 4049 static void 4050 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout) 4051 { 4052 ASSERT(MUTEX_HELD(&eqp->eq_lock)); 4053 4054 if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) { 4055 (void) timeout(esballoc_timer, eqp, eq_timeout); 4056 eqp->eq_flags |= ESBQ_TIMER; 4057 } 4058 } 4059 4060 void 4061 esballoc_queue_init(void) 4062 { 4063 system_esbq.eq_len = 0; 4064 system_esbq.eq_head = system_esbq.eq_tail = NULL; 4065 system_esbq.eq_flags = 0; 4066 } 4067 4068 /* 4069 * Set the QBACK or QB_BACK flag in the given queue for 4070 * the given priority band. 4071 */ 4072 void 4073 setqback(queue_t *q, unsigned char pri) 4074 { 4075 int i; 4076 qband_t *qbp; 4077 qband_t **qbpp; 4078 4079 ASSERT(MUTEX_HELD(QLOCK(q))); 4080 if (pri != 0) { 4081 if (pri > q->q_nband) { 4082 qbpp = &q->q_bandp; 4083 while (*qbpp) 4084 qbpp = &(*qbpp)->qb_next; 4085 while (pri > q->q_nband) { 4086 if ((*qbpp = allocband()) == NULL) { 4087 cmn_err(CE_WARN, 4088 "setqback: can't allocate qband\n"); 4089 return; 4090 } 4091 (*qbpp)->qb_hiwat = q->q_hiwat; 4092 (*qbpp)->qb_lowat = q->q_lowat; 4093 q->q_nband++; 4094 qbpp = &(*qbpp)->qb_next; 4095 } 4096 } 4097 qbp = q->q_bandp; 4098 i = pri; 4099 while (--i) 4100 qbp = qbp->qb_next; 4101 qbp->qb_flag |= QB_BACK; 4102 } else { 4103 q->q_flag |= QBACK; 4104 } 4105 } 4106 4107 int 4108 strcopyin(void *from, void *to, size_t len, int copyflag) 4109 { 4110 if (copyflag & U_TO_K) { 4111 ASSERT((copyflag & K_TO_K) == 0); 4112 if (copyin(from, to, len)) 4113 return (EFAULT); 4114 } else { 4115 ASSERT(copyflag & K_TO_K); 4116 bcopy(from, to, len); 4117 } 4118 return (0); 4119 } 4120 4121 int 4122 strcopyout(void *from, void *to, size_t len, int copyflag) 4123 { 4124 if (copyflag & U_TO_K) { 4125 if (copyout(from, to, len)) 4126 return (EFAULT); 4127 } else { 4128 ASSERT(copyflag & K_TO_K); 4129 bcopy(from, to, len); 4130 } 4131 return (0); 4132 } 4133 4134 /* 4135 * strsignal_nolock() posts a signal to the process(es) at the stream head. 4136 * It assumes that the stream head lock is already held, whereas strsignal() 4137 * acquires the lock first. This routine was created because a few callers 4138 * release the stream head lock before calling only to re-acquire it after 4139 * it returns. 4140 */ 4141 void 4142 strsignal_nolock(stdata_t *stp, int sig, int32_t band) 4143 { 4144 ASSERT(MUTEX_HELD(&stp->sd_lock)); 4145 switch (sig) { 4146 case SIGPOLL: 4147 if (stp->sd_sigflags & S_MSG) 4148 strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0); 4149 break; 4150 4151 default: 4152 if (stp->sd_pgidp) { 4153 pgsignal(stp->sd_pgidp, sig); 4154 } 4155 break; 4156 } 4157 } 4158 4159 void 4160 strsignal(stdata_t *stp, int sig, int32_t band) 4161 { 4162 TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG, 4163 "strsignal:%p, %X, %X", stp, sig, band); 4164 4165 mutex_enter(&stp->sd_lock); 4166 switch (sig) { 4167 case SIGPOLL: 4168 if (stp->sd_sigflags & S_MSG) 4169 strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0); 4170 break; 4171 4172 default: 4173 if (stp->sd_pgidp) { 4174 pgsignal(stp->sd_pgidp, sig); 4175 } 4176 break; 4177 } 4178 mutex_exit(&stp->sd_lock); 4179 } 4180 4181 void 4182 strhup(stdata_t *stp) 4183 { 4184 ASSERT(mutex_owned(&stp->sd_lock)); 4185 pollwakeup(&stp->sd_pollist, POLLHUP); 4186 if (stp->sd_sigflags & S_HANGUP) 4187 strsendsig(stp->sd_siglist, S_HANGUP, 0, 0); 4188 } 4189 4190 /* 4191 * Backenable the first queue upstream from `q' with a service procedure. 4192 */ 4193 void 4194 backenable(queue_t *q, uchar_t pri) 4195 { 4196 queue_t *nq; 4197 4198 /* 4199 * our presence might not prevent other modules in our own 4200 * stream from popping/pushing since the caller of getq might not 4201 * have a claim on the queue (some drivers do a getq on somebody 4202 * else's queue - they know that the queue itself is not going away 4203 * but the framework has to guarantee q_next in that stream.) 4204 */ 4205 claimstr(q); 4206 4207 /* find nearest back queue with service proc */ 4208 for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) { 4209 ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq)); 4210 } 4211 4212 if (nq) { 4213 kthread_t *freezer; 4214 /* 4215 * backenable can be called either with no locks held 4216 * or with the stream frozen (the latter occurs when a module 4217 * calls rmvq with the stream frozen.) If the stream is frozen 4218 * by the caller the caller will hold all qlocks in the stream. 4219 * Note that a frozen stream doesn't freeze a mated stream, 4220 * so we explicitly check for that. 4221 */ 4222 freezer = STREAM(q)->sd_freezer; 4223 if (freezer != curthread || STREAM(q) != STREAM(nq)) { 4224 mutex_enter(QLOCK(nq)); 4225 } 4226 #ifdef DEBUG 4227 else { 4228 ASSERT(frozenstr(q)); 4229 ASSERT(MUTEX_HELD(QLOCK(q))); 4230 ASSERT(MUTEX_HELD(QLOCK(nq))); 4231 } 4232 #endif 4233 setqback(nq, pri); 4234 qenable_locked(nq); 4235 if (freezer != curthread || STREAM(q) != STREAM(nq)) 4236 mutex_exit(QLOCK(nq)); 4237 } 4238 releasestr(q); 4239 } 4240 4241 /* 4242 * Return the appropriate errno when one of flags_to_check is set 4243 * in sd_flags. Uses the exported error routines if they are set. 4244 * Will return 0 if non error is set (or if the exported error routines 4245 * do not return an error). 4246 * 4247 * If there is both a read and write error to check we prefer the read error. 4248 * Also, give preference to recorded errno's over the error functions. 4249 * The flags that are handled are: 4250 * STPLEX return EINVAL 4251 * STRDERR return sd_rerror (and clear if STRDERRNONPERSIST) 4252 * STWRERR return sd_werror (and clear if STWRERRNONPERSIST) 4253 * STRHUP return sd_werror 4254 * 4255 * If the caller indicates that the operation is a peek a nonpersistent error 4256 * is not cleared. 4257 */ 4258 int 4259 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek) 4260 { 4261 int32_t sd_flag = stp->sd_flag & flags_to_check; 4262 int error = 0; 4263 4264 ASSERT(MUTEX_HELD(&stp->sd_lock)); 4265 ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0); 4266 if (sd_flag & STPLEX) 4267 error = EINVAL; 4268 else if (sd_flag & STRDERR) { 4269 error = stp->sd_rerror; 4270 if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) { 4271 /* 4272 * Read errors are non-persistent i.e. discarded once 4273 * returned to a non-peeking caller, 4274 */ 4275 stp->sd_rerror = 0; 4276 stp->sd_flag &= ~STRDERR; 4277 } 4278 if (error == 0 && stp->sd_rderrfunc != NULL) { 4279 int clearerr = 0; 4280 4281 error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek, 4282 &clearerr); 4283 if (clearerr) { 4284 stp->sd_flag &= ~STRDERR; 4285 stp->sd_rderrfunc = NULL; 4286 } 4287 } 4288 } else if (sd_flag & STWRERR) { 4289 error = stp->sd_werror; 4290 if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) { 4291 /* 4292 * Write errors are non-persistent i.e. discarded once 4293 * returned to a non-peeking caller, 4294 */ 4295 stp->sd_werror = 0; 4296 stp->sd_flag &= ~STWRERR; 4297 } 4298 if (error == 0 && stp->sd_wrerrfunc != NULL) { 4299 int clearerr = 0; 4300 4301 error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek, 4302 &clearerr); 4303 if (clearerr) { 4304 stp->sd_flag &= ~STWRERR; 4305 stp->sd_wrerrfunc = NULL; 4306 } 4307 } 4308 } else if (sd_flag & STRHUP) { 4309 /* sd_werror set when STRHUP */ 4310 error = stp->sd_werror; 4311 } 4312 return (error); 4313 } 4314 4315 4316 /* 4317 * single-thread open/close/push/pop 4318 * for twisted streams also 4319 */ 4320 int 4321 strstartplumb(stdata_t *stp, int flag, int cmd) 4322 { 4323 int waited = 1; 4324 int error = 0; 4325 4326 if (STRMATED(stp)) { 4327 struct stdata *stmatep = stp->sd_mate; 4328 4329 STRLOCKMATES(stp); 4330 while (waited) { 4331 waited = 0; 4332 while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 4333 if ((cmd == I_POP) && 4334 (flag & (FNDELAY|FNONBLOCK))) { 4335 STRUNLOCKMATES(stp); 4336 return (EAGAIN); 4337 } 4338 waited = 1; 4339 mutex_exit(&stp->sd_lock); 4340 if (!cv_wait_sig(&stmatep->sd_monitor, 4341 &stmatep->sd_lock)) { 4342 mutex_exit(&stmatep->sd_lock); 4343 return (EINTR); 4344 } 4345 mutex_exit(&stmatep->sd_lock); 4346 STRLOCKMATES(stp); 4347 } 4348 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 4349 if ((cmd == I_POP) && 4350 (flag & (FNDELAY|FNONBLOCK))) { 4351 STRUNLOCKMATES(stp); 4352 return (EAGAIN); 4353 } 4354 waited = 1; 4355 mutex_exit(&stmatep->sd_lock); 4356 if (!cv_wait_sig(&stp->sd_monitor, 4357 &stp->sd_lock)) { 4358 mutex_exit(&stp->sd_lock); 4359 return (EINTR); 4360 } 4361 mutex_exit(&stp->sd_lock); 4362 STRLOCKMATES(stp); 4363 } 4364 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 4365 error = strgeterr(stp, 4366 STRDERR|STWRERR|STRHUP|STPLEX, 0); 4367 if (error != 0) { 4368 STRUNLOCKMATES(stp); 4369 return (error); 4370 } 4371 } 4372 } 4373 stp->sd_flag |= STRPLUMB; 4374 STRUNLOCKMATES(stp); 4375 } else { 4376 mutex_enter(&stp->sd_lock); 4377 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 4378 if (((cmd == I_POP) || (cmd == _I_REMOVE)) && 4379 (flag & (FNDELAY|FNONBLOCK))) { 4380 mutex_exit(&stp->sd_lock); 4381 return (EAGAIN); 4382 } 4383 if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) { 4384 mutex_exit(&stp->sd_lock); 4385 return (EINTR); 4386 } 4387 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 4388 error = strgeterr(stp, 4389 STRDERR|STWRERR|STRHUP|STPLEX, 0); 4390 if (error != 0) { 4391 mutex_exit(&stp->sd_lock); 4392 return (error); 4393 } 4394 } 4395 } 4396 stp->sd_flag |= STRPLUMB; 4397 mutex_exit(&stp->sd_lock); 4398 } 4399 return (0); 4400 } 4401 4402 /* 4403 * Complete the plumbing operation associated with stream `stp'. 4404 */ 4405 void 4406 strendplumb(stdata_t *stp) 4407 { 4408 ASSERT(MUTEX_HELD(&stp->sd_lock)); 4409 ASSERT(stp->sd_flag & STRPLUMB); 4410 stp->sd_flag &= ~STRPLUMB; 4411 cv_broadcast(&stp->sd_monitor); 4412 } 4413 4414 /* 4415 * This describes how the STREAMS framework handles synchronization 4416 * during open/push and close/pop. 4417 * The key interfaces for open and close are qprocson and qprocsoff, 4418 * respectively. While the close case in general is harder both open 4419 * have close have significant similarities. 4420 * 4421 * During close the STREAMS framework has to both ensure that there 4422 * are no stale references to the queue pair (and syncq) that 4423 * are being closed and also provide the guarantees that are documented 4424 * in qprocsoff(9F). 4425 * If there are stale references to the queue that is closing it can 4426 * result in kernel memory corruption or kernel panics. 4427 * 4428 * Note that is it up to the module/driver to ensure that it itself 4429 * does not have any stale references to the closing queues once its close 4430 * routine returns. This includes: 4431 * - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines 4432 * associated with the queues. For timeout and bufcall callbacks the 4433 * module/driver also has to ensure (or wait for) any callbacks that 4434 * are in progress. 4435 * - If the module/driver is using esballoc it has to ensure that any 4436 * esballoc free functions do not refer to a queue that has closed. 4437 * (Note that in general the close routine can not wait for the esballoc'ed 4438 * messages to be freed since that can cause a deadlock.) 4439 * - Cancelling any interrupts that refer to the closing queues and 4440 * also ensuring that there are no interrupts in progress that will 4441 * refer to the closing queues once the close routine returns. 4442 * - For multiplexors removing any driver global state that refers to 4443 * the closing queue and also ensuring that there are no threads in 4444 * the multiplexor that has picked up a queue pointer but not yet 4445 * finished using it. 4446 * 4447 * In addition, a driver/module can only reference the q_next pointer 4448 * in its open, close, put, or service procedures or in a 4449 * qtimeout/qbufcall callback procedure executing "on" the correct 4450 * stream. Thus it can not reference the q_next pointer in an interrupt 4451 * routine or a timeout, bufcall or esballoc callback routine. Likewise 4452 * it can not reference q_next of a different queue e.g. in a mux that 4453 * passes messages from one queues put/service procedure to another queue. 4454 * In all the cases when the driver/module can not access the q_next 4455 * field it must use the *next* versions e.g. canputnext instead of 4456 * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...). 4457 * 4458 * 4459 * Assuming that the driver/module conforms to the above constraints 4460 * the STREAMS framework has to avoid stale references to q_next for all 4461 * the framework internal cases which include (but are not limited to): 4462 * - Threads in canput/canputnext/backenable and elsewhere that are 4463 * walking q_next. 4464 * - Messages on a syncq that have a reference to the queue through b_queue. 4465 * - Messages on an outer perimeter (syncq) that have a reference to the 4466 * queue through b_queue. 4467 * - Threads that use q_nfsrv (e.g. canput) to find a queue. 4468 * Note that only canput and bcanput use q_nfsrv without any locking. 4469 * 4470 * The STREAMS framework providing the qprocsoff(9F) guarantees means that 4471 * after qprocsoff returns, the framework has to ensure that no threads can 4472 * enter the put or service routines for the closing read or write-side queue. 4473 * In addition to preventing "direct" entry into the put procedures 4474 * the framework also has to prevent messages being drained from 4475 * the syncq or the outer perimeter. 4476 * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only 4477 * mechanism to prevent qwriter(PERIM_OUTER) from running after 4478 * qprocsoff has returned. 4479 * Note that if a module/driver uses put(9F) on one of its own queues 4480 * it is up to the module/driver to ensure that the put() doesn't 4481 * get called when the queue is closing. 4482 * 4483 * 4484 * The framework aspects of the above "contract" is implemented by 4485 * qprocsoff, removeq, and strlock: 4486 * - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from 4487 * entering the service procedures. 4488 * - strlock acquires the sd_lock and sd_reflock to prevent putnext, 4489 * canputnext, backenable etc from dereferencing the q_next that will 4490 * soon change. 4491 * - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext 4492 * or other q_next walker that uses claimstr/releasestr to finish. 4493 * - optionally for every syncq in the stream strlock acquires all the 4494 * sq_lock's and waits for all sq_counts to drop to a value that indicates 4495 * that no thread executes in the put or service procedures and that no 4496 * thread is draining into the module/driver. This ensures that no 4497 * open, close, put, service, or qtimeout/qbufcall callback procedure is 4498 * currently executing hence no such thread can end up with the old stale 4499 * q_next value and no canput/backenable can have the old stale 4500 * q_nfsrv/q_next. 4501 * - qdetach (wait_svc) makes sure that any scheduled or running threads 4502 * have either finished or observed the QWCLOSE flag and gone away. 4503 */ 4504 4505 4506 /* 4507 * Get all the locks necessary to change q_next. 4508 * 4509 * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the 4510 * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that 4511 * the only threads inside the sqncq are threads currently calling removeq(). 4512 * Since threads calling removeq() are in the process of removing their queues 4513 * from the stream, we do not need to worry about them accessing a stale q_next 4514 * pointer and thus we do not need to wait for them to exit (in fact, waiting 4515 * for them can cause deadlock). 4516 * 4517 * This routine is subject to starvation since it does not set any flag to 4518 * prevent threads from entering a module in the stream(i.e. sq_count can 4519 * increase on some syncq while it is waiting on some other syncq.) 4520 * 4521 * Assumes that only one thread attempts to call strlock for a given 4522 * stream. If this is not the case the two threads would deadlock. 4523 * This assumption is guaranteed since strlock is only called by insertq 4524 * and removeq and streams plumbing changes are single-threaded for 4525 * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags. 4526 * 4527 * For pipes, it is not difficult to atomically designate a pair of streams 4528 * to be mated. Once mated atomically by the framework the twisted pair remain 4529 * configured that way until dismantled atomically by the framework. 4530 * When plumbing takes place on a twisted stream it is necessary to ensure that 4531 * this operation is done exclusively on the twisted stream since two such 4532 * operations, each initiated on different ends of the pipe will deadlock 4533 * waiting for each other to complete. 4534 * 4535 * On entry, no locks should be held. 4536 * The locks acquired and held by strlock depends on a few factors. 4537 * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired 4538 * and held on exit and all sq_count are at an acceptable level. 4539 * - In all cases, sd_lock and sd_reflock are acquired and held on exit with 4540 * sd_refcnt being zero. 4541 */ 4542 4543 static void 4544 strlock(struct stdata *stp, sqlist_t *sqlist) 4545 { 4546 syncql_t *sql, *sql2; 4547 retry: 4548 /* 4549 * Wait for any claimstr to go away. 4550 */ 4551 if (STRMATED(stp)) { 4552 struct stdata *stp1, *stp2; 4553 4554 STRLOCKMATES(stp); 4555 /* 4556 * Note that the selection of locking order is not 4557 * important, just that they are always aquired in 4558 * the same order. To assure this, we choose this 4559 * order based on the value of the pointer, and since 4560 * the pointer will not change for the life of this 4561 * pair, we will always grab the locks in the same 4562 * order (and hence, prevent deadlocks). 4563 */ 4564 if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) { 4565 stp1 = stp; 4566 stp2 = stp->sd_mate; 4567 } else { 4568 stp2 = stp; 4569 stp1 = stp->sd_mate; 4570 } 4571 mutex_enter(&stp1->sd_reflock); 4572 if (stp1->sd_refcnt > 0) { 4573 STRUNLOCKMATES(stp); 4574 cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock); 4575 mutex_exit(&stp1->sd_reflock); 4576 goto retry; 4577 } 4578 mutex_enter(&stp2->sd_reflock); 4579 if (stp2->sd_refcnt > 0) { 4580 STRUNLOCKMATES(stp); 4581 mutex_exit(&stp1->sd_reflock); 4582 cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock); 4583 mutex_exit(&stp2->sd_reflock); 4584 goto retry; 4585 } 4586 STREAM_PUTLOCKS_ENTER(stp1); 4587 STREAM_PUTLOCKS_ENTER(stp2); 4588 } else { 4589 mutex_enter(&stp->sd_lock); 4590 mutex_enter(&stp->sd_reflock); 4591 while (stp->sd_refcnt > 0) { 4592 mutex_exit(&stp->sd_lock); 4593 cv_wait(&stp->sd_refmonitor, &stp->sd_reflock); 4594 if (mutex_tryenter(&stp->sd_lock) == 0) { 4595 mutex_exit(&stp->sd_reflock); 4596 mutex_enter(&stp->sd_lock); 4597 mutex_enter(&stp->sd_reflock); 4598 } 4599 } 4600 STREAM_PUTLOCKS_ENTER(stp); 4601 } 4602 4603 if (sqlist == NULL) 4604 return; 4605 4606 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) { 4607 syncq_t *sq = sql->sql_sq; 4608 uint16_t count; 4609 4610 mutex_enter(SQLOCK(sq)); 4611 count = sq->sq_count; 4612 ASSERT(sq->sq_rmqcount <= count); 4613 SQ_PUTLOCKS_ENTER(sq); 4614 SUM_SQ_PUTCOUNTS(sq, count); 4615 if (count == sq->sq_rmqcount) 4616 continue; 4617 4618 /* Failed - drop all locks that we have acquired so far */ 4619 if (STRMATED(stp)) { 4620 STREAM_PUTLOCKS_EXIT(stp); 4621 STREAM_PUTLOCKS_EXIT(stp->sd_mate); 4622 STRUNLOCKMATES(stp); 4623 mutex_exit(&stp->sd_reflock); 4624 mutex_exit(&stp->sd_mate->sd_reflock); 4625 } else { 4626 STREAM_PUTLOCKS_EXIT(stp); 4627 mutex_exit(&stp->sd_lock); 4628 mutex_exit(&stp->sd_reflock); 4629 } 4630 for (sql2 = sqlist->sqlist_head; sql2 != sql; 4631 sql2 = sql2->sql_next) { 4632 SQ_PUTLOCKS_EXIT(sql2->sql_sq); 4633 mutex_exit(SQLOCK(sql2->sql_sq)); 4634 } 4635 4636 /* 4637 * The wait loop below may starve when there are many threads 4638 * claiming the syncq. This is especially a problem with permod 4639 * syncqs (IP). To lessen the impact of the problem we increment 4640 * sq_needexcl and clear fastbits so that putnexts will slow 4641 * down and call sqenable instead of draining right away. 4642 */ 4643 sq->sq_needexcl++; 4644 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 4645 while (count > sq->sq_rmqcount) { 4646 sq->sq_flags |= SQ_WANTWAKEUP; 4647 SQ_PUTLOCKS_EXIT(sq); 4648 cv_wait(&sq->sq_wait, SQLOCK(sq)); 4649 count = sq->sq_count; 4650 SQ_PUTLOCKS_ENTER(sq); 4651 SUM_SQ_PUTCOUNTS(sq, count); 4652 } 4653 sq->sq_needexcl--; 4654 if (sq->sq_needexcl == 0) 4655 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 4656 SQ_PUTLOCKS_EXIT(sq); 4657 ASSERT(count == sq->sq_rmqcount); 4658 mutex_exit(SQLOCK(sq)); 4659 goto retry; 4660 } 4661 } 4662 4663 /* 4664 * Drop all the locks that strlock acquired. 4665 */ 4666 static void 4667 strunlock(struct stdata *stp, sqlist_t *sqlist) 4668 { 4669 syncql_t *sql; 4670 4671 if (STRMATED(stp)) { 4672 STREAM_PUTLOCKS_EXIT(stp); 4673 STREAM_PUTLOCKS_EXIT(stp->sd_mate); 4674 STRUNLOCKMATES(stp); 4675 mutex_exit(&stp->sd_reflock); 4676 mutex_exit(&stp->sd_mate->sd_reflock); 4677 } else { 4678 STREAM_PUTLOCKS_EXIT(stp); 4679 mutex_exit(&stp->sd_lock); 4680 mutex_exit(&stp->sd_reflock); 4681 } 4682 4683 if (sqlist == NULL) 4684 return; 4685 4686 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) { 4687 SQ_PUTLOCKS_EXIT(sql->sql_sq); 4688 mutex_exit(SQLOCK(sql->sql_sq)); 4689 } 4690 } 4691 4692 /* 4693 * When the module has service procedure, we need check if the next 4694 * module which has service procedure is in flow control to trigger 4695 * the backenable. 4696 */ 4697 static void 4698 backenable_insertedq(queue_t *q) 4699 { 4700 qband_t *qbp; 4701 4702 claimstr(q); 4703 if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) { 4704 if (q->q_next->q_nfsrv->q_flag & QWANTW) 4705 backenable(q, 0); 4706 4707 qbp = q->q_next->q_nfsrv->q_bandp; 4708 for (; qbp != NULL; qbp = qbp->qb_next) 4709 if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL) 4710 backenable(q, qbp->qb_first->b_band); 4711 } 4712 releasestr(q); 4713 } 4714 4715 /* 4716 * Given two read queues, insert a new single one after another. 4717 * 4718 * This routine acquires all the necessary locks in order to change 4719 * q_next and related pointer using strlock(). 4720 * It depends on the stream head ensuring that there are no concurrent 4721 * insertq or removeq on the same stream. The stream head ensures this 4722 * using the flags STWOPEN, STRCLOSE, and STRPLUMB. 4723 * 4724 * Note that no syncq locks are held during the q_next change. This is 4725 * applied to all streams since, unlike removeq, there is no problem of stale 4726 * pointers when adding a module to the stream. Thus drivers/modules that do a 4727 * canput(rq->q_next) would never get a closed/freed queue pointer even if we 4728 * applied this optimization to all streams. 4729 */ 4730 void 4731 insertq(struct stdata *stp, queue_t *new) 4732 { 4733 queue_t *after; 4734 queue_t *wafter; 4735 queue_t *wnew = _WR(new); 4736 boolean_t have_fifo = B_FALSE; 4737 4738 if (new->q_flag & _QINSERTING) { 4739 ASSERT(stp->sd_vnode->v_type != VFIFO); 4740 after = new->q_next; 4741 wafter = _WR(new->q_next); 4742 } else { 4743 after = _RD(stp->sd_wrq); 4744 wafter = stp->sd_wrq; 4745 } 4746 4747 TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ, 4748 "insertq:%p, %p", after, new); 4749 ASSERT(after->q_flag & QREADR); 4750 ASSERT(new->q_flag & QREADR); 4751 4752 strlock(stp, NULL); 4753 4754 /* Do we have a FIFO? */ 4755 if (wafter->q_next == after) { 4756 have_fifo = B_TRUE; 4757 wnew->q_next = new; 4758 } else { 4759 wnew->q_next = wafter->q_next; 4760 } 4761 new->q_next = after; 4762 4763 set_nfsrv_ptr(new, wnew, after, wafter); 4764 /* 4765 * set_nfsrv_ptr() needs to know if this is an insertion or not, 4766 * so only reset this flag after calling it. 4767 */ 4768 new->q_flag &= ~_QINSERTING; 4769 4770 if (have_fifo) { 4771 wafter->q_next = wnew; 4772 } else { 4773 if (wafter->q_next) 4774 _OTHERQ(wafter->q_next)->q_next = new; 4775 wafter->q_next = wnew; 4776 } 4777 4778 set_qend(new); 4779 /* The QEND flag might have to be updated for the upstream guy */ 4780 set_qend(after); 4781 4782 ASSERT(_SAMESTR(new) == O_SAMESTR(new)); 4783 ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew)); 4784 ASSERT(_SAMESTR(after) == O_SAMESTR(after)); 4785 ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter)); 4786 strsetuio(stp); 4787 4788 /* 4789 * If this was a module insertion, bump the push count. 4790 */ 4791 if (!(new->q_flag & QISDRV)) 4792 stp->sd_pushcnt++; 4793 4794 strunlock(stp, NULL); 4795 4796 /* check if the write Q needs backenable */ 4797 backenable_insertedq(wnew); 4798 4799 /* check if the read Q needs backenable */ 4800 backenable_insertedq(new); 4801 } 4802 4803 /* 4804 * Given a read queue, unlink it from any neighbors. 4805 * 4806 * This routine acquires all the necessary locks in order to 4807 * change q_next and related pointers and also guard against 4808 * stale references (e.g. through q_next) to the queue that 4809 * is being removed. It also plays part of the role in ensuring 4810 * that the module's/driver's put procedure doesn't get called 4811 * after qprocsoff returns. 4812 * 4813 * Removeq depends on the stream head ensuring that there are 4814 * no concurrent insertq or removeq on the same stream. The 4815 * stream head ensures this using the flags STWOPEN, STRCLOSE and 4816 * STRPLUMB. 4817 * 4818 * The set of locks needed to remove the queue is different in 4819 * different cases: 4820 * 4821 * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after 4822 * waiting for the syncq reference count to drop to 0 indicating that no 4823 * non-close threads are present anywhere in the stream. This ensures that any 4824 * module/driver can reference q_next in its open, close, put, or service 4825 * procedures. 4826 * 4827 * The sq_rmqcount counter tracks the number of threads inside removeq(). 4828 * strlock() ensures that there is either no threads executing inside perimeter 4829 * or there is only a thread calling qprocsoff(). 4830 * 4831 * strlock() compares the value of sq_count with the number of threads inside 4832 * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup 4833 * any threads waiting in strlock() when the sq_rmqcount increases. 4834 */ 4835 4836 void 4837 removeq(queue_t *qp) 4838 { 4839 queue_t *wqp = _WR(qp); 4840 struct stdata *stp = STREAM(qp); 4841 sqlist_t *sqlist = NULL; 4842 boolean_t isdriver; 4843 int moved; 4844 syncq_t *sq = qp->q_syncq; 4845 syncq_t *wsq = wqp->q_syncq; 4846 4847 ASSERT(stp); 4848 4849 TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ, 4850 "removeq:%p %p", qp, wqp); 4851 ASSERT(qp->q_flag&QREADR); 4852 4853 /* 4854 * For queues using Synchronous streams, we must wait for all threads in 4855 * rwnext() to drain out before proceeding. 4856 */ 4857 if (qp->q_flag & QSYNCSTR) { 4858 /* First, we need wakeup any threads blocked in rwnext() */ 4859 mutex_enter(SQLOCK(sq)); 4860 if (sq->sq_flags & SQ_WANTWAKEUP) { 4861 sq->sq_flags &= ~SQ_WANTWAKEUP; 4862 cv_broadcast(&sq->sq_wait); 4863 } 4864 mutex_exit(SQLOCK(sq)); 4865 4866 if (wsq != sq) { 4867 mutex_enter(SQLOCK(wsq)); 4868 if (wsq->sq_flags & SQ_WANTWAKEUP) { 4869 wsq->sq_flags &= ~SQ_WANTWAKEUP; 4870 cv_broadcast(&wsq->sq_wait); 4871 } 4872 mutex_exit(SQLOCK(wsq)); 4873 } 4874 4875 mutex_enter(QLOCK(qp)); 4876 while (qp->q_rwcnt > 0) { 4877 qp->q_flag |= QWANTRMQSYNC; 4878 cv_wait(&qp->q_wait, QLOCK(qp)); 4879 } 4880 mutex_exit(QLOCK(qp)); 4881 4882 mutex_enter(QLOCK(wqp)); 4883 while (wqp->q_rwcnt > 0) { 4884 wqp->q_flag |= QWANTRMQSYNC; 4885 cv_wait(&wqp->q_wait, QLOCK(wqp)); 4886 } 4887 mutex_exit(QLOCK(wqp)); 4888 } 4889 4890 mutex_enter(SQLOCK(sq)); 4891 sq->sq_rmqcount++; 4892 if (sq->sq_flags & SQ_WANTWAKEUP) { 4893 sq->sq_flags &= ~SQ_WANTWAKEUP; 4894 cv_broadcast(&sq->sq_wait); 4895 } 4896 mutex_exit(SQLOCK(sq)); 4897 4898 isdriver = (qp->q_flag & QISDRV); 4899 4900 sqlist = sqlist_build(qp, stp, STRMATED(stp)); 4901 strlock(stp, sqlist); 4902 4903 reset_nfsrv_ptr(qp, wqp); 4904 4905 ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp); 4906 ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp); 4907 /* Do we have a FIFO? */ 4908 if (wqp->q_next == qp) { 4909 stp->sd_wrq->q_next = _RD(stp->sd_wrq); 4910 } else { 4911 if (wqp->q_next) 4912 backq(qp)->q_next = qp->q_next; 4913 if (qp->q_next) 4914 backq(wqp)->q_next = wqp->q_next; 4915 } 4916 4917 /* The QEND flag might have to be updated for the upstream guy */ 4918 if (qp->q_next) 4919 set_qend(qp->q_next); 4920 4921 ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq)); 4922 ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq))); 4923 4924 /* 4925 * Move any messages destined for the put procedures to the next 4926 * syncq in line. Otherwise free them. 4927 */ 4928 moved = 0; 4929 /* 4930 * Quick check to see whether there are any messages or events. 4931 */ 4932 if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS)) 4933 moved += propagate_syncq(qp); 4934 if (wqp->q_syncqmsgs != 0 || 4935 (wqp->q_syncq->sq_flags & SQ_EVENTS)) 4936 moved += propagate_syncq(wqp); 4937 4938 strsetuio(stp); 4939 4940 /* 4941 * If this was a module removal, decrement the push count. 4942 */ 4943 if (!isdriver) 4944 stp->sd_pushcnt--; 4945 4946 strunlock(stp, sqlist); 4947 sqlist_free(sqlist); 4948 4949 /* 4950 * Make sure any messages that were propagated are drained. 4951 * Also clear any QFULL bit caused by messages that were propagated. 4952 */ 4953 4954 if (qp->q_next != NULL) { 4955 clr_qfull(qp); 4956 /* 4957 * For the driver calling qprocsoff, propagate_syncq 4958 * frees all the messages instead of putting it in 4959 * the stream head 4960 */ 4961 if (!isdriver && (moved > 0)) 4962 emptysq(qp->q_next->q_syncq); 4963 } 4964 if (wqp->q_next != NULL) { 4965 clr_qfull(wqp); 4966 /* 4967 * We come here for any pop of a module except for the 4968 * case of driver being removed. We don't call emptysq 4969 * if we did not move any messages. This will avoid holding 4970 * PERMOD syncq locks in emptysq 4971 */ 4972 if (moved > 0) 4973 emptysq(wqp->q_next->q_syncq); 4974 } 4975 4976 mutex_enter(SQLOCK(sq)); 4977 sq->sq_rmqcount--; 4978 mutex_exit(SQLOCK(sq)); 4979 } 4980 4981 /* 4982 * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or 4983 * SQ_WRITER) on a syncq. 4984 * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the 4985 * sync queue and waits until sq_count reaches maxcnt. 4986 * 4987 * if maxcnt is -1 there's no need to grab sq_putlocks since the caller 4988 * does not care about putnext threads that are in the middle of calling put 4989 * entry points. 4990 * 4991 * This routine is used for both inner and outer syncqs. 4992 */ 4993 static void 4994 blocksq(syncq_t *sq, ushort_t flag, int maxcnt) 4995 { 4996 uint16_t count = 0; 4997 4998 mutex_enter(SQLOCK(sq)); 4999 /* 5000 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset. 5001 * SQ_FROZEN will be set if there is a frozen stream that has a 5002 * queue which also refers to this "shared" syncq. 5003 * SQ_BLOCKED will be set if there is "off" queue which also 5004 * refers to this "shared" syncq. 5005 */ 5006 if (maxcnt != -1) { 5007 count = sq->sq_count; 5008 SQ_PUTLOCKS_ENTER(sq); 5009 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 5010 SUM_SQ_PUTCOUNTS(sq, count); 5011 } 5012 sq->sq_needexcl++; 5013 ASSERT(sq->sq_needexcl != 0); /* wraparound */ 5014 5015 while ((sq->sq_flags & flag) || 5016 (maxcnt != -1 && count > (unsigned)maxcnt)) { 5017 sq->sq_flags |= SQ_WANTWAKEUP; 5018 if (maxcnt != -1) { 5019 SQ_PUTLOCKS_EXIT(sq); 5020 } 5021 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5022 if (maxcnt != -1) { 5023 count = sq->sq_count; 5024 SQ_PUTLOCKS_ENTER(sq); 5025 SUM_SQ_PUTCOUNTS(sq, count); 5026 } 5027 } 5028 sq->sq_needexcl--; 5029 sq->sq_flags |= flag; 5030 ASSERT(maxcnt == -1 || count == maxcnt); 5031 if (maxcnt != -1) { 5032 if (sq->sq_needexcl == 0) { 5033 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 5034 } 5035 SQ_PUTLOCKS_EXIT(sq); 5036 } else if (sq->sq_needexcl == 0) { 5037 SQ_PUTCOUNT_SETFAST(sq); 5038 } 5039 5040 mutex_exit(SQLOCK(sq)); 5041 } 5042 5043 /* 5044 * Reset a flag that was set with blocksq. 5045 * 5046 * Can not use this routine to reset SQ_WRITER. 5047 * 5048 * If "isouter" is set then the syncq is assumed to be an outer perimeter 5049 * and drain_syncq is not called. Instead we rely on the qwriter_outer thread 5050 * to handle the queued qwriter operations. 5051 * 5052 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5053 * sq_putlocks are used. 5054 */ 5055 static void 5056 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter) 5057 { 5058 uint16_t flags; 5059 5060 mutex_enter(SQLOCK(sq)); 5061 ASSERT(resetflag != SQ_WRITER); 5062 ASSERT(sq->sq_flags & resetflag); 5063 flags = sq->sq_flags & ~resetflag; 5064 sq->sq_flags = flags; 5065 if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) { 5066 if (flags & SQ_WANTWAKEUP) { 5067 flags &= ~SQ_WANTWAKEUP; 5068 cv_broadcast(&sq->sq_wait); 5069 } 5070 sq->sq_flags = flags; 5071 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) { 5072 if (!isouter) { 5073 /* drain_syncq drops SQLOCK */ 5074 drain_syncq(sq); 5075 return; 5076 } 5077 } 5078 } 5079 mutex_exit(SQLOCK(sq)); 5080 } 5081 5082 /* 5083 * Reset a flag that was set with blocksq. 5084 * Does not drain the syncq. Use emptysq() for that. 5085 * Returns 1 if SQ_QUEUED is set. Otherwise 0. 5086 * 5087 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5088 * sq_putlocks are used. 5089 */ 5090 static int 5091 dropsq(syncq_t *sq, uint16_t resetflag) 5092 { 5093 uint16_t flags; 5094 5095 mutex_enter(SQLOCK(sq)); 5096 ASSERT(sq->sq_flags & resetflag); 5097 flags = sq->sq_flags & ~resetflag; 5098 if (flags & SQ_WANTWAKEUP) { 5099 flags &= ~SQ_WANTWAKEUP; 5100 cv_broadcast(&sq->sq_wait); 5101 } 5102 sq->sq_flags = flags; 5103 mutex_exit(SQLOCK(sq)); 5104 if (flags & SQ_QUEUED) 5105 return (1); 5106 return (0); 5107 } 5108 5109 /* 5110 * Empty all the messages on a syncq. 5111 * 5112 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5113 * sq_putlocks are used. 5114 */ 5115 static void 5116 emptysq(syncq_t *sq) 5117 { 5118 uint16_t flags; 5119 5120 mutex_enter(SQLOCK(sq)); 5121 flags = sq->sq_flags; 5122 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) { 5123 /* 5124 * To prevent potential recursive invocation of drain_syncq we 5125 * do not call drain_syncq if count is non-zero. 5126 */ 5127 if (sq->sq_count == 0) { 5128 /* drain_syncq() drops SQLOCK */ 5129 drain_syncq(sq); 5130 return; 5131 } else 5132 sqenable(sq); 5133 } 5134 mutex_exit(SQLOCK(sq)); 5135 } 5136 5137 /* 5138 * Ordered insert while removing duplicates. 5139 */ 5140 static void 5141 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp) 5142 { 5143 syncql_t *sqlp, **prev_sqlpp, *new_sqlp; 5144 5145 prev_sqlpp = &sqlist->sqlist_head; 5146 while ((sqlp = *prev_sqlpp) != NULL) { 5147 if (sqlp->sql_sq >= sqp) { 5148 if (sqlp->sql_sq == sqp) /* duplicate */ 5149 return; 5150 break; 5151 } 5152 prev_sqlpp = &sqlp->sql_next; 5153 } 5154 new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++]; 5155 ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size); 5156 new_sqlp->sql_next = sqlp; 5157 new_sqlp->sql_sq = sqp; 5158 *prev_sqlpp = new_sqlp; 5159 } 5160 5161 /* 5162 * Walk the write side queues until we hit either the driver 5163 * or a twist in the stream (_SAMESTR will return false in both 5164 * these cases) then turn around and walk the read side queues 5165 * back up to the stream head. 5166 */ 5167 static void 5168 sqlist_insertall(sqlist_t *sqlist, queue_t *q) 5169 { 5170 while (q != NULL) { 5171 sqlist_insert(sqlist, q->q_syncq); 5172 5173 if (_SAMESTR(q)) 5174 q = q->q_next; 5175 else if (!(q->q_flag & QREADR)) 5176 q = _RD(q); 5177 else 5178 q = NULL; 5179 } 5180 } 5181 5182 /* 5183 * Allocate and build a list of all syncqs in a stream and the syncq(s) 5184 * associated with the "q" parameter. The resulting list is sorted in a 5185 * canonical order and is free of duplicates. 5186 * Assumes the passed queue is a _RD(q). 5187 */ 5188 static sqlist_t * 5189 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist) 5190 { 5191 sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP); 5192 5193 /* 5194 * start with the current queue/qpair 5195 */ 5196 ASSERT(q->q_flag & QREADR); 5197 5198 sqlist_insert(sqlist, q->q_syncq); 5199 sqlist_insert(sqlist, _WR(q)->q_syncq); 5200 5201 sqlist_insertall(sqlist, stp->sd_wrq); 5202 if (do_twist) 5203 sqlist_insertall(sqlist, stp->sd_mate->sd_wrq); 5204 5205 return (sqlist); 5206 } 5207 5208 static sqlist_t * 5209 sqlist_alloc(struct stdata *stp, int kmflag) 5210 { 5211 size_t sqlist_size; 5212 sqlist_t *sqlist; 5213 5214 /* 5215 * Allocate 2 syncql_t's for each pushed module. Note that 5216 * the sqlist_t structure already has 4 syncql_t's built in: 5217 * 2 for the stream head, and 2 for the driver/other stream head. 5218 */ 5219 sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt + 5220 sizeof (sqlist_t); 5221 if (STRMATED(stp)) 5222 sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt; 5223 sqlist = kmem_alloc(sqlist_size, kmflag); 5224 5225 sqlist->sqlist_head = NULL; 5226 sqlist->sqlist_size = sqlist_size; 5227 sqlist->sqlist_index = 0; 5228 5229 return (sqlist); 5230 } 5231 5232 /* 5233 * Free the list created by sqlist_alloc() 5234 */ 5235 static void 5236 sqlist_free(sqlist_t *sqlist) 5237 { 5238 kmem_free(sqlist, sqlist->sqlist_size); 5239 } 5240 5241 /* 5242 * Prevent any new entries into any syncq in this stream. 5243 * Used by freezestr. 5244 */ 5245 void 5246 strblock(queue_t *q) 5247 { 5248 struct stdata *stp; 5249 syncql_t *sql; 5250 sqlist_t *sqlist; 5251 5252 q = _RD(q); 5253 5254 stp = STREAM(q); 5255 ASSERT(stp != NULL); 5256 5257 /* 5258 * Get a sorted list with all the duplicates removed containing 5259 * all the syncqs referenced by this stream. 5260 */ 5261 sqlist = sqlist_build(q, stp, B_FALSE); 5262 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next) 5263 blocksq(sql->sql_sq, SQ_FROZEN, -1); 5264 sqlist_free(sqlist); 5265 } 5266 5267 /* 5268 * Release the block on new entries into this stream 5269 */ 5270 void 5271 strunblock(queue_t *q) 5272 { 5273 struct stdata *stp; 5274 syncql_t *sql; 5275 sqlist_t *sqlist; 5276 int drain_needed; 5277 5278 q = _RD(q); 5279 5280 /* 5281 * Get a sorted list with all the duplicates removed containing 5282 * all the syncqs referenced by this stream. 5283 * Have to drop the SQ_FROZEN flag on all the syncqs before 5284 * starting to drain them; otherwise the draining might 5285 * cause a freezestr in some module on the stream (which 5286 * would deadlock.) 5287 */ 5288 stp = STREAM(q); 5289 ASSERT(stp != NULL); 5290 sqlist = sqlist_build(q, stp, B_FALSE); 5291 drain_needed = 0; 5292 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next) 5293 drain_needed += dropsq(sql->sql_sq, SQ_FROZEN); 5294 if (drain_needed) { 5295 for (sql = sqlist->sqlist_head; sql != NULL; 5296 sql = sql->sql_next) 5297 emptysq(sql->sql_sq); 5298 } 5299 sqlist_free(sqlist); 5300 } 5301 5302 #ifdef DEBUG 5303 static int 5304 qprocsareon(queue_t *rq) 5305 { 5306 if (rq->q_next == NULL) 5307 return (0); 5308 return (_WR(rq->q_next)->q_next == _WR(rq)); 5309 } 5310 5311 int 5312 qclaimed(queue_t *q) 5313 { 5314 uint_t count; 5315 5316 count = q->q_syncq->sq_count; 5317 SUM_SQ_PUTCOUNTS(q->q_syncq, count); 5318 return (count != 0); 5319 } 5320 5321 /* 5322 * Check if anyone has frozen this stream with freezestr 5323 */ 5324 int 5325 frozenstr(queue_t *q) 5326 { 5327 return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0); 5328 } 5329 #endif /* DEBUG */ 5330 5331 /* 5332 * Enter a queue. 5333 * Obsoleted interface. Should not be used. 5334 */ 5335 void 5336 enterq(queue_t *q) 5337 { 5338 entersq(q->q_syncq, SQ_CALLBACK); 5339 } 5340 5341 void 5342 leaveq(queue_t *q) 5343 { 5344 leavesq(q->q_syncq, SQ_CALLBACK); 5345 } 5346 5347 /* 5348 * Enter a perimeter. c_inner and c_outer specifies which concurrency bits 5349 * to check. 5350 * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter 5351 * calls and the running of open, close and service procedures. 5352 * 5353 * if c_inner bit is set no need to grab sq_putlocks since we don't care 5354 * if other threads have entered or are entering put entry point. 5355 * 5356 * if c_inner bit is set it might have been posible to use 5357 * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize 5358 * open/close path for IP) but since the count may need to be decremented in 5359 * qwait() we wouldn't know which counter to decrement. Currently counter is 5360 * selected by current cpu_seqid and current CPU can change at any moment. XXX 5361 * in the future we might use curthread id bits to select the counter and this 5362 * would stay constant across routine calls. 5363 */ 5364 void 5365 entersq(syncq_t *sq, int entrypoint) 5366 { 5367 uint16_t count = 0; 5368 uint16_t flags; 5369 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL; 5370 uint16_t type; 5371 uint_t c_inner = entrypoint & SQ_CI; 5372 uint_t c_outer = entrypoint & SQ_CO; 5373 5374 /* 5375 * Increment ref count to keep closes out of this queue. 5376 */ 5377 ASSERT(sq); 5378 ASSERT(c_inner && c_outer); 5379 mutex_enter(SQLOCK(sq)); 5380 flags = sq->sq_flags; 5381 type = sq->sq_type; 5382 if (!(type & c_inner)) { 5383 /* Make sure all putcounts now use slowlock. */ 5384 count = sq->sq_count; 5385 SQ_PUTLOCKS_ENTER(sq); 5386 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 5387 SUM_SQ_PUTCOUNTS(sq, count); 5388 sq->sq_needexcl++; 5389 ASSERT(sq->sq_needexcl != 0); /* wraparound */ 5390 waitflags |= SQ_MESSAGES; 5391 } 5392 /* 5393 * Wait until we can enter the inner perimeter. 5394 * If we want exclusive access we wait until sq_count is 0. 5395 * We have to do this before entering the outer perimeter in order 5396 * to preserve put/close message ordering. 5397 */ 5398 while ((flags & waitflags) || (!(type & c_inner) && count != 0)) { 5399 sq->sq_flags = flags | SQ_WANTWAKEUP; 5400 if (!(type & c_inner)) { 5401 SQ_PUTLOCKS_EXIT(sq); 5402 } 5403 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5404 if (!(type & c_inner)) { 5405 count = sq->sq_count; 5406 SQ_PUTLOCKS_ENTER(sq); 5407 SUM_SQ_PUTCOUNTS(sq, count); 5408 } 5409 flags = sq->sq_flags; 5410 } 5411 5412 if (!(type & c_inner)) { 5413 ASSERT(sq->sq_needexcl > 0); 5414 sq->sq_needexcl--; 5415 if (sq->sq_needexcl == 0) { 5416 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 5417 } 5418 } 5419 5420 /* Check if we need to enter the outer perimeter */ 5421 if (!(type & c_outer)) { 5422 /* 5423 * We have to enter the outer perimeter exclusively before 5424 * we can increment sq_count to avoid deadlock. This implies 5425 * that we have to re-check sq_flags and sq_count. 5426 * 5427 * is it possible to have c_inner set when c_outer is not set? 5428 */ 5429 if (!(type & c_inner)) { 5430 SQ_PUTLOCKS_EXIT(sq); 5431 } 5432 mutex_exit(SQLOCK(sq)); 5433 outer_enter(sq->sq_outer, SQ_GOAWAY); 5434 mutex_enter(SQLOCK(sq)); 5435 flags = sq->sq_flags; 5436 /* 5437 * there should be no need to recheck sq_putcounts 5438 * because outer_enter() has already waited for them to clear 5439 * after setting SQ_WRITER. 5440 */ 5441 count = sq->sq_count; 5442 #ifdef DEBUG 5443 /* 5444 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead 5445 * of doing an ASSERT internally. Others should do 5446 * something like 5447 * ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0); 5448 * without the need to #ifdef DEBUG it. 5449 */ 5450 SUMCHECK_SQ_PUTCOUNTS(sq, 0); 5451 #endif 5452 while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) || 5453 (!(type & c_inner) && count != 0)) { 5454 sq->sq_flags = flags | SQ_WANTWAKEUP; 5455 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5456 count = sq->sq_count; 5457 flags = sq->sq_flags; 5458 } 5459 } 5460 5461 sq->sq_count++; 5462 ASSERT(sq->sq_count != 0); /* Wraparound */ 5463 if (!(type & c_inner)) { 5464 /* Exclusive entry */ 5465 ASSERT(sq->sq_count == 1); 5466 sq->sq_flags |= SQ_EXCL; 5467 if (type & c_outer) { 5468 SQ_PUTLOCKS_EXIT(sq); 5469 } 5470 } 5471 mutex_exit(SQLOCK(sq)); 5472 } 5473 5474 /* 5475 * leave a syncq. announce to framework that closes may proceed. 5476 * c_inner and c_outer specifies which concurrency bits 5477 * to check. 5478 * 5479 * must never be called from driver or module put entry point. 5480 * 5481 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5482 * sq_putlocks are used. 5483 */ 5484 void 5485 leavesq(syncq_t *sq, int entrypoint) 5486 { 5487 uint16_t flags; 5488 uint16_t type; 5489 uint_t c_outer = entrypoint & SQ_CO; 5490 #ifdef DEBUG 5491 uint_t c_inner = entrypoint & SQ_CI; 5492 #endif 5493 5494 /* 5495 * decrement ref count, drain the syncq if possible, and wake up 5496 * any waiting close. 5497 */ 5498 ASSERT(sq); 5499 ASSERT(c_inner && c_outer); 5500 mutex_enter(SQLOCK(sq)); 5501 flags = sq->sq_flags; 5502 type = sq->sq_type; 5503 if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) { 5504 5505 if (flags & SQ_WANTWAKEUP) { 5506 flags &= ~SQ_WANTWAKEUP; 5507 cv_broadcast(&sq->sq_wait); 5508 } 5509 if (flags & SQ_WANTEXWAKEUP) { 5510 flags &= ~SQ_WANTEXWAKEUP; 5511 cv_broadcast(&sq->sq_exitwait); 5512 } 5513 5514 if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) { 5515 /* 5516 * The syncq needs to be drained. "Exit" the syncq 5517 * before calling drain_syncq. 5518 */ 5519 ASSERT(sq->sq_count != 0); 5520 sq->sq_count--; 5521 ASSERT((flags & SQ_EXCL) || (type & c_inner)); 5522 sq->sq_flags = flags & ~SQ_EXCL; 5523 drain_syncq(sq); 5524 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 5525 /* Check if we need to exit the outer perimeter */ 5526 /* XXX will this ever be true? */ 5527 if (!(type & c_outer)) 5528 outer_exit(sq->sq_outer); 5529 return; 5530 } 5531 } 5532 ASSERT(sq->sq_count != 0); 5533 sq->sq_count--; 5534 ASSERT((flags & SQ_EXCL) || (type & c_inner)); 5535 sq->sq_flags = flags & ~SQ_EXCL; 5536 mutex_exit(SQLOCK(sq)); 5537 5538 /* Check if we need to exit the outer perimeter */ 5539 if (!(sq->sq_type & c_outer)) 5540 outer_exit(sq->sq_outer); 5541 } 5542 5543 /* 5544 * Prevent q_next from changing in this stream by incrementing sq_count. 5545 * 5546 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5547 * sq_putlocks are used. 5548 */ 5549 void 5550 claimq(queue_t *qp) 5551 { 5552 syncq_t *sq = qp->q_syncq; 5553 5554 mutex_enter(SQLOCK(sq)); 5555 sq->sq_count++; 5556 ASSERT(sq->sq_count != 0); /* Wraparound */ 5557 mutex_exit(SQLOCK(sq)); 5558 } 5559 5560 /* 5561 * Undo claimq. 5562 * 5563 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 5564 * sq_putlocks are used. 5565 */ 5566 void 5567 releaseq(queue_t *qp) 5568 { 5569 syncq_t *sq = qp->q_syncq; 5570 uint16_t flags; 5571 5572 mutex_enter(SQLOCK(sq)); 5573 ASSERT(sq->sq_count > 0); 5574 sq->sq_count--; 5575 5576 flags = sq->sq_flags; 5577 if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) { 5578 if (flags & SQ_WANTWAKEUP) { 5579 flags &= ~SQ_WANTWAKEUP; 5580 cv_broadcast(&sq->sq_wait); 5581 } 5582 sq->sq_flags = flags; 5583 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) { 5584 /* 5585 * To prevent potential recursive invocation of 5586 * drain_syncq we do not call drain_syncq if count is 5587 * non-zero. 5588 */ 5589 if (sq->sq_count == 0) { 5590 drain_syncq(sq); 5591 return; 5592 } else 5593 sqenable(sq); 5594 } 5595 } 5596 mutex_exit(SQLOCK(sq)); 5597 } 5598 5599 /* 5600 * Prevent q_next from changing in this stream by incrementing sd_refcnt. 5601 */ 5602 void 5603 claimstr(queue_t *qp) 5604 { 5605 struct stdata *stp = STREAM(qp); 5606 5607 mutex_enter(&stp->sd_reflock); 5608 stp->sd_refcnt++; 5609 ASSERT(stp->sd_refcnt != 0); /* Wraparound */ 5610 mutex_exit(&stp->sd_reflock); 5611 } 5612 5613 /* 5614 * Undo claimstr. 5615 */ 5616 void 5617 releasestr(queue_t *qp) 5618 { 5619 struct stdata *stp = STREAM(qp); 5620 5621 mutex_enter(&stp->sd_reflock); 5622 ASSERT(stp->sd_refcnt != 0); 5623 if (--stp->sd_refcnt == 0) 5624 cv_broadcast(&stp->sd_refmonitor); 5625 mutex_exit(&stp->sd_reflock); 5626 } 5627 5628 static syncq_t * 5629 new_syncq(void) 5630 { 5631 return (kmem_cache_alloc(syncq_cache, KM_SLEEP)); 5632 } 5633 5634 static void 5635 free_syncq(syncq_t *sq) 5636 { 5637 ASSERT(sq->sq_head == NULL); 5638 ASSERT(sq->sq_outer == NULL); 5639 ASSERT(sq->sq_callbpend == NULL); 5640 ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) || 5641 (sq->sq_onext == sq && sq->sq_oprev == sq)); 5642 5643 if (sq->sq_ciputctrl != NULL) { 5644 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1); 5645 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl, 5646 sq->sq_nciputctrl, 0); 5647 ASSERT(ciputctrl_cache != NULL); 5648 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl); 5649 } 5650 5651 sq->sq_tail = NULL; 5652 sq->sq_evhead = NULL; 5653 sq->sq_evtail = NULL; 5654 sq->sq_ciputctrl = NULL; 5655 sq->sq_nciputctrl = 0; 5656 sq->sq_count = 0; 5657 sq->sq_rmqcount = 0; 5658 sq->sq_callbflags = 0; 5659 sq->sq_cancelid = 0; 5660 sq->sq_next = NULL; 5661 sq->sq_needexcl = 0; 5662 sq->sq_svcflags = 0; 5663 sq->sq_nqueues = 0; 5664 sq->sq_pri = 0; 5665 sq->sq_onext = NULL; 5666 sq->sq_oprev = NULL; 5667 sq->sq_flags = 0; 5668 sq->sq_type = 0; 5669 sq->sq_servcount = 0; 5670 5671 kmem_cache_free(syncq_cache, sq); 5672 } 5673 5674 /* Outer perimeter code */ 5675 5676 /* 5677 * The outer syncq uses the fields and flags in the syncq slightly 5678 * differently from the inner syncqs. 5679 * sq_count Incremented when there are pending or running 5680 * writers at the outer perimeter to prevent the set of 5681 * inner syncqs that belong to the outer perimeter from 5682 * changing. 5683 * sq_head/tail List of deferred qwriter(OUTER) operations. 5684 * 5685 * SQ_BLOCKED Set to prevent traversing of sq_next,sq_prev while 5686 * inner syncqs are added to or removed from the 5687 * outer perimeter. 5688 * SQ_QUEUED sq_head/tail has messages or eventsqueued. 5689 * 5690 * SQ_WRITER A thread is currently traversing all the inner syncqs 5691 * setting the SQ_WRITER flag. 5692 */ 5693 5694 /* 5695 * Get write access at the outer perimeter. 5696 * Note that read access is done by entersq, putnext, and put by simply 5697 * incrementing sq_count in the inner syncq. 5698 * 5699 * Waits until "flags" is no longer set in the outer to prevent multiple 5700 * threads from having write access at the same time. SQ_WRITER has to be part 5701 * of "flags". 5702 * 5703 * Increases sq_count on the outer syncq to keep away outer_insert/remove 5704 * until the outer_exit is finished. 5705 * 5706 * outer_enter is vulnerable to starvation since it does not prevent new 5707 * threads from entering the inner syncqs while it is waiting for sq_count to 5708 * go to zero. 5709 */ 5710 void 5711 outer_enter(syncq_t *outer, uint16_t flags) 5712 { 5713 syncq_t *sq; 5714 int wait_needed; 5715 uint16_t count; 5716 5717 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5718 outer->sq_oprev != NULL); 5719 ASSERT(flags & SQ_WRITER); 5720 5721 retry: 5722 mutex_enter(SQLOCK(outer)); 5723 while (outer->sq_flags & flags) { 5724 outer->sq_flags |= SQ_WANTWAKEUP; 5725 cv_wait(&outer->sq_wait, SQLOCK(outer)); 5726 } 5727 5728 ASSERT(!(outer->sq_flags & SQ_WRITER)); 5729 outer->sq_flags |= SQ_WRITER; 5730 outer->sq_count++; 5731 ASSERT(outer->sq_count != 0); /* wraparound */ 5732 wait_needed = 0; 5733 /* 5734 * Set SQ_WRITER on all the inner syncqs while holding 5735 * the SQLOCK on the outer syncq. This ensures that the changing 5736 * of SQ_WRITER is atomic under the outer SQLOCK. 5737 */ 5738 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) { 5739 mutex_enter(SQLOCK(sq)); 5740 count = sq->sq_count; 5741 SQ_PUTLOCKS_ENTER(sq); 5742 sq->sq_flags |= SQ_WRITER; 5743 SUM_SQ_PUTCOUNTS(sq, count); 5744 if (count != 0) 5745 wait_needed = 1; 5746 SQ_PUTLOCKS_EXIT(sq); 5747 mutex_exit(SQLOCK(sq)); 5748 } 5749 mutex_exit(SQLOCK(outer)); 5750 5751 /* 5752 * Get everybody out of the syncqs sequentially. 5753 * Note that we don't actually need to aqiure the PUTLOCKS, since 5754 * we have already cleared the fastbit, and set QWRITER. By 5755 * definition, the count can not increase since putnext will 5756 * take the slowlock path (and the purpose of aquiring the 5757 * putlocks was to make sure it didn't increase while we were 5758 * waiting). 5759 * 5760 * Note that we still aquire the PUTLOCKS to be safe. 5761 */ 5762 if (wait_needed) { 5763 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) { 5764 mutex_enter(SQLOCK(sq)); 5765 count = sq->sq_count; 5766 SQ_PUTLOCKS_ENTER(sq); 5767 SUM_SQ_PUTCOUNTS(sq, count); 5768 while (count != 0) { 5769 sq->sq_flags |= SQ_WANTWAKEUP; 5770 SQ_PUTLOCKS_EXIT(sq); 5771 cv_wait(&sq->sq_wait, SQLOCK(sq)); 5772 count = sq->sq_count; 5773 SQ_PUTLOCKS_ENTER(sq); 5774 SUM_SQ_PUTCOUNTS(sq, count); 5775 } 5776 SQ_PUTLOCKS_EXIT(sq); 5777 mutex_exit(SQLOCK(sq)); 5778 } 5779 /* 5780 * Verify that none of the flags got set while we 5781 * were waiting for the sq_counts to drop. 5782 * If this happens we exit and retry entering the 5783 * outer perimeter. 5784 */ 5785 mutex_enter(SQLOCK(outer)); 5786 if (outer->sq_flags & (flags & ~SQ_WRITER)) { 5787 mutex_exit(SQLOCK(outer)); 5788 outer_exit(outer); 5789 goto retry; 5790 } 5791 mutex_exit(SQLOCK(outer)); 5792 } 5793 } 5794 5795 /* 5796 * Drop the write access at the outer perimeter. 5797 * Read access is dropped implicitly (by putnext, put, and leavesq) by 5798 * decrementing sq_count. 5799 */ 5800 void 5801 outer_exit(syncq_t *outer) 5802 { 5803 syncq_t *sq; 5804 int drain_needed; 5805 uint16_t flags; 5806 5807 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5808 outer->sq_oprev != NULL); 5809 ASSERT(MUTEX_NOT_HELD(SQLOCK(outer))); 5810 5811 /* 5812 * Atomically (from the perspective of threads calling become_writer) 5813 * drop the write access at the outer perimeter by holding 5814 * SQLOCK(outer) across all the dropsq calls and the resetting of 5815 * SQ_WRITER. 5816 * This defines a locking order between the outer perimeter 5817 * SQLOCK and the inner perimeter SQLOCKs. 5818 */ 5819 mutex_enter(SQLOCK(outer)); 5820 flags = outer->sq_flags; 5821 ASSERT(outer->sq_flags & SQ_WRITER); 5822 if (flags & SQ_QUEUED) { 5823 write_now(outer); 5824 flags = outer->sq_flags; 5825 } 5826 5827 /* 5828 * sq_onext is stable since sq_count has not yet been decreased. 5829 * Reset the SQ_WRITER flags in all syncqs. 5830 * After dropping SQ_WRITER on the outer syncq we empty all the 5831 * inner syncqs. 5832 */ 5833 drain_needed = 0; 5834 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) 5835 drain_needed += dropsq(sq, SQ_WRITER); 5836 ASSERT(!(outer->sq_flags & SQ_QUEUED)); 5837 flags &= ~SQ_WRITER; 5838 if (drain_needed) { 5839 outer->sq_flags = flags; 5840 mutex_exit(SQLOCK(outer)); 5841 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) 5842 emptysq(sq); 5843 mutex_enter(SQLOCK(outer)); 5844 flags = outer->sq_flags; 5845 } 5846 if (flags & SQ_WANTWAKEUP) { 5847 flags &= ~SQ_WANTWAKEUP; 5848 cv_broadcast(&outer->sq_wait); 5849 } 5850 outer->sq_flags = flags; 5851 ASSERT(outer->sq_count > 0); 5852 outer->sq_count--; 5853 mutex_exit(SQLOCK(outer)); 5854 } 5855 5856 /* 5857 * Add another syncq to an outer perimeter. 5858 * Block out all other access to the outer perimeter while it is being 5859 * changed using blocksq. 5860 * Assumes that the caller has *not* done an outer_enter. 5861 * 5862 * Vulnerable to starvation in blocksq. 5863 */ 5864 static void 5865 outer_insert(syncq_t *outer, syncq_t *sq) 5866 { 5867 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5868 outer->sq_oprev != NULL); 5869 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL && 5870 sq->sq_oprev == NULL); /* Can't be in an outer perimeter */ 5871 5872 /* Get exclusive access to the outer perimeter list */ 5873 blocksq(outer, SQ_BLOCKED, 0); 5874 ASSERT(outer->sq_flags & SQ_BLOCKED); 5875 ASSERT(!(outer->sq_flags & SQ_WRITER)); 5876 5877 mutex_enter(SQLOCK(sq)); 5878 sq->sq_outer = outer; 5879 outer->sq_onext->sq_oprev = sq; 5880 sq->sq_onext = outer->sq_onext; 5881 outer->sq_onext = sq; 5882 sq->sq_oprev = outer; 5883 mutex_exit(SQLOCK(sq)); 5884 unblocksq(outer, SQ_BLOCKED, 1); 5885 } 5886 5887 /* 5888 * Remove a syncq from an outer perimeter. 5889 * Block out all other access to the outer perimeter while it is being 5890 * changed using blocksq. 5891 * Assumes that the caller has *not* done an outer_enter. 5892 * 5893 * Vulnerable to starvation in blocksq. 5894 */ 5895 static void 5896 outer_remove(syncq_t *outer, syncq_t *sq) 5897 { 5898 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5899 outer->sq_oprev != NULL); 5900 ASSERT(sq->sq_outer == outer); 5901 5902 /* Get exclusive access to the outer perimeter list */ 5903 blocksq(outer, SQ_BLOCKED, 0); 5904 ASSERT(outer->sq_flags & SQ_BLOCKED); 5905 ASSERT(!(outer->sq_flags & SQ_WRITER)); 5906 5907 mutex_enter(SQLOCK(sq)); 5908 sq->sq_outer = NULL; 5909 sq->sq_onext->sq_oprev = sq->sq_oprev; 5910 sq->sq_oprev->sq_onext = sq->sq_onext; 5911 sq->sq_oprev = sq->sq_onext = NULL; 5912 mutex_exit(SQLOCK(sq)); 5913 unblocksq(outer, SQ_BLOCKED, 1); 5914 } 5915 5916 /* 5917 * Queue a deferred qwriter(OUTER) callback for this outer perimeter. 5918 * If this is the first callback for this outer perimeter then add 5919 * this outer perimeter to the list of outer perimeters that 5920 * the qwriter_outer_thread will process. 5921 * 5922 * Increments sq_count in the outer syncq to prevent the membership 5923 * of the outer perimeter (in terms of inner syncqs) to change while 5924 * the callback is pending. 5925 */ 5926 static void 5927 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp) 5928 { 5929 ASSERT(MUTEX_HELD(SQLOCK(outer))); 5930 5931 mp->b_prev = (mblk_t *)func; 5932 mp->b_queue = q; 5933 mp->b_next = NULL; 5934 outer->sq_count++; /* Decremented when dequeued */ 5935 ASSERT(outer->sq_count != 0); /* Wraparound */ 5936 if (outer->sq_evhead == NULL) { 5937 /* First message. */ 5938 outer->sq_evhead = outer->sq_evtail = mp; 5939 outer->sq_flags |= SQ_EVENTS; 5940 mutex_exit(SQLOCK(outer)); 5941 STRSTAT(qwr_outer); 5942 (void) taskq_dispatch(streams_taskq, 5943 (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP); 5944 } else { 5945 ASSERT(outer->sq_flags & SQ_EVENTS); 5946 outer->sq_evtail->b_next = mp; 5947 outer->sq_evtail = mp; 5948 mutex_exit(SQLOCK(outer)); 5949 } 5950 } 5951 5952 /* 5953 * Try and upgrade to write access at the outer perimeter. If this can 5954 * not be done without blocking then queue the callback to be done 5955 * by the qwriter_outer_thread. 5956 * 5957 * This routine can only be called from put or service procedures plus 5958 * asynchronous callback routines that have properly entered to 5959 * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim 5960 * on the syncq associated with q. 5961 */ 5962 void 5963 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)()) 5964 { 5965 syncq_t *osq, *sq, *outer; 5966 int failed; 5967 uint16_t flags; 5968 5969 osq = q->q_syncq; 5970 outer = osq->sq_outer; 5971 if (outer == NULL) 5972 panic("qwriter(PERIM_OUTER): no outer perimeter"); 5973 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 5974 outer->sq_oprev != NULL); 5975 5976 mutex_enter(SQLOCK(outer)); 5977 flags = outer->sq_flags; 5978 /* 5979 * If some thread is traversing sq_next, or if we are blocked by 5980 * outer_insert or outer_remove, or if the we already have queued 5981 * callbacks, then queue this callback for later processing. 5982 * 5983 * Also queue the qwriter for an interrupt thread in order 5984 * to reduce the time spent running at high IPL. 5985 * to identify there are events. 5986 */ 5987 if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) { 5988 /* 5989 * Queue the become_writer request. 5990 * The queueing is atomic under SQLOCK(outer) in order 5991 * to synchronize with outer_exit. 5992 * queue_writer will drop the outer SQLOCK 5993 */ 5994 if (flags & SQ_BLOCKED) { 5995 /* Must set SQ_WRITER on inner perimeter */ 5996 mutex_enter(SQLOCK(osq)); 5997 osq->sq_flags |= SQ_WRITER; 5998 mutex_exit(SQLOCK(osq)); 5999 } else { 6000 if (!(flags & SQ_WRITER)) { 6001 /* 6002 * The outer could have been SQ_BLOCKED thus 6003 * SQ_WRITER might not be set on the inner. 6004 */ 6005 mutex_enter(SQLOCK(osq)); 6006 osq->sq_flags |= SQ_WRITER; 6007 mutex_exit(SQLOCK(osq)); 6008 } 6009 ASSERT(osq->sq_flags & SQ_WRITER); 6010 } 6011 queue_writer(outer, func, q, mp); 6012 return; 6013 } 6014 /* 6015 * We are half-way to exclusive access to the outer perimeter. 6016 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove 6017 * while the inner syncqs are traversed. 6018 */ 6019 outer->sq_count++; 6020 ASSERT(outer->sq_count != 0); /* wraparound */ 6021 flags |= SQ_WRITER; 6022 /* 6023 * Check if we can run the function immediately. Mark all 6024 * syncqs with the writer flag to prevent new entries into 6025 * put and service procedures. 6026 * 6027 * Set SQ_WRITER on all the inner syncqs while holding 6028 * the SQLOCK on the outer syncq. This ensures that the changing 6029 * of SQ_WRITER is atomic under the outer SQLOCK. 6030 */ 6031 failed = 0; 6032 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) { 6033 uint16_t count; 6034 uint_t maxcnt = (sq == osq) ? 1 : 0; 6035 6036 mutex_enter(SQLOCK(sq)); 6037 count = sq->sq_count; 6038 SQ_PUTLOCKS_ENTER(sq); 6039 SUM_SQ_PUTCOUNTS(sq, count); 6040 if (sq->sq_count > maxcnt) 6041 failed = 1; 6042 sq->sq_flags |= SQ_WRITER; 6043 SQ_PUTLOCKS_EXIT(sq); 6044 mutex_exit(SQLOCK(sq)); 6045 } 6046 if (failed) { 6047 /* 6048 * Some other thread has a read claim on the outer perimeter. 6049 * Queue the callback for deferred processing. 6050 * 6051 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER 6052 * so that other qwriter(OUTER) calls will queue their 6053 * callbacks as well. queue_writer increments sq_count so we 6054 * decrement to compensate for the our increment. 6055 * 6056 * Dropping SQ_WRITER enables the writer thread to work 6057 * on this outer perimeter. 6058 */ 6059 outer->sq_flags = flags; 6060 queue_writer(outer, func, q, mp); 6061 /* queue_writer dropper the lock */ 6062 mutex_enter(SQLOCK(outer)); 6063 ASSERT(outer->sq_count > 0); 6064 outer->sq_count--; 6065 ASSERT(outer->sq_flags & SQ_WRITER); 6066 flags = outer->sq_flags; 6067 flags &= ~SQ_WRITER; 6068 if (flags & SQ_WANTWAKEUP) { 6069 flags &= ~SQ_WANTWAKEUP; 6070 cv_broadcast(&outer->sq_wait); 6071 } 6072 outer->sq_flags = flags; 6073 mutex_exit(SQLOCK(outer)); 6074 return; 6075 } else { 6076 outer->sq_flags = flags; 6077 mutex_exit(SQLOCK(outer)); 6078 } 6079 6080 /* Can run it immediately */ 6081 (*func)(q, mp); 6082 6083 outer_exit(outer); 6084 } 6085 6086 /* 6087 * Dequeue all writer callbacks from the outer perimeter and run them. 6088 */ 6089 static void 6090 write_now(syncq_t *outer) 6091 { 6092 mblk_t *mp; 6093 queue_t *q; 6094 void (*func)(); 6095 6096 ASSERT(MUTEX_HELD(SQLOCK(outer))); 6097 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL && 6098 outer->sq_oprev != NULL); 6099 while ((mp = outer->sq_evhead) != NULL) { 6100 /* 6101 * queues cannot be placed on the queuelist on the outer 6102 * perimiter. 6103 */ 6104 ASSERT(!(outer->sq_flags & SQ_MESSAGES)); 6105 ASSERT((outer->sq_flags & SQ_EVENTS)); 6106 6107 outer->sq_evhead = mp->b_next; 6108 if (outer->sq_evhead == NULL) { 6109 outer->sq_evtail = NULL; 6110 outer->sq_flags &= ~SQ_EVENTS; 6111 } 6112 ASSERT(outer->sq_count != 0); 6113 outer->sq_count--; /* Incremented when enqueued. */ 6114 mutex_exit(SQLOCK(outer)); 6115 /* 6116 * Drop the message if the queue is closing. 6117 * Make sure that the queue is "claimed" when the callback 6118 * is run in order to satisfy various ASSERTs. 6119 */ 6120 q = mp->b_queue; 6121 func = (void (*)())mp->b_prev; 6122 ASSERT(func != NULL); 6123 mp->b_next = mp->b_prev = NULL; 6124 if (q->q_flag & QWCLOSE) { 6125 freemsg(mp); 6126 } else { 6127 claimq(q); 6128 (*func)(q, mp); 6129 releaseq(q); 6130 } 6131 mutex_enter(SQLOCK(outer)); 6132 } 6133 ASSERT(MUTEX_HELD(SQLOCK(outer))); 6134 } 6135 6136 /* 6137 * The list of messages on the inner syncq is effectively hashed 6138 * by destination queue. These destination queues are doubly 6139 * linked lists (hopefully) in priority order. Messages are then 6140 * put on the queue referenced by the q_sqhead/q_sqtail elements. 6141 * Additional messages are linked together by the b_next/b_prev 6142 * elements in the mblk, with (similar to putq()) the first message 6143 * having a NULL b_prev and the last message having a NULL b_next. 6144 * 6145 * Events, such as qwriter callbacks, are put onto a list in FIFO 6146 * order referenced by sq_evhead, and sq_evtail. This is a singly 6147 * linked list, and messages here MUST be processed in the order queued. 6148 */ 6149 6150 /* 6151 * Run the events on the syncq event list (sq_evhead). 6152 * Assumes there is only one claim on the syncq, it is 6153 * already exclusive (SQ_EXCL set), and the SQLOCK held. 6154 * Messages here are processed in order, with the SQ_EXCL bit 6155 * held all the way through till the last message is processed. 6156 */ 6157 void 6158 sq_run_events(syncq_t *sq) 6159 { 6160 mblk_t *bp; 6161 queue_t *qp; 6162 uint16_t flags = sq->sq_flags; 6163 void (*func)(); 6164 6165 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6166 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6167 sq->sq_oprev == NULL) || 6168 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6169 sq->sq_oprev != NULL)); 6170 6171 ASSERT(flags & SQ_EXCL); 6172 ASSERT(sq->sq_count == 1); 6173 6174 /* 6175 * We need to process all of the events on this list. It 6176 * is possible that new events will be added while we are 6177 * away processing a callback, so on every loop, we start 6178 * back at the beginning of the list. 6179 */ 6180 /* 6181 * We have to reaccess sq_evhead since there is a 6182 * possibility of a new entry while we were running 6183 * the callback. 6184 */ 6185 for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) { 6186 ASSERT(bp->b_queue->q_syncq == sq); 6187 ASSERT(sq->sq_flags & SQ_EVENTS); 6188 6189 qp = bp->b_queue; 6190 func = (void (*)())bp->b_prev; 6191 ASSERT(func != NULL); 6192 6193 /* 6194 * Messages from the event queue must be taken off in 6195 * FIFO order. 6196 */ 6197 ASSERT(sq->sq_evhead == bp); 6198 sq->sq_evhead = bp->b_next; 6199 6200 if (bp->b_next == NULL) { 6201 /* Deleting last */ 6202 ASSERT(sq->sq_evtail == bp); 6203 sq->sq_evtail = NULL; 6204 sq->sq_flags &= ~SQ_EVENTS; 6205 } 6206 bp->b_prev = bp->b_next = NULL; 6207 ASSERT(bp->b_datap->db_ref != 0); 6208 6209 mutex_exit(SQLOCK(sq)); 6210 6211 (*func)(qp, bp); 6212 6213 mutex_enter(SQLOCK(sq)); 6214 /* 6215 * re-read the flags, since they could have changed. 6216 */ 6217 flags = sq->sq_flags; 6218 ASSERT(flags & SQ_EXCL); 6219 } 6220 ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL); 6221 ASSERT(!(sq->sq_flags & SQ_EVENTS)); 6222 6223 if (flags & SQ_WANTWAKEUP) { 6224 flags &= ~SQ_WANTWAKEUP; 6225 cv_broadcast(&sq->sq_wait); 6226 } 6227 if (flags & SQ_WANTEXWAKEUP) { 6228 flags &= ~SQ_WANTEXWAKEUP; 6229 cv_broadcast(&sq->sq_exitwait); 6230 } 6231 sq->sq_flags = flags; 6232 } 6233 6234 /* 6235 * Put messages on the event list. 6236 * If we can go exclusive now, do so and process the event list, otherwise 6237 * let the last claim service this list (or wake the sqthread). 6238 * This procedure assumes SQLOCK is held. To run the event list, it 6239 * must be called with no claims. 6240 */ 6241 static void 6242 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)()) 6243 { 6244 uint16_t count; 6245 6246 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6247 ASSERT(func != NULL); 6248 6249 /* 6250 * This is a callback. Add it to the list of callbacks 6251 * and see about upgrading. 6252 */ 6253 mp->b_prev = (mblk_t *)func; 6254 mp->b_queue = q; 6255 mp->b_next = NULL; 6256 if (sq->sq_evhead == NULL) { 6257 sq->sq_evhead = sq->sq_evtail = mp; 6258 sq->sq_flags |= SQ_EVENTS; 6259 } else { 6260 ASSERT(sq->sq_evtail != NULL); 6261 ASSERT(sq->sq_evtail->b_next == NULL); 6262 ASSERT(sq->sq_flags & SQ_EVENTS); 6263 sq->sq_evtail->b_next = mp; 6264 sq->sq_evtail = mp; 6265 } 6266 /* 6267 * We have set SQ_EVENTS, so threads will have to 6268 * unwind out of the perimiter, and new entries will 6269 * not grab a putlock. But we still need to know 6270 * how many threads have already made a claim to the 6271 * syncq, so grab the putlocks, and sum the counts. 6272 * If there are no claims on the syncq, we can upgrade 6273 * to exclusive, and run the event list. 6274 * NOTE: We hold the SQLOCK, so we can just grab the 6275 * putlocks. 6276 */ 6277 count = sq->sq_count; 6278 SQ_PUTLOCKS_ENTER(sq); 6279 SUM_SQ_PUTCOUNTS(sq, count); 6280 /* 6281 * We have no claim, so we need to check if there 6282 * are no others, then we can upgrade. 6283 */ 6284 /* 6285 * There are currently no claims on 6286 * the syncq by this thread (at least on this entry). The thread who has 6287 * the claim should drain syncq. 6288 */ 6289 if (count > 0) { 6290 /* 6291 * Can't upgrade - other threads inside. 6292 */ 6293 SQ_PUTLOCKS_EXIT(sq); 6294 mutex_exit(SQLOCK(sq)); 6295 return; 6296 } 6297 /* 6298 * Need to set SQ_EXCL and make a claim on the syncq. 6299 */ 6300 ASSERT((sq->sq_flags & SQ_EXCL) == 0); 6301 sq->sq_flags |= SQ_EXCL; 6302 ASSERT(sq->sq_count == 0); 6303 sq->sq_count++; 6304 SQ_PUTLOCKS_EXIT(sq); 6305 6306 /* Process the events list */ 6307 sq_run_events(sq); 6308 6309 /* 6310 * Release our claim... 6311 */ 6312 sq->sq_count--; 6313 6314 /* 6315 * And release SQ_EXCL. 6316 * We don't need to acquire the putlocks to release 6317 * SQ_EXCL, since we are exclusive, and hold the SQLOCK. 6318 */ 6319 sq->sq_flags &= ~SQ_EXCL; 6320 6321 /* 6322 * sq_run_events should have released SQ_EXCL 6323 */ 6324 ASSERT(!(sq->sq_flags & SQ_EXCL)); 6325 6326 /* 6327 * If anything happened while we were running the 6328 * events (or was there before), we need to process 6329 * them now. We shouldn't be exclusive sine we 6330 * released the perimiter above (plus, we asserted 6331 * for it). 6332 */ 6333 if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED)) 6334 drain_syncq(sq); 6335 else 6336 mutex_exit(SQLOCK(sq)); 6337 } 6338 6339 /* 6340 * Perform delayed processing. The caller has to make sure that it is safe 6341 * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are 6342 * set.) 6343 * 6344 * Assume that the caller has NO claims on the syncq. However, a claim 6345 * on the syncq does not indicate that a thread is draining the syncq. 6346 * There may be more claims on the syncq than there are threads draining 6347 * (i.e. #_threads_draining <= sq_count) 6348 * 6349 * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set 6350 * in order to preserve qwriter(OUTER) ordering constraints. 6351 * 6352 * sq_putcount only needs to be checked when dispatching the queued 6353 * writer call for CIPUT sync queue, but this is handled in sq_run_events. 6354 */ 6355 void 6356 drain_syncq(syncq_t *sq) 6357 { 6358 queue_t *qp; 6359 uint16_t count; 6360 uint16_t type = sq->sq_type; 6361 uint16_t flags = sq->sq_flags; 6362 boolean_t bg_service = sq->sq_svcflags & SQ_SERVICE; 6363 6364 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START, 6365 "drain_syncq start:%p", sq); 6366 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6367 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6368 sq->sq_oprev == NULL) || 6369 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6370 sq->sq_oprev != NULL)); 6371 6372 /* 6373 * Drop SQ_SERVICE flag. 6374 */ 6375 if (bg_service) 6376 sq->sq_svcflags &= ~SQ_SERVICE; 6377 6378 /* 6379 * If SQ_EXCL is set, someone else is processing this syncq - let him 6380 * finish the job. 6381 */ 6382 if (flags & SQ_EXCL) { 6383 if (bg_service) { 6384 ASSERT(sq->sq_servcount != 0); 6385 sq->sq_servcount--; 6386 } 6387 mutex_exit(SQLOCK(sq)); 6388 return; 6389 } 6390 6391 /* 6392 * This routine can be called by a background thread if 6393 * it was scheduled by a hi-priority thread. SO, if there are 6394 * NOT messages queued, return (remember, we have the SQLOCK, 6395 * and it cannot change until we release it). Wakeup any waiters also. 6396 */ 6397 if (!(flags & SQ_QUEUED)) { 6398 if (flags & SQ_WANTWAKEUP) { 6399 flags &= ~SQ_WANTWAKEUP; 6400 cv_broadcast(&sq->sq_wait); 6401 } 6402 if (flags & SQ_WANTEXWAKEUP) { 6403 flags &= ~SQ_WANTEXWAKEUP; 6404 cv_broadcast(&sq->sq_exitwait); 6405 } 6406 sq->sq_flags = flags; 6407 if (bg_service) { 6408 ASSERT(sq->sq_servcount != 0); 6409 sq->sq_servcount--; 6410 } 6411 mutex_exit(SQLOCK(sq)); 6412 return; 6413 } 6414 6415 /* 6416 * If this is not a concurrent put perimiter, we need to 6417 * become exclusive to drain. Also, if not CIPUT, we would 6418 * not have acquired a putlock, so we don't need to check 6419 * the putcounts. If not entering with a claim, we test 6420 * for sq_count == 0. 6421 */ 6422 type = sq->sq_type; 6423 if (!(type & SQ_CIPUT)) { 6424 if (sq->sq_count > 1) { 6425 if (bg_service) { 6426 ASSERT(sq->sq_servcount != 0); 6427 sq->sq_servcount--; 6428 } 6429 mutex_exit(SQLOCK(sq)); 6430 return; 6431 } 6432 sq->sq_flags |= SQ_EXCL; 6433 } 6434 6435 /* 6436 * This is where we make a claim to the syncq. 6437 * This can either be done by incrementing a putlock, or 6438 * the sq_count. But since we already have the SQLOCK 6439 * here, we just bump the sq_count. 6440 * 6441 * Note that after we make a claim, we need to let the code 6442 * fall through to the end of this routine to clean itself 6443 * up. A return in the while loop will put the syncq in a 6444 * very bad state. 6445 */ 6446 sq->sq_count++; 6447 ASSERT(sq->sq_count != 0); /* wraparound */ 6448 6449 while ((flags = sq->sq_flags) & SQ_QUEUED) { 6450 /* 6451 * If we are told to stayaway or went exclusive, 6452 * we are done. 6453 */ 6454 if (flags & (SQ_STAYAWAY)) { 6455 break; 6456 } 6457 6458 /* 6459 * If there are events to run, do so. 6460 * We have one claim to the syncq, so if there are 6461 * more than one, other threads are running. 6462 */ 6463 if (sq->sq_evhead != NULL) { 6464 ASSERT(sq->sq_flags & SQ_EVENTS); 6465 6466 count = sq->sq_count; 6467 SQ_PUTLOCKS_ENTER(sq); 6468 SUM_SQ_PUTCOUNTS(sq, count); 6469 if (count > 1) { 6470 SQ_PUTLOCKS_EXIT(sq); 6471 /* Can't upgrade - other threads inside */ 6472 break; 6473 } 6474 ASSERT((flags & SQ_EXCL) == 0); 6475 sq->sq_flags = flags | SQ_EXCL; 6476 SQ_PUTLOCKS_EXIT(sq); 6477 /* 6478 * we have the only claim, run the events, 6479 * sq_run_events will clear the SQ_EXCL flag. 6480 */ 6481 sq_run_events(sq); 6482 6483 /* 6484 * If this is a CIPUT perimiter, we need 6485 * to drop the SQ_EXCL flag so we can properly 6486 * continue draining the syncq. 6487 */ 6488 if (type & SQ_CIPUT) { 6489 ASSERT(sq->sq_flags & SQ_EXCL); 6490 sq->sq_flags &= ~SQ_EXCL; 6491 } 6492 6493 /* 6494 * And go back to the beginning just in case 6495 * anything changed while we were away. 6496 */ 6497 ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT)); 6498 continue; 6499 } 6500 6501 ASSERT(sq->sq_evhead == NULL); 6502 ASSERT(!(sq->sq_flags & SQ_EVENTS)); 6503 6504 /* 6505 * Find the queue that is not draining. 6506 * 6507 * q_draining is protected by QLOCK which we do not hold. 6508 * But if it was set, then a thread was draining, and if it gets 6509 * cleared, then it was because the thread has successfully 6510 * drained the syncq, or a GOAWAY state occured. For the GOAWAY 6511 * state to happen, a thread needs the SQLOCK which we hold, and 6512 * if there was such a flag, we whould have already seen it. 6513 */ 6514 6515 for (qp = sq->sq_head; 6516 qp != NULL && (qp->q_draining || 6517 (qp->q_sqflags & Q_SQDRAINING)); 6518 qp = qp->q_sqnext) 6519 ; 6520 6521 if (qp == NULL) 6522 break; 6523 6524 /* 6525 * We have a queue to work on, and we hold the 6526 * SQLOCK and one claim, call qdrain_syncq. 6527 * This means we need to release the SQLOCK and 6528 * aquire the QLOCK (OK since we have a claim). 6529 * Note that qdrain_syncq will actually dequeue 6530 * this queue from the sq_head list when it is 6531 * convinced all the work is done and release 6532 * the QLOCK before returning. 6533 */ 6534 qp->q_sqflags |= Q_SQDRAINING; 6535 mutex_exit(SQLOCK(sq)); 6536 mutex_enter(QLOCK(qp)); 6537 qdrain_syncq(sq, qp); 6538 mutex_enter(SQLOCK(sq)); 6539 6540 /* The queue is drained */ 6541 ASSERT(qp->q_sqflags & Q_SQDRAINING); 6542 qp->q_sqflags &= ~Q_SQDRAINING; 6543 /* 6544 * NOTE: After this point qp should not be used since it may be 6545 * closed. 6546 */ 6547 } 6548 6549 ASSERT(MUTEX_HELD(SQLOCK(sq))); 6550 flags = sq->sq_flags; 6551 6552 /* 6553 * sq->sq_head cannot change because we hold the 6554 * sqlock. However, a thread CAN decide that it is no longer 6555 * going to drain that queue. However, this should be due to 6556 * a GOAWAY state, and we should see that here. 6557 * 6558 * This loop is not very efficient. One solution may be adding a second 6559 * pointer to the "draining" queue, but it is difficult to do when 6560 * queues are inserted in the middle due to priority ordering. Another 6561 * possibility is to yank the queue out of the sq list and put it onto 6562 * the "draining list" and then put it back if it can't be drained. 6563 */ 6564 6565 ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) || 6566 (type & SQ_CI) || sq->sq_head->q_draining); 6567 6568 /* Drop SQ_EXCL for non-CIPUT perimiters */ 6569 if (!(type & SQ_CIPUT)) 6570 flags &= ~SQ_EXCL; 6571 ASSERT((flags & SQ_EXCL) == 0); 6572 6573 /* Wake up any waiters. */ 6574 if (flags & SQ_WANTWAKEUP) { 6575 flags &= ~SQ_WANTWAKEUP; 6576 cv_broadcast(&sq->sq_wait); 6577 } 6578 if (flags & SQ_WANTEXWAKEUP) { 6579 flags &= ~SQ_WANTEXWAKEUP; 6580 cv_broadcast(&sq->sq_exitwait); 6581 } 6582 sq->sq_flags = flags; 6583 6584 ASSERT(sq->sq_count != 0); 6585 /* Release our claim. */ 6586 sq->sq_count--; 6587 6588 if (bg_service) { 6589 ASSERT(sq->sq_servcount != 0); 6590 sq->sq_servcount--; 6591 } 6592 6593 mutex_exit(SQLOCK(sq)); 6594 6595 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END, 6596 "drain_syncq end:%p", sq); 6597 } 6598 6599 6600 /* 6601 * 6602 * qdrain_syncq can be called (currently) from only one of two places: 6603 * drain_syncq 6604 * putnext (or some variation of it). 6605 * and eventually 6606 * qwait(_sig) 6607 * 6608 * If called from drain_syncq, we found it in the list 6609 * of queue's needing service, so there is work to be done (or it 6610 * wouldn't be on the list). 6611 * 6612 * If called from some putnext variation, it was because the 6613 * perimiter is open, but messages are blocking a putnext and 6614 * there is not a thread working on it. Now a thread could start 6615 * working on it while we are getting ready to do so ourself, but 6616 * the thread would set the q_draining flag, and we can spin out. 6617 * 6618 * As for qwait(_sig), I think I shall let it continue to call 6619 * drain_syncq directly (after all, it will get here eventually). 6620 * 6621 * qdrain_syncq has to terminate when: 6622 * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering 6623 * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering 6624 * 6625 * ASSUMES: 6626 * One claim 6627 * QLOCK held 6628 * SQLOCK not held 6629 * Will release QLOCK before returning 6630 */ 6631 void 6632 qdrain_syncq(syncq_t *sq, queue_t *q) 6633 { 6634 mblk_t *bp; 6635 boolean_t do_clr; 6636 #ifdef DEBUG 6637 uint16_t count; 6638 #endif 6639 6640 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START, 6641 "drain_syncq start:%p", sq); 6642 ASSERT(q->q_syncq == sq); 6643 ASSERT(MUTEX_HELD(QLOCK(q))); 6644 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 6645 /* 6646 * For non-CIPUT perimiters, we should be called with the 6647 * exclusive bit set already. For non-CIPUT perimiters we 6648 * will be doing a concurrent drain, so it better not be set. 6649 */ 6650 ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT))); 6651 ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL))); 6652 ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL)); 6653 /* 6654 * All outer pointers are set, or none of them are 6655 */ 6656 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6657 sq->sq_oprev == NULL) || 6658 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6659 sq->sq_oprev != NULL)); 6660 #ifdef DEBUG 6661 count = sq->sq_count; 6662 /* 6663 * This is OK without the putlocks, because we have one 6664 * claim either from the sq_count, or a putcount. We could 6665 * get an erroneous value from other counts, but ours won't 6666 * change, so one way or another, we will have at least a 6667 * value of one. 6668 */ 6669 SUM_SQ_PUTCOUNTS(sq, count); 6670 ASSERT(count >= 1); 6671 #endif /* DEBUG */ 6672 6673 /* 6674 * The first thing to do here, is find out if a thread is already 6675 * draining this queue or the queue is closing. If so, we are done, 6676 * just return. Also, if there are no messages, we are done as well. 6677 * Note that we check the q_sqhead since there is s window of 6678 * opportunity for us to enter here because Q_SQQUEUED was set, but is 6679 * not anymore. 6680 */ 6681 if (q->q_draining || (q->q_sqhead == NULL)) { 6682 mutex_exit(QLOCK(q)); 6683 return; 6684 } 6685 6686 /* 6687 * If the perimiter is exclusive, there is nothing we can 6688 * do right now, go away. 6689 * Note that there is nothing to prevent this case from changing 6690 * right after this check, but the spin-out will catch it. 6691 */ 6692 6693 /* Tell other threads that we are draining this queue */ 6694 q->q_draining = 1; /* Protected by QLOCK */ 6695 6696 for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) { 6697 6698 /* 6699 * Because we can enter this routine just because 6700 * a putnext is blocked, we need to spin out if 6701 * the perimiter wants to go exclusive as well 6702 * as just blocked. We need to spin out also if 6703 * events are queued on the syncq. 6704 * Don't check for SQ_EXCL, because non-CIPUT 6705 * perimiters would set it, and it can't become 6706 * exclusive while we hold a claim. 6707 */ 6708 if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) { 6709 break; 6710 } 6711 6712 #ifdef DEBUG 6713 /* 6714 * Since we are in qdrain_syncq, we already know the queue, 6715 * but for sanity, we want to check this against the qp that 6716 * was passed in by bp->b_queue. 6717 */ 6718 6719 ASSERT(bp->b_queue == q); 6720 ASSERT(bp->b_queue->q_syncq == sq); 6721 bp->b_queue = NULL; 6722 6723 /* 6724 * We would have the following check in the DEBUG code: 6725 * 6726 * if (bp->b_prev != NULL) { 6727 * ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp); 6728 * } 6729 * 6730 * This can't be done, however, since IP modifies qinfo 6731 * structure at run-time (switching between IPv4 qinfo and IPv6 6732 * qinfo), invalidating the check. 6733 * So the assignment to func is left here, but the ASSERT itself 6734 * is removed until the whole issue is resolved. 6735 */ 6736 #endif 6737 ASSERT(q->q_sqhead == bp); 6738 q->q_sqhead = bp->b_next; 6739 bp->b_prev = bp->b_next = NULL; 6740 ASSERT(q->q_syncqmsgs > 0); 6741 mutex_exit(QLOCK(q)); 6742 6743 ASSERT(bp->b_datap->db_ref != 0); 6744 6745 (void) (*q->q_qinfo->qi_putp)(q, bp); 6746 6747 mutex_enter(QLOCK(q)); 6748 /* 6749 * We should decrement q_syncqmsgs only after executing the 6750 * put procedure to avoid a possible race with putnext(). 6751 * In putnext() though it sees Q_SQQUEUED is set, there is 6752 * an optimization which allows putnext to call the put 6753 * procedure directly if (q_syncqmsgs == 0) and thus 6754 * a message reodering could otherwise occur. 6755 */ 6756 q->q_syncqmsgs--; 6757 6758 /* 6759 * Clear QFULL in the next service procedure queue if 6760 * this is the last message destined to that queue. 6761 * 6762 * It would make better sense to have some sort of 6763 * tunable for the low water mark, but these symantics 6764 * are not yet defined. So, alas, we use a constant. 6765 */ 6766 do_clr = (q->q_syncqmsgs == 0); 6767 mutex_exit(QLOCK(q)); 6768 6769 if (do_clr) 6770 clr_qfull(q); 6771 6772 mutex_enter(QLOCK(q)); 6773 /* 6774 * Always clear SQ_EXCL when CIPUT in order to handle 6775 * qwriter(INNER). 6776 */ 6777 /* 6778 * The putp() can call qwriter and get exclusive access 6779 * IFF this is the only claim. So, we need to test for 6780 * this possibility so we can aquire the mutex and clear 6781 * the bit. 6782 */ 6783 if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) { 6784 mutex_enter(SQLOCK(sq)); 6785 sq->sq_flags &= ~SQ_EXCL; 6786 mutex_exit(SQLOCK(sq)); 6787 } 6788 } 6789 6790 /* 6791 * We should either have no queues on the syncq, or we were 6792 * told to goaway by a waiter (which we will wake up at the 6793 * end of this function). 6794 */ 6795 ASSERT((q->q_sqhead == NULL) || 6796 (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS))); 6797 6798 ASSERT(MUTEX_HELD(QLOCK(q))); 6799 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 6800 6801 /* 6802 * Remove the q from the syncq list if all the messages are 6803 * drained. 6804 */ 6805 if (q->q_sqhead == NULL) { 6806 mutex_enter(SQLOCK(sq)); 6807 if (q->q_sqflags & Q_SQQUEUED) 6808 SQRM_Q(sq, q); 6809 mutex_exit(SQLOCK(sq)); 6810 /* 6811 * Since the queue is removed from the list, reset its priority. 6812 */ 6813 q->q_spri = 0; 6814 } 6815 6816 /* 6817 * Remember, the q_draining flag is used to let another 6818 * thread know that there is a thread currently draining 6819 * the messages for a queue. Since we are now done with 6820 * this queue (even if there may be messages still there), 6821 * we need to clear this flag so some thread will work 6822 * on it if needed. 6823 */ 6824 ASSERT(q->q_draining); 6825 q->q_draining = 0; 6826 6827 /* called with a claim, so OK to drop all locks. */ 6828 mutex_exit(QLOCK(q)); 6829 6830 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END, 6831 "drain_syncq end:%p", sq); 6832 } 6833 /* END OF QDRAIN_SYNCQ */ 6834 6835 6836 /* 6837 * This is the mate to qdrain_syncq, except that it is putting the 6838 * message onto the the queue instead draining. Since the 6839 * message is destined for the queue that is selected, there is 6840 * no need to identify the function because the message is 6841 * intended for the put routine for the queue. But this 6842 * routine will do it anyway just in case (but only for debug kernels). 6843 * 6844 * After the message is enqueued on the syncq, it calls putnext_tail() 6845 * which will schedule a background thread to actually process the message. 6846 * 6847 * Assumes that there is a claim on the syncq (sq->sq_count > 0) and 6848 * SQLOCK(sq) and QLOCK(q) are not held. 6849 */ 6850 void 6851 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp) 6852 { 6853 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq))); 6854 ASSERT(MUTEX_NOT_HELD(QLOCK(q))); 6855 ASSERT(sq->sq_count > 0); 6856 ASSERT(q->q_syncq == sq); 6857 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL && 6858 sq->sq_oprev == NULL) || 6859 (sq->sq_outer != NULL && sq->sq_onext != NULL && 6860 sq->sq_oprev != NULL)); 6861 6862 mutex_enter(QLOCK(q)); 6863 6864 #ifdef DEBUG 6865 /* 6866 * This is used for debug in the qfill_syncq/qdrain_syncq case 6867 * to trace the queue that the message is intended for. Note 6868 * that the original use was to identify the queue and function 6869 * to call on the drain. In the new syncq, we have the context 6870 * of the queue that we are draining, so call it's putproc and 6871 * don't rely on the saved values. But for debug this is still 6872 * usefull information. 6873 */ 6874 mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp; 6875 mp->b_queue = q; 6876 mp->b_next = NULL; 6877 #endif 6878 ASSERT(q->q_syncq == sq); 6879 /* 6880 * Enqueue the message on the list. 6881 * SQPUT_MP() accesses q_syncqmsgs. We are already holding QLOCK to 6882 * protect it. So its ok to acquire SQLOCK after SQPUT_MP(). 6883 */ 6884 SQPUT_MP(q, mp); 6885 mutex_enter(SQLOCK(sq)); 6886 6887 /* 6888 * And queue on syncq for scheduling, if not already queued. 6889 * Note that we need the SQLOCK for this, and for testing flags 6890 * at the end to see if we will drain. So grab it now, and 6891 * release it before we call qdrain_syncq or return. 6892 */ 6893 if (!(q->q_sqflags & Q_SQQUEUED)) { 6894 q->q_spri = curthread->t_pri; 6895 SQPUT_Q(sq, q); 6896 } 6897 #ifdef DEBUG 6898 else { 6899 /* 6900 * All of these conditions MUST be true! 6901 */ 6902 ASSERT(sq->sq_tail != NULL); 6903 if (sq->sq_tail == sq->sq_head) { 6904 ASSERT((q->q_sqprev == NULL) && 6905 (q->q_sqnext == NULL)); 6906 } else { 6907 ASSERT((q->q_sqprev != NULL) || 6908 (q->q_sqnext != NULL)); 6909 } 6910 ASSERT(sq->sq_flags & SQ_QUEUED); 6911 ASSERT(q->q_syncqmsgs != 0); 6912 ASSERT(q->q_sqflags & Q_SQQUEUED); 6913 } 6914 #endif 6915 mutex_exit(QLOCK(q)); 6916 /* 6917 * SQLOCK is still held, so sq_count can be safely decremented. 6918 */ 6919 sq->sq_count--; 6920 6921 putnext_tail(sq, q, 0); 6922 /* Should not reference sq or q after this point. */ 6923 } 6924 6925 /* End of qfill_syncq */ 6926 6927 /* 6928 * Remove all messages from a syncq (if qp is NULL) or remove all messages 6929 * that would be put into qp by drain_syncq. 6930 * Used when deleting the syncq (qp == NULL) or when detaching 6931 * a queue (qp != NULL). 6932 * Return non-zero if one or more messages were freed. 6933 * 6934 * no need to grab sq_putlocks here. See comment in strsubr.h that explains when 6935 * sq_putlocks are used. 6936 * 6937 * NOTE: This function assumes that it is called from the close() context and 6938 * that all the queues in the syncq are going aay. For this reason it doesn't 6939 * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is 6940 * currently valid, but it is useful to rethink this function to behave properly 6941 * in other cases. 6942 */ 6943 int 6944 flush_syncq(syncq_t *sq, queue_t *qp) 6945 { 6946 mblk_t *bp, *mp_head, *mp_next, *mp_prev; 6947 queue_t *q; 6948 int ret = 0; 6949 6950 mutex_enter(SQLOCK(sq)); 6951 6952 /* 6953 * Before we leave, we need to make sure there are no 6954 * events listed for this queue. All events for this queue 6955 * will just be freed. 6956 */ 6957 if (qp != NULL && sq->sq_evhead != NULL) { 6958 ASSERT(sq->sq_flags & SQ_EVENTS); 6959 6960 mp_prev = NULL; 6961 for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) { 6962 mp_next = bp->b_next; 6963 if (bp->b_queue == qp) { 6964 /* Delete this message */ 6965 if (mp_prev != NULL) { 6966 mp_prev->b_next = mp_next; 6967 /* 6968 * Update sq_evtail if the last element 6969 * is removed. 6970 */ 6971 if (bp == sq->sq_evtail) { 6972 ASSERT(mp_next == NULL); 6973 sq->sq_evtail = mp_prev; 6974 } 6975 } else 6976 sq->sq_evhead = mp_next; 6977 if (sq->sq_evhead == NULL) 6978 sq->sq_flags &= ~SQ_EVENTS; 6979 bp->b_prev = bp->b_next = NULL; 6980 freemsg(bp); 6981 ret++; 6982 } else { 6983 mp_prev = bp; 6984 } 6985 } 6986 } 6987 6988 /* 6989 * Walk sq_head and: 6990 * - match qp if qp is set, remove it's messages 6991 * - all if qp is not set 6992 */ 6993 q = sq->sq_head; 6994 while (q != NULL) { 6995 ASSERT(q->q_syncq == sq); 6996 if ((qp == NULL) || (qp == q)) { 6997 /* 6998 * Yank the messages as a list off the queue 6999 */ 7000 mp_head = q->q_sqhead; 7001 /* 7002 * We do not have QLOCK(q) here (which is safe due to 7003 * assumptions mentioned above). To obtain the lock we 7004 * need to release SQLOCK which may allow lots of things 7005 * to change upon us. This place requires more analysis. 7006 */ 7007 q->q_sqhead = q->q_sqtail = NULL; 7008 ASSERT(mp_head->b_queue && 7009 mp_head->b_queue->q_syncq == sq); 7010 7011 /* 7012 * Free each of the messages. 7013 */ 7014 for (bp = mp_head; bp != NULL; bp = mp_next) { 7015 mp_next = bp->b_next; 7016 bp->b_prev = bp->b_next = NULL; 7017 freemsg(bp); 7018 ret++; 7019 } 7020 /* 7021 * Now remove the queue from the syncq. 7022 */ 7023 ASSERT(q->q_sqflags & Q_SQQUEUED); 7024 SQRM_Q(sq, q); 7025 q->q_spri = 0; 7026 q->q_syncqmsgs = 0; 7027 7028 /* 7029 * If qp was specified, we are done with it and are 7030 * going to drop SQLOCK(sq) and return. We wakeup syncq 7031 * waiters while we still have the SQLOCK. 7032 */ 7033 if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) { 7034 sq->sq_flags &= ~SQ_WANTWAKEUP; 7035 cv_broadcast(&sq->sq_wait); 7036 } 7037 /* Drop SQLOCK across clr_qfull */ 7038 mutex_exit(SQLOCK(sq)); 7039 7040 /* 7041 * We avoid doing the test that drain_syncq does and 7042 * unconditionally clear qfull for every flushed 7043 * message. Since flush_syncq is only called during 7044 * close this should not be a problem. 7045 */ 7046 clr_qfull(q); 7047 if (qp != NULL) { 7048 return (ret); 7049 } else { 7050 mutex_enter(SQLOCK(sq)); 7051 /* 7052 * The head was removed by SQRM_Q above. 7053 * reread the new head and flush it. 7054 */ 7055 q = sq->sq_head; 7056 } 7057 } else { 7058 q = q->q_sqnext; 7059 } 7060 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7061 } 7062 7063 if (sq->sq_flags & SQ_WANTWAKEUP) { 7064 sq->sq_flags &= ~SQ_WANTWAKEUP; 7065 cv_broadcast(&sq->sq_wait); 7066 } 7067 7068 mutex_exit(SQLOCK(sq)); 7069 return (ret); 7070 } 7071 7072 /* 7073 * Propagate all messages from a syncq to the next syncq that are associated 7074 * with the specified queue. If the queue is attached to a driver or if the 7075 * messages have been added due to a qwriter(PERIM_INNER), free the messages. 7076 * 7077 * Assumes that the stream is strlock()'ed. We don't come here if there 7078 * are no messages to propagate. 7079 * 7080 * NOTE : If the queue is attached to a driver, all the messages are freed 7081 * as there is no point in propagating the messages from the driver syncq 7082 * to the closing stream head which will in turn get freed later. 7083 */ 7084 static int 7085 propagate_syncq(queue_t *qp) 7086 { 7087 mblk_t *bp, *head, *tail, *prev, *next; 7088 syncq_t *sq; 7089 queue_t *nqp; 7090 syncq_t *nsq; 7091 boolean_t isdriver; 7092 int moved = 0; 7093 uint16_t flags; 7094 pri_t priority = curthread->t_pri; 7095 #ifdef DEBUG 7096 void (*func)(); 7097 #endif 7098 7099 sq = qp->q_syncq; 7100 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7101 /* debug macro */ 7102 SQ_PUTLOCKS_HELD(sq); 7103 /* 7104 * As entersq() does not increment the sq_count for 7105 * the write side, check sq_count for non-QPERQ 7106 * perimeters alone. 7107 */ 7108 ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1)); 7109 7110 /* 7111 * propagate_syncq() can be called because of either messages on the 7112 * queue syncq or because on events on the queue syncq. Do actual 7113 * message propagations if there are any messages. 7114 */ 7115 if (qp->q_syncqmsgs) { 7116 isdriver = (qp->q_flag & QISDRV); 7117 7118 if (!isdriver) { 7119 nqp = qp->q_next; 7120 nsq = nqp->q_syncq; 7121 ASSERT(MUTEX_HELD(SQLOCK(nsq))); 7122 /* debug macro */ 7123 SQ_PUTLOCKS_HELD(nsq); 7124 #ifdef DEBUG 7125 func = (void (*)())nqp->q_qinfo->qi_putp; 7126 #endif 7127 } 7128 7129 SQRM_Q(sq, qp); 7130 priority = MAX(qp->q_spri, priority); 7131 qp->q_spri = 0; 7132 head = qp->q_sqhead; 7133 tail = qp->q_sqtail; 7134 qp->q_sqhead = qp->q_sqtail = NULL; 7135 qp->q_syncqmsgs = 0; 7136 7137 /* 7138 * Walk the list of messages, and free them if this is a driver, 7139 * otherwise reset the b_prev and b_queue value to the new putp. 7140 * Afterward, we will just add the head to the end of the next 7141 * syncq, and point the tail to the end of this one. 7142 */ 7143 7144 for (bp = head; bp != NULL; bp = next) { 7145 next = bp->b_next; 7146 if (isdriver) { 7147 bp->b_prev = bp->b_next = NULL; 7148 freemsg(bp); 7149 continue; 7150 } 7151 /* Change the q values for this message */ 7152 bp->b_queue = nqp; 7153 #ifdef DEBUG 7154 bp->b_prev = (mblk_t *)func; 7155 #endif 7156 moved++; 7157 } 7158 /* 7159 * Attach list of messages to the end of the new queue (if there 7160 * is a list of messages). 7161 */ 7162 7163 if (!isdriver && head != NULL) { 7164 ASSERT(tail != NULL); 7165 if (nqp->q_sqhead == NULL) { 7166 nqp->q_sqhead = head; 7167 } else { 7168 ASSERT(nqp->q_sqtail != NULL); 7169 nqp->q_sqtail->b_next = head; 7170 } 7171 nqp->q_sqtail = tail; 7172 /* 7173 * When messages are moved from high priority queue to 7174 * another queue, the destination queue priority is 7175 * upgraded. 7176 */ 7177 7178 if (priority > nqp->q_spri) 7179 nqp->q_spri = priority; 7180 7181 SQPUT_Q(nsq, nqp); 7182 7183 nqp->q_syncqmsgs += moved; 7184 ASSERT(nqp->q_syncqmsgs != 0); 7185 } 7186 } 7187 7188 /* 7189 * Before we leave, we need to make sure there are no 7190 * events listed for this queue. All events for this queue 7191 * will just be freed. 7192 */ 7193 if (sq->sq_evhead != NULL) { 7194 ASSERT(sq->sq_flags & SQ_EVENTS); 7195 prev = NULL; 7196 for (bp = sq->sq_evhead; bp != NULL; bp = next) { 7197 next = bp->b_next; 7198 if (bp->b_queue == qp) { 7199 /* Delete this message */ 7200 if (prev != NULL) { 7201 prev->b_next = next; 7202 /* 7203 * Update sq_evtail if the last element 7204 * is removed. 7205 */ 7206 if (bp == sq->sq_evtail) { 7207 ASSERT(next == NULL); 7208 sq->sq_evtail = prev; 7209 } 7210 } else 7211 sq->sq_evhead = next; 7212 if (sq->sq_evhead == NULL) 7213 sq->sq_flags &= ~SQ_EVENTS; 7214 bp->b_prev = bp->b_next = NULL; 7215 freemsg(bp); 7216 } else { 7217 prev = bp; 7218 } 7219 } 7220 } 7221 7222 flags = sq->sq_flags; 7223 7224 /* Wake up any waiter before leaving. */ 7225 if (flags & SQ_WANTWAKEUP) { 7226 flags &= ~SQ_WANTWAKEUP; 7227 cv_broadcast(&sq->sq_wait); 7228 } 7229 sq->sq_flags = flags; 7230 7231 return (moved); 7232 } 7233 7234 /* 7235 * Try and upgrade to exclusive access at the inner perimeter. If this can 7236 * not be done without blocking then request will be queued on the syncq 7237 * and drain_syncq will run it later. 7238 * 7239 * This routine can only be called from put or service procedures plus 7240 * asynchronous callback routines that have properly entered to 7241 * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim 7242 * on the syncq associated with q. 7243 */ 7244 void 7245 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)()) 7246 { 7247 syncq_t *sq = q->q_syncq; 7248 uint16_t count; 7249 7250 mutex_enter(SQLOCK(sq)); 7251 count = sq->sq_count; 7252 SQ_PUTLOCKS_ENTER(sq); 7253 SUM_SQ_PUTCOUNTS(sq, count); 7254 ASSERT(count >= 1); 7255 ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC)); 7256 7257 if (count == 1) { 7258 /* 7259 * Can upgrade. This case also handles nested qwriter calls 7260 * (when the qwriter callback function calls qwriter). In that 7261 * case SQ_EXCL is already set. 7262 */ 7263 sq->sq_flags |= SQ_EXCL; 7264 SQ_PUTLOCKS_EXIT(sq); 7265 mutex_exit(SQLOCK(sq)); 7266 (*func)(q, mp); 7267 /* 7268 * Assumes that leavesq, putnext, and drain_syncq will reset 7269 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on 7270 * until putnext, leavesq, or drain_syncq drops it. 7271 * That way we handle nested qwriter(INNER) without dropping 7272 * SQ_EXCL until the outermost qwriter callback routine is 7273 * done. 7274 */ 7275 return; 7276 } 7277 SQ_PUTLOCKS_EXIT(sq); 7278 sqfill_events(sq, q, mp, func); 7279 } 7280 7281 /* 7282 * Synchronous callback support functions 7283 */ 7284 7285 /* 7286 * Allocate a callback parameter structure. 7287 * Assumes that caller initializes the flags and the id. 7288 * Acquires SQLOCK(sq) if non-NULL is returned. 7289 */ 7290 callbparams_t * 7291 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags) 7292 { 7293 callbparams_t *cbp; 7294 size_t size = sizeof (callbparams_t); 7295 7296 cbp = kmem_alloc(size, kmflags & ~KM_PANIC); 7297 7298 /* 7299 * Only try tryhard allocation if the caller is ready to panic. 7300 * Otherwise just fail. 7301 */ 7302 if (cbp == NULL) { 7303 if (kmflags & KM_PANIC) 7304 cbp = kmem_alloc_tryhard(sizeof (callbparams_t), 7305 &size, kmflags); 7306 else 7307 return (NULL); 7308 } 7309 7310 ASSERT(size >= sizeof (callbparams_t)); 7311 cbp->cbp_size = size; 7312 cbp->cbp_sq = sq; 7313 cbp->cbp_func = func; 7314 cbp->cbp_arg = arg; 7315 mutex_enter(SQLOCK(sq)); 7316 cbp->cbp_next = sq->sq_callbpend; 7317 sq->sq_callbpend = cbp; 7318 return (cbp); 7319 } 7320 7321 void 7322 callbparams_free(syncq_t *sq, callbparams_t *cbp) 7323 { 7324 callbparams_t **pp, *p; 7325 7326 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7327 7328 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) { 7329 if (p == cbp) { 7330 *pp = p->cbp_next; 7331 kmem_free(p, p->cbp_size); 7332 return; 7333 } 7334 } 7335 (void) (STRLOG(0, 0, 0, SL_CONSOLE, 7336 "callbparams_free: not found\n")); 7337 } 7338 7339 void 7340 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag) 7341 { 7342 callbparams_t **pp, *p; 7343 7344 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7345 7346 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) { 7347 if (p->cbp_id == id && p->cbp_flags == flag) { 7348 *pp = p->cbp_next; 7349 kmem_free(p, p->cbp_size); 7350 return; 7351 } 7352 } 7353 (void) (STRLOG(0, 0, 0, SL_CONSOLE, 7354 "callbparams_free_id: not found\n")); 7355 } 7356 7357 /* 7358 * Callback wrapper function used by once-only callbacks that can be 7359 * cancelled (qtimeout and qbufcall) 7360 * Contains inline version of entersq(sq, SQ_CALLBACK) that can be 7361 * cancelled by the qun* functions. 7362 */ 7363 void 7364 qcallbwrapper(void *arg) 7365 { 7366 callbparams_t *cbp = arg; 7367 syncq_t *sq; 7368 uint16_t count = 0; 7369 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL; 7370 uint16_t type; 7371 7372 sq = cbp->cbp_sq; 7373 mutex_enter(SQLOCK(sq)); 7374 type = sq->sq_type; 7375 if (!(type & SQ_CICB)) { 7376 count = sq->sq_count; 7377 SQ_PUTLOCKS_ENTER(sq); 7378 SQ_PUTCOUNT_CLRFAST_LOCKED(sq); 7379 SUM_SQ_PUTCOUNTS(sq, count); 7380 sq->sq_needexcl++; 7381 ASSERT(sq->sq_needexcl != 0); /* wraparound */ 7382 waitflags |= SQ_MESSAGES; 7383 } 7384 /* Can not handle exlusive entry at outer perimeter */ 7385 ASSERT(type & SQ_COCB); 7386 7387 while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) { 7388 if ((sq->sq_callbflags & cbp->cbp_flags) && 7389 (sq->sq_cancelid == cbp->cbp_id)) { 7390 /* timeout has been cancelled */ 7391 sq->sq_callbflags |= SQ_CALLB_BYPASSED; 7392 callbparams_free(sq, cbp); 7393 if (!(type & SQ_CICB)) { 7394 ASSERT(sq->sq_needexcl > 0); 7395 sq->sq_needexcl--; 7396 if (sq->sq_needexcl == 0) { 7397 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 7398 } 7399 SQ_PUTLOCKS_EXIT(sq); 7400 } 7401 mutex_exit(SQLOCK(sq)); 7402 return; 7403 } 7404 sq->sq_flags |= SQ_WANTWAKEUP; 7405 if (!(type & SQ_CICB)) { 7406 SQ_PUTLOCKS_EXIT(sq); 7407 } 7408 cv_wait(&sq->sq_wait, SQLOCK(sq)); 7409 if (!(type & SQ_CICB)) { 7410 count = sq->sq_count; 7411 SQ_PUTLOCKS_ENTER(sq); 7412 SUM_SQ_PUTCOUNTS(sq, count); 7413 } 7414 } 7415 7416 sq->sq_count++; 7417 ASSERT(sq->sq_count != 0); /* Wraparound */ 7418 if (!(type & SQ_CICB)) { 7419 ASSERT(count == 0); 7420 sq->sq_flags |= SQ_EXCL; 7421 ASSERT(sq->sq_needexcl > 0); 7422 sq->sq_needexcl--; 7423 if (sq->sq_needexcl == 0) { 7424 SQ_PUTCOUNT_SETFAST_LOCKED(sq); 7425 } 7426 SQ_PUTLOCKS_EXIT(sq); 7427 } 7428 7429 mutex_exit(SQLOCK(sq)); 7430 7431 cbp->cbp_func(cbp->cbp_arg); 7432 7433 /* 7434 * We drop the lock only for leavesq to re-acquire it. 7435 * Possible optimization is inline of leavesq. 7436 */ 7437 mutex_enter(SQLOCK(sq)); 7438 callbparams_free(sq, cbp); 7439 mutex_exit(SQLOCK(sq)); 7440 leavesq(sq, SQ_CALLBACK); 7441 } 7442 7443 /* 7444 * no need to grab sq_putlocks here. See comment in strsubr.h that 7445 * explains when sq_putlocks are used. 7446 * 7447 * sq_count (or one of the sq_putcounts) has already been 7448 * decremented by the caller, and if SQ_QUEUED, we need to call 7449 * drain_syncq (the global syncq drain). 7450 * If putnext_tail is called with the SQ_EXCL bit set, we are in 7451 * one of two states, non-CIPUT perimiter, and we need to clear 7452 * it, or we went exclusive in the put procedure. In any case, 7453 * we want to clear the bit now, and it is probably easier to do 7454 * this at the beginning of this function (remember, we hold 7455 * the SQLOCK). Lastly, if there are other messages queued 7456 * on the syncq (and not for our destination), enable the syncq 7457 * for background work. 7458 */ 7459 7460 /* ARGSUSED */ 7461 void 7462 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags) 7463 { 7464 uint16_t flags = sq->sq_flags; 7465 7466 ASSERT(MUTEX_HELD(SQLOCK(sq))); 7467 ASSERT(MUTEX_NOT_HELD(QLOCK(qp))); 7468 7469 /* Clear SQ_EXCL if set in passflags */ 7470 if (passflags & SQ_EXCL) { 7471 flags &= ~SQ_EXCL; 7472 } 7473 if (flags & SQ_WANTWAKEUP) { 7474 flags &= ~SQ_WANTWAKEUP; 7475 cv_broadcast(&sq->sq_wait); 7476 } 7477 if (flags & SQ_WANTEXWAKEUP) { 7478 flags &= ~SQ_WANTEXWAKEUP; 7479 cv_broadcast(&sq->sq_exitwait); 7480 } 7481 sq->sq_flags = flags; 7482 7483 /* 7484 * We have cleared SQ_EXCL if we were asked to, and started 7485 * the wakeup process for waiters. If there are no writers 7486 * then we need to drain the syncq if we were told to, or 7487 * enable the background thread to do it. 7488 */ 7489 if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) { 7490 if ((passflags & SQ_QUEUED) || 7491 (sq->sq_svcflags & SQ_DISABLED)) { 7492 /* drain_syncq will take care of events in the list */ 7493 drain_syncq(sq); 7494 return; 7495 } else if (flags & SQ_QUEUED) { 7496 sqenable(sq); 7497 } 7498 } 7499 /* Drop the SQLOCK on exit */ 7500 mutex_exit(SQLOCK(sq)); 7501 TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END, 7502 "putnext_end:(%p, %p, %p) done", NULL, qp, sq); 7503 } 7504 7505 void 7506 set_qend(queue_t *q) 7507 { 7508 mutex_enter(QLOCK(q)); 7509 if (!O_SAMESTR(q)) 7510 q->q_flag |= QEND; 7511 else 7512 q->q_flag &= ~QEND; 7513 mutex_exit(QLOCK(q)); 7514 q = _OTHERQ(q); 7515 mutex_enter(QLOCK(q)); 7516 if (!O_SAMESTR(q)) 7517 q->q_flag |= QEND; 7518 else 7519 q->q_flag &= ~QEND; 7520 mutex_exit(QLOCK(q)); 7521 } 7522 7523 /* 7524 * Set QFULL in next service procedure queue (that cares) if not already 7525 * set and if there are already more messages on the syncq than 7526 * sq_max_size. If sq_max_size is 0, no flow control will be asserted on 7527 * any syncq. 7528 * 7529 * The fq here is the next queue with a service procedure. This is where 7530 * we would fail canputnext, so this is where we need to set QFULL. 7531 * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag. 7532 * 7533 * We already have QLOCK at this point. To avoid cross-locks with 7534 * freezestr() which grabs all QLOCKs and with strlock() which grabs both 7535 * SQLOCK and sd_reflock, we need to drop respective locks first. 7536 */ 7537 void 7538 set_qfull(queue_t *q) 7539 { 7540 queue_t *fq = NULL; 7541 7542 ASSERT(MUTEX_HELD(QLOCK(q))); 7543 if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) && 7544 (q->q_syncqmsgs > sq_max_size)) { 7545 if ((fq = q->q_nfsrv) == q) { 7546 fq->q_flag |= QFULL; 7547 } else { 7548 mutex_exit(QLOCK(q)); 7549 mutex_enter(QLOCK(fq)); 7550 fq->q_flag |= QFULL; 7551 mutex_exit(QLOCK(fq)); 7552 mutex_enter(QLOCK(q)); 7553 } 7554 } 7555 } 7556 7557 void 7558 clr_qfull(queue_t *q) 7559 { 7560 queue_t *oq = q; 7561 7562 q = q->q_nfsrv; 7563 /* Fast check if there is any work to do before getting the lock. */ 7564 if ((q->q_flag & (QFULL|QWANTW)) == 0) { 7565 return; 7566 } 7567 7568 /* 7569 * Do not reset QFULL (and backenable) if the q_count is the reason 7570 * for QFULL being set. 7571 */ 7572 mutex_enter(QLOCK(q)); 7573 /* 7574 * If queue is empty i.e q_mblkcnt is zero, queue can not be full. 7575 * Hence clear the QFULL. 7576 * If both q_count and q_mblkcnt are less than the hiwat mark, 7577 * clear the QFULL. 7578 */ 7579 if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) && 7580 (q->q_mblkcnt < q->q_hiwat))) { 7581 q->q_flag &= ~QFULL; 7582 /* 7583 * A little more confusing, how about this way: 7584 * if someone wants to write, 7585 * AND 7586 * both counts are less than the lowat mark 7587 * OR 7588 * the lowat mark is zero 7589 * THEN 7590 * backenable 7591 */ 7592 if ((q->q_flag & QWANTW) && 7593 (((q->q_count < q->q_lowat) && 7594 (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) { 7595 q->q_flag &= ~QWANTW; 7596 mutex_exit(QLOCK(q)); 7597 backenable(oq, 0); 7598 } else 7599 mutex_exit(QLOCK(q)); 7600 } else 7601 mutex_exit(QLOCK(q)); 7602 } 7603 7604 /* 7605 * Set the forward service procedure pointer. 7606 * 7607 * Called at insert-time to cache a queue's next forward service procedure in 7608 * q_nfsrv; used by canput() and canputnext(). If the queue to be inserted 7609 * has a service procedure then q_nfsrv points to itself. If the queue to be 7610 * inserted does not have a service procedure, then q_nfsrv points to the next 7611 * queue forward that has a service procedure. If the queue is at the logical 7612 * end of the stream (driver for write side, stream head for the read side) 7613 * and does not have a service procedure, then q_nfsrv also points to itself. 7614 */ 7615 void 7616 set_nfsrv_ptr( 7617 queue_t *rnew, /* read queue pointer to new module */ 7618 queue_t *wnew, /* write queue pointer to new module */ 7619 queue_t *prev_rq, /* read queue pointer to the module above */ 7620 queue_t *prev_wq) /* write queue pointer to the module above */ 7621 { 7622 queue_t *qp; 7623 7624 if (prev_wq->q_next == NULL) { 7625 /* 7626 * Insert the driver, initialize the driver and stream head. 7627 * In this case, prev_rq/prev_wq should be the stream head. 7628 * _I_INSERT does not allow inserting a driver. Make sure 7629 * that it is not an insertion. 7630 */ 7631 ASSERT(!(rnew->q_flag & _QINSERTING)); 7632 wnew->q_nfsrv = wnew; 7633 if (rnew->q_qinfo->qi_srvp) 7634 rnew->q_nfsrv = rnew; 7635 else 7636 rnew->q_nfsrv = prev_rq; 7637 prev_rq->q_nfsrv = prev_rq; 7638 prev_wq->q_nfsrv = prev_wq; 7639 } else { 7640 /* 7641 * set up read side q_nfsrv pointer. This MUST be done 7642 * before setting the write side, because the setting of 7643 * the write side for a fifo may depend on it. 7644 * 7645 * Suppose we have a fifo that only has pipemod pushed. 7646 * pipemod has no read or write service procedures, so 7647 * nfsrv for both pipemod queues points to prev_rq (the 7648 * stream read head). Now push bufmod (which has only a 7649 * read service procedure). Doing the write side first, 7650 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which 7651 * is WRONG; the next queue forward from wnew with a 7652 * service procedure will be rnew, not the stream read head. 7653 * Since the downstream queue (which in the case of a fifo 7654 * is the read queue rnew) can affect upstream queues, it 7655 * needs to be done first. Setting up the read side first 7656 * sets nfsrv for both pipemod queues to rnew and then 7657 * when the write side is set up, wnew-q_nfsrv will also 7658 * point to rnew. 7659 */ 7660 if (rnew->q_qinfo->qi_srvp) { 7661 /* 7662 * use _OTHERQ() because, if this is a pipe, next 7663 * module may have been pushed from other end and 7664 * q_next could be a read queue. 7665 */ 7666 qp = _OTHERQ(prev_wq->q_next); 7667 while (qp && qp->q_nfsrv != qp) { 7668 qp->q_nfsrv = rnew; 7669 qp = backq(qp); 7670 } 7671 rnew->q_nfsrv = rnew; 7672 } else 7673 rnew->q_nfsrv = prev_rq->q_nfsrv; 7674 7675 /* set up write side q_nfsrv pointer */ 7676 if (wnew->q_qinfo->qi_srvp) { 7677 wnew->q_nfsrv = wnew; 7678 7679 /* 7680 * For insertion, need to update nfsrv of the modules 7681 * above which do not have a service routine. 7682 */ 7683 if (rnew->q_flag & _QINSERTING) { 7684 for (qp = prev_wq; 7685 qp != NULL && qp->q_nfsrv != qp; 7686 qp = backq(qp)) { 7687 qp->q_nfsrv = wnew->q_nfsrv; 7688 } 7689 } 7690 } else { 7691 if (prev_wq->q_next == prev_rq) 7692 /* 7693 * Since prev_wq/prev_rq are the middle of a 7694 * fifo, wnew/rnew will also be the middle of 7695 * a fifo and wnew's nfsrv is same as rnew's. 7696 */ 7697 wnew->q_nfsrv = rnew->q_nfsrv; 7698 else 7699 wnew->q_nfsrv = prev_wq->q_next->q_nfsrv; 7700 } 7701 } 7702 } 7703 7704 /* 7705 * Reset the forward service procedure pointer; called at remove-time. 7706 */ 7707 void 7708 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp) 7709 { 7710 queue_t *tmp_qp; 7711 7712 /* Reset the write side q_nfsrv pointer for _I_REMOVE */ 7713 if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) { 7714 for (tmp_qp = backq(wqp); 7715 tmp_qp != NULL && tmp_qp->q_nfsrv == wqp; 7716 tmp_qp = backq(tmp_qp)) { 7717 tmp_qp->q_nfsrv = wqp->q_nfsrv; 7718 } 7719 } 7720 7721 /* reset the read side q_nfsrv pointer */ 7722 if (rqp->q_qinfo->qi_srvp) { 7723 if (wqp->q_next) { /* non-driver case */ 7724 tmp_qp = _OTHERQ(wqp->q_next); 7725 while (tmp_qp && tmp_qp->q_nfsrv == rqp) { 7726 /* Note that rqp->q_next cannot be NULL */ 7727 ASSERT(rqp->q_next != NULL); 7728 tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv; 7729 tmp_qp = backq(tmp_qp); 7730 } 7731 } 7732 } 7733 } 7734 7735 /* 7736 * This routine should be called after all stream geometry changes to update 7737 * the stream head cached struio() rd/wr queue pointers. Note must be called 7738 * with the streamlock()ed. 7739 * 7740 * Note: only enables Synchronous STREAMS for a side of a Stream which has 7741 * an explicit synchronous barrier module queue. That is, a queue that 7742 * has specified a struio() type. 7743 */ 7744 static void 7745 strsetuio(stdata_t *stp) 7746 { 7747 queue_t *wrq; 7748 7749 if (stp->sd_flag & STPLEX) { 7750 /* 7751 * Not stremahead, but a mux, so no Synchronous STREAMS. 7752 */ 7753 stp->sd_struiowrq = NULL; 7754 stp->sd_struiordq = NULL; 7755 return; 7756 } 7757 /* 7758 * Scan the write queue(s) while synchronous 7759 * until we find a qinfo uio type specified. 7760 */ 7761 wrq = stp->sd_wrq->q_next; 7762 while (wrq) { 7763 if (wrq->q_struiot == STRUIOT_NONE) { 7764 wrq = 0; 7765 break; 7766 } 7767 if (wrq->q_struiot != STRUIOT_DONTCARE) 7768 break; 7769 if (! _SAMESTR(wrq)) { 7770 wrq = 0; 7771 break; 7772 } 7773 wrq = wrq->q_next; 7774 } 7775 stp->sd_struiowrq = wrq; 7776 /* 7777 * Scan the read queue(s) while synchronous 7778 * until we find a qinfo uio type specified. 7779 */ 7780 wrq = stp->sd_wrq->q_next; 7781 while (wrq) { 7782 if (_RD(wrq)->q_struiot == STRUIOT_NONE) { 7783 wrq = 0; 7784 break; 7785 } 7786 if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE) 7787 break; 7788 if (! _SAMESTR(wrq)) { 7789 wrq = 0; 7790 break; 7791 } 7792 wrq = wrq->q_next; 7793 } 7794 stp->sd_struiordq = wrq ? _RD(wrq) : 0; 7795 } 7796 7797 /* 7798 * pass_wput, unblocks the passthru queues, so that 7799 * messages can arrive at muxs lower read queue, before 7800 * I_LINK/I_UNLINK is acked/nacked. 7801 */ 7802 static void 7803 pass_wput(queue_t *q, mblk_t *mp) 7804 { 7805 syncq_t *sq; 7806 7807 sq = _RD(q)->q_syncq; 7808 if (sq->sq_flags & SQ_BLOCKED) 7809 unblocksq(sq, SQ_BLOCKED, 0); 7810 putnext(q, mp); 7811 } 7812 7813 /* 7814 * Set up queues for the link/unlink. 7815 * Create a new queue and block it and then insert it 7816 * below the stream head on the lower stream. 7817 * This prevents any messages from arriving during the setq 7818 * as well as while the mux is processing the LINK/I_UNLINK. 7819 * The blocked passq is unblocked once the LINK/I_UNLINK has 7820 * been acked or nacked or if a message is generated and sent 7821 * down muxs write put procedure. 7822 * see pass_wput(). 7823 * 7824 * After the new queue is inserted, all messages coming from below are 7825 * blocked. The call to strlock will ensure that all activity in the stream head 7826 * read queue syncq is stopped (sq_count drops to zero). 7827 */ 7828 static queue_t * 7829 link_addpassthru(stdata_t *stpdown) 7830 { 7831 queue_t *passq; 7832 sqlist_t sqlist; 7833 7834 passq = allocq(); 7835 STREAM(passq) = STREAM(_WR(passq)) = stpdown; 7836 /* setq might sleep in allocator - avoid holding locks. */ 7837 setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ, 7838 SQ_CI|SQ_CO, B_FALSE); 7839 claimq(passq); 7840 blocksq(passq->q_syncq, SQ_BLOCKED, 1); 7841 insertq(STREAM(passq), passq); 7842 7843 /* 7844 * Use strlock() to wait for the stream head sq_count to drop to zero 7845 * since we are going to change q_ptr in the stream head. Note that 7846 * insertq() doesn't wait for any syncq counts to drop to zero. 7847 */ 7848 sqlist.sqlist_head = NULL; 7849 sqlist.sqlist_index = 0; 7850 sqlist.sqlist_size = sizeof (sqlist_t); 7851 sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq); 7852 strlock(stpdown, &sqlist); 7853 strunlock(stpdown, &sqlist); 7854 7855 releaseq(passq); 7856 return (passq); 7857 } 7858 7859 /* 7860 * Let messages flow up into the mux by removing 7861 * the passq. 7862 */ 7863 static void 7864 link_rempassthru(queue_t *passq) 7865 { 7866 claimq(passq); 7867 removeq(passq); 7868 releaseq(passq); 7869 freeq(passq); 7870 } 7871 7872 /* 7873 * Wait for the condition variable pointed to by `cvp' to be signaled, 7874 * or for `tim' milliseconds to elapse, whichever comes first. If `tim' 7875 * is negative, then there is no time limit. If `nosigs' is non-zero, 7876 * then the wait will be non-interruptible. 7877 * 7878 * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout. 7879 */ 7880 clock_t 7881 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs) 7882 { 7883 clock_t ret, now, tick; 7884 7885 if (tim < 0) { 7886 if (nosigs) { 7887 cv_wait(cvp, mp); 7888 ret = 1; 7889 } else { 7890 ret = cv_wait_sig(cvp, mp); 7891 } 7892 } else if (tim > 0) { 7893 /* 7894 * convert milliseconds to clock ticks 7895 */ 7896 tick = MSEC_TO_TICK_ROUNDUP(tim); 7897 time_to_wait(&now, tick); 7898 if (nosigs) { 7899 ret = cv_timedwait(cvp, mp, now); 7900 } else { 7901 ret = cv_timedwait_sig(cvp, mp, now); 7902 } 7903 } else { 7904 ret = -1; 7905 } 7906 return (ret); 7907 } 7908 7909 /* 7910 * Wait until the stream head can determine if it is at the mark but 7911 * don't wait forever to prevent a race condition between the "mark" state 7912 * in the stream head and any mark state in the caller/user of this routine. 7913 * 7914 * This is used by sockets and for a socket it would be incorrect 7915 * to return a failure for SIOCATMARK when there is no data in the receive 7916 * queue and the marked urgent data is traveling up the stream. 7917 * 7918 * This routine waits until the mark is known by waiting for one of these 7919 * three events: 7920 * The stream head read queue becoming non-empty (including an EOF) 7921 * The STRATMARK flag being set. (Due to a MSGMARKNEXT message.) 7922 * The STRNOTATMARK flag being set (which indicates that the transport 7923 * has sent a MSGNOTMARKNEXT message to indicate that it is not at 7924 * the mark). 7925 * 7926 * The routine returns 1 if the stream is at the mark; 0 if it can 7927 * be determined that the stream is not at the mark. 7928 * If the wait times out and it can't determine 7929 * whether or not the stream might be at the mark the routine will return -1. 7930 * 7931 * Note: This routine should only be used when a mark is pending i.e., 7932 * in the socket case the SIGURG has been posted. 7933 * Note2: This can not wakeup just because synchronous streams indicate 7934 * that data is available since it is not possible to use the synchronous 7935 * streams interfaces to determine the b_flag value for the data queued below 7936 * the stream head. 7937 */ 7938 int 7939 strwaitmark(vnode_t *vp) 7940 { 7941 struct stdata *stp = vp->v_stream; 7942 queue_t *rq = _RD(stp->sd_wrq); 7943 int mark; 7944 7945 mutex_enter(&stp->sd_lock); 7946 while (rq->q_first == NULL && 7947 !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) { 7948 stp->sd_flag |= RSLEEP; 7949 7950 /* Wait for 100 milliseconds for any state change. */ 7951 if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) { 7952 mutex_exit(&stp->sd_lock); 7953 return (-1); 7954 } 7955 } 7956 if (stp->sd_flag & STRATMARK) 7957 mark = 1; 7958 else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK)) 7959 mark = 1; 7960 else 7961 mark = 0; 7962 7963 mutex_exit(&stp->sd_lock); 7964 return (mark); 7965 } 7966 7967 /* 7968 * Set a read side error. If persist is set change the socket error 7969 * to persistent. If errfunc is set install the function as the exported 7970 * error handler. 7971 */ 7972 void 7973 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc) 7974 { 7975 struct stdata *stp = vp->v_stream; 7976 7977 mutex_enter(&stp->sd_lock); 7978 stp->sd_rerror = error; 7979 if (error == 0 && errfunc == NULL) 7980 stp->sd_flag &= ~STRDERR; 7981 else 7982 stp->sd_flag |= STRDERR; 7983 if (persist) { 7984 stp->sd_flag &= ~STRDERRNONPERSIST; 7985 } else { 7986 stp->sd_flag |= STRDERRNONPERSIST; 7987 } 7988 stp->sd_rderrfunc = errfunc; 7989 if (error != 0 || errfunc != NULL) { 7990 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */ 7991 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */ 7992 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 7993 7994 mutex_exit(&stp->sd_lock); 7995 pollwakeup(&stp->sd_pollist, POLLERR); 7996 mutex_enter(&stp->sd_lock); 7997 7998 if (stp->sd_sigflags & S_ERROR) 7999 strsendsig(stp->sd_siglist, S_ERROR, 0, error); 8000 } 8001 mutex_exit(&stp->sd_lock); 8002 } 8003 8004 /* 8005 * Set a write side error. If persist is set change the socket error 8006 * to persistent. 8007 */ 8008 void 8009 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc) 8010 { 8011 struct stdata *stp = vp->v_stream; 8012 8013 mutex_enter(&stp->sd_lock); 8014 stp->sd_werror = error; 8015 if (error == 0 && errfunc == NULL) 8016 stp->sd_flag &= ~STWRERR; 8017 else 8018 stp->sd_flag |= STWRERR; 8019 if (persist) { 8020 stp->sd_flag &= ~STWRERRNONPERSIST; 8021 } else { 8022 stp->sd_flag |= STWRERRNONPERSIST; 8023 } 8024 stp->sd_wrerrfunc = errfunc; 8025 if (error != 0 || errfunc != NULL) { 8026 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */ 8027 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */ 8028 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 8029 8030 mutex_exit(&stp->sd_lock); 8031 pollwakeup(&stp->sd_pollist, POLLERR); 8032 mutex_enter(&stp->sd_lock); 8033 8034 if (stp->sd_sigflags & S_ERROR) 8035 strsendsig(stp->sd_siglist, S_ERROR, 0, error); 8036 } 8037 mutex_exit(&stp->sd_lock); 8038 } 8039 8040 /* 8041 * Make the stream return 0 (EOF) when all data has been read. 8042 * No effect on write side. 8043 */ 8044 void 8045 strseteof(vnode_t *vp, int eof) 8046 { 8047 struct stdata *stp = vp->v_stream; 8048 8049 mutex_enter(&stp->sd_lock); 8050 if (!eof) { 8051 stp->sd_flag &= ~STREOF; 8052 mutex_exit(&stp->sd_lock); 8053 return; 8054 } 8055 stp->sd_flag |= STREOF; 8056 if (stp->sd_flag & RSLEEP) { 8057 stp->sd_flag &= ~RSLEEP; 8058 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); 8059 } 8060 8061 mutex_exit(&stp->sd_lock); 8062 pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM); 8063 mutex_enter(&stp->sd_lock); 8064 8065 if (stp->sd_sigflags & (S_INPUT|S_RDNORM)) 8066 strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0); 8067 mutex_exit(&stp->sd_lock); 8068 } 8069 8070 void 8071 strflushrq(vnode_t *vp, int flag) 8072 { 8073 struct stdata *stp = vp->v_stream; 8074 8075 mutex_enter(&stp->sd_lock); 8076 flushq(_RD(stp->sd_wrq), flag); 8077 mutex_exit(&stp->sd_lock); 8078 } 8079 8080 void 8081 strsetrputhooks(vnode_t *vp, uint_t flags, 8082 msgfunc_t protofunc, msgfunc_t miscfunc) 8083 { 8084 struct stdata *stp = vp->v_stream; 8085 8086 mutex_enter(&stp->sd_lock); 8087 8088 if (protofunc == NULL) 8089 stp->sd_rprotofunc = strrput_proto; 8090 else 8091 stp->sd_rprotofunc = protofunc; 8092 8093 if (miscfunc == NULL) 8094 stp->sd_rmiscfunc = strrput_misc; 8095 else 8096 stp->sd_rmiscfunc = miscfunc; 8097 8098 if (flags & SH_CONSOL_DATA) 8099 stp->sd_rput_opt |= SR_CONSOL_DATA; 8100 else 8101 stp->sd_rput_opt &= ~SR_CONSOL_DATA; 8102 8103 if (flags & SH_SIGALLDATA) 8104 stp->sd_rput_opt |= SR_SIGALLDATA; 8105 else 8106 stp->sd_rput_opt &= ~SR_SIGALLDATA; 8107 8108 if (flags & SH_IGN_ZEROLEN) 8109 stp->sd_rput_opt |= SR_IGN_ZEROLEN; 8110 else 8111 stp->sd_rput_opt &= ~SR_IGN_ZEROLEN; 8112 8113 mutex_exit(&stp->sd_lock); 8114 } 8115 8116 void 8117 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime) 8118 { 8119 struct stdata *stp = vp->v_stream; 8120 8121 mutex_enter(&stp->sd_lock); 8122 stp->sd_closetime = closetime; 8123 8124 if (flags & SH_SIGPIPE) 8125 stp->sd_wput_opt |= SW_SIGPIPE; 8126 else 8127 stp->sd_wput_opt &= ~SW_SIGPIPE; 8128 if (flags & SH_RECHECK_ERR) 8129 stp->sd_wput_opt |= SW_RECHECK_ERR; 8130 else 8131 stp->sd_wput_opt &= ~SW_RECHECK_ERR; 8132 8133 mutex_exit(&stp->sd_lock); 8134 } 8135 8136 void 8137 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc) 8138 { 8139 struct stdata *stp = vp->v_stream; 8140 8141 mutex_enter(&stp->sd_lock); 8142 8143 stp->sd_rputdatafunc = rdatafunc; 8144 stp->sd_wputdatafunc = wdatafunc; 8145 8146 mutex_exit(&stp->sd_lock); 8147 } 8148 8149 /* Used within framework when the queue is already locked */ 8150 void 8151 qenable_locked(queue_t *q) 8152 { 8153 stdata_t *stp = STREAM(q); 8154 8155 ASSERT(MUTEX_HELD(QLOCK(q))); 8156 8157 if (!q->q_qinfo->qi_srvp) 8158 return; 8159 8160 /* 8161 * Do not place on run queue if already enabled or closing. 8162 */ 8163 if (q->q_flag & (QWCLOSE|QENAB)) 8164 return; 8165 8166 /* 8167 * mark queue enabled and place on run list if it is not already being 8168 * serviced. If it is serviced, the runservice() function will detect 8169 * that QENAB is set and call service procedure before clearing 8170 * QINSERVICE flag. 8171 */ 8172 q->q_flag |= QENAB; 8173 if (q->q_flag & QINSERVICE) 8174 return; 8175 8176 /* Record the time of qenable */ 8177 q->q_qtstamp = lbolt; 8178 8179 /* 8180 * Put the queue in the stp list and schedule it for background 8181 * processing if it is not already scheduled or if stream head does not 8182 * intent to process it in the foreground later by setting 8183 * STRS_WILLSERVICE flag. 8184 */ 8185 mutex_enter(&stp->sd_qlock); 8186 /* 8187 * If there are already something on the list, stp flags should show 8188 * intention to drain it. 8189 */ 8190 IMPLY(STREAM_NEEDSERVICE(stp), 8191 (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))); 8192 8193 ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link); 8194 stp->sd_nqueues++; 8195 8196 /* 8197 * If no one will drain this stream we are the first producer and 8198 * need to schedule it for background thread. 8199 */ 8200 if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) { 8201 /* 8202 * No one will service this stream later, so we have to 8203 * schedule it now. 8204 */ 8205 STRSTAT(stenables); 8206 stp->sd_svcflags |= STRS_SCHEDULED; 8207 stp->sd_servid = (void *)taskq_dispatch(streams_taskq, 8208 (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE); 8209 8210 if (stp->sd_servid == NULL) { 8211 /* 8212 * Task queue failed so fail over to the backup 8213 * servicing thread. 8214 */ 8215 STRSTAT(taskqfails); 8216 /* 8217 * It is safe to clear STRS_SCHEDULED flag because it 8218 * was set by this thread above. 8219 */ 8220 stp->sd_svcflags &= ~STRS_SCHEDULED; 8221 8222 /* 8223 * Failover scheduling is protected by service_queue 8224 * lock. 8225 */ 8226 mutex_enter(&service_queue); 8227 ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q)); 8228 ASSERT(q->q_link == NULL); 8229 /* 8230 * Append the queue to qhead/qtail list. 8231 */ 8232 if (qhead == NULL) 8233 qhead = q; 8234 else 8235 qtail->q_link = q; 8236 qtail = q; 8237 /* 8238 * Clear stp queue list. 8239 */ 8240 stp->sd_qhead = stp->sd_qtail = NULL; 8241 stp->sd_nqueues = 0; 8242 /* 8243 * Wakeup background queue processing thread. 8244 */ 8245 cv_signal(&services_to_run); 8246 mutex_exit(&service_queue); 8247 } 8248 } 8249 mutex_exit(&stp->sd_qlock); 8250 } 8251 8252 static void 8253 queue_service(queue_t *q) 8254 { 8255 /* 8256 * The queue in the list should have 8257 * QENAB flag set and should not have 8258 * QINSERVICE flag set. QINSERVICE is 8259 * set when the queue is dequeued and 8260 * qenable_locked doesn't enqueue a 8261 * queue with QINSERVICE set. 8262 */ 8263 8264 ASSERT(!(q->q_flag & QINSERVICE)); 8265 ASSERT((q->q_flag & QENAB)); 8266 mutex_enter(QLOCK(q)); 8267 q->q_flag &= ~QENAB; 8268 q->q_flag |= QINSERVICE; 8269 mutex_exit(QLOCK(q)); 8270 runservice(q); 8271 } 8272 8273 static void 8274 syncq_service(syncq_t *sq) 8275 { 8276 STRSTAT(syncqservice); 8277 mutex_enter(SQLOCK(sq)); 8278 ASSERT(!(sq->sq_svcflags & SQ_SERVICE)); 8279 ASSERT(sq->sq_servcount != 0); 8280 ASSERT(sq->sq_next == NULL); 8281 8282 /* if we came here from the background thread, clear the flag */ 8283 if (sq->sq_svcflags & SQ_BGTHREAD) 8284 sq->sq_svcflags &= ~SQ_BGTHREAD; 8285 8286 /* let drain_syncq know that it's being called in the background */ 8287 sq->sq_svcflags |= SQ_SERVICE; 8288 drain_syncq(sq); 8289 } 8290 8291 static void 8292 qwriter_outer_service(syncq_t *outer) 8293 { 8294 /* 8295 * Note that SQ_WRITER is used on the outer perimeter 8296 * to signal that a qwriter(OUTER) is either investigating 8297 * running or that it is actually running a function. 8298 */ 8299 outer_enter(outer, SQ_BLOCKED|SQ_WRITER); 8300 8301 /* 8302 * All inner syncq are empty and have SQ_WRITER set 8303 * to block entering the outer perimeter. 8304 * 8305 * We do not need to explicitly call write_now since 8306 * outer_exit does it for us. 8307 */ 8308 outer_exit(outer); 8309 } 8310 8311 static void 8312 mblk_free(mblk_t *mp) 8313 { 8314 dblk_t *dbp = mp->b_datap; 8315 frtn_t *frp = dbp->db_frtnp; 8316 8317 mp->b_next = NULL; 8318 if (dbp->db_fthdr != NULL) 8319 str_ftfree(dbp); 8320 8321 ASSERT(dbp->db_fthdr == NULL); 8322 frp->free_func(frp->free_arg); 8323 ASSERT(dbp->db_mblk == mp); 8324 8325 if (dbp->db_credp != NULL) { 8326 crfree(dbp->db_credp); 8327 dbp->db_credp = NULL; 8328 } 8329 dbp->db_cpid = -1; 8330 dbp->db_struioflag = 0; 8331 dbp->db_struioun.cksum.flags = 0; 8332 8333 kmem_cache_free(dbp->db_cache, dbp); 8334 } 8335 8336 /* 8337 * Background processing of the stream queue list. 8338 */ 8339 static void 8340 stream_service(stdata_t *stp) 8341 { 8342 queue_t *q; 8343 8344 mutex_enter(&stp->sd_qlock); 8345 8346 STR_SERVICE(stp, q); 8347 8348 stp->sd_svcflags &= ~STRS_SCHEDULED; 8349 stp->sd_servid = NULL; 8350 cv_signal(&stp->sd_qcv); 8351 mutex_exit(&stp->sd_qlock); 8352 } 8353 8354 /* 8355 * Foreground processing of the stream queue list. 8356 */ 8357 void 8358 stream_runservice(stdata_t *stp) 8359 { 8360 queue_t *q; 8361 8362 mutex_enter(&stp->sd_qlock); 8363 STRSTAT(rservice); 8364 /* 8365 * We are going to drain this stream queue list, so qenable_locked will 8366 * not schedule it until we finish. 8367 */ 8368 stp->sd_svcflags |= STRS_WILLSERVICE; 8369 8370 STR_SERVICE(stp, q); 8371 8372 stp->sd_svcflags &= ~STRS_WILLSERVICE; 8373 mutex_exit(&stp->sd_qlock); 8374 /* 8375 * Help backup background thread to drain the qhead/qtail list. 8376 */ 8377 while (qhead != NULL) { 8378 STRSTAT(qhelps); 8379 mutex_enter(&service_queue); 8380 DQ(q, qhead, qtail, q_link); 8381 mutex_exit(&service_queue); 8382 if (q != NULL) 8383 queue_service(q); 8384 } 8385 } 8386 8387 void 8388 stream_willservice(stdata_t *stp) 8389 { 8390 mutex_enter(&stp->sd_qlock); 8391 stp->sd_svcflags |= STRS_WILLSERVICE; 8392 mutex_exit(&stp->sd_qlock); 8393 } 8394 8395 /* 8396 * Replace the cred currently in the mblk with a different one. 8397 */ 8398 void 8399 mblk_setcred(mblk_t *mp, cred_t *cr) 8400 { 8401 cred_t *ocr = DB_CRED(mp); 8402 8403 ASSERT(cr != NULL); 8404 8405 if (cr != ocr) { 8406 crhold(mp->b_datap->db_credp = cr); 8407 if (ocr != NULL) 8408 crfree(ocr); 8409 } 8410 } 8411 8412 int 8413 hcksum_assoc(mblk_t *mp, multidata_t *mmd, pdesc_t *pd, 8414 uint32_t start, uint32_t stuff, uint32_t end, uint32_t value, 8415 uint32_t flags, int km_flags) 8416 { 8417 int rc = 0; 8418 8419 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA); 8420 if (mp->b_datap->db_type == M_DATA) { 8421 /* Associate values for M_DATA type */ 8422 DB_CKSUMSTART(mp) = (intptr_t)start; 8423 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 8424 DB_CKSUMEND(mp) = (intptr_t)end; 8425 DB_CKSUMFLAGS(mp) = flags; 8426 DB_CKSUM16(mp) = (uint16_t)value; 8427 8428 } else { 8429 pattrinfo_t pa_info; 8430 8431 ASSERT(mmd != NULL); 8432 8433 pa_info.type = PATTR_HCKSUM; 8434 pa_info.len = sizeof (pattr_hcksum_t); 8435 8436 if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) { 8437 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 8438 8439 hck->hcksum_start_offset = start; 8440 hck->hcksum_stuff_offset = stuff; 8441 hck->hcksum_end_offset = end; 8442 hck->hcksum_cksum_val.inet_cksum = (uint16_t)value; 8443 hck->hcksum_flags = flags; 8444 } else { 8445 rc = -1; 8446 } 8447 } 8448 return (rc); 8449 } 8450 8451 void 8452 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd, 8453 uint32_t *start, uint32_t *stuff, uint32_t *end, 8454 uint32_t *value, uint32_t *flags) 8455 { 8456 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA); 8457 if (mp->b_datap->db_type == M_DATA) { 8458 if (flags != NULL) { 8459 *flags = DB_CKSUMFLAGS(mp); 8460 if (*flags & HCK_PARTIALCKSUM) { 8461 if (start != NULL) 8462 *start = (uint32_t)DB_CKSUMSTART(mp); 8463 if (stuff != NULL) 8464 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 8465 if (end != NULL) 8466 *end = (uint32_t)DB_CKSUMEND(mp); 8467 if (value != NULL) 8468 *value = (uint32_t)DB_CKSUM16(mp); 8469 } else if ((*flags & HW_LSO) && (value != NULL)) 8470 *value = (uint32_t)DB_LSOMSS(mp); 8471 } 8472 } else { 8473 pattrinfo_t hck_attr = {PATTR_HCKSUM}; 8474 8475 ASSERT(mmd != NULL); 8476 8477 /* get hardware checksum attribute */ 8478 if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) { 8479 pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf; 8480 8481 ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t)); 8482 if (flags != NULL) 8483 *flags = hck->hcksum_flags; 8484 if (start != NULL) 8485 *start = hck->hcksum_start_offset; 8486 if (stuff != NULL) 8487 *stuff = hck->hcksum_stuff_offset; 8488 if (end != NULL) 8489 *end = hck->hcksum_end_offset; 8490 if (value != NULL) 8491 *value = (uint32_t) 8492 hck->hcksum_cksum_val.inet_cksum; 8493 } 8494 } 8495 } 8496 8497 /* 8498 * Checksum buffer *bp for len bytes with psum partial checksum, 8499 * or 0 if none, and return the 16 bit partial checksum. 8500 */ 8501 unsigned 8502 bcksum(uchar_t *bp, int len, unsigned int psum) 8503 { 8504 int odd = len & 1; 8505 extern unsigned int ip_ocsum(); 8506 8507 if (((intptr_t)bp & 1) == 0 && !odd) { 8508 /* 8509 * Bp is 16 bit aligned and len is multiple of 16 bit word. 8510 */ 8511 return (ip_ocsum((ushort_t *)bp, len >> 1, psum)); 8512 } 8513 if (((intptr_t)bp & 1) != 0) { 8514 /* 8515 * Bp isn't 16 bit aligned. 8516 */ 8517 unsigned int tsum; 8518 8519 #ifdef _LITTLE_ENDIAN 8520 psum += *bp; 8521 #else 8522 psum += *bp << 8; 8523 #endif 8524 len--; 8525 bp++; 8526 tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0); 8527 psum += (tsum << 8) & 0xffff | (tsum >> 8); 8528 if (len & 1) { 8529 bp += len - 1; 8530 #ifdef _LITTLE_ENDIAN 8531 psum += *bp << 8; 8532 #else 8533 psum += *bp; 8534 #endif 8535 } 8536 } else { 8537 /* 8538 * Bp is 16 bit aligned. 8539 */ 8540 psum = ip_ocsum((ushort_t *)bp, len >> 1, psum); 8541 if (odd) { 8542 bp += len - 1; 8543 #ifdef _LITTLE_ENDIAN 8544 psum += *bp; 8545 #else 8546 psum += *bp << 8; 8547 #endif 8548 } 8549 } 8550 /* 8551 * Normalize psum to 16 bits before returning the new partial 8552 * checksum. The max psum value before normalization is 0x3FDFE. 8553 */ 8554 return ((psum >> 16) + (psum & 0xFFFF)); 8555 } 8556 8557 boolean_t 8558 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd) 8559 { 8560 boolean_t rc; 8561 8562 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA); 8563 if (DB_TYPE(mp) == M_DATA) { 8564 rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0); 8565 } else { 8566 pattrinfo_t zcopy_attr = {PATTR_ZCOPY}; 8567 8568 ASSERT(mmd != NULL); 8569 rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL); 8570 } 8571 return (rc); 8572 } 8573 8574 void 8575 freemsgchain(mblk_t *mp) 8576 { 8577 mblk_t *next; 8578 8579 while (mp != NULL) { 8580 next = mp->b_next; 8581 mp->b_next = NULL; 8582 8583 freemsg(mp); 8584 mp = next; 8585 } 8586 } 8587 8588 mblk_t * 8589 copymsgchain(mblk_t *mp) 8590 { 8591 mblk_t *nmp = NULL; 8592 mblk_t **nmpp = &nmp; 8593 8594 for (; mp != NULL; mp = mp->b_next) { 8595 if ((*nmpp = copymsg(mp)) == NULL) { 8596 freemsgchain(nmp); 8597 return (NULL); 8598 } 8599 8600 nmpp = &((*nmpp)->b_next); 8601 } 8602 8603 return (nmp); 8604 } 8605 8606 /* NOTE: Do not add code after this point. */ 8607 #undef QLOCK 8608 8609 /* 8610 * replacement for QLOCK macro for those that can't use it. 8611 */ 8612 kmutex_t * 8613 QLOCK(queue_t *q) 8614 { 8615 return (&(q)->q_lock); 8616 } 8617 8618 /* 8619 * Dummy runqueues/queuerun functions functions for backwards compatibility. 8620 */ 8621 #undef runqueues 8622 void 8623 runqueues(void) 8624 { 8625 } 8626 8627 #undef queuerun 8628 void 8629 queuerun(void) 8630 { 8631 } 8632 8633 /* 8634 * Initialize the STR stack instance, which tracks autopush and persistent 8635 * links. 8636 */ 8637 /* ARGSUSED */ 8638 static void * 8639 str_stack_init(netstackid_t stackid, netstack_t *ns) 8640 { 8641 str_stack_t *ss; 8642 int i; 8643 8644 ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP); 8645 ss->ss_netstack = ns; 8646 8647 /* 8648 * set up autopush 8649 */ 8650 sad_initspace(ss); 8651 8652 /* 8653 * set up mux_node structures. 8654 */ 8655 ss->ss_devcnt = devcnt; /* In case it should change before free */ 8656 ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) * 8657 ss->ss_devcnt), KM_SLEEP); 8658 for (i = 0; i < ss->ss_devcnt; i++) 8659 ss->ss_mux_nodes[i].mn_imaj = i; 8660 return (ss); 8661 } 8662 8663 /* 8664 * Note: run at zone shutdown and not destroy so that the PLINKs are 8665 * gone by the time other cleanup happens from the destroy callbacks. 8666 */ 8667 static void 8668 str_stack_shutdown(netstackid_t stackid, void *arg) 8669 { 8670 str_stack_t *ss = (str_stack_t *)arg; 8671 int i; 8672 cred_t *cr; 8673 8674 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 8675 ASSERT(cr != NULL); 8676 8677 /* Undo all the I_PLINKs for this zone */ 8678 for (i = 0; i < ss->ss_devcnt; i++) { 8679 struct mux_edge *ep; 8680 ldi_handle_t lh; 8681 ldi_ident_t li; 8682 int ret; 8683 int rval; 8684 dev_t rdev; 8685 8686 ep = ss->ss_mux_nodes[i].mn_outp; 8687 if (ep == NULL) 8688 continue; 8689 ret = ldi_ident_from_major((major_t)i, &li); 8690 if (ret != 0) { 8691 continue; 8692 } 8693 rdev = ep->me_dev; 8694 ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE, 8695 cr, &lh, li); 8696 if (ret != 0) { 8697 ldi_ident_release(li); 8698 continue; 8699 } 8700 8701 ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL, 8702 cr, &rval); 8703 if (ret) { 8704 (void) ldi_close(lh, FREAD|FWRITE, cr); 8705 ldi_ident_release(li); 8706 continue; 8707 } 8708 (void) ldi_close(lh, FREAD|FWRITE, cr); 8709 8710 /* Close layered handles */ 8711 ldi_ident_release(li); 8712 } 8713 crfree(cr); 8714 8715 sad_freespace(ss); 8716 8717 kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt); 8718 ss->ss_mux_nodes = NULL; 8719 } 8720 8721 /* 8722 * Free the structure; str_stack_shutdown did the other cleanup work. 8723 */ 8724 /* ARGSUSED */ 8725 static void 8726 str_stack_fini(netstackid_t stackid, void *arg) 8727 { 8728 str_stack_t *ss = (str_stack_t *)arg; 8729 8730 kmem_free(ss, sizeof (*ss)); 8731 } 8732