1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/param.h> 35 #include <sys/errno.h> 36 #include <sys/signal.h> 37 #include <sys/stat.h> 38 #include <sys/proc.h> 39 #include <sys/cred.h> 40 #include <sys/user.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stream.h> 44 #include <sys/strsubr.h> 45 #include <sys/stropts.h> 46 #include <sys/tihdr.h> 47 #include <sys/var.h> 48 #include <sys/poll.h> 49 #include <sys/termio.h> 50 #include <sys/ttold.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/cmn_err.h> 54 #include <sys/sad.h> 55 #include <sys/netstack.h> 56 #include <sys/priocntl.h> 57 #include <sys/jioctl.h> 58 #include <sys/procset.h> 59 #include <sys/session.h> 60 #include <sys/kmem.h> 61 #include <sys/filio.h> 62 #include <sys/vtrace.h> 63 #include <sys/debug.h> 64 #include <sys/strredir.h> 65 #include <sys/fs/fifonode.h> 66 #include <sys/fs/snode.h> 67 #include <sys/strlog.h> 68 #include <sys/strsun.h> 69 #include <sys/project.h> 70 #include <sys/kbio.h> 71 #include <sys/msio.h> 72 #include <sys/tty.h> 73 #include <sys/ptyvar.h> 74 #include <sys/vuid_event.h> 75 #include <sys/modctl.h> 76 #include <sys/sunddi.h> 77 #include <sys/sunldi_impl.h> 78 #include <sys/autoconf.h> 79 #include <sys/policy.h> 80 #include <sys/dld.h> 81 #include <sys/zone.h> 82 83 /* 84 * This define helps improve the readability of streams code while 85 * still maintaining a very old streams performance enhancement. The 86 * performance enhancement basically involved having all callers 87 * of straccess() perform the first check that straccess() will do 88 * locally before actually calling straccess(). (There by reducing 89 * the number of unnecessary calls to straccess().) 90 */ 91 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 92 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 93 straccess((x), (y))) 94 95 /* 96 * what is mblk_pull_len? 97 * 98 * If a streams message consists of many short messages, 99 * a performance degradation occurs from copyout overhead. 100 * To decrease the per mblk overhead, messages that are 101 * likely to consist of many small mblks are pulled up into 102 * one continuous chunk of memory. 103 * 104 * To avoid the processing overhead of examining every 105 * mblk, a quick heuristic is used. If the first mblk in 106 * the message is shorter than mblk_pull_len, it is likely 107 * that the rest of the mblk will be short. 108 * 109 * This heuristic was decided upon after performance tests 110 * indicated that anything more complex slowed down the main 111 * code path. 112 */ 113 #define MBLK_PULL_LEN 64 114 uint32_t mblk_pull_len = MBLK_PULL_LEN; 115 116 /* 117 * The sgttyb_handling flag controls the handling of the old BSD 118 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 119 * 120 * 0 - Emit no warnings at all and retain old, broken behavior. 121 * 1 - Emit no warnings and silently handle new semantics. 122 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 123 * (once per system invocation). Handle with new semantics. 124 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 125 * made (so that offenders drop core and are easy to debug). 126 * 127 * The "new semantics" are that TIOCGETP returns B38400 for 128 * sg_[io]speed if the corresponding value is over B38400, and that 129 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 130 * bit rate." 131 */ 132 int sgttyb_handling = 1; 133 static boolean_t sgttyb_complaint; 134 135 /* don't push drcompat module by default on Style-2 streams */ 136 static int push_drcompat = 0; 137 138 /* 139 * id value used to distinguish between different ioctl messages 140 */ 141 static uint32_t ioc_id; 142 143 static void putback(struct stdata *, queue_t *, mblk_t *, int); 144 static void strcleanall(struct vnode *); 145 static int strwsrv(queue_t *); 146 147 /* 148 * qinit and module_info structures for stream head read and write queues 149 */ 150 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 151 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 152 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 153 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 154 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 155 FIFOLOWAT }; 156 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 157 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 158 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 159 160 extern kmutex_t strresources; /* protects global resources */ 161 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 162 163 static boolean_t msghasdata(mblk_t *bp); 164 #define msgnodata(bp) (!msghasdata(bp)) 165 166 /* 167 * Stream head locking notes: 168 * There are four monitors associated with the stream head: 169 * 1. v_stream monitor: in stropen() and strclose() v_lock 170 * is held while the association of vnode and stream 171 * head is established or tested for. 172 * 2. open/close/push/pop monitor: sd_lock is held while each 173 * thread bids for exclusive access to this monitor 174 * for opening or closing a stream. In addition, this 175 * monitor is entered during pushes and pops. This 176 * guarantees that during plumbing operations there 177 * is only one thread trying to change the plumbing. 178 * Any other threads present in the stream are only 179 * using the plumbing. 180 * 3. read/write monitor: in the case of read, a thread holds 181 * sd_lock while trying to get data from the stream 182 * head queue. if there is none to fulfill a read 183 * request, it sets RSLEEP and calls cv_wait_sig() down 184 * in strwaitq() to await the arrival of new data. 185 * when new data arrives in strrput(), sd_lock is acquired 186 * before testing for RSLEEP and calling cv_broadcast(). 187 * the behavior of strwrite(), strwsrv(), and WSLEEP 188 * mirror this. 189 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 190 * thread is doing an ioctl at a time. 191 */ 192 193 static int 194 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 195 int anchor, cred_t *crp, uint_t anchor_zoneid) 196 { 197 int error; 198 fmodsw_impl_t *fp; 199 200 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 201 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 202 return (error); 203 } 204 if (stp->sd_pushcnt >= nstrpush) { 205 return (EINVAL); 206 } 207 208 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 209 stp->sd_flag |= STREOPENFAIL; 210 return (EINVAL); 211 } 212 213 /* 214 * push new module and call its open routine via qattach 215 */ 216 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 217 return (error); 218 219 /* 220 * Check to see if caller wants a STREAMS anchor 221 * put at this place in the stream, and add if so. 222 */ 223 mutex_enter(&stp->sd_lock); 224 if (anchor == stp->sd_pushcnt) { 225 stp->sd_anchor = stp->sd_pushcnt; 226 stp->sd_anchorzone = anchor_zoneid; 227 } 228 mutex_exit(&stp->sd_lock); 229 230 return (0); 231 } 232 233 /* 234 * Open a stream device. 235 */ 236 int 237 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 238 { 239 struct stdata *stp; 240 queue_t *qp; 241 int s; 242 dev_t dummydev, savedev; 243 struct autopush *ap; 244 struct dlautopush dlap; 245 int error = 0; 246 ssize_t rmin, rmax; 247 int cloneopen; 248 queue_t *brq; 249 major_t major; 250 str_stack_t *ss; 251 zoneid_t zoneid; 252 uint_t anchor; 253 254 if (audit_active) 255 audit_stropen(vp, devp, flag, crp); 256 257 /* 258 * If the stream already exists, wait for any open in progress 259 * to complete, then call the open function of each module and 260 * driver in the stream. Otherwise create the stream. 261 */ 262 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 263 retry: 264 mutex_enter(&vp->v_lock); 265 if ((stp = vp->v_stream) != NULL) { 266 267 /* 268 * Waiting for stream to be created to device 269 * due to another open. 270 */ 271 mutex_exit(&vp->v_lock); 272 273 if (STRMATED(stp)) { 274 struct stdata *strmatep = stp->sd_mate; 275 276 STRLOCKMATES(stp); 277 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 278 if (flag & (FNDELAY|FNONBLOCK)) { 279 error = EAGAIN; 280 mutex_exit(&strmatep->sd_lock); 281 goto ckreturn; 282 } 283 mutex_exit(&stp->sd_lock); 284 if (!cv_wait_sig(&strmatep->sd_monitor, 285 &strmatep->sd_lock)) { 286 error = EINTR; 287 mutex_exit(&strmatep->sd_lock); 288 mutex_enter(&stp->sd_lock); 289 goto ckreturn; 290 } 291 mutex_exit(&strmatep->sd_lock); 292 goto retry; 293 } 294 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 295 if (flag & (FNDELAY|FNONBLOCK)) { 296 error = EAGAIN; 297 mutex_exit(&strmatep->sd_lock); 298 goto ckreturn; 299 } 300 mutex_exit(&strmatep->sd_lock); 301 if (!cv_wait_sig(&stp->sd_monitor, 302 &stp->sd_lock)) { 303 error = EINTR; 304 goto ckreturn; 305 } 306 mutex_exit(&stp->sd_lock); 307 goto retry; 308 } 309 310 if (stp->sd_flag & (STRDERR|STWRERR)) { 311 error = EIO; 312 mutex_exit(&strmatep->sd_lock); 313 goto ckreturn; 314 } 315 316 stp->sd_flag |= STWOPEN; 317 STRUNLOCKMATES(stp); 318 } else { 319 mutex_enter(&stp->sd_lock); 320 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 321 if (flag & (FNDELAY|FNONBLOCK)) { 322 error = EAGAIN; 323 goto ckreturn; 324 } 325 if (!cv_wait_sig(&stp->sd_monitor, 326 &stp->sd_lock)) { 327 error = EINTR; 328 goto ckreturn; 329 } 330 mutex_exit(&stp->sd_lock); 331 goto retry; /* could be clone! */ 332 } 333 334 if (stp->sd_flag & (STRDERR|STWRERR)) { 335 error = EIO; 336 goto ckreturn; 337 } 338 339 stp->sd_flag |= STWOPEN; 340 mutex_exit(&stp->sd_lock); 341 } 342 343 /* 344 * Open all modules and devices down stream to notify 345 * that another user is streaming. For modules, set the 346 * last argument to MODOPEN and do not pass any open flags. 347 * Ignore dummydev since this is not the first open. 348 */ 349 claimstr(stp->sd_wrq); 350 qp = stp->sd_wrq; 351 while (_SAMESTR(qp)) { 352 qp = qp->q_next; 353 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 354 break; 355 } 356 releasestr(stp->sd_wrq); 357 mutex_enter(&stp->sd_lock); 358 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 359 stp->sd_rerror = 0; 360 stp->sd_werror = 0; 361 ckreturn: 362 cv_broadcast(&stp->sd_monitor); 363 mutex_exit(&stp->sd_lock); 364 return (error); 365 } 366 367 /* 368 * This vnode isn't streaming. SPECFS already 369 * checked for multiple vnodes pointing to the 370 * same stream, so create a stream to the driver. 371 */ 372 qp = allocq(); 373 stp = shalloc(qp); 374 375 /* 376 * Initialize stream head. shalloc() has given us 377 * exclusive access, and we have the vnode locked; 378 * we can do whatever we want with stp. 379 */ 380 stp->sd_flag = STWOPEN; 381 stp->sd_siglist = NULL; 382 stp->sd_pollist.ph_list = NULL; 383 stp->sd_sigflags = 0; 384 stp->sd_mark = NULL; 385 stp->sd_closetime = STRTIMOUT; 386 stp->sd_sidp = NULL; 387 stp->sd_pgidp = NULL; 388 stp->sd_vnode = vp; 389 stp->sd_rerror = 0; 390 stp->sd_werror = 0; 391 stp->sd_wroff = 0; 392 stp->sd_tail = 0; 393 stp->sd_iocblk = NULL; 394 stp->sd_pushcnt = 0; 395 stp->sd_qn_minpsz = 0; 396 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 397 stp->sd_maxblk = INFPSZ; 398 qp->q_ptr = _WR(qp)->q_ptr = stp; 399 STREAM(qp) = STREAM(_WR(qp)) = stp; 400 vp->v_stream = stp; 401 mutex_exit(&vp->v_lock); 402 if (vp->v_type == VFIFO) { 403 stp->sd_flag |= OLDNDELAY; 404 /* 405 * This means, both for pipes and fifos 406 * strwrite will send SIGPIPE if the other 407 * end is closed. For putmsg it depends 408 * on whether it is a XPG4_2 application 409 * or not 410 */ 411 stp->sd_wput_opt = SW_SIGPIPE; 412 413 /* setq might sleep in kmem_alloc - avoid holding locks. */ 414 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 415 SQ_CI|SQ_CO, B_FALSE); 416 417 set_qend(qp); 418 stp->sd_strtab = fifo_getinfo(); 419 _WR(qp)->q_nfsrv = _WR(qp); 420 qp->q_nfsrv = qp; 421 /* 422 * Wake up others that are waiting for stream to be created. 423 */ 424 mutex_enter(&stp->sd_lock); 425 /* 426 * nothing is be pushed on stream yet, so 427 * optimized stream head packetsizes are just that 428 * of the read queue 429 */ 430 stp->sd_qn_minpsz = qp->q_minpsz; 431 stp->sd_qn_maxpsz = qp->q_maxpsz; 432 stp->sd_flag &= ~STWOPEN; 433 goto fifo_opendone; 434 } 435 /* setq might sleep in kmem_alloc - avoid holding locks. */ 436 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 437 438 set_qend(qp); 439 440 /* 441 * Open driver and create stream to it (via qattach). 442 */ 443 savedev = *devp; 444 cloneopen = (getmajor(*devp) == clone_major); 445 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 446 mutex_enter(&vp->v_lock); 447 vp->v_stream = NULL; 448 mutex_exit(&vp->v_lock); 449 mutex_enter(&stp->sd_lock); 450 cv_broadcast(&stp->sd_monitor); 451 mutex_exit(&stp->sd_lock); 452 freeq(_RD(qp)); 453 shfree(stp); 454 return (error); 455 } 456 /* 457 * Set sd_strtab after open in order to handle clonable drivers 458 */ 459 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 460 461 /* 462 * Historical note: dummydev used to be be prior to the initial 463 * open (via qattach above), which made the value seen 464 * inconsistent between an I_PUSH and an autopush of a module. 465 */ 466 dummydev = *devp; 467 468 /* 469 * For clone open of old style (Q not associated) network driver, 470 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 471 */ 472 brq = _RD(_WR(qp)->q_next); 473 major = getmajor(*devp); 474 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 475 ((brq->q_flag & _QASSOCIATED) == 0)) { 476 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 477 cmn_err(CE_WARN, "cannot push " DRMODNAME 478 " streams module"); 479 } 480 481 if (!NETWORK_DRV(major)) { 482 savedev = *devp; 483 } else { 484 /* 485 * For network devices, process differently based on the 486 * return value from dld_autopush(): 487 * 488 * 0: the passed-in device points to a GLDv3 datalink with 489 * per-link autopush configuration; use that configuration 490 * and ignore any per-driver autopush configuration. 491 * 492 * 1: the passed-in device points to a physical GLDv3 493 * datalink without per-link autopush configuration. The 494 * passed in device was changed to refer to the actual 495 * physical device (if it's not already); we use that new 496 * device to look up any per-driver autopush configuration. 497 * 498 * -1: neither of the above cases applied; use the initial 499 * device to look up any per-driver autopush configuration. 500 */ 501 switch (dld_autopush(&savedev, &dlap)) { 502 case 0: 503 zoneid = crgetzoneid(crp); 504 for (s = 0; s < dlap.dap_npush; s++) { 505 error = push_mod(qp, &dummydev, stp, 506 dlap.dap_aplist[s], dlap.dap_anchor, crp, 507 zoneid); 508 if (error != 0) 509 break; 510 } 511 goto opendone; 512 case 1: 513 break; 514 case -1: 515 savedev = *devp; 516 break; 517 } 518 } 519 /* 520 * Find the autopush configuration based on "savedev". Start with the 521 * global zone. If not found check in the local zone. 522 */ 523 zoneid = GLOBAL_ZONEID; 524 retryap: 525 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 526 netstack_str; 527 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) { 528 netstack_rele(ss->ss_netstack); 529 if (zoneid == GLOBAL_ZONEID) { 530 /* 531 * None found. Also look in the zone's autopush table. 532 */ 533 zoneid = crgetzoneid(crp); 534 if (zoneid != GLOBAL_ZONEID) 535 goto retryap; 536 } 537 goto opendone; 538 } 539 anchor = ap->ap_anchor; 540 zoneid = crgetzoneid(crp); 541 for (s = 0; s < ap->ap_npush; s++) { 542 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 543 anchor, crp, zoneid); 544 if (error != 0) 545 break; 546 } 547 sad_ap_rele(ap, ss); 548 netstack_rele(ss->ss_netstack); 549 550 opendone: 551 552 /* 553 * let specfs know that open failed part way through 554 */ 555 if (error) { 556 mutex_enter(&stp->sd_lock); 557 stp->sd_flag |= STREOPENFAIL; 558 mutex_exit(&stp->sd_lock); 559 } 560 561 /* 562 * Wake up others that are waiting for stream to be created. 563 */ 564 mutex_enter(&stp->sd_lock); 565 stp->sd_flag &= ~STWOPEN; 566 567 /* 568 * As a performance concern we are caching the values of 569 * q_minpsz and q_maxpsz of the module below the stream 570 * head in the stream head. 571 */ 572 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 573 rmin = stp->sd_wrq->q_next->q_minpsz; 574 rmax = stp->sd_wrq->q_next->q_maxpsz; 575 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 576 577 /* do this processing here as a performance concern */ 578 if (strmsgsz != 0) { 579 if (rmax == INFPSZ) 580 rmax = strmsgsz; 581 else 582 rmax = MIN(strmsgsz, rmax); 583 } 584 585 mutex_enter(QLOCK(stp->sd_wrq)); 586 stp->sd_qn_minpsz = rmin; 587 stp->sd_qn_maxpsz = rmax; 588 mutex_exit(QLOCK(stp->sd_wrq)); 589 590 fifo_opendone: 591 cv_broadcast(&stp->sd_monitor); 592 mutex_exit(&stp->sd_lock); 593 return (error); 594 } 595 596 static int strsink(queue_t *, mblk_t *); 597 static struct qinit deadrend = { 598 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 599 }; 600 static struct qinit deadwend = { 601 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 602 }; 603 604 /* 605 * Close a stream. 606 * This is called from closef() on the last close of an open stream. 607 * Strclean() will already have removed the siglist and pollist 608 * information, so all that remains is to remove all multiplexor links 609 * for the stream, pop all the modules (and the driver), and free the 610 * stream structure. 611 */ 612 613 int 614 strclose(struct vnode *vp, int flag, cred_t *crp) 615 { 616 struct stdata *stp; 617 queue_t *qp; 618 int rval; 619 int freestp = 1; 620 queue_t *rmq; 621 622 if (audit_active) 623 audit_strclose(vp, flag, crp); 624 625 TRACE_1(TR_FAC_STREAMS_FR, 626 TR_STRCLOSE, "strclose:%p", vp); 627 ASSERT(vp->v_stream); 628 629 stp = vp->v_stream; 630 ASSERT(!(stp->sd_flag & STPLEX)); 631 qp = stp->sd_wrq; 632 633 /* 634 * Needed so that strpoll will return non-zero for this fd. 635 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 636 */ 637 mutex_enter(&stp->sd_lock); 638 stp->sd_flag |= STRHUP; 639 mutex_exit(&stp->sd_lock); 640 641 /* 642 * If the registered process or process group did not have an 643 * open instance of this stream then strclean would not be 644 * called. Thus at the time of closing all remaining siglist entries 645 * are removed. 646 */ 647 if (stp->sd_siglist != NULL) 648 strcleanall(vp); 649 650 ASSERT(stp->sd_siglist == NULL); 651 ASSERT(stp->sd_sigflags == 0); 652 653 if (STRMATED(stp)) { 654 struct stdata *strmatep = stp->sd_mate; 655 int waited = 1; 656 657 STRLOCKMATES(stp); 658 while (waited) { 659 waited = 0; 660 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 661 mutex_exit(&strmatep->sd_lock); 662 cv_wait(&stp->sd_monitor, &stp->sd_lock); 663 mutex_exit(&stp->sd_lock); 664 STRLOCKMATES(stp); 665 waited = 1; 666 } 667 while (strmatep->sd_flag & 668 (STWOPEN|STRCLOSE|STRPLUMB)) { 669 mutex_exit(&stp->sd_lock); 670 cv_wait(&strmatep->sd_monitor, 671 &strmatep->sd_lock); 672 mutex_exit(&strmatep->sd_lock); 673 STRLOCKMATES(stp); 674 waited = 1; 675 } 676 } 677 stp->sd_flag |= STRCLOSE; 678 STRUNLOCKMATES(stp); 679 } else { 680 mutex_enter(&stp->sd_lock); 681 stp->sd_flag |= STRCLOSE; 682 mutex_exit(&stp->sd_lock); 683 } 684 685 ASSERT(qp->q_first == NULL); /* No more delayed write */ 686 687 /* Check if an I_LINK was ever done on this stream */ 688 if (stp->sd_flag & STRHASLINKS) { 689 netstack_t *ns; 690 str_stack_t *ss; 691 692 ns = netstack_find_by_cred(crp); 693 ASSERT(ns != NULL); 694 ss = ns->netstack_str; 695 ASSERT(ss != NULL); 696 697 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 698 netstack_rele(ss->ss_netstack); 699 } 700 701 while (_SAMESTR(qp)) { 702 /* 703 * Holding sd_lock prevents q_next from changing in 704 * this stream. 705 */ 706 mutex_enter(&stp->sd_lock); 707 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 708 709 /* 710 * sleep until awakened by strwsrv() or timeout 711 */ 712 for (;;) { 713 mutex_enter(QLOCK(qp->q_next)); 714 if (!(qp->q_next->q_mblkcnt)) { 715 mutex_exit(QLOCK(qp->q_next)); 716 break; 717 } 718 stp->sd_flag |= WSLEEP; 719 720 /* ensure strwsrv gets enabled */ 721 qp->q_next->q_flag |= QWANTW; 722 mutex_exit(QLOCK(qp->q_next)); 723 /* get out if we timed out or recv'd a signal */ 724 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 725 stp->sd_closetime, 0) <= 0) { 726 break; 727 } 728 } 729 stp->sd_flag &= ~WSLEEP; 730 } 731 mutex_exit(&stp->sd_lock); 732 733 rmq = qp->q_next; 734 if (rmq->q_flag & QISDRV) { 735 ASSERT(!_SAMESTR(rmq)); 736 wait_sq_svc(_RD(qp)->q_syncq); 737 } 738 739 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 740 } 741 742 /* 743 * Since we call pollwakeup in close() now, the poll list should 744 * be empty in most cases. The only exception is the layered devices 745 * (e.g. the console drivers with redirection modules pushed on top 746 * of it). We have to do this after calling qdetach() because 747 * the redirection module won't have torn down the console 748 * redirection until after qdetach() has been invoked. 749 */ 750 if (stp->sd_pollist.ph_list != NULL) { 751 pollwakeup(&stp->sd_pollist, POLLERR); 752 pollhead_clean(&stp->sd_pollist); 753 } 754 ASSERT(stp->sd_pollist.ph_list == NULL); 755 ASSERT(stp->sd_sidp == NULL); 756 ASSERT(stp->sd_pgidp == NULL); 757 758 /* Prevent qenable from re-enabling the stream head queue */ 759 disable_svc(_RD(qp)); 760 761 /* 762 * Wait until service procedure of each queue is 763 * run, if QINSERVICE is set. 764 */ 765 wait_svc(_RD(qp)); 766 767 /* 768 * Now, flush both queues. 769 */ 770 flushq(_RD(qp), FLUSHALL); 771 flushq(qp, FLUSHALL); 772 773 /* 774 * If the write queue of the stream head is pointing to a 775 * read queue, we have a twisted stream. If the read queue 776 * is alive, convert the stream head queues into a dead end. 777 * If the read queue is dead, free the dead pair. 778 */ 779 if (qp->q_next && !_SAMESTR(qp)) { 780 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 781 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 782 shfree(qp->q_next->q_stream); 783 freeq(qp->q_next); 784 freeq(_RD(qp)); 785 } else if (qp->q_next == _RD(qp)) { /* fifo */ 786 freeq(_RD(qp)); 787 } else { /* pipe */ 788 freestp = 0; 789 /* 790 * The q_info pointers are never accessed when 791 * SQLOCK is held. 792 */ 793 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 794 mutex_enter(SQLOCK(qp->q_syncq)); 795 qp->q_qinfo = &deadwend; 796 _RD(qp)->q_qinfo = &deadrend; 797 mutex_exit(SQLOCK(qp->q_syncq)); 798 } 799 } else { 800 freeq(_RD(qp)); /* free stream head queue pair */ 801 } 802 803 mutex_enter(&vp->v_lock); 804 if (stp->sd_iocblk) { 805 if (stp->sd_iocblk != (mblk_t *)-1) { 806 freemsg(stp->sd_iocblk); 807 } 808 stp->sd_iocblk = NULL; 809 } 810 stp->sd_vnode = NULL; 811 vp->v_stream = NULL; 812 mutex_exit(&vp->v_lock); 813 mutex_enter(&stp->sd_lock); 814 stp->sd_flag &= ~STRCLOSE; 815 cv_broadcast(&stp->sd_monitor); 816 mutex_exit(&stp->sd_lock); 817 818 if (freestp) 819 shfree(stp); 820 return (0); 821 } 822 823 static int 824 strsink(queue_t *q, mblk_t *bp) 825 { 826 struct copyresp *resp; 827 828 switch (bp->b_datap->db_type) { 829 case M_FLUSH: 830 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 831 *bp->b_rptr &= ~FLUSHR; 832 bp->b_flag |= MSGNOLOOP; 833 /* 834 * Protect against the driver passing up 835 * messages after it has done a qprocsoff. 836 */ 837 if (_OTHERQ(q)->q_next == NULL) 838 freemsg(bp); 839 else 840 qreply(q, bp); 841 } else { 842 freemsg(bp); 843 } 844 break; 845 846 case M_COPYIN: 847 case M_COPYOUT: 848 if (bp->b_cont) { 849 freemsg(bp->b_cont); 850 bp->b_cont = NULL; 851 } 852 bp->b_datap->db_type = M_IOCDATA; 853 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 854 resp = (struct copyresp *)bp->b_rptr; 855 resp->cp_rval = (caddr_t)1; /* failure */ 856 /* 857 * Protect against the driver passing up 858 * messages after it has done a qprocsoff. 859 */ 860 if (_OTHERQ(q)->q_next == NULL) 861 freemsg(bp); 862 else 863 qreply(q, bp); 864 break; 865 866 case M_IOCTL: 867 if (bp->b_cont) { 868 freemsg(bp->b_cont); 869 bp->b_cont = NULL; 870 } 871 bp->b_datap->db_type = M_IOCNAK; 872 /* 873 * Protect against the driver passing up 874 * messages after it has done a qprocsoff. 875 */ 876 if (_OTHERQ(q)->q_next == NULL) 877 freemsg(bp); 878 else 879 qreply(q, bp); 880 break; 881 882 default: 883 freemsg(bp); 884 break; 885 } 886 887 return (0); 888 } 889 890 /* 891 * Clean up after a process when it closes a stream. This is called 892 * from closef for all closes, whereas strclose is called only for the 893 * last close on a stream. The siglist is scanned for entries for the 894 * current process, and these are removed. 895 */ 896 void 897 strclean(struct vnode *vp) 898 { 899 strsig_t *ssp, *pssp, *tssp; 900 stdata_t *stp; 901 int update = 0; 902 903 TRACE_1(TR_FAC_STREAMS_FR, 904 TR_STRCLEAN, "strclean:%p", vp); 905 stp = vp->v_stream; 906 pssp = NULL; 907 mutex_enter(&stp->sd_lock); 908 ssp = stp->sd_siglist; 909 while (ssp) { 910 if (ssp->ss_pidp == curproc->p_pidp) { 911 tssp = ssp->ss_next; 912 if (pssp) 913 pssp->ss_next = tssp; 914 else 915 stp->sd_siglist = tssp; 916 mutex_enter(&pidlock); 917 PID_RELE(ssp->ss_pidp); 918 mutex_exit(&pidlock); 919 kmem_free(ssp, sizeof (strsig_t)); 920 update = 1; 921 ssp = tssp; 922 } else { 923 pssp = ssp; 924 ssp = ssp->ss_next; 925 } 926 } 927 if (update) { 928 stp->sd_sigflags = 0; 929 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 930 stp->sd_sigflags |= ssp->ss_events; 931 } 932 mutex_exit(&stp->sd_lock); 933 } 934 935 /* 936 * Used on the last close to remove any remaining items on the siglist. 937 * These could be present on the siglist due to I_ESETSIG calls that 938 * use process groups or processed that do not have an open file descriptor 939 * for this stream (Such entries would not be removed by strclean). 940 */ 941 static void 942 strcleanall(struct vnode *vp) 943 { 944 strsig_t *ssp, *nssp; 945 stdata_t *stp; 946 947 stp = vp->v_stream; 948 mutex_enter(&stp->sd_lock); 949 ssp = stp->sd_siglist; 950 stp->sd_siglist = NULL; 951 while (ssp) { 952 nssp = ssp->ss_next; 953 mutex_enter(&pidlock); 954 PID_RELE(ssp->ss_pidp); 955 mutex_exit(&pidlock); 956 kmem_free(ssp, sizeof (strsig_t)); 957 ssp = nssp; 958 } 959 stp->sd_sigflags = 0; 960 mutex_exit(&stp->sd_lock); 961 } 962 963 /* 964 * Retrieve the next message from the logical stream head read queue 965 * using either rwnext (if sync stream) or getq_noenab. 966 * It is the callers responsibility to call qbackenable after 967 * it is finished with the message. The caller should not call 968 * qbackenable until after any putback calls to avoid spurious backenabling. 969 */ 970 mblk_t * 971 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 972 int *errorp) 973 { 974 mblk_t *bp; 975 int error; 976 977 ASSERT(MUTEX_HELD(&stp->sd_lock)); 978 /* Holding sd_lock prevents the read queue from changing */ 979 980 if (uiop != NULL && stp->sd_struiordq != NULL && 981 q->q_first == NULL && 982 (!first || (stp->sd_wakeq & RSLEEP))) { 983 /* 984 * Stream supports rwnext() for the read side. 985 * If this is the first time we're called by e.g. strread 986 * only do the downcall if there is a deferred wakeup 987 * (registered in sd_wakeq). 988 */ 989 struiod_t uiod; 990 991 if (first) 992 stp->sd_wakeq &= ~RSLEEP; 993 994 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 995 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 996 uiod.d_mp = 0; 997 /* 998 * Mark that a thread is in rwnext on the read side 999 * to prevent strrput from nacking ioctls immediately. 1000 * When the last concurrent rwnext returns 1001 * the ioctls are nack'ed. 1002 */ 1003 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1004 stp->sd_struiodnak++; 1005 /* 1006 * Note: rwnext will drop sd_lock. 1007 */ 1008 error = rwnext(q, &uiod); 1009 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 1010 mutex_enter(&stp->sd_lock); 1011 stp->sd_struiodnak--; 1012 while (stp->sd_struiodnak == 0 && 1013 ((bp = stp->sd_struionak) != NULL)) { 1014 stp->sd_struionak = bp->b_next; 1015 bp->b_next = NULL; 1016 bp->b_datap->db_type = M_IOCNAK; 1017 /* 1018 * Protect against the driver passing up 1019 * messages after it has done a qprocsoff. 1020 */ 1021 if (_OTHERQ(q)->q_next == NULL) 1022 freemsg(bp); 1023 else { 1024 mutex_exit(&stp->sd_lock); 1025 qreply(q, bp); 1026 mutex_enter(&stp->sd_lock); 1027 } 1028 } 1029 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1030 if (error == 0 || error == EWOULDBLOCK) { 1031 if ((bp = uiod.d_mp) != NULL) { 1032 *errorp = 0; 1033 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1034 return (bp); 1035 } 1036 error = 0; 1037 } else if (error == EINVAL) { 1038 /* 1039 * The stream plumbing must have 1040 * changed while we were away, so 1041 * just turn off rwnext()s. 1042 */ 1043 error = 0; 1044 } else if (error == EBUSY) { 1045 /* 1046 * The module might have data in transit using putnext 1047 * Fall back on waiting + getq. 1048 */ 1049 error = 0; 1050 } else { 1051 *errorp = error; 1052 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1053 return (NULL); 1054 } 1055 /* 1056 * Try a getq in case a rwnext() generated mblk 1057 * has bubbled up via strrput(). 1058 */ 1059 } 1060 *errorp = 0; 1061 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1062 return (getq_noenab(q)); 1063 } 1064 1065 /* 1066 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1067 * If the message does not fit in the uio the remainder of it is returned; 1068 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1069 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1070 * the error code, the message is consumed, and NULL is returned. 1071 */ 1072 static mblk_t * 1073 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1074 { 1075 int error; 1076 ptrdiff_t n; 1077 mblk_t *nbp; 1078 1079 ASSERT(bp->b_wptr >= bp->b_rptr); 1080 1081 do { 1082 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1083 ASSERT(n > 0); 1084 1085 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1086 if (error != 0) { 1087 freemsg(bp); 1088 *errorp = error; 1089 return (NULL); 1090 } 1091 } 1092 1093 bp->b_rptr += n; 1094 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1095 nbp = bp; 1096 bp = bp->b_cont; 1097 freeb(nbp); 1098 } 1099 } while (bp != NULL && uiop->uio_resid > 0); 1100 1101 *errorp = 0; 1102 return (bp); 1103 } 1104 1105 /* 1106 * Read a stream according to the mode flags in sd_flag: 1107 * 1108 * (default mode) - Byte stream, msg boundaries are ignored 1109 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1110 * any data remaining in msg 1111 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1112 * any remaining data on head of read queue 1113 * 1114 * Consume readable messages on the front of the queue until 1115 * ttolwp(curthread)->lwp_count 1116 * is satisfied, the readable messages are exhausted, or a message 1117 * boundary is reached in a message mode. If no data was read and 1118 * the stream was not opened with the NDELAY flag, block until data arrives. 1119 * Otherwise return the data read and update the count. 1120 * 1121 * In default mode a 0 length message signifies end-of-file and terminates 1122 * a read in progress. The 0 length message is removed from the queue 1123 * only if it is the only message read (no data is read). 1124 * 1125 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1126 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1127 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1128 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1129 * are unlinked from and M_DATA blocks in the message, the protos are 1130 * thrown away, and the data is read. 1131 */ 1132 /* ARGSUSED */ 1133 int 1134 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1135 { 1136 struct stdata *stp; 1137 mblk_t *bp, *nbp; 1138 queue_t *q; 1139 int error = 0; 1140 uint_t old_sd_flag; 1141 int first; 1142 char rflg; 1143 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1144 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1145 short delim; 1146 unsigned char pri = 0; 1147 char waitflag; 1148 unsigned char type; 1149 1150 TRACE_1(TR_FAC_STREAMS_FR, 1151 TR_STRREAD_ENTER, "strread:%p", vp); 1152 ASSERT(vp->v_stream); 1153 stp = vp->v_stream; 1154 1155 mutex_enter(&stp->sd_lock); 1156 1157 if ((error = i_straccess(stp, JCREAD)) != 0) { 1158 mutex_exit(&stp->sd_lock); 1159 return (error); 1160 } 1161 1162 if (stp->sd_flag & (STRDERR|STPLEX)) { 1163 error = strgeterr(stp, STRDERR|STPLEX, 0); 1164 if (error != 0) { 1165 mutex_exit(&stp->sd_lock); 1166 return (error); 1167 } 1168 } 1169 1170 /* 1171 * Loop terminates when uiop->uio_resid == 0. 1172 */ 1173 rflg = 0; 1174 waitflag = READWAIT; 1175 q = _RD(stp->sd_wrq); 1176 for (;;) { 1177 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1178 old_sd_flag = stp->sd_flag; 1179 mark = 0; 1180 delim = 0; 1181 first = 1; 1182 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1183 int done = 0; 1184 1185 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1186 1187 if (error != 0) 1188 goto oops; 1189 1190 if (stp->sd_flag & (STRHUP|STREOF)) { 1191 goto oops; 1192 } 1193 if (rflg && !(stp->sd_flag & STRDELIM)) { 1194 goto oops; 1195 } 1196 /* 1197 * If a read(fd,buf,0) has been done, there is no 1198 * need to sleep. We always have zero bytes to 1199 * return. 1200 */ 1201 if (uiop->uio_resid == 0) { 1202 goto oops; 1203 } 1204 1205 qbackenable(q, 0); 1206 1207 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1208 "strread calls strwaitq:%p, %p, %p", 1209 vp, uiop, crp); 1210 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1211 uiop->uio_fmode, -1, &done)) != 0 || done) { 1212 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1213 "strread error or done:%p, %p, %p", 1214 vp, uiop, crp); 1215 if ((uiop->uio_fmode & FNDELAY) && 1216 (stp->sd_flag & OLDNDELAY) && 1217 (error == EAGAIN)) 1218 error = 0; 1219 goto oops; 1220 } 1221 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1222 "strread awakes:%p, %p, %p", vp, uiop, crp); 1223 if ((error = i_straccess(stp, JCREAD)) != 0) { 1224 goto oops; 1225 } 1226 first = 0; 1227 } 1228 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1229 ASSERT(bp); 1230 pri = bp->b_band; 1231 /* 1232 * Extract any mark information. If the message is not 1233 * completely consumed this information will be put in the mblk 1234 * that is putback. 1235 * If MSGMARKNEXT is set and the message is completely consumed 1236 * the STRATMARK flag will be set below. Likewise, if 1237 * MSGNOTMARKNEXT is set and the message is 1238 * completely consumed STRNOTATMARK will be set. 1239 * 1240 * For some unknown reason strread only breaks the read at the 1241 * last mark. 1242 */ 1243 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1244 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1245 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1246 if (mark != 0 && bp == stp->sd_mark) { 1247 if (rflg) { 1248 putback(stp, q, bp, pri); 1249 goto oops; 1250 } 1251 mark |= _LASTMARK; 1252 stp->sd_mark = NULL; 1253 } 1254 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1255 delim = 1; 1256 mutex_exit(&stp->sd_lock); 1257 1258 if (STREAM_NEEDSERVICE(stp)) 1259 stream_runservice(stp); 1260 1261 type = bp->b_datap->db_type; 1262 1263 switch (type) { 1264 1265 case M_DATA: 1266 ismdata: 1267 if (msgnodata(bp)) { 1268 if (mark || delim) { 1269 freemsg(bp); 1270 } else if (rflg) { 1271 1272 /* 1273 * If already read data put zero 1274 * length message back on queue else 1275 * free msg and return 0. 1276 */ 1277 bp->b_band = pri; 1278 mutex_enter(&stp->sd_lock); 1279 putback(stp, q, bp, pri); 1280 mutex_exit(&stp->sd_lock); 1281 } else { 1282 freemsg(bp); 1283 } 1284 error = 0; 1285 goto oops1; 1286 } 1287 1288 rflg = 1; 1289 waitflag |= NOINTR; 1290 bp = struiocopyout(bp, uiop, &error); 1291 if (error != 0) 1292 goto oops1; 1293 1294 mutex_enter(&stp->sd_lock); 1295 if (bp) { 1296 /* 1297 * Have remaining data in message. 1298 * Free msg if in discard mode. 1299 */ 1300 if (stp->sd_read_opt & RD_MSGDIS) { 1301 freemsg(bp); 1302 } else { 1303 bp->b_band = pri; 1304 if ((mark & _LASTMARK) && 1305 (stp->sd_mark == NULL)) 1306 stp->sd_mark = bp; 1307 bp->b_flag |= mark & ~_LASTMARK; 1308 if (delim) 1309 bp->b_flag |= MSGDELIM; 1310 if (msgnodata(bp)) 1311 freemsg(bp); 1312 else 1313 putback(stp, q, bp, pri); 1314 } 1315 } else { 1316 /* 1317 * Consumed the complete message. 1318 * Move the MSG*MARKNEXT information 1319 * to the stream head just in case 1320 * the read queue becomes empty. 1321 * 1322 * If the stream head was at the mark 1323 * (STRATMARK) before we dropped sd_lock above 1324 * and some data was consumed then we have 1325 * moved past the mark thus STRATMARK is 1326 * cleared. However, if a message arrived in 1327 * strrput during the copyout above causing 1328 * STRATMARK to be set we can not clear that 1329 * flag. 1330 */ 1331 if (mark & 1332 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1333 if (mark & MSGMARKNEXT) { 1334 stp->sd_flag &= ~STRNOTATMARK; 1335 stp->sd_flag |= STRATMARK; 1336 } else if (mark & MSGNOTMARKNEXT) { 1337 stp->sd_flag &= ~STRATMARK; 1338 stp->sd_flag |= STRNOTATMARK; 1339 } else { 1340 stp->sd_flag &= 1341 ~(STRATMARK|STRNOTATMARK); 1342 } 1343 } else if (rflg && (old_sd_flag & STRATMARK)) { 1344 stp->sd_flag &= ~STRATMARK; 1345 } 1346 } 1347 1348 /* 1349 * Check for signal messages at the front of the read 1350 * queue and generate the signal(s) if appropriate. 1351 * The only signal that can be on queue is M_SIG at 1352 * this point. 1353 */ 1354 while ((((bp = q->q_first)) != NULL) && 1355 (bp->b_datap->db_type == M_SIG)) { 1356 bp = getq_noenab(q); 1357 /* 1358 * sd_lock is held so the content of the 1359 * read queue can not change. 1360 */ 1361 ASSERT(bp != NULL && 1362 bp->b_datap->db_type == M_SIG); 1363 strsignal_nolock(stp, *bp->b_rptr, 1364 (int32_t)bp->b_band); 1365 mutex_exit(&stp->sd_lock); 1366 freemsg(bp); 1367 if (STREAM_NEEDSERVICE(stp)) 1368 stream_runservice(stp); 1369 mutex_enter(&stp->sd_lock); 1370 } 1371 1372 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1373 delim || 1374 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1375 goto oops; 1376 } 1377 continue; 1378 1379 case M_SIG: 1380 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1381 freemsg(bp); 1382 mutex_enter(&stp->sd_lock); 1383 continue; 1384 1385 case M_PROTO: 1386 case M_PCPROTO: 1387 /* 1388 * Only data messages are readable. 1389 * Any others generate an error, unless 1390 * RD_PROTDIS or RD_PROTDAT is set. 1391 */ 1392 if (stp->sd_read_opt & RD_PROTDAT) { 1393 for (nbp = bp; nbp; nbp = nbp->b_next) { 1394 if ((nbp->b_datap->db_type == 1395 M_PROTO) || 1396 (nbp->b_datap->db_type == 1397 M_PCPROTO)) { 1398 nbp->b_datap->db_type = M_DATA; 1399 } else { 1400 break; 1401 } 1402 } 1403 /* 1404 * clear stream head hi pri flag based on 1405 * first message 1406 */ 1407 if (type == M_PCPROTO) { 1408 mutex_enter(&stp->sd_lock); 1409 stp->sd_flag &= ~STRPRI; 1410 mutex_exit(&stp->sd_lock); 1411 } 1412 goto ismdata; 1413 } else if (stp->sd_read_opt & RD_PROTDIS) { 1414 /* 1415 * discard non-data messages 1416 */ 1417 while (bp && 1418 ((bp->b_datap->db_type == M_PROTO) || 1419 (bp->b_datap->db_type == M_PCPROTO))) { 1420 nbp = unlinkb(bp); 1421 freeb(bp); 1422 bp = nbp; 1423 } 1424 /* 1425 * clear stream head hi pri flag based on 1426 * first message 1427 */ 1428 if (type == M_PCPROTO) { 1429 mutex_enter(&stp->sd_lock); 1430 stp->sd_flag &= ~STRPRI; 1431 mutex_exit(&stp->sd_lock); 1432 } 1433 if (bp) { 1434 bp->b_band = pri; 1435 goto ismdata; 1436 } else { 1437 break; 1438 } 1439 } 1440 /* FALLTHRU */ 1441 case M_PASSFP: 1442 if ((bp->b_datap->db_type == M_PASSFP) && 1443 (stp->sd_read_opt & RD_PROTDIS)) { 1444 freemsg(bp); 1445 break; 1446 } 1447 mutex_enter(&stp->sd_lock); 1448 putback(stp, q, bp, pri); 1449 mutex_exit(&stp->sd_lock); 1450 if (rflg == 0) 1451 error = EBADMSG; 1452 goto oops1; 1453 1454 default: 1455 /* 1456 * Garbage on stream head read queue. 1457 */ 1458 cmn_err(CE_WARN, "bad %x found at stream head\n", 1459 bp->b_datap->db_type); 1460 freemsg(bp); 1461 goto oops1; 1462 } 1463 mutex_enter(&stp->sd_lock); 1464 } 1465 oops: 1466 mutex_exit(&stp->sd_lock); 1467 oops1: 1468 qbackenable(q, pri); 1469 return (error); 1470 #undef _LASTMARK 1471 } 1472 1473 /* 1474 * Default processing of M_PROTO/M_PCPROTO messages. 1475 * Determine which wakeups and signals are needed. 1476 * This can be replaced by a user-specified procedure for kernel users 1477 * of STREAMS. 1478 */ 1479 /* ARGSUSED */ 1480 mblk_t * 1481 strrput_proto(vnode_t *vp, mblk_t *mp, 1482 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1483 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1484 { 1485 *wakeups = RSLEEP; 1486 *allmsgsigs = 0; 1487 1488 switch (mp->b_datap->db_type) { 1489 case M_PROTO: 1490 if (mp->b_band == 0) { 1491 *firstmsgsigs = S_INPUT | S_RDNORM; 1492 *pollwakeups = POLLIN | POLLRDNORM; 1493 } else { 1494 *firstmsgsigs = S_INPUT | S_RDBAND; 1495 *pollwakeups = POLLIN | POLLRDBAND; 1496 } 1497 break; 1498 case M_PCPROTO: 1499 *firstmsgsigs = S_HIPRI; 1500 *pollwakeups = POLLPRI; 1501 break; 1502 } 1503 return (mp); 1504 } 1505 1506 /* 1507 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1508 * M_PASSFP messages. 1509 * Determine which wakeups and signals are needed. 1510 * This can be replaced by a user-specified procedure for kernel users 1511 * of STREAMS. 1512 */ 1513 /* ARGSUSED */ 1514 mblk_t * 1515 strrput_misc(vnode_t *vp, mblk_t *mp, 1516 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1517 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1518 { 1519 *wakeups = 0; 1520 *firstmsgsigs = 0; 1521 *allmsgsigs = 0; 1522 *pollwakeups = 0; 1523 return (mp); 1524 } 1525 1526 /* 1527 * Stream read put procedure. Called from downstream driver/module 1528 * with messages for the stream head. Data, protocol, and in-stream 1529 * signal messages are placed on the queue, others are handled directly. 1530 */ 1531 int 1532 strrput(queue_t *q, mblk_t *bp) 1533 { 1534 struct stdata *stp; 1535 ulong_t rput_opt; 1536 strwakeup_t wakeups; 1537 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1538 strsigset_t allmsgsigs; /* Signals for all messages */ 1539 strsigset_t signals; /* Signals events to generate */ 1540 strpollset_t pollwakeups; 1541 mblk_t *nextbp; 1542 uchar_t band = 0; 1543 int hipri_sig; 1544 1545 stp = (struct stdata *)q->q_ptr; 1546 /* 1547 * Use rput_opt for optimized access to the SR_ flags except 1548 * SR_POLLIN. That flag has to be checked under sd_lock since it 1549 * is modified by strpoll(). 1550 */ 1551 rput_opt = stp->sd_rput_opt; 1552 1553 ASSERT(qclaimed(q)); 1554 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1555 "strrput called with message type:q %p bp %p", q, bp); 1556 1557 /* 1558 * Perform initial processing and pass to the parameterized functions. 1559 */ 1560 ASSERT(bp->b_next == NULL); 1561 1562 switch (bp->b_datap->db_type) { 1563 case M_DATA: 1564 /* 1565 * sockfs is the only consumer of STREOF and when it is set, 1566 * it implies that the receiver is not interested in receiving 1567 * any more data, hence the mblk is freed to prevent unnecessary 1568 * message queueing at the stream head. 1569 */ 1570 if (stp->sd_flag == STREOF) { 1571 freemsg(bp); 1572 return (0); 1573 } 1574 if ((rput_opt & SR_IGN_ZEROLEN) && 1575 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1576 /* 1577 * Ignore zero-length M_DATA messages. These might be 1578 * generated by some transports. 1579 * The zero-length M_DATA messages, even if they 1580 * are ignored, should effect the atmark tracking and 1581 * should wake up a thread sleeping in strwaitmark. 1582 */ 1583 mutex_enter(&stp->sd_lock); 1584 if (bp->b_flag & MSGMARKNEXT) { 1585 /* 1586 * Record the position of the mark either 1587 * in q_last or in STRATMARK. 1588 */ 1589 if (q->q_last != NULL) { 1590 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1591 q->q_last->b_flag |= MSGMARKNEXT; 1592 } else { 1593 stp->sd_flag &= ~STRNOTATMARK; 1594 stp->sd_flag |= STRATMARK; 1595 } 1596 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1597 /* 1598 * Record that this is not the position of 1599 * the mark either in q_last or in 1600 * STRNOTATMARK. 1601 */ 1602 if (q->q_last != NULL) { 1603 q->q_last->b_flag &= ~MSGMARKNEXT; 1604 q->q_last->b_flag |= MSGNOTMARKNEXT; 1605 } else { 1606 stp->sd_flag &= ~STRATMARK; 1607 stp->sd_flag |= STRNOTATMARK; 1608 } 1609 } 1610 if (stp->sd_flag & RSLEEP) { 1611 stp->sd_flag &= ~RSLEEP; 1612 cv_broadcast(&q->q_wait); 1613 } 1614 mutex_exit(&stp->sd_lock); 1615 freemsg(bp); 1616 return (0); 1617 } 1618 wakeups = RSLEEP; 1619 if (bp->b_band == 0) { 1620 firstmsgsigs = S_INPUT | S_RDNORM; 1621 pollwakeups = POLLIN | POLLRDNORM; 1622 } else { 1623 firstmsgsigs = S_INPUT | S_RDBAND; 1624 pollwakeups = POLLIN | POLLRDBAND; 1625 } 1626 if (rput_opt & SR_SIGALLDATA) 1627 allmsgsigs = firstmsgsigs; 1628 else 1629 allmsgsigs = 0; 1630 1631 mutex_enter(&stp->sd_lock); 1632 if ((rput_opt & SR_CONSOL_DATA) && 1633 (q->q_last != NULL) && 1634 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1635 /* 1636 * Consolidate an M_DATA message onto an M_DATA, 1637 * M_PROTO, or M_PCPROTO by merging it with q_last. 1638 * The consolidation does not take place if 1639 * the old message is marked with either of the 1640 * marks or the delim flag or if the new 1641 * message is marked with MSGMARK. The MSGMARK 1642 * check is needed to handle the odd semantics of 1643 * MSGMARK where essentially the whole message 1644 * is to be treated as marked. 1645 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1646 * new message to the front of the b_cont chain. 1647 */ 1648 mblk_t *lbp = q->q_last; 1649 unsigned char db_type = lbp->b_datap->db_type; 1650 1651 if ((db_type == M_DATA || db_type == M_PROTO || 1652 db_type == M_PCPROTO) && 1653 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1654 rmvq_noenab(q, lbp); 1655 /* 1656 * The first message in the b_cont list 1657 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1658 * We need to handle the case where we 1659 * are appending: 1660 * 1661 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1662 * 2) a MSGMARKNEXT to a plain message. 1663 * 3) a MSGNOTMARKNEXT to a plain message 1664 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1665 * message. 1666 * 1667 * Thus we never append a MSGMARKNEXT or 1668 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1669 */ 1670 if (bp->b_flag & MSGMARKNEXT) { 1671 lbp->b_flag |= MSGMARKNEXT; 1672 lbp->b_flag &= ~MSGNOTMARKNEXT; 1673 bp->b_flag &= ~MSGMARKNEXT; 1674 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1675 lbp->b_flag |= MSGNOTMARKNEXT; 1676 bp->b_flag &= ~MSGNOTMARKNEXT; 1677 } 1678 1679 linkb(lbp, bp); 1680 bp = lbp; 1681 /* 1682 * The new message logically isn't the first 1683 * even though the q_first check below thinks 1684 * it is. Clear the firstmsgsigs to make it 1685 * not appear to be first. 1686 */ 1687 firstmsgsigs = 0; 1688 } 1689 } 1690 break; 1691 1692 case M_PASSFP: 1693 wakeups = RSLEEP; 1694 allmsgsigs = 0; 1695 if (bp->b_band == 0) { 1696 firstmsgsigs = S_INPUT | S_RDNORM; 1697 pollwakeups = POLLIN | POLLRDNORM; 1698 } else { 1699 firstmsgsigs = S_INPUT | S_RDBAND; 1700 pollwakeups = POLLIN | POLLRDBAND; 1701 } 1702 mutex_enter(&stp->sd_lock); 1703 break; 1704 1705 case M_PROTO: 1706 case M_PCPROTO: 1707 ASSERT(stp->sd_rprotofunc != NULL); 1708 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1709 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1710 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1711 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1712 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1713 POLLWRBAND) 1714 1715 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1716 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1717 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1718 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1719 1720 mutex_enter(&stp->sd_lock); 1721 break; 1722 1723 default: 1724 ASSERT(stp->sd_rmiscfunc != NULL); 1725 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1726 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1727 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1728 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1729 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1730 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1731 #undef ALLSIG 1732 #undef ALLPOLL 1733 mutex_enter(&stp->sd_lock); 1734 break; 1735 } 1736 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1737 1738 /* By default generate superset of signals */ 1739 signals = (firstmsgsigs | allmsgsigs); 1740 1741 /* 1742 * The proto and misc functions can return multiple messages 1743 * as a b_next chain. Such messages are processed separately. 1744 */ 1745 one_more: 1746 hipri_sig = 0; 1747 if (bp == NULL) { 1748 nextbp = NULL; 1749 } else { 1750 nextbp = bp->b_next; 1751 bp->b_next = NULL; 1752 1753 switch (bp->b_datap->db_type) { 1754 case M_PCPROTO: 1755 /* 1756 * Only one priority protocol message is allowed at the 1757 * stream head at a time. 1758 */ 1759 if (stp->sd_flag & STRPRI) { 1760 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1761 "M_PCPROTO already at head"); 1762 freemsg(bp); 1763 mutex_exit(&stp->sd_lock); 1764 goto done; 1765 } 1766 stp->sd_flag |= STRPRI; 1767 hipri_sig = 1; 1768 /* FALLTHRU */ 1769 case M_DATA: 1770 case M_PROTO: 1771 case M_PASSFP: 1772 band = bp->b_band; 1773 /* 1774 * Marking doesn't work well when messages 1775 * are marked in more than one band. We only 1776 * remember the last message received, even if 1777 * it is placed on the queue ahead of other 1778 * marked messages. 1779 */ 1780 if (bp->b_flag & MSGMARK) 1781 stp->sd_mark = bp; 1782 (void) putq(q, bp); 1783 1784 /* 1785 * If message is a PCPROTO message, always use 1786 * firstmsgsigs to determine if a signal should be 1787 * sent as strrput is the only place to send 1788 * signals for PCPROTO. Other messages are based on 1789 * the STRGETINPROG flag. The flag determines if 1790 * strrput or (k)strgetmsg will be responsible for 1791 * sending the signals, in the firstmsgsigs case. 1792 */ 1793 if ((hipri_sig == 1) || 1794 (((stp->sd_flag & STRGETINPROG) == 0) && 1795 (q->q_first == bp))) 1796 signals = (firstmsgsigs | allmsgsigs); 1797 else 1798 signals = allmsgsigs; 1799 break; 1800 1801 default: 1802 mutex_exit(&stp->sd_lock); 1803 (void) strrput_nondata(q, bp); 1804 mutex_enter(&stp->sd_lock); 1805 break; 1806 } 1807 } 1808 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1809 /* 1810 * Wake sleeping read/getmsg and cancel deferred wakeup 1811 */ 1812 if (wakeups & RSLEEP) 1813 stp->sd_wakeq &= ~RSLEEP; 1814 1815 wakeups &= stp->sd_flag; 1816 if (wakeups & RSLEEP) { 1817 stp->sd_flag &= ~RSLEEP; 1818 cv_broadcast(&q->q_wait); 1819 } 1820 if (wakeups & WSLEEP) { 1821 stp->sd_flag &= ~WSLEEP; 1822 cv_broadcast(&_WR(q)->q_wait); 1823 } 1824 1825 if (pollwakeups != 0) { 1826 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1827 /* 1828 * Can't use rput_opt since it was not 1829 * read when sd_lock was held and SR_POLLIN is changed 1830 * by strpoll() under sd_lock. 1831 */ 1832 if (!(stp->sd_rput_opt & SR_POLLIN)) 1833 goto no_pollwake; 1834 stp->sd_rput_opt &= ~SR_POLLIN; 1835 } 1836 mutex_exit(&stp->sd_lock); 1837 pollwakeup(&stp->sd_pollist, pollwakeups); 1838 mutex_enter(&stp->sd_lock); 1839 } 1840 no_pollwake: 1841 1842 /* 1843 * strsendsig can handle multiple signals with a 1844 * single call. 1845 */ 1846 if (stp->sd_sigflags & signals) 1847 strsendsig(stp->sd_siglist, signals, band, 0); 1848 mutex_exit(&stp->sd_lock); 1849 1850 1851 done: 1852 if (nextbp == NULL) 1853 return (0); 1854 1855 /* 1856 * Any signals were handled the first time. 1857 * Wakeups and pollwakeups are redone to avoid any race 1858 * conditions - all the messages are not queued until the 1859 * last message has been processed by strrput. 1860 */ 1861 bp = nextbp; 1862 signals = firstmsgsigs = allmsgsigs = 0; 1863 mutex_enter(&stp->sd_lock); 1864 goto one_more; 1865 } 1866 1867 static void 1868 log_dupioc(queue_t *rq, mblk_t *bp) 1869 { 1870 queue_t *wq, *qp; 1871 char *modnames, *mnp, *dname; 1872 size_t maxmodstr; 1873 boolean_t islast; 1874 1875 /* 1876 * Allocate a buffer large enough to hold the names of nstrpush modules 1877 * and one driver, with spaces between and NUL terminator. If we can't 1878 * get memory, then we'll just log the driver name. 1879 */ 1880 maxmodstr = nstrpush * (FMNAMESZ + 1); 1881 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1882 1883 /* march down write side to print log message down to the driver */ 1884 wq = WR(rq); 1885 1886 /* make sure q_next doesn't shift around while we're grabbing data */ 1887 claimstr(wq); 1888 qp = wq->q_next; 1889 do { 1890 if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL) 1891 dname = "?"; 1892 islast = !SAMESTR(qp) || qp->q_next == NULL; 1893 if (modnames == NULL) { 1894 /* 1895 * If we don't have memory, then get the driver name in 1896 * the log where we can see it. Note that memory 1897 * pressure is a possible cause of these sorts of bugs. 1898 */ 1899 if (islast) { 1900 modnames = dname; 1901 maxmodstr = 0; 1902 } 1903 } else { 1904 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1905 if (!islast) 1906 *mnp++ = ' '; 1907 } 1908 qp = qp->q_next; 1909 } while (!islast); 1910 releasestr(wq); 1911 /* Cannot happen unless stream head is corrupt. */ 1912 ASSERT(modnames != NULL); 1913 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1914 SL_CONSOLE|SL_TRACE|SL_ERROR, 1915 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1916 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1917 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1918 if (maxmodstr != 0) 1919 kmem_free(modnames, maxmodstr); 1920 } 1921 1922 int 1923 strrput_nondata(queue_t *q, mblk_t *bp) 1924 { 1925 struct stdata *stp; 1926 struct iocblk *iocbp; 1927 struct stroptions *sop; 1928 struct copyreq *reqp; 1929 struct copyresp *resp; 1930 unsigned char bpri; 1931 unsigned char flushed_already = 0; 1932 1933 stp = (struct stdata *)q->q_ptr; 1934 1935 ASSERT(!(stp->sd_flag & STPLEX)); 1936 ASSERT(qclaimed(q)); 1937 1938 switch (bp->b_datap->db_type) { 1939 case M_ERROR: 1940 /* 1941 * An error has occurred downstream, the errno is in the first 1942 * bytes of the message. 1943 */ 1944 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 1945 unsigned char rw = 0; 1946 1947 mutex_enter(&stp->sd_lock); 1948 if (*bp->b_rptr != NOERROR) { /* read error */ 1949 if (*bp->b_rptr != 0) { 1950 if (stp->sd_flag & STRDERR) 1951 flushed_already |= FLUSHR; 1952 stp->sd_flag |= STRDERR; 1953 rw |= FLUSHR; 1954 } else { 1955 stp->sd_flag &= ~STRDERR; 1956 } 1957 stp->sd_rerror = *bp->b_rptr; 1958 } 1959 bp->b_rptr++; 1960 if (*bp->b_rptr != NOERROR) { /* write error */ 1961 if (*bp->b_rptr != 0) { 1962 if (stp->sd_flag & STWRERR) 1963 flushed_already |= FLUSHW; 1964 stp->sd_flag |= STWRERR; 1965 rw |= FLUSHW; 1966 } else { 1967 stp->sd_flag &= ~STWRERR; 1968 } 1969 stp->sd_werror = *bp->b_rptr; 1970 } 1971 if (rw) { 1972 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 1973 "strrput cv_broadcast:q %p, bp %p", 1974 q, bp); 1975 cv_broadcast(&q->q_wait); /* readers */ 1976 cv_broadcast(&_WR(q)->q_wait); /* writers */ 1977 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1978 1979 mutex_exit(&stp->sd_lock); 1980 pollwakeup(&stp->sd_pollist, POLLERR); 1981 mutex_enter(&stp->sd_lock); 1982 1983 if (stp->sd_sigflags & S_ERROR) 1984 strsendsig(stp->sd_siglist, S_ERROR, 0, 1985 ((rw & FLUSHR) ? stp->sd_rerror : 1986 stp->sd_werror)); 1987 mutex_exit(&stp->sd_lock); 1988 /* 1989 * Send the M_FLUSH only 1990 * for the first M_ERROR 1991 * message on the stream 1992 */ 1993 if (flushed_already == rw) { 1994 freemsg(bp); 1995 return (0); 1996 } 1997 1998 bp->b_datap->db_type = M_FLUSH; 1999 *bp->b_rptr = rw; 2000 bp->b_wptr = bp->b_rptr + 1; 2001 /* 2002 * Protect against the driver 2003 * passing up messages after 2004 * it has done a qprocsoff 2005 */ 2006 if (_OTHERQ(q)->q_next == NULL) 2007 freemsg(bp); 2008 else 2009 qreply(q, bp); 2010 return (0); 2011 } else 2012 mutex_exit(&stp->sd_lock); 2013 } else if (*bp->b_rptr != 0) { /* Old flavor */ 2014 if (stp->sd_flag & (STRDERR|STWRERR)) 2015 flushed_already = FLUSHRW; 2016 mutex_enter(&stp->sd_lock); 2017 stp->sd_flag |= (STRDERR|STWRERR); 2018 stp->sd_rerror = *bp->b_rptr; 2019 stp->sd_werror = *bp->b_rptr; 2020 TRACE_2(TR_FAC_STREAMS_FR, 2021 TR_STRRPUT_WAKE2, 2022 "strrput wakeup #2:q %p, bp %p", q, bp); 2023 cv_broadcast(&q->q_wait); /* the readers */ 2024 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2025 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2026 2027 mutex_exit(&stp->sd_lock); 2028 pollwakeup(&stp->sd_pollist, POLLERR); 2029 mutex_enter(&stp->sd_lock); 2030 2031 if (stp->sd_sigflags & S_ERROR) 2032 strsendsig(stp->sd_siglist, S_ERROR, 0, 2033 (stp->sd_werror ? stp->sd_werror : 2034 stp->sd_rerror)); 2035 mutex_exit(&stp->sd_lock); 2036 2037 /* 2038 * Send the M_FLUSH only 2039 * for the first M_ERROR 2040 * message on the stream 2041 */ 2042 if (flushed_already != FLUSHRW) { 2043 bp->b_datap->db_type = M_FLUSH; 2044 *bp->b_rptr = FLUSHRW; 2045 /* 2046 * Protect against the driver passing up 2047 * messages after it has done a 2048 * qprocsoff. 2049 */ 2050 if (_OTHERQ(q)->q_next == NULL) 2051 freemsg(bp); 2052 else 2053 qreply(q, bp); 2054 return (0); 2055 } 2056 } 2057 freemsg(bp); 2058 return (0); 2059 2060 case M_HANGUP: 2061 2062 freemsg(bp); 2063 mutex_enter(&stp->sd_lock); 2064 stp->sd_werror = ENXIO; 2065 stp->sd_flag |= STRHUP; 2066 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2067 2068 /* 2069 * send signal if controlling tty 2070 */ 2071 2072 if (stp->sd_sidp) { 2073 prsignal(stp->sd_sidp, SIGHUP); 2074 if (stp->sd_sidp != stp->sd_pgidp) 2075 pgsignal(stp->sd_pgidp, SIGTSTP); 2076 } 2077 2078 /* 2079 * wake up read, write, and exception pollers and 2080 * reset wakeup mechanism. 2081 */ 2082 cv_broadcast(&q->q_wait); /* the readers */ 2083 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2084 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2085 strhup(stp); 2086 mutex_exit(&stp->sd_lock); 2087 return (0); 2088 2089 case M_UNHANGUP: 2090 freemsg(bp); 2091 mutex_enter(&stp->sd_lock); 2092 stp->sd_werror = 0; 2093 stp->sd_flag &= ~STRHUP; 2094 mutex_exit(&stp->sd_lock); 2095 return (0); 2096 2097 case M_SIG: 2098 /* 2099 * Someone downstream wants to post a signal. The 2100 * signal to post is contained in the first byte of the 2101 * message. If the message would go on the front of 2102 * the queue, send a signal to the process group 2103 * (if not SIGPOLL) or to the siglist processes 2104 * (SIGPOLL). If something is already on the queue, 2105 * OR if we are delivering a delayed suspend (*sigh* 2106 * another "tty" hack) and there's no one sleeping already, 2107 * just enqueue the message. 2108 */ 2109 mutex_enter(&stp->sd_lock); 2110 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2111 !(stp->sd_flag & RSLEEP))) { 2112 (void) putq(q, bp); 2113 mutex_exit(&stp->sd_lock); 2114 return (0); 2115 } 2116 mutex_exit(&stp->sd_lock); 2117 /* FALLTHRU */ 2118 2119 case M_PCSIG: 2120 /* 2121 * Don't enqueue, just post the signal. 2122 */ 2123 strsignal(stp, *bp->b_rptr, 0L); 2124 freemsg(bp); 2125 return (0); 2126 2127 case M_FLUSH: 2128 /* 2129 * Flush queues. The indication of which queues to flush 2130 * is in the first byte of the message. If the read queue 2131 * is specified, then flush it. If FLUSHBAND is set, just 2132 * flush the band specified by the second byte of the message. 2133 * 2134 * If a module has issued a M_SETOPT to not flush hi 2135 * priority messages off of the stream head, then pass this 2136 * flag into the flushq code to preserve such messages. 2137 */ 2138 2139 if (*bp->b_rptr & FLUSHR) { 2140 mutex_enter(&stp->sd_lock); 2141 if (*bp->b_rptr & FLUSHBAND) { 2142 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2143 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2144 } else 2145 flushq_common(q, FLUSHALL, 2146 stp->sd_read_opt & RFLUSHPCPROT); 2147 if ((q->q_first == NULL) || 2148 (q->q_first->b_datap->db_type < QPCTL)) 2149 stp->sd_flag &= ~STRPRI; 2150 else { 2151 ASSERT(stp->sd_flag & STRPRI); 2152 } 2153 mutex_exit(&stp->sd_lock); 2154 } 2155 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2156 *bp->b_rptr &= ~FLUSHR; 2157 bp->b_flag |= MSGNOLOOP; 2158 /* 2159 * Protect against the driver passing up 2160 * messages after it has done a qprocsoff. 2161 */ 2162 if (_OTHERQ(q)->q_next == NULL) 2163 freemsg(bp); 2164 else 2165 qreply(q, bp); 2166 return (0); 2167 } 2168 freemsg(bp); 2169 return (0); 2170 2171 case M_IOCACK: 2172 case M_IOCNAK: 2173 iocbp = (struct iocblk *)bp->b_rptr; 2174 /* 2175 * If not waiting for ACK or NAK then just free msg. 2176 * If incorrect id sequence number then just free msg. 2177 * If already have ACK or NAK for user then this is a 2178 * duplicate, display a warning and free the msg. 2179 */ 2180 mutex_enter(&stp->sd_lock); 2181 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2182 (stp->sd_iocid != iocbp->ioc_id)) { 2183 /* 2184 * If the ACK/NAK is a dup, display a message 2185 * Dup is when sd_iocid == ioc_id, and 2186 * sd_iocblk == <valid ptr> or -1 (the former 2187 * is when an ioctl has been put on the stream 2188 * head, but has not yet been consumed, the 2189 * later is when it has been consumed). 2190 */ 2191 if ((stp->sd_iocid == iocbp->ioc_id) && 2192 (stp->sd_iocblk != NULL)) { 2193 log_dupioc(q, bp); 2194 } 2195 freemsg(bp); 2196 mutex_exit(&stp->sd_lock); 2197 return (0); 2198 } 2199 2200 /* 2201 * Assign ACK or NAK to user and wake up. 2202 */ 2203 stp->sd_iocblk = bp; 2204 cv_broadcast(&stp->sd_monitor); 2205 mutex_exit(&stp->sd_lock); 2206 return (0); 2207 2208 case M_COPYIN: 2209 case M_COPYOUT: 2210 reqp = (struct copyreq *)bp->b_rptr; 2211 2212 /* 2213 * If not waiting for ACK or NAK then just fail request. 2214 * If already have ACK, NAK, or copy request, then just 2215 * fail request. 2216 * If incorrect id sequence number then just fail request. 2217 */ 2218 mutex_enter(&stp->sd_lock); 2219 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2220 (stp->sd_iocid != reqp->cq_id)) { 2221 if (bp->b_cont) { 2222 freemsg(bp->b_cont); 2223 bp->b_cont = NULL; 2224 } 2225 bp->b_datap->db_type = M_IOCDATA; 2226 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2227 resp = (struct copyresp *)bp->b_rptr; 2228 resp->cp_rval = (caddr_t)1; /* failure */ 2229 mutex_exit(&stp->sd_lock); 2230 putnext(stp->sd_wrq, bp); 2231 return (0); 2232 } 2233 2234 /* 2235 * Assign copy request to user and wake up. 2236 */ 2237 stp->sd_iocblk = bp; 2238 cv_broadcast(&stp->sd_monitor); 2239 mutex_exit(&stp->sd_lock); 2240 return (0); 2241 2242 case M_SETOPTS: 2243 /* 2244 * Set stream head options (read option, write offset, 2245 * min/max packet size, and/or high/low water marks for 2246 * the read side only). 2247 */ 2248 2249 bpri = 0; 2250 sop = (struct stroptions *)bp->b_rptr; 2251 mutex_enter(&stp->sd_lock); 2252 if (sop->so_flags & SO_READOPT) { 2253 switch (sop->so_readopt & RMODEMASK) { 2254 case RNORM: 2255 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2256 break; 2257 2258 case RMSGD: 2259 stp->sd_read_opt = 2260 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2261 RD_MSGDIS); 2262 break; 2263 2264 case RMSGN: 2265 stp->sd_read_opt = 2266 ((stp->sd_read_opt & ~RD_MSGDIS) | 2267 RD_MSGNODIS); 2268 break; 2269 } 2270 switch (sop->so_readopt & RPROTMASK) { 2271 case RPROTNORM: 2272 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2273 break; 2274 2275 case RPROTDAT: 2276 stp->sd_read_opt = 2277 ((stp->sd_read_opt & ~RD_PROTDIS) | 2278 RD_PROTDAT); 2279 break; 2280 2281 case RPROTDIS: 2282 stp->sd_read_opt = 2283 ((stp->sd_read_opt & ~RD_PROTDAT) | 2284 RD_PROTDIS); 2285 break; 2286 } 2287 switch (sop->so_readopt & RFLUSHMASK) { 2288 case RFLUSHPCPROT: 2289 /* 2290 * This sets the stream head to NOT flush 2291 * M_PCPROTO messages. 2292 */ 2293 stp->sd_read_opt |= RFLUSHPCPROT; 2294 break; 2295 } 2296 } 2297 if (sop->so_flags & SO_ERROPT) { 2298 switch (sop->so_erropt & RERRMASK) { 2299 case RERRNORM: 2300 stp->sd_flag &= ~STRDERRNONPERSIST; 2301 break; 2302 case RERRNONPERSIST: 2303 stp->sd_flag |= STRDERRNONPERSIST; 2304 break; 2305 } 2306 switch (sop->so_erropt & WERRMASK) { 2307 case WERRNORM: 2308 stp->sd_flag &= ~STWRERRNONPERSIST; 2309 break; 2310 case WERRNONPERSIST: 2311 stp->sd_flag |= STWRERRNONPERSIST; 2312 break; 2313 } 2314 } 2315 if (sop->so_flags & SO_COPYOPT) { 2316 if (sop->so_copyopt & ZCVMSAFE) { 2317 stp->sd_copyflag |= STZCVMSAFE; 2318 stp->sd_copyflag &= ~STZCVMUNSAFE; 2319 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2320 stp->sd_copyflag |= STZCVMUNSAFE; 2321 stp->sd_copyflag &= ~STZCVMSAFE; 2322 } 2323 2324 if (sop->so_copyopt & COPYCACHED) { 2325 stp->sd_copyflag |= STRCOPYCACHED; 2326 } 2327 } 2328 if (sop->so_flags & SO_WROFF) 2329 stp->sd_wroff = sop->so_wroff; 2330 if (sop->so_flags & SO_TAIL) 2331 stp->sd_tail = sop->so_tail; 2332 if (sop->so_flags & SO_MINPSZ) 2333 q->q_minpsz = sop->so_minpsz; 2334 if (sop->so_flags & SO_MAXPSZ) 2335 q->q_maxpsz = sop->so_maxpsz; 2336 if (sop->so_flags & SO_MAXBLK) 2337 stp->sd_maxblk = sop->so_maxblk; 2338 if (sop->so_flags & SO_HIWAT) { 2339 if (sop->so_flags & SO_BAND) { 2340 if (strqset(q, QHIWAT, 2341 sop->so_band, sop->so_hiwat)) { 2342 cmn_err(CE_WARN, "strrput: could not " 2343 "allocate qband\n"); 2344 } else { 2345 bpri = sop->so_band; 2346 } 2347 } else { 2348 q->q_hiwat = sop->so_hiwat; 2349 } 2350 } 2351 if (sop->so_flags & SO_LOWAT) { 2352 if (sop->so_flags & SO_BAND) { 2353 if (strqset(q, QLOWAT, 2354 sop->so_band, sop->so_lowat)) { 2355 cmn_err(CE_WARN, "strrput: could not " 2356 "allocate qband\n"); 2357 } else { 2358 bpri = sop->so_band; 2359 } 2360 } else { 2361 q->q_lowat = sop->so_lowat; 2362 } 2363 } 2364 if (sop->so_flags & SO_MREADON) 2365 stp->sd_flag |= SNDMREAD; 2366 if (sop->so_flags & SO_MREADOFF) 2367 stp->sd_flag &= ~SNDMREAD; 2368 if (sop->so_flags & SO_NDELON) 2369 stp->sd_flag |= OLDNDELAY; 2370 if (sop->so_flags & SO_NDELOFF) 2371 stp->sd_flag &= ~OLDNDELAY; 2372 if (sop->so_flags & SO_ISTTY) 2373 stp->sd_flag |= STRISTTY; 2374 if (sop->so_flags & SO_ISNTTY) 2375 stp->sd_flag &= ~STRISTTY; 2376 if (sop->so_flags & SO_TOSTOP) 2377 stp->sd_flag |= STRTOSTOP; 2378 if (sop->so_flags & SO_TONSTOP) 2379 stp->sd_flag &= ~STRTOSTOP; 2380 if (sop->so_flags & SO_DELIM) 2381 stp->sd_flag |= STRDELIM; 2382 if (sop->so_flags & SO_NODELIM) 2383 stp->sd_flag &= ~STRDELIM; 2384 2385 mutex_exit(&stp->sd_lock); 2386 freemsg(bp); 2387 2388 /* Check backenable in case the water marks changed */ 2389 qbackenable(q, bpri); 2390 return (0); 2391 2392 /* 2393 * The following set of cases deal with situations where two stream 2394 * heads are connected to each other (twisted streams). These messages 2395 * have no meaning at the stream head. 2396 */ 2397 case M_BREAK: 2398 case M_CTL: 2399 case M_DELAY: 2400 case M_START: 2401 case M_STOP: 2402 case M_IOCDATA: 2403 case M_STARTI: 2404 case M_STOPI: 2405 freemsg(bp); 2406 return (0); 2407 2408 case M_IOCTL: 2409 /* 2410 * Always NAK this condition 2411 * (makes no sense) 2412 * If there is one or more threads in the read side 2413 * rwnext we have to defer the nacking until that thread 2414 * returns (in strget). 2415 */ 2416 mutex_enter(&stp->sd_lock); 2417 if (stp->sd_struiodnak != 0) { 2418 /* 2419 * Defer NAK to the streamhead. Queue at the end 2420 * the list. 2421 */ 2422 mblk_t *mp = stp->sd_struionak; 2423 2424 while (mp && mp->b_next) 2425 mp = mp->b_next; 2426 if (mp) 2427 mp->b_next = bp; 2428 else 2429 stp->sd_struionak = bp; 2430 bp->b_next = NULL; 2431 mutex_exit(&stp->sd_lock); 2432 return (0); 2433 } 2434 mutex_exit(&stp->sd_lock); 2435 2436 bp->b_datap->db_type = M_IOCNAK; 2437 /* 2438 * Protect against the driver passing up 2439 * messages after it has done a qprocsoff. 2440 */ 2441 if (_OTHERQ(q)->q_next == NULL) 2442 freemsg(bp); 2443 else 2444 qreply(q, bp); 2445 return (0); 2446 2447 default: 2448 #ifdef DEBUG 2449 cmn_err(CE_WARN, 2450 "bad message type %x received at stream head\n", 2451 bp->b_datap->db_type); 2452 #endif 2453 freemsg(bp); 2454 return (0); 2455 } 2456 2457 /* NOTREACHED */ 2458 } 2459 2460 /* 2461 * Check if the stream pointed to by `stp' can be written to, and return an 2462 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2463 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2464 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2465 */ 2466 static int 2467 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2468 { 2469 int error; 2470 2471 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2472 2473 /* 2474 * For modem support, POSIX states that on writes, EIO should 2475 * be returned if the stream has been hung up. 2476 */ 2477 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2478 error = EIO; 2479 else 2480 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2481 2482 if (error != 0) { 2483 if (!(stp->sd_flag & STPLEX) && 2484 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2485 tsignal(curthread, SIGPIPE); 2486 error = EPIPE; 2487 } 2488 } 2489 2490 return (error); 2491 } 2492 2493 /* 2494 * Copyin and send data down a stream. 2495 * The caller will allocate and copyin any control part that precedes the 2496 * message and pass than in as mctl. 2497 * 2498 * Caller should *not* hold sd_lock. 2499 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2500 * under sd_lock in order to avoid missing a backenabling wakeup. 2501 * 2502 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2503 * 2504 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2505 * For sync streams we can only ignore flow control by reverting to using 2506 * putnext. 2507 * 2508 * If sd_maxblk is less than *iosize this routine might return without 2509 * transferring all of *iosize. In all cases, on return *iosize will contain 2510 * the amount of data that was transferred. 2511 */ 2512 static int 2513 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2514 int b_flag, int pri, int flags) 2515 { 2516 struiod_t uiod; 2517 mblk_t *mp; 2518 queue_t *wqp = stp->sd_wrq; 2519 int error = 0; 2520 ssize_t count = *iosize; 2521 cred_t *cr; 2522 2523 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2524 2525 if (uiop != NULL && count >= 0) 2526 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2527 2528 if (!(flags & STRUIO_POSTPONE)) { 2529 /* 2530 * Use regular canputnext, strmakedata, putnext sequence. 2531 */ 2532 if (pri == 0) { 2533 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2534 freemsg(mctl); 2535 return (EWOULDBLOCK); 2536 } 2537 } else { 2538 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2539 freemsg(mctl); 2540 return (EWOULDBLOCK); 2541 } 2542 } 2543 2544 if ((error = strmakedata(iosize, uiop, stp, flags, 2545 &mp)) != 0) { 2546 freemsg(mctl); 2547 /* 2548 * need to change return code to ENOMEM 2549 * so that this is not confused with 2550 * flow control, EAGAIN. 2551 */ 2552 2553 if (error == EAGAIN) 2554 return (ENOMEM); 2555 else 2556 return (error); 2557 } 2558 if (mctl != NULL) { 2559 if (mctl->b_cont == NULL) 2560 mctl->b_cont = mp; 2561 else if (mp != NULL) 2562 linkb(mctl, mp); 2563 mp = mctl; 2564 /* 2565 * Note that for interrupt thread, the CRED() is 2566 * NULL. Don't bother with the pid either. 2567 */ 2568 if ((cr = CRED()) != NULL) { 2569 mblk_setcred(mp, cr); 2570 DB_CPID(mp) = curproc->p_pid; 2571 } 2572 } else if (mp == NULL) 2573 return (0); 2574 2575 mp->b_flag |= b_flag; 2576 mp->b_band = (uchar_t)pri; 2577 2578 if (flags & MSG_IGNFLOW) { 2579 /* 2580 * XXX Hack: Don't get stuck running service 2581 * procedures. This is needed for sockfs when 2582 * sending the unbind message out of the rput 2583 * procedure - we don't want a put procedure 2584 * to run service procedures. 2585 */ 2586 putnext(wqp, mp); 2587 } else { 2588 stream_willservice(stp); 2589 putnext(wqp, mp); 2590 stream_runservice(stp); 2591 } 2592 return (0); 2593 } 2594 /* 2595 * Stream supports rwnext() for the write side. 2596 */ 2597 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2598 freemsg(mctl); 2599 /* 2600 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2601 */ 2602 return (error == EAGAIN ? ENOMEM : error); 2603 } 2604 if (mctl != NULL) { 2605 if (mctl->b_cont == NULL) 2606 mctl->b_cont = mp; 2607 else if (mp != NULL) 2608 linkb(mctl, mp); 2609 mp = mctl; 2610 /* 2611 * Note that for interrupt thread, the CRED() is 2612 * NULL. Don't bother with the pid either. 2613 */ 2614 if ((cr = CRED()) != NULL) { 2615 mblk_setcred(mp, cr); 2616 DB_CPID(mp) = curproc->p_pid; 2617 } 2618 } else if (mp == NULL) { 2619 return (0); 2620 } 2621 2622 mp->b_flag |= b_flag; 2623 mp->b_band = (uchar_t)pri; 2624 2625 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2626 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2627 uiod.d_uio.uio_offset = 0; 2628 uiod.d_mp = mp; 2629 error = rwnext(wqp, &uiod); 2630 if (! uiod.d_mp) { 2631 uioskip(uiop, *iosize); 2632 return (error); 2633 } 2634 ASSERT(mp == uiod.d_mp); 2635 if (error == EINVAL) { 2636 /* 2637 * The stream plumbing must have changed while 2638 * we were away, so just turn off rwnext()s. 2639 */ 2640 error = 0; 2641 } else if (error == EBUSY || error == EWOULDBLOCK) { 2642 /* 2643 * Couldn't enter a perimeter or took a page fault, 2644 * so fall-back to putnext(). 2645 */ 2646 error = 0; 2647 } else { 2648 freemsg(mp); 2649 return (error); 2650 } 2651 /* Have to check canput before consuming data from the uio */ 2652 if (pri == 0) { 2653 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2654 freemsg(mp); 2655 return (EWOULDBLOCK); 2656 } 2657 } else { 2658 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2659 freemsg(mp); 2660 return (EWOULDBLOCK); 2661 } 2662 } 2663 ASSERT(mp == uiod.d_mp); 2664 /* Copyin data from the uio */ 2665 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2666 freemsg(mp); 2667 return (error); 2668 } 2669 uioskip(uiop, *iosize); 2670 if (flags & MSG_IGNFLOW) { 2671 /* 2672 * XXX Hack: Don't get stuck running service procedures. 2673 * This is needed for sockfs when sending the unbind message 2674 * out of the rput procedure - we don't want a put procedure 2675 * to run service procedures. 2676 */ 2677 putnext(wqp, mp); 2678 } else { 2679 stream_willservice(stp); 2680 putnext(wqp, mp); 2681 stream_runservice(stp); 2682 } 2683 return (0); 2684 } 2685 2686 /* 2687 * Write attempts to break the write request into messages conforming 2688 * with the minimum and maximum packet sizes set downstream. 2689 * 2690 * Write will not block if downstream queue is full and 2691 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2692 * 2693 * A write of zero bytes gets packaged into a zero length message and sent 2694 * downstream like any other message. 2695 * 2696 * If buffers of the requested sizes are not available, the write will 2697 * sleep until the buffers become available. 2698 * 2699 * Write (if specified) will supply a write offset in a message if it 2700 * makes sense. This can be specified by downstream modules as part of 2701 * a M_SETOPTS message. Write will not supply the write offset if it 2702 * cannot supply any data in a buffer. In other words, write will never 2703 * send down an empty packet due to a write offset. 2704 */ 2705 /* ARGSUSED2 */ 2706 int 2707 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2708 { 2709 return (strwrite_common(vp, uiop, crp, 0)); 2710 } 2711 2712 /* ARGSUSED2 */ 2713 int 2714 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2715 { 2716 struct stdata *stp; 2717 struct queue *wqp; 2718 ssize_t rmin, rmax; 2719 ssize_t iosize; 2720 int waitflag; 2721 int tempmode; 2722 int error = 0; 2723 int b_flag; 2724 2725 ASSERT(vp->v_stream); 2726 stp = vp->v_stream; 2727 2728 mutex_enter(&stp->sd_lock); 2729 2730 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2731 mutex_exit(&stp->sd_lock); 2732 return (error); 2733 } 2734 2735 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2736 error = strwriteable(stp, B_TRUE, B_TRUE); 2737 if (error != 0) { 2738 mutex_exit(&stp->sd_lock); 2739 return (error); 2740 } 2741 } 2742 2743 mutex_exit(&stp->sd_lock); 2744 2745 wqp = stp->sd_wrq; 2746 2747 /* get these values from them cached in the stream head */ 2748 rmin = stp->sd_qn_minpsz; 2749 rmax = stp->sd_qn_maxpsz; 2750 2751 /* 2752 * Check the min/max packet size constraints. If min packet size 2753 * is non-zero, the write cannot be split into multiple messages 2754 * and still guarantee the size constraints. 2755 */ 2756 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2757 2758 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2759 if (rmax == 0) { 2760 return (0); 2761 } 2762 if (rmin > 0) { 2763 if (uiop->uio_resid < rmin) { 2764 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2765 "strwrite out:q %p out %d error %d", 2766 wqp, 0, ERANGE); 2767 return (ERANGE); 2768 } 2769 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2770 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2771 "strwrite out:q %p out %d error %d", 2772 wqp, 1, ERANGE); 2773 return (ERANGE); 2774 } 2775 } 2776 2777 /* 2778 * Do until count satisfied or error. 2779 */ 2780 waitflag = WRITEWAIT | wflag; 2781 if (stp->sd_flag & OLDNDELAY) 2782 tempmode = uiop->uio_fmode & ~FNDELAY; 2783 else 2784 tempmode = uiop->uio_fmode; 2785 2786 if (rmax == INFPSZ) 2787 rmax = uiop->uio_resid; 2788 2789 /* 2790 * Note that tempmode does not get used in strput/strmakedata 2791 * but only in strwaitq. The other routines use uio_fmode 2792 * unmodified. 2793 */ 2794 2795 /* LINTED: constant in conditional context */ 2796 while (1) { /* breaks when uio_resid reaches zero */ 2797 /* 2798 * Determine the size of the next message to be 2799 * packaged. May have to break write into several 2800 * messages based on max packet size. 2801 */ 2802 iosize = MIN(uiop->uio_resid, rmax); 2803 2804 /* 2805 * Put block downstream when flow control allows it. 2806 */ 2807 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2808 b_flag = MSGDELIM; 2809 else 2810 b_flag = 0; 2811 2812 for (;;) { 2813 int done = 0; 2814 2815 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); 2816 if (error == 0) 2817 break; 2818 if (error != EWOULDBLOCK) 2819 goto out; 2820 2821 mutex_enter(&stp->sd_lock); 2822 /* 2823 * Check for a missed wakeup. 2824 * Needed since strput did not hold sd_lock across 2825 * the canputnext. 2826 */ 2827 if (canputnext(wqp)) { 2828 /* Try again */ 2829 mutex_exit(&stp->sd_lock); 2830 continue; 2831 } 2832 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2833 "strwrite wait:q %p wait", wqp); 2834 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2835 tempmode, -1, &done)) != 0 || done) { 2836 mutex_exit(&stp->sd_lock); 2837 if ((vp->v_type == VFIFO) && 2838 (uiop->uio_fmode & FNDELAY) && 2839 (error == EAGAIN)) 2840 error = 0; 2841 goto out; 2842 } 2843 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2844 "strwrite wake:q %p awakes", wqp); 2845 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2846 mutex_exit(&stp->sd_lock); 2847 goto out; 2848 } 2849 mutex_exit(&stp->sd_lock); 2850 } 2851 waitflag |= NOINTR; 2852 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2853 "strwrite resid:q %p uiop %p", wqp, uiop); 2854 if (uiop->uio_resid) { 2855 /* Recheck for errors - needed for sockets */ 2856 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2857 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2858 mutex_enter(&stp->sd_lock); 2859 error = strwriteable(stp, B_FALSE, B_TRUE); 2860 mutex_exit(&stp->sd_lock); 2861 if (error != 0) 2862 return (error); 2863 } 2864 continue; 2865 } 2866 break; 2867 } 2868 out: 2869 /* 2870 * For historical reasons, applications expect EAGAIN when a data 2871 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2872 */ 2873 if (error == ENOMEM) 2874 error = EAGAIN; 2875 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2876 "strwrite out:q %p out %d error %d", wqp, 2, error); 2877 return (error); 2878 } 2879 2880 /* 2881 * Stream head write service routine. 2882 * Its job is to wake up any sleeping writers when a queue 2883 * downstream needs data (part of the flow control in putq and getq). 2884 * It also must wake anyone sleeping on a poll(). 2885 * For stream head right below mux module, it must also invoke put procedure 2886 * of next downstream module. 2887 */ 2888 int 2889 strwsrv(queue_t *q) 2890 { 2891 struct stdata *stp; 2892 queue_t *tq; 2893 qband_t *qbp; 2894 int i; 2895 qband_t *myqbp; 2896 int isevent; 2897 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2898 2899 TRACE_1(TR_FAC_STREAMS_FR, 2900 TR_STRWSRV, "strwsrv:q %p", q); 2901 stp = (struct stdata *)q->q_ptr; 2902 ASSERT(qclaimed(q)); 2903 mutex_enter(&stp->sd_lock); 2904 ASSERT(!(stp->sd_flag & STPLEX)); 2905 2906 if (stp->sd_flag & WSLEEP) { 2907 stp->sd_flag &= ~WSLEEP; 2908 cv_broadcast(&q->q_wait); 2909 } 2910 mutex_exit(&stp->sd_lock); 2911 2912 /* The other end of a stream pipe went away. */ 2913 if ((tq = q->q_next) == NULL) { 2914 return (0); 2915 } 2916 2917 /* Find the next module forward that has a service procedure */ 2918 claimstr(q); 2919 tq = q->q_nfsrv; 2920 ASSERT(tq != NULL); 2921 2922 if ((q->q_flag & QBACK)) { 2923 if ((tq->q_flag & QFULL)) { 2924 mutex_enter(QLOCK(tq)); 2925 if (!(tq->q_flag & QFULL)) { 2926 mutex_exit(QLOCK(tq)); 2927 goto wakeup; 2928 } 2929 /* 2930 * The queue must have become full again. Set QWANTW 2931 * again so strwsrv will be back enabled when 2932 * the queue becomes non-full next time. 2933 */ 2934 tq->q_flag |= QWANTW; 2935 mutex_exit(QLOCK(tq)); 2936 } else { 2937 wakeup: 2938 pollwakeup(&stp->sd_pollist, POLLWRNORM); 2939 mutex_enter(&stp->sd_lock); 2940 if (stp->sd_sigflags & S_WRNORM) 2941 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 2942 mutex_exit(&stp->sd_lock); 2943 } 2944 } 2945 2946 isevent = 0; 2947 i = 1; 2948 bzero((caddr_t)qbf, NBAND); 2949 mutex_enter(QLOCK(tq)); 2950 if ((myqbp = q->q_bandp) != NULL) 2951 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 2952 ASSERT(myqbp); 2953 if ((myqbp->qb_flag & QB_BACK)) { 2954 if (qbp->qb_flag & QB_FULL) { 2955 /* 2956 * The band must have become full again. 2957 * Set QB_WANTW again so strwsrv will 2958 * be back enabled when the band becomes 2959 * non-full next time. 2960 */ 2961 qbp->qb_flag |= QB_WANTW; 2962 } else { 2963 isevent = 1; 2964 qbf[i] = 1; 2965 } 2966 } 2967 myqbp = myqbp->qb_next; 2968 i++; 2969 } 2970 mutex_exit(QLOCK(tq)); 2971 2972 if (isevent) { 2973 for (i = tq->q_nband; i; i--) { 2974 if (qbf[i]) { 2975 pollwakeup(&stp->sd_pollist, POLLWRBAND); 2976 mutex_enter(&stp->sd_lock); 2977 if (stp->sd_sigflags & S_WRBAND) 2978 strsendsig(stp->sd_siglist, S_WRBAND, 2979 (uchar_t)i, 0); 2980 mutex_exit(&stp->sd_lock); 2981 } 2982 } 2983 } 2984 2985 releasestr(q); 2986 return (0); 2987 } 2988 2989 /* 2990 * Special case of strcopyin/strcopyout for copying 2991 * struct strioctl that can deal with both data 2992 * models. 2993 */ 2994 2995 #ifdef _LP64 2996 2997 static int 2998 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 2999 { 3000 struct strioctl32 strioc32; 3001 struct strioctl *striocp; 3002 3003 if (copyflag & U_TO_K) { 3004 ASSERT((copyflag & K_TO_K) == 0); 3005 3006 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3007 if (copyin(from, &strioc32, sizeof (strioc32))) 3008 return (EFAULT); 3009 3010 striocp = (struct strioctl *)to; 3011 striocp->ic_cmd = strioc32.ic_cmd; 3012 striocp->ic_timout = strioc32.ic_timout; 3013 striocp->ic_len = strioc32.ic_len; 3014 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3015 3016 } else { /* NATIVE data model */ 3017 if (copyin(from, to, sizeof (struct strioctl))) { 3018 return (EFAULT); 3019 } else { 3020 return (0); 3021 } 3022 } 3023 } else { 3024 ASSERT(copyflag & K_TO_K); 3025 bcopy(from, to, sizeof (struct strioctl)); 3026 } 3027 return (0); 3028 } 3029 3030 static int 3031 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3032 { 3033 struct strioctl32 strioc32; 3034 struct strioctl *striocp; 3035 3036 if (copyflag & U_TO_K) { 3037 ASSERT((copyflag & K_TO_K) == 0); 3038 3039 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3040 striocp = (struct strioctl *)from; 3041 strioc32.ic_cmd = striocp->ic_cmd; 3042 strioc32.ic_timout = striocp->ic_timout; 3043 strioc32.ic_len = striocp->ic_len; 3044 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3045 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3046 striocp->ic_dp); 3047 3048 if (copyout(&strioc32, to, sizeof (strioc32))) 3049 return (EFAULT); 3050 3051 } else { /* NATIVE data model */ 3052 if (copyout(from, to, sizeof (struct strioctl))) { 3053 return (EFAULT); 3054 } else { 3055 return (0); 3056 } 3057 } 3058 } else { 3059 ASSERT(copyflag & K_TO_K); 3060 bcopy(from, to, sizeof (struct strioctl)); 3061 } 3062 return (0); 3063 } 3064 3065 #else /* ! _LP64 */ 3066 3067 /* ARGSUSED2 */ 3068 static int 3069 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3070 { 3071 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3072 } 3073 3074 /* ARGSUSED2 */ 3075 static int 3076 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3077 { 3078 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3079 } 3080 3081 #endif /* _LP64 */ 3082 3083 /* 3084 * Determine type of job control semantics expected by user. The 3085 * possibilities are: 3086 * JCREAD - Behaves like read() on fd; send SIGTTIN 3087 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3088 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3089 * JCGETP - Gets a value in the stream; no signals. 3090 * See straccess in strsubr.c for usage of these values. 3091 * 3092 * This routine also returns -1 for I_STR as a special case; the 3093 * caller must call again with the real ioctl number for 3094 * classification. 3095 */ 3096 static int 3097 job_control_type(int cmd) 3098 { 3099 switch (cmd) { 3100 case I_STR: 3101 return (-1); 3102 3103 case I_RECVFD: 3104 case I_E_RECVFD: 3105 return (JCREAD); 3106 3107 case I_FDINSERT: 3108 case I_SENDFD: 3109 return (JCWRITE); 3110 3111 case TCSETA: 3112 case TCSETAW: 3113 case TCSETAF: 3114 case TCSBRK: 3115 case TCXONC: 3116 case TCFLSH: 3117 case TCDSET: /* Obsolete */ 3118 case TIOCSWINSZ: 3119 case TCSETS: 3120 case TCSETSW: 3121 case TCSETSF: 3122 case TIOCSETD: 3123 case TIOCHPCL: 3124 case TIOCSETP: 3125 case TIOCSETN: 3126 case TIOCEXCL: 3127 case TIOCNXCL: 3128 case TIOCFLUSH: 3129 case TIOCSETC: 3130 case TIOCLBIS: 3131 case TIOCLBIC: 3132 case TIOCLSET: 3133 case TIOCSBRK: 3134 case TIOCCBRK: 3135 case TIOCSDTR: 3136 case TIOCCDTR: 3137 case TIOCSLTC: 3138 case TIOCSTOP: 3139 case TIOCSTART: 3140 case TIOCSTI: 3141 case TIOCSPGRP: 3142 case TIOCMSET: 3143 case TIOCMBIS: 3144 case TIOCMBIC: 3145 case TIOCREMOTE: 3146 case TIOCSIGNAL: 3147 case LDSETT: 3148 case LDSMAP: /* Obsolete */ 3149 case DIOCSETP: 3150 case I_FLUSH: 3151 case I_SRDOPT: 3152 case I_SETSIG: 3153 case I_SWROPT: 3154 case I_FLUSHBAND: 3155 case I_SETCLTIME: 3156 case I_SERROPT: 3157 case I_ESETSIG: 3158 case FIONBIO: 3159 case FIOASYNC: 3160 case FIOSETOWN: 3161 case JBOOT: /* Obsolete */ 3162 case JTERM: /* Obsolete */ 3163 case JTIMOM: /* Obsolete */ 3164 case JZOMBOOT: /* Obsolete */ 3165 case JAGENT: /* Obsolete */ 3166 case JTRUN: /* Obsolete */ 3167 case JXTPROTO: /* Obsolete */ 3168 case TIOCSETLD: 3169 return (JCSETP); 3170 } 3171 3172 return (JCGETP); 3173 } 3174 3175 /* 3176 * ioctl for streams 3177 */ 3178 int 3179 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3180 cred_t *crp, int *rvalp) 3181 { 3182 struct stdata *stp; 3183 struct strioctl strioc; 3184 struct uio uio; 3185 struct iovec iov; 3186 int access; 3187 mblk_t *mp; 3188 int error = 0; 3189 int done = 0; 3190 ssize_t rmin, rmax; 3191 queue_t *wrq; 3192 queue_t *rdq; 3193 boolean_t kioctl = B_FALSE; 3194 3195 if (flag & FKIOCTL) { 3196 copyflag = K_TO_K; 3197 kioctl = B_TRUE; 3198 } 3199 ASSERT(vp->v_stream); 3200 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3201 stp = vp->v_stream; 3202 3203 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3204 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3205 3206 if (audit_active) 3207 audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp); 3208 3209 /* 3210 * If the copy is kernel to kernel, make sure that the FNATIVE 3211 * flag is set. After this it would be a serious error to have 3212 * no model flag. 3213 */ 3214 if (copyflag == K_TO_K) 3215 flag = (flag & ~FMODELS) | FNATIVE; 3216 3217 ASSERT((flag & FMODELS) != 0); 3218 3219 wrq = stp->sd_wrq; 3220 rdq = _RD(wrq); 3221 3222 access = job_control_type(cmd); 3223 3224 /* We should never see these here, should be handled by iwscn */ 3225 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3226 return (EINVAL); 3227 3228 mutex_enter(&stp->sd_lock); 3229 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3230 mutex_exit(&stp->sd_lock); 3231 return (error); 3232 } 3233 mutex_exit(&stp->sd_lock); 3234 3235 /* 3236 * Check for sgttyb-related ioctls first, and complain as 3237 * necessary. 3238 */ 3239 switch (cmd) { 3240 case TIOCGETP: 3241 case TIOCSETP: 3242 case TIOCSETN: 3243 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3244 sgttyb_complaint = B_TRUE; 3245 cmn_err(CE_NOTE, 3246 "application used obsolete TIOC[GS]ET"); 3247 } 3248 if (sgttyb_handling >= 3) { 3249 tsignal(curthread, SIGSYS); 3250 return (EIO); 3251 } 3252 break; 3253 } 3254 3255 mutex_enter(&stp->sd_lock); 3256 3257 switch (cmd) { 3258 case I_RECVFD: 3259 case I_E_RECVFD: 3260 case I_PEEK: 3261 case I_NREAD: 3262 case FIONREAD: 3263 case FIORDCHK: 3264 case I_ATMARK: 3265 case FIONBIO: 3266 case FIOASYNC: 3267 if (stp->sd_flag & (STRDERR|STPLEX)) { 3268 error = strgeterr(stp, STRDERR|STPLEX, 0); 3269 if (error != 0) { 3270 mutex_exit(&stp->sd_lock); 3271 return (error); 3272 } 3273 } 3274 break; 3275 3276 default: 3277 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3278 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3279 if (error != 0) { 3280 mutex_exit(&stp->sd_lock); 3281 return (error); 3282 } 3283 } 3284 } 3285 3286 mutex_exit(&stp->sd_lock); 3287 3288 switch (cmd) { 3289 default: 3290 /* 3291 * The stream head has hardcoded knowledge of a 3292 * miscellaneous collection of terminal-, keyboard- and 3293 * mouse-related ioctls, enumerated below. This hardcoded 3294 * knowledge allows the stream head to automatically 3295 * convert transparent ioctl requests made by userland 3296 * programs into I_STR ioctls which many old STREAMS 3297 * modules and drivers require. 3298 * 3299 * No new ioctls should ever be added to this list. 3300 * Instead, the STREAMS module or driver should be written 3301 * to either handle transparent ioctls or require any 3302 * userland programs to use I_STR ioctls (by returning 3303 * EINVAL to any transparent ioctl requests). 3304 * 3305 * More importantly, removing ioctls from this list should 3306 * be done with the utmost care, since our STREAMS modules 3307 * and drivers *count* on the stream head performing this 3308 * conversion, and thus may panic while processing 3309 * transparent ioctl request for one of these ioctls (keep 3310 * in mind that third party modules and drivers may have 3311 * similar problems). 3312 */ 3313 if (((cmd & IOCTYPE) == LDIOC) || 3314 ((cmd & IOCTYPE) == tIOC) || 3315 ((cmd & IOCTYPE) == TIOC) || 3316 ((cmd & IOCTYPE) == KIOC) || 3317 ((cmd & IOCTYPE) == MSIOC) || 3318 ((cmd & IOCTYPE) == VUIOC)) { 3319 /* 3320 * The ioctl is a tty ioctl - set up strioc buffer 3321 * and call strdoioctl() to do the work. 3322 */ 3323 if (stp->sd_flag & STRHUP) 3324 return (ENXIO); 3325 strioc.ic_cmd = cmd; 3326 strioc.ic_timout = INFTIM; 3327 3328 switch (cmd) { 3329 3330 case TCXONC: 3331 case TCSBRK: 3332 case TCFLSH: 3333 case TCDSET: 3334 { 3335 int native_arg = (int)arg; 3336 strioc.ic_len = sizeof (int); 3337 strioc.ic_dp = (char *)&native_arg; 3338 return (strdoioctl(stp, &strioc, flag, 3339 K_TO_K, crp, rvalp)); 3340 } 3341 3342 case TCSETA: 3343 case TCSETAW: 3344 case TCSETAF: 3345 strioc.ic_len = sizeof (struct termio); 3346 strioc.ic_dp = (char *)arg; 3347 return (strdoioctl(stp, &strioc, flag, 3348 copyflag, crp, rvalp)); 3349 3350 case TCSETS: 3351 case TCSETSW: 3352 case TCSETSF: 3353 strioc.ic_len = sizeof (struct termios); 3354 strioc.ic_dp = (char *)arg; 3355 return (strdoioctl(stp, &strioc, flag, 3356 copyflag, crp, rvalp)); 3357 3358 case LDSETT: 3359 strioc.ic_len = sizeof (struct termcb); 3360 strioc.ic_dp = (char *)arg; 3361 return (strdoioctl(stp, &strioc, flag, 3362 copyflag, crp, rvalp)); 3363 3364 case TIOCSETP: 3365 strioc.ic_len = sizeof (struct sgttyb); 3366 strioc.ic_dp = (char *)arg; 3367 return (strdoioctl(stp, &strioc, flag, 3368 copyflag, crp, rvalp)); 3369 3370 case TIOCSTI: 3371 if ((flag & FREAD) == 0 && 3372 secpolicy_sti(crp) != 0) { 3373 return (EPERM); 3374 } 3375 mutex_enter(&stp->sd_lock); 3376 mutex_enter(&curproc->p_splock); 3377 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3378 secpolicy_sti(crp) != 0) { 3379 mutex_exit(&curproc->p_splock); 3380 mutex_exit(&stp->sd_lock); 3381 return (EACCES); 3382 } 3383 mutex_exit(&curproc->p_splock); 3384 mutex_exit(&stp->sd_lock); 3385 3386 strioc.ic_len = sizeof (char); 3387 strioc.ic_dp = (char *)arg; 3388 return (strdoioctl(stp, &strioc, flag, 3389 copyflag, crp, rvalp)); 3390 3391 case TIOCSWINSZ: 3392 strioc.ic_len = sizeof (struct winsize); 3393 strioc.ic_dp = (char *)arg; 3394 return (strdoioctl(stp, &strioc, flag, 3395 copyflag, crp, rvalp)); 3396 3397 case TIOCSSIZE: 3398 strioc.ic_len = sizeof (struct ttysize); 3399 strioc.ic_dp = (char *)arg; 3400 return (strdoioctl(stp, &strioc, flag, 3401 copyflag, crp, rvalp)); 3402 3403 case TIOCSSOFTCAR: 3404 case KIOCTRANS: 3405 case KIOCTRANSABLE: 3406 case KIOCCMD: 3407 case KIOCSDIRECT: 3408 case KIOCSCOMPAT: 3409 case KIOCSKABORTEN: 3410 case KIOCSRPTDELAY: 3411 case KIOCSRPTRATE: 3412 case VUIDSFORMAT: 3413 case TIOCSPPS: 3414 strioc.ic_len = sizeof (int); 3415 strioc.ic_dp = (char *)arg; 3416 return (strdoioctl(stp, &strioc, flag, 3417 copyflag, crp, rvalp)); 3418 3419 case KIOCSETKEY: 3420 case KIOCGETKEY: 3421 strioc.ic_len = sizeof (struct kiockey); 3422 strioc.ic_dp = (char *)arg; 3423 return (strdoioctl(stp, &strioc, flag, 3424 copyflag, crp, rvalp)); 3425 3426 case KIOCSKEY: 3427 case KIOCGKEY: 3428 strioc.ic_len = sizeof (struct kiockeymap); 3429 strioc.ic_dp = (char *)arg; 3430 return (strdoioctl(stp, &strioc, flag, 3431 copyflag, crp, rvalp)); 3432 3433 case KIOCSLED: 3434 /* arg is a pointer to char */ 3435 strioc.ic_len = sizeof (char); 3436 strioc.ic_dp = (char *)arg; 3437 return (strdoioctl(stp, &strioc, flag, 3438 copyflag, crp, rvalp)); 3439 3440 case MSIOSETPARMS: 3441 strioc.ic_len = sizeof (Ms_parms); 3442 strioc.ic_dp = (char *)arg; 3443 return (strdoioctl(stp, &strioc, flag, 3444 copyflag, crp, rvalp)); 3445 3446 case VUIDSADDR: 3447 case VUIDGADDR: 3448 strioc.ic_len = sizeof (struct vuid_addr_probe); 3449 strioc.ic_dp = (char *)arg; 3450 return (strdoioctl(stp, &strioc, flag, 3451 copyflag, crp, rvalp)); 3452 3453 /* 3454 * These M_IOCTL's don't require any data to be sent 3455 * downstream, and the driver will allocate and link 3456 * on its own mblk_t upon M_IOCACK -- thus we set 3457 * ic_len to zero and set ic_dp to arg so we know 3458 * where to copyout to later. 3459 */ 3460 case TIOCGSOFTCAR: 3461 case TIOCGWINSZ: 3462 case TIOCGSIZE: 3463 case KIOCGTRANS: 3464 case KIOCGTRANSABLE: 3465 case KIOCTYPE: 3466 case KIOCGDIRECT: 3467 case KIOCGCOMPAT: 3468 case KIOCLAYOUT: 3469 case KIOCGLED: 3470 case MSIOGETPARMS: 3471 case MSIOBUTTONS: 3472 case VUIDGFORMAT: 3473 case TIOCGPPS: 3474 case TIOCGPPSEV: 3475 case TCGETA: 3476 case TCGETS: 3477 case LDGETT: 3478 case TIOCGETP: 3479 case KIOCGRPTDELAY: 3480 case KIOCGRPTRATE: 3481 strioc.ic_len = 0; 3482 strioc.ic_dp = (char *)arg; 3483 return (strdoioctl(stp, &strioc, flag, 3484 copyflag, crp, rvalp)); 3485 } 3486 } 3487 3488 /* 3489 * Unknown cmd - send it down as a transparent ioctl. 3490 */ 3491 strioc.ic_cmd = cmd; 3492 strioc.ic_timout = INFTIM; 3493 strioc.ic_len = TRANSPARENT; 3494 strioc.ic_dp = (char *)&arg; 3495 3496 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3497 3498 case I_STR: 3499 /* 3500 * Stream ioctl. Read in an strioctl buffer from the user 3501 * along with any data specified and send it downstream. 3502 * Strdoioctl will wait allow only one ioctl message at 3503 * a time, and waits for the acknowledgement. 3504 */ 3505 3506 if (stp->sd_flag & STRHUP) 3507 return (ENXIO); 3508 3509 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3510 copyflag); 3511 if (error != 0) 3512 return (error); 3513 3514 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3515 return (EINVAL); 3516 3517 access = job_control_type(strioc.ic_cmd); 3518 mutex_enter(&stp->sd_lock); 3519 if ((access != -1) && 3520 ((error = i_straccess(stp, access)) != 0)) { 3521 mutex_exit(&stp->sd_lock); 3522 return (error); 3523 } 3524 mutex_exit(&stp->sd_lock); 3525 3526 /* 3527 * The I_STR facility provides a trap door for malicious 3528 * code to send down bogus streamio(7I) ioctl commands to 3529 * unsuspecting STREAMS modules and drivers which expect to 3530 * only get these messages from the stream head. 3531 * Explicitly prohibit any streamio ioctls which can be 3532 * passed downstream by the stream head. Note that we do 3533 * not block all streamio ioctls because the ioctl 3534 * numberspace is not well managed and thus it's possible 3535 * that a module or driver's ioctl numbers may accidentally 3536 * collide with them. 3537 */ 3538 switch (strioc.ic_cmd) { 3539 case I_LINK: 3540 case I_PLINK: 3541 case I_UNLINK: 3542 case I_PUNLINK: 3543 case _I_GETPEERCRED: 3544 case _I_PLINK_LH: 3545 return (EINVAL); 3546 } 3547 3548 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3549 if (error == 0) { 3550 error = strcopyout_strioctl(&strioc, (void *)arg, 3551 flag, copyflag); 3552 } 3553 return (error); 3554 3555 case I_NREAD: 3556 /* 3557 * Return number of bytes of data in first message 3558 * in queue in "arg" and return the number of messages 3559 * in queue in return value. 3560 */ 3561 { 3562 size_t size; 3563 int retval; 3564 int count = 0; 3565 3566 mutex_enter(QLOCK(rdq)); 3567 3568 size = msgdsize(rdq->q_first); 3569 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3570 count++; 3571 3572 mutex_exit(QLOCK(rdq)); 3573 if (stp->sd_struiordq) { 3574 infod_t infod; 3575 3576 infod.d_cmd = INFOD_COUNT; 3577 infod.d_count = 0; 3578 if (count == 0) { 3579 infod.d_cmd |= INFOD_FIRSTBYTES; 3580 infod.d_bytes = 0; 3581 } 3582 infod.d_res = 0; 3583 (void) infonext(rdq, &infod); 3584 count += infod.d_count; 3585 if (infod.d_res & INFOD_FIRSTBYTES) 3586 size = infod.d_bytes; 3587 } 3588 3589 /* 3590 * Drop down from size_t to the "int" required by the 3591 * interface. Cap at INT_MAX. 3592 */ 3593 retval = MIN(size, INT_MAX); 3594 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3595 copyflag); 3596 if (!error) 3597 *rvalp = count; 3598 return (error); 3599 } 3600 3601 case FIONREAD: 3602 /* 3603 * Return number of bytes of data in all data messages 3604 * in queue in "arg". 3605 */ 3606 { 3607 size_t size = 0; 3608 int retval; 3609 3610 mutex_enter(QLOCK(rdq)); 3611 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3612 size += msgdsize(mp); 3613 mutex_exit(QLOCK(rdq)); 3614 3615 if (stp->sd_struiordq) { 3616 infod_t infod; 3617 3618 infod.d_cmd = INFOD_BYTES; 3619 infod.d_res = 0; 3620 infod.d_bytes = 0; 3621 (void) infonext(rdq, &infod); 3622 size += infod.d_bytes; 3623 } 3624 3625 /* 3626 * Drop down from size_t to the "int" required by the 3627 * interface. Cap at INT_MAX. 3628 */ 3629 retval = MIN(size, INT_MAX); 3630 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3631 copyflag); 3632 3633 *rvalp = 0; 3634 return (error); 3635 } 3636 case FIORDCHK: 3637 /* 3638 * FIORDCHK does not use arg value (like FIONREAD), 3639 * instead a count is returned. I_NREAD value may 3640 * not be accurate but safe. The real thing to do is 3641 * to add the msgdsizes of all data messages until 3642 * a non-data message. 3643 */ 3644 { 3645 size_t size = 0; 3646 3647 mutex_enter(QLOCK(rdq)); 3648 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3649 size += msgdsize(mp); 3650 mutex_exit(QLOCK(rdq)); 3651 3652 if (stp->sd_struiordq) { 3653 infod_t infod; 3654 3655 infod.d_cmd = INFOD_BYTES; 3656 infod.d_res = 0; 3657 infod.d_bytes = 0; 3658 (void) infonext(rdq, &infod); 3659 size += infod.d_bytes; 3660 } 3661 3662 /* 3663 * Since ioctl returns an int, and memory sizes under 3664 * LP64 may not fit, we return INT_MAX if the count was 3665 * actually greater. 3666 */ 3667 *rvalp = MIN(size, INT_MAX); 3668 return (0); 3669 } 3670 3671 case I_FIND: 3672 /* 3673 * Get module name. 3674 */ 3675 { 3676 char mname[FMNAMESZ + 1]; 3677 queue_t *q; 3678 3679 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3680 mname, FMNAMESZ + 1, NULL); 3681 if (error) 3682 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3683 3684 /* 3685 * Return EINVAL if we're handed a bogus module name. 3686 */ 3687 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3688 TRACE_0(TR_FAC_STREAMS_FR, 3689 TR_I_CANT_FIND, "couldn't I_FIND"); 3690 return (EINVAL); 3691 } 3692 3693 *rvalp = 0; 3694 3695 /* Look downstream to see if module is there. */ 3696 claimstr(stp->sd_wrq); 3697 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3698 if (q->q_flag&QREADR) { 3699 q = NULL; 3700 break; 3701 } 3702 if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0) 3703 break; 3704 } 3705 releasestr(stp->sd_wrq); 3706 3707 *rvalp = (q ? 1 : 0); 3708 return (error); 3709 } 3710 3711 case I_PUSH: 3712 case __I_PUSH_NOCTTY: 3713 /* 3714 * Push a module. 3715 * For the case __I_PUSH_NOCTTY push a module but 3716 * do not allocate controlling tty. See bugid 4025044 3717 */ 3718 3719 { 3720 char mname[FMNAMESZ + 1]; 3721 fmodsw_impl_t *fp; 3722 dev_t dummydev; 3723 3724 if (stp->sd_flag & STRHUP) 3725 return (ENXIO); 3726 3727 /* 3728 * Get module name and look up in fmodsw. 3729 */ 3730 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3731 mname, FMNAMESZ + 1, NULL); 3732 if (error) 3733 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3734 3735 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3736 NULL) 3737 return (EINVAL); 3738 3739 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3740 "I_PUSH:fp %p stp %p", fp, stp); 3741 3742 if (error = strstartplumb(stp, flag, cmd)) { 3743 fmodsw_rele(fp); 3744 return (error); 3745 } 3746 3747 /* 3748 * See if any more modules can be pushed on this stream. 3749 * Note that this check must be done after strstartplumb() 3750 * since otherwise multiple threads issuing I_PUSHes on 3751 * the same stream will be able to exceed nstrpush. 3752 */ 3753 mutex_enter(&stp->sd_lock); 3754 if (stp->sd_pushcnt >= nstrpush) { 3755 fmodsw_rele(fp); 3756 strendplumb(stp); 3757 mutex_exit(&stp->sd_lock); 3758 return (EINVAL); 3759 } 3760 mutex_exit(&stp->sd_lock); 3761 3762 /* 3763 * Push new module and call its open routine 3764 * via qattach(). Modules don't change device 3765 * numbers, so just ignore dummydev here. 3766 */ 3767 dummydev = vp->v_rdev; 3768 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3769 B_FALSE)) == 0) { 3770 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3771 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3772 /* 3773 * try to allocate it as a controlling terminal 3774 */ 3775 (void) strctty(stp); 3776 } 3777 } 3778 3779 mutex_enter(&stp->sd_lock); 3780 3781 /* 3782 * As a performance concern we are caching the values of 3783 * q_minpsz and q_maxpsz of the module below the stream 3784 * head in the stream head. 3785 */ 3786 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3787 rmin = stp->sd_wrq->q_next->q_minpsz; 3788 rmax = stp->sd_wrq->q_next->q_maxpsz; 3789 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3790 3791 /* Do this processing here as a performance concern */ 3792 if (strmsgsz != 0) { 3793 if (rmax == INFPSZ) 3794 rmax = strmsgsz; 3795 else { 3796 if (vp->v_type == VFIFO) 3797 rmax = MIN(PIPE_BUF, rmax); 3798 else rmax = MIN(strmsgsz, rmax); 3799 } 3800 } 3801 3802 mutex_enter(QLOCK(wrq)); 3803 stp->sd_qn_minpsz = rmin; 3804 stp->sd_qn_maxpsz = rmax; 3805 mutex_exit(QLOCK(wrq)); 3806 3807 strendplumb(stp); 3808 mutex_exit(&stp->sd_lock); 3809 return (error); 3810 } 3811 3812 case I_POP: 3813 { 3814 queue_t *q; 3815 3816 if (stp->sd_flag & STRHUP) 3817 return (ENXIO); 3818 if (!wrq->q_next) /* for broken pipes */ 3819 return (EINVAL); 3820 3821 if (error = strstartplumb(stp, flag, cmd)) 3822 return (error); 3823 3824 /* 3825 * If there is an anchor on this stream and popping 3826 * the current module would attempt to pop through the 3827 * anchor, then disallow the pop unless we have sufficient 3828 * privileges; take the cheapest (non-locking) check 3829 * first. 3830 */ 3831 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3832 (stp->sd_anchorzone != crgetzoneid(crp))) { 3833 mutex_enter(&stp->sd_lock); 3834 /* 3835 * Anchors only apply if there's at least one 3836 * module on the stream (sd_pushcnt > 0). 3837 */ 3838 if (stp->sd_pushcnt > 0 && 3839 stp->sd_pushcnt == stp->sd_anchor && 3840 stp->sd_vnode->v_type != VFIFO) { 3841 strendplumb(stp); 3842 mutex_exit(&stp->sd_lock); 3843 if (stp->sd_anchorzone != crgetzoneid(crp)) 3844 return (EINVAL); 3845 /* Audit and report error */ 3846 return (secpolicy_ip_config(crp, B_FALSE)); 3847 } 3848 mutex_exit(&stp->sd_lock); 3849 } 3850 3851 q = wrq->q_next; 3852 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3853 "I_POP:%p from %p", q, stp); 3854 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3855 error = EINVAL; 3856 } else { 3857 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3858 error = 0; 3859 } 3860 mutex_enter(&stp->sd_lock); 3861 3862 /* 3863 * As a performance concern we are caching the values of 3864 * q_minpsz and q_maxpsz of the module below the stream 3865 * head in the stream head. 3866 */ 3867 mutex_enter(QLOCK(wrq->q_next)); 3868 rmin = wrq->q_next->q_minpsz; 3869 rmax = wrq->q_next->q_maxpsz; 3870 mutex_exit(QLOCK(wrq->q_next)); 3871 3872 /* Do this processing here as a performance concern */ 3873 if (strmsgsz != 0) { 3874 if (rmax == INFPSZ) 3875 rmax = strmsgsz; 3876 else { 3877 if (vp->v_type == VFIFO) 3878 rmax = MIN(PIPE_BUF, rmax); 3879 else rmax = MIN(strmsgsz, rmax); 3880 } 3881 } 3882 3883 mutex_enter(QLOCK(wrq)); 3884 stp->sd_qn_minpsz = rmin; 3885 stp->sd_qn_maxpsz = rmax; 3886 mutex_exit(QLOCK(wrq)); 3887 3888 /* If we popped through the anchor, then reset the anchor. */ 3889 if (stp->sd_pushcnt < stp->sd_anchor) { 3890 stp->sd_anchor = 0; 3891 stp->sd_anchorzone = 0; 3892 } 3893 strendplumb(stp); 3894 mutex_exit(&stp->sd_lock); 3895 return (error); 3896 } 3897 3898 case _I_MUXID2FD: 3899 { 3900 /* 3901 * Create a fd for a I_PLINK'ed lower stream with a given 3902 * muxid. With the fd, application can send down ioctls, 3903 * like I_LIST, to the previously I_PLINK'ed stream. Note 3904 * that after getting the fd, the application has to do an 3905 * I_PUNLINK on the muxid before it can do any operation 3906 * on the lower stream. This is required by spec1170. 3907 * 3908 * The fd used to do this ioctl should point to the same 3909 * controlling device used to do the I_PLINK. If it uses 3910 * a different stream or an invalid muxid, I_MUXID2FD will 3911 * fail. The error code is set to EINVAL. 3912 * 3913 * The intended use of this interface is the following. 3914 * An application I_PLINK'ed a stream and exits. The fd 3915 * to the lower stream is gone. Another application 3916 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 3917 */ 3918 int muxid = (int)arg; 3919 int fd; 3920 linkinfo_t *linkp; 3921 struct file *fp; 3922 netstack_t *ns; 3923 str_stack_t *ss; 3924 3925 /* 3926 * Do not allow the wildcard muxid. This ioctl is not 3927 * intended to find arbitrary link. 3928 */ 3929 if (muxid == 0) { 3930 return (EINVAL); 3931 } 3932 3933 ns = netstack_find_by_cred(crp); 3934 ASSERT(ns != NULL); 3935 ss = ns->netstack_str; 3936 ASSERT(ss != NULL); 3937 3938 mutex_enter(&muxifier); 3939 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 3940 if (linkp == NULL) { 3941 mutex_exit(&muxifier); 3942 netstack_rele(ss->ss_netstack); 3943 return (EINVAL); 3944 } 3945 3946 if ((fd = ufalloc(0)) == -1) { 3947 mutex_exit(&muxifier); 3948 netstack_rele(ss->ss_netstack); 3949 return (EMFILE); 3950 } 3951 fp = linkp->li_fpdown; 3952 mutex_enter(&fp->f_tlock); 3953 fp->f_count++; 3954 mutex_exit(&fp->f_tlock); 3955 mutex_exit(&muxifier); 3956 setf(fd, fp); 3957 *rvalp = fd; 3958 netstack_rele(ss->ss_netstack); 3959 return (0); 3960 } 3961 3962 case _I_INSERT: 3963 { 3964 /* 3965 * To insert a module to a given position in a stream. 3966 * In the first release, only allow privileged user 3967 * to use this ioctl. Furthermore, the insert is only allowed 3968 * below an anchor if the zoneid is the same as the zoneid 3969 * which created the anchor. 3970 * 3971 * Note that we do not plan to support this ioctl 3972 * on pipes in the first release. We want to learn more 3973 * about the implications of these ioctls before extending 3974 * their support. And we do not think these features are 3975 * valuable for pipes. 3976 * 3977 * Neither do we support O/C hot stream. Note that only 3978 * the upper streams of TCP/IP stack are O/C hot streams. 3979 * The lower IP stream is not. 3980 * When there is a O/C cold barrier, we only allow inserts 3981 * above the barrier. 3982 */ 3983 STRUCT_DECL(strmodconf, strmodinsert); 3984 char mod_name[FMNAMESZ + 1]; 3985 fmodsw_impl_t *fp; 3986 dev_t dummydev; 3987 queue_t *tmp_wrq; 3988 int pos; 3989 boolean_t is_insert; 3990 3991 STRUCT_INIT(strmodinsert, flag); 3992 if (stp->sd_flag & STRHUP) 3993 return (ENXIO); 3994 if (STRMATED(stp)) 3995 return (EINVAL); 3996 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 3997 return (error); 3998 if (stp->sd_anchor != 0 && 3999 stp->sd_anchorzone != crgetzoneid(crp)) 4000 return (EINVAL); 4001 4002 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 4003 STRUCT_SIZE(strmodinsert), copyflag); 4004 if (error) 4005 return (error); 4006 4007 /* 4008 * Get module name and look up in fmodsw. 4009 */ 4010 error = (copyflag & U_TO_K ? copyinstr : 4011 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 4012 mod_name, FMNAMESZ + 1, NULL); 4013 if (error) 4014 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4015 4016 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 4017 NULL) 4018 return (EINVAL); 4019 4020 if (error = strstartplumb(stp, flag, cmd)) { 4021 fmodsw_rele(fp); 4022 return (error); 4023 } 4024 4025 /* 4026 * Is this _I_INSERT just like an I_PUSH? We need to know 4027 * this because we do some optimizations if this is a 4028 * module being pushed. 4029 */ 4030 pos = STRUCT_FGET(strmodinsert, pos); 4031 is_insert = (pos != 0); 4032 4033 /* 4034 * Make sure pos is valid. Even though it is not an I_PUSH, 4035 * we impose the same limit on the number of modules in a 4036 * stream. 4037 */ 4038 mutex_enter(&stp->sd_lock); 4039 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4040 pos > stp->sd_pushcnt) { 4041 fmodsw_rele(fp); 4042 strendplumb(stp); 4043 mutex_exit(&stp->sd_lock); 4044 return (EINVAL); 4045 } 4046 if (stp->sd_anchor != 0) { 4047 /* 4048 * Is this insert below the anchor? 4049 * Pushcnt hasn't been increased yet hence 4050 * we test for greater than here, and greater or 4051 * equal after qattach. 4052 */ 4053 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4054 stp->sd_anchorzone != crgetzoneid(crp)) { 4055 fmodsw_rele(fp); 4056 strendplumb(stp); 4057 mutex_exit(&stp->sd_lock); 4058 return (EPERM); 4059 } 4060 } 4061 4062 mutex_exit(&stp->sd_lock); 4063 4064 /* 4065 * First find the correct position this module to 4066 * be inserted. We don't need to call claimstr() 4067 * as the stream should not be changing at this point. 4068 * 4069 * Insert new module and call its open routine 4070 * via qattach(). Modules don't change device 4071 * numbers, so just ignore dummydev here. 4072 */ 4073 for (tmp_wrq = stp->sd_wrq; pos > 0; 4074 tmp_wrq = tmp_wrq->q_next, pos--) { 4075 ASSERT(SAMESTR(tmp_wrq)); 4076 } 4077 dummydev = vp->v_rdev; 4078 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4079 fp, is_insert)) != 0) { 4080 mutex_enter(&stp->sd_lock); 4081 strendplumb(stp); 4082 mutex_exit(&stp->sd_lock); 4083 return (error); 4084 } 4085 4086 mutex_enter(&stp->sd_lock); 4087 4088 /* 4089 * As a performance concern we are caching the values of 4090 * q_minpsz and q_maxpsz of the module below the stream 4091 * head in the stream head. 4092 */ 4093 if (!is_insert) { 4094 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4095 rmin = stp->sd_wrq->q_next->q_minpsz; 4096 rmax = stp->sd_wrq->q_next->q_maxpsz; 4097 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4098 4099 /* Do this processing here as a performance concern */ 4100 if (strmsgsz != 0) { 4101 if (rmax == INFPSZ) { 4102 rmax = strmsgsz; 4103 } else { 4104 rmax = MIN(strmsgsz, rmax); 4105 } 4106 } 4107 4108 mutex_enter(QLOCK(wrq)); 4109 stp->sd_qn_minpsz = rmin; 4110 stp->sd_qn_maxpsz = rmax; 4111 mutex_exit(QLOCK(wrq)); 4112 } 4113 4114 /* 4115 * Need to update the anchor value if this module is 4116 * inserted below the anchor point. 4117 */ 4118 if (stp->sd_anchor != 0) { 4119 pos = STRUCT_FGET(strmodinsert, pos); 4120 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4121 stp->sd_anchor++; 4122 } 4123 4124 strendplumb(stp); 4125 mutex_exit(&stp->sd_lock); 4126 return (0); 4127 } 4128 4129 case _I_REMOVE: 4130 { 4131 /* 4132 * To remove a module with a given name in a stream. The 4133 * caller of this ioctl needs to provide both the name and 4134 * the position of the module to be removed. This eliminates 4135 * the ambiguity of removal if a module is inserted/pushed 4136 * multiple times in a stream. In the first release, only 4137 * allow privileged user to use this ioctl. 4138 * Furthermore, the remove is only allowed 4139 * below an anchor if the zoneid is the same as the zoneid 4140 * which created the anchor. 4141 * 4142 * Note that we do not plan to support this ioctl 4143 * on pipes in the first release. We want to learn more 4144 * about the implications of these ioctls before extending 4145 * their support. And we do not think these features are 4146 * valuable for pipes. 4147 * 4148 * Neither do we support O/C hot stream. Note that only 4149 * the upper streams of TCP/IP stack are O/C hot streams. 4150 * The lower IP stream is not. 4151 * When there is a O/C cold barrier we do not allow removal 4152 * below the barrier. 4153 * 4154 * Also note that _I_REMOVE cannot be used to remove a 4155 * driver or the stream head. 4156 */ 4157 STRUCT_DECL(strmodconf, strmodremove); 4158 queue_t *q; 4159 int pos; 4160 char mod_name[FMNAMESZ + 1]; 4161 boolean_t is_remove; 4162 4163 STRUCT_INIT(strmodremove, flag); 4164 if (stp->sd_flag & STRHUP) 4165 return (ENXIO); 4166 if (STRMATED(stp)) 4167 return (EINVAL); 4168 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4169 return (error); 4170 if (stp->sd_anchor != 0 && 4171 stp->sd_anchorzone != crgetzoneid(crp)) 4172 return (EINVAL); 4173 4174 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4175 STRUCT_SIZE(strmodremove), copyflag); 4176 if (error) 4177 return (error); 4178 4179 error = (copyflag & U_TO_K ? copyinstr : 4180 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4181 mod_name, FMNAMESZ + 1, NULL); 4182 if (error) 4183 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4184 4185 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4186 return (error); 4187 4188 /* 4189 * Match the name of given module to the name of module at 4190 * the given position. 4191 */ 4192 pos = STRUCT_FGET(strmodremove, pos); 4193 4194 is_remove = (pos != 0); 4195 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4196 q = q->q_next, pos--) 4197 ; 4198 if (pos > 0 || ! SAMESTR(q) || 4199 strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name, 4200 strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) { 4201 mutex_enter(&stp->sd_lock); 4202 strendplumb(stp); 4203 mutex_exit(&stp->sd_lock); 4204 return (EINVAL); 4205 } 4206 4207 /* 4208 * If the position is at or below an anchor, then the zoneid 4209 * must match the zoneid that created the anchor. 4210 */ 4211 if (stp->sd_anchor != 0) { 4212 pos = STRUCT_FGET(strmodremove, pos); 4213 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4214 stp->sd_anchorzone != crgetzoneid(crp)) { 4215 mutex_enter(&stp->sd_lock); 4216 strendplumb(stp); 4217 mutex_exit(&stp->sd_lock); 4218 return (EPERM); 4219 } 4220 } 4221 4222 4223 ASSERT(!(q->q_flag & QREADR)); 4224 qdetach(_RD(q), 1, flag, crp, is_remove); 4225 4226 mutex_enter(&stp->sd_lock); 4227 4228 /* 4229 * As a performance concern we are caching the values of 4230 * q_minpsz and q_maxpsz of the module below the stream 4231 * head in the stream head. 4232 */ 4233 if (!is_remove) { 4234 mutex_enter(QLOCK(wrq->q_next)); 4235 rmin = wrq->q_next->q_minpsz; 4236 rmax = wrq->q_next->q_maxpsz; 4237 mutex_exit(QLOCK(wrq->q_next)); 4238 4239 /* Do this processing here as a performance concern */ 4240 if (strmsgsz != 0) { 4241 if (rmax == INFPSZ) 4242 rmax = strmsgsz; 4243 else { 4244 if (vp->v_type == VFIFO) 4245 rmax = MIN(PIPE_BUF, rmax); 4246 else rmax = MIN(strmsgsz, rmax); 4247 } 4248 } 4249 4250 mutex_enter(QLOCK(wrq)); 4251 stp->sd_qn_minpsz = rmin; 4252 stp->sd_qn_maxpsz = rmax; 4253 mutex_exit(QLOCK(wrq)); 4254 } 4255 4256 /* 4257 * Need to update the anchor value if this module is removed 4258 * at or below the anchor point. If the removed module is at 4259 * the anchor point, remove the anchor for this stream if 4260 * there is no module above the anchor point. Otherwise, if 4261 * the removed module is below the anchor point, decrement the 4262 * anchor point by 1. 4263 */ 4264 if (stp->sd_anchor != 0) { 4265 pos = STRUCT_FGET(strmodremove, pos); 4266 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4267 stp->sd_anchor = 0; 4268 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4269 stp->sd_anchor--; 4270 } 4271 4272 strendplumb(stp); 4273 mutex_exit(&stp->sd_lock); 4274 return (0); 4275 } 4276 4277 case I_ANCHOR: 4278 /* 4279 * Set the anchor position on the stream to reside at 4280 * the top module (in other words, the top module 4281 * cannot be popped). Anchors with a FIFO make no 4282 * obvious sense, so they're not allowed. 4283 */ 4284 mutex_enter(&stp->sd_lock); 4285 4286 if (stp->sd_vnode->v_type == VFIFO) { 4287 mutex_exit(&stp->sd_lock); 4288 return (EINVAL); 4289 } 4290 /* Only allow the same zoneid to update the anchor */ 4291 if (stp->sd_anchor != 0 && 4292 stp->sd_anchorzone != crgetzoneid(crp)) { 4293 mutex_exit(&stp->sd_lock); 4294 return (EINVAL); 4295 } 4296 stp->sd_anchor = stp->sd_pushcnt; 4297 stp->sd_anchorzone = crgetzoneid(crp); 4298 mutex_exit(&stp->sd_lock); 4299 return (0); 4300 4301 case I_LOOK: 4302 /* 4303 * Get name of first module downstream. 4304 * If no module, return an error. 4305 */ 4306 { 4307 claimstr(wrq); 4308 if (_SAMESTR(wrq) && wrq->q_next->q_next) { 4309 char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname; 4310 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4311 copyflag); 4312 releasestr(wrq); 4313 return (error); 4314 } 4315 releasestr(wrq); 4316 return (EINVAL); 4317 } 4318 4319 case I_LINK: 4320 case I_PLINK: 4321 /* 4322 * Link a multiplexor. 4323 */ 4324 error = mlink(vp, cmd, (int)arg, crp, rvalp, 0); 4325 return (error); 4326 4327 case _I_PLINK_LH: 4328 /* 4329 * Link a multiplexor: Call must originate from kernel. 4330 */ 4331 if (kioctl) 4332 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4333 4334 return (EINVAL); 4335 case I_UNLINK: 4336 case I_PUNLINK: 4337 /* 4338 * Unlink a multiplexor. 4339 * If arg is -1, unlink all links for which this is the 4340 * controlling stream. Otherwise, arg is an index number 4341 * for a link to be removed. 4342 */ 4343 { 4344 struct linkinfo *linkp; 4345 int native_arg = (int)arg; 4346 int type; 4347 netstack_t *ns; 4348 str_stack_t *ss; 4349 4350 TRACE_1(TR_FAC_STREAMS_FR, 4351 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4352 if (vp->v_type == VFIFO) { 4353 return (EINVAL); 4354 } 4355 if (cmd == I_UNLINK) 4356 type = LINKNORMAL; 4357 else /* I_PUNLINK */ 4358 type = LINKPERSIST; 4359 if (native_arg == 0) { 4360 return (EINVAL); 4361 } 4362 ns = netstack_find_by_cred(crp); 4363 ASSERT(ns != NULL); 4364 ss = ns->netstack_str; 4365 ASSERT(ss != NULL); 4366 4367 if (native_arg == MUXID_ALL) 4368 error = munlinkall(stp, type, crp, rvalp, ss); 4369 else { 4370 mutex_enter(&muxifier); 4371 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4372 /* invalid user supplied index number */ 4373 mutex_exit(&muxifier); 4374 netstack_rele(ss->ss_netstack); 4375 return (EINVAL); 4376 } 4377 /* munlink drops the muxifier lock */ 4378 error = munlink(stp, linkp, type, crp, rvalp, ss); 4379 } 4380 netstack_rele(ss->ss_netstack); 4381 return (error); 4382 } 4383 4384 case I_FLUSH: 4385 /* 4386 * send a flush message downstream 4387 * flush message can indicate 4388 * FLUSHR - flush read queue 4389 * FLUSHW - flush write queue 4390 * FLUSHRW - flush read/write queue 4391 */ 4392 if (stp->sd_flag & STRHUP) 4393 return (ENXIO); 4394 if (arg & ~FLUSHRW) 4395 return (EINVAL); 4396 4397 for (;;) { 4398 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4399 break; 4400 } 4401 if (error = strwaitbuf(1, BPRI_HI)) { 4402 return (error); 4403 } 4404 } 4405 4406 /* 4407 * Send down an unsupported ioctl and wait for the nack 4408 * in order to allow the M_FLUSH to propagate back 4409 * up to the stream head. 4410 * Replaces if (qready()) runqueues(); 4411 */ 4412 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4413 strioc.ic_timout = 0; 4414 strioc.ic_len = 0; 4415 strioc.ic_dp = NULL; 4416 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4417 *rvalp = 0; 4418 return (0); 4419 4420 case I_FLUSHBAND: 4421 { 4422 struct bandinfo binfo; 4423 4424 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4425 copyflag); 4426 if (error) 4427 return (error); 4428 if (stp->sd_flag & STRHUP) 4429 return (ENXIO); 4430 if (binfo.bi_flag & ~FLUSHRW) 4431 return (EINVAL); 4432 while (!(mp = allocb(2, BPRI_HI))) { 4433 if (error = strwaitbuf(2, BPRI_HI)) 4434 return (error); 4435 } 4436 mp->b_datap->db_type = M_FLUSH; 4437 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4438 *mp->b_wptr++ = binfo.bi_pri; 4439 putnext(stp->sd_wrq, mp); 4440 /* 4441 * Send down an unsupported ioctl and wait for the nack 4442 * in order to allow the M_FLUSH to propagate back 4443 * up to the stream head. 4444 * Replaces if (qready()) runqueues(); 4445 */ 4446 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4447 strioc.ic_timout = 0; 4448 strioc.ic_len = 0; 4449 strioc.ic_dp = NULL; 4450 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4451 *rvalp = 0; 4452 return (0); 4453 } 4454 4455 case I_SRDOPT: 4456 /* 4457 * Set read options 4458 * 4459 * RNORM - default stream mode 4460 * RMSGN - message no discard 4461 * RMSGD - message discard 4462 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4463 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4464 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4465 */ 4466 if (arg & ~(RMODEMASK | RPROTMASK)) 4467 return (EINVAL); 4468 4469 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4470 return (EINVAL); 4471 4472 mutex_enter(&stp->sd_lock); 4473 switch (arg & RMODEMASK) { 4474 case RNORM: 4475 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4476 break; 4477 case RMSGD: 4478 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4479 RD_MSGDIS; 4480 break; 4481 case RMSGN: 4482 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4483 RD_MSGNODIS; 4484 break; 4485 } 4486 4487 switch (arg & RPROTMASK) { 4488 case RPROTNORM: 4489 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4490 break; 4491 4492 case RPROTDAT: 4493 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4494 RD_PROTDAT); 4495 break; 4496 4497 case RPROTDIS: 4498 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4499 RD_PROTDIS); 4500 break; 4501 } 4502 mutex_exit(&stp->sd_lock); 4503 return (0); 4504 4505 case I_GRDOPT: 4506 /* 4507 * Get read option and return the value 4508 * to spot pointed to by arg 4509 */ 4510 { 4511 int rdopt; 4512 4513 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4514 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4515 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4516 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4517 4518 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4519 copyflag)); 4520 } 4521 4522 case I_SERROPT: 4523 /* 4524 * Set error options 4525 * 4526 * RERRNORM - persistent read errors 4527 * RERRNONPERSIST - non-persistent read errors 4528 * WERRNORM - persistent write errors 4529 * WERRNONPERSIST - non-persistent write errors 4530 */ 4531 if (arg & ~(RERRMASK | WERRMASK)) 4532 return (EINVAL); 4533 4534 mutex_enter(&stp->sd_lock); 4535 switch (arg & RERRMASK) { 4536 case RERRNORM: 4537 stp->sd_flag &= ~STRDERRNONPERSIST; 4538 break; 4539 case RERRNONPERSIST: 4540 stp->sd_flag |= STRDERRNONPERSIST; 4541 break; 4542 } 4543 switch (arg & WERRMASK) { 4544 case WERRNORM: 4545 stp->sd_flag &= ~STWRERRNONPERSIST; 4546 break; 4547 case WERRNONPERSIST: 4548 stp->sd_flag |= STWRERRNONPERSIST; 4549 break; 4550 } 4551 mutex_exit(&stp->sd_lock); 4552 return (0); 4553 4554 case I_GERROPT: 4555 /* 4556 * Get error option and return the value 4557 * to spot pointed to by arg 4558 */ 4559 { 4560 int erropt = 0; 4561 4562 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4563 RERRNORM; 4564 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4565 WERRNORM; 4566 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4567 copyflag)); 4568 } 4569 4570 case I_SETSIG: 4571 /* 4572 * Register the calling proc to receive the SIGPOLL 4573 * signal based on the events given in arg. If 4574 * arg is zero, remove the proc from register list. 4575 */ 4576 { 4577 strsig_t *ssp, *pssp; 4578 struct pid *pidp; 4579 4580 pssp = NULL; 4581 pidp = curproc->p_pidp; 4582 /* 4583 * Hold sd_lock to prevent traversal of sd_siglist while 4584 * it is modified. 4585 */ 4586 mutex_enter(&stp->sd_lock); 4587 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4588 pssp = ssp, ssp = ssp->ss_next) 4589 ; 4590 4591 if (arg) { 4592 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4593 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4594 mutex_exit(&stp->sd_lock); 4595 return (EINVAL); 4596 } 4597 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4598 mutex_exit(&stp->sd_lock); 4599 return (EINVAL); 4600 } 4601 4602 /* 4603 * If proc not already registered, add it 4604 * to list. 4605 */ 4606 if (!ssp) { 4607 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4608 ssp->ss_pidp = pidp; 4609 ssp->ss_pid = pidp->pid_id; 4610 ssp->ss_next = NULL; 4611 if (pssp) 4612 pssp->ss_next = ssp; 4613 else 4614 stp->sd_siglist = ssp; 4615 mutex_enter(&pidlock); 4616 PID_HOLD(pidp); 4617 mutex_exit(&pidlock); 4618 } 4619 4620 /* 4621 * Set events. 4622 */ 4623 ssp->ss_events = (int)arg; 4624 } else { 4625 /* 4626 * Remove proc from register list. 4627 */ 4628 if (ssp) { 4629 mutex_enter(&pidlock); 4630 PID_RELE(pidp); 4631 mutex_exit(&pidlock); 4632 if (pssp) 4633 pssp->ss_next = ssp->ss_next; 4634 else 4635 stp->sd_siglist = ssp->ss_next; 4636 kmem_free(ssp, sizeof (strsig_t)); 4637 } else { 4638 mutex_exit(&stp->sd_lock); 4639 return (EINVAL); 4640 } 4641 } 4642 4643 /* 4644 * Recalculate OR of sig events. 4645 */ 4646 stp->sd_sigflags = 0; 4647 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4648 stp->sd_sigflags |= ssp->ss_events; 4649 mutex_exit(&stp->sd_lock); 4650 return (0); 4651 } 4652 4653 case I_GETSIG: 4654 /* 4655 * Return (in arg) the current registration of events 4656 * for which the calling proc is to be signaled. 4657 */ 4658 { 4659 struct strsig *ssp; 4660 struct pid *pidp; 4661 4662 pidp = curproc->p_pidp; 4663 mutex_enter(&stp->sd_lock); 4664 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4665 if (ssp->ss_pidp == pidp) { 4666 error = strcopyout(&ssp->ss_events, (void *)arg, 4667 sizeof (int), copyflag); 4668 mutex_exit(&stp->sd_lock); 4669 return (error); 4670 } 4671 mutex_exit(&stp->sd_lock); 4672 return (EINVAL); 4673 } 4674 4675 case I_ESETSIG: 4676 /* 4677 * Register the ss_pid to receive the SIGPOLL 4678 * signal based on the events is ss_events arg. If 4679 * ss_events is zero, remove the proc from register list. 4680 */ 4681 { 4682 struct strsig *ssp, *pssp; 4683 struct proc *proc; 4684 struct pid *pidp; 4685 pid_t pid; 4686 struct strsigset ss; 4687 4688 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4689 if (error) 4690 return (error); 4691 4692 pid = ss.ss_pid; 4693 4694 if (ss.ss_events != 0) { 4695 /* 4696 * Permissions check by sending signal 0. 4697 * Note that when kill fails it does a set_errno 4698 * causing the system call to fail. 4699 */ 4700 error = kill(pid, 0); 4701 if (error) { 4702 return (error); 4703 } 4704 } 4705 mutex_enter(&pidlock); 4706 if (pid == 0) 4707 proc = curproc; 4708 else if (pid < 0) 4709 proc = pgfind(-pid); 4710 else 4711 proc = prfind(pid); 4712 if (proc == NULL) { 4713 mutex_exit(&pidlock); 4714 return (ESRCH); 4715 } 4716 if (pid < 0) 4717 pidp = proc->p_pgidp; 4718 else 4719 pidp = proc->p_pidp; 4720 ASSERT(pidp); 4721 /* 4722 * Get a hold on the pid structure while referencing it. 4723 * There is a separate PID_HOLD should it be inserted 4724 * in the list below. 4725 */ 4726 PID_HOLD(pidp); 4727 mutex_exit(&pidlock); 4728 4729 pssp = NULL; 4730 /* 4731 * Hold sd_lock to prevent traversal of sd_siglist while 4732 * it is modified. 4733 */ 4734 mutex_enter(&stp->sd_lock); 4735 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4736 pssp = ssp, ssp = ssp->ss_next) 4737 ; 4738 4739 if (ss.ss_events) { 4740 if (ss.ss_events & 4741 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4742 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4743 mutex_exit(&stp->sd_lock); 4744 mutex_enter(&pidlock); 4745 PID_RELE(pidp); 4746 mutex_exit(&pidlock); 4747 return (EINVAL); 4748 } 4749 if ((ss.ss_events & S_BANDURG) && 4750 !(ss.ss_events & S_RDBAND)) { 4751 mutex_exit(&stp->sd_lock); 4752 mutex_enter(&pidlock); 4753 PID_RELE(pidp); 4754 mutex_exit(&pidlock); 4755 return (EINVAL); 4756 } 4757 4758 /* 4759 * If proc not already registered, add it 4760 * to list. 4761 */ 4762 if (!ssp) { 4763 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4764 ssp->ss_pidp = pidp; 4765 ssp->ss_pid = pid; 4766 ssp->ss_next = NULL; 4767 if (pssp) 4768 pssp->ss_next = ssp; 4769 else 4770 stp->sd_siglist = ssp; 4771 mutex_enter(&pidlock); 4772 PID_HOLD(pidp); 4773 mutex_exit(&pidlock); 4774 } 4775 4776 /* 4777 * Set events. 4778 */ 4779 ssp->ss_events = ss.ss_events; 4780 } else { 4781 /* 4782 * Remove proc from register list. 4783 */ 4784 if (ssp) { 4785 mutex_enter(&pidlock); 4786 PID_RELE(pidp); 4787 mutex_exit(&pidlock); 4788 if (pssp) 4789 pssp->ss_next = ssp->ss_next; 4790 else 4791 stp->sd_siglist = ssp->ss_next; 4792 kmem_free(ssp, sizeof (strsig_t)); 4793 } else { 4794 mutex_exit(&stp->sd_lock); 4795 mutex_enter(&pidlock); 4796 PID_RELE(pidp); 4797 mutex_exit(&pidlock); 4798 return (EINVAL); 4799 } 4800 } 4801 4802 /* 4803 * Recalculate OR of sig events. 4804 */ 4805 stp->sd_sigflags = 0; 4806 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4807 stp->sd_sigflags |= ssp->ss_events; 4808 mutex_exit(&stp->sd_lock); 4809 mutex_enter(&pidlock); 4810 PID_RELE(pidp); 4811 mutex_exit(&pidlock); 4812 return (0); 4813 } 4814 4815 case I_EGETSIG: 4816 /* 4817 * Return (in arg) the current registration of events 4818 * for which the calling proc is to be signaled. 4819 */ 4820 { 4821 struct strsig *ssp; 4822 struct proc *proc; 4823 pid_t pid; 4824 struct pid *pidp; 4825 struct strsigset ss; 4826 4827 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4828 if (error) 4829 return (error); 4830 4831 pid = ss.ss_pid; 4832 mutex_enter(&pidlock); 4833 if (pid == 0) 4834 proc = curproc; 4835 else if (pid < 0) 4836 proc = pgfind(-pid); 4837 else 4838 proc = prfind(pid); 4839 if (proc == NULL) { 4840 mutex_exit(&pidlock); 4841 return (ESRCH); 4842 } 4843 if (pid < 0) 4844 pidp = proc->p_pgidp; 4845 else 4846 pidp = proc->p_pidp; 4847 4848 /* Prevent the pidp from being reassigned */ 4849 PID_HOLD(pidp); 4850 mutex_exit(&pidlock); 4851 4852 mutex_enter(&stp->sd_lock); 4853 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4854 if (ssp->ss_pid == pid) { 4855 ss.ss_pid = ssp->ss_pid; 4856 ss.ss_events = ssp->ss_events; 4857 error = strcopyout(&ss, (void *)arg, 4858 sizeof (struct strsigset), copyflag); 4859 mutex_exit(&stp->sd_lock); 4860 mutex_enter(&pidlock); 4861 PID_RELE(pidp); 4862 mutex_exit(&pidlock); 4863 return (error); 4864 } 4865 mutex_exit(&stp->sd_lock); 4866 mutex_enter(&pidlock); 4867 PID_RELE(pidp); 4868 mutex_exit(&pidlock); 4869 return (EINVAL); 4870 } 4871 4872 case I_PEEK: 4873 { 4874 STRUCT_DECL(strpeek, strpeek); 4875 size_t n; 4876 mblk_t *fmp, *tmp_mp = NULL; 4877 4878 STRUCT_INIT(strpeek, flag); 4879 4880 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4881 STRUCT_SIZE(strpeek), copyflag); 4882 if (error) 4883 return (error); 4884 4885 mutex_enter(QLOCK(rdq)); 4886 /* 4887 * Skip the invalid messages 4888 */ 4889 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4890 if (mp->b_datap->db_type != M_SIG) 4891 break; 4892 4893 /* 4894 * If user has requested to peek at a high priority message 4895 * and first message is not, return 0 4896 */ 4897 if (mp != NULL) { 4898 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4899 queclass(mp) == QNORM) { 4900 *rvalp = 0; 4901 mutex_exit(QLOCK(rdq)); 4902 return (0); 4903 } 4904 } else if (stp->sd_struiordq == NULL || 4905 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4906 /* 4907 * No mblks to look at at the streamhead and 4908 * 1). This isn't a synch stream or 4909 * 2). This is a synch stream but caller wants high 4910 * priority messages which is not supported by 4911 * the synch stream. (it only supports QNORM) 4912 */ 4913 *rvalp = 0; 4914 mutex_exit(QLOCK(rdq)); 4915 return (0); 4916 } 4917 4918 fmp = mp; 4919 4920 if (mp && mp->b_datap->db_type == M_PASSFP) { 4921 mutex_exit(QLOCK(rdq)); 4922 return (EBADMSG); 4923 } 4924 4925 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 4926 mp->b_datap->db_type == M_PROTO || 4927 mp->b_datap->db_type == M_DATA); 4928 4929 if (mp && mp->b_datap->db_type == M_PCPROTO) { 4930 STRUCT_FSET(strpeek, flags, RS_HIPRI); 4931 } else { 4932 STRUCT_FSET(strpeek, flags, 0); 4933 } 4934 4935 4936 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 4937 mutex_exit(QLOCK(rdq)); 4938 return (ENOSR); 4939 } 4940 mutex_exit(QLOCK(rdq)); 4941 4942 /* 4943 * set mp = tmp_mp, so that I_PEEK processing can continue. 4944 * tmp_mp is used to free the dup'd message. 4945 */ 4946 mp = tmp_mp; 4947 4948 uio.uio_fmode = 0; 4949 uio.uio_extflg = UIO_COPY_CACHED; 4950 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 4951 UIO_SYSSPACE; 4952 uio.uio_limit = 0; 4953 /* 4954 * First process PROTO blocks, if any. 4955 * If user doesn't want to get ctl info by setting maxlen <= 0, 4956 * then set len to -1/0 and skip control blocks part. 4957 */ 4958 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 4959 STRUCT_FSET(strpeek, ctlbuf.len, -1); 4960 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 4961 STRUCT_FSET(strpeek, ctlbuf.len, 0); 4962 else { 4963 int ctl_part = 0; 4964 4965 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 4966 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 4967 uio.uio_iov = &iov; 4968 uio.uio_resid = iov.iov_len; 4969 uio.uio_loffset = 0; 4970 uio.uio_iovcnt = 1; 4971 while (mp && mp->b_datap->db_type != M_DATA && 4972 uio.uio_resid >= 0) { 4973 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 4974 mp->b_datap->db_type == M_PROTO : 4975 mp->b_datap->db_type == M_PCPROTO); 4976 4977 if ((n = MIN(uio.uio_resid, 4978 mp->b_wptr - mp->b_rptr)) != 0 && 4979 (error = uiomove((char *)mp->b_rptr, n, 4980 UIO_READ, &uio)) != 0) { 4981 freemsg(tmp_mp); 4982 return (error); 4983 } 4984 ctl_part = 1; 4985 mp = mp->b_cont; 4986 } 4987 /* No ctl message */ 4988 if (ctl_part == 0) 4989 STRUCT_FSET(strpeek, ctlbuf.len, -1); 4990 else 4991 STRUCT_FSET(strpeek, ctlbuf.len, 4992 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 4993 uio.uio_resid); 4994 } 4995 4996 /* 4997 * Now process DATA blocks, if any. 4998 * If user doesn't want to get data info by setting maxlen <= 0, 4999 * then set len to -1/0 and skip data blocks part. 5000 */ 5001 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 5002 STRUCT_FSET(strpeek, databuf.len, -1); 5003 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 5004 STRUCT_FSET(strpeek, databuf.len, 0); 5005 else { 5006 int data_part = 0; 5007 5008 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 5009 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 5010 uio.uio_iov = &iov; 5011 uio.uio_resid = iov.iov_len; 5012 uio.uio_loffset = 0; 5013 uio.uio_iovcnt = 1; 5014 while (mp && uio.uio_resid) { 5015 if (mp->b_datap->db_type == M_DATA) { 5016 if ((n = MIN(uio.uio_resid, 5017 mp->b_wptr - mp->b_rptr)) != 0 && 5018 (error = uiomove((char *)mp->b_rptr, 5019 n, UIO_READ, &uio)) != 0) { 5020 freemsg(tmp_mp); 5021 return (error); 5022 } 5023 data_part = 1; 5024 } 5025 ASSERT(data_part == 0 || 5026 mp->b_datap->db_type == M_DATA); 5027 mp = mp->b_cont; 5028 } 5029 /* No data message */ 5030 if (data_part == 0) 5031 STRUCT_FSET(strpeek, databuf.len, -1); 5032 else 5033 STRUCT_FSET(strpeek, databuf.len, 5034 STRUCT_FGET(strpeek, databuf.maxlen) - 5035 uio.uio_resid); 5036 } 5037 freemsg(tmp_mp); 5038 5039 /* 5040 * It is a synch stream and user wants to get 5041 * data (maxlen > 0). 5042 * uio setup is done by the codes that process DATA 5043 * blocks above. 5044 */ 5045 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5046 infod_t infod; 5047 5048 infod.d_cmd = INFOD_COPYOUT; 5049 infod.d_res = 0; 5050 infod.d_uiop = &uio; 5051 error = infonext(rdq, &infod); 5052 if (error == EINVAL || error == EBUSY) 5053 error = 0; 5054 if (error) 5055 return (error); 5056 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5057 databuf.maxlen) - uio.uio_resid); 5058 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5059 /* 5060 * No data found by the infonext(). 5061 */ 5062 STRUCT_FSET(strpeek, databuf.len, -1); 5063 } 5064 } 5065 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5066 STRUCT_SIZE(strpeek), copyflag); 5067 if (error) { 5068 return (error); 5069 } 5070 /* 5071 * If there is no message retrieved, set return code to 0 5072 * otherwise, set it to 1. 5073 */ 5074 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5075 STRUCT_FGET(strpeek, databuf.len) == -1) 5076 *rvalp = 0; 5077 else 5078 *rvalp = 1; 5079 return (0); 5080 } 5081 5082 case I_FDINSERT: 5083 { 5084 STRUCT_DECL(strfdinsert, strfdinsert); 5085 struct file *resftp; 5086 struct stdata *resstp; 5087 t_uscalar_t ival; 5088 ssize_t msgsize; 5089 struct strbuf mctl; 5090 5091 STRUCT_INIT(strfdinsert, flag); 5092 if (stp->sd_flag & STRHUP) 5093 return (ENXIO); 5094 /* 5095 * STRDERR, STWRERR and STPLEX tested above. 5096 */ 5097 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5098 STRUCT_SIZE(strfdinsert), copyflag); 5099 if (error) 5100 return (error); 5101 5102 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5103 (STRUCT_FGET(strfdinsert, offset) % 5104 sizeof (t_uscalar_t)) != 0) 5105 return (EINVAL); 5106 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5107 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5108 releasef(STRUCT_FGET(strfdinsert, fildes)); 5109 return (EINVAL); 5110 } 5111 } else 5112 return (EINVAL); 5113 5114 mutex_enter(&resstp->sd_lock); 5115 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5116 error = strgeterr(resstp, 5117 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5118 if (error != 0) { 5119 mutex_exit(&resstp->sd_lock); 5120 releasef(STRUCT_FGET(strfdinsert, fildes)); 5121 return (error); 5122 } 5123 } 5124 mutex_exit(&resstp->sd_lock); 5125 5126 #ifdef _ILP32 5127 { 5128 queue_t *q; 5129 queue_t *mate = NULL; 5130 5131 /* get read queue of stream terminus */ 5132 claimstr(resstp->sd_wrq); 5133 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5134 q = q->q_next) 5135 if (!STRMATED(resstp) && STREAM(q) != resstp && 5136 mate == NULL) { 5137 ASSERT(q->q_qinfo->qi_srvp); 5138 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5139 claimstr(q); 5140 mate = q; 5141 } 5142 q = _RD(q); 5143 if (mate) 5144 releasestr(mate); 5145 releasestr(resstp->sd_wrq); 5146 ival = (t_uscalar_t)q; 5147 } 5148 #else 5149 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5150 #endif /* _ILP32 */ 5151 5152 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5153 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5154 releasef(STRUCT_FGET(strfdinsert, fildes)); 5155 return (EINVAL); 5156 } 5157 5158 /* 5159 * Check for legal flag value. 5160 */ 5161 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5162 releasef(STRUCT_FGET(strfdinsert, fildes)); 5163 return (EINVAL); 5164 } 5165 5166 /* get these values from those cached in the stream head */ 5167 mutex_enter(QLOCK(stp->sd_wrq)); 5168 rmin = stp->sd_qn_minpsz; 5169 rmax = stp->sd_qn_maxpsz; 5170 mutex_exit(QLOCK(stp->sd_wrq)); 5171 5172 /* 5173 * Make sure ctl and data sizes together fall within 5174 * the limits of the max and min receive packet sizes 5175 * and do not exceed system limit. A negative data 5176 * length means that no data part is to be sent. 5177 */ 5178 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5179 if (rmax == 0) { 5180 releasef(STRUCT_FGET(strfdinsert, fildes)); 5181 return (ERANGE); 5182 } 5183 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5184 msgsize = 0; 5185 if ((msgsize < rmin) || 5186 ((msgsize > rmax) && (rmax != INFPSZ)) || 5187 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5188 releasef(STRUCT_FGET(strfdinsert, fildes)); 5189 return (ERANGE); 5190 } 5191 5192 mutex_enter(&stp->sd_lock); 5193 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5194 !canputnext(stp->sd_wrq)) { 5195 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5196 flag, -1, &done)) != 0 || done) { 5197 mutex_exit(&stp->sd_lock); 5198 releasef(STRUCT_FGET(strfdinsert, fildes)); 5199 return (error); 5200 } 5201 if ((error = i_straccess(stp, access)) != 0) { 5202 mutex_exit(&stp->sd_lock); 5203 releasef( 5204 STRUCT_FGET(strfdinsert, fildes)); 5205 return (error); 5206 } 5207 } 5208 mutex_exit(&stp->sd_lock); 5209 5210 /* 5211 * Copy strfdinsert.ctlbuf into native form of 5212 * ctlbuf to pass down into strmakemsg(). 5213 */ 5214 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5215 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5216 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5217 5218 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5219 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5220 uio.uio_iov = &iov; 5221 uio.uio_iovcnt = 1; 5222 uio.uio_loffset = 0; 5223 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5224 UIO_SYSSPACE; 5225 uio.uio_fmode = 0; 5226 uio.uio_extflg = UIO_COPY_CACHED; 5227 uio.uio_resid = iov.iov_len; 5228 if ((error = strmakemsg(&mctl, 5229 &msgsize, &uio, stp, 5230 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5231 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5232 releasef(STRUCT_FGET(strfdinsert, fildes)); 5233 return (error); 5234 } 5235 5236 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5237 5238 /* 5239 * Place the possibly reencoded queue pointer 'offset' bytes 5240 * from the start of the control portion of the message. 5241 */ 5242 *((t_uscalar_t *)(mp->b_rptr + 5243 STRUCT_FGET(strfdinsert, offset))) = ival; 5244 5245 /* 5246 * Put message downstream. 5247 */ 5248 stream_willservice(stp); 5249 putnext(stp->sd_wrq, mp); 5250 stream_runservice(stp); 5251 releasef(STRUCT_FGET(strfdinsert, fildes)); 5252 return (error); 5253 } 5254 5255 case I_SENDFD: 5256 { 5257 struct file *fp; 5258 5259 if ((fp = getf((int)arg)) == NULL) 5260 return (EBADF); 5261 error = do_sendfp(stp, fp, crp); 5262 if (audit_active) { 5263 audit_fdsend((int)arg, fp, error); 5264 } 5265 releasef((int)arg); 5266 return (error); 5267 } 5268 5269 case I_RECVFD: 5270 case I_E_RECVFD: 5271 { 5272 struct k_strrecvfd *srf; 5273 int i, fd; 5274 5275 mutex_enter(&stp->sd_lock); 5276 while (!(mp = getq(rdq))) { 5277 if (stp->sd_flag & (STRHUP|STREOF)) { 5278 mutex_exit(&stp->sd_lock); 5279 return (ENXIO); 5280 } 5281 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5282 flag, -1, &done)) != 0 || done) { 5283 mutex_exit(&stp->sd_lock); 5284 return (error); 5285 } 5286 if ((error = i_straccess(stp, access)) != 0) { 5287 mutex_exit(&stp->sd_lock); 5288 return (error); 5289 } 5290 } 5291 if (mp->b_datap->db_type != M_PASSFP) { 5292 putback(stp, rdq, mp, mp->b_band); 5293 mutex_exit(&stp->sd_lock); 5294 return (EBADMSG); 5295 } 5296 mutex_exit(&stp->sd_lock); 5297 5298 srf = (struct k_strrecvfd *)mp->b_rptr; 5299 if ((fd = ufalloc(0)) == -1) { 5300 mutex_enter(&stp->sd_lock); 5301 putback(stp, rdq, mp, mp->b_band); 5302 mutex_exit(&stp->sd_lock); 5303 return (EMFILE); 5304 } 5305 if (cmd == I_RECVFD) { 5306 struct o_strrecvfd ostrfd; 5307 5308 /* check to see if uid/gid values are too large. */ 5309 5310 if (srf->uid > (o_uid_t)USHRT_MAX || 5311 srf->gid > (o_gid_t)USHRT_MAX) { 5312 mutex_enter(&stp->sd_lock); 5313 putback(stp, rdq, mp, mp->b_band); 5314 mutex_exit(&stp->sd_lock); 5315 setf(fd, NULL); /* release fd entry */ 5316 return (EOVERFLOW); 5317 } 5318 5319 ostrfd.fd = fd; 5320 ostrfd.uid = (o_uid_t)srf->uid; 5321 ostrfd.gid = (o_gid_t)srf->gid; 5322 5323 /* Null the filler bits */ 5324 for (i = 0; i < 8; i++) 5325 ostrfd.fill[i] = 0; 5326 5327 error = strcopyout(&ostrfd, (void *)arg, 5328 sizeof (struct o_strrecvfd), copyflag); 5329 } else { /* I_E_RECVFD */ 5330 struct strrecvfd strfd; 5331 5332 strfd.fd = fd; 5333 strfd.uid = srf->uid; 5334 strfd.gid = srf->gid; 5335 5336 /* null the filler bits */ 5337 for (i = 0; i < 8; i++) 5338 strfd.fill[i] = 0; 5339 5340 error = strcopyout(&strfd, (void *)arg, 5341 sizeof (struct strrecvfd), copyflag); 5342 } 5343 5344 if (error) { 5345 setf(fd, NULL); /* release fd entry */ 5346 mutex_enter(&stp->sd_lock); 5347 putback(stp, rdq, mp, mp->b_band); 5348 mutex_exit(&stp->sd_lock); 5349 return (error); 5350 } 5351 if (audit_active) { 5352 audit_fdrecv(fd, srf->fp); 5353 } 5354 5355 /* 5356 * Always increment f_count since the freemsg() below will 5357 * always call free_passfp() which performs a closef(). 5358 */ 5359 mutex_enter(&srf->fp->f_tlock); 5360 srf->fp->f_count++; 5361 mutex_exit(&srf->fp->f_tlock); 5362 setf(fd, srf->fp); 5363 freemsg(mp); 5364 return (0); 5365 } 5366 5367 case I_SWROPT: 5368 /* 5369 * Set/clear the write options. arg is a bit 5370 * mask with any of the following bits set... 5371 * SNDZERO - send zero length message 5372 * SNDPIPE - send sigpipe to process if 5373 * sd_werror is set and process is 5374 * doing a write or putmsg. 5375 * The new stream head write options should reflect 5376 * what is in arg. 5377 */ 5378 if (arg & ~(SNDZERO|SNDPIPE)) 5379 return (EINVAL); 5380 5381 mutex_enter(&stp->sd_lock); 5382 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5383 if (arg & SNDZERO) 5384 stp->sd_wput_opt |= SW_SNDZERO; 5385 if (arg & SNDPIPE) 5386 stp->sd_wput_opt |= SW_SIGPIPE; 5387 mutex_exit(&stp->sd_lock); 5388 return (0); 5389 5390 case I_GWROPT: 5391 { 5392 int wropt = 0; 5393 5394 if (stp->sd_wput_opt & SW_SNDZERO) 5395 wropt |= SNDZERO; 5396 if (stp->sd_wput_opt & SW_SIGPIPE) 5397 wropt |= SNDPIPE; 5398 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5399 copyflag)); 5400 } 5401 5402 case I_LIST: 5403 /* 5404 * Returns all the modules found on this stream, 5405 * upto the driver. If argument is NULL, return the 5406 * number of modules (including driver). If argument 5407 * is not NULL, copy the names into the structure 5408 * provided. 5409 */ 5410 5411 { 5412 queue_t *q; 5413 int num_modules, space_allocated; 5414 STRUCT_DECL(str_list, strlist); 5415 struct str_mlist *mlist_ptr; 5416 5417 if (arg == NULL) { /* Return number of modules plus driver */ 5418 q = stp->sd_wrq; 5419 if (stp->sd_vnode->v_type == VFIFO) { 5420 *rvalp = stp->sd_pushcnt; 5421 } else { 5422 *rvalp = stp->sd_pushcnt + 1; 5423 } 5424 } else { 5425 STRUCT_INIT(strlist, flag); 5426 5427 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5428 STRUCT_SIZE(strlist), copyflag); 5429 if (error) 5430 return (error); 5431 5432 space_allocated = STRUCT_FGET(strlist, sl_nmods); 5433 if ((space_allocated) <= 0) 5434 return (EINVAL); 5435 claimstr(stp->sd_wrq); 5436 q = stp->sd_wrq; 5437 num_modules = 0; 5438 while (_SAMESTR(q) && (space_allocated != 0)) { 5439 char *name = 5440 q->q_next->q_qinfo->qi_minfo->mi_idname; 5441 5442 mlist_ptr = STRUCT_FGETP(strlist, sl_modlist); 5443 5444 error = strcopyout(name, mlist_ptr, 5445 strlen(name) + 1, copyflag); 5446 5447 if (error) { 5448 releasestr(stp->sd_wrq); 5449 return (error); 5450 } 5451 q = q->q_next; 5452 space_allocated--; 5453 num_modules++; 5454 mlist_ptr = 5455 (struct str_mlist *)((uintptr_t)mlist_ptr + 5456 sizeof (struct str_mlist)); 5457 STRUCT_FSETP(strlist, sl_modlist, mlist_ptr); 5458 } 5459 releasestr(stp->sd_wrq); 5460 error = strcopyout(&num_modules, (void *)arg, 5461 sizeof (int), copyflag); 5462 } 5463 return (error); 5464 } 5465 5466 case I_CKBAND: 5467 { 5468 queue_t *q; 5469 qband_t *qbp; 5470 5471 if ((arg < 0) || (arg >= NBAND)) 5472 return (EINVAL); 5473 q = _RD(stp->sd_wrq); 5474 mutex_enter(QLOCK(q)); 5475 if (arg > (int)q->q_nband) { 5476 *rvalp = 0; 5477 } else { 5478 if (arg == 0) { 5479 if (q->q_first) 5480 *rvalp = 1; 5481 else 5482 *rvalp = 0; 5483 } else { 5484 qbp = q->q_bandp; 5485 while (--arg > 0) 5486 qbp = qbp->qb_next; 5487 if (qbp->qb_first) 5488 *rvalp = 1; 5489 else 5490 *rvalp = 0; 5491 } 5492 } 5493 mutex_exit(QLOCK(q)); 5494 return (0); 5495 } 5496 5497 case I_GETBAND: 5498 { 5499 int intpri; 5500 queue_t *q; 5501 5502 q = _RD(stp->sd_wrq); 5503 mutex_enter(QLOCK(q)); 5504 mp = q->q_first; 5505 if (!mp) { 5506 mutex_exit(QLOCK(q)); 5507 return (ENODATA); 5508 } 5509 intpri = (int)mp->b_band; 5510 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5511 copyflag); 5512 mutex_exit(QLOCK(q)); 5513 return (error); 5514 } 5515 5516 case I_ATMARK: 5517 { 5518 queue_t *q; 5519 5520 if (arg & ~(ANYMARK|LASTMARK)) 5521 return (EINVAL); 5522 q = _RD(stp->sd_wrq); 5523 mutex_enter(&stp->sd_lock); 5524 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5525 *rvalp = 1; 5526 } else { 5527 mutex_enter(QLOCK(q)); 5528 mp = q->q_first; 5529 5530 if (mp == NULL) 5531 *rvalp = 0; 5532 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5533 *rvalp = 1; 5534 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5535 *rvalp = 1; 5536 else 5537 *rvalp = 0; 5538 mutex_exit(QLOCK(q)); 5539 } 5540 mutex_exit(&stp->sd_lock); 5541 return (0); 5542 } 5543 5544 case I_CANPUT: 5545 { 5546 char band; 5547 5548 if ((arg < 0) || (arg >= NBAND)) 5549 return (EINVAL); 5550 band = (char)arg; 5551 *rvalp = bcanputnext(stp->sd_wrq, band); 5552 return (0); 5553 } 5554 5555 case I_SETCLTIME: 5556 { 5557 int closetime; 5558 5559 error = strcopyin((void *)arg, &closetime, sizeof (int), 5560 copyflag); 5561 if (error) 5562 return (error); 5563 if (closetime < 0) 5564 return (EINVAL); 5565 5566 stp->sd_closetime = closetime; 5567 return (0); 5568 } 5569 5570 case I_GETCLTIME: 5571 { 5572 int closetime; 5573 5574 closetime = stp->sd_closetime; 5575 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5576 copyflag)); 5577 } 5578 5579 case TIOCGSID: 5580 { 5581 pid_t sid; 5582 5583 mutex_enter(&stp->sd_lock); 5584 if (stp->sd_sidp == NULL) { 5585 mutex_exit(&stp->sd_lock); 5586 return (ENOTTY); 5587 } 5588 sid = stp->sd_sidp->pid_id; 5589 mutex_exit(&stp->sd_lock); 5590 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5591 copyflag)); 5592 } 5593 5594 case TIOCSPGRP: 5595 { 5596 pid_t pgrp; 5597 proc_t *q; 5598 pid_t sid, fg_pgid, bg_pgid; 5599 5600 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5601 copyflag)) 5602 return (error); 5603 mutex_enter(&stp->sd_lock); 5604 mutex_enter(&pidlock); 5605 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5606 mutex_exit(&pidlock); 5607 mutex_exit(&stp->sd_lock); 5608 return (ENOTTY); 5609 } 5610 if (pgrp == stp->sd_pgidp->pid_id) { 5611 mutex_exit(&pidlock); 5612 mutex_exit(&stp->sd_lock); 5613 return (0); 5614 } 5615 if (pgrp <= 0 || pgrp >= maxpid) { 5616 mutex_exit(&pidlock); 5617 mutex_exit(&stp->sd_lock); 5618 return (EINVAL); 5619 } 5620 if ((q = pgfind(pgrp)) == NULL || 5621 q->p_sessp != ttoproc(curthread)->p_sessp) { 5622 mutex_exit(&pidlock); 5623 mutex_exit(&stp->sd_lock); 5624 return (EPERM); 5625 } 5626 sid = stp->sd_sidp->pid_id; 5627 fg_pgid = q->p_pgrp; 5628 bg_pgid = stp->sd_pgidp->pid_id; 5629 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5630 PID_RELE(stp->sd_pgidp); 5631 ctty_clear_sighuped(); 5632 stp->sd_pgidp = q->p_pgidp; 5633 PID_HOLD(stp->sd_pgidp); 5634 mutex_exit(&pidlock); 5635 mutex_exit(&stp->sd_lock); 5636 return (0); 5637 } 5638 5639 case TIOCGPGRP: 5640 { 5641 pid_t pgrp; 5642 5643 mutex_enter(&stp->sd_lock); 5644 if (stp->sd_sidp == NULL) { 5645 mutex_exit(&stp->sd_lock); 5646 return (ENOTTY); 5647 } 5648 pgrp = stp->sd_pgidp->pid_id; 5649 mutex_exit(&stp->sd_lock); 5650 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5651 copyflag)); 5652 } 5653 5654 case TIOCSCTTY: 5655 { 5656 return (strctty(stp)); 5657 } 5658 5659 case TIOCNOTTY: 5660 { 5661 /* freectty() always assumes curproc. */ 5662 if (freectty(B_FALSE) != 0) 5663 return (0); 5664 return (ENOTTY); 5665 } 5666 5667 case FIONBIO: 5668 case FIOASYNC: 5669 return (0); /* handled by the upper layer */ 5670 } 5671 } 5672 5673 /* 5674 * Custom free routine used for M_PASSFP messages. 5675 */ 5676 static void 5677 free_passfp(struct k_strrecvfd *srf) 5678 { 5679 (void) closef(srf->fp); 5680 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5681 } 5682 5683 /* ARGSUSED */ 5684 int 5685 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5686 { 5687 queue_t *qp, *nextqp; 5688 struct k_strrecvfd *srf; 5689 mblk_t *mp; 5690 frtn_t *frtnp; 5691 size_t bufsize; 5692 queue_t *mate = NULL; 5693 syncq_t *sq = NULL; 5694 int retval = 0; 5695 5696 if (stp->sd_flag & STRHUP) 5697 return (ENXIO); 5698 5699 claimstr(stp->sd_wrq); 5700 5701 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5702 if (STRMATED(stp)) { 5703 qp = _RD(stp->sd_mate->sd_wrq); 5704 claimstr(qp); 5705 mate = qp; 5706 } else { /* Not already mated. */ 5707 5708 /* 5709 * Walk the stream to the end of this one. 5710 * assumes that the claimstr() will prevent 5711 * plumbing between the stream head and the 5712 * driver from changing 5713 */ 5714 qp = stp->sd_wrq; 5715 5716 /* 5717 * Loop until we reach the end of this stream. 5718 * On completion, qp points to the write queue 5719 * at the end of the stream, or the read queue 5720 * at the stream head if this is a fifo. 5721 */ 5722 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5723 ; 5724 5725 /* 5726 * Just in case we get a q_next which is NULL, but 5727 * not at the end of the stream. This is actually 5728 * broken, so we set an assert to catch it in 5729 * debug, and set an error and return if not debug. 5730 */ 5731 ASSERT(qp); 5732 if (qp == NULL) { 5733 releasestr(stp->sd_wrq); 5734 return (EINVAL); 5735 } 5736 5737 /* 5738 * Enter the syncq for the driver, so (hopefully) 5739 * the queue values will not change on us. 5740 * XXXX - This will only prevent the race IFF only 5741 * the write side modifies the q_next member, and 5742 * the put procedure is protected by at least 5743 * MT_PERQ. 5744 */ 5745 if ((sq = qp->q_syncq) != NULL) 5746 entersq(sq, SQ_PUT); 5747 5748 /* Now get the q_next value from this qp. */ 5749 nextqp = qp->q_next; 5750 5751 /* 5752 * If nextqp exists and the other stream is different 5753 * from this one claim the stream, set the mate, and 5754 * get the read queue at the stream head of the other 5755 * stream. Assumes that nextqp was at least valid when 5756 * we got it. Hopefully the entersq of the driver 5757 * will prevent it from changing on us. 5758 */ 5759 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5760 ASSERT(qp->q_qinfo->qi_srvp); 5761 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5762 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5763 claimstr(nextqp); 5764 5765 /* Make sure we still have a q_next */ 5766 if (nextqp != qp->q_next) { 5767 releasestr(stp->sd_wrq); 5768 releasestr(nextqp); 5769 return (EINVAL); 5770 } 5771 5772 qp = _RD(STREAM(nextqp)->sd_wrq); 5773 mate = qp; 5774 } 5775 /* If we entered the synq above, leave it. */ 5776 if (sq != NULL) 5777 leavesq(sq, SQ_PUT); 5778 } /* STRMATED(STP) */ 5779 5780 /* XXX prevents substitution of the ops vector */ 5781 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5782 retval = EINVAL; 5783 goto out; 5784 } 5785 5786 if (qp->q_flag & QFULL) { 5787 retval = EAGAIN; 5788 goto out; 5789 } 5790 5791 /* 5792 * Since M_PASSFP messages include a file descriptor, we use 5793 * esballoc() and specify a custom free routine (free_passfp()) that 5794 * will close the descriptor as part of freeing the message. For 5795 * convenience, we stash the frtn_t right after the data block. 5796 */ 5797 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5798 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5799 if (srf == NULL) { 5800 retval = EAGAIN; 5801 goto out; 5802 } 5803 5804 frtnp = (frtn_t *)(srf + 1); 5805 frtnp->free_arg = (caddr_t)srf; 5806 frtnp->free_func = free_passfp; 5807 5808 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5809 if (mp == NULL) { 5810 kmem_free(srf, bufsize); 5811 retval = EAGAIN; 5812 goto out; 5813 } 5814 mp->b_wptr += sizeof (struct k_strrecvfd); 5815 mp->b_datap->db_type = M_PASSFP; 5816 5817 srf->fp = fp; 5818 srf->uid = crgetuid(curthread->t_cred); 5819 srf->gid = crgetgid(curthread->t_cred); 5820 mutex_enter(&fp->f_tlock); 5821 fp->f_count++; 5822 mutex_exit(&fp->f_tlock); 5823 5824 put(qp, mp); 5825 out: 5826 releasestr(stp->sd_wrq); 5827 if (mate) 5828 releasestr(mate); 5829 return (retval); 5830 } 5831 5832 /* 5833 * Send an ioctl message downstream and wait for acknowledgement. 5834 * flags may be set to either U_TO_K or K_TO_K and a combination 5835 * of STR_NOERROR or STR_NOSIG 5836 * STR_NOSIG: Signals are essentially ignored or held and have 5837 * no effect for the duration of the call. 5838 * STR_NOERROR: Ignores stream head read, write and hup errors. 5839 * Additionally, if an existing ioctl times out, it is assumed 5840 * lost and and this ioctl will continue as if the previous ioctl had 5841 * finished. ETIME may be returned if this ioctl times out (i.e. 5842 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5843 * the ioc_error indicates that the driver/module had problems, 5844 * an EFAULT was found when accessing user data, a lack of 5845 * resources, etc. 5846 */ 5847 int 5848 strdoioctl( 5849 struct stdata *stp, 5850 struct strioctl *strioc, 5851 int fflags, /* file flags with model info */ 5852 int flag, 5853 cred_t *crp, 5854 int *rvalp) 5855 { 5856 mblk_t *bp; 5857 struct iocblk *iocbp; 5858 struct copyreq *reqp; 5859 struct copyresp *resp; 5860 int id; 5861 int transparent = 0; 5862 int error = 0; 5863 int len = 0; 5864 caddr_t taddr; 5865 int copyflag = (flag & (U_TO_K | K_TO_K)); 5866 int sigflag = (flag & STR_NOSIG); 5867 int errs; 5868 uint_t waitflags; 5869 5870 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5871 ASSERT((fflags & FMODELS) != 0); 5872 5873 TRACE_2(TR_FAC_STREAMS_FR, 5874 TR_STRDOIOCTL, 5875 "strdoioctl:stp %p strioc %p", stp, strioc); 5876 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5877 transparent = 1; 5878 strioc->ic_len = sizeof (intptr_t); 5879 } 5880 5881 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5882 return (EINVAL); 5883 5884 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5885 crp)) == NULL) 5886 return (error); 5887 5888 bzero(bp->b_wptr, sizeof (union ioctypes)); 5889 5890 iocbp = (struct iocblk *)bp->b_wptr; 5891 iocbp->ioc_count = strioc->ic_len; 5892 iocbp->ioc_cmd = strioc->ic_cmd; 5893 iocbp->ioc_flag = (fflags & FMODELS); 5894 5895 crhold(crp); 5896 iocbp->ioc_cr = crp; 5897 DB_TYPE(bp) = M_IOCTL; 5898 DB_CPID(bp) = curproc->p_pid; 5899 bp->b_wptr += sizeof (struct iocblk); 5900 5901 if (flag & STR_NOERROR) 5902 errs = STPLEX; 5903 else 5904 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5905 5906 /* 5907 * If there is data to copy into ioctl block, do so. 5908 */ 5909 if (iocbp->ioc_count > 0) { 5910 if (transparent) 5911 /* 5912 * Note: STR_NOERROR does not have an effect 5913 * in putiocd() 5914 */ 5915 id = K_TO_K | sigflag; 5916 else 5917 id = flag; 5918 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5919 freemsg(bp); 5920 crfree(crp); 5921 return (error); 5922 } 5923 5924 /* 5925 * We could have slept copying in user pages. 5926 * Recheck the stream head state (the other end 5927 * of a pipe could have gone away). 5928 */ 5929 if (stp->sd_flag & errs) { 5930 mutex_enter(&stp->sd_lock); 5931 error = strgeterr(stp, errs, 0); 5932 mutex_exit(&stp->sd_lock); 5933 if (error != 0) { 5934 freemsg(bp); 5935 crfree(crp); 5936 return (error); 5937 } 5938 } 5939 } 5940 if (transparent) 5941 iocbp->ioc_count = TRANSPARENT; 5942 5943 /* 5944 * Block for up to STRTIMOUT milliseconds if there is an outstanding 5945 * ioctl for this stream already running. All processes 5946 * sleeping here will be awakened as a result of an ACK 5947 * or NAK being received for the outstanding ioctl, or 5948 * as a result of the timer expiring on the outstanding 5949 * ioctl (a failure), or as a result of any waiting 5950 * process's timer expiring (also a failure). 5951 */ 5952 5953 error = 0; 5954 mutex_enter(&stp->sd_lock); 5955 while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) { 5956 clock_t cv_rval; 5957 5958 TRACE_0(TR_FAC_STREAMS_FR, 5959 TR_STRDOIOCTL_WAIT, 5960 "strdoioctl sleeps - IOCWAIT"); 5961 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 5962 STRTIMOUT, sigflag); 5963 if (cv_rval <= 0) { 5964 if (cv_rval == 0) { 5965 error = EINTR; 5966 } else { 5967 if (flag & STR_NOERROR) { 5968 /* 5969 * Terminating current ioctl in 5970 * progress -- assume it got lost and 5971 * wake up the other thread so that the 5972 * operation completes. 5973 */ 5974 if (!(stp->sd_flag & IOCWAITNE)) { 5975 stp->sd_flag |= IOCWAITNE; 5976 cv_broadcast(&stp->sd_monitor); 5977 } 5978 /* 5979 * Otherwise, there's a running 5980 * STR_NOERROR -- we have no choice 5981 * here but to wait forever (or until 5982 * interrupted). 5983 */ 5984 } else { 5985 /* 5986 * pending ioctl has caused 5987 * us to time out 5988 */ 5989 error = ETIME; 5990 } 5991 } 5992 } else if ((stp->sd_flag & errs)) { 5993 error = strgeterr(stp, errs, 0); 5994 } 5995 if (error) { 5996 mutex_exit(&stp->sd_lock); 5997 freemsg(bp); 5998 crfree(crp); 5999 return (error); 6000 } 6001 } 6002 6003 /* 6004 * Have control of ioctl mechanism. 6005 * Send down ioctl packet and wait for response. 6006 */ 6007 if (stp->sd_iocblk != (mblk_t *)-1) { 6008 freemsg(stp->sd_iocblk); 6009 } 6010 stp->sd_iocblk = NULL; 6011 6012 /* 6013 * If this is marked with 'noerror' (internal; mostly 6014 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 6015 * in here by setting IOCWAITNE. 6016 */ 6017 waitflags = IOCWAIT; 6018 if (flag & STR_NOERROR) 6019 waitflags |= IOCWAITNE; 6020 6021 stp->sd_flag |= waitflags; 6022 6023 /* 6024 * Assign sequence number. 6025 */ 6026 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 6027 6028 mutex_exit(&stp->sd_lock); 6029 6030 TRACE_1(TR_FAC_STREAMS_FR, 6031 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 6032 stream_willservice(stp); 6033 putnext(stp->sd_wrq, bp); 6034 stream_runservice(stp); 6035 6036 /* 6037 * Timed wait for acknowledgment. The wait time is limited by the 6038 * timeout value, which must be a positive integer (number of 6039 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6040 * milliseconds), or -1 (wait forever). This will be awakened 6041 * either by an ACK/NAK message arriving, the timer expiring, or 6042 * the timer expiring on another ioctl waiting for control of the 6043 * mechanism. 6044 */ 6045 waitioc: 6046 mutex_enter(&stp->sd_lock); 6047 6048 6049 /* 6050 * If the reply has already arrived, don't sleep. If awakened from 6051 * the sleep, fail only if the reply has not arrived by then. 6052 * Otherwise, process the reply. 6053 */ 6054 while (!stp->sd_iocblk) { 6055 clock_t cv_rval; 6056 6057 if (stp->sd_flag & errs) { 6058 error = strgeterr(stp, errs, 0); 6059 if (error != 0) { 6060 stp->sd_flag &= ~waitflags; 6061 cv_broadcast(&stp->sd_iocmonitor); 6062 mutex_exit(&stp->sd_lock); 6063 crfree(crp); 6064 return (error); 6065 } 6066 } 6067 6068 TRACE_0(TR_FAC_STREAMS_FR, 6069 TR_STRDOIOCTL_WAIT2, 6070 "strdoioctl sleeps awaiting reply"); 6071 ASSERT(error == 0); 6072 6073 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6074 (strioc->ic_timout ? 6075 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6076 6077 /* 6078 * There are four possible cases here: interrupt, timeout, 6079 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6080 * valid M_IOCTL reply). 6081 * 6082 * If we've been awakened by a STR_NOERROR ioctl on some other 6083 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6084 * will be set. Pretend as if we just timed out. Note that 6085 * this other thread waited at least STRTIMOUT before trying to 6086 * awaken our thread, so this is indistinguishable (even for 6087 * INFTIM) from the case where we failed with ETIME waiting on 6088 * IOCWAIT in the prior loop. 6089 */ 6090 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6091 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6092 cv_rval = -1; 6093 } 6094 6095 /* 6096 * note: STR_NOERROR does not protect 6097 * us here.. use ic_timout < 0 6098 */ 6099 if (cv_rval <= 0) { 6100 if (cv_rval == 0) { 6101 error = EINTR; 6102 } else { 6103 error = ETIME; 6104 } 6105 /* 6106 * A message could have come in after we were scheduled 6107 * but before we were actually run. 6108 */ 6109 bp = stp->sd_iocblk; 6110 stp->sd_iocblk = NULL; 6111 if (bp != NULL) { 6112 if ((bp->b_datap->db_type == M_COPYIN) || 6113 (bp->b_datap->db_type == M_COPYOUT)) { 6114 mutex_exit(&stp->sd_lock); 6115 if (bp->b_cont) { 6116 freemsg(bp->b_cont); 6117 bp->b_cont = NULL; 6118 } 6119 bp->b_datap->db_type = M_IOCDATA; 6120 bp->b_wptr = bp->b_rptr + 6121 sizeof (struct copyresp); 6122 resp = (struct copyresp *)bp->b_rptr; 6123 resp->cp_rval = 6124 (caddr_t)1; /* failure */ 6125 stream_willservice(stp); 6126 putnext(stp->sd_wrq, bp); 6127 stream_runservice(stp); 6128 mutex_enter(&stp->sd_lock); 6129 } else { 6130 freemsg(bp); 6131 } 6132 } 6133 stp->sd_flag &= ~waitflags; 6134 cv_broadcast(&stp->sd_iocmonitor); 6135 mutex_exit(&stp->sd_lock); 6136 crfree(crp); 6137 return (error); 6138 } 6139 } 6140 bp = stp->sd_iocblk; 6141 /* 6142 * Note: it is strictly impossible to get here with sd_iocblk set to 6143 * -1. This is because the initial loop above doesn't allow any new 6144 * ioctls into the fray until all others have passed this point. 6145 */ 6146 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6147 TRACE_1(TR_FAC_STREAMS_FR, 6148 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6149 if ((bp->b_datap->db_type == M_IOCACK) || 6150 (bp->b_datap->db_type == M_IOCNAK)) { 6151 /* for detection of duplicate ioctl replies */ 6152 stp->sd_iocblk = (mblk_t *)-1; 6153 stp->sd_flag &= ~waitflags; 6154 cv_broadcast(&stp->sd_iocmonitor); 6155 mutex_exit(&stp->sd_lock); 6156 } else { 6157 /* 6158 * flags not cleared here because we're still doing 6159 * copy in/out for ioctl. 6160 */ 6161 stp->sd_iocblk = NULL; 6162 mutex_exit(&stp->sd_lock); 6163 } 6164 6165 6166 /* 6167 * Have received acknowledgment. 6168 */ 6169 6170 switch (bp->b_datap->db_type) { 6171 case M_IOCACK: 6172 /* 6173 * Positive ack. 6174 */ 6175 iocbp = (struct iocblk *)bp->b_rptr; 6176 6177 /* 6178 * Set error if indicated. 6179 */ 6180 if (iocbp->ioc_error) { 6181 error = iocbp->ioc_error; 6182 break; 6183 } 6184 6185 /* 6186 * Set return value. 6187 */ 6188 *rvalp = iocbp->ioc_rval; 6189 6190 /* 6191 * Data may have been returned in ACK message (ioc_count > 0). 6192 * If so, copy it out to the user's buffer. 6193 */ 6194 if (iocbp->ioc_count && !transparent) { 6195 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6196 break; 6197 } 6198 if (!transparent) { 6199 if (len) /* an M_COPYOUT was used with I_STR */ 6200 strioc->ic_len = len; 6201 else 6202 strioc->ic_len = (int)iocbp->ioc_count; 6203 } 6204 break; 6205 6206 case M_IOCNAK: 6207 /* 6208 * Negative ack. 6209 * 6210 * The only thing to do is set error as specified 6211 * in neg ack packet. 6212 */ 6213 iocbp = (struct iocblk *)bp->b_rptr; 6214 6215 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6216 break; 6217 6218 case M_COPYIN: 6219 /* 6220 * Driver or module has requested user ioctl data. 6221 */ 6222 reqp = (struct copyreq *)bp->b_rptr; 6223 6224 /* 6225 * M_COPYIN should *never* have a message attached, though 6226 * it's harmless if it does -- thus, panic on a DEBUG 6227 * kernel and just free it on a non-DEBUG build. 6228 */ 6229 ASSERT(bp->b_cont == NULL); 6230 if (bp->b_cont != NULL) { 6231 freemsg(bp->b_cont); 6232 bp->b_cont = NULL; 6233 } 6234 6235 error = putiocd(bp, reqp->cq_addr, flag, crp); 6236 if (error && bp->b_cont) { 6237 freemsg(bp->b_cont); 6238 bp->b_cont = NULL; 6239 } 6240 6241 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6242 bp->b_datap->db_type = M_IOCDATA; 6243 6244 mblk_setcred(bp, crp); 6245 DB_CPID(bp) = curproc->p_pid; 6246 resp = (struct copyresp *)bp->b_rptr; 6247 resp->cp_rval = (caddr_t)(uintptr_t)error; 6248 resp->cp_flag = (fflags & FMODELS); 6249 6250 stream_willservice(stp); 6251 putnext(stp->sd_wrq, bp); 6252 stream_runservice(stp); 6253 6254 if (error) { 6255 mutex_enter(&stp->sd_lock); 6256 stp->sd_flag &= ~waitflags; 6257 cv_broadcast(&stp->sd_iocmonitor); 6258 mutex_exit(&stp->sd_lock); 6259 crfree(crp); 6260 return (error); 6261 } 6262 6263 goto waitioc; 6264 6265 case M_COPYOUT: 6266 /* 6267 * Driver or module has ioctl data for a user. 6268 */ 6269 reqp = (struct copyreq *)bp->b_rptr; 6270 ASSERT(bp->b_cont != NULL); 6271 6272 /* 6273 * Always (transparent or non-transparent ) 6274 * use the address specified in the request 6275 */ 6276 taddr = reqp->cq_addr; 6277 if (!transparent) 6278 len = (int)reqp->cq_size; 6279 6280 /* copyout data to the provided address */ 6281 error = getiocd(bp, taddr, copyflag); 6282 6283 freemsg(bp->b_cont); 6284 bp->b_cont = NULL; 6285 6286 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6287 bp->b_datap->db_type = M_IOCDATA; 6288 6289 mblk_setcred(bp, crp); 6290 DB_CPID(bp) = curproc->p_pid; 6291 resp = (struct copyresp *)bp->b_rptr; 6292 resp->cp_rval = (caddr_t)(uintptr_t)error; 6293 resp->cp_flag = (fflags & FMODELS); 6294 6295 stream_willservice(stp); 6296 putnext(stp->sd_wrq, bp); 6297 stream_runservice(stp); 6298 6299 if (error) { 6300 mutex_enter(&stp->sd_lock); 6301 stp->sd_flag &= ~waitflags; 6302 cv_broadcast(&stp->sd_iocmonitor); 6303 mutex_exit(&stp->sd_lock); 6304 crfree(crp); 6305 return (error); 6306 } 6307 goto waitioc; 6308 6309 default: 6310 ASSERT(0); 6311 mutex_enter(&stp->sd_lock); 6312 stp->sd_flag &= ~waitflags; 6313 cv_broadcast(&stp->sd_iocmonitor); 6314 mutex_exit(&stp->sd_lock); 6315 break; 6316 } 6317 6318 freemsg(bp); 6319 crfree(crp); 6320 return (error); 6321 } 6322 6323 /* 6324 * For the SunOS keyboard driver. 6325 * Return the next available "ioctl" sequence number. 6326 * Exported, so that streams modules can send "ioctl" messages 6327 * downstream from their open routine. 6328 */ 6329 int 6330 getiocseqno(void) 6331 { 6332 int i; 6333 6334 mutex_enter(&strresources); 6335 i = ++ioc_id; 6336 mutex_exit(&strresources); 6337 return (i); 6338 } 6339 6340 /* 6341 * Get the next message from the read queue. If the message is 6342 * priority, STRPRI will have been set by strrput(). This flag 6343 * should be reset only when the entire message at the front of the 6344 * queue as been consumed. 6345 * 6346 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6347 */ 6348 int 6349 strgetmsg( 6350 struct vnode *vp, 6351 struct strbuf *mctl, 6352 struct strbuf *mdata, 6353 unsigned char *prip, 6354 int *flagsp, 6355 int fmode, 6356 rval_t *rvp) 6357 { 6358 struct stdata *stp; 6359 mblk_t *bp, *nbp; 6360 mblk_t *savemp = NULL; 6361 mblk_t *savemptail = NULL; 6362 uint_t old_sd_flag; 6363 int flg; 6364 int more = 0; 6365 int error = 0; 6366 char first = 1; 6367 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6368 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6369 unsigned char pri = 0; 6370 queue_t *q; 6371 int pr = 0; /* Partial read successful */ 6372 struct uio uios; 6373 struct uio *uiop = &uios; 6374 struct iovec iovs; 6375 unsigned char type; 6376 6377 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6378 "strgetmsg:%p", vp); 6379 6380 ASSERT(vp->v_stream); 6381 stp = vp->v_stream; 6382 rvp->r_val1 = 0; 6383 6384 mutex_enter(&stp->sd_lock); 6385 6386 if ((error = i_straccess(stp, JCREAD)) != 0) { 6387 mutex_exit(&stp->sd_lock); 6388 return (error); 6389 } 6390 6391 if (stp->sd_flag & (STRDERR|STPLEX)) { 6392 error = strgeterr(stp, STRDERR|STPLEX, 0); 6393 if (error != 0) { 6394 mutex_exit(&stp->sd_lock); 6395 return (error); 6396 } 6397 } 6398 mutex_exit(&stp->sd_lock); 6399 6400 switch (*flagsp) { 6401 case MSG_HIPRI: 6402 if (*prip != 0) 6403 return (EINVAL); 6404 break; 6405 6406 case MSG_ANY: 6407 case MSG_BAND: 6408 break; 6409 6410 default: 6411 return (EINVAL); 6412 } 6413 /* 6414 * Setup uio and iov for data part 6415 */ 6416 iovs.iov_base = mdata->buf; 6417 iovs.iov_len = mdata->maxlen; 6418 uios.uio_iov = &iovs; 6419 uios.uio_iovcnt = 1; 6420 uios.uio_loffset = 0; 6421 uios.uio_segflg = UIO_USERSPACE; 6422 uios.uio_fmode = 0; 6423 uios.uio_extflg = UIO_COPY_CACHED; 6424 uios.uio_resid = mdata->maxlen; 6425 uios.uio_offset = 0; 6426 6427 q = _RD(stp->sd_wrq); 6428 mutex_enter(&stp->sd_lock); 6429 old_sd_flag = stp->sd_flag; 6430 mark = 0; 6431 for (;;) { 6432 int done = 0; 6433 mblk_t *q_first = q->q_first; 6434 6435 /* 6436 * Get the next message of appropriate priority 6437 * from the stream head. If the caller is interested 6438 * in band or hipri messages, then they should already 6439 * be enqueued at the stream head. On the other hand 6440 * if the caller wants normal (band 0) messages, they 6441 * might be deferred in a synchronous stream and they 6442 * will need to be pulled up. 6443 * 6444 * After we have dequeued a message, we might find that 6445 * it was a deferred M_SIG that was enqueued at the 6446 * stream head. It must now be posted as part of the 6447 * read by calling strsignal_nolock(). 6448 * 6449 * Also note that strrput does not enqueue an M_PCSIG, 6450 * and there cannot be more than one hipri message, 6451 * so there was no need to have the M_PCSIG case. 6452 * 6453 * At some time it might be nice to try and wrap the 6454 * functionality of kstrgetmsg() and strgetmsg() into 6455 * a common routine so to reduce the amount of replicated 6456 * code (since they are extremely similar). 6457 */ 6458 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6459 /* Asking for normal, band0 data */ 6460 bp = strget(stp, q, uiop, first, &error); 6461 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6462 if (bp != NULL) { 6463 if (bp->b_datap->db_type == M_SIG) { 6464 strsignal_nolock(stp, *bp->b_rptr, 6465 (int32_t)bp->b_band); 6466 continue; 6467 } else { 6468 break; 6469 } 6470 } 6471 if (error != 0) { 6472 goto getmout; 6473 } 6474 6475 /* 6476 * We can't depend on the value of STRPRI here because 6477 * the stream head may be in transit. Therefore, we 6478 * must look at the type of the first message to 6479 * determine if a high priority messages is waiting 6480 */ 6481 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6482 q_first->b_datap->db_type >= QPCTL && 6483 (bp = getq_noenab(q)) != NULL) { 6484 /* Asked for HIPRI and got one */ 6485 ASSERT(bp->b_datap->db_type >= QPCTL); 6486 break; 6487 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6488 ((q_first->b_band >= *prip) || 6489 q_first->b_datap->db_type >= QPCTL) && 6490 (bp = getq_noenab(q)) != NULL) { 6491 /* 6492 * Asked for at least band "prip" and got either at 6493 * least that band or a hipri message. 6494 */ 6495 ASSERT(bp->b_band >= *prip || 6496 bp->b_datap->db_type >= QPCTL); 6497 if (bp->b_datap->db_type == M_SIG) { 6498 strsignal_nolock(stp, *bp->b_rptr, 6499 (int32_t)bp->b_band); 6500 continue; 6501 } else { 6502 break; 6503 } 6504 } 6505 6506 /* No data. Time to sleep? */ 6507 qbackenable(q, 0); 6508 6509 /* 6510 * If STRHUP or STREOF, return 0 length control and data. 6511 * If resid is 0, then a read(fd,buf,0) was done. Do not 6512 * sleep to satisfy this request because by default we have 6513 * zero bytes to return. 6514 */ 6515 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6516 mdata->maxlen == 0)) { 6517 mctl->len = mdata->len = 0; 6518 *flagsp = 0; 6519 mutex_exit(&stp->sd_lock); 6520 return (0); 6521 } 6522 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6523 "strgetmsg calls strwaitq:%p, %p", 6524 vp, uiop); 6525 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6526 &done)) != 0) || done) { 6527 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6528 "strgetmsg error or done:%p, %p", 6529 vp, uiop); 6530 mutex_exit(&stp->sd_lock); 6531 return (error); 6532 } 6533 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6534 "strgetmsg awakes:%p, %p", vp, uiop); 6535 if ((error = i_straccess(stp, JCREAD)) != 0) { 6536 mutex_exit(&stp->sd_lock); 6537 return (error); 6538 } 6539 first = 0; 6540 } 6541 ASSERT(bp != NULL); 6542 /* 6543 * Extract any mark information. If the message is not completely 6544 * consumed this information will be put in the mblk 6545 * that is putback. 6546 * If MSGMARKNEXT is set and the message is completely consumed 6547 * the STRATMARK flag will be set below. Likewise, if 6548 * MSGNOTMARKNEXT is set and the message is 6549 * completely consumed STRNOTATMARK will be set. 6550 */ 6551 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6552 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6553 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6554 if (mark != 0 && bp == stp->sd_mark) { 6555 mark |= _LASTMARK; 6556 stp->sd_mark = NULL; 6557 } 6558 /* 6559 * keep track of the original message type and priority 6560 */ 6561 pri = bp->b_band; 6562 type = bp->b_datap->db_type; 6563 if (type == M_PASSFP) { 6564 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6565 stp->sd_mark = bp; 6566 bp->b_flag |= mark & ~_LASTMARK; 6567 putback(stp, q, bp, pri); 6568 qbackenable(q, pri); 6569 mutex_exit(&stp->sd_lock); 6570 return (EBADMSG); 6571 } 6572 ASSERT(type != M_SIG); 6573 6574 /* 6575 * Set this flag so strrput will not generate signals. Need to 6576 * make sure this flag is cleared before leaving this routine 6577 * else signals will stop being sent. 6578 */ 6579 stp->sd_flag |= STRGETINPROG; 6580 mutex_exit(&stp->sd_lock); 6581 6582 if (STREAM_NEEDSERVICE(stp)) 6583 stream_runservice(stp); 6584 6585 /* 6586 * Set HIPRI flag if message is priority. 6587 */ 6588 if (type >= QPCTL) 6589 flg = MSG_HIPRI; 6590 else 6591 flg = MSG_BAND; 6592 6593 /* 6594 * First process PROTO or PCPROTO blocks, if any. 6595 */ 6596 if (mctl->maxlen >= 0 && type != M_DATA) { 6597 size_t n, bcnt; 6598 char *ubuf; 6599 6600 bcnt = mctl->maxlen; 6601 ubuf = mctl->buf; 6602 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6603 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6604 copyout(bp->b_rptr, ubuf, n)) { 6605 error = EFAULT; 6606 mutex_enter(&stp->sd_lock); 6607 /* 6608 * clear stream head pri flag based on 6609 * first message type 6610 */ 6611 if (type >= QPCTL) { 6612 ASSERT(type == M_PCPROTO); 6613 stp->sd_flag &= ~STRPRI; 6614 } 6615 more = 0; 6616 freemsg(bp); 6617 goto getmout; 6618 } 6619 ubuf += n; 6620 bp->b_rptr += n; 6621 if (bp->b_rptr >= bp->b_wptr) { 6622 nbp = bp; 6623 bp = bp->b_cont; 6624 freeb(nbp); 6625 } 6626 ASSERT(n <= bcnt); 6627 bcnt -= n; 6628 if (bcnt == 0) 6629 break; 6630 } 6631 mctl->len = mctl->maxlen - bcnt; 6632 } else 6633 mctl->len = -1; 6634 6635 if (bp && bp->b_datap->db_type != M_DATA) { 6636 /* 6637 * More PROTO blocks in msg. 6638 */ 6639 more |= MORECTL; 6640 savemp = bp; 6641 while (bp && bp->b_datap->db_type != M_DATA) { 6642 savemptail = bp; 6643 bp = bp->b_cont; 6644 } 6645 savemptail->b_cont = NULL; 6646 } 6647 6648 /* 6649 * Now process DATA blocks, if any. 6650 */ 6651 if (mdata->maxlen >= 0 && bp) { 6652 /* 6653 * struiocopyout will consume a potential zero-length 6654 * M_DATA even if uio_resid is zero. 6655 */ 6656 size_t oldresid = uiop->uio_resid; 6657 6658 bp = struiocopyout(bp, uiop, &error); 6659 if (error != 0) { 6660 mutex_enter(&stp->sd_lock); 6661 /* 6662 * clear stream head hi pri flag based on 6663 * first message 6664 */ 6665 if (type >= QPCTL) { 6666 ASSERT(type == M_PCPROTO); 6667 stp->sd_flag &= ~STRPRI; 6668 } 6669 more = 0; 6670 freemsg(savemp); 6671 goto getmout; 6672 } 6673 /* 6674 * (pr == 1) indicates a partial read. 6675 */ 6676 if (oldresid > uiop->uio_resid) 6677 pr = 1; 6678 mdata->len = mdata->maxlen - uiop->uio_resid; 6679 } else 6680 mdata->len = -1; 6681 6682 if (bp) { /* more data blocks in msg */ 6683 more |= MOREDATA; 6684 if (savemp) 6685 savemptail->b_cont = bp; 6686 else 6687 savemp = bp; 6688 } 6689 6690 mutex_enter(&stp->sd_lock); 6691 if (savemp) { 6692 if (pr && (savemp->b_datap->db_type == M_DATA) && 6693 msgnodata(savemp)) { 6694 /* 6695 * Avoid queuing a zero-length tail part of 6696 * a message. pr=1 indicates that we read some of 6697 * the message. 6698 */ 6699 freemsg(savemp); 6700 more &= ~MOREDATA; 6701 /* 6702 * clear stream head hi pri flag based on 6703 * first message 6704 */ 6705 if (type >= QPCTL) { 6706 ASSERT(type == M_PCPROTO); 6707 stp->sd_flag &= ~STRPRI; 6708 } 6709 } else { 6710 savemp->b_band = pri; 6711 /* 6712 * If the first message was HIPRI and the one we're 6713 * putting back isn't, then clear STRPRI, otherwise 6714 * set STRPRI again. Note that we must set STRPRI 6715 * again since the flush logic in strrput_nondata() 6716 * may have cleared it while we had sd_lock dropped. 6717 */ 6718 if (type >= QPCTL) { 6719 ASSERT(type == M_PCPROTO); 6720 if (queclass(savemp) < QPCTL) 6721 stp->sd_flag &= ~STRPRI; 6722 else 6723 stp->sd_flag |= STRPRI; 6724 } else if (queclass(savemp) >= QPCTL) { 6725 /* 6726 * The first message was not a HIPRI message, 6727 * but the one we are about to putback is. 6728 * For simplicitly, we do not allow for HIPRI 6729 * messages to be embedded in the message 6730 * body, so just force it to same type as 6731 * first message. 6732 */ 6733 ASSERT(type == M_DATA || type == M_PROTO); 6734 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6735 savemp->b_datap->db_type = type; 6736 } 6737 if (mark != 0) { 6738 savemp->b_flag |= mark & ~_LASTMARK; 6739 if ((mark & _LASTMARK) && 6740 (stp->sd_mark == NULL)) { 6741 /* 6742 * If another marked message arrived 6743 * while sd_lock was not held sd_mark 6744 * would be non-NULL. 6745 */ 6746 stp->sd_mark = savemp; 6747 } 6748 } 6749 putback(stp, q, savemp, pri); 6750 } 6751 } else { 6752 /* 6753 * The complete message was consumed. 6754 * 6755 * If another M_PCPROTO arrived while sd_lock was not held 6756 * it would have been discarded since STRPRI was still set. 6757 * 6758 * Move the MSG*MARKNEXT information 6759 * to the stream head just in case 6760 * the read queue becomes empty. 6761 * clear stream head hi pri flag based on 6762 * first message 6763 * 6764 * If the stream head was at the mark 6765 * (STRATMARK) before we dropped sd_lock above 6766 * and some data was consumed then we have 6767 * moved past the mark thus STRATMARK is 6768 * cleared. However, if a message arrived in 6769 * strrput during the copyout above causing 6770 * STRATMARK to be set we can not clear that 6771 * flag. 6772 */ 6773 if (type >= QPCTL) { 6774 ASSERT(type == M_PCPROTO); 6775 stp->sd_flag &= ~STRPRI; 6776 } 6777 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6778 if (mark & MSGMARKNEXT) { 6779 stp->sd_flag &= ~STRNOTATMARK; 6780 stp->sd_flag |= STRATMARK; 6781 } else if (mark & MSGNOTMARKNEXT) { 6782 stp->sd_flag &= ~STRATMARK; 6783 stp->sd_flag |= STRNOTATMARK; 6784 } else { 6785 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6786 } 6787 } else if (pr && (old_sd_flag & STRATMARK)) { 6788 stp->sd_flag &= ~STRATMARK; 6789 } 6790 } 6791 6792 *flagsp = flg; 6793 *prip = pri; 6794 6795 /* 6796 * Getmsg cleanup processing - if the state of the queue has changed 6797 * some signals may need to be sent and/or poll awakened. 6798 */ 6799 getmout: 6800 qbackenable(q, pri); 6801 6802 /* 6803 * We dropped the stream head lock above. Send all M_SIG messages 6804 * before processing stream head for SIGPOLL messages. 6805 */ 6806 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6807 while ((bp = q->q_first) != NULL && 6808 (bp->b_datap->db_type == M_SIG)) { 6809 /* 6810 * sd_lock is held so the content of the read queue can not 6811 * change. 6812 */ 6813 bp = getq(q); 6814 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 6815 6816 strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); 6817 mutex_exit(&stp->sd_lock); 6818 freemsg(bp); 6819 if (STREAM_NEEDSERVICE(stp)) 6820 stream_runservice(stp); 6821 mutex_enter(&stp->sd_lock); 6822 } 6823 6824 /* 6825 * stream head cannot change while we make the determination 6826 * whether or not to send a signal. Drop the flag to allow strrput 6827 * to send firstmsgsigs again. 6828 */ 6829 stp->sd_flag &= ~STRGETINPROG; 6830 6831 /* 6832 * If the type of message at the front of the queue changed 6833 * due to the receive the appropriate signals and pollwakeup events 6834 * are generated. The type of changes are: 6835 * Processed a hipri message, q_first is not hipri. 6836 * Processed a band X message, and q_first is band Y. 6837 * The generated signals and pollwakeups are identical to what 6838 * strrput() generates should the message that is now on q_first 6839 * arrive to an empty read queue. 6840 * 6841 * Note: only strrput will send a signal for a hipri message. 6842 */ 6843 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 6844 strsigset_t signals = 0; 6845 strpollset_t pollwakeups = 0; 6846 6847 if (flg & MSG_HIPRI) { 6848 /* 6849 * Removed a hipri message. Regular data at 6850 * the front of the queue. 6851 */ 6852 if (bp->b_band == 0) { 6853 signals = S_INPUT | S_RDNORM; 6854 pollwakeups = POLLIN | POLLRDNORM; 6855 } else { 6856 signals = S_INPUT | S_RDBAND; 6857 pollwakeups = POLLIN | POLLRDBAND; 6858 } 6859 } else if (pri != bp->b_band) { 6860 /* 6861 * The band is different for the new q_first. 6862 */ 6863 if (bp->b_band == 0) { 6864 signals = S_RDNORM; 6865 pollwakeups = POLLIN | POLLRDNORM; 6866 } else { 6867 signals = S_RDBAND; 6868 pollwakeups = POLLIN | POLLRDBAND; 6869 } 6870 } 6871 6872 if (pollwakeups != 0) { 6873 if (pollwakeups == (POLLIN | POLLRDNORM)) { 6874 if (!(stp->sd_rput_opt & SR_POLLIN)) 6875 goto no_pollwake; 6876 stp->sd_rput_opt &= ~SR_POLLIN; 6877 } 6878 mutex_exit(&stp->sd_lock); 6879 pollwakeup(&stp->sd_pollist, pollwakeups); 6880 mutex_enter(&stp->sd_lock); 6881 } 6882 no_pollwake: 6883 6884 if (stp->sd_sigflags & signals) 6885 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 6886 } 6887 mutex_exit(&stp->sd_lock); 6888 6889 rvp->r_val1 = more; 6890 return (error); 6891 #undef _LASTMARK 6892 } 6893 6894 /* 6895 * Get the next message from the read queue. If the message is 6896 * priority, STRPRI will have been set by strrput(). This flag 6897 * should be reset only when the entire message at the front of the 6898 * queue as been consumed. 6899 * 6900 * If uiop is NULL all data is returned in mctlp. 6901 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 6902 * not enabled. 6903 * The timeout parameter is in milliseconds; -1 for infinity. 6904 * This routine handles the consolidation private flags: 6905 * MSG_IGNERROR Ignore any stream head error except STPLEX. 6906 * MSG_DELAYERROR Defer the error check until the queue is empty. 6907 * MSG_HOLDSIG Hold signals while waiting for data. 6908 * MSG_IPEEK Only peek at messages. 6909 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 6910 * that doesn't fit. 6911 * MSG_NOMARK If the message is marked leave it on the queue. 6912 * 6913 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6914 */ 6915 int 6916 kstrgetmsg( 6917 struct vnode *vp, 6918 mblk_t **mctlp, 6919 struct uio *uiop, 6920 unsigned char *prip, 6921 int *flagsp, 6922 clock_t timout, 6923 rval_t *rvp) 6924 { 6925 struct stdata *stp; 6926 mblk_t *bp, *nbp; 6927 mblk_t *savemp = NULL; 6928 mblk_t *savemptail = NULL; 6929 int flags; 6930 uint_t old_sd_flag; 6931 int flg; 6932 int more = 0; 6933 int error = 0; 6934 char first = 1; 6935 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6936 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6937 unsigned char pri = 0; 6938 queue_t *q; 6939 int pr = 0; /* Partial read successful */ 6940 unsigned char type; 6941 6942 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 6943 "kstrgetmsg:%p", vp); 6944 6945 ASSERT(vp->v_stream); 6946 stp = vp->v_stream; 6947 rvp->r_val1 = 0; 6948 6949 mutex_enter(&stp->sd_lock); 6950 6951 if ((error = i_straccess(stp, JCREAD)) != 0) { 6952 mutex_exit(&stp->sd_lock); 6953 return (error); 6954 } 6955 6956 flags = *flagsp; 6957 if (stp->sd_flag & (STRDERR|STPLEX)) { 6958 if ((stp->sd_flag & STPLEX) || 6959 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 6960 error = strgeterr(stp, STRDERR|STPLEX, 6961 (flags & MSG_IPEEK)); 6962 if (error != 0) { 6963 mutex_exit(&stp->sd_lock); 6964 return (error); 6965 } 6966 } 6967 } 6968 mutex_exit(&stp->sd_lock); 6969 6970 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 6971 case MSG_HIPRI: 6972 if (*prip != 0) 6973 return (EINVAL); 6974 break; 6975 6976 case MSG_ANY: 6977 case MSG_BAND: 6978 break; 6979 6980 default: 6981 return (EINVAL); 6982 } 6983 6984 retry: 6985 q = _RD(stp->sd_wrq); 6986 mutex_enter(&stp->sd_lock); 6987 old_sd_flag = stp->sd_flag; 6988 mark = 0; 6989 for (;;) { 6990 int done = 0; 6991 int waitflag; 6992 int fmode; 6993 mblk_t *q_first = q->q_first; 6994 6995 /* 6996 * This section of the code operates just like the code 6997 * in strgetmsg(). There is a comment there about what 6998 * is going on here. 6999 */ 7000 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 7001 /* Asking for normal, band0 data */ 7002 bp = strget(stp, q, uiop, first, &error); 7003 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7004 if (bp != NULL) { 7005 if (bp->b_datap->db_type == M_SIG) { 7006 strsignal_nolock(stp, *bp->b_rptr, 7007 (int32_t)bp->b_band); 7008 continue; 7009 } else { 7010 break; 7011 } 7012 } 7013 if (error != 0) { 7014 goto getmout; 7015 } 7016 /* 7017 * We can't depend on the value of STRPRI here because 7018 * the stream head may be in transit. Therefore, we 7019 * must look at the type of the first message to 7020 * determine if a high priority messages is waiting 7021 */ 7022 } else if ((flags & MSG_HIPRI) && q_first != NULL && 7023 q_first->b_datap->db_type >= QPCTL && 7024 (bp = getq_noenab(q)) != NULL) { 7025 ASSERT(bp->b_datap->db_type >= QPCTL); 7026 break; 7027 } else if ((flags & MSG_BAND) && q_first != NULL && 7028 ((q_first->b_band >= *prip) || 7029 q_first->b_datap->db_type >= QPCTL) && 7030 (bp = getq_noenab(q)) != NULL) { 7031 /* 7032 * Asked for at least band "prip" and got either at 7033 * least that band or a hipri message. 7034 */ 7035 ASSERT(bp->b_band >= *prip || 7036 bp->b_datap->db_type >= QPCTL); 7037 if (bp->b_datap->db_type == M_SIG) { 7038 strsignal_nolock(stp, *bp->b_rptr, 7039 (int32_t)bp->b_band); 7040 continue; 7041 } else { 7042 break; 7043 } 7044 } 7045 7046 /* No data. Time to sleep? */ 7047 qbackenable(q, 0); 7048 7049 /* 7050 * Delayed error notification? 7051 */ 7052 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7053 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7054 error = strgeterr(stp, STRDERR|STPLEX, 7055 (flags & MSG_IPEEK)); 7056 if (error != 0) { 7057 mutex_exit(&stp->sd_lock); 7058 return (error); 7059 } 7060 } 7061 7062 /* 7063 * If STRHUP or STREOF, return 0 length control and data. 7064 * If a read(fd,buf,0) has been done, do not sleep, just 7065 * return. 7066 * 7067 * If mctlp == NULL and uiop == NULL, then the code will 7068 * do the strwaitq. This is an understood way of saying 7069 * sleep "polling" until a message is received. 7070 */ 7071 if ((stp->sd_flag & (STRHUP|STREOF)) || 7072 (uiop != NULL && uiop->uio_resid == 0)) { 7073 if (mctlp != NULL) 7074 *mctlp = NULL; 7075 *flagsp = 0; 7076 mutex_exit(&stp->sd_lock); 7077 return (0); 7078 } 7079 7080 waitflag = GETWAIT; 7081 if (flags & 7082 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7083 if (flags & MSG_HOLDSIG) 7084 waitflag |= STR_NOSIG; 7085 if (flags & MSG_IGNERROR) 7086 waitflag |= STR_NOERROR; 7087 if (flags & MSG_IPEEK) 7088 waitflag |= STR_PEEK; 7089 if (flags & MSG_DELAYERROR) 7090 waitflag |= STR_DELAYERR; 7091 } 7092 if (uiop != NULL) 7093 fmode = uiop->uio_fmode; 7094 else 7095 fmode = 0; 7096 7097 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7098 "kstrgetmsg calls strwaitq:%p, %p", 7099 vp, uiop); 7100 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7101 fmode, timout, &done)) != 0) || done) { 7102 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7103 "kstrgetmsg error or done:%p, %p", 7104 vp, uiop); 7105 mutex_exit(&stp->sd_lock); 7106 return (error); 7107 } 7108 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7109 "kstrgetmsg awakes:%p, %p", vp, uiop); 7110 if ((error = i_straccess(stp, JCREAD)) != 0) { 7111 mutex_exit(&stp->sd_lock); 7112 return (error); 7113 } 7114 first = 0; 7115 } 7116 ASSERT(bp != NULL); 7117 /* 7118 * Extract any mark information. If the message is not completely 7119 * consumed this information will be put in the mblk 7120 * that is putback. 7121 * If MSGMARKNEXT is set and the message is completely consumed 7122 * the STRATMARK flag will be set below. Likewise, if 7123 * MSGNOTMARKNEXT is set and the message is 7124 * completely consumed STRNOTATMARK will be set. 7125 */ 7126 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7127 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7128 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7129 pri = bp->b_band; 7130 if (mark != 0) { 7131 /* 7132 * If the caller doesn't want the mark return. 7133 * Used to implement MSG_WAITALL in sockets. 7134 */ 7135 if (flags & MSG_NOMARK) { 7136 putback(stp, q, bp, pri); 7137 qbackenable(q, pri); 7138 mutex_exit(&stp->sd_lock); 7139 return (EWOULDBLOCK); 7140 } 7141 if (bp == stp->sd_mark) { 7142 mark |= _LASTMARK; 7143 stp->sd_mark = NULL; 7144 } 7145 } 7146 7147 /* 7148 * keep track of the first message type 7149 */ 7150 type = bp->b_datap->db_type; 7151 7152 if (bp->b_datap->db_type == M_PASSFP) { 7153 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7154 stp->sd_mark = bp; 7155 bp->b_flag |= mark & ~_LASTMARK; 7156 putback(stp, q, bp, pri); 7157 qbackenable(q, pri); 7158 mutex_exit(&stp->sd_lock); 7159 return (EBADMSG); 7160 } 7161 ASSERT(type != M_SIG); 7162 7163 if (flags & MSG_IPEEK) { 7164 /* 7165 * Clear any struioflag - we do the uiomove over again 7166 * when peeking since it simplifies the code. 7167 * 7168 * Dup the message and put the original back on the queue. 7169 * If dupmsg() fails, try again with copymsg() to see if 7170 * there is indeed a shortage of memory. dupmsg() may fail 7171 * if db_ref in any of the messages reaches its limit. 7172 */ 7173 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7174 /* 7175 * Restore the state of the stream head since we 7176 * need to drop sd_lock (strwaitbuf is sleeping). 7177 */ 7178 size_t size = msgdsize(bp); 7179 7180 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7181 stp->sd_mark = bp; 7182 bp->b_flag |= mark & ~_LASTMARK; 7183 putback(stp, q, bp, pri); 7184 mutex_exit(&stp->sd_lock); 7185 error = strwaitbuf(size, BPRI_HI); 7186 if (error) { 7187 /* 7188 * There is no net change to the queue thus 7189 * no need to qbackenable. 7190 */ 7191 return (error); 7192 } 7193 goto retry; 7194 } 7195 7196 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7197 stp->sd_mark = bp; 7198 bp->b_flag |= mark & ~_LASTMARK; 7199 putback(stp, q, bp, pri); 7200 bp = nbp; 7201 } 7202 7203 /* 7204 * Set this flag so strrput will not generate signals. Need to 7205 * make sure this flag is cleared before leaving this routine 7206 * else signals will stop being sent. 7207 */ 7208 stp->sd_flag |= STRGETINPROG; 7209 mutex_exit(&stp->sd_lock); 7210 7211 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) { 7212 mblk_t *tmp, *prevmp; 7213 7214 /* 7215 * Put first non-data mblk back to stream head and 7216 * cut the mblk chain so sd_rputdatafunc only sees 7217 * M_DATA mblks. We can skip the first mblk since it 7218 * is M_DATA according to the condition above. 7219 */ 7220 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL; 7221 prevmp = tmp, tmp = tmp->b_cont) { 7222 if (DB_TYPE(tmp) != M_DATA) { 7223 prevmp->b_cont = NULL; 7224 mutex_enter(&stp->sd_lock); 7225 putback(stp, q, tmp, tmp->b_band); 7226 mutex_exit(&stp->sd_lock); 7227 break; 7228 } 7229 } 7230 7231 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp, 7232 NULL, NULL, NULL, NULL); 7233 7234 if (bp == NULL) 7235 goto retry; 7236 } 7237 7238 if (STREAM_NEEDSERVICE(stp)) 7239 stream_runservice(stp); 7240 7241 /* 7242 * Set HIPRI flag if message is priority. 7243 */ 7244 if (type >= QPCTL) 7245 flg = MSG_HIPRI; 7246 else 7247 flg = MSG_BAND; 7248 7249 /* 7250 * First process PROTO or PCPROTO blocks, if any. 7251 */ 7252 if (mctlp != NULL && type != M_DATA) { 7253 mblk_t *nbp; 7254 7255 *mctlp = bp; 7256 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7257 bp = bp->b_cont; 7258 nbp = bp->b_cont; 7259 bp->b_cont = NULL; 7260 bp = nbp; 7261 } 7262 7263 if (bp && bp->b_datap->db_type != M_DATA) { 7264 /* 7265 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7266 */ 7267 more |= MORECTL; 7268 savemp = bp; 7269 while (bp && bp->b_datap->db_type != M_DATA) { 7270 savemptail = bp; 7271 bp = bp->b_cont; 7272 } 7273 savemptail->b_cont = NULL; 7274 } 7275 7276 /* 7277 * Now process DATA blocks, if any. 7278 */ 7279 if (uiop == NULL) { 7280 /* Append data to tail of mctlp */ 7281 if (mctlp != NULL) { 7282 mblk_t **mpp = mctlp; 7283 7284 while (*mpp != NULL) 7285 mpp = &((*mpp)->b_cont); 7286 *mpp = bp; 7287 bp = NULL; 7288 } 7289 } else if (uiop->uio_resid >= 0 && bp) { 7290 size_t oldresid = uiop->uio_resid; 7291 7292 /* 7293 * If a streams message is likely to consist 7294 * of many small mblks, it is pulled up into 7295 * one continuous chunk of memory. 7296 * see longer comment at top of page 7297 * by mblk_pull_len declaration. 7298 */ 7299 7300 if (MBLKL(bp) < mblk_pull_len) { 7301 (void) pullupmsg(bp, -1); 7302 } 7303 7304 bp = struiocopyout(bp, uiop, &error); 7305 if (error != 0) { 7306 if (mctlp != NULL) { 7307 freemsg(*mctlp); 7308 *mctlp = NULL; 7309 } else 7310 freemsg(savemp); 7311 mutex_enter(&stp->sd_lock); 7312 /* 7313 * clear stream head hi pri flag based on 7314 * first message 7315 */ 7316 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7317 ASSERT(type == M_PCPROTO); 7318 stp->sd_flag &= ~STRPRI; 7319 } 7320 more = 0; 7321 goto getmout; 7322 } 7323 /* 7324 * (pr == 1) indicates a partial read. 7325 */ 7326 if (oldresid > uiop->uio_resid) 7327 pr = 1; 7328 } 7329 7330 if (bp) { /* more data blocks in msg */ 7331 more |= MOREDATA; 7332 if (savemp) 7333 savemptail->b_cont = bp; 7334 else 7335 savemp = bp; 7336 } 7337 7338 mutex_enter(&stp->sd_lock); 7339 if (savemp) { 7340 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7341 /* 7342 * When MSG_DISCARDTAIL is set or 7343 * when peeking discard any tail. When peeking this 7344 * is the tail of the dup that was copied out - the 7345 * message has already been putback on the queue. 7346 * Return MOREDATA to the caller even though the data 7347 * is discarded. This is used by sockets (to 7348 * set MSG_TRUNC). 7349 */ 7350 freemsg(savemp); 7351 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7352 ASSERT(type == M_PCPROTO); 7353 stp->sd_flag &= ~STRPRI; 7354 } 7355 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7356 msgnodata(savemp)) { 7357 /* 7358 * Avoid queuing a zero-length tail part of 7359 * a message. pr=1 indicates that we read some of 7360 * the message. 7361 */ 7362 freemsg(savemp); 7363 more &= ~MOREDATA; 7364 if (type >= QPCTL) { 7365 ASSERT(type == M_PCPROTO); 7366 stp->sd_flag &= ~STRPRI; 7367 } 7368 } else { 7369 savemp->b_band = pri; 7370 /* 7371 * If the first message was HIPRI and the one we're 7372 * putting back isn't, then clear STRPRI, otherwise 7373 * set STRPRI again. Note that we must set STRPRI 7374 * again since the flush logic in strrput_nondata() 7375 * may have cleared it while we had sd_lock dropped. 7376 */ 7377 if (type >= QPCTL) { 7378 ASSERT(type == M_PCPROTO); 7379 if (queclass(savemp) < QPCTL) 7380 stp->sd_flag &= ~STRPRI; 7381 else 7382 stp->sd_flag |= STRPRI; 7383 } else if (queclass(savemp) >= QPCTL) { 7384 /* 7385 * The first message was not a HIPRI message, 7386 * but the one we are about to putback is. 7387 * For simplicitly, we do not allow for HIPRI 7388 * messages to be embedded in the message 7389 * body, so just force it to same type as 7390 * first message. 7391 */ 7392 ASSERT(type == M_DATA || type == M_PROTO); 7393 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7394 savemp->b_datap->db_type = type; 7395 } 7396 if (mark != 0) { 7397 if ((mark & _LASTMARK) && 7398 (stp->sd_mark == NULL)) { 7399 /* 7400 * If another marked message arrived 7401 * while sd_lock was not held sd_mark 7402 * would be non-NULL. 7403 */ 7404 stp->sd_mark = savemp; 7405 } 7406 savemp->b_flag |= mark & ~_LASTMARK; 7407 } 7408 putback(stp, q, savemp, pri); 7409 } 7410 } else if (!(flags & MSG_IPEEK)) { 7411 /* 7412 * The complete message was consumed. 7413 * 7414 * If another M_PCPROTO arrived while sd_lock was not held 7415 * it would have been discarded since STRPRI was still set. 7416 * 7417 * Move the MSG*MARKNEXT information 7418 * to the stream head just in case 7419 * the read queue becomes empty. 7420 * clear stream head hi pri flag based on 7421 * first message 7422 * 7423 * If the stream head was at the mark 7424 * (STRATMARK) before we dropped sd_lock above 7425 * and some data was consumed then we have 7426 * moved past the mark thus STRATMARK is 7427 * cleared. However, if a message arrived in 7428 * strrput during the copyout above causing 7429 * STRATMARK to be set we can not clear that 7430 * flag. 7431 * XXX A "perimeter" would help by single-threading strrput, 7432 * strread, strgetmsg and kstrgetmsg. 7433 */ 7434 if (type >= QPCTL) { 7435 ASSERT(type == M_PCPROTO); 7436 stp->sd_flag &= ~STRPRI; 7437 } 7438 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7439 if (mark & MSGMARKNEXT) { 7440 stp->sd_flag &= ~STRNOTATMARK; 7441 stp->sd_flag |= STRATMARK; 7442 } else if (mark & MSGNOTMARKNEXT) { 7443 stp->sd_flag &= ~STRATMARK; 7444 stp->sd_flag |= STRNOTATMARK; 7445 } else { 7446 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7447 } 7448 } else if (pr && (old_sd_flag & STRATMARK)) { 7449 stp->sd_flag &= ~STRATMARK; 7450 } 7451 } 7452 7453 *flagsp = flg; 7454 *prip = pri; 7455 7456 /* 7457 * Getmsg cleanup processing - if the state of the queue has changed 7458 * some signals may need to be sent and/or poll awakened. 7459 */ 7460 getmout: 7461 qbackenable(q, pri); 7462 7463 /* 7464 * We dropped the stream head lock above. Send all M_SIG messages 7465 * before processing stream head for SIGPOLL messages. 7466 */ 7467 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7468 while ((bp = q->q_first) != NULL && 7469 (bp->b_datap->db_type == M_SIG)) { 7470 /* 7471 * sd_lock is held so the content of the read queue can not 7472 * change. 7473 */ 7474 bp = getq(q); 7475 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7476 7477 strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); 7478 mutex_exit(&stp->sd_lock); 7479 freemsg(bp); 7480 if (STREAM_NEEDSERVICE(stp)) 7481 stream_runservice(stp); 7482 mutex_enter(&stp->sd_lock); 7483 } 7484 7485 /* 7486 * stream head cannot change while we make the determination 7487 * whether or not to send a signal. Drop the flag to allow strrput 7488 * to send firstmsgsigs again. 7489 */ 7490 stp->sd_flag &= ~STRGETINPROG; 7491 7492 /* 7493 * If the type of message at the front of the queue changed 7494 * due to the receive the appropriate signals and pollwakeup events 7495 * are generated. The type of changes are: 7496 * Processed a hipri message, q_first is not hipri. 7497 * Processed a band X message, and q_first is band Y. 7498 * The generated signals and pollwakeups are identical to what 7499 * strrput() generates should the message that is now on q_first 7500 * arrive to an empty read queue. 7501 * 7502 * Note: only strrput will send a signal for a hipri message. 7503 */ 7504 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7505 strsigset_t signals = 0; 7506 strpollset_t pollwakeups = 0; 7507 7508 if (flg & MSG_HIPRI) { 7509 /* 7510 * Removed a hipri message. Regular data at 7511 * the front of the queue. 7512 */ 7513 if (bp->b_band == 0) { 7514 signals = S_INPUT | S_RDNORM; 7515 pollwakeups = POLLIN | POLLRDNORM; 7516 } else { 7517 signals = S_INPUT | S_RDBAND; 7518 pollwakeups = POLLIN | POLLRDBAND; 7519 } 7520 } else if (pri != bp->b_band) { 7521 /* 7522 * The band is different for the new q_first. 7523 */ 7524 if (bp->b_band == 0) { 7525 signals = S_RDNORM; 7526 pollwakeups = POLLIN | POLLRDNORM; 7527 } else { 7528 signals = S_RDBAND; 7529 pollwakeups = POLLIN | POLLRDBAND; 7530 } 7531 } 7532 7533 if (pollwakeups != 0) { 7534 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7535 if (!(stp->sd_rput_opt & SR_POLLIN)) 7536 goto no_pollwake; 7537 stp->sd_rput_opt &= ~SR_POLLIN; 7538 } 7539 mutex_exit(&stp->sd_lock); 7540 pollwakeup(&stp->sd_pollist, pollwakeups); 7541 mutex_enter(&stp->sd_lock); 7542 } 7543 no_pollwake: 7544 7545 if (stp->sd_sigflags & signals) 7546 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7547 } 7548 mutex_exit(&stp->sd_lock); 7549 7550 rvp->r_val1 = more; 7551 return (error); 7552 #undef _LASTMARK 7553 } 7554 7555 /* 7556 * Put a message downstream. 7557 * 7558 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7559 */ 7560 int 7561 strputmsg( 7562 struct vnode *vp, 7563 struct strbuf *mctl, 7564 struct strbuf *mdata, 7565 unsigned char pri, 7566 int flag, 7567 int fmode) 7568 { 7569 struct stdata *stp; 7570 queue_t *wqp; 7571 mblk_t *mp; 7572 ssize_t msgsize; 7573 ssize_t rmin, rmax; 7574 int error; 7575 struct uio uios; 7576 struct uio *uiop = &uios; 7577 struct iovec iovs; 7578 int xpg4 = 0; 7579 7580 ASSERT(vp->v_stream); 7581 stp = vp->v_stream; 7582 wqp = stp->sd_wrq; 7583 7584 /* 7585 * If it is an XPG4 application, we need to send 7586 * SIGPIPE below 7587 */ 7588 7589 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7590 flag &= ~MSG_XPG4; 7591 7592 if (audit_active) 7593 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7594 7595 mutex_enter(&stp->sd_lock); 7596 7597 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7598 mutex_exit(&stp->sd_lock); 7599 return (error); 7600 } 7601 7602 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7603 error = strwriteable(stp, B_FALSE, xpg4); 7604 if (error != 0) { 7605 mutex_exit(&stp->sd_lock); 7606 return (error); 7607 } 7608 } 7609 7610 mutex_exit(&stp->sd_lock); 7611 7612 /* 7613 * Check for legal flag value. 7614 */ 7615 switch (flag) { 7616 case MSG_HIPRI: 7617 if ((mctl->len < 0) || (pri != 0)) 7618 return (EINVAL); 7619 break; 7620 case MSG_BAND: 7621 break; 7622 7623 default: 7624 return (EINVAL); 7625 } 7626 7627 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7628 "strputmsg in:stp %p", stp); 7629 7630 /* get these values from those cached in the stream head */ 7631 rmin = stp->sd_qn_minpsz; 7632 rmax = stp->sd_qn_maxpsz; 7633 7634 /* 7635 * Make sure ctl and data sizes together fall within the 7636 * limits of the max and min receive packet sizes and do 7637 * not exceed system limit. 7638 */ 7639 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7640 if (rmax == 0) { 7641 return (ERANGE); 7642 } 7643 /* 7644 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7645 * Needed to prevent partial failures in the strmakedata loop. 7646 */ 7647 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7648 rmax = stp->sd_maxblk; 7649 7650 if ((msgsize = mdata->len) < 0) { 7651 msgsize = 0; 7652 rmin = 0; /* no range check for NULL data part */ 7653 } 7654 if ((msgsize < rmin) || 7655 ((msgsize > rmax) && (rmax != INFPSZ)) || 7656 (mctl->len > strctlsz)) { 7657 return (ERANGE); 7658 } 7659 7660 /* 7661 * Setup uio and iov for data part 7662 */ 7663 iovs.iov_base = mdata->buf; 7664 iovs.iov_len = msgsize; 7665 uios.uio_iov = &iovs; 7666 uios.uio_iovcnt = 1; 7667 uios.uio_loffset = 0; 7668 uios.uio_segflg = UIO_USERSPACE; 7669 uios.uio_fmode = fmode; 7670 uios.uio_extflg = UIO_COPY_DEFAULT; 7671 uios.uio_resid = msgsize; 7672 uios.uio_offset = 0; 7673 7674 /* Ignore flow control in strput for HIPRI */ 7675 if (flag & MSG_HIPRI) 7676 flag |= MSG_IGNFLOW; 7677 7678 for (;;) { 7679 int done = 0; 7680 7681 /* 7682 * strput will always free the ctl mblk - even when strput 7683 * fails. 7684 */ 7685 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7686 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7687 "strputmsg out:stp %p out %d error %d", 7688 stp, 1, error); 7689 return (error); 7690 } 7691 /* 7692 * Verify that the whole message can be transferred by 7693 * strput. 7694 */ 7695 ASSERT(stp->sd_maxblk == INFPSZ || 7696 stp->sd_maxblk >= mdata->len); 7697 7698 msgsize = mdata->len; 7699 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7700 mdata->len = msgsize; 7701 7702 if (error == 0) 7703 break; 7704 7705 if (error != EWOULDBLOCK) 7706 goto out; 7707 7708 mutex_enter(&stp->sd_lock); 7709 /* 7710 * Check for a missed wakeup. 7711 * Needed since strput did not hold sd_lock across 7712 * the canputnext. 7713 */ 7714 if (bcanputnext(wqp, pri)) { 7715 /* Try again */ 7716 mutex_exit(&stp->sd_lock); 7717 continue; 7718 } 7719 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7720 "strputmsg wait:stp %p waits pri %d", stp, pri); 7721 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7722 &done)) != 0) || done) { 7723 mutex_exit(&stp->sd_lock); 7724 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7725 "strputmsg out:q %p out %d error %d", 7726 stp, 0, error); 7727 return (error); 7728 } 7729 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7730 "strputmsg wake:stp %p wakes", stp); 7731 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7732 mutex_exit(&stp->sd_lock); 7733 return (error); 7734 } 7735 mutex_exit(&stp->sd_lock); 7736 } 7737 out: 7738 /* 7739 * For historic reasons, applications expect EAGAIN 7740 * when data mblk could not be allocated. so change 7741 * ENOMEM back to EAGAIN 7742 */ 7743 if (error == ENOMEM) 7744 error = EAGAIN; 7745 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7746 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7747 return (error); 7748 } 7749 7750 /* 7751 * Put a message downstream. 7752 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7753 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7754 * and the fmode parameter. 7755 * 7756 * This routine handles the consolidation private flags: 7757 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7758 * MSG_HOLDSIG Hold signals while waiting for data. 7759 * MSG_IGNFLOW Don't check streams flow control. 7760 * 7761 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7762 */ 7763 int 7764 kstrputmsg( 7765 struct vnode *vp, 7766 mblk_t *mctl, 7767 struct uio *uiop, 7768 ssize_t msgsize, 7769 unsigned char pri, 7770 int flag, 7771 int fmode) 7772 { 7773 struct stdata *stp; 7774 queue_t *wqp; 7775 ssize_t rmin, rmax; 7776 int error; 7777 7778 ASSERT(vp->v_stream); 7779 stp = vp->v_stream; 7780 wqp = stp->sd_wrq; 7781 if (audit_active) 7782 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 7783 if (mctl == NULL) 7784 return (EINVAL); 7785 7786 mutex_enter(&stp->sd_lock); 7787 7788 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7789 mutex_exit(&stp->sd_lock); 7790 freemsg(mctl); 7791 return (error); 7792 } 7793 7794 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 7795 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7796 error = strwriteable(stp, B_FALSE, B_TRUE); 7797 if (error != 0) { 7798 mutex_exit(&stp->sd_lock); 7799 freemsg(mctl); 7800 return (error); 7801 } 7802 } 7803 } 7804 7805 mutex_exit(&stp->sd_lock); 7806 7807 /* 7808 * Check for legal flag value. 7809 */ 7810 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 7811 case MSG_HIPRI: 7812 if (pri != 0) { 7813 freemsg(mctl); 7814 return (EINVAL); 7815 } 7816 break; 7817 case MSG_BAND: 7818 break; 7819 default: 7820 freemsg(mctl); 7821 return (EINVAL); 7822 } 7823 7824 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 7825 "kstrputmsg in:stp %p", stp); 7826 7827 /* get these values from those cached in the stream head */ 7828 rmin = stp->sd_qn_minpsz; 7829 rmax = stp->sd_qn_maxpsz; 7830 7831 /* 7832 * Make sure ctl and data sizes together fall within the 7833 * limits of the max and min receive packet sizes and do 7834 * not exceed system limit. 7835 */ 7836 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7837 if (rmax == 0) { 7838 freemsg(mctl); 7839 return (ERANGE); 7840 } 7841 /* 7842 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7843 * Needed to prevent partial failures in the strmakedata loop. 7844 */ 7845 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7846 rmax = stp->sd_maxblk; 7847 7848 if (uiop == NULL) { 7849 msgsize = -1; 7850 rmin = -1; /* no range check for NULL data part */ 7851 } else { 7852 /* Use uio flags as well as the fmode parameter flags */ 7853 fmode |= uiop->uio_fmode; 7854 7855 if ((msgsize < rmin) || 7856 ((msgsize > rmax) && (rmax != INFPSZ))) { 7857 freemsg(mctl); 7858 return (ERANGE); 7859 } 7860 } 7861 7862 /* Ignore flow control in strput for HIPRI */ 7863 if (flag & MSG_HIPRI) 7864 flag |= MSG_IGNFLOW; 7865 7866 for (;;) { 7867 int done = 0; 7868 int waitflag; 7869 mblk_t *mp; 7870 7871 /* 7872 * strput will always free the ctl mblk - even when strput 7873 * fails. If MSG_IGNFLOW is set then any error returned 7874 * will cause us to break the loop, so we don't need a copy 7875 * of the message. If MSG_IGNFLOW is not set, then we can 7876 * get hit by flow control and be forced to try again. In 7877 * this case we need to have a copy of the message. We 7878 * do this using copymsg since the message may get modified 7879 * by something below us. 7880 * 7881 * We've observed that many TPI providers do not check db_ref 7882 * on the control messages but blindly reuse them for the 7883 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 7884 * friendly to such providers than using dupmsg. Also, note 7885 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 7886 * Only data messages are subject to flow control, hence 7887 * subject to this copymsg. 7888 */ 7889 if (flag & MSG_IGNFLOW) { 7890 mp = mctl; 7891 mctl = NULL; 7892 } else { 7893 do { 7894 /* 7895 * If a message has a free pointer, the message 7896 * must be dupmsg to maintain this pointer. 7897 * Code using this facility must be sure 7898 * that modules below will not change the 7899 * contents of the dblk without checking db_ref 7900 * first. If db_ref is > 1, then the module 7901 * needs to do a copymsg first. Otherwise, 7902 * the contents of the dblk may become 7903 * inconsistent because the freesmg/freeb below 7904 * may end up calling atomic_add_32_nv. 7905 * The atomic_add_32_nv in freeb (accessing 7906 * all of db_ref, db_type, db_flags, and 7907 * db_struioflag) does not prevent other threads 7908 * from concurrently trying to modify e.g. 7909 * db_type. 7910 */ 7911 if (mctl->b_datap->db_frtnp != NULL) 7912 mp = dupmsg(mctl); 7913 else 7914 mp = copymsg(mctl); 7915 7916 if (mp != NULL) 7917 break; 7918 7919 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 7920 if (error) { 7921 freemsg(mctl); 7922 return (error); 7923 } 7924 } while (mp == NULL); 7925 } 7926 /* 7927 * Verify that all of msgsize can be transferred by 7928 * strput. 7929 */ 7930 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 7931 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7932 if (error == 0) 7933 break; 7934 7935 if (error != EWOULDBLOCK) 7936 goto out; 7937 7938 /* 7939 * IF MSG_IGNFLOW is set we should have broken out of loop 7940 * above. 7941 */ 7942 ASSERT(!(flag & MSG_IGNFLOW)); 7943 mutex_enter(&stp->sd_lock); 7944 /* 7945 * Check for a missed wakeup. 7946 * Needed since strput did not hold sd_lock across 7947 * the canputnext. 7948 */ 7949 if (bcanputnext(wqp, pri)) { 7950 /* Try again */ 7951 mutex_exit(&stp->sd_lock); 7952 continue; 7953 } 7954 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 7955 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 7956 7957 waitflag = WRITEWAIT; 7958 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 7959 if (flag & MSG_HOLDSIG) 7960 waitflag |= STR_NOSIG; 7961 if (flag & MSG_IGNERROR) 7962 waitflag |= STR_NOERROR; 7963 } 7964 if (((error = strwaitq(stp, waitflag, 7965 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 7966 mutex_exit(&stp->sd_lock); 7967 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 7968 "kstrputmsg out:stp %p out %d error %d", 7969 stp, 0, error); 7970 freemsg(mctl); 7971 return (error); 7972 } 7973 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 7974 "kstrputmsg wake:stp %p wakes", stp); 7975 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7976 mutex_exit(&stp->sd_lock); 7977 freemsg(mctl); 7978 return (error); 7979 } 7980 mutex_exit(&stp->sd_lock); 7981 } 7982 out: 7983 freemsg(mctl); 7984 /* 7985 * For historic reasons, applications expect EAGAIN 7986 * when data mblk could not be allocated. so change 7987 * ENOMEM back to EAGAIN 7988 */ 7989 if (error == ENOMEM) 7990 error = EAGAIN; 7991 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 7992 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 7993 return (error); 7994 } 7995 7996 /* 7997 * Determines whether the necessary conditions are set on a stream 7998 * for it to be readable, writeable, or have exceptions. 7999 * 8000 * strpoll handles the consolidation private events: 8001 * POLLNOERR Do not return POLLERR even if there are stream 8002 * head errors. 8003 * Used by sockfs. 8004 * POLLRDDATA Do not return POLLIN unless at least one message on 8005 * the queue contains one or more M_DATA mblks. Thus 8006 * when this flag is set a queue with only 8007 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 8008 * Used by sockfs to ignore T_EXDATA_IND messages. 8009 * 8010 * Note: POLLRDDATA assumes that synch streams only return messages with 8011 * an M_DATA attached (i.e. not messages consisting of only 8012 * an M_PROTO/M_PCPROTO part). 8013 */ 8014 int 8015 strpoll( 8016 struct stdata *stp, 8017 short events_arg, 8018 int anyyet, 8019 short *reventsp, 8020 struct pollhead **phpp) 8021 { 8022 int events = (ushort_t)events_arg; 8023 int retevents = 0; 8024 mblk_t *mp; 8025 qband_t *qbp; 8026 long sd_flags = stp->sd_flag; 8027 int headlocked = 0; 8028 8029 /* 8030 * For performance, a single 'if' tests for most possible edge 8031 * conditions in one shot 8032 */ 8033 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 8034 if (sd_flags & STPLEX) { 8035 *reventsp = POLLNVAL; 8036 return (EINVAL); 8037 } 8038 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 8039 (sd_flags & STRDERR)) || 8040 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 8041 (sd_flags & STWRERR))) { 8042 if (!(events & POLLNOERR)) { 8043 *reventsp = POLLERR; 8044 return (0); 8045 } 8046 } 8047 } 8048 if (sd_flags & STRHUP) { 8049 retevents |= POLLHUP; 8050 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8051 queue_t *tq; 8052 queue_t *qp = stp->sd_wrq; 8053 8054 claimstr(qp); 8055 /* Find next module forward that has a service procedure */ 8056 tq = qp->q_next->q_nfsrv; 8057 ASSERT(tq != NULL); 8058 8059 polllock(&stp->sd_pollist, QLOCK(tq)); 8060 if (events & POLLWRNORM) { 8061 queue_t *sqp; 8062 8063 if (tq->q_flag & QFULL) 8064 /* ensure backq svc procedure runs */ 8065 tq->q_flag |= QWANTW; 8066 else if ((sqp = stp->sd_struiowrq) != NULL) { 8067 /* Check sync stream barrier write q */ 8068 mutex_exit(QLOCK(tq)); 8069 polllock(&stp->sd_pollist, QLOCK(sqp)); 8070 if (sqp->q_flag & QFULL) 8071 /* ensure pollwakeup() is done */ 8072 sqp->q_flag |= QWANTWSYNC; 8073 else 8074 retevents |= POLLOUT; 8075 /* More write events to process ??? */ 8076 if (! (events & POLLWRBAND)) { 8077 mutex_exit(QLOCK(sqp)); 8078 releasestr(qp); 8079 goto chkrd; 8080 } 8081 mutex_exit(QLOCK(sqp)); 8082 polllock(&stp->sd_pollist, QLOCK(tq)); 8083 } else 8084 retevents |= POLLOUT; 8085 } 8086 if (events & POLLWRBAND) { 8087 qbp = tq->q_bandp; 8088 if (qbp) { 8089 while (qbp) { 8090 if (qbp->qb_flag & QB_FULL) 8091 qbp->qb_flag |= QB_WANTW; 8092 else 8093 retevents |= POLLWRBAND; 8094 qbp = qbp->qb_next; 8095 } 8096 } else { 8097 retevents |= POLLWRBAND; 8098 } 8099 } 8100 mutex_exit(QLOCK(tq)); 8101 releasestr(qp); 8102 } 8103 chkrd: 8104 if (sd_flags & STRPRI) { 8105 retevents |= (events & POLLPRI); 8106 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8107 queue_t *qp = _RD(stp->sd_wrq); 8108 int normevents = (events & (POLLIN | POLLRDNORM)); 8109 8110 /* 8111 * Note: Need to do polllock() here since ps_lock may be 8112 * held. See bug 4191544. 8113 */ 8114 polllock(&stp->sd_pollist, &stp->sd_lock); 8115 headlocked = 1; 8116 mp = qp->q_first; 8117 while (mp) { 8118 /* 8119 * For POLLRDDATA we scan b_cont and b_next until we 8120 * find an M_DATA. 8121 */ 8122 if ((events & POLLRDDATA) && 8123 mp->b_datap->db_type != M_DATA) { 8124 mblk_t *nmp = mp->b_cont; 8125 8126 while (nmp != NULL && 8127 nmp->b_datap->db_type != M_DATA) 8128 nmp = nmp->b_cont; 8129 if (nmp == NULL) { 8130 mp = mp->b_next; 8131 continue; 8132 } 8133 } 8134 if (mp->b_band == 0) 8135 retevents |= normevents; 8136 else 8137 retevents |= (events & (POLLIN | POLLRDBAND)); 8138 break; 8139 } 8140 if (! (retevents & normevents) && 8141 (stp->sd_wakeq & RSLEEP)) { 8142 /* 8143 * Sync stream barrier read queue has data. 8144 */ 8145 retevents |= normevents; 8146 } 8147 /* Treat eof as normal data */ 8148 if (sd_flags & STREOF) 8149 retevents |= normevents; 8150 } 8151 8152 *reventsp = (short)retevents; 8153 if (retevents) { 8154 if (headlocked) 8155 mutex_exit(&stp->sd_lock); 8156 return (0); 8157 } 8158 8159 /* 8160 * If poll() has not found any events yet, set up event cell 8161 * to wake up the poll if a requested event occurs on this 8162 * stream. Check for collisions with outstanding poll requests. 8163 */ 8164 if (!anyyet) { 8165 *phpp = &stp->sd_pollist; 8166 if (headlocked == 0) { 8167 polllock(&stp->sd_pollist, &stp->sd_lock); 8168 headlocked = 1; 8169 } 8170 stp->sd_rput_opt |= SR_POLLIN; 8171 } 8172 if (headlocked) 8173 mutex_exit(&stp->sd_lock); 8174 return (0); 8175 } 8176 8177 /* 8178 * The purpose of putback() is to assure sleeping polls/reads 8179 * are awakened when there are no new messages arriving at the, 8180 * stream head, and a message is placed back on the read queue. 8181 * 8182 * sd_lock must be held when messages are placed back on stream 8183 * head. (getq() holds sd_lock when it removes messages from 8184 * the queue) 8185 */ 8186 8187 static void 8188 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8189 { 8190 mblk_t *qfirst = q->q_first; 8191 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8192 8193 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8194 (qfirst != NULL) && 8195 (qfirst->b_datap->db_type == M_DATA) && 8196 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0)) { 8197 /* 8198 * We use the same logic as defined in strrput() 8199 * but in reverse as we are putting back onto the 8200 * queue and want to retain byte ordering. 8201 * Consolidate an M_DATA message onto an M_DATA, 8202 * M_PROTO, or M_PCPROTO by merging it with q_first. 8203 * The consolidation does not take place if the message 8204 * we are returning to the queue is marked with either 8205 * of the marks or the delim flag or if q_first 8206 * is marked with MSGMARK. The MSGMARK check is needed to 8207 * handle the odd semantics of MSGMARK where essentially 8208 * the whole message is to be treated as marked. 8209 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8210 * to the front of the b_cont chain. 8211 */ 8212 unsigned char db_type = bp->b_datap->db_type; 8213 8214 if ((db_type == M_DATA || db_type == M_PROTO || 8215 db_type == M_PCPROTO) && 8216 !(bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT))) { 8217 rmvq_noenab(q, qfirst); 8218 /* 8219 * The first message in the b_cont list 8220 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8221 * We need to handle the case where we 8222 * are appending: 8223 * 8224 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8225 * 2) a MSGMARKNEXT to a plain message. 8226 * 3) a MSGNOTMARKNEXT to a plain message 8227 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8228 * message. 8229 * 8230 * Thus we never append a MSGMARKNEXT or 8231 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8232 */ 8233 if (qfirst->b_flag & MSGMARKNEXT) { 8234 bp->b_flag |= MSGMARKNEXT; 8235 bp->b_flag &= ~MSGNOTMARKNEXT; 8236 qfirst->b_flag &= ~MSGMARKNEXT; 8237 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8238 bp->b_flag |= MSGNOTMARKNEXT; 8239 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8240 } 8241 8242 linkb(bp, qfirst); 8243 } 8244 } 8245 (void) putbq(q, bp); 8246 8247 /* 8248 * A message may have come in when the sd_lock was dropped in the 8249 * calling routine. If this is the case and STR*ATMARK info was 8250 * received, need to move that from the stream head to the q_last 8251 * so that SIOCATMARK can return the proper value. 8252 */ 8253 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8254 unsigned short *flagp = &q->q_last->b_flag; 8255 uint_t b_flag = (uint_t)*flagp; 8256 8257 if (stp->sd_flag & STRATMARK) { 8258 b_flag &= ~MSGNOTMARKNEXT; 8259 b_flag |= MSGMARKNEXT; 8260 stp->sd_flag &= ~STRATMARK; 8261 } else { 8262 b_flag &= ~MSGMARKNEXT; 8263 b_flag |= MSGNOTMARKNEXT; 8264 stp->sd_flag &= ~STRNOTATMARK; 8265 } 8266 *flagp = (unsigned short) b_flag; 8267 } 8268 8269 #ifdef DEBUG 8270 /* 8271 * Make sure that the flags are not messed up. 8272 */ 8273 { 8274 mblk_t *mp; 8275 mp = q->q_last; 8276 while (mp != NULL) { 8277 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8278 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8279 mp = mp->b_cont; 8280 } 8281 } 8282 #endif 8283 if (q->q_first == bp) { 8284 short pollevents; 8285 8286 if (stp->sd_flag & RSLEEP) { 8287 stp->sd_flag &= ~RSLEEP; 8288 cv_broadcast(&q->q_wait); 8289 } 8290 if (stp->sd_flag & STRPRI) { 8291 pollevents = POLLPRI; 8292 } else { 8293 if (band == 0) { 8294 if (!(stp->sd_rput_opt & SR_POLLIN)) 8295 return; 8296 stp->sd_rput_opt &= ~SR_POLLIN; 8297 pollevents = POLLIN | POLLRDNORM; 8298 } else { 8299 pollevents = POLLIN | POLLRDBAND; 8300 } 8301 } 8302 mutex_exit(&stp->sd_lock); 8303 pollwakeup(&stp->sd_pollist, pollevents); 8304 mutex_enter(&stp->sd_lock); 8305 } 8306 } 8307 8308 /* 8309 * Return the held vnode attached to the stream head of a 8310 * given queue 8311 * It is the responsibility of the calling routine to ensure 8312 * that the queue does not go away (e.g. pop). 8313 */ 8314 vnode_t * 8315 strq2vp(queue_t *qp) 8316 { 8317 vnode_t *vp; 8318 vp = STREAM(qp)->sd_vnode; 8319 ASSERT(vp != NULL); 8320 VN_HOLD(vp); 8321 return (vp); 8322 } 8323 8324 /* 8325 * return the stream head write queue for the given vp 8326 * It is the responsibility of the calling routine to ensure 8327 * that the stream or vnode do not close. 8328 */ 8329 queue_t * 8330 strvp2wq(vnode_t *vp) 8331 { 8332 ASSERT(vp->v_stream != NULL); 8333 return (vp->v_stream->sd_wrq); 8334 } 8335 8336 /* 8337 * pollwakeup stream head 8338 * It is the responsibility of the calling routine to ensure 8339 * that the stream or vnode do not close. 8340 */ 8341 void 8342 strpollwakeup(vnode_t *vp, short event) 8343 { 8344 ASSERT(vp->v_stream); 8345 pollwakeup(&vp->v_stream->sd_pollist, event); 8346 } 8347 8348 /* 8349 * Mate the stream heads of two vnodes together. If the two vnodes are the 8350 * same, we just make the write-side point at the read-side -- otherwise, 8351 * we do a full mate. Only works on vnodes associated with streams that are 8352 * still being built and thus have only a stream head. 8353 */ 8354 void 8355 strmate(vnode_t *vp1, vnode_t *vp2) 8356 { 8357 queue_t *wrq1 = strvp2wq(vp1); 8358 queue_t *wrq2 = strvp2wq(vp2); 8359 8360 /* 8361 * Verify that there are no modules on the stream yet. We also 8362 * rely on the stream head always having a service procedure to 8363 * avoid tweaking q_nfsrv. 8364 */ 8365 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8366 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8367 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8368 8369 /* 8370 * If the queues are the same, just twist; otherwise do a full mate. 8371 */ 8372 if (wrq1 == wrq2) { 8373 wrq1->q_next = _RD(wrq1); 8374 } else { 8375 wrq1->q_next = _RD(wrq2); 8376 wrq2->q_next = _RD(wrq1); 8377 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8378 STREAM(wrq1)->sd_flag |= STRMATE; 8379 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8380 STREAM(wrq2)->sd_flag |= STRMATE; 8381 } 8382 } 8383 8384 /* 8385 * XXX will go away when console is correctly fixed. 8386 * Clean up the console PIDS, from previous I_SETSIG, 8387 * called only for cnopen which never calls strclean(). 8388 */ 8389 void 8390 str_cn_clean(struct vnode *vp) 8391 { 8392 strsig_t *ssp, *pssp, *tssp; 8393 struct stdata *stp; 8394 struct pid *pidp; 8395 int update = 0; 8396 8397 ASSERT(vp->v_stream); 8398 stp = vp->v_stream; 8399 pssp = NULL; 8400 mutex_enter(&stp->sd_lock); 8401 ssp = stp->sd_siglist; 8402 while (ssp) { 8403 mutex_enter(&pidlock); 8404 pidp = ssp->ss_pidp; 8405 /* 8406 * Get rid of PID if the proc is gone. 8407 */ 8408 if (pidp->pid_prinactive) { 8409 tssp = ssp->ss_next; 8410 if (pssp) 8411 pssp->ss_next = tssp; 8412 else 8413 stp->sd_siglist = tssp; 8414 ASSERT(pidp->pid_ref <= 1); 8415 PID_RELE(ssp->ss_pidp); 8416 mutex_exit(&pidlock); 8417 kmem_free(ssp, sizeof (strsig_t)); 8418 update = 1; 8419 ssp = tssp; 8420 continue; 8421 } else 8422 mutex_exit(&pidlock); 8423 pssp = ssp; 8424 ssp = ssp->ss_next; 8425 } 8426 if (update) { 8427 stp->sd_sigflags = 0; 8428 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8429 stp->sd_sigflags |= ssp->ss_events; 8430 } 8431 mutex_exit(&stp->sd_lock); 8432 } 8433 8434 /* 8435 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8436 */ 8437 static boolean_t 8438 msghasdata(mblk_t *bp) 8439 { 8440 for (; bp; bp = bp->b_cont) 8441 if (bp->b_datap->db_type == M_DATA) { 8442 ASSERT(bp->b_wptr >= bp->b_rptr); 8443 if (bp->b_wptr > bp->b_rptr) 8444 return (B_TRUE); 8445 } 8446 return (B_FALSE); 8447 } 8448