1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/param.h> 35 #include <sys/errno.h> 36 #include <sys/signal.h> 37 #include <sys/stat.h> 38 #include <sys/proc.h> 39 #include <sys/cred.h> 40 #include <sys/user.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stream.h> 44 #include <sys/strsubr.h> 45 #include <sys/stropts.h> 46 #include <sys/tihdr.h> 47 #include <sys/var.h> 48 #include <sys/poll.h> 49 #include <sys/termio.h> 50 #include <sys/ttold.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/cmn_err.h> 54 #include <sys/sad.h> 55 #include <sys/netstack.h> 56 #include <sys/priocntl.h> 57 #include <sys/jioctl.h> 58 #include <sys/procset.h> 59 #include <sys/session.h> 60 #include <sys/kmem.h> 61 #include <sys/filio.h> 62 #include <sys/vtrace.h> 63 #include <sys/debug.h> 64 #include <sys/strredir.h> 65 #include <sys/fs/fifonode.h> 66 #include <sys/fs/snode.h> 67 #include <sys/strlog.h> 68 #include <sys/strsun.h> 69 #include <sys/project.h> 70 #include <sys/kbio.h> 71 #include <sys/msio.h> 72 #include <sys/tty.h> 73 #include <sys/ptyvar.h> 74 #include <sys/vuid_event.h> 75 #include <sys/modctl.h> 76 #include <sys/sunddi.h> 77 #include <sys/sunldi_impl.h> 78 #include <sys/autoconf.h> 79 #include <sys/policy.h> 80 #include <sys/zone.h> 81 82 83 /* 84 * This define helps improve the readability of streams code while 85 * still maintaining a very old streams performance enhancement. The 86 * performance enhancement basically involved having all callers 87 * of straccess() perform the first check that straccess() will do 88 * locally before actually calling straccess(). (There by reducing 89 * the number of unnecessary calls to straccess().) 90 */ 91 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 92 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 93 straccess((x), (y))) 94 95 /* 96 * what is mblk_pull_len? 97 * 98 * If a streams message consists of many short messages, 99 * a performance degradation occurs from copyout overhead. 100 * To decrease the per mblk overhead, messages that are 101 * likely to consist of many small mblks are pulled up into 102 * one continuous chunk of memory. 103 * 104 * To avoid the processing overhead of examining every 105 * mblk, a quick heuristic is used. If the first mblk in 106 * the message is shorter than mblk_pull_len, it is likely 107 * that the rest of the mblk will be short. 108 * 109 * This heuristic was decided upon after performance tests 110 * indicated that anything more complex slowed down the main 111 * code path. 112 */ 113 #define MBLK_PULL_LEN 64 114 uint32_t mblk_pull_len = MBLK_PULL_LEN; 115 116 /* 117 * The sgttyb_handling flag controls the handling of the old BSD 118 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 119 * 120 * 0 - Emit no warnings at all and retain old, broken behavior. 121 * 1 - Emit no warnings and silently handle new semantics. 122 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 123 * (once per system invocation). Handle with new semantics. 124 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 125 * made (so that offenders drop core and are easy to debug). 126 * 127 * The "new semantics" are that TIOCGETP returns B38400 for 128 * sg_[io]speed if the corresponding value is over B38400, and that 129 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 130 * bit rate." 131 */ 132 int sgttyb_handling = 1; 133 static boolean_t sgttyb_complaint; 134 135 /* don't push drcompat module by default on Style-2 streams */ 136 static int push_drcompat = 0; 137 138 /* 139 * id value used to distinguish between different ioctl messages 140 */ 141 static uint32_t ioc_id; 142 143 static void putback(struct stdata *, queue_t *, mblk_t *, int); 144 static void strcleanall(struct vnode *); 145 static int strwsrv(queue_t *); 146 147 /* 148 * qinit and module_info structures for stream head read and write queues 149 */ 150 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 151 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 152 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 153 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 154 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 155 FIFOLOWAT }; 156 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 157 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 158 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 159 160 extern kmutex_t strresources; /* protects global resources */ 161 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 162 163 static boolean_t msghasdata(mblk_t *bp); 164 #define msgnodata(bp) (!msghasdata(bp)) 165 166 /* 167 * Stream head locking notes: 168 * There are four monitors associated with the stream head: 169 * 1. v_stream monitor: in stropen() and strclose() v_lock 170 * is held while the association of vnode and stream 171 * head is established or tested for. 172 * 2. open/close/push/pop monitor: sd_lock is held while each 173 * thread bids for exclusive access to this monitor 174 * for opening or closing a stream. In addition, this 175 * monitor is entered during pushes and pops. This 176 * guarantees that during plumbing operations there 177 * is only one thread trying to change the plumbing. 178 * Any other threads present in the stream are only 179 * using the plumbing. 180 * 3. read/write monitor: in the case of read, a thread holds 181 * sd_lock while trying to get data from the stream 182 * head queue. if there is none to fulfill a read 183 * request, it sets RSLEEP and calls cv_wait_sig() down 184 * in strwaitq() to await the arrival of new data. 185 * when new data arrives in strrput(), sd_lock is acquired 186 * before testing for RSLEEP and calling cv_broadcast(). 187 * the behavior of strwrite(), strwsrv(), and WSLEEP 188 * mirror this. 189 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 190 * thread is doing an ioctl at a time. 191 */ 192 193 static int 194 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 195 int anchor, cred_t *crp, uint_t anchor_zoneid) 196 { 197 int error; 198 fmodsw_impl_t *fp; 199 200 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 201 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 202 return (error); 203 } 204 if (stp->sd_pushcnt >= nstrpush) { 205 return (EINVAL); 206 } 207 208 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 209 stp->sd_flag |= STREOPENFAIL; 210 return (EINVAL); 211 } 212 213 /* 214 * push new module and call its open routine via qattach 215 */ 216 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 217 return (error); 218 219 /* 220 * Check to see if caller wants a STREAMS anchor 221 * put at this place in the stream, and add if so. 222 */ 223 mutex_enter(&stp->sd_lock); 224 if (anchor == stp->sd_pushcnt) { 225 stp->sd_anchor = stp->sd_pushcnt; 226 stp->sd_anchorzone = anchor_zoneid; 227 } 228 mutex_exit(&stp->sd_lock); 229 230 return (0); 231 } 232 233 /* 234 * Open a stream device. 235 */ 236 int 237 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 238 { 239 struct stdata *stp; 240 queue_t *qp; 241 int s; 242 dev_t dummydev; 243 struct autopush *ap; 244 int error = 0; 245 ssize_t rmin, rmax; 246 int cloneopen; 247 queue_t *brq; 248 major_t major; 249 str_stack_t *ss; 250 zoneid_t zoneid; 251 uint_t anchor; 252 253 #ifdef C2_AUDIT 254 if (audit_active) 255 audit_stropen(vp, devp, flag, crp); 256 #endif 257 258 /* 259 * If the stream already exists, wait for any open in progress 260 * to complete, then call the open function of each module and 261 * driver in the stream. Otherwise create the stream. 262 */ 263 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 264 retry: 265 mutex_enter(&vp->v_lock); 266 if ((stp = vp->v_stream) != NULL) { 267 268 /* 269 * Waiting for stream to be created to device 270 * due to another open. 271 */ 272 mutex_exit(&vp->v_lock); 273 274 if (STRMATED(stp)) { 275 struct stdata *strmatep = stp->sd_mate; 276 277 STRLOCKMATES(stp); 278 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 279 if (flag & (FNDELAY|FNONBLOCK)) { 280 error = EAGAIN; 281 mutex_exit(&strmatep->sd_lock); 282 goto ckreturn; 283 } 284 mutex_exit(&stp->sd_lock); 285 if (!cv_wait_sig(&strmatep->sd_monitor, 286 &strmatep->sd_lock)) { 287 error = EINTR; 288 mutex_exit(&strmatep->sd_lock); 289 mutex_enter(&stp->sd_lock); 290 goto ckreturn; 291 } 292 mutex_exit(&strmatep->sd_lock); 293 goto retry; 294 } 295 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 296 if (flag & (FNDELAY|FNONBLOCK)) { 297 error = EAGAIN; 298 mutex_exit(&strmatep->sd_lock); 299 goto ckreturn; 300 } 301 mutex_exit(&strmatep->sd_lock); 302 if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) { 303 error = EINTR; 304 goto ckreturn; 305 } 306 mutex_exit(&stp->sd_lock); 307 goto retry; 308 } 309 310 if (stp->sd_flag & (STRDERR|STWRERR)) { 311 error = EIO; 312 mutex_exit(&strmatep->sd_lock); 313 goto ckreturn; 314 } 315 316 stp->sd_flag |= STWOPEN; 317 STRUNLOCKMATES(stp); 318 } else { 319 mutex_enter(&stp->sd_lock); 320 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 321 if (flag & (FNDELAY|FNONBLOCK)) { 322 error = EAGAIN; 323 goto ckreturn; 324 } 325 if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) { 326 error = EINTR; 327 goto ckreturn; 328 } 329 mutex_exit(&stp->sd_lock); 330 goto retry; /* could be clone! */ 331 } 332 333 if (stp->sd_flag & (STRDERR|STWRERR)) { 334 error = EIO; 335 goto ckreturn; 336 } 337 338 stp->sd_flag |= STWOPEN; 339 mutex_exit(&stp->sd_lock); 340 } 341 342 /* 343 * Open all modules and devices down stream to notify 344 * that another user is streaming. For modules, set the 345 * last argument to MODOPEN and do not pass any open flags. 346 * Ignore dummydev since this is not the first open. 347 */ 348 claimstr(stp->sd_wrq); 349 qp = stp->sd_wrq; 350 while (_SAMESTR(qp)) { 351 qp = qp->q_next; 352 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 353 break; 354 } 355 releasestr(stp->sd_wrq); 356 mutex_enter(&stp->sd_lock); 357 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 358 stp->sd_rerror = 0; 359 stp->sd_werror = 0; 360 ckreturn: 361 cv_broadcast(&stp->sd_monitor); 362 mutex_exit(&stp->sd_lock); 363 return (error); 364 } 365 366 /* 367 * This vnode isn't streaming. SPECFS already 368 * checked for multiple vnodes pointing to the 369 * same stream, so create a stream to the driver. 370 */ 371 qp = allocq(); 372 stp = shalloc(qp); 373 374 /* 375 * Initialize stream head. shalloc() has given us 376 * exclusive access, and we have the vnode locked; 377 * we can do whatever we want with stp. 378 */ 379 stp->sd_flag = STWOPEN; 380 stp->sd_siglist = NULL; 381 stp->sd_pollist.ph_list = NULL; 382 stp->sd_sigflags = 0; 383 stp->sd_mark = NULL; 384 stp->sd_closetime = STRTIMOUT; 385 stp->sd_sidp = NULL; 386 stp->sd_pgidp = NULL; 387 stp->sd_vnode = vp; 388 stp->sd_rerror = 0; 389 stp->sd_werror = 0; 390 stp->sd_wroff = 0; 391 stp->sd_tail = 0; 392 stp->sd_iocblk = NULL; 393 stp->sd_pushcnt = 0; 394 stp->sd_qn_minpsz = 0; 395 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 396 stp->sd_maxblk = INFPSZ; 397 qp->q_ptr = _WR(qp)->q_ptr = stp; 398 STREAM(qp) = STREAM(_WR(qp)) = stp; 399 vp->v_stream = stp; 400 mutex_exit(&vp->v_lock); 401 if (vp->v_type == VFIFO) { 402 stp->sd_flag |= OLDNDELAY; 403 /* 404 * This means, both for pipes and fifos 405 * strwrite will send SIGPIPE if the other 406 * end is closed. For putmsg it depends 407 * on whether it is a XPG4_2 application 408 * or not 409 */ 410 stp->sd_wput_opt = SW_SIGPIPE; 411 412 /* setq might sleep in kmem_alloc - avoid holding locks. */ 413 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 414 SQ_CI|SQ_CO, B_FALSE); 415 416 set_qend(qp); 417 stp->sd_strtab = fifo_getinfo(); 418 _WR(qp)->q_nfsrv = _WR(qp); 419 qp->q_nfsrv = qp; 420 /* 421 * Wake up others that are waiting for stream to be created. 422 */ 423 mutex_enter(&stp->sd_lock); 424 /* 425 * nothing is be pushed on stream yet, so 426 * optimized stream head packetsizes are just that 427 * of the read queue 428 */ 429 stp->sd_qn_minpsz = qp->q_minpsz; 430 stp->sd_qn_maxpsz = qp->q_maxpsz; 431 stp->sd_flag &= ~STWOPEN; 432 goto fifo_opendone; 433 } 434 /* setq might sleep in kmem_alloc - avoid holding locks. */ 435 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 436 437 set_qend(qp); 438 439 /* 440 * Open driver and create stream to it (via qattach). 441 */ 442 cloneopen = (getmajor(*devp) == clone_major); 443 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 444 mutex_enter(&vp->v_lock); 445 vp->v_stream = NULL; 446 mutex_exit(&vp->v_lock); 447 mutex_enter(&stp->sd_lock); 448 cv_broadcast(&stp->sd_monitor); 449 mutex_exit(&stp->sd_lock); 450 freeq(_RD(qp)); 451 shfree(stp); 452 return (error); 453 } 454 /* 455 * Set sd_strtab after open in order to handle clonable drivers 456 */ 457 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 458 459 /* 460 * Historical note: dummydev used to be be prior to the initial 461 * open (via qattach above), which made the value seen 462 * inconsistent between an I_PUSH and an autopush of a module. 463 */ 464 dummydev = *devp; 465 466 /* 467 * For clone open of old style (Q not associated) network driver, 468 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 469 */ 470 brq = _RD(_WR(qp)->q_next); 471 major = getmajor(*devp); 472 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 473 ((brq->q_flag & _QASSOCIATED) == 0)) { 474 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 475 cmn_err(CE_WARN, "cannot push " DRMODNAME 476 " streams module"); 477 } 478 479 /* 480 * Check for autopush. Start with the global zone. If not found 481 * check in the local zone. 482 */ 483 zoneid = GLOBAL_ZONEID; 484 retryap: 485 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 486 netstack_str; 487 if ((ap = sad_ap_find_by_dev(*devp, ss)) == NULL) { 488 netstack_rele(ss->ss_netstack); 489 if (zoneid == GLOBAL_ZONEID) { 490 /* 491 * None found. Also look in the zone's autopush table. 492 */ 493 zoneid = crgetzoneid(crp); 494 if (zoneid != GLOBAL_ZONEID) 495 goto retryap; 496 } 497 goto opendone; 498 } 499 anchor = ap->ap_anchor; 500 zoneid = crgetzoneid(crp); 501 for (s = 0; s < ap->ap_npush; s++) { 502 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 503 anchor, crp, zoneid); 504 if (error != 0) 505 break; 506 } 507 sad_ap_rele(ap, ss); 508 netstack_rele(ss->ss_netstack); 509 510 /* 511 * let specfs know that open failed part way through 512 */ 513 if (error) { 514 mutex_enter(&stp->sd_lock); 515 stp->sd_flag |= STREOPENFAIL; 516 mutex_exit(&stp->sd_lock); 517 } 518 519 opendone: 520 521 /* 522 * Wake up others that are waiting for stream to be created. 523 */ 524 mutex_enter(&stp->sd_lock); 525 stp->sd_flag &= ~STWOPEN; 526 527 /* 528 * As a performance concern we are caching the values of 529 * q_minpsz and q_maxpsz of the module below the stream 530 * head in the stream head. 531 */ 532 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 533 rmin = stp->sd_wrq->q_next->q_minpsz; 534 rmax = stp->sd_wrq->q_next->q_maxpsz; 535 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 536 537 /* do this processing here as a performance concern */ 538 if (strmsgsz != 0) { 539 if (rmax == INFPSZ) 540 rmax = strmsgsz; 541 else 542 rmax = MIN(strmsgsz, rmax); 543 } 544 545 mutex_enter(QLOCK(stp->sd_wrq)); 546 stp->sd_qn_minpsz = rmin; 547 stp->sd_qn_maxpsz = rmax; 548 mutex_exit(QLOCK(stp->sd_wrq)); 549 550 fifo_opendone: 551 cv_broadcast(&stp->sd_monitor); 552 mutex_exit(&stp->sd_lock); 553 return (error); 554 } 555 556 static int strsink(queue_t *, mblk_t *); 557 static struct qinit deadrend = { 558 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 559 }; 560 static struct qinit deadwend = { 561 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 562 }; 563 564 /* 565 * Close a stream. 566 * This is called from closef() on the last close of an open stream. 567 * Strclean() will already have removed the siglist and pollist 568 * information, so all that remains is to remove all multiplexor links 569 * for the stream, pop all the modules (and the driver), and free the 570 * stream structure. 571 */ 572 573 int 574 strclose(struct vnode *vp, int flag, cred_t *crp) 575 { 576 struct stdata *stp; 577 queue_t *qp; 578 int rval; 579 int freestp = 1; 580 queue_t *rmq; 581 582 #ifdef C2_AUDIT 583 if (audit_active) 584 audit_strclose(vp, flag, crp); 585 #endif 586 587 TRACE_1(TR_FAC_STREAMS_FR, 588 TR_STRCLOSE, "strclose:%p", vp); 589 ASSERT(vp->v_stream); 590 591 stp = vp->v_stream; 592 ASSERT(!(stp->sd_flag & STPLEX)); 593 qp = stp->sd_wrq; 594 595 /* 596 * Needed so that strpoll will return non-zero for this fd. 597 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 598 */ 599 mutex_enter(&stp->sd_lock); 600 stp->sd_flag |= STRHUP; 601 mutex_exit(&stp->sd_lock); 602 603 /* 604 * If the registered process or process group did not have an 605 * open instance of this stream then strclean would not be 606 * called. Thus at the time of closing all remaining siglist entries 607 * are removed. 608 */ 609 if (stp->sd_siglist != NULL) 610 strcleanall(vp); 611 612 ASSERT(stp->sd_siglist == NULL); 613 ASSERT(stp->sd_sigflags == 0); 614 615 if (STRMATED(stp)) { 616 struct stdata *strmatep = stp->sd_mate; 617 int waited = 1; 618 619 STRLOCKMATES(stp); 620 while (waited) { 621 waited = 0; 622 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 623 mutex_exit(&strmatep->sd_lock); 624 cv_wait(&stp->sd_monitor, &stp->sd_lock); 625 mutex_exit(&stp->sd_lock); 626 STRLOCKMATES(stp); 627 waited = 1; 628 } 629 while (strmatep->sd_flag & 630 (STWOPEN|STRCLOSE|STRPLUMB)) { 631 mutex_exit(&stp->sd_lock); 632 cv_wait(&strmatep->sd_monitor, 633 &strmatep->sd_lock); 634 mutex_exit(&strmatep->sd_lock); 635 STRLOCKMATES(stp); 636 waited = 1; 637 } 638 } 639 stp->sd_flag |= STRCLOSE; 640 STRUNLOCKMATES(stp); 641 } else { 642 mutex_enter(&stp->sd_lock); 643 stp->sd_flag |= STRCLOSE; 644 mutex_exit(&stp->sd_lock); 645 } 646 647 ASSERT(qp->q_first == NULL); /* No more delayed write */ 648 649 /* Check if an I_LINK was ever done on this stream */ 650 if (stp->sd_flag & STRHASLINKS) { 651 netstack_t *ns; 652 str_stack_t *ss; 653 654 ns = netstack_find_by_cred(crp); 655 ASSERT(ns != NULL); 656 ss = ns->netstack_str; 657 ASSERT(ss != NULL); 658 659 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 660 netstack_rele(ss->ss_netstack); 661 } 662 663 while (_SAMESTR(qp)) { 664 /* 665 * Holding sd_lock prevents q_next from changing in 666 * this stream. 667 */ 668 mutex_enter(&stp->sd_lock); 669 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 670 671 /* 672 * sleep until awakened by strwsrv() or timeout 673 */ 674 for (;;) { 675 mutex_enter(QLOCK(qp->q_next)); 676 if (!(qp->q_next->q_mblkcnt)) { 677 mutex_exit(QLOCK(qp->q_next)); 678 break; 679 } 680 stp->sd_flag |= WSLEEP; 681 682 /* ensure strwsrv gets enabled */ 683 qp->q_next->q_flag |= QWANTW; 684 mutex_exit(QLOCK(qp->q_next)); 685 /* get out if we timed out or recv'd a signal */ 686 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 687 stp->sd_closetime, 0) <= 0) { 688 break; 689 } 690 } 691 stp->sd_flag &= ~WSLEEP; 692 } 693 mutex_exit(&stp->sd_lock); 694 695 rmq = qp->q_next; 696 if (rmq->q_flag & QISDRV) { 697 ASSERT(!_SAMESTR(rmq)); 698 wait_sq_svc(_RD(qp)->q_syncq); 699 } 700 701 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 702 } 703 704 /* 705 * Since we call pollwakeup in close() now, the poll list should 706 * be empty in most cases. The only exception is the layered devices 707 * (e.g. the console drivers with redirection modules pushed on top 708 * of it). We have to do this after calling qdetach() because 709 * the redirection module won't have torn down the console 710 * redirection until after qdetach() has been invoked. 711 */ 712 if (stp->sd_pollist.ph_list != NULL) { 713 pollwakeup(&stp->sd_pollist, POLLERR); 714 pollhead_clean(&stp->sd_pollist); 715 } 716 ASSERT(stp->sd_pollist.ph_list == NULL); 717 ASSERT(stp->sd_sidp == NULL); 718 ASSERT(stp->sd_pgidp == NULL); 719 720 /* Prevent qenable from re-enabling the stream head queue */ 721 disable_svc(_RD(qp)); 722 723 /* 724 * Wait until service procedure of each queue is 725 * run, if QINSERVICE is set. 726 */ 727 wait_svc(_RD(qp)); 728 729 /* 730 * Now, flush both queues. 731 */ 732 flushq(_RD(qp), FLUSHALL); 733 flushq(qp, FLUSHALL); 734 735 /* 736 * If the write queue of the stream head is pointing to a 737 * read queue, we have a twisted stream. If the read queue 738 * is alive, convert the stream head queues into a dead end. 739 * If the read queue is dead, free the dead pair. 740 */ 741 if (qp->q_next && !_SAMESTR(qp)) { 742 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 743 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 744 shfree(qp->q_next->q_stream); 745 freeq(qp->q_next); 746 freeq(_RD(qp)); 747 } else if (qp->q_next == _RD(qp)) { /* fifo */ 748 freeq(_RD(qp)); 749 } else { /* pipe */ 750 freestp = 0; 751 /* 752 * The q_info pointers are never accessed when 753 * SQLOCK is held. 754 */ 755 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 756 mutex_enter(SQLOCK(qp->q_syncq)); 757 qp->q_qinfo = &deadwend; 758 _RD(qp)->q_qinfo = &deadrend; 759 mutex_exit(SQLOCK(qp->q_syncq)); 760 } 761 } else { 762 freeq(_RD(qp)); /* free stream head queue pair */ 763 } 764 765 mutex_enter(&vp->v_lock); 766 if (stp->sd_iocblk) { 767 if (stp->sd_iocblk != (mblk_t *)-1) { 768 freemsg(stp->sd_iocblk); 769 } 770 stp->sd_iocblk = NULL; 771 } 772 stp->sd_vnode = NULL; 773 vp->v_stream = NULL; 774 mutex_exit(&vp->v_lock); 775 mutex_enter(&stp->sd_lock); 776 stp->sd_flag &= ~STRCLOSE; 777 cv_broadcast(&stp->sd_monitor); 778 mutex_exit(&stp->sd_lock); 779 780 if (freestp) 781 shfree(stp); 782 return (0); 783 } 784 785 static int 786 strsink(queue_t *q, mblk_t *bp) 787 { 788 struct copyresp *resp; 789 790 switch (bp->b_datap->db_type) { 791 case M_FLUSH: 792 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 793 *bp->b_rptr &= ~FLUSHR; 794 bp->b_flag |= MSGNOLOOP; 795 /* 796 * Protect against the driver passing up 797 * messages after it has done a qprocsoff. 798 */ 799 if (_OTHERQ(q)->q_next == NULL) 800 freemsg(bp); 801 else 802 qreply(q, bp); 803 } else { 804 freemsg(bp); 805 } 806 break; 807 808 case M_COPYIN: 809 case M_COPYOUT: 810 if (bp->b_cont) { 811 freemsg(bp->b_cont); 812 bp->b_cont = NULL; 813 } 814 bp->b_datap->db_type = M_IOCDATA; 815 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 816 resp = (struct copyresp *)bp->b_rptr; 817 resp->cp_rval = (caddr_t)1; /* failure */ 818 /* 819 * Protect against the driver passing up 820 * messages after it has done a qprocsoff. 821 */ 822 if (_OTHERQ(q)->q_next == NULL) 823 freemsg(bp); 824 else 825 qreply(q, bp); 826 break; 827 828 case M_IOCTL: 829 if (bp->b_cont) { 830 freemsg(bp->b_cont); 831 bp->b_cont = NULL; 832 } 833 bp->b_datap->db_type = M_IOCNAK; 834 /* 835 * Protect against the driver passing up 836 * messages after it has done a qprocsoff. 837 */ 838 if (_OTHERQ(q)->q_next == NULL) 839 freemsg(bp); 840 else 841 qreply(q, bp); 842 break; 843 844 default: 845 freemsg(bp); 846 break; 847 } 848 849 return (0); 850 } 851 852 /* 853 * Clean up after a process when it closes a stream. This is called 854 * from closef for all closes, whereas strclose is called only for the 855 * last close on a stream. The siglist is scanned for entries for the 856 * current process, and these are removed. 857 */ 858 void 859 strclean(struct vnode *vp) 860 { 861 strsig_t *ssp, *pssp, *tssp; 862 stdata_t *stp; 863 int update = 0; 864 865 TRACE_1(TR_FAC_STREAMS_FR, 866 TR_STRCLEAN, "strclean:%p", vp); 867 stp = vp->v_stream; 868 pssp = NULL; 869 mutex_enter(&stp->sd_lock); 870 ssp = stp->sd_siglist; 871 while (ssp) { 872 if (ssp->ss_pidp == curproc->p_pidp) { 873 tssp = ssp->ss_next; 874 if (pssp) 875 pssp->ss_next = tssp; 876 else 877 stp->sd_siglist = tssp; 878 mutex_enter(&pidlock); 879 PID_RELE(ssp->ss_pidp); 880 mutex_exit(&pidlock); 881 kmem_free(ssp, sizeof (strsig_t)); 882 update = 1; 883 ssp = tssp; 884 } else { 885 pssp = ssp; 886 ssp = ssp->ss_next; 887 } 888 } 889 if (update) { 890 stp->sd_sigflags = 0; 891 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 892 stp->sd_sigflags |= ssp->ss_events; 893 } 894 mutex_exit(&stp->sd_lock); 895 } 896 897 /* 898 * Used on the last close to remove any remaining items on the siglist. 899 * These could be present on the siglist due to I_ESETSIG calls that 900 * use process groups or processed that do not have an open file descriptor 901 * for this stream (Such entries would not be removed by strclean). 902 */ 903 static void 904 strcleanall(struct vnode *vp) 905 { 906 strsig_t *ssp, *nssp; 907 stdata_t *stp; 908 909 stp = vp->v_stream; 910 mutex_enter(&stp->sd_lock); 911 ssp = stp->sd_siglist; 912 stp->sd_siglist = NULL; 913 while (ssp) { 914 nssp = ssp->ss_next; 915 mutex_enter(&pidlock); 916 PID_RELE(ssp->ss_pidp); 917 mutex_exit(&pidlock); 918 kmem_free(ssp, sizeof (strsig_t)); 919 ssp = nssp; 920 } 921 stp->sd_sigflags = 0; 922 mutex_exit(&stp->sd_lock); 923 } 924 925 /* 926 * Retrieve the next message from the logical stream head read queue 927 * using either rwnext (if sync stream) or getq_noenab. 928 * It is the callers responsibility to call qbackenable after 929 * it is finished with the message. The caller should not call 930 * qbackenable until after any putback calls to avoid spurious backenabling. 931 */ 932 mblk_t * 933 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 934 int *errorp) 935 { 936 mblk_t *bp; 937 int error; 938 939 ASSERT(MUTEX_HELD(&stp->sd_lock)); 940 /* Holding sd_lock prevents the read queue from changing */ 941 942 if (uiop != NULL && stp->sd_struiordq != NULL && 943 q->q_first == NULL && 944 (!first || (stp->sd_wakeq & RSLEEP))) { 945 /* 946 * Stream supports rwnext() for the read side. 947 * If this is the first time we're called by e.g. strread 948 * only do the downcall if there is a deferred wakeup 949 * (registered in sd_wakeq). 950 */ 951 struiod_t uiod; 952 953 if (first) 954 stp->sd_wakeq &= ~RSLEEP; 955 956 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 957 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 958 uiod.d_mp = 0; 959 /* 960 * Mark that a thread is in rwnext on the read side 961 * to prevent strrput from nacking ioctls immediately. 962 * When the last concurrent rwnext returns 963 * the ioctls are nack'ed. 964 */ 965 ASSERT(MUTEX_HELD(&stp->sd_lock)); 966 stp->sd_struiodnak++; 967 /* 968 * Note: rwnext will drop sd_lock. 969 */ 970 error = rwnext(q, &uiod); 971 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 972 mutex_enter(&stp->sd_lock); 973 stp->sd_struiodnak--; 974 while (stp->sd_struiodnak == 0 && 975 ((bp = stp->sd_struionak) != NULL)) { 976 stp->sd_struionak = bp->b_next; 977 bp->b_next = NULL; 978 bp->b_datap->db_type = M_IOCNAK; 979 /* 980 * Protect against the driver passing up 981 * messages after it has done a qprocsoff. 982 */ 983 if (_OTHERQ(q)->q_next == NULL) 984 freemsg(bp); 985 else { 986 mutex_exit(&stp->sd_lock); 987 qreply(q, bp); 988 mutex_enter(&stp->sd_lock); 989 } 990 } 991 ASSERT(MUTEX_HELD(&stp->sd_lock)); 992 if (error == 0 || error == EWOULDBLOCK) { 993 if ((bp = uiod.d_mp) != NULL) { 994 *errorp = 0; 995 ASSERT(MUTEX_HELD(&stp->sd_lock)); 996 return (bp); 997 } 998 error = 0; 999 } else if (error == EINVAL) { 1000 /* 1001 * The stream plumbing must have 1002 * changed while we were away, so 1003 * just turn off rwnext()s. 1004 */ 1005 error = 0; 1006 } else if (error == EBUSY) { 1007 /* 1008 * The module might have data in transit using putnext 1009 * Fall back on waiting + getq. 1010 */ 1011 error = 0; 1012 } else { 1013 *errorp = error; 1014 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1015 return (NULL); 1016 } 1017 /* 1018 * Try a getq in case a rwnext() generated mblk 1019 * has bubbled up via strrput(). 1020 */ 1021 } 1022 *errorp = 0; 1023 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1024 return (getq_noenab(q)); 1025 } 1026 1027 /* 1028 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1029 * If the message does not fit in the uio the remainder of it is returned; 1030 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1031 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1032 * the error code, the message is consumed, and NULL is returned. 1033 */ 1034 static mblk_t * 1035 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1036 { 1037 int error; 1038 ptrdiff_t n; 1039 mblk_t *nbp; 1040 1041 ASSERT(bp->b_wptr >= bp->b_rptr); 1042 1043 do { 1044 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1045 ASSERT(n > 0); 1046 1047 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1048 if (error != 0) { 1049 freemsg(bp); 1050 *errorp = error; 1051 return (NULL); 1052 } 1053 } 1054 1055 bp->b_rptr += n; 1056 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1057 nbp = bp; 1058 bp = bp->b_cont; 1059 freeb(nbp); 1060 } 1061 } while (bp != NULL && uiop->uio_resid > 0); 1062 1063 *errorp = 0; 1064 return (bp); 1065 } 1066 1067 /* 1068 * Read a stream according to the mode flags in sd_flag: 1069 * 1070 * (default mode) - Byte stream, msg boundaries are ignored 1071 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1072 * any data remaining in msg 1073 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1074 * any remaining data on head of read queue 1075 * 1076 * Consume readable messages on the front of the queue until 1077 * ttolwp(curthread)->lwp_count 1078 * is satisfied, the readable messages are exhausted, or a message 1079 * boundary is reached in a message mode. If no data was read and 1080 * the stream was not opened with the NDELAY flag, block until data arrives. 1081 * Otherwise return the data read and update the count. 1082 * 1083 * In default mode a 0 length message signifies end-of-file and terminates 1084 * a read in progress. The 0 length message is removed from the queue 1085 * only if it is the only message read (no data is read). 1086 * 1087 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1088 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1089 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1090 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1091 * are unlinked from and M_DATA blocks in the message, the protos are 1092 * thrown away, and the data is read. 1093 */ 1094 /* ARGSUSED */ 1095 int 1096 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1097 { 1098 struct stdata *stp; 1099 mblk_t *bp, *nbp; 1100 queue_t *q; 1101 int error = 0; 1102 uint_t old_sd_flag; 1103 int first; 1104 char rflg; 1105 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1106 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1107 short delim; 1108 unsigned char pri = 0; 1109 char waitflag; 1110 unsigned char type; 1111 1112 TRACE_1(TR_FAC_STREAMS_FR, 1113 TR_STRREAD_ENTER, "strread:%p", vp); 1114 ASSERT(vp->v_stream); 1115 stp = vp->v_stream; 1116 1117 mutex_enter(&stp->sd_lock); 1118 1119 if ((error = i_straccess(stp, JCREAD)) != 0) { 1120 mutex_exit(&stp->sd_lock); 1121 return (error); 1122 } 1123 1124 if (stp->sd_flag & (STRDERR|STPLEX)) { 1125 error = strgeterr(stp, STRDERR|STPLEX, 0); 1126 if (error != 0) { 1127 mutex_exit(&stp->sd_lock); 1128 return (error); 1129 } 1130 } 1131 1132 /* 1133 * Loop terminates when uiop->uio_resid == 0. 1134 */ 1135 rflg = 0; 1136 waitflag = READWAIT; 1137 q = _RD(stp->sd_wrq); 1138 for (;;) { 1139 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1140 old_sd_flag = stp->sd_flag; 1141 mark = 0; 1142 delim = 0; 1143 first = 1; 1144 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1145 int done = 0; 1146 1147 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1148 1149 if (error != 0) 1150 goto oops; 1151 1152 if (stp->sd_flag & (STRHUP|STREOF)) { 1153 goto oops; 1154 } 1155 if (rflg && !(stp->sd_flag & STRDELIM)) { 1156 goto oops; 1157 } 1158 /* 1159 * If a read(fd,buf,0) has been done, there is no 1160 * need to sleep. We always have zero bytes to 1161 * return. 1162 */ 1163 if (uiop->uio_resid == 0) { 1164 goto oops; 1165 } 1166 1167 qbackenable(q, 0); 1168 1169 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1170 "strread calls strwaitq:%p, %p, %p", 1171 vp, uiop, crp); 1172 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1173 uiop->uio_fmode, -1, &done)) != 0 || done) { 1174 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1175 "strread error or done:%p, %p, %p", 1176 vp, uiop, crp); 1177 if ((uiop->uio_fmode & FNDELAY) && 1178 (stp->sd_flag & OLDNDELAY) && 1179 (error == EAGAIN)) 1180 error = 0; 1181 goto oops; 1182 } 1183 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1184 "strread awakes:%p, %p, %p", vp, uiop, crp); 1185 if ((error = i_straccess(stp, JCREAD)) != 0) { 1186 goto oops; 1187 } 1188 first = 0; 1189 } 1190 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1191 ASSERT(bp); 1192 pri = bp->b_band; 1193 /* 1194 * Extract any mark information. If the message is not 1195 * completely consumed this information will be put in the mblk 1196 * that is putback. 1197 * If MSGMARKNEXT is set and the message is completely consumed 1198 * the STRATMARK flag will be set below. Likewise, if 1199 * MSGNOTMARKNEXT is set and the message is 1200 * completely consumed STRNOTATMARK will be set. 1201 * 1202 * For some unknown reason strread only breaks the read at the 1203 * last mark. 1204 */ 1205 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1206 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1207 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1208 if (mark != 0 && bp == stp->sd_mark) { 1209 if (rflg) { 1210 putback(stp, q, bp, pri); 1211 goto oops; 1212 } 1213 mark |= _LASTMARK; 1214 stp->sd_mark = NULL; 1215 } 1216 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1217 delim = 1; 1218 mutex_exit(&stp->sd_lock); 1219 1220 if (STREAM_NEEDSERVICE(stp)) 1221 stream_runservice(stp); 1222 1223 type = bp->b_datap->db_type; 1224 1225 switch (type) { 1226 1227 case M_DATA: 1228 ismdata: 1229 if (msgnodata(bp)) { 1230 if (mark || delim) { 1231 freemsg(bp); 1232 } else if (rflg) { 1233 1234 /* 1235 * If already read data put zero 1236 * length message back on queue else 1237 * free msg and return 0. 1238 */ 1239 bp->b_band = pri; 1240 mutex_enter(&stp->sd_lock); 1241 putback(stp, q, bp, pri); 1242 mutex_exit(&stp->sd_lock); 1243 } else { 1244 freemsg(bp); 1245 } 1246 error = 0; 1247 goto oops1; 1248 } 1249 1250 rflg = 1; 1251 waitflag |= NOINTR; 1252 bp = struiocopyout(bp, uiop, &error); 1253 if (error != 0) 1254 goto oops1; 1255 1256 mutex_enter(&stp->sd_lock); 1257 if (bp) { 1258 /* 1259 * Have remaining data in message. 1260 * Free msg if in discard mode. 1261 */ 1262 if (stp->sd_read_opt & RD_MSGDIS) { 1263 freemsg(bp); 1264 } else { 1265 bp->b_band = pri; 1266 if ((mark & _LASTMARK) && 1267 (stp->sd_mark == NULL)) 1268 stp->sd_mark = bp; 1269 bp->b_flag |= mark & ~_LASTMARK; 1270 if (delim) 1271 bp->b_flag |= MSGDELIM; 1272 if (msgnodata(bp)) 1273 freemsg(bp); 1274 else 1275 putback(stp, q, bp, pri); 1276 } 1277 } else { 1278 /* 1279 * Consumed the complete message. 1280 * Move the MSG*MARKNEXT information 1281 * to the stream head just in case 1282 * the read queue becomes empty. 1283 * 1284 * If the stream head was at the mark 1285 * (STRATMARK) before we dropped sd_lock above 1286 * and some data was consumed then we have 1287 * moved past the mark thus STRATMARK is 1288 * cleared. However, if a message arrived in 1289 * strrput during the copyout above causing 1290 * STRATMARK to be set we can not clear that 1291 * flag. 1292 */ 1293 if (mark & 1294 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1295 if (mark & MSGMARKNEXT) { 1296 stp->sd_flag &= ~STRNOTATMARK; 1297 stp->sd_flag |= STRATMARK; 1298 } else if (mark & MSGNOTMARKNEXT) { 1299 stp->sd_flag &= ~STRATMARK; 1300 stp->sd_flag |= STRNOTATMARK; 1301 } else { 1302 stp->sd_flag &= 1303 ~(STRATMARK|STRNOTATMARK); 1304 } 1305 } else if (rflg && (old_sd_flag & STRATMARK)) { 1306 stp->sd_flag &= ~STRATMARK; 1307 } 1308 } 1309 1310 /* 1311 * Check for signal messages at the front of the read 1312 * queue and generate the signal(s) if appropriate. 1313 * The only signal that can be on queue is M_SIG at 1314 * this point. 1315 */ 1316 while ((((bp = q->q_first)) != NULL) && 1317 (bp->b_datap->db_type == M_SIG)) { 1318 bp = getq_noenab(q); 1319 /* 1320 * sd_lock is held so the content of the 1321 * read queue can not change. 1322 */ 1323 ASSERT(bp != NULL && 1324 bp->b_datap->db_type == M_SIG); 1325 strsignal_nolock(stp, *bp->b_rptr, 1326 (int32_t)bp->b_band); 1327 mutex_exit(&stp->sd_lock); 1328 freemsg(bp); 1329 if (STREAM_NEEDSERVICE(stp)) 1330 stream_runservice(stp); 1331 mutex_enter(&stp->sd_lock); 1332 } 1333 1334 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1335 delim || 1336 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1337 goto oops; 1338 } 1339 continue; 1340 1341 case M_SIG: 1342 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1343 freemsg(bp); 1344 mutex_enter(&stp->sd_lock); 1345 continue; 1346 1347 case M_PROTO: 1348 case M_PCPROTO: 1349 /* 1350 * Only data messages are readable. 1351 * Any others generate an error, unless 1352 * RD_PROTDIS or RD_PROTDAT is set. 1353 */ 1354 if (stp->sd_read_opt & RD_PROTDAT) { 1355 for (nbp = bp; nbp; nbp = nbp->b_next) { 1356 if ((nbp->b_datap->db_type == M_PROTO) || 1357 (nbp->b_datap->db_type == M_PCPROTO)) 1358 nbp->b_datap->db_type = M_DATA; 1359 else 1360 break; 1361 } 1362 /* 1363 * clear stream head hi pri flag based on 1364 * first message 1365 */ 1366 if (type == M_PCPROTO) { 1367 mutex_enter(&stp->sd_lock); 1368 stp->sd_flag &= ~STRPRI; 1369 mutex_exit(&stp->sd_lock); 1370 } 1371 goto ismdata; 1372 } else if (stp->sd_read_opt & RD_PROTDIS) { 1373 /* 1374 * discard non-data messages 1375 */ 1376 while (bp && 1377 ((bp->b_datap->db_type == M_PROTO) || 1378 (bp->b_datap->db_type == M_PCPROTO))) { 1379 nbp = unlinkb(bp); 1380 freeb(bp); 1381 bp = nbp; 1382 } 1383 /* 1384 * clear stream head hi pri flag based on 1385 * first message 1386 */ 1387 if (type == M_PCPROTO) { 1388 mutex_enter(&stp->sd_lock); 1389 stp->sd_flag &= ~STRPRI; 1390 mutex_exit(&stp->sd_lock); 1391 } 1392 if (bp) { 1393 bp->b_band = pri; 1394 goto ismdata; 1395 } else { 1396 break; 1397 } 1398 } 1399 /* FALLTHRU */ 1400 case M_PASSFP: 1401 if ((bp->b_datap->db_type == M_PASSFP) && 1402 (stp->sd_read_opt & RD_PROTDIS)) { 1403 freemsg(bp); 1404 break; 1405 } 1406 mutex_enter(&stp->sd_lock); 1407 putback(stp, q, bp, pri); 1408 mutex_exit(&stp->sd_lock); 1409 if (rflg == 0) 1410 error = EBADMSG; 1411 goto oops1; 1412 1413 default: 1414 /* 1415 * Garbage on stream head read queue. 1416 */ 1417 cmn_err(CE_WARN, "bad %x found at stream head\n", 1418 bp->b_datap->db_type); 1419 freemsg(bp); 1420 goto oops1; 1421 } 1422 mutex_enter(&stp->sd_lock); 1423 } 1424 oops: 1425 mutex_exit(&stp->sd_lock); 1426 oops1: 1427 qbackenable(q, pri); 1428 return (error); 1429 #undef _LASTMARK 1430 } 1431 1432 /* 1433 * Default processing of M_PROTO/M_PCPROTO messages. 1434 * Determine which wakeups and signals are needed. 1435 * This can be replaced by a user-specified procedure for kernel users 1436 * of STREAMS. 1437 */ 1438 /* ARGSUSED */ 1439 mblk_t * 1440 strrput_proto(vnode_t *vp, mblk_t *mp, 1441 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1442 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1443 { 1444 *wakeups = RSLEEP; 1445 *allmsgsigs = 0; 1446 1447 switch (mp->b_datap->db_type) { 1448 case M_PROTO: 1449 if (mp->b_band == 0) { 1450 *firstmsgsigs = S_INPUT | S_RDNORM; 1451 *pollwakeups = POLLIN | POLLRDNORM; 1452 } else { 1453 *firstmsgsigs = S_INPUT | S_RDBAND; 1454 *pollwakeups = POLLIN | POLLRDBAND; 1455 } 1456 break; 1457 case M_PCPROTO: 1458 *firstmsgsigs = S_HIPRI; 1459 *pollwakeups = POLLPRI; 1460 break; 1461 } 1462 return (mp); 1463 } 1464 1465 /* 1466 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1467 * M_PASSFP messages. 1468 * Determine which wakeups and signals are needed. 1469 * This can be replaced by a user-specified procedure for kernel users 1470 * of STREAMS. 1471 */ 1472 /* ARGSUSED */ 1473 mblk_t * 1474 strrput_misc(vnode_t *vp, mblk_t *mp, 1475 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1476 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1477 { 1478 *wakeups = 0; 1479 *firstmsgsigs = 0; 1480 *allmsgsigs = 0; 1481 *pollwakeups = 0; 1482 return (mp); 1483 } 1484 1485 /* 1486 * Stream read put procedure. Called from downstream driver/module 1487 * with messages for the stream head. Data, protocol, and in-stream 1488 * signal messages are placed on the queue, others are handled directly. 1489 */ 1490 int 1491 strrput(queue_t *q, mblk_t *bp) 1492 { 1493 struct stdata *stp; 1494 ulong_t rput_opt; 1495 strwakeup_t wakeups; 1496 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1497 strsigset_t allmsgsigs; /* Signals for all messages */ 1498 strsigset_t signals; /* Signals events to generate */ 1499 strpollset_t pollwakeups; 1500 mblk_t *nextbp; 1501 uchar_t band = 0; 1502 int hipri_sig; 1503 1504 stp = (struct stdata *)q->q_ptr; 1505 /* 1506 * Use rput_opt for optimized access to the SR_ flags except 1507 * SR_POLLIN. That flag has to be checked under sd_lock since it 1508 * is modified by strpoll(). 1509 */ 1510 rput_opt = stp->sd_rput_opt; 1511 1512 ASSERT(qclaimed(q)); 1513 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1514 "strrput called with message type:q %p bp %p", q, bp); 1515 1516 /* 1517 * Perform initial processing and pass to the parameterized functions. 1518 */ 1519 ASSERT(bp->b_next == NULL); 1520 1521 switch (bp->b_datap->db_type) { 1522 case M_DATA: 1523 /* 1524 * sockfs is the only consumer of STREOF and when it is set, 1525 * it implies that the receiver is not interested in receiving 1526 * any more data, hence the mblk is freed to prevent unnecessary 1527 * message queueing at the stream head. 1528 */ 1529 if (stp->sd_flag == STREOF) { 1530 freemsg(bp); 1531 return (0); 1532 } 1533 if ((rput_opt & SR_IGN_ZEROLEN) && 1534 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1535 /* 1536 * Ignore zero-length M_DATA messages. These might be 1537 * generated by some transports. 1538 * The zero-length M_DATA messages, even if they 1539 * are ignored, should effect the atmark tracking and 1540 * should wake up a thread sleeping in strwaitmark. 1541 */ 1542 mutex_enter(&stp->sd_lock); 1543 if (bp->b_flag & MSGMARKNEXT) { 1544 /* 1545 * Record the position of the mark either 1546 * in q_last or in STRATMARK. 1547 */ 1548 if (q->q_last != NULL) { 1549 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1550 q->q_last->b_flag |= MSGMARKNEXT; 1551 } else { 1552 stp->sd_flag &= ~STRNOTATMARK; 1553 stp->sd_flag |= STRATMARK; 1554 } 1555 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1556 /* 1557 * Record that this is not the position of 1558 * the mark either in q_last or in 1559 * STRNOTATMARK. 1560 */ 1561 if (q->q_last != NULL) { 1562 q->q_last->b_flag &= ~MSGMARKNEXT; 1563 q->q_last->b_flag |= MSGNOTMARKNEXT; 1564 } else { 1565 stp->sd_flag &= ~STRATMARK; 1566 stp->sd_flag |= STRNOTATMARK; 1567 } 1568 } 1569 if (stp->sd_flag & RSLEEP) { 1570 stp->sd_flag &= ~RSLEEP; 1571 cv_broadcast(&q->q_wait); 1572 } 1573 mutex_exit(&stp->sd_lock); 1574 freemsg(bp); 1575 return (0); 1576 } 1577 wakeups = RSLEEP; 1578 if (bp->b_band == 0) { 1579 firstmsgsigs = S_INPUT | S_RDNORM; 1580 pollwakeups = POLLIN | POLLRDNORM; 1581 } else { 1582 firstmsgsigs = S_INPUT | S_RDBAND; 1583 pollwakeups = POLLIN | POLLRDBAND; 1584 } 1585 if (rput_opt & SR_SIGALLDATA) 1586 allmsgsigs = firstmsgsigs; 1587 else 1588 allmsgsigs = 0; 1589 1590 mutex_enter(&stp->sd_lock); 1591 if ((rput_opt & SR_CONSOL_DATA) && 1592 (q->q_last != NULL) && 1593 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1594 /* 1595 * Consolidate an M_DATA message onto an M_DATA, 1596 * M_PROTO, or M_PCPROTO by merging it with q_last. 1597 * The consolidation does not take place if 1598 * the old message is marked with either of the 1599 * marks or the delim flag or if the new 1600 * message is marked with MSGMARK. The MSGMARK 1601 * check is needed to handle the odd semantics of 1602 * MSGMARK where essentially the whole message 1603 * is to be treated as marked. 1604 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1605 * new message to the front of the b_cont chain. 1606 */ 1607 mblk_t *lbp = q->q_last; 1608 unsigned char db_type = lbp->b_datap->db_type; 1609 1610 if ((db_type == M_DATA || db_type == M_PROTO || 1611 db_type == M_PCPROTO) && 1612 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1613 rmvq_noenab(q, lbp); 1614 /* 1615 * The first message in the b_cont list 1616 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1617 * We need to handle the case where we 1618 * are appending: 1619 * 1620 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1621 * 2) a MSGMARKNEXT to a plain message. 1622 * 3) a MSGNOTMARKNEXT to a plain message 1623 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1624 * message. 1625 * 1626 * Thus we never append a MSGMARKNEXT or 1627 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1628 */ 1629 if (bp->b_flag & MSGMARKNEXT) { 1630 lbp->b_flag |= MSGMARKNEXT; 1631 lbp->b_flag &= ~MSGNOTMARKNEXT; 1632 bp->b_flag &= ~MSGMARKNEXT; 1633 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1634 lbp->b_flag |= MSGNOTMARKNEXT; 1635 bp->b_flag &= ~MSGNOTMARKNEXT; 1636 } 1637 1638 linkb(lbp, bp); 1639 bp = lbp; 1640 /* 1641 * The new message logically isn't the first 1642 * even though the q_first check below thinks 1643 * it is. Clear the firstmsgsigs to make it 1644 * not appear to be first. 1645 */ 1646 firstmsgsigs = 0; 1647 } 1648 } 1649 break; 1650 1651 case M_PASSFP: 1652 wakeups = RSLEEP; 1653 allmsgsigs = 0; 1654 if (bp->b_band == 0) { 1655 firstmsgsigs = S_INPUT | S_RDNORM; 1656 pollwakeups = POLLIN | POLLRDNORM; 1657 } else { 1658 firstmsgsigs = S_INPUT | S_RDBAND; 1659 pollwakeups = POLLIN | POLLRDBAND; 1660 } 1661 mutex_enter(&stp->sd_lock); 1662 break; 1663 1664 case M_PROTO: 1665 case M_PCPROTO: 1666 ASSERT(stp->sd_rprotofunc != NULL); 1667 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1668 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1669 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1670 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1671 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1672 POLLWRBAND) 1673 1674 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1675 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1676 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1677 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1678 1679 mutex_enter(&stp->sd_lock); 1680 break; 1681 1682 default: 1683 ASSERT(stp->sd_rmiscfunc != NULL); 1684 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1685 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1686 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1687 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1688 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1689 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1690 #undef ALLSIG 1691 #undef ALLPOLL 1692 mutex_enter(&stp->sd_lock); 1693 break; 1694 } 1695 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1696 1697 /* By default generate superset of signals */ 1698 signals = (firstmsgsigs | allmsgsigs); 1699 1700 /* 1701 * The proto and misc functions can return multiple messages 1702 * as a b_next chain. Such messages are processed separately. 1703 */ 1704 one_more: 1705 hipri_sig = 0; 1706 if (bp == NULL) { 1707 nextbp = NULL; 1708 } else { 1709 nextbp = bp->b_next; 1710 bp->b_next = NULL; 1711 1712 switch (bp->b_datap->db_type) { 1713 case M_PCPROTO: 1714 /* 1715 * Only one priority protocol message is allowed at the 1716 * stream head at a time. 1717 */ 1718 if (stp->sd_flag & STRPRI) { 1719 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1720 "M_PCPROTO already at head"); 1721 freemsg(bp); 1722 mutex_exit(&stp->sd_lock); 1723 goto done; 1724 } 1725 stp->sd_flag |= STRPRI; 1726 hipri_sig = 1; 1727 /* FALLTHRU */ 1728 case M_DATA: 1729 case M_PROTO: 1730 case M_PASSFP: 1731 band = bp->b_band; 1732 /* 1733 * Marking doesn't work well when messages 1734 * are marked in more than one band. We only 1735 * remember the last message received, even if 1736 * it is placed on the queue ahead of other 1737 * marked messages. 1738 */ 1739 if (bp->b_flag & MSGMARK) 1740 stp->sd_mark = bp; 1741 (void) putq(q, bp); 1742 1743 /* 1744 * If message is a PCPROTO message, always use 1745 * firstmsgsigs to determine if a signal should be 1746 * sent as strrput is the only place to send 1747 * signals for PCPROTO. Other messages are based on 1748 * the STRGETINPROG flag. The flag determines if 1749 * strrput or (k)strgetmsg will be responsible for 1750 * sending the signals, in the firstmsgsigs case. 1751 */ 1752 if ((hipri_sig == 1) || 1753 (((stp->sd_flag & STRGETINPROG) == 0) && 1754 (q->q_first == bp))) 1755 signals = (firstmsgsigs | allmsgsigs); 1756 else 1757 signals = allmsgsigs; 1758 break; 1759 1760 default: 1761 mutex_exit(&stp->sd_lock); 1762 (void) strrput_nondata(q, bp); 1763 mutex_enter(&stp->sd_lock); 1764 break; 1765 } 1766 } 1767 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1768 /* 1769 * Wake sleeping read/getmsg and cancel deferred wakeup 1770 */ 1771 if (wakeups & RSLEEP) 1772 stp->sd_wakeq &= ~RSLEEP; 1773 1774 wakeups &= stp->sd_flag; 1775 if (wakeups & RSLEEP) { 1776 stp->sd_flag &= ~RSLEEP; 1777 cv_broadcast(&q->q_wait); 1778 } 1779 if (wakeups & WSLEEP) { 1780 stp->sd_flag &= ~WSLEEP; 1781 cv_broadcast(&_WR(q)->q_wait); 1782 } 1783 1784 if (pollwakeups != 0) { 1785 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1786 /* 1787 * Can't use rput_opt since it was not 1788 * read when sd_lock was held and SR_POLLIN is changed 1789 * by strpoll() under sd_lock. 1790 */ 1791 if (!(stp->sd_rput_opt & SR_POLLIN)) 1792 goto no_pollwake; 1793 stp->sd_rput_opt &= ~SR_POLLIN; 1794 } 1795 mutex_exit(&stp->sd_lock); 1796 pollwakeup(&stp->sd_pollist, pollwakeups); 1797 mutex_enter(&stp->sd_lock); 1798 } 1799 no_pollwake: 1800 1801 /* 1802 * strsendsig can handle multiple signals with a 1803 * single call. 1804 */ 1805 if (stp->sd_sigflags & signals) 1806 strsendsig(stp->sd_siglist, signals, band, 0); 1807 mutex_exit(&stp->sd_lock); 1808 1809 1810 done: 1811 if (nextbp == NULL) 1812 return (0); 1813 1814 /* 1815 * Any signals were handled the first time. 1816 * Wakeups and pollwakeups are redone to avoid any race 1817 * conditions - all the messages are not queued until the 1818 * last message has been processed by strrput. 1819 */ 1820 bp = nextbp; 1821 signals = firstmsgsigs = allmsgsigs = 0; 1822 mutex_enter(&stp->sd_lock); 1823 goto one_more; 1824 } 1825 1826 static void 1827 log_dupioc(queue_t *rq, mblk_t *bp) 1828 { 1829 queue_t *wq, *qp; 1830 char *modnames, *mnp, *dname; 1831 size_t maxmodstr; 1832 boolean_t islast; 1833 1834 /* 1835 * Allocate a buffer large enough to hold the names of nstrpush modules 1836 * and one driver, with spaces between and NUL terminator. If we can't 1837 * get memory, then we'll just log the driver name. 1838 */ 1839 maxmodstr = nstrpush * (FMNAMESZ + 1); 1840 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1841 1842 /* march down write side to print log message down to the driver */ 1843 wq = WR(rq); 1844 1845 /* make sure q_next doesn't shift around while we're grabbing data */ 1846 claimstr(wq); 1847 qp = wq->q_next; 1848 do { 1849 if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL) 1850 dname = "?"; 1851 islast = !SAMESTR(qp) || qp->q_next == NULL; 1852 if (modnames == NULL) { 1853 /* 1854 * If we don't have memory, then get the driver name in 1855 * the log where we can see it. Note that memory 1856 * pressure is a possible cause of these sorts of bugs. 1857 */ 1858 if (islast) { 1859 modnames = dname; 1860 maxmodstr = 0; 1861 } 1862 } else { 1863 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1864 if (!islast) 1865 *mnp++ = ' '; 1866 } 1867 qp = qp->q_next; 1868 } while (!islast); 1869 releasestr(wq); 1870 /* Cannot happen unless stream head is corrupt. */ 1871 ASSERT(modnames != NULL); 1872 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1873 SL_CONSOLE|SL_TRACE|SL_ERROR, 1874 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1875 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1876 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1877 if (maxmodstr != 0) 1878 kmem_free(modnames, maxmodstr); 1879 } 1880 1881 int 1882 strrput_nondata(queue_t *q, mblk_t *bp) 1883 { 1884 struct stdata *stp; 1885 struct iocblk *iocbp; 1886 struct stroptions *sop; 1887 struct copyreq *reqp; 1888 struct copyresp *resp; 1889 unsigned char bpri; 1890 unsigned char flushed_already = 0; 1891 1892 stp = (struct stdata *)q->q_ptr; 1893 1894 ASSERT(!(stp->sd_flag & STPLEX)); 1895 ASSERT(qclaimed(q)); 1896 1897 switch (bp->b_datap->db_type) { 1898 case M_ERROR: 1899 /* 1900 * An error has occurred downstream, the errno is in the first 1901 * bytes of the message. 1902 */ 1903 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 1904 unsigned char rw = 0; 1905 1906 mutex_enter(&stp->sd_lock); 1907 if (*bp->b_rptr != NOERROR) { /* read error */ 1908 if (*bp->b_rptr != 0) { 1909 if (stp->sd_flag & STRDERR) 1910 flushed_already |= FLUSHR; 1911 stp->sd_flag |= STRDERR; 1912 rw |= FLUSHR; 1913 } else { 1914 stp->sd_flag &= ~STRDERR; 1915 } 1916 stp->sd_rerror = *bp->b_rptr; 1917 } 1918 bp->b_rptr++; 1919 if (*bp->b_rptr != NOERROR) { /* write error */ 1920 if (*bp->b_rptr != 0) { 1921 if (stp->sd_flag & STWRERR) 1922 flushed_already |= FLUSHW; 1923 stp->sd_flag |= STWRERR; 1924 rw |= FLUSHW; 1925 } else { 1926 stp->sd_flag &= ~STWRERR; 1927 } 1928 stp->sd_werror = *bp->b_rptr; 1929 } 1930 if (rw) { 1931 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 1932 "strrput cv_broadcast:q %p, bp %p", 1933 q, bp); 1934 cv_broadcast(&q->q_wait); /* readers */ 1935 cv_broadcast(&_WR(q)->q_wait); /* writers */ 1936 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1937 1938 mutex_exit(&stp->sd_lock); 1939 pollwakeup(&stp->sd_pollist, POLLERR); 1940 mutex_enter(&stp->sd_lock); 1941 1942 if (stp->sd_sigflags & S_ERROR) 1943 strsendsig(stp->sd_siglist, S_ERROR, 0, 1944 ((rw & FLUSHR) ? stp->sd_rerror : 1945 stp->sd_werror)); 1946 mutex_exit(&stp->sd_lock); 1947 /* 1948 * Send the M_FLUSH only 1949 * for the first M_ERROR 1950 * message on the stream 1951 */ 1952 if (flushed_already == rw) { 1953 freemsg(bp); 1954 return (0); 1955 } 1956 1957 bp->b_datap->db_type = M_FLUSH; 1958 *bp->b_rptr = rw; 1959 bp->b_wptr = bp->b_rptr + 1; 1960 /* 1961 * Protect against the driver 1962 * passing up messages after 1963 * it has done a qprocsoff 1964 */ 1965 if (_OTHERQ(q)->q_next == NULL) 1966 freemsg(bp); 1967 else 1968 qreply(q, bp); 1969 return (0); 1970 } else 1971 mutex_exit(&stp->sd_lock); 1972 } else if (*bp->b_rptr != 0) { /* Old flavor */ 1973 if (stp->sd_flag & (STRDERR|STWRERR)) 1974 flushed_already = FLUSHRW; 1975 mutex_enter(&stp->sd_lock); 1976 stp->sd_flag |= (STRDERR|STWRERR); 1977 stp->sd_rerror = *bp->b_rptr; 1978 stp->sd_werror = *bp->b_rptr; 1979 TRACE_2(TR_FAC_STREAMS_FR, 1980 TR_STRRPUT_WAKE2, 1981 "strrput wakeup #2:q %p, bp %p", q, bp); 1982 cv_broadcast(&q->q_wait); /* the readers */ 1983 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 1984 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1985 1986 mutex_exit(&stp->sd_lock); 1987 pollwakeup(&stp->sd_pollist, POLLERR); 1988 mutex_enter(&stp->sd_lock); 1989 1990 if (stp->sd_sigflags & S_ERROR) 1991 strsendsig(stp->sd_siglist, S_ERROR, 0, 1992 (stp->sd_werror ? stp->sd_werror : 1993 stp->sd_rerror)); 1994 mutex_exit(&stp->sd_lock); 1995 1996 /* 1997 * Send the M_FLUSH only 1998 * for the first M_ERROR 1999 * message on the stream 2000 */ 2001 if (flushed_already != FLUSHRW) { 2002 bp->b_datap->db_type = M_FLUSH; 2003 *bp->b_rptr = FLUSHRW; 2004 /* 2005 * Protect against the driver passing up 2006 * messages after it has done a 2007 * qprocsoff. 2008 */ 2009 if (_OTHERQ(q)->q_next == NULL) 2010 freemsg(bp); 2011 else 2012 qreply(q, bp); 2013 return (0); 2014 } 2015 } 2016 freemsg(bp); 2017 return (0); 2018 2019 case M_HANGUP: 2020 2021 freemsg(bp); 2022 mutex_enter(&stp->sd_lock); 2023 stp->sd_werror = ENXIO; 2024 stp->sd_flag |= STRHUP; 2025 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2026 2027 /* 2028 * send signal if controlling tty 2029 */ 2030 2031 if (stp->sd_sidp) { 2032 prsignal(stp->sd_sidp, SIGHUP); 2033 if (stp->sd_sidp != stp->sd_pgidp) 2034 pgsignal(stp->sd_pgidp, SIGTSTP); 2035 } 2036 2037 /* 2038 * wake up read, write, and exception pollers and 2039 * reset wakeup mechanism. 2040 */ 2041 cv_broadcast(&q->q_wait); /* the readers */ 2042 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2043 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2044 strhup(stp); 2045 mutex_exit(&stp->sd_lock); 2046 return (0); 2047 2048 case M_UNHANGUP: 2049 freemsg(bp); 2050 mutex_enter(&stp->sd_lock); 2051 stp->sd_werror = 0; 2052 stp->sd_flag &= ~STRHUP; 2053 mutex_exit(&stp->sd_lock); 2054 return (0); 2055 2056 case M_SIG: 2057 /* 2058 * Someone downstream wants to post a signal. The 2059 * signal to post is contained in the first byte of the 2060 * message. If the message would go on the front of 2061 * the queue, send a signal to the process group 2062 * (if not SIGPOLL) or to the siglist processes 2063 * (SIGPOLL). If something is already on the queue, 2064 * OR if we are delivering a delayed suspend (*sigh* 2065 * another "tty" hack) and there's no one sleeping already, 2066 * just enqueue the message. 2067 */ 2068 mutex_enter(&stp->sd_lock); 2069 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2070 !(stp->sd_flag & RSLEEP))) { 2071 (void) putq(q, bp); 2072 mutex_exit(&stp->sd_lock); 2073 return (0); 2074 } 2075 mutex_exit(&stp->sd_lock); 2076 /* FALLTHRU */ 2077 2078 case M_PCSIG: 2079 /* 2080 * Don't enqueue, just post the signal. 2081 */ 2082 strsignal(stp, *bp->b_rptr, 0L); 2083 freemsg(bp); 2084 return (0); 2085 2086 case M_FLUSH: 2087 /* 2088 * Flush queues. The indication of which queues to flush 2089 * is in the first byte of the message. If the read queue 2090 * is specified, then flush it. If FLUSHBAND is set, just 2091 * flush the band specified by the second byte of the message. 2092 * 2093 * If a module has issued a M_SETOPT to not flush hi 2094 * priority messages off of the stream head, then pass this 2095 * flag into the flushq code to preserve such messages. 2096 */ 2097 2098 if (*bp->b_rptr & FLUSHR) { 2099 mutex_enter(&stp->sd_lock); 2100 if (*bp->b_rptr & FLUSHBAND) { 2101 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2102 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2103 } else 2104 flushq_common(q, FLUSHALL, 2105 stp->sd_read_opt & RFLUSHPCPROT); 2106 if ((q->q_first == NULL) || 2107 (q->q_first->b_datap->db_type < QPCTL)) 2108 stp->sd_flag &= ~STRPRI; 2109 else { 2110 ASSERT(stp->sd_flag & STRPRI); 2111 } 2112 mutex_exit(&stp->sd_lock); 2113 } 2114 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2115 *bp->b_rptr &= ~FLUSHR; 2116 bp->b_flag |= MSGNOLOOP; 2117 /* 2118 * Protect against the driver passing up 2119 * messages after it has done a qprocsoff. 2120 */ 2121 if (_OTHERQ(q)->q_next == NULL) 2122 freemsg(bp); 2123 else 2124 qreply(q, bp); 2125 return (0); 2126 } 2127 freemsg(bp); 2128 return (0); 2129 2130 case M_IOCACK: 2131 case M_IOCNAK: 2132 iocbp = (struct iocblk *)bp->b_rptr; 2133 /* 2134 * If not waiting for ACK or NAK then just free msg. 2135 * If incorrect id sequence number then just free msg. 2136 * If already have ACK or NAK for user then this is a 2137 * duplicate, display a warning and free the msg. 2138 */ 2139 mutex_enter(&stp->sd_lock); 2140 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2141 (stp->sd_iocid != iocbp->ioc_id)) { 2142 /* 2143 * If the ACK/NAK is a dup, display a message 2144 * Dup is when sd_iocid == ioc_id, and 2145 * sd_iocblk == <valid ptr> or -1 (the former 2146 * is when an ioctl has been put on the stream 2147 * head, but has not yet been consumed, the 2148 * later is when it has been consumed). 2149 */ 2150 if ((stp->sd_iocid == iocbp->ioc_id) && 2151 (stp->sd_iocblk != NULL)) { 2152 log_dupioc(q, bp); 2153 } 2154 freemsg(bp); 2155 mutex_exit(&stp->sd_lock); 2156 return (0); 2157 } 2158 2159 /* 2160 * Assign ACK or NAK to user and wake up. 2161 */ 2162 stp->sd_iocblk = bp; 2163 cv_broadcast(&stp->sd_monitor); 2164 mutex_exit(&stp->sd_lock); 2165 return (0); 2166 2167 case M_COPYIN: 2168 case M_COPYOUT: 2169 reqp = (struct copyreq *)bp->b_rptr; 2170 2171 /* 2172 * If not waiting for ACK or NAK then just fail request. 2173 * If already have ACK, NAK, or copy request, then just 2174 * fail request. 2175 * If incorrect id sequence number then just fail request. 2176 */ 2177 mutex_enter(&stp->sd_lock); 2178 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2179 (stp->sd_iocid != reqp->cq_id)) { 2180 if (bp->b_cont) { 2181 freemsg(bp->b_cont); 2182 bp->b_cont = NULL; 2183 } 2184 bp->b_datap->db_type = M_IOCDATA; 2185 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2186 resp = (struct copyresp *)bp->b_rptr; 2187 resp->cp_rval = (caddr_t)1; /* failure */ 2188 mutex_exit(&stp->sd_lock); 2189 putnext(stp->sd_wrq, bp); 2190 return (0); 2191 } 2192 2193 /* 2194 * Assign copy request to user and wake up. 2195 */ 2196 stp->sd_iocblk = bp; 2197 cv_broadcast(&stp->sd_monitor); 2198 mutex_exit(&stp->sd_lock); 2199 return (0); 2200 2201 case M_SETOPTS: 2202 /* 2203 * Set stream head options (read option, write offset, 2204 * min/max packet size, and/or high/low water marks for 2205 * the read side only). 2206 */ 2207 2208 bpri = 0; 2209 sop = (struct stroptions *)bp->b_rptr; 2210 mutex_enter(&stp->sd_lock); 2211 if (sop->so_flags & SO_READOPT) { 2212 switch (sop->so_readopt & RMODEMASK) { 2213 case RNORM: 2214 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2215 break; 2216 2217 case RMSGD: 2218 stp->sd_read_opt = 2219 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2220 RD_MSGDIS); 2221 break; 2222 2223 case RMSGN: 2224 stp->sd_read_opt = 2225 ((stp->sd_read_opt & ~RD_MSGDIS) | 2226 RD_MSGNODIS); 2227 break; 2228 } 2229 switch (sop->so_readopt & RPROTMASK) { 2230 case RPROTNORM: 2231 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2232 break; 2233 2234 case RPROTDAT: 2235 stp->sd_read_opt = 2236 ((stp->sd_read_opt & ~RD_PROTDIS) | 2237 RD_PROTDAT); 2238 break; 2239 2240 case RPROTDIS: 2241 stp->sd_read_opt = 2242 ((stp->sd_read_opt & ~RD_PROTDAT) | 2243 RD_PROTDIS); 2244 break; 2245 } 2246 switch (sop->so_readopt & RFLUSHMASK) { 2247 case RFLUSHPCPROT: 2248 /* 2249 * This sets the stream head to NOT flush 2250 * M_PCPROTO messages. 2251 */ 2252 stp->sd_read_opt |= RFLUSHPCPROT; 2253 break; 2254 } 2255 } 2256 if (sop->so_flags & SO_ERROPT) { 2257 switch (sop->so_erropt & RERRMASK) { 2258 case RERRNORM: 2259 stp->sd_flag &= ~STRDERRNONPERSIST; 2260 break; 2261 case RERRNONPERSIST: 2262 stp->sd_flag |= STRDERRNONPERSIST; 2263 break; 2264 } 2265 switch (sop->so_erropt & WERRMASK) { 2266 case WERRNORM: 2267 stp->sd_flag &= ~STWRERRNONPERSIST; 2268 break; 2269 case WERRNONPERSIST: 2270 stp->sd_flag |= STWRERRNONPERSIST; 2271 break; 2272 } 2273 } 2274 if (sop->so_flags & SO_COPYOPT) { 2275 if (sop->so_copyopt & ZCVMSAFE) { 2276 stp->sd_copyflag |= STZCVMSAFE; 2277 stp->sd_copyflag &= ~STZCVMUNSAFE; 2278 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2279 stp->sd_copyflag |= STZCVMUNSAFE; 2280 stp->sd_copyflag &= ~STZCVMSAFE; 2281 } 2282 2283 if (sop->so_copyopt & COPYCACHED) { 2284 stp->sd_copyflag |= STRCOPYCACHED; 2285 } 2286 } 2287 if (sop->so_flags & SO_WROFF) 2288 stp->sd_wroff = sop->so_wroff; 2289 if (sop->so_flags & SO_TAIL) 2290 stp->sd_tail = sop->so_tail; 2291 if (sop->so_flags & SO_MINPSZ) 2292 q->q_minpsz = sop->so_minpsz; 2293 if (sop->so_flags & SO_MAXPSZ) 2294 q->q_maxpsz = sop->so_maxpsz; 2295 if (sop->so_flags & SO_MAXBLK) 2296 stp->sd_maxblk = sop->so_maxblk; 2297 if (sop->so_flags & SO_HIWAT) { 2298 if (sop->so_flags & SO_BAND) { 2299 if (strqset(q, QHIWAT, sop->so_band, sop->so_hiwat)) 2300 cmn_err(CE_WARN, 2301 "strrput: could not allocate qband\n"); 2302 else 2303 bpri = sop->so_band; 2304 } else { 2305 q->q_hiwat = sop->so_hiwat; 2306 } 2307 } 2308 if (sop->so_flags & SO_LOWAT) { 2309 if (sop->so_flags & SO_BAND) { 2310 if (strqset(q, QLOWAT, sop->so_band, sop->so_lowat)) 2311 cmn_err(CE_WARN, 2312 "strrput: could not allocate qband\n"); 2313 else 2314 bpri = sop->so_band; 2315 } else { 2316 q->q_lowat = sop->so_lowat; 2317 } 2318 } 2319 if (sop->so_flags & SO_MREADON) 2320 stp->sd_flag |= SNDMREAD; 2321 if (sop->so_flags & SO_MREADOFF) 2322 stp->sd_flag &= ~SNDMREAD; 2323 if (sop->so_flags & SO_NDELON) 2324 stp->sd_flag |= OLDNDELAY; 2325 if (sop->so_flags & SO_NDELOFF) 2326 stp->sd_flag &= ~OLDNDELAY; 2327 if (sop->so_flags & SO_ISTTY) 2328 stp->sd_flag |= STRISTTY; 2329 if (sop->so_flags & SO_ISNTTY) 2330 stp->sd_flag &= ~STRISTTY; 2331 if (sop->so_flags & SO_TOSTOP) 2332 stp->sd_flag |= STRTOSTOP; 2333 if (sop->so_flags & SO_TONSTOP) 2334 stp->sd_flag &= ~STRTOSTOP; 2335 if (sop->so_flags & SO_DELIM) 2336 stp->sd_flag |= STRDELIM; 2337 if (sop->so_flags & SO_NODELIM) 2338 stp->sd_flag &= ~STRDELIM; 2339 2340 mutex_exit(&stp->sd_lock); 2341 freemsg(bp); 2342 2343 /* Check backenable in case the water marks changed */ 2344 qbackenable(q, bpri); 2345 return (0); 2346 2347 /* 2348 * The following set of cases deal with situations where two stream 2349 * heads are connected to each other (twisted streams). These messages 2350 * have no meaning at the stream head. 2351 */ 2352 case M_BREAK: 2353 case M_CTL: 2354 case M_DELAY: 2355 case M_START: 2356 case M_STOP: 2357 case M_IOCDATA: 2358 case M_STARTI: 2359 case M_STOPI: 2360 freemsg(bp); 2361 return (0); 2362 2363 case M_IOCTL: 2364 /* 2365 * Always NAK this condition 2366 * (makes no sense) 2367 * If there is one or more threads in the read side 2368 * rwnext we have to defer the nacking until that thread 2369 * returns (in strget). 2370 */ 2371 mutex_enter(&stp->sd_lock); 2372 if (stp->sd_struiodnak != 0) { 2373 /* 2374 * Defer NAK to the streamhead. Queue at the end 2375 * the list. 2376 */ 2377 mblk_t *mp = stp->sd_struionak; 2378 2379 while (mp && mp->b_next) 2380 mp = mp->b_next; 2381 if (mp) 2382 mp->b_next = bp; 2383 else 2384 stp->sd_struionak = bp; 2385 bp->b_next = NULL; 2386 mutex_exit(&stp->sd_lock); 2387 return (0); 2388 } 2389 mutex_exit(&stp->sd_lock); 2390 2391 bp->b_datap->db_type = M_IOCNAK; 2392 /* 2393 * Protect against the driver passing up 2394 * messages after it has done a qprocsoff. 2395 */ 2396 if (_OTHERQ(q)->q_next == NULL) 2397 freemsg(bp); 2398 else 2399 qreply(q, bp); 2400 return (0); 2401 2402 default: 2403 #ifdef DEBUG 2404 cmn_err(CE_WARN, 2405 "bad message type %x received at stream head\n", 2406 bp->b_datap->db_type); 2407 #endif 2408 freemsg(bp); 2409 return (0); 2410 } 2411 2412 /* NOTREACHED */ 2413 } 2414 2415 /* 2416 * Check if the stream pointed to by `stp' can be written to, and return an 2417 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2418 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2419 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2420 */ 2421 static int 2422 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2423 { 2424 int error; 2425 2426 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2427 2428 /* 2429 * For modem support, POSIX states that on writes, EIO should 2430 * be returned if the stream has been hung up. 2431 */ 2432 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2433 error = EIO; 2434 else 2435 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2436 2437 if (error != 0) { 2438 if (!(stp->sd_flag & STPLEX) && 2439 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2440 tsignal(curthread, SIGPIPE); 2441 error = EPIPE; 2442 } 2443 } 2444 2445 return (error); 2446 } 2447 2448 /* 2449 * Copyin and send data down a stream. 2450 * The caller will allocate and copyin any control part that precedes the 2451 * message and pass than in as mctl. 2452 * 2453 * Caller should *not* hold sd_lock. 2454 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2455 * under sd_lock in order to avoid missing a backenabling wakeup. 2456 * 2457 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2458 * 2459 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2460 * For sync streams we can only ignore flow control by reverting to using 2461 * putnext. 2462 * 2463 * If sd_maxblk is less than *iosize this routine might return without 2464 * transferring all of *iosize. In all cases, on return *iosize will contain 2465 * the amount of data that was transferred. 2466 */ 2467 static int 2468 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2469 int b_flag, int pri, int flags) 2470 { 2471 struiod_t uiod; 2472 mblk_t *mp; 2473 queue_t *wqp = stp->sd_wrq; 2474 int error = 0; 2475 ssize_t count = *iosize; 2476 cred_t *cr; 2477 2478 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2479 2480 if (uiop != NULL && count >= 0) 2481 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2482 2483 if (!(flags & STRUIO_POSTPONE)) { 2484 /* 2485 * Use regular canputnext, strmakedata, putnext sequence. 2486 */ 2487 if (pri == 0) { 2488 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2489 freemsg(mctl); 2490 return (EWOULDBLOCK); 2491 } 2492 } else { 2493 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2494 freemsg(mctl); 2495 return (EWOULDBLOCK); 2496 } 2497 } 2498 2499 if ((error = strmakedata(iosize, uiop, stp, flags, 2500 &mp)) != 0) { 2501 freemsg(mctl); 2502 /* 2503 * need to change return code to ENOMEM 2504 * so that this is not confused with 2505 * flow control, EAGAIN. 2506 */ 2507 2508 if (error == EAGAIN) 2509 return (ENOMEM); 2510 else 2511 return (error); 2512 } 2513 if (mctl != NULL) { 2514 if (mctl->b_cont == NULL) 2515 mctl->b_cont = mp; 2516 else if (mp != NULL) 2517 linkb(mctl, mp); 2518 mp = mctl; 2519 /* 2520 * Note that for interrupt thread, the CRED() is 2521 * NULL. Don't bother with the pid either. 2522 */ 2523 if ((cr = CRED()) != NULL) { 2524 mblk_setcred(mp, cr); 2525 DB_CPID(mp) = curproc->p_pid; 2526 } 2527 } else if (mp == NULL) 2528 return (0); 2529 2530 mp->b_flag |= b_flag; 2531 mp->b_band = (uchar_t)pri; 2532 2533 if (flags & MSG_IGNFLOW) { 2534 /* 2535 * XXX Hack: Don't get stuck running service 2536 * procedures. This is needed for sockfs when 2537 * sending the unbind message out of the rput 2538 * procedure - we don't want a put procedure 2539 * to run service procedures. 2540 */ 2541 putnext(wqp, mp); 2542 } else { 2543 stream_willservice(stp); 2544 putnext(wqp, mp); 2545 stream_runservice(stp); 2546 } 2547 return (0); 2548 } 2549 /* 2550 * Stream supports rwnext() for the write side. 2551 */ 2552 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2553 freemsg(mctl); 2554 /* 2555 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2556 */ 2557 return (error == EAGAIN ? ENOMEM : error); 2558 } 2559 if (mctl != NULL) { 2560 if (mctl->b_cont == NULL) 2561 mctl->b_cont = mp; 2562 else if (mp != NULL) 2563 linkb(mctl, mp); 2564 mp = mctl; 2565 /* 2566 * Note that for interrupt thread, the CRED() is 2567 * NULL. Don't bother with the pid either. 2568 */ 2569 if ((cr = CRED()) != NULL) { 2570 mblk_setcred(mp, cr); 2571 DB_CPID(mp) = curproc->p_pid; 2572 } 2573 } else if (mp == NULL) { 2574 return (0); 2575 } 2576 2577 mp->b_flag |= b_flag; 2578 mp->b_band = (uchar_t)pri; 2579 2580 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2581 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2582 uiod.d_uio.uio_offset = 0; 2583 uiod.d_mp = mp; 2584 error = rwnext(wqp, &uiod); 2585 if (! uiod.d_mp) { 2586 uioskip(uiop, *iosize); 2587 return (error); 2588 } 2589 ASSERT(mp == uiod.d_mp); 2590 if (error == EINVAL) { 2591 /* 2592 * The stream plumbing must have changed while 2593 * we were away, so just turn off rwnext()s. 2594 */ 2595 error = 0; 2596 } else if (error == EBUSY || error == EWOULDBLOCK) { 2597 /* 2598 * Couldn't enter a perimeter or took a page fault, 2599 * so fall-back to putnext(). 2600 */ 2601 error = 0; 2602 } else { 2603 freemsg(mp); 2604 return (error); 2605 } 2606 /* Have to check canput before consuming data from the uio */ 2607 if (pri == 0) { 2608 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2609 freemsg(mp); 2610 return (EWOULDBLOCK); 2611 } 2612 } else { 2613 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2614 freemsg(mp); 2615 return (EWOULDBLOCK); 2616 } 2617 } 2618 ASSERT(mp == uiod.d_mp); 2619 /* Copyin data from the uio */ 2620 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2621 freemsg(mp); 2622 return (error); 2623 } 2624 uioskip(uiop, *iosize); 2625 if (flags & MSG_IGNFLOW) { 2626 /* 2627 * XXX Hack: Don't get stuck running service procedures. 2628 * This is needed for sockfs when sending the unbind message 2629 * out of the rput procedure - we don't want a put procedure 2630 * to run service procedures. 2631 */ 2632 putnext(wqp, mp); 2633 } else { 2634 stream_willservice(stp); 2635 putnext(wqp, mp); 2636 stream_runservice(stp); 2637 } 2638 return (0); 2639 } 2640 2641 /* 2642 * Write attempts to break the write request into messages conforming 2643 * with the minimum and maximum packet sizes set downstream. 2644 * 2645 * Write will not block if downstream queue is full and 2646 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2647 * 2648 * A write of zero bytes gets packaged into a zero length message and sent 2649 * downstream like any other message. 2650 * 2651 * If buffers of the requested sizes are not available, the write will 2652 * sleep until the buffers become available. 2653 * 2654 * Write (if specified) will supply a write offset in a message if it 2655 * makes sense. This can be specified by downstream modules as part of 2656 * a M_SETOPTS message. Write will not supply the write offset if it 2657 * cannot supply any data in a buffer. In other words, write will never 2658 * send down an empty packet due to a write offset. 2659 */ 2660 /* ARGSUSED2 */ 2661 int 2662 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2663 { 2664 return (strwrite_common(vp, uiop, crp, 0)); 2665 } 2666 2667 /* ARGSUSED2 */ 2668 int 2669 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2670 { 2671 struct stdata *stp; 2672 struct queue *wqp; 2673 ssize_t rmin, rmax; 2674 ssize_t iosize; 2675 int waitflag; 2676 int tempmode; 2677 int error = 0; 2678 int b_flag; 2679 2680 ASSERT(vp->v_stream); 2681 stp = vp->v_stream; 2682 2683 mutex_enter(&stp->sd_lock); 2684 2685 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2686 mutex_exit(&stp->sd_lock); 2687 return (error); 2688 } 2689 2690 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2691 error = strwriteable(stp, B_TRUE, B_TRUE); 2692 if (error != 0) { 2693 mutex_exit(&stp->sd_lock); 2694 return (error); 2695 } 2696 } 2697 2698 mutex_exit(&stp->sd_lock); 2699 2700 wqp = stp->sd_wrq; 2701 2702 /* get these values from them cached in the stream head */ 2703 rmin = stp->sd_qn_minpsz; 2704 rmax = stp->sd_qn_maxpsz; 2705 2706 /* 2707 * Check the min/max packet size constraints. If min packet size 2708 * is non-zero, the write cannot be split into multiple messages 2709 * and still guarantee the size constraints. 2710 */ 2711 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2712 2713 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2714 if (rmax == 0) { 2715 return (0); 2716 } 2717 if (rmin > 0) { 2718 if (uiop->uio_resid < rmin) { 2719 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2720 "strwrite out:q %p out %d error %d", 2721 wqp, 0, ERANGE); 2722 return (ERANGE); 2723 } 2724 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2725 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2726 "strwrite out:q %p out %d error %d", 2727 wqp, 1, ERANGE); 2728 return (ERANGE); 2729 } 2730 } 2731 2732 /* 2733 * Do until count satisfied or error. 2734 */ 2735 waitflag = WRITEWAIT | wflag; 2736 if (stp->sd_flag & OLDNDELAY) 2737 tempmode = uiop->uio_fmode & ~FNDELAY; 2738 else 2739 tempmode = uiop->uio_fmode; 2740 2741 if (rmax == INFPSZ) 2742 rmax = uiop->uio_resid; 2743 2744 /* 2745 * Note that tempmode does not get used in strput/strmakedata 2746 * but only in strwaitq. The other routines use uio_fmode 2747 * unmodified. 2748 */ 2749 2750 /* LINTED: constant in conditional context */ 2751 while (1) { /* breaks when uio_resid reaches zero */ 2752 /* 2753 * Determine the size of the next message to be 2754 * packaged. May have to break write into several 2755 * messages based on max packet size. 2756 */ 2757 iosize = MIN(uiop->uio_resid, rmax); 2758 2759 /* 2760 * Put block downstream when flow control allows it. 2761 */ 2762 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2763 b_flag = MSGDELIM; 2764 else 2765 b_flag = 0; 2766 2767 for (;;) { 2768 int done = 0; 2769 2770 error = strput(stp, NULL, uiop, &iosize, b_flag, 2771 0, 0); 2772 if (error == 0) 2773 break; 2774 if (error != EWOULDBLOCK) 2775 goto out; 2776 2777 mutex_enter(&stp->sd_lock); 2778 /* 2779 * Check for a missed wakeup. 2780 * Needed since strput did not hold sd_lock across 2781 * the canputnext. 2782 */ 2783 if (canputnext(wqp)) { 2784 /* Try again */ 2785 mutex_exit(&stp->sd_lock); 2786 continue; 2787 } 2788 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2789 "strwrite wait:q %p wait", wqp); 2790 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2791 tempmode, -1, &done)) != 0 || done) { 2792 mutex_exit(&stp->sd_lock); 2793 if ((vp->v_type == VFIFO) && 2794 (uiop->uio_fmode & FNDELAY) && 2795 (error == EAGAIN)) 2796 error = 0; 2797 goto out; 2798 } 2799 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2800 "strwrite wake:q %p awakes", wqp); 2801 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2802 mutex_exit(&stp->sd_lock); 2803 goto out; 2804 } 2805 mutex_exit(&stp->sd_lock); 2806 } 2807 waitflag |= NOINTR; 2808 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2809 "strwrite resid:q %p uiop %p", wqp, uiop); 2810 if (uiop->uio_resid) { 2811 /* Recheck for errors - needed for sockets */ 2812 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2813 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2814 mutex_enter(&stp->sd_lock); 2815 error = strwriteable(stp, B_FALSE, B_TRUE); 2816 mutex_exit(&stp->sd_lock); 2817 if (error != 0) 2818 return (error); 2819 } 2820 continue; 2821 } 2822 break; 2823 } 2824 out: 2825 /* 2826 * For historical reasons, applications expect EAGAIN when a data 2827 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2828 */ 2829 if (error == ENOMEM) 2830 error = EAGAIN; 2831 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2832 "strwrite out:q %p out %d error %d", wqp, 2, error); 2833 return (error); 2834 } 2835 2836 /* 2837 * Stream head write service routine. 2838 * Its job is to wake up any sleeping writers when a queue 2839 * downstream needs data (part of the flow control in putq and getq). 2840 * It also must wake anyone sleeping on a poll(). 2841 * For stream head right below mux module, it must also invoke put procedure 2842 * of next downstream module. 2843 */ 2844 int 2845 strwsrv(queue_t *q) 2846 { 2847 struct stdata *stp; 2848 queue_t *tq; 2849 qband_t *qbp; 2850 int i; 2851 qband_t *myqbp; 2852 int isevent; 2853 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2854 2855 TRACE_1(TR_FAC_STREAMS_FR, 2856 TR_STRWSRV, "strwsrv:q %p", q); 2857 stp = (struct stdata *)q->q_ptr; 2858 ASSERT(qclaimed(q)); 2859 mutex_enter(&stp->sd_lock); 2860 ASSERT(!(stp->sd_flag & STPLEX)); 2861 2862 if (stp->sd_flag & WSLEEP) { 2863 stp->sd_flag &= ~WSLEEP; 2864 cv_broadcast(&q->q_wait); 2865 } 2866 mutex_exit(&stp->sd_lock); 2867 2868 /* The other end of a stream pipe went away. */ 2869 if ((tq = q->q_next) == NULL) { 2870 return (0); 2871 } 2872 2873 /* Find the next module forward that has a service procedure */ 2874 claimstr(q); 2875 tq = q->q_nfsrv; 2876 ASSERT(tq != NULL); 2877 2878 if ((q->q_flag & QBACK)) { 2879 if ((tq->q_flag & QFULL)) { 2880 mutex_enter(QLOCK(tq)); 2881 if (!(tq->q_flag & QFULL)) { 2882 mutex_exit(QLOCK(tq)); 2883 goto wakeup; 2884 } 2885 /* 2886 * The queue must have become full again. Set QWANTW 2887 * again so strwsrv will be back enabled when 2888 * the queue becomes non-full next time. 2889 */ 2890 tq->q_flag |= QWANTW; 2891 mutex_exit(QLOCK(tq)); 2892 } else { 2893 wakeup: 2894 pollwakeup(&stp->sd_pollist, POLLWRNORM); 2895 mutex_enter(&stp->sd_lock); 2896 if (stp->sd_sigflags & S_WRNORM) 2897 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 2898 mutex_exit(&stp->sd_lock); 2899 } 2900 } 2901 2902 isevent = 0; 2903 i = 1; 2904 bzero((caddr_t)qbf, NBAND); 2905 mutex_enter(QLOCK(tq)); 2906 if ((myqbp = q->q_bandp) != NULL) 2907 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 2908 ASSERT(myqbp); 2909 if ((myqbp->qb_flag & QB_BACK)) { 2910 if (qbp->qb_flag & QB_FULL) { 2911 /* 2912 * The band must have become full again. 2913 * Set QB_WANTW again so strwsrv will 2914 * be back enabled when the band becomes 2915 * non-full next time. 2916 */ 2917 qbp->qb_flag |= QB_WANTW; 2918 } else { 2919 isevent = 1; 2920 qbf[i] = 1; 2921 } 2922 } 2923 myqbp = myqbp->qb_next; 2924 i++; 2925 } 2926 mutex_exit(QLOCK(tq)); 2927 2928 if (isevent) { 2929 for (i = tq->q_nband; i; i--) { 2930 if (qbf[i]) { 2931 pollwakeup(&stp->sd_pollist, POLLWRBAND); 2932 mutex_enter(&stp->sd_lock); 2933 if (stp->sd_sigflags & S_WRBAND) 2934 strsendsig(stp->sd_siglist, S_WRBAND, 2935 (uchar_t)i, 0); 2936 mutex_exit(&stp->sd_lock); 2937 } 2938 } 2939 } 2940 2941 releasestr(q); 2942 return (0); 2943 } 2944 2945 /* 2946 * Special case of strcopyin/strcopyout for copying 2947 * struct strioctl that can deal with both data 2948 * models. 2949 */ 2950 2951 #ifdef _LP64 2952 2953 static int 2954 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 2955 { 2956 struct strioctl32 strioc32; 2957 struct strioctl *striocp; 2958 2959 if (copyflag & U_TO_K) { 2960 ASSERT((copyflag & K_TO_K) == 0); 2961 2962 if ((flag & FMODELS) == DATAMODEL_ILP32) { 2963 if (copyin(from, &strioc32, sizeof (strioc32))) 2964 return (EFAULT); 2965 2966 striocp = (struct strioctl *)to; 2967 striocp->ic_cmd = strioc32.ic_cmd; 2968 striocp->ic_timout = strioc32.ic_timout; 2969 striocp->ic_len = strioc32.ic_len; 2970 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 2971 2972 } else { /* NATIVE data model */ 2973 if (copyin(from, to, sizeof (struct strioctl))) { 2974 return (EFAULT); 2975 } else { 2976 return (0); 2977 } 2978 } 2979 } else { 2980 ASSERT(copyflag & K_TO_K); 2981 bcopy(from, to, sizeof (struct strioctl)); 2982 } 2983 return (0); 2984 } 2985 2986 static int 2987 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 2988 { 2989 struct strioctl32 strioc32; 2990 struct strioctl *striocp; 2991 2992 if (copyflag & U_TO_K) { 2993 ASSERT((copyflag & K_TO_K) == 0); 2994 2995 if ((flag & FMODELS) == DATAMODEL_ILP32) { 2996 striocp = (struct strioctl *)from; 2997 strioc32.ic_cmd = striocp->ic_cmd; 2998 strioc32.ic_timout = striocp->ic_timout; 2999 strioc32.ic_len = striocp->ic_len; 3000 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3001 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3002 striocp->ic_dp); 3003 3004 if (copyout(&strioc32, to, sizeof (strioc32))) 3005 return (EFAULT); 3006 3007 } else { /* NATIVE data model */ 3008 if (copyout(from, to, sizeof (struct strioctl))) { 3009 return (EFAULT); 3010 } else { 3011 return (0); 3012 } 3013 } 3014 } else { 3015 ASSERT(copyflag & K_TO_K); 3016 bcopy(from, to, sizeof (struct strioctl)); 3017 } 3018 return (0); 3019 } 3020 3021 #else /* ! _LP64 */ 3022 3023 /* ARGSUSED2 */ 3024 static int 3025 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3026 { 3027 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3028 } 3029 3030 /* ARGSUSED2 */ 3031 static int 3032 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3033 { 3034 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3035 } 3036 3037 #endif /* _LP64 */ 3038 3039 /* 3040 * Determine type of job control semantics expected by user. The 3041 * possibilities are: 3042 * JCREAD - Behaves like read() on fd; send SIGTTIN 3043 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3044 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3045 * JCGETP - Gets a value in the stream; no signals. 3046 * See straccess in strsubr.c for usage of these values. 3047 * 3048 * This routine also returns -1 for I_STR as a special case; the 3049 * caller must call again with the real ioctl number for 3050 * classification. 3051 */ 3052 static int 3053 job_control_type(int cmd) 3054 { 3055 switch (cmd) { 3056 case I_STR: 3057 return (-1); 3058 3059 case I_RECVFD: 3060 case I_E_RECVFD: 3061 return (JCREAD); 3062 3063 case I_FDINSERT: 3064 case I_SENDFD: 3065 return (JCWRITE); 3066 3067 case TCSETA: 3068 case TCSETAW: 3069 case TCSETAF: 3070 case TCSBRK: 3071 case TCXONC: 3072 case TCFLSH: 3073 case TCDSET: /* Obsolete */ 3074 case TIOCSWINSZ: 3075 case TCSETS: 3076 case TCSETSW: 3077 case TCSETSF: 3078 case TIOCSETD: 3079 case TIOCHPCL: 3080 case TIOCSETP: 3081 case TIOCSETN: 3082 case TIOCEXCL: 3083 case TIOCNXCL: 3084 case TIOCFLUSH: 3085 case TIOCSETC: 3086 case TIOCLBIS: 3087 case TIOCLBIC: 3088 case TIOCLSET: 3089 case TIOCSBRK: 3090 case TIOCCBRK: 3091 case TIOCSDTR: 3092 case TIOCCDTR: 3093 case TIOCSLTC: 3094 case TIOCSTOP: 3095 case TIOCSTART: 3096 case TIOCSTI: 3097 case TIOCSPGRP: 3098 case TIOCMSET: 3099 case TIOCMBIS: 3100 case TIOCMBIC: 3101 case TIOCREMOTE: 3102 case TIOCSIGNAL: 3103 case LDSETT: 3104 case LDSMAP: /* Obsolete */ 3105 case DIOCSETP: 3106 case I_FLUSH: 3107 case I_SRDOPT: 3108 case I_SETSIG: 3109 case I_SWROPT: 3110 case I_FLUSHBAND: 3111 case I_SETCLTIME: 3112 case I_SERROPT: 3113 case I_ESETSIG: 3114 case FIONBIO: 3115 case FIOASYNC: 3116 case FIOSETOWN: 3117 case JBOOT: /* Obsolete */ 3118 case JTERM: /* Obsolete */ 3119 case JTIMOM: /* Obsolete */ 3120 case JZOMBOOT: /* Obsolete */ 3121 case JAGENT: /* Obsolete */ 3122 case JTRUN: /* Obsolete */ 3123 case JXTPROTO: /* Obsolete */ 3124 case TIOCSETLD: 3125 return (JCSETP); 3126 } 3127 3128 return (JCGETP); 3129 } 3130 3131 /* 3132 * ioctl for streams 3133 */ 3134 int 3135 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3136 cred_t *crp, int *rvalp) 3137 { 3138 struct stdata *stp; 3139 struct strioctl strioc; 3140 struct uio uio; 3141 struct iovec iov; 3142 int access; 3143 mblk_t *mp; 3144 int error = 0; 3145 int done = 0; 3146 ssize_t rmin, rmax; 3147 queue_t *wrq; 3148 queue_t *rdq; 3149 boolean_t kioctl = B_FALSE; 3150 3151 if (flag & FKIOCTL) { 3152 copyflag = K_TO_K; 3153 kioctl = B_TRUE; 3154 } 3155 ASSERT(vp->v_stream); 3156 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3157 stp = vp->v_stream; 3158 3159 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3160 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3161 3162 #ifdef C2_AUDIT 3163 if (audit_active) 3164 audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp); 3165 #endif 3166 3167 /* 3168 * If the copy is kernel to kernel, make sure that the FNATIVE 3169 * flag is set. After this it would be a serious error to have 3170 * no model flag. 3171 */ 3172 if (copyflag == K_TO_K) 3173 flag = (flag & ~FMODELS) | FNATIVE; 3174 3175 ASSERT((flag & FMODELS) != 0); 3176 3177 wrq = stp->sd_wrq; 3178 rdq = _RD(wrq); 3179 3180 access = job_control_type(cmd); 3181 3182 /* We should never see these here, should be handled by iwscn */ 3183 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3184 return (EINVAL); 3185 3186 mutex_enter(&stp->sd_lock); 3187 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3188 mutex_exit(&stp->sd_lock); 3189 return (error); 3190 } 3191 mutex_exit(&stp->sd_lock); 3192 3193 /* 3194 * Check for sgttyb-related ioctls first, and complain as 3195 * necessary. 3196 */ 3197 switch (cmd) { 3198 case TIOCGETP: 3199 case TIOCSETP: 3200 case TIOCSETN: 3201 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3202 sgttyb_complaint = B_TRUE; 3203 cmn_err(CE_NOTE, 3204 "application used obsolete TIOC[GS]ET"); 3205 } 3206 if (sgttyb_handling >= 3) { 3207 tsignal(curthread, SIGSYS); 3208 return (EIO); 3209 } 3210 break; 3211 } 3212 3213 mutex_enter(&stp->sd_lock); 3214 3215 switch (cmd) { 3216 case I_RECVFD: 3217 case I_E_RECVFD: 3218 case I_PEEK: 3219 case I_NREAD: 3220 case FIONREAD: 3221 case FIORDCHK: 3222 case I_ATMARK: 3223 case FIONBIO: 3224 case FIOASYNC: 3225 if (stp->sd_flag & (STRDERR|STPLEX)) { 3226 error = strgeterr(stp, STRDERR|STPLEX, 0); 3227 if (error != 0) { 3228 mutex_exit(&stp->sd_lock); 3229 return (error); 3230 } 3231 } 3232 break; 3233 3234 default: 3235 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3236 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3237 if (error != 0) { 3238 mutex_exit(&stp->sd_lock); 3239 return (error); 3240 } 3241 } 3242 } 3243 3244 mutex_exit(&stp->sd_lock); 3245 3246 switch (cmd) { 3247 default: 3248 /* 3249 * The stream head has hardcoded knowledge of a 3250 * miscellaneous collection of terminal-, keyboard- and 3251 * mouse-related ioctls, enumerated below. This hardcoded 3252 * knowledge allows the stream head to automatically 3253 * convert transparent ioctl requests made by userland 3254 * programs into I_STR ioctls which many old STREAMS 3255 * modules and drivers require. 3256 * 3257 * No new ioctls should ever be added to this list. 3258 * Instead, the STREAMS module or driver should be written 3259 * to either handle transparent ioctls or require any 3260 * userland programs to use I_STR ioctls (by returning 3261 * EINVAL to any transparent ioctl requests). 3262 * 3263 * More importantly, removing ioctls from this list should 3264 * be done with the utmost care, since our STREAMS modules 3265 * and drivers *count* on the stream head performing this 3266 * conversion, and thus may panic while processing 3267 * transparent ioctl request for one of these ioctls (keep 3268 * in mind that third party modules and drivers may have 3269 * similar problems). 3270 */ 3271 if (((cmd & IOCTYPE) == LDIOC) || 3272 ((cmd & IOCTYPE) == tIOC) || 3273 ((cmd & IOCTYPE) == TIOC) || 3274 ((cmd & IOCTYPE) == KIOC) || 3275 ((cmd & IOCTYPE) == MSIOC) || 3276 ((cmd & IOCTYPE) == VUIOC)) { 3277 /* 3278 * The ioctl is a tty ioctl - set up strioc buffer 3279 * and call strdoioctl() to do the work. 3280 */ 3281 if (stp->sd_flag & STRHUP) 3282 return (ENXIO); 3283 strioc.ic_cmd = cmd; 3284 strioc.ic_timout = INFTIM; 3285 3286 switch (cmd) { 3287 3288 case TCXONC: 3289 case TCSBRK: 3290 case TCFLSH: 3291 case TCDSET: 3292 { 3293 int native_arg = (int)arg; 3294 strioc.ic_len = sizeof (int); 3295 strioc.ic_dp = (char *)&native_arg; 3296 return (strdoioctl(stp, &strioc, flag, 3297 K_TO_K, crp, rvalp)); 3298 } 3299 3300 case TCSETA: 3301 case TCSETAW: 3302 case TCSETAF: 3303 strioc.ic_len = sizeof (struct termio); 3304 strioc.ic_dp = (char *)arg; 3305 return (strdoioctl(stp, &strioc, flag, 3306 copyflag, crp, rvalp)); 3307 3308 case TCSETS: 3309 case TCSETSW: 3310 case TCSETSF: 3311 strioc.ic_len = sizeof (struct termios); 3312 strioc.ic_dp = (char *)arg; 3313 return (strdoioctl(stp, &strioc, flag, 3314 copyflag, crp, rvalp)); 3315 3316 case LDSETT: 3317 strioc.ic_len = sizeof (struct termcb); 3318 strioc.ic_dp = (char *)arg; 3319 return (strdoioctl(stp, &strioc, flag, 3320 copyflag, crp, rvalp)); 3321 3322 case TIOCSETP: 3323 strioc.ic_len = sizeof (struct sgttyb); 3324 strioc.ic_dp = (char *)arg; 3325 return (strdoioctl(stp, &strioc, flag, 3326 copyflag, crp, rvalp)); 3327 3328 case TIOCSTI: 3329 if ((flag & FREAD) == 0 && 3330 secpolicy_sti(crp) != 0) { 3331 return (EPERM); 3332 } 3333 mutex_enter(&stp->sd_lock); 3334 mutex_enter(&curproc->p_splock); 3335 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3336 secpolicy_sti(crp) != 0) { 3337 mutex_exit(&curproc->p_splock); 3338 mutex_exit(&stp->sd_lock); 3339 return (EACCES); 3340 } 3341 mutex_exit(&curproc->p_splock); 3342 mutex_exit(&stp->sd_lock); 3343 3344 strioc.ic_len = sizeof (char); 3345 strioc.ic_dp = (char *)arg; 3346 return (strdoioctl(stp, &strioc, flag, 3347 copyflag, crp, rvalp)); 3348 3349 case TIOCSWINSZ: 3350 strioc.ic_len = sizeof (struct winsize); 3351 strioc.ic_dp = (char *)arg; 3352 return (strdoioctl(stp, &strioc, flag, 3353 copyflag, crp, rvalp)); 3354 3355 case TIOCSSIZE: 3356 strioc.ic_len = sizeof (struct ttysize); 3357 strioc.ic_dp = (char *)arg; 3358 return (strdoioctl(stp, &strioc, flag, 3359 copyflag, crp, rvalp)); 3360 3361 case TIOCSSOFTCAR: 3362 case KIOCTRANS: 3363 case KIOCTRANSABLE: 3364 case KIOCCMD: 3365 case KIOCSDIRECT: 3366 case KIOCSCOMPAT: 3367 case KIOCSKABORTEN: 3368 case KIOCSRPTDELAY: 3369 case KIOCSRPTRATE: 3370 case VUIDSFORMAT: 3371 case TIOCSPPS: 3372 strioc.ic_len = sizeof (int); 3373 strioc.ic_dp = (char *)arg; 3374 return (strdoioctl(stp, &strioc, flag, 3375 copyflag, crp, rvalp)); 3376 3377 case KIOCSETKEY: 3378 case KIOCGETKEY: 3379 strioc.ic_len = sizeof (struct kiockey); 3380 strioc.ic_dp = (char *)arg; 3381 return (strdoioctl(stp, &strioc, flag, 3382 copyflag, crp, rvalp)); 3383 3384 case KIOCSKEY: 3385 case KIOCGKEY: 3386 strioc.ic_len = sizeof (struct kiockeymap); 3387 strioc.ic_dp = (char *)arg; 3388 return (strdoioctl(stp, &strioc, flag, 3389 copyflag, crp, rvalp)); 3390 3391 case KIOCSLED: 3392 /* arg is a pointer to char */ 3393 strioc.ic_len = sizeof (char); 3394 strioc.ic_dp = (char *)arg; 3395 return (strdoioctl(stp, &strioc, flag, 3396 copyflag, crp, rvalp)); 3397 3398 case MSIOSETPARMS: 3399 strioc.ic_len = sizeof (Ms_parms); 3400 strioc.ic_dp = (char *)arg; 3401 return (strdoioctl(stp, &strioc, flag, 3402 copyflag, crp, rvalp)); 3403 3404 case VUIDSADDR: 3405 case VUIDGADDR: 3406 strioc.ic_len = sizeof (struct vuid_addr_probe); 3407 strioc.ic_dp = (char *)arg; 3408 return (strdoioctl(stp, &strioc, flag, 3409 copyflag, crp, rvalp)); 3410 3411 /* 3412 * These M_IOCTL's don't require any data to be sent 3413 * downstream, and the driver will allocate and link 3414 * on its own mblk_t upon M_IOCACK -- thus we set 3415 * ic_len to zero and set ic_dp to arg so we know 3416 * where to copyout to later. 3417 */ 3418 case TIOCGSOFTCAR: 3419 case TIOCGWINSZ: 3420 case TIOCGSIZE: 3421 case KIOCGTRANS: 3422 case KIOCGTRANSABLE: 3423 case KIOCTYPE: 3424 case KIOCGDIRECT: 3425 case KIOCGCOMPAT: 3426 case KIOCLAYOUT: 3427 case KIOCGLED: 3428 case MSIOGETPARMS: 3429 case MSIOBUTTONS: 3430 case VUIDGFORMAT: 3431 case TIOCGPPS: 3432 case TIOCGPPSEV: 3433 case TCGETA: 3434 case TCGETS: 3435 case LDGETT: 3436 case TIOCGETP: 3437 case KIOCGRPTDELAY: 3438 case KIOCGRPTRATE: 3439 strioc.ic_len = 0; 3440 strioc.ic_dp = (char *)arg; 3441 return (strdoioctl(stp, &strioc, flag, 3442 copyflag, crp, rvalp)); 3443 } 3444 } 3445 3446 /* 3447 * Unknown cmd - send it down as a transparent ioctl. 3448 */ 3449 strioc.ic_cmd = cmd; 3450 strioc.ic_timout = INFTIM; 3451 strioc.ic_len = TRANSPARENT; 3452 strioc.ic_dp = (char *)&arg; 3453 3454 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3455 3456 case I_STR: 3457 /* 3458 * Stream ioctl. Read in an strioctl buffer from the user 3459 * along with any data specified and send it downstream. 3460 * Strdoioctl will wait allow only one ioctl message at 3461 * a time, and waits for the acknowledgement. 3462 */ 3463 3464 if (stp->sd_flag & STRHUP) 3465 return (ENXIO); 3466 3467 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3468 copyflag); 3469 if (error != 0) 3470 return (error); 3471 3472 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3473 return (EINVAL); 3474 3475 access = job_control_type(strioc.ic_cmd); 3476 mutex_enter(&stp->sd_lock); 3477 if ((access != -1) && 3478 ((error = i_straccess(stp, access)) != 0)) { 3479 mutex_exit(&stp->sd_lock); 3480 return (error); 3481 } 3482 mutex_exit(&stp->sd_lock); 3483 3484 /* 3485 * The I_STR facility provides a trap door for malicious 3486 * code to send down bogus streamio(7I) ioctl commands to 3487 * unsuspecting STREAMS modules and drivers which expect to 3488 * only get these messages from the stream head. 3489 * Explicitly prohibit any streamio ioctls which can be 3490 * passed downstream by the stream head. Note that we do 3491 * not block all streamio ioctls because the ioctl 3492 * numberspace is not well managed and thus it's possible 3493 * that a module or driver's ioctl numbers may accidentally 3494 * collide with them. 3495 */ 3496 switch (strioc.ic_cmd) { 3497 case I_LINK: 3498 case I_PLINK: 3499 case I_UNLINK: 3500 case I_PUNLINK: 3501 case _I_GETPEERCRED: 3502 case _I_PLINK_LH: 3503 return (EINVAL); 3504 } 3505 3506 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3507 if (error == 0) { 3508 error = strcopyout_strioctl(&strioc, (void *)arg, 3509 flag, copyflag); 3510 } 3511 return (error); 3512 3513 case I_NREAD: 3514 /* 3515 * Return number of bytes of data in first message 3516 * in queue in "arg" and return the number of messages 3517 * in queue in return value. 3518 */ 3519 { 3520 size_t size; 3521 int retval; 3522 int count = 0; 3523 3524 mutex_enter(QLOCK(rdq)); 3525 3526 size = msgdsize(rdq->q_first); 3527 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3528 count++; 3529 3530 mutex_exit(QLOCK(rdq)); 3531 if (stp->sd_struiordq) { 3532 infod_t infod; 3533 3534 infod.d_cmd = INFOD_COUNT; 3535 infod.d_count = 0; 3536 if (count == 0) { 3537 infod.d_cmd |= INFOD_FIRSTBYTES; 3538 infod.d_bytes = 0; 3539 } 3540 infod.d_res = 0; 3541 (void) infonext(rdq, &infod); 3542 count += infod.d_count; 3543 if (infod.d_res & INFOD_FIRSTBYTES) 3544 size = infod.d_bytes; 3545 } 3546 3547 /* 3548 * Drop down from size_t to the "int" required by the 3549 * interface. Cap at INT_MAX. 3550 */ 3551 retval = MIN(size, INT_MAX); 3552 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3553 copyflag); 3554 if (!error) 3555 *rvalp = count; 3556 return (error); 3557 } 3558 3559 case FIONREAD: 3560 /* 3561 * Return number of bytes of data in all data messages 3562 * in queue in "arg". 3563 */ 3564 { 3565 size_t size = 0; 3566 int retval; 3567 3568 mutex_enter(QLOCK(rdq)); 3569 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3570 size += msgdsize(mp); 3571 mutex_exit(QLOCK(rdq)); 3572 3573 if (stp->sd_struiordq) { 3574 infod_t infod; 3575 3576 infod.d_cmd = INFOD_BYTES; 3577 infod.d_res = 0; 3578 infod.d_bytes = 0; 3579 (void) infonext(rdq, &infod); 3580 size += infod.d_bytes; 3581 } 3582 3583 /* 3584 * Drop down from size_t to the "int" required by the 3585 * interface. Cap at INT_MAX. 3586 */ 3587 retval = MIN(size, INT_MAX); 3588 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3589 copyflag); 3590 3591 *rvalp = 0; 3592 return (error); 3593 } 3594 case FIORDCHK: 3595 /* 3596 * FIORDCHK does not use arg value (like FIONREAD), 3597 * instead a count is returned. I_NREAD value may 3598 * not be accurate but safe. The real thing to do is 3599 * to add the msgdsizes of all data messages until 3600 * a non-data message. 3601 */ 3602 { 3603 size_t size = 0; 3604 3605 mutex_enter(QLOCK(rdq)); 3606 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3607 size += msgdsize(mp); 3608 mutex_exit(QLOCK(rdq)); 3609 3610 if (stp->sd_struiordq) { 3611 infod_t infod; 3612 3613 infod.d_cmd = INFOD_BYTES; 3614 infod.d_res = 0; 3615 infod.d_bytes = 0; 3616 (void) infonext(rdq, &infod); 3617 size += infod.d_bytes; 3618 } 3619 3620 /* 3621 * Since ioctl returns an int, and memory sizes under 3622 * LP64 may not fit, we return INT_MAX if the count was 3623 * actually greater. 3624 */ 3625 *rvalp = MIN(size, INT_MAX); 3626 return (0); 3627 } 3628 3629 case I_FIND: 3630 /* 3631 * Get module name. 3632 */ 3633 { 3634 char mname[FMNAMESZ + 1]; 3635 queue_t *q; 3636 3637 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3638 mname, FMNAMESZ + 1, NULL); 3639 if (error) 3640 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3641 3642 /* 3643 * Return EINVAL if we're handed a bogus module name. 3644 */ 3645 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3646 TRACE_0(TR_FAC_STREAMS_FR, 3647 TR_I_CANT_FIND, "couldn't I_FIND"); 3648 return (EINVAL); 3649 } 3650 3651 *rvalp = 0; 3652 3653 /* Look downstream to see if module is there. */ 3654 claimstr(stp->sd_wrq); 3655 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3656 if (q->q_flag&QREADR) { 3657 q = NULL; 3658 break; 3659 } 3660 if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0) 3661 break; 3662 } 3663 releasestr(stp->sd_wrq); 3664 3665 *rvalp = (q ? 1 : 0); 3666 return (error); 3667 } 3668 3669 case I_PUSH: 3670 case __I_PUSH_NOCTTY: 3671 /* 3672 * Push a module. 3673 * For the case __I_PUSH_NOCTTY push a module but 3674 * do not allocate controlling tty. See bugid 4025044 3675 */ 3676 3677 { 3678 char mname[FMNAMESZ + 1]; 3679 fmodsw_impl_t *fp; 3680 dev_t dummydev; 3681 3682 if (stp->sd_flag & STRHUP) 3683 return (ENXIO); 3684 3685 /* 3686 * Get module name and look up in fmodsw. 3687 */ 3688 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3689 mname, FMNAMESZ + 1, NULL); 3690 if (error) 3691 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3692 3693 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3694 NULL) 3695 return (EINVAL); 3696 3697 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3698 "I_PUSH:fp %p stp %p", fp, stp); 3699 3700 if (error = strstartplumb(stp, flag, cmd)) { 3701 fmodsw_rele(fp); 3702 return (error); 3703 } 3704 3705 /* 3706 * See if any more modules can be pushed on this stream. 3707 * Note that this check must be done after strstartplumb() 3708 * since otherwise multiple threads issuing I_PUSHes on 3709 * the same stream will be able to exceed nstrpush. 3710 */ 3711 mutex_enter(&stp->sd_lock); 3712 if (stp->sd_pushcnt >= nstrpush) { 3713 fmodsw_rele(fp); 3714 strendplumb(stp); 3715 mutex_exit(&stp->sd_lock); 3716 return (EINVAL); 3717 } 3718 mutex_exit(&stp->sd_lock); 3719 3720 /* 3721 * Push new module and call its open routine 3722 * via qattach(). Modules don't change device 3723 * numbers, so just ignore dummydev here. 3724 */ 3725 dummydev = vp->v_rdev; 3726 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3727 B_FALSE)) == 0) { 3728 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3729 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3730 /* 3731 * try to allocate it as a controlling terminal 3732 */ 3733 (void) strctty(stp); 3734 } 3735 } 3736 3737 mutex_enter(&stp->sd_lock); 3738 3739 /* 3740 * As a performance concern we are caching the values of 3741 * q_minpsz and q_maxpsz of the module below the stream 3742 * head in the stream head. 3743 */ 3744 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3745 rmin = stp->sd_wrq->q_next->q_minpsz; 3746 rmax = stp->sd_wrq->q_next->q_maxpsz; 3747 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3748 3749 /* Do this processing here as a performance concern */ 3750 if (strmsgsz != 0) { 3751 if (rmax == INFPSZ) 3752 rmax = strmsgsz; 3753 else { 3754 if (vp->v_type == VFIFO) 3755 rmax = MIN(PIPE_BUF, rmax); 3756 else rmax = MIN(strmsgsz, rmax); 3757 } 3758 } 3759 3760 mutex_enter(QLOCK(wrq)); 3761 stp->sd_qn_minpsz = rmin; 3762 stp->sd_qn_maxpsz = rmax; 3763 mutex_exit(QLOCK(wrq)); 3764 3765 strendplumb(stp); 3766 mutex_exit(&stp->sd_lock); 3767 return (error); 3768 } 3769 3770 case I_POP: 3771 { 3772 queue_t *q; 3773 3774 if (stp->sd_flag & STRHUP) 3775 return (ENXIO); 3776 if (!wrq->q_next) /* for broken pipes */ 3777 return (EINVAL); 3778 3779 if (error = strstartplumb(stp, flag, cmd)) 3780 return (error); 3781 3782 /* 3783 * If there is an anchor on this stream and popping 3784 * the current module would attempt to pop through the 3785 * anchor, then disallow the pop unless we have sufficient 3786 * privileges; take the cheapest (non-locking) check 3787 * first. 3788 */ 3789 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3790 (stp->sd_anchorzone != crgetzoneid(crp))) { 3791 mutex_enter(&stp->sd_lock); 3792 /* 3793 * Anchors only apply if there's at least one 3794 * module on the stream (sd_pushcnt > 0). 3795 */ 3796 if (stp->sd_pushcnt > 0 && 3797 stp->sd_pushcnt == stp->sd_anchor && 3798 stp->sd_vnode->v_type != VFIFO) { 3799 strendplumb(stp); 3800 mutex_exit(&stp->sd_lock); 3801 if (stp->sd_anchorzone != crgetzoneid(crp)) 3802 return (EINVAL); 3803 /* Audit and report error */ 3804 return (secpolicy_ip_config(crp, B_FALSE)); 3805 } 3806 mutex_exit(&stp->sd_lock); 3807 } 3808 3809 q = wrq->q_next; 3810 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3811 "I_POP:%p from %p", q, stp); 3812 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3813 error = EINVAL; 3814 } else { 3815 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3816 error = 0; 3817 } 3818 mutex_enter(&stp->sd_lock); 3819 3820 /* 3821 * As a performance concern we are caching the values of 3822 * q_minpsz and q_maxpsz of the module below the stream 3823 * head in the stream head. 3824 */ 3825 mutex_enter(QLOCK(wrq->q_next)); 3826 rmin = wrq->q_next->q_minpsz; 3827 rmax = wrq->q_next->q_maxpsz; 3828 mutex_exit(QLOCK(wrq->q_next)); 3829 3830 /* Do this processing here as a performance concern */ 3831 if (strmsgsz != 0) { 3832 if (rmax == INFPSZ) 3833 rmax = strmsgsz; 3834 else { 3835 if (vp->v_type == VFIFO) 3836 rmax = MIN(PIPE_BUF, rmax); 3837 else rmax = MIN(strmsgsz, rmax); 3838 } 3839 } 3840 3841 mutex_enter(QLOCK(wrq)); 3842 stp->sd_qn_minpsz = rmin; 3843 stp->sd_qn_maxpsz = rmax; 3844 mutex_exit(QLOCK(wrq)); 3845 3846 /* If we popped through the anchor, then reset the anchor. */ 3847 if (stp->sd_pushcnt < stp->sd_anchor) { 3848 stp->sd_anchor = 0; 3849 stp->sd_anchorzone = 0; 3850 } 3851 strendplumb(stp); 3852 mutex_exit(&stp->sd_lock); 3853 return (error); 3854 } 3855 3856 case _I_MUXID2FD: 3857 { 3858 /* 3859 * Create a fd for a I_PLINK'ed lower stream with a given 3860 * muxid. With the fd, application can send down ioctls, 3861 * like I_LIST, to the previously I_PLINK'ed stream. Note 3862 * that after getting the fd, the application has to do an 3863 * I_PUNLINK on the muxid before it can do any operation 3864 * on the lower stream. This is required by spec1170. 3865 * 3866 * The fd used to do this ioctl should point to the same 3867 * controlling device used to do the I_PLINK. If it uses 3868 * a different stream or an invalid muxid, I_MUXID2FD will 3869 * fail. The error code is set to EINVAL. 3870 * 3871 * The intended use of this interface is the following. 3872 * An application I_PLINK'ed a stream and exits. The fd 3873 * to the lower stream is gone. Another application 3874 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 3875 */ 3876 int muxid = (int)arg; 3877 int fd; 3878 linkinfo_t *linkp; 3879 struct file *fp; 3880 netstack_t *ns; 3881 str_stack_t *ss; 3882 3883 /* 3884 * Do not allow the wildcard muxid. This ioctl is not 3885 * intended to find arbitrary link. 3886 */ 3887 if (muxid == 0) { 3888 return (EINVAL); 3889 } 3890 3891 ns = netstack_find_by_cred(crp); 3892 ASSERT(ns != NULL); 3893 ss = ns->netstack_str; 3894 ASSERT(ss != NULL); 3895 3896 mutex_enter(&muxifier); 3897 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 3898 if (linkp == NULL) { 3899 mutex_exit(&muxifier); 3900 netstack_rele(ss->ss_netstack); 3901 return (EINVAL); 3902 } 3903 3904 if ((fd = ufalloc(0)) == -1) { 3905 mutex_exit(&muxifier); 3906 netstack_rele(ss->ss_netstack); 3907 return (EMFILE); 3908 } 3909 fp = linkp->li_fpdown; 3910 mutex_enter(&fp->f_tlock); 3911 fp->f_count++; 3912 mutex_exit(&fp->f_tlock); 3913 mutex_exit(&muxifier); 3914 setf(fd, fp); 3915 *rvalp = fd; 3916 netstack_rele(ss->ss_netstack); 3917 return (0); 3918 } 3919 3920 case _I_INSERT: 3921 { 3922 /* 3923 * To insert a module to a given position in a stream. 3924 * In the first release, only allow privileged user 3925 * to use this ioctl. Furthermore, the insert is only allowed 3926 * below an anchor if the zoneid is the same as the zoneid 3927 * which created the anchor. 3928 * 3929 * Note that we do not plan to support this ioctl 3930 * on pipes in the first release. We want to learn more 3931 * about the implications of these ioctls before extending 3932 * their support. And we do not think these features are 3933 * valuable for pipes. 3934 * 3935 * Neither do we support O/C hot stream. Note that only 3936 * the upper streams of TCP/IP stack are O/C hot streams. 3937 * The lower IP stream is not. 3938 * When there is a O/C cold barrier, we only allow inserts 3939 * above the barrier. 3940 */ 3941 STRUCT_DECL(strmodconf, strmodinsert); 3942 char mod_name[FMNAMESZ + 1]; 3943 fmodsw_impl_t *fp; 3944 dev_t dummydev; 3945 queue_t *tmp_wrq; 3946 int pos; 3947 boolean_t is_insert; 3948 3949 STRUCT_INIT(strmodinsert, flag); 3950 if (stp->sd_flag & STRHUP) 3951 return (ENXIO); 3952 if (STRMATED(stp)) 3953 return (EINVAL); 3954 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 3955 return (error); 3956 if (stp->sd_anchor != 0 && 3957 stp->sd_anchorzone != crgetzoneid(crp)) 3958 return (EINVAL); 3959 3960 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 3961 STRUCT_SIZE(strmodinsert), copyflag); 3962 if (error) 3963 return (error); 3964 3965 /* 3966 * Get module name and look up in fmodsw. 3967 */ 3968 error = (copyflag & U_TO_K ? copyinstr : 3969 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 3970 mod_name, FMNAMESZ + 1, NULL); 3971 if (error) 3972 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3973 3974 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 3975 NULL) 3976 return (EINVAL); 3977 3978 if (error = strstartplumb(stp, flag, cmd)) { 3979 fmodsw_rele(fp); 3980 return (error); 3981 } 3982 3983 /* 3984 * Is this _I_INSERT just like an I_PUSH? We need to know 3985 * this because we do some optimizations if this is a 3986 * module being pushed. 3987 */ 3988 pos = STRUCT_FGET(strmodinsert, pos); 3989 is_insert = (pos != 0); 3990 3991 /* 3992 * Make sure pos is valid. Even though it is not an I_PUSH, 3993 * we impose the same limit on the number of modules in a 3994 * stream. 3995 */ 3996 mutex_enter(&stp->sd_lock); 3997 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 3998 pos > stp->sd_pushcnt) { 3999 fmodsw_rele(fp); 4000 strendplumb(stp); 4001 mutex_exit(&stp->sd_lock); 4002 return (EINVAL); 4003 } 4004 if (stp->sd_anchor != 0) { 4005 /* 4006 * Is this insert below the anchor? 4007 * Pushcnt hasn't been increased yet hence 4008 * we test for greater than here, and greater or 4009 * equal after qattach. 4010 */ 4011 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4012 stp->sd_anchorzone != crgetzoneid(crp)) { 4013 fmodsw_rele(fp); 4014 strendplumb(stp); 4015 mutex_exit(&stp->sd_lock); 4016 return (EPERM); 4017 } 4018 } 4019 4020 mutex_exit(&stp->sd_lock); 4021 4022 /* 4023 * First find the correct position this module to 4024 * be inserted. We don't need to call claimstr() 4025 * as the stream should not be changing at this point. 4026 * 4027 * Insert new module and call its open routine 4028 * via qattach(). Modules don't change device 4029 * numbers, so just ignore dummydev here. 4030 */ 4031 for (tmp_wrq = stp->sd_wrq; pos > 0; 4032 tmp_wrq = tmp_wrq->q_next, pos--) { 4033 ASSERT(SAMESTR(tmp_wrq)); 4034 } 4035 dummydev = vp->v_rdev; 4036 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4037 fp, is_insert)) != 0) { 4038 mutex_enter(&stp->sd_lock); 4039 strendplumb(stp); 4040 mutex_exit(&stp->sd_lock); 4041 return (error); 4042 } 4043 4044 mutex_enter(&stp->sd_lock); 4045 4046 /* 4047 * As a performance concern we are caching the values of 4048 * q_minpsz and q_maxpsz of the module below the stream 4049 * head in the stream head. 4050 */ 4051 if (!is_insert) { 4052 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4053 rmin = stp->sd_wrq->q_next->q_minpsz; 4054 rmax = stp->sd_wrq->q_next->q_maxpsz; 4055 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4056 4057 /* Do this processing here as a performance concern */ 4058 if (strmsgsz != 0) { 4059 if (rmax == INFPSZ) { 4060 rmax = strmsgsz; 4061 } else { 4062 rmax = MIN(strmsgsz, rmax); 4063 } 4064 } 4065 4066 mutex_enter(QLOCK(wrq)); 4067 stp->sd_qn_minpsz = rmin; 4068 stp->sd_qn_maxpsz = rmax; 4069 mutex_exit(QLOCK(wrq)); 4070 } 4071 4072 /* 4073 * Need to update the anchor value if this module is 4074 * inserted below the anchor point. 4075 */ 4076 if (stp->sd_anchor != 0) { 4077 pos = STRUCT_FGET(strmodinsert, pos); 4078 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4079 stp->sd_anchor++; 4080 } 4081 4082 strendplumb(stp); 4083 mutex_exit(&stp->sd_lock); 4084 return (0); 4085 } 4086 4087 case _I_REMOVE: 4088 { 4089 /* 4090 * To remove a module with a given name in a stream. The 4091 * caller of this ioctl needs to provide both the name and 4092 * the position of the module to be removed. This eliminates 4093 * the ambiguity of removal if a module is inserted/pushed 4094 * multiple times in a stream. In the first release, only 4095 * allow privileged user to use this ioctl. 4096 * Furthermore, the remove is only allowed 4097 * below an anchor if the zoneid is the same as the zoneid 4098 * which created the anchor. 4099 * 4100 * Note that we do not plan to support this ioctl 4101 * on pipes in the first release. We want to learn more 4102 * about the implications of these ioctls before extending 4103 * their support. And we do not think these features are 4104 * valuable for pipes. 4105 * 4106 * Neither do we support O/C hot stream. Note that only 4107 * the upper streams of TCP/IP stack are O/C hot streams. 4108 * The lower IP stream is not. 4109 * When there is a O/C cold barrier we do not allow removal 4110 * below the barrier. 4111 * 4112 * Also note that _I_REMOVE cannot be used to remove a 4113 * driver or the stream head. 4114 */ 4115 STRUCT_DECL(strmodconf, strmodremove); 4116 queue_t *q; 4117 int pos; 4118 char mod_name[FMNAMESZ + 1]; 4119 boolean_t is_remove; 4120 4121 STRUCT_INIT(strmodremove, flag); 4122 if (stp->sd_flag & STRHUP) 4123 return (ENXIO); 4124 if (STRMATED(stp)) 4125 return (EINVAL); 4126 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4127 return (error); 4128 if (stp->sd_anchor != 0 && 4129 stp->sd_anchorzone != crgetzoneid(crp)) 4130 return (EINVAL); 4131 4132 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4133 STRUCT_SIZE(strmodremove), copyflag); 4134 if (error) 4135 return (error); 4136 4137 error = (copyflag & U_TO_K ? copyinstr : 4138 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4139 mod_name, FMNAMESZ + 1, NULL); 4140 if (error) 4141 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4142 4143 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4144 return (error); 4145 4146 /* 4147 * Match the name of given module to the name of module at 4148 * the given position. 4149 */ 4150 pos = STRUCT_FGET(strmodremove, pos); 4151 4152 is_remove = (pos != 0); 4153 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4154 q = q->q_next, pos--) 4155 ; 4156 if (pos > 0 || ! SAMESTR(q) || 4157 strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name, 4158 strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) { 4159 mutex_enter(&stp->sd_lock); 4160 strendplumb(stp); 4161 mutex_exit(&stp->sd_lock); 4162 return (EINVAL); 4163 } 4164 4165 /* 4166 * If the position is at or below an anchor, then the zoneid 4167 * must match the zoneid that created the anchor. 4168 */ 4169 if (stp->sd_anchor != 0) { 4170 pos = STRUCT_FGET(strmodremove, pos); 4171 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4172 stp->sd_anchorzone != crgetzoneid(crp)) { 4173 mutex_enter(&stp->sd_lock); 4174 strendplumb(stp); 4175 mutex_exit(&stp->sd_lock); 4176 return (EPERM); 4177 } 4178 } 4179 4180 4181 ASSERT(!(q->q_flag & QREADR)); 4182 qdetach(_RD(q), 1, flag, crp, is_remove); 4183 4184 mutex_enter(&stp->sd_lock); 4185 4186 /* 4187 * As a performance concern we are caching the values of 4188 * q_minpsz and q_maxpsz of the module below the stream 4189 * head in the stream head. 4190 */ 4191 if (!is_remove) { 4192 mutex_enter(QLOCK(wrq->q_next)); 4193 rmin = wrq->q_next->q_minpsz; 4194 rmax = wrq->q_next->q_maxpsz; 4195 mutex_exit(QLOCK(wrq->q_next)); 4196 4197 /* Do this processing here as a performance concern */ 4198 if (strmsgsz != 0) { 4199 if (rmax == INFPSZ) 4200 rmax = strmsgsz; 4201 else { 4202 if (vp->v_type == VFIFO) 4203 rmax = MIN(PIPE_BUF, rmax); 4204 else rmax = MIN(strmsgsz, rmax); 4205 } 4206 } 4207 4208 mutex_enter(QLOCK(wrq)); 4209 stp->sd_qn_minpsz = rmin; 4210 stp->sd_qn_maxpsz = rmax; 4211 mutex_exit(QLOCK(wrq)); 4212 } 4213 4214 /* 4215 * Need to update the anchor value if this module is removed 4216 * at or below the anchor point. If the removed module is at 4217 * the anchor point, remove the anchor for this stream if 4218 * there is no module above the anchor point. Otherwise, if 4219 * the removed module is below the anchor point, decrement the 4220 * anchor point by 1. 4221 */ 4222 if (stp->sd_anchor != 0) { 4223 pos = STRUCT_FGET(strmodremove, pos); 4224 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4225 stp->sd_anchor = 0; 4226 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4227 stp->sd_anchor--; 4228 } 4229 4230 strendplumb(stp); 4231 mutex_exit(&stp->sd_lock); 4232 return (0); 4233 } 4234 4235 case I_ANCHOR: 4236 /* 4237 * Set the anchor position on the stream to reside at 4238 * the top module (in other words, the top module 4239 * cannot be popped). Anchors with a FIFO make no 4240 * obvious sense, so they're not allowed. 4241 */ 4242 mutex_enter(&stp->sd_lock); 4243 4244 if (stp->sd_vnode->v_type == VFIFO) { 4245 mutex_exit(&stp->sd_lock); 4246 return (EINVAL); 4247 } 4248 /* Only allow the same zoneid to update the anchor */ 4249 if (stp->sd_anchor != 0 && 4250 stp->sd_anchorzone != crgetzoneid(crp)) { 4251 mutex_exit(&stp->sd_lock); 4252 return (EINVAL); 4253 } 4254 stp->sd_anchor = stp->sd_pushcnt; 4255 stp->sd_anchorzone = crgetzoneid(crp); 4256 mutex_exit(&stp->sd_lock); 4257 return (0); 4258 4259 case I_LOOK: 4260 /* 4261 * Get name of first module downstream. 4262 * If no module, return an error. 4263 */ 4264 { 4265 claimstr(wrq); 4266 if (_SAMESTR(wrq) && wrq->q_next->q_next) { 4267 char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname; 4268 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4269 copyflag); 4270 releasestr(wrq); 4271 return (error); 4272 } 4273 releasestr(wrq); 4274 return (EINVAL); 4275 } 4276 4277 case I_LINK: 4278 case I_PLINK: 4279 /* 4280 * Link a multiplexor. 4281 */ 4282 error = mlink(vp, cmd, (int)arg, crp, rvalp, 0); 4283 return (error); 4284 4285 case _I_PLINK_LH: 4286 /* 4287 * Link a multiplexor: Call must originate from kernel. 4288 */ 4289 if (kioctl) 4290 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4291 4292 return (EINVAL); 4293 case I_UNLINK: 4294 case I_PUNLINK: 4295 /* 4296 * Unlink a multiplexor. 4297 * If arg is -1, unlink all links for which this is the 4298 * controlling stream. Otherwise, arg is an index number 4299 * for a link to be removed. 4300 */ 4301 { 4302 struct linkinfo *linkp; 4303 int native_arg = (int)arg; 4304 int type; 4305 netstack_t *ns; 4306 str_stack_t *ss; 4307 4308 TRACE_1(TR_FAC_STREAMS_FR, 4309 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4310 if (vp->v_type == VFIFO) { 4311 return (EINVAL); 4312 } 4313 if (cmd == I_UNLINK) 4314 type = LINKNORMAL; 4315 else /* I_PUNLINK */ 4316 type = LINKPERSIST; 4317 if (native_arg == 0) { 4318 return (EINVAL); 4319 } 4320 ns = netstack_find_by_cred(crp); 4321 ASSERT(ns != NULL); 4322 ss = ns->netstack_str; 4323 ASSERT(ss != NULL); 4324 4325 if (native_arg == MUXID_ALL) 4326 error = munlinkall(stp, type, crp, rvalp, ss); 4327 else { 4328 mutex_enter(&muxifier); 4329 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4330 /* invalid user supplied index number */ 4331 mutex_exit(&muxifier); 4332 netstack_rele(ss->ss_netstack); 4333 return (EINVAL); 4334 } 4335 /* munlink drops the muxifier lock */ 4336 error = munlink(stp, linkp, type, crp, rvalp, ss); 4337 } 4338 netstack_rele(ss->ss_netstack); 4339 return (error); 4340 } 4341 4342 case I_FLUSH: 4343 /* 4344 * send a flush message downstream 4345 * flush message can indicate 4346 * FLUSHR - flush read queue 4347 * FLUSHW - flush write queue 4348 * FLUSHRW - flush read/write queue 4349 */ 4350 if (stp->sd_flag & STRHUP) 4351 return (ENXIO); 4352 if (arg & ~FLUSHRW) 4353 return (EINVAL); 4354 4355 for (;;) { 4356 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4357 break; 4358 } 4359 if (error = strwaitbuf(1, BPRI_HI)) { 4360 return (error); 4361 } 4362 } 4363 4364 /* 4365 * Send down an unsupported ioctl and wait for the nack 4366 * in order to allow the M_FLUSH to propagate back 4367 * up to the stream head. 4368 * Replaces if (qready()) runqueues(); 4369 */ 4370 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4371 strioc.ic_timout = 0; 4372 strioc.ic_len = 0; 4373 strioc.ic_dp = NULL; 4374 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4375 *rvalp = 0; 4376 return (0); 4377 4378 case I_FLUSHBAND: 4379 { 4380 struct bandinfo binfo; 4381 4382 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4383 copyflag); 4384 if (error) 4385 return (error); 4386 if (stp->sd_flag & STRHUP) 4387 return (ENXIO); 4388 if (binfo.bi_flag & ~FLUSHRW) 4389 return (EINVAL); 4390 while (!(mp = allocb(2, BPRI_HI))) { 4391 if (error = strwaitbuf(2, BPRI_HI)) 4392 return (error); 4393 } 4394 mp->b_datap->db_type = M_FLUSH; 4395 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4396 *mp->b_wptr++ = binfo.bi_pri; 4397 putnext(stp->sd_wrq, mp); 4398 /* 4399 * Send down an unsupported ioctl and wait for the nack 4400 * in order to allow the M_FLUSH to propagate back 4401 * up to the stream head. 4402 * Replaces if (qready()) runqueues(); 4403 */ 4404 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4405 strioc.ic_timout = 0; 4406 strioc.ic_len = 0; 4407 strioc.ic_dp = NULL; 4408 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4409 *rvalp = 0; 4410 return (0); 4411 } 4412 4413 case I_SRDOPT: 4414 /* 4415 * Set read options 4416 * 4417 * RNORM - default stream mode 4418 * RMSGN - message no discard 4419 * RMSGD - message discard 4420 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4421 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4422 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4423 */ 4424 if (arg & ~(RMODEMASK | RPROTMASK)) 4425 return (EINVAL); 4426 4427 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4428 return (EINVAL); 4429 4430 mutex_enter(&stp->sd_lock); 4431 switch (arg & RMODEMASK) { 4432 case RNORM: 4433 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4434 break; 4435 case RMSGD: 4436 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4437 RD_MSGDIS; 4438 break; 4439 case RMSGN: 4440 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4441 RD_MSGNODIS; 4442 break; 4443 } 4444 4445 switch (arg & RPROTMASK) { 4446 case RPROTNORM: 4447 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4448 break; 4449 4450 case RPROTDAT: 4451 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4452 RD_PROTDAT); 4453 break; 4454 4455 case RPROTDIS: 4456 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4457 RD_PROTDIS); 4458 break; 4459 } 4460 mutex_exit(&stp->sd_lock); 4461 return (0); 4462 4463 case I_GRDOPT: 4464 /* 4465 * Get read option and return the value 4466 * to spot pointed to by arg 4467 */ 4468 { 4469 int rdopt; 4470 4471 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4472 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4473 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4474 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4475 4476 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4477 copyflag)); 4478 } 4479 4480 case I_SERROPT: 4481 /* 4482 * Set error options 4483 * 4484 * RERRNORM - persistent read errors 4485 * RERRNONPERSIST - non-persistent read errors 4486 * WERRNORM - persistent write errors 4487 * WERRNONPERSIST - non-persistent write errors 4488 */ 4489 if (arg & ~(RERRMASK | WERRMASK)) 4490 return (EINVAL); 4491 4492 mutex_enter(&stp->sd_lock); 4493 switch (arg & RERRMASK) { 4494 case RERRNORM: 4495 stp->sd_flag &= ~STRDERRNONPERSIST; 4496 break; 4497 case RERRNONPERSIST: 4498 stp->sd_flag |= STRDERRNONPERSIST; 4499 break; 4500 } 4501 switch (arg & WERRMASK) { 4502 case WERRNORM: 4503 stp->sd_flag &= ~STWRERRNONPERSIST; 4504 break; 4505 case WERRNONPERSIST: 4506 stp->sd_flag |= STWRERRNONPERSIST; 4507 break; 4508 } 4509 mutex_exit(&stp->sd_lock); 4510 return (0); 4511 4512 case I_GERROPT: 4513 /* 4514 * Get error option and return the value 4515 * to spot pointed to by arg 4516 */ 4517 { 4518 int erropt = 0; 4519 4520 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4521 RERRNORM; 4522 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4523 WERRNORM; 4524 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4525 copyflag)); 4526 } 4527 4528 case I_SETSIG: 4529 /* 4530 * Register the calling proc to receive the SIGPOLL 4531 * signal based on the events given in arg. If 4532 * arg is zero, remove the proc from register list. 4533 */ 4534 { 4535 strsig_t *ssp, *pssp; 4536 struct pid *pidp; 4537 4538 pssp = NULL; 4539 pidp = curproc->p_pidp; 4540 /* 4541 * Hold sd_lock to prevent traversal of sd_siglist while 4542 * it is modified. 4543 */ 4544 mutex_enter(&stp->sd_lock); 4545 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4546 pssp = ssp, ssp = ssp->ss_next) 4547 ; 4548 4549 if (arg) { 4550 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4551 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4552 mutex_exit(&stp->sd_lock); 4553 return (EINVAL); 4554 } 4555 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4556 mutex_exit(&stp->sd_lock); 4557 return (EINVAL); 4558 } 4559 4560 /* 4561 * If proc not already registered, add it 4562 * to list. 4563 */ 4564 if (!ssp) { 4565 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4566 ssp->ss_pidp = pidp; 4567 ssp->ss_pid = pidp->pid_id; 4568 ssp->ss_next = NULL; 4569 if (pssp) 4570 pssp->ss_next = ssp; 4571 else 4572 stp->sd_siglist = ssp; 4573 mutex_enter(&pidlock); 4574 PID_HOLD(pidp); 4575 mutex_exit(&pidlock); 4576 } 4577 4578 /* 4579 * Set events. 4580 */ 4581 ssp->ss_events = (int)arg; 4582 } else { 4583 /* 4584 * Remove proc from register list. 4585 */ 4586 if (ssp) { 4587 mutex_enter(&pidlock); 4588 PID_RELE(pidp); 4589 mutex_exit(&pidlock); 4590 if (pssp) 4591 pssp->ss_next = ssp->ss_next; 4592 else 4593 stp->sd_siglist = ssp->ss_next; 4594 kmem_free(ssp, sizeof (strsig_t)); 4595 } else { 4596 mutex_exit(&stp->sd_lock); 4597 return (EINVAL); 4598 } 4599 } 4600 4601 /* 4602 * Recalculate OR of sig events. 4603 */ 4604 stp->sd_sigflags = 0; 4605 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4606 stp->sd_sigflags |= ssp->ss_events; 4607 mutex_exit(&stp->sd_lock); 4608 return (0); 4609 } 4610 4611 case I_GETSIG: 4612 /* 4613 * Return (in arg) the current registration of events 4614 * for which the calling proc is to be signaled. 4615 */ 4616 { 4617 struct strsig *ssp; 4618 struct pid *pidp; 4619 4620 pidp = curproc->p_pidp; 4621 mutex_enter(&stp->sd_lock); 4622 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4623 if (ssp->ss_pidp == pidp) { 4624 error = strcopyout(&ssp->ss_events, (void *)arg, 4625 sizeof (int), copyflag); 4626 mutex_exit(&stp->sd_lock); 4627 return (error); 4628 } 4629 mutex_exit(&stp->sd_lock); 4630 return (EINVAL); 4631 } 4632 4633 case I_ESETSIG: 4634 /* 4635 * Register the ss_pid to receive the SIGPOLL 4636 * signal based on the events is ss_events arg. If 4637 * ss_events is zero, remove the proc from register list. 4638 */ 4639 { 4640 struct strsig *ssp, *pssp; 4641 struct proc *proc; 4642 struct pid *pidp; 4643 pid_t pid; 4644 struct strsigset ss; 4645 4646 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4647 if (error) 4648 return (error); 4649 4650 pid = ss.ss_pid; 4651 4652 if (ss.ss_events != 0) { 4653 /* 4654 * Permissions check by sending signal 0. 4655 * Note that when kill fails it does a set_errno 4656 * causing the system call to fail. 4657 */ 4658 error = kill(pid, 0); 4659 if (error) { 4660 return (error); 4661 } 4662 } 4663 mutex_enter(&pidlock); 4664 if (pid == 0) 4665 proc = curproc; 4666 else if (pid < 0) 4667 proc = pgfind(-pid); 4668 else 4669 proc = prfind(pid); 4670 if (proc == NULL) { 4671 mutex_exit(&pidlock); 4672 return (ESRCH); 4673 } 4674 if (pid < 0) 4675 pidp = proc->p_pgidp; 4676 else 4677 pidp = proc->p_pidp; 4678 ASSERT(pidp); 4679 /* 4680 * Get a hold on the pid structure while referencing it. 4681 * There is a separate PID_HOLD should it be inserted 4682 * in the list below. 4683 */ 4684 PID_HOLD(pidp); 4685 mutex_exit(&pidlock); 4686 4687 pssp = NULL; 4688 /* 4689 * Hold sd_lock to prevent traversal of sd_siglist while 4690 * it is modified. 4691 */ 4692 mutex_enter(&stp->sd_lock); 4693 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4694 pssp = ssp, ssp = ssp->ss_next) 4695 ; 4696 4697 if (ss.ss_events) { 4698 if (ss.ss_events & 4699 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4700 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4701 mutex_exit(&stp->sd_lock); 4702 mutex_enter(&pidlock); 4703 PID_RELE(pidp); 4704 mutex_exit(&pidlock); 4705 return (EINVAL); 4706 } 4707 if ((ss.ss_events & S_BANDURG) && 4708 !(ss.ss_events & S_RDBAND)) { 4709 mutex_exit(&stp->sd_lock); 4710 mutex_enter(&pidlock); 4711 PID_RELE(pidp); 4712 mutex_exit(&pidlock); 4713 return (EINVAL); 4714 } 4715 4716 /* 4717 * If proc not already registered, add it 4718 * to list. 4719 */ 4720 if (!ssp) { 4721 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4722 ssp->ss_pidp = pidp; 4723 ssp->ss_pid = pid; 4724 ssp->ss_next = NULL; 4725 if (pssp) 4726 pssp->ss_next = ssp; 4727 else 4728 stp->sd_siglist = ssp; 4729 mutex_enter(&pidlock); 4730 PID_HOLD(pidp); 4731 mutex_exit(&pidlock); 4732 } 4733 4734 /* 4735 * Set events. 4736 */ 4737 ssp->ss_events = ss.ss_events; 4738 } else { 4739 /* 4740 * Remove proc from register list. 4741 */ 4742 if (ssp) { 4743 mutex_enter(&pidlock); 4744 PID_RELE(pidp); 4745 mutex_exit(&pidlock); 4746 if (pssp) 4747 pssp->ss_next = ssp->ss_next; 4748 else 4749 stp->sd_siglist = ssp->ss_next; 4750 kmem_free(ssp, sizeof (strsig_t)); 4751 } else { 4752 mutex_exit(&stp->sd_lock); 4753 mutex_enter(&pidlock); 4754 PID_RELE(pidp); 4755 mutex_exit(&pidlock); 4756 return (EINVAL); 4757 } 4758 } 4759 4760 /* 4761 * Recalculate OR of sig events. 4762 */ 4763 stp->sd_sigflags = 0; 4764 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4765 stp->sd_sigflags |= ssp->ss_events; 4766 mutex_exit(&stp->sd_lock); 4767 mutex_enter(&pidlock); 4768 PID_RELE(pidp); 4769 mutex_exit(&pidlock); 4770 return (0); 4771 } 4772 4773 case I_EGETSIG: 4774 /* 4775 * Return (in arg) the current registration of events 4776 * for which the calling proc is to be signaled. 4777 */ 4778 { 4779 struct strsig *ssp; 4780 struct proc *proc; 4781 pid_t pid; 4782 struct pid *pidp; 4783 struct strsigset ss; 4784 4785 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4786 if (error) 4787 return (error); 4788 4789 pid = ss.ss_pid; 4790 mutex_enter(&pidlock); 4791 if (pid == 0) 4792 proc = curproc; 4793 else if (pid < 0) 4794 proc = pgfind(-pid); 4795 else 4796 proc = prfind(pid); 4797 if (proc == NULL) { 4798 mutex_exit(&pidlock); 4799 return (ESRCH); 4800 } 4801 if (pid < 0) 4802 pidp = proc->p_pgidp; 4803 else 4804 pidp = proc->p_pidp; 4805 4806 /* Prevent the pidp from being reassigned */ 4807 PID_HOLD(pidp); 4808 mutex_exit(&pidlock); 4809 4810 mutex_enter(&stp->sd_lock); 4811 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4812 if (ssp->ss_pid == pid) { 4813 ss.ss_pid = ssp->ss_pid; 4814 ss.ss_events = ssp->ss_events; 4815 error = strcopyout(&ss, (void *)arg, 4816 sizeof (struct strsigset), copyflag); 4817 mutex_exit(&stp->sd_lock); 4818 mutex_enter(&pidlock); 4819 PID_RELE(pidp); 4820 mutex_exit(&pidlock); 4821 return (error); 4822 } 4823 mutex_exit(&stp->sd_lock); 4824 mutex_enter(&pidlock); 4825 PID_RELE(pidp); 4826 mutex_exit(&pidlock); 4827 return (EINVAL); 4828 } 4829 4830 case I_PEEK: 4831 { 4832 STRUCT_DECL(strpeek, strpeek); 4833 size_t n; 4834 mblk_t *fmp, *tmp_mp = NULL; 4835 4836 STRUCT_INIT(strpeek, flag); 4837 4838 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4839 STRUCT_SIZE(strpeek), copyflag); 4840 if (error) 4841 return (error); 4842 4843 mutex_enter(QLOCK(rdq)); 4844 /* 4845 * Skip the invalid messages 4846 */ 4847 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4848 if (mp->b_datap->db_type != M_SIG) 4849 break; 4850 4851 /* 4852 * If user has requested to peek at a high priority message 4853 * and first message is not, return 0 4854 */ 4855 if (mp != NULL) { 4856 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4857 queclass(mp) == QNORM) { 4858 *rvalp = 0; 4859 mutex_exit(QLOCK(rdq)); 4860 return (0); 4861 } 4862 } else if (stp->sd_struiordq == NULL || 4863 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4864 /* 4865 * No mblks to look at at the streamhead and 4866 * 1). This isn't a synch stream or 4867 * 2). This is a synch stream but caller wants high 4868 * priority messages which is not supported by 4869 * the synch stream. (it only supports QNORM) 4870 */ 4871 *rvalp = 0; 4872 mutex_exit(QLOCK(rdq)); 4873 return (0); 4874 } 4875 4876 fmp = mp; 4877 4878 if (mp && mp->b_datap->db_type == M_PASSFP) { 4879 mutex_exit(QLOCK(rdq)); 4880 return (EBADMSG); 4881 } 4882 4883 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 4884 mp->b_datap->db_type == M_PROTO || 4885 mp->b_datap->db_type == M_DATA); 4886 4887 if (mp && mp->b_datap->db_type == M_PCPROTO) { 4888 STRUCT_FSET(strpeek, flags, RS_HIPRI); 4889 } else { 4890 STRUCT_FSET(strpeek, flags, 0); 4891 } 4892 4893 4894 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 4895 mutex_exit(QLOCK(rdq)); 4896 return (ENOSR); 4897 } 4898 mutex_exit(QLOCK(rdq)); 4899 4900 /* 4901 * set mp = tmp_mp, so that I_PEEK processing can continue. 4902 * tmp_mp is used to free the dup'd message. 4903 */ 4904 mp = tmp_mp; 4905 4906 uio.uio_fmode = 0; 4907 uio.uio_extflg = UIO_COPY_CACHED; 4908 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 4909 UIO_SYSSPACE; 4910 uio.uio_limit = 0; 4911 /* 4912 * First process PROTO blocks, if any. 4913 * If user doesn't want to get ctl info by setting maxlen <= 0, 4914 * then set len to -1/0 and skip control blocks part. 4915 */ 4916 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 4917 STRUCT_FSET(strpeek, ctlbuf.len, -1); 4918 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 4919 STRUCT_FSET(strpeek, ctlbuf.len, 0); 4920 else { 4921 int ctl_part = 0; 4922 4923 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 4924 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 4925 uio.uio_iov = &iov; 4926 uio.uio_resid = iov.iov_len; 4927 uio.uio_loffset = 0; 4928 uio.uio_iovcnt = 1; 4929 while (mp && mp->b_datap->db_type != M_DATA && 4930 uio.uio_resid >= 0) { 4931 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 4932 mp->b_datap->db_type == M_PROTO : 4933 mp->b_datap->db_type == M_PCPROTO); 4934 4935 if ((n = MIN(uio.uio_resid, 4936 mp->b_wptr - mp->b_rptr)) != 0 && 4937 (error = uiomove((char *)mp->b_rptr, n, 4938 UIO_READ, &uio)) != 0) { 4939 freemsg(tmp_mp); 4940 return (error); 4941 } 4942 ctl_part = 1; 4943 mp = mp->b_cont; 4944 } 4945 /* No ctl message */ 4946 if (ctl_part == 0) 4947 STRUCT_FSET(strpeek, ctlbuf.len, -1); 4948 else 4949 STRUCT_FSET(strpeek, ctlbuf.len, 4950 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 4951 uio.uio_resid); 4952 } 4953 4954 /* 4955 * Now process DATA blocks, if any. 4956 * If user doesn't want to get data info by setting maxlen <= 0, 4957 * then set len to -1/0 and skip data blocks part. 4958 */ 4959 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 4960 STRUCT_FSET(strpeek, databuf.len, -1); 4961 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 4962 STRUCT_FSET(strpeek, databuf.len, 0); 4963 else { 4964 int data_part = 0; 4965 4966 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 4967 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 4968 uio.uio_iov = &iov; 4969 uio.uio_resid = iov.iov_len; 4970 uio.uio_loffset = 0; 4971 uio.uio_iovcnt = 1; 4972 while (mp && uio.uio_resid) { 4973 if (mp->b_datap->db_type == M_DATA) { 4974 if ((n = MIN(uio.uio_resid, 4975 mp->b_wptr - mp->b_rptr)) != 0 && 4976 (error = uiomove((char *)mp->b_rptr, 4977 n, UIO_READ, &uio)) != 0) { 4978 freemsg(tmp_mp); 4979 return (error); 4980 } 4981 data_part = 1; 4982 } 4983 ASSERT(data_part == 0 || 4984 mp->b_datap->db_type == M_DATA); 4985 mp = mp->b_cont; 4986 } 4987 /* No data message */ 4988 if (data_part == 0) 4989 STRUCT_FSET(strpeek, databuf.len, -1); 4990 else 4991 STRUCT_FSET(strpeek, databuf.len, 4992 STRUCT_FGET(strpeek, databuf.maxlen) - 4993 uio.uio_resid); 4994 } 4995 freemsg(tmp_mp); 4996 4997 /* 4998 * It is a synch stream and user wants to get 4999 * data (maxlen > 0). 5000 * uio setup is done by the codes that process DATA 5001 * blocks above. 5002 */ 5003 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5004 infod_t infod; 5005 5006 infod.d_cmd = INFOD_COPYOUT; 5007 infod.d_res = 0; 5008 infod.d_uiop = &uio; 5009 error = infonext(rdq, &infod); 5010 if (error == EINVAL || error == EBUSY) 5011 error = 0; 5012 if (error) 5013 return (error); 5014 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5015 databuf.maxlen) - uio.uio_resid); 5016 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5017 /* 5018 * No data found by the infonext(). 5019 */ 5020 STRUCT_FSET(strpeek, databuf.len, -1); 5021 } 5022 } 5023 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5024 STRUCT_SIZE(strpeek), copyflag); 5025 if (error) { 5026 return (error); 5027 } 5028 /* 5029 * If there is no message retrieved, set return code to 0 5030 * otherwise, set it to 1. 5031 */ 5032 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5033 STRUCT_FGET(strpeek, databuf.len) == -1) 5034 *rvalp = 0; 5035 else 5036 *rvalp = 1; 5037 return (0); 5038 } 5039 5040 case I_FDINSERT: 5041 { 5042 STRUCT_DECL(strfdinsert, strfdinsert); 5043 struct file *resftp; 5044 struct stdata *resstp; 5045 t_uscalar_t ival; 5046 ssize_t msgsize; 5047 struct strbuf mctl; 5048 5049 STRUCT_INIT(strfdinsert, flag); 5050 if (stp->sd_flag & STRHUP) 5051 return (ENXIO); 5052 /* 5053 * STRDERR, STWRERR and STPLEX tested above. 5054 */ 5055 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5056 STRUCT_SIZE(strfdinsert), copyflag); 5057 if (error) 5058 return (error); 5059 5060 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5061 (STRUCT_FGET(strfdinsert, offset) % 5062 sizeof (t_uscalar_t)) != 0) 5063 return (EINVAL); 5064 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5065 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5066 releasef(STRUCT_FGET(strfdinsert, fildes)); 5067 return (EINVAL); 5068 } 5069 } else 5070 return (EINVAL); 5071 5072 mutex_enter(&resstp->sd_lock); 5073 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5074 error = strgeterr(resstp, 5075 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5076 if (error != 0) { 5077 mutex_exit(&resstp->sd_lock); 5078 releasef(STRUCT_FGET(strfdinsert, fildes)); 5079 return (error); 5080 } 5081 } 5082 mutex_exit(&resstp->sd_lock); 5083 5084 #ifdef _ILP32 5085 { 5086 queue_t *q; 5087 queue_t *mate = NULL; 5088 5089 /* get read queue of stream terminus */ 5090 claimstr(resstp->sd_wrq); 5091 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5092 q = q->q_next) 5093 if (!STRMATED(resstp) && STREAM(q) != resstp && 5094 mate == NULL) { 5095 ASSERT(q->q_qinfo->qi_srvp); 5096 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5097 claimstr(q); 5098 mate = q; 5099 } 5100 q = _RD(q); 5101 if (mate) 5102 releasestr(mate); 5103 releasestr(resstp->sd_wrq); 5104 ival = (t_uscalar_t)q; 5105 } 5106 #else 5107 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5108 #endif /* _ILP32 */ 5109 5110 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5111 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5112 releasef(STRUCT_FGET(strfdinsert, fildes)); 5113 return (EINVAL); 5114 } 5115 5116 /* 5117 * Check for legal flag value. 5118 */ 5119 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5120 releasef(STRUCT_FGET(strfdinsert, fildes)); 5121 return (EINVAL); 5122 } 5123 5124 /* get these values from those cached in the stream head */ 5125 mutex_enter(QLOCK(stp->sd_wrq)); 5126 rmin = stp->sd_qn_minpsz; 5127 rmax = stp->sd_qn_maxpsz; 5128 mutex_exit(QLOCK(stp->sd_wrq)); 5129 5130 /* 5131 * Make sure ctl and data sizes together fall within 5132 * the limits of the max and min receive packet sizes 5133 * and do not exceed system limit. A negative data 5134 * length means that no data part is to be sent. 5135 */ 5136 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5137 if (rmax == 0) { 5138 releasef(STRUCT_FGET(strfdinsert, fildes)); 5139 return (ERANGE); 5140 } 5141 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5142 msgsize = 0; 5143 if ((msgsize < rmin) || 5144 ((msgsize > rmax) && (rmax != INFPSZ)) || 5145 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5146 releasef(STRUCT_FGET(strfdinsert, fildes)); 5147 return (ERANGE); 5148 } 5149 5150 mutex_enter(&stp->sd_lock); 5151 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5152 !canputnext(stp->sd_wrq)) { 5153 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5154 flag, -1, &done)) != 0 || done) { 5155 mutex_exit(&stp->sd_lock); 5156 releasef(STRUCT_FGET(strfdinsert, fildes)); 5157 return (error); 5158 } 5159 if ((error = i_straccess(stp, access)) != 0) { 5160 mutex_exit(&stp->sd_lock); 5161 releasef( 5162 STRUCT_FGET(strfdinsert, fildes)); 5163 return (error); 5164 } 5165 } 5166 mutex_exit(&stp->sd_lock); 5167 5168 /* 5169 * Copy strfdinsert.ctlbuf into native form of 5170 * ctlbuf to pass down into strmakemsg(). 5171 */ 5172 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5173 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5174 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5175 5176 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5177 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5178 uio.uio_iov = &iov; 5179 uio.uio_iovcnt = 1; 5180 uio.uio_loffset = 0; 5181 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5182 UIO_SYSSPACE; 5183 uio.uio_fmode = 0; 5184 uio.uio_extflg = UIO_COPY_CACHED; 5185 uio.uio_resid = iov.iov_len; 5186 if ((error = strmakemsg(&mctl, 5187 &msgsize, &uio, stp, 5188 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5189 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5190 releasef(STRUCT_FGET(strfdinsert, fildes)); 5191 return (error); 5192 } 5193 5194 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5195 5196 /* 5197 * Place the possibly reencoded queue pointer 'offset' bytes 5198 * from the start of the control portion of the message. 5199 */ 5200 *((t_uscalar_t *)(mp->b_rptr + 5201 STRUCT_FGET(strfdinsert, offset))) = ival; 5202 5203 /* 5204 * Put message downstream. 5205 */ 5206 stream_willservice(stp); 5207 putnext(stp->sd_wrq, mp); 5208 stream_runservice(stp); 5209 releasef(STRUCT_FGET(strfdinsert, fildes)); 5210 return (error); 5211 } 5212 5213 case I_SENDFD: 5214 { 5215 struct file *fp; 5216 5217 if ((fp = getf((int)arg)) == NULL) 5218 return (EBADF); 5219 error = do_sendfp(stp, fp, crp); 5220 #ifdef C2_AUDIT 5221 if (audit_active) { 5222 audit_fdsend((int)arg, fp, error); 5223 } 5224 #endif 5225 releasef((int)arg); 5226 return (error); 5227 } 5228 5229 case I_RECVFD: 5230 case I_E_RECVFD: 5231 { 5232 struct k_strrecvfd *srf; 5233 int i, fd; 5234 5235 mutex_enter(&stp->sd_lock); 5236 while (!(mp = getq(rdq))) { 5237 if (stp->sd_flag & (STRHUP|STREOF)) { 5238 mutex_exit(&stp->sd_lock); 5239 return (ENXIO); 5240 } 5241 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5242 flag, -1, &done)) != 0 || done) { 5243 mutex_exit(&stp->sd_lock); 5244 return (error); 5245 } 5246 if ((error = i_straccess(stp, access)) != 0) { 5247 mutex_exit(&stp->sd_lock); 5248 return (error); 5249 } 5250 } 5251 if (mp->b_datap->db_type != M_PASSFP) { 5252 putback(stp, rdq, mp, mp->b_band); 5253 mutex_exit(&stp->sd_lock); 5254 return (EBADMSG); 5255 } 5256 mutex_exit(&stp->sd_lock); 5257 5258 srf = (struct k_strrecvfd *)mp->b_rptr; 5259 if ((fd = ufalloc(0)) == -1) { 5260 mutex_enter(&stp->sd_lock); 5261 putback(stp, rdq, mp, mp->b_band); 5262 mutex_exit(&stp->sd_lock); 5263 return (EMFILE); 5264 } 5265 if (cmd == I_RECVFD) { 5266 struct o_strrecvfd ostrfd; 5267 5268 /* check to see if uid/gid values are too large. */ 5269 5270 if (srf->uid > (o_uid_t)USHRT_MAX || 5271 srf->gid > (o_gid_t)USHRT_MAX) { 5272 mutex_enter(&stp->sd_lock); 5273 putback(stp, rdq, mp, mp->b_band); 5274 mutex_exit(&stp->sd_lock); 5275 setf(fd, NULL); /* release fd entry */ 5276 return (EOVERFLOW); 5277 } 5278 5279 ostrfd.fd = fd; 5280 ostrfd.uid = (o_uid_t)srf->uid; 5281 ostrfd.gid = (o_gid_t)srf->gid; 5282 5283 /* Null the filler bits */ 5284 for (i = 0; i < 8; i++) 5285 ostrfd.fill[i] = 0; 5286 5287 error = strcopyout(&ostrfd, (void *)arg, 5288 sizeof (struct o_strrecvfd), copyflag); 5289 } else { /* I_E_RECVFD */ 5290 struct strrecvfd strfd; 5291 5292 strfd.fd = fd; 5293 strfd.uid = srf->uid; 5294 strfd.gid = srf->gid; 5295 5296 /* null the filler bits */ 5297 for (i = 0; i < 8; i++) 5298 strfd.fill[i] = 0; 5299 5300 error = strcopyout(&strfd, (void *)arg, 5301 sizeof (struct strrecvfd), copyflag); 5302 } 5303 5304 if (error) { 5305 setf(fd, NULL); /* release fd entry */ 5306 mutex_enter(&stp->sd_lock); 5307 putback(stp, rdq, mp, mp->b_band); 5308 mutex_exit(&stp->sd_lock); 5309 return (error); 5310 } 5311 #ifdef C2_AUDIT 5312 if (audit_active) { 5313 audit_fdrecv(fd, srf->fp); 5314 } 5315 #endif 5316 5317 /* 5318 * Always increment f_count since the freemsg() below will 5319 * always call free_passfp() which performs a closef(). 5320 */ 5321 mutex_enter(&srf->fp->f_tlock); 5322 srf->fp->f_count++; 5323 mutex_exit(&srf->fp->f_tlock); 5324 setf(fd, srf->fp); 5325 freemsg(mp); 5326 return (0); 5327 } 5328 5329 case I_SWROPT: 5330 /* 5331 * Set/clear the write options. arg is a bit 5332 * mask with any of the following bits set... 5333 * SNDZERO - send zero length message 5334 * SNDPIPE - send sigpipe to process if 5335 * sd_werror is set and process is 5336 * doing a write or putmsg. 5337 * The new stream head write options should reflect 5338 * what is in arg. 5339 */ 5340 if (arg & ~(SNDZERO|SNDPIPE)) 5341 return (EINVAL); 5342 5343 mutex_enter(&stp->sd_lock); 5344 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5345 if (arg & SNDZERO) 5346 stp->sd_wput_opt |= SW_SNDZERO; 5347 if (arg & SNDPIPE) 5348 stp->sd_wput_opt |= SW_SIGPIPE; 5349 mutex_exit(&stp->sd_lock); 5350 return (0); 5351 5352 case I_GWROPT: 5353 { 5354 int wropt = 0; 5355 5356 if (stp->sd_wput_opt & SW_SNDZERO) 5357 wropt |= SNDZERO; 5358 if (stp->sd_wput_opt & SW_SIGPIPE) 5359 wropt |= SNDPIPE; 5360 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5361 copyflag)); 5362 } 5363 5364 case I_LIST: 5365 /* 5366 * Returns all the modules found on this stream, 5367 * upto the driver. If argument is NULL, return the 5368 * number of modules (including driver). If argument 5369 * is not NULL, copy the names into the structure 5370 * provided. 5371 */ 5372 5373 { 5374 queue_t *q; 5375 int num_modules, space_allocated; 5376 STRUCT_DECL(str_list, strlist); 5377 struct str_mlist *mlist_ptr; 5378 5379 if (arg == NULL) { /* Return number of modules plus driver */ 5380 q = stp->sd_wrq; 5381 if (stp->sd_vnode->v_type == VFIFO) { 5382 *rvalp = stp->sd_pushcnt; 5383 } else { 5384 *rvalp = stp->sd_pushcnt + 1; 5385 } 5386 } else { 5387 STRUCT_INIT(strlist, flag); 5388 5389 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5390 STRUCT_SIZE(strlist), copyflag); 5391 if (error) 5392 return (error); 5393 5394 space_allocated = STRUCT_FGET(strlist, sl_nmods); 5395 if ((space_allocated) <= 0) 5396 return (EINVAL); 5397 claimstr(stp->sd_wrq); 5398 q = stp->sd_wrq; 5399 num_modules = 0; 5400 while (_SAMESTR(q) && (space_allocated != 0)) { 5401 char *name = 5402 q->q_next->q_qinfo->qi_minfo->mi_idname; 5403 5404 mlist_ptr = STRUCT_FGETP(strlist, sl_modlist); 5405 5406 error = strcopyout(name, mlist_ptr, 5407 strlen(name) + 1, copyflag); 5408 5409 if (error) { 5410 releasestr(stp->sd_wrq); 5411 return (error); 5412 } 5413 q = q->q_next; 5414 space_allocated--; 5415 num_modules++; 5416 mlist_ptr = 5417 (struct str_mlist *)((uintptr_t)mlist_ptr + 5418 sizeof (struct str_mlist)); 5419 STRUCT_FSETP(strlist, sl_modlist, mlist_ptr); 5420 } 5421 releasestr(stp->sd_wrq); 5422 error = strcopyout(&num_modules, (void *)arg, 5423 sizeof (int), copyflag); 5424 } 5425 return (error); 5426 } 5427 5428 case I_CKBAND: 5429 { 5430 queue_t *q; 5431 qband_t *qbp; 5432 5433 if ((arg < 0) || (arg >= NBAND)) 5434 return (EINVAL); 5435 q = _RD(stp->sd_wrq); 5436 mutex_enter(QLOCK(q)); 5437 if (arg > (int)q->q_nband) { 5438 *rvalp = 0; 5439 } else { 5440 if (arg == 0) { 5441 if (q->q_first) 5442 *rvalp = 1; 5443 else 5444 *rvalp = 0; 5445 } else { 5446 qbp = q->q_bandp; 5447 while (--arg > 0) 5448 qbp = qbp->qb_next; 5449 if (qbp->qb_first) 5450 *rvalp = 1; 5451 else 5452 *rvalp = 0; 5453 } 5454 } 5455 mutex_exit(QLOCK(q)); 5456 return (0); 5457 } 5458 5459 case I_GETBAND: 5460 { 5461 int intpri; 5462 queue_t *q; 5463 5464 q = _RD(stp->sd_wrq); 5465 mutex_enter(QLOCK(q)); 5466 mp = q->q_first; 5467 if (!mp) { 5468 mutex_exit(QLOCK(q)); 5469 return (ENODATA); 5470 } 5471 intpri = (int)mp->b_band; 5472 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5473 copyflag); 5474 mutex_exit(QLOCK(q)); 5475 return (error); 5476 } 5477 5478 case I_ATMARK: 5479 { 5480 queue_t *q; 5481 5482 if (arg & ~(ANYMARK|LASTMARK)) 5483 return (EINVAL); 5484 q = _RD(stp->sd_wrq); 5485 mutex_enter(&stp->sd_lock); 5486 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5487 *rvalp = 1; 5488 } else { 5489 mutex_enter(QLOCK(q)); 5490 mp = q->q_first; 5491 5492 if (mp == NULL) 5493 *rvalp = 0; 5494 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5495 *rvalp = 1; 5496 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5497 *rvalp = 1; 5498 else 5499 *rvalp = 0; 5500 mutex_exit(QLOCK(q)); 5501 } 5502 mutex_exit(&stp->sd_lock); 5503 return (0); 5504 } 5505 5506 case I_CANPUT: 5507 { 5508 char band; 5509 5510 if ((arg < 0) || (arg >= NBAND)) 5511 return (EINVAL); 5512 band = (char)arg; 5513 *rvalp = bcanputnext(stp->sd_wrq, band); 5514 return (0); 5515 } 5516 5517 case I_SETCLTIME: 5518 { 5519 int closetime; 5520 5521 error = strcopyin((void *)arg, &closetime, sizeof (int), 5522 copyflag); 5523 if (error) 5524 return (error); 5525 if (closetime < 0) 5526 return (EINVAL); 5527 5528 stp->sd_closetime = closetime; 5529 return (0); 5530 } 5531 5532 case I_GETCLTIME: 5533 { 5534 int closetime; 5535 5536 closetime = stp->sd_closetime; 5537 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5538 copyflag)); 5539 } 5540 5541 case TIOCGSID: 5542 { 5543 pid_t sid; 5544 5545 mutex_enter(&stp->sd_lock); 5546 if (stp->sd_sidp == NULL) { 5547 mutex_exit(&stp->sd_lock); 5548 return (ENOTTY); 5549 } 5550 sid = stp->sd_sidp->pid_id; 5551 mutex_exit(&stp->sd_lock); 5552 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5553 copyflag)); 5554 } 5555 5556 case TIOCSPGRP: 5557 { 5558 pid_t pgrp; 5559 proc_t *q; 5560 pid_t sid, fg_pgid, bg_pgid; 5561 5562 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5563 copyflag)) 5564 return (error); 5565 mutex_enter(&stp->sd_lock); 5566 mutex_enter(&pidlock); 5567 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5568 mutex_exit(&pidlock); 5569 mutex_exit(&stp->sd_lock); 5570 return (ENOTTY); 5571 } 5572 if (pgrp == stp->sd_pgidp->pid_id) { 5573 mutex_exit(&pidlock); 5574 mutex_exit(&stp->sd_lock); 5575 return (0); 5576 } 5577 if (pgrp <= 0 || pgrp >= maxpid) { 5578 mutex_exit(&pidlock); 5579 mutex_exit(&stp->sd_lock); 5580 return (EINVAL); 5581 } 5582 if ((q = pgfind(pgrp)) == NULL || 5583 q->p_sessp != ttoproc(curthread)->p_sessp) { 5584 mutex_exit(&pidlock); 5585 mutex_exit(&stp->sd_lock); 5586 return (EPERM); 5587 } 5588 sid = stp->sd_sidp->pid_id; 5589 fg_pgid = q->p_pgrp; 5590 bg_pgid = stp->sd_pgidp->pid_id; 5591 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5592 PID_RELE(stp->sd_pgidp); 5593 ctty_clear_sighuped(); 5594 stp->sd_pgidp = q->p_pgidp; 5595 PID_HOLD(stp->sd_pgidp); 5596 mutex_exit(&pidlock); 5597 mutex_exit(&stp->sd_lock); 5598 return (0); 5599 } 5600 5601 case TIOCGPGRP: 5602 { 5603 pid_t pgrp; 5604 5605 mutex_enter(&stp->sd_lock); 5606 if (stp->sd_sidp == NULL) { 5607 mutex_exit(&stp->sd_lock); 5608 return (ENOTTY); 5609 } 5610 pgrp = stp->sd_pgidp->pid_id; 5611 mutex_exit(&stp->sd_lock); 5612 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5613 copyflag)); 5614 } 5615 5616 case TIOCSCTTY: 5617 { 5618 return (strctty(stp)); 5619 } 5620 5621 case TIOCNOTTY: 5622 { 5623 /* freectty() always assumes curproc. */ 5624 if (freectty(B_FALSE) != 0) 5625 return (0); 5626 return (ENOTTY); 5627 } 5628 5629 case FIONBIO: 5630 case FIOASYNC: 5631 return (0); /* handled by the upper layer */ 5632 } 5633 } 5634 5635 /* 5636 * Custom free routine used for M_PASSFP messages. 5637 */ 5638 static void 5639 free_passfp(struct k_strrecvfd *srf) 5640 { 5641 (void) closef(srf->fp); 5642 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5643 } 5644 5645 /* ARGSUSED */ 5646 int 5647 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5648 { 5649 queue_t *qp, *nextqp; 5650 struct k_strrecvfd *srf; 5651 mblk_t *mp; 5652 frtn_t *frtnp; 5653 size_t bufsize; 5654 queue_t *mate = NULL; 5655 syncq_t *sq = NULL; 5656 int retval = 0; 5657 5658 if (stp->sd_flag & STRHUP) 5659 return (ENXIO); 5660 5661 claimstr(stp->sd_wrq); 5662 5663 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5664 if (STRMATED(stp)) { 5665 qp = _RD(stp->sd_mate->sd_wrq); 5666 claimstr(qp); 5667 mate = qp; 5668 } else { /* Not already mated. */ 5669 5670 /* 5671 * Walk the stream to the end of this one. 5672 * assumes that the claimstr() will prevent 5673 * plumbing between the stream head and the 5674 * driver from changing 5675 */ 5676 qp = stp->sd_wrq; 5677 5678 /* 5679 * Loop until we reach the end of this stream. 5680 * On completion, qp points to the write queue 5681 * at the end of the stream, or the read queue 5682 * at the stream head if this is a fifo. 5683 */ 5684 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5685 ; 5686 5687 /* 5688 * Just in case we get a q_next which is NULL, but 5689 * not at the end of the stream. This is actually 5690 * broken, so we set an assert to catch it in 5691 * debug, and set an error and return if not debug. 5692 */ 5693 ASSERT(qp); 5694 if (qp == NULL) { 5695 releasestr(stp->sd_wrq); 5696 return (EINVAL); 5697 } 5698 5699 /* 5700 * Enter the syncq for the driver, so (hopefully) 5701 * the queue values will not change on us. 5702 * XXXX - This will only prevent the race IFF only 5703 * the write side modifies the q_next member, and 5704 * the put procedure is protected by at least 5705 * MT_PERQ. 5706 */ 5707 if ((sq = qp->q_syncq) != NULL) 5708 entersq(sq, SQ_PUT); 5709 5710 /* Now get the q_next value from this qp. */ 5711 nextqp = qp->q_next; 5712 5713 /* 5714 * If nextqp exists and the other stream is different 5715 * from this one claim the stream, set the mate, and 5716 * get the read queue at the stream head of the other 5717 * stream. Assumes that nextqp was at least valid when 5718 * we got it. Hopefully the entersq of the driver 5719 * will prevent it from changing on us. 5720 */ 5721 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5722 ASSERT(qp->q_qinfo->qi_srvp); 5723 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5724 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5725 claimstr(nextqp); 5726 5727 /* Make sure we still have a q_next */ 5728 if (nextqp != qp->q_next) { 5729 releasestr(stp->sd_wrq); 5730 releasestr(nextqp); 5731 return (EINVAL); 5732 } 5733 5734 qp = _RD(STREAM(nextqp)->sd_wrq); 5735 mate = qp; 5736 } 5737 /* If we entered the synq above, leave it. */ 5738 if (sq != NULL) 5739 leavesq(sq, SQ_PUT); 5740 } /* STRMATED(STP) */ 5741 5742 /* XXX prevents substitution of the ops vector */ 5743 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5744 retval = EINVAL; 5745 goto out; 5746 } 5747 5748 if (qp->q_flag & QFULL) { 5749 retval = EAGAIN; 5750 goto out; 5751 } 5752 5753 /* 5754 * Since M_PASSFP messages include a file descriptor, we use 5755 * esballoc() and specify a custom free routine (free_passfp()) that 5756 * will close the descriptor as part of freeing the message. For 5757 * convenience, we stash the frtn_t right after the data block. 5758 */ 5759 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5760 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5761 if (srf == NULL) { 5762 retval = EAGAIN; 5763 goto out; 5764 } 5765 5766 frtnp = (frtn_t *)(srf + 1); 5767 frtnp->free_arg = (caddr_t)srf; 5768 frtnp->free_func = free_passfp; 5769 5770 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5771 if (mp == NULL) { 5772 kmem_free(srf, bufsize); 5773 retval = EAGAIN; 5774 goto out; 5775 } 5776 mp->b_wptr += sizeof (struct k_strrecvfd); 5777 mp->b_datap->db_type = M_PASSFP; 5778 5779 srf->fp = fp; 5780 srf->uid = crgetuid(curthread->t_cred); 5781 srf->gid = crgetgid(curthread->t_cred); 5782 mutex_enter(&fp->f_tlock); 5783 fp->f_count++; 5784 mutex_exit(&fp->f_tlock); 5785 5786 put(qp, mp); 5787 out: 5788 releasestr(stp->sd_wrq); 5789 if (mate) 5790 releasestr(mate); 5791 return (retval); 5792 } 5793 5794 /* 5795 * Send an ioctl message downstream and wait for acknowledgement. 5796 * flags may be set to either U_TO_K or K_TO_K and a combination 5797 * of STR_NOERROR or STR_NOSIG 5798 * STR_NOSIG: Signals are essentially ignored or held and have 5799 * no effect for the duration of the call. 5800 * STR_NOERROR: Ignores stream head read, write and hup errors. 5801 * Additionally, if an existing ioctl times out, it is assumed 5802 * lost and and this ioctl will continue as if the previous ioctl had 5803 * finished. ETIME may be returned if this ioctl times out (i.e. 5804 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5805 * the ioc_error indicates that the driver/module had problems, 5806 * an EFAULT was found when accessing user data, a lack of 5807 * resources, etc. 5808 */ 5809 int 5810 strdoioctl( 5811 struct stdata *stp, 5812 struct strioctl *strioc, 5813 int fflags, /* file flags with model info */ 5814 int flag, 5815 cred_t *crp, 5816 int *rvalp) 5817 { 5818 mblk_t *bp; 5819 struct iocblk *iocbp; 5820 struct copyreq *reqp; 5821 struct copyresp *resp; 5822 int id; 5823 int transparent = 0; 5824 int error = 0; 5825 int len = 0; 5826 caddr_t taddr; 5827 int copyflag = (flag & (U_TO_K | K_TO_K)); 5828 int sigflag = (flag & STR_NOSIG); 5829 int errs; 5830 uint_t waitflags; 5831 5832 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5833 ASSERT((fflags & FMODELS) != 0); 5834 5835 TRACE_2(TR_FAC_STREAMS_FR, 5836 TR_STRDOIOCTL, 5837 "strdoioctl:stp %p strioc %p", stp, strioc); 5838 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5839 transparent = 1; 5840 strioc->ic_len = sizeof (intptr_t); 5841 } 5842 5843 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5844 return (EINVAL); 5845 5846 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5847 crp)) == NULL) 5848 return (error); 5849 5850 bzero(bp->b_wptr, sizeof (union ioctypes)); 5851 5852 iocbp = (struct iocblk *)bp->b_wptr; 5853 iocbp->ioc_count = strioc->ic_len; 5854 iocbp->ioc_cmd = strioc->ic_cmd; 5855 iocbp->ioc_flag = (fflags & FMODELS); 5856 5857 crhold(crp); 5858 iocbp->ioc_cr = crp; 5859 DB_TYPE(bp) = M_IOCTL; 5860 DB_CPID(bp) = curproc->p_pid; 5861 bp->b_wptr += sizeof (struct iocblk); 5862 5863 if (flag & STR_NOERROR) 5864 errs = STPLEX; 5865 else 5866 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5867 5868 /* 5869 * If there is data to copy into ioctl block, do so. 5870 */ 5871 if (iocbp->ioc_count > 0) { 5872 if (transparent) 5873 /* 5874 * Note: STR_NOERROR does not have an effect 5875 * in putiocd() 5876 */ 5877 id = K_TO_K | sigflag; 5878 else 5879 id = flag; 5880 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5881 freemsg(bp); 5882 crfree(crp); 5883 return (error); 5884 } 5885 5886 /* 5887 * We could have slept copying in user pages. 5888 * Recheck the stream head state (the other end 5889 * of a pipe could have gone away). 5890 */ 5891 if (stp->sd_flag & errs) { 5892 mutex_enter(&stp->sd_lock); 5893 error = strgeterr(stp, errs, 0); 5894 mutex_exit(&stp->sd_lock); 5895 if (error != 0) { 5896 freemsg(bp); 5897 crfree(crp); 5898 return (error); 5899 } 5900 } 5901 } 5902 if (transparent) 5903 iocbp->ioc_count = TRANSPARENT; 5904 5905 /* 5906 * Block for up to STRTIMOUT milliseconds if there is an outstanding 5907 * ioctl for this stream already running. All processes 5908 * sleeping here will be awakened as a result of an ACK 5909 * or NAK being received for the outstanding ioctl, or 5910 * as a result of the timer expiring on the outstanding 5911 * ioctl (a failure), or as a result of any waiting 5912 * process's timer expiring (also a failure). 5913 */ 5914 5915 error = 0; 5916 mutex_enter(&stp->sd_lock); 5917 while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) { 5918 clock_t cv_rval; 5919 5920 TRACE_0(TR_FAC_STREAMS_FR, 5921 TR_STRDOIOCTL_WAIT, 5922 "strdoioctl sleeps - IOCWAIT"); 5923 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 5924 STRTIMOUT, sigflag); 5925 if (cv_rval <= 0) { 5926 if (cv_rval == 0) { 5927 error = EINTR; 5928 } else { 5929 if (flag & STR_NOERROR) { 5930 /* 5931 * Terminating current ioctl in 5932 * progress -- assume it got lost and 5933 * wake up the other thread so that the 5934 * operation completes. 5935 */ 5936 if (!(stp->sd_flag & IOCWAITNE)) { 5937 stp->sd_flag |= IOCWAITNE; 5938 cv_broadcast(&stp->sd_monitor); 5939 } 5940 /* 5941 * Otherwise, there's a running 5942 * STR_NOERROR -- we have no choice 5943 * here but to wait forever (or until 5944 * interrupted). 5945 */ 5946 } else { 5947 /* 5948 * pending ioctl has caused 5949 * us to time out 5950 */ 5951 error = ETIME; 5952 } 5953 } 5954 } else if ((stp->sd_flag & errs)) { 5955 error = strgeterr(stp, errs, 0); 5956 } 5957 if (error) { 5958 mutex_exit(&stp->sd_lock); 5959 freemsg(bp); 5960 crfree(crp); 5961 return (error); 5962 } 5963 } 5964 5965 /* 5966 * Have control of ioctl mechanism. 5967 * Send down ioctl packet and wait for response. 5968 */ 5969 if (stp->sd_iocblk != (mblk_t *)-1) { 5970 freemsg(stp->sd_iocblk); 5971 } 5972 stp->sd_iocblk = NULL; 5973 5974 /* 5975 * If this is marked with 'noerror' (internal; mostly 5976 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 5977 * in here by setting IOCWAITNE. 5978 */ 5979 waitflags = IOCWAIT; 5980 if (flag & STR_NOERROR) 5981 waitflags |= IOCWAITNE; 5982 5983 stp->sd_flag |= waitflags; 5984 5985 /* 5986 * Assign sequence number. 5987 */ 5988 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 5989 5990 mutex_exit(&stp->sd_lock); 5991 5992 TRACE_1(TR_FAC_STREAMS_FR, 5993 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 5994 stream_willservice(stp); 5995 putnext(stp->sd_wrq, bp); 5996 stream_runservice(stp); 5997 5998 /* 5999 * Timed wait for acknowledgment. The wait time is limited by the 6000 * timeout value, which must be a positive integer (number of 6001 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6002 * milliseconds), or -1 (wait forever). This will be awakened 6003 * either by an ACK/NAK message arriving, the timer expiring, or 6004 * the timer expiring on another ioctl waiting for control of the 6005 * mechanism. 6006 */ 6007 waitioc: 6008 mutex_enter(&stp->sd_lock); 6009 6010 6011 /* 6012 * If the reply has already arrived, don't sleep. If awakened from 6013 * the sleep, fail only if the reply has not arrived by then. 6014 * Otherwise, process the reply. 6015 */ 6016 while (!stp->sd_iocblk) { 6017 clock_t cv_rval; 6018 6019 if (stp->sd_flag & errs) { 6020 error = strgeterr(stp, errs, 0); 6021 if (error != 0) { 6022 stp->sd_flag &= ~waitflags; 6023 cv_broadcast(&stp->sd_iocmonitor); 6024 mutex_exit(&stp->sd_lock); 6025 crfree(crp); 6026 return (error); 6027 } 6028 } 6029 6030 TRACE_0(TR_FAC_STREAMS_FR, 6031 TR_STRDOIOCTL_WAIT2, 6032 "strdoioctl sleeps awaiting reply"); 6033 ASSERT(error == 0); 6034 6035 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6036 (strioc->ic_timout ? 6037 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6038 6039 /* 6040 * There are four possible cases here: interrupt, timeout, 6041 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6042 * valid M_IOCTL reply). 6043 * 6044 * If we've been awakened by a STR_NOERROR ioctl on some other 6045 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6046 * will be set. Pretend as if we just timed out. Note that 6047 * this other thread waited at least STRTIMOUT before trying to 6048 * awaken our thread, so this is indistinguishable (even for 6049 * INFTIM) from the case where we failed with ETIME waiting on 6050 * IOCWAIT in the prior loop. 6051 */ 6052 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6053 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6054 cv_rval = -1; 6055 } 6056 6057 /* 6058 * note: STR_NOERROR does not protect 6059 * us here.. use ic_timout < 0 6060 */ 6061 if (cv_rval <= 0) { 6062 if (cv_rval == 0) { 6063 error = EINTR; 6064 } else { 6065 error = ETIME; 6066 } 6067 /* 6068 * A message could have come in after we were scheduled 6069 * but before we were actually run. 6070 */ 6071 bp = stp->sd_iocblk; 6072 stp->sd_iocblk = NULL; 6073 if (bp != NULL) { 6074 if ((bp->b_datap->db_type == M_COPYIN) || 6075 (bp->b_datap->db_type == M_COPYOUT)) { 6076 mutex_exit(&stp->sd_lock); 6077 if (bp->b_cont) { 6078 freemsg(bp->b_cont); 6079 bp->b_cont = NULL; 6080 } 6081 bp->b_datap->db_type = M_IOCDATA; 6082 bp->b_wptr = bp->b_rptr + 6083 sizeof (struct copyresp); 6084 resp = (struct copyresp *)bp->b_rptr; 6085 resp->cp_rval = 6086 (caddr_t)1; /* failure */ 6087 stream_willservice(stp); 6088 putnext(stp->sd_wrq, bp); 6089 stream_runservice(stp); 6090 mutex_enter(&stp->sd_lock); 6091 } else { 6092 freemsg(bp); 6093 } 6094 } 6095 stp->sd_flag &= ~waitflags; 6096 cv_broadcast(&stp->sd_iocmonitor); 6097 mutex_exit(&stp->sd_lock); 6098 crfree(crp); 6099 return (error); 6100 } 6101 } 6102 bp = stp->sd_iocblk; 6103 /* 6104 * Note: it is strictly impossible to get here with sd_iocblk set to 6105 * -1. This is because the initial loop above doesn't allow any new 6106 * ioctls into the fray until all others have passed this point. 6107 */ 6108 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6109 TRACE_1(TR_FAC_STREAMS_FR, 6110 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6111 if ((bp->b_datap->db_type == M_IOCACK) || 6112 (bp->b_datap->db_type == M_IOCNAK)) { 6113 /* for detection of duplicate ioctl replies */ 6114 stp->sd_iocblk = (mblk_t *)-1; 6115 stp->sd_flag &= ~waitflags; 6116 cv_broadcast(&stp->sd_iocmonitor); 6117 mutex_exit(&stp->sd_lock); 6118 } else { 6119 /* 6120 * flags not cleared here because we're still doing 6121 * copy in/out for ioctl. 6122 */ 6123 stp->sd_iocblk = NULL; 6124 mutex_exit(&stp->sd_lock); 6125 } 6126 6127 6128 /* 6129 * Have received acknowledgment. 6130 */ 6131 6132 switch (bp->b_datap->db_type) { 6133 case M_IOCACK: 6134 /* 6135 * Positive ack. 6136 */ 6137 iocbp = (struct iocblk *)bp->b_rptr; 6138 6139 /* 6140 * Set error if indicated. 6141 */ 6142 if (iocbp->ioc_error) { 6143 error = iocbp->ioc_error; 6144 break; 6145 } 6146 6147 /* 6148 * Set return value. 6149 */ 6150 *rvalp = iocbp->ioc_rval; 6151 6152 /* 6153 * Data may have been returned in ACK message (ioc_count > 0). 6154 * If so, copy it out to the user's buffer. 6155 */ 6156 if (iocbp->ioc_count && !transparent) { 6157 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6158 break; 6159 } 6160 if (!transparent) { 6161 if (len) /* an M_COPYOUT was used with I_STR */ 6162 strioc->ic_len = len; 6163 else 6164 strioc->ic_len = (int)iocbp->ioc_count; 6165 } 6166 break; 6167 6168 case M_IOCNAK: 6169 /* 6170 * Negative ack. 6171 * 6172 * The only thing to do is set error as specified 6173 * in neg ack packet. 6174 */ 6175 iocbp = (struct iocblk *)bp->b_rptr; 6176 6177 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6178 break; 6179 6180 case M_COPYIN: 6181 /* 6182 * Driver or module has requested user ioctl data. 6183 */ 6184 reqp = (struct copyreq *)bp->b_rptr; 6185 6186 /* 6187 * M_COPYIN should *never* have a message attached, though 6188 * it's harmless if it does -- thus, panic on a DEBUG 6189 * kernel and just free it on a non-DEBUG build. 6190 */ 6191 ASSERT(bp->b_cont == NULL); 6192 if (bp->b_cont != NULL) { 6193 freemsg(bp->b_cont); 6194 bp->b_cont = NULL; 6195 } 6196 6197 error = putiocd(bp, reqp->cq_addr, flag, crp); 6198 if (error && bp->b_cont) { 6199 freemsg(bp->b_cont); 6200 bp->b_cont = NULL; 6201 } 6202 6203 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6204 bp->b_datap->db_type = M_IOCDATA; 6205 6206 mblk_setcred(bp, crp); 6207 DB_CPID(bp) = curproc->p_pid; 6208 resp = (struct copyresp *)bp->b_rptr; 6209 resp->cp_rval = (caddr_t)(uintptr_t)error; 6210 resp->cp_flag = (fflags & FMODELS); 6211 6212 stream_willservice(stp); 6213 putnext(stp->sd_wrq, bp); 6214 stream_runservice(stp); 6215 6216 if (error) { 6217 mutex_enter(&stp->sd_lock); 6218 stp->sd_flag &= ~waitflags; 6219 cv_broadcast(&stp->sd_iocmonitor); 6220 mutex_exit(&stp->sd_lock); 6221 crfree(crp); 6222 return (error); 6223 } 6224 6225 goto waitioc; 6226 6227 case M_COPYOUT: 6228 /* 6229 * Driver or module has ioctl data for a user. 6230 */ 6231 reqp = (struct copyreq *)bp->b_rptr; 6232 ASSERT(bp->b_cont != NULL); 6233 6234 /* 6235 * Always (transparent or non-transparent ) 6236 * use the address specified in the request 6237 */ 6238 taddr = reqp->cq_addr; 6239 if (!transparent) 6240 len = (int)reqp->cq_size; 6241 6242 /* copyout data to the provided address */ 6243 error = getiocd(bp, taddr, copyflag); 6244 6245 freemsg(bp->b_cont); 6246 bp->b_cont = NULL; 6247 6248 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6249 bp->b_datap->db_type = M_IOCDATA; 6250 6251 mblk_setcred(bp, crp); 6252 DB_CPID(bp) = curproc->p_pid; 6253 resp = (struct copyresp *)bp->b_rptr; 6254 resp->cp_rval = (caddr_t)(uintptr_t)error; 6255 resp->cp_flag = (fflags & FMODELS); 6256 6257 stream_willservice(stp); 6258 putnext(stp->sd_wrq, bp); 6259 stream_runservice(stp); 6260 6261 if (error) { 6262 mutex_enter(&stp->sd_lock); 6263 stp->sd_flag &= ~waitflags; 6264 cv_broadcast(&stp->sd_iocmonitor); 6265 mutex_exit(&stp->sd_lock); 6266 crfree(crp); 6267 return (error); 6268 } 6269 goto waitioc; 6270 6271 default: 6272 ASSERT(0); 6273 mutex_enter(&stp->sd_lock); 6274 stp->sd_flag &= ~waitflags; 6275 cv_broadcast(&stp->sd_iocmonitor); 6276 mutex_exit(&stp->sd_lock); 6277 break; 6278 } 6279 6280 freemsg(bp); 6281 crfree(crp); 6282 return (error); 6283 } 6284 6285 /* 6286 * For the SunOS keyboard driver. 6287 * Return the next available "ioctl" sequence number. 6288 * Exported, so that streams modules can send "ioctl" messages 6289 * downstream from their open routine. 6290 */ 6291 int 6292 getiocseqno(void) 6293 { 6294 int i; 6295 6296 mutex_enter(&strresources); 6297 i = ++ioc_id; 6298 mutex_exit(&strresources); 6299 return (i); 6300 } 6301 6302 /* 6303 * Get the next message from the read queue. If the message is 6304 * priority, STRPRI will have been set by strrput(). This flag 6305 * should be reset only when the entire message at the front of the 6306 * queue as been consumed. 6307 * 6308 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6309 */ 6310 int 6311 strgetmsg( 6312 struct vnode *vp, 6313 struct strbuf *mctl, 6314 struct strbuf *mdata, 6315 unsigned char *prip, 6316 int *flagsp, 6317 int fmode, 6318 rval_t *rvp) 6319 { 6320 struct stdata *stp; 6321 mblk_t *bp, *nbp; 6322 mblk_t *savemp = NULL; 6323 mblk_t *savemptail = NULL; 6324 uint_t old_sd_flag; 6325 int flg; 6326 int more = 0; 6327 int error = 0; 6328 char first = 1; 6329 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6330 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6331 unsigned char pri = 0; 6332 queue_t *q; 6333 int pr = 0; /* Partial read successful */ 6334 struct uio uios; 6335 struct uio *uiop = &uios; 6336 struct iovec iovs; 6337 unsigned char type; 6338 6339 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6340 "strgetmsg:%p", vp); 6341 6342 ASSERT(vp->v_stream); 6343 stp = vp->v_stream; 6344 rvp->r_val1 = 0; 6345 6346 mutex_enter(&stp->sd_lock); 6347 6348 if ((error = i_straccess(stp, JCREAD)) != 0) { 6349 mutex_exit(&stp->sd_lock); 6350 return (error); 6351 } 6352 6353 if (stp->sd_flag & (STRDERR|STPLEX)) { 6354 error = strgeterr(stp, STRDERR|STPLEX, 0); 6355 if (error != 0) { 6356 mutex_exit(&stp->sd_lock); 6357 return (error); 6358 } 6359 } 6360 mutex_exit(&stp->sd_lock); 6361 6362 switch (*flagsp) { 6363 case MSG_HIPRI: 6364 if (*prip != 0) 6365 return (EINVAL); 6366 break; 6367 6368 case MSG_ANY: 6369 case MSG_BAND: 6370 break; 6371 6372 default: 6373 return (EINVAL); 6374 } 6375 /* 6376 * Setup uio and iov for data part 6377 */ 6378 iovs.iov_base = mdata->buf; 6379 iovs.iov_len = mdata->maxlen; 6380 uios.uio_iov = &iovs; 6381 uios.uio_iovcnt = 1; 6382 uios.uio_loffset = 0; 6383 uios.uio_segflg = UIO_USERSPACE; 6384 uios.uio_fmode = 0; 6385 uios.uio_extflg = UIO_COPY_CACHED; 6386 uios.uio_resid = mdata->maxlen; 6387 uios.uio_offset = 0; 6388 6389 q = _RD(stp->sd_wrq); 6390 mutex_enter(&stp->sd_lock); 6391 old_sd_flag = stp->sd_flag; 6392 mark = 0; 6393 for (;;) { 6394 int done = 0; 6395 mblk_t *q_first = q->q_first; 6396 6397 /* 6398 * Get the next message of appropriate priority 6399 * from the stream head. If the caller is interested 6400 * in band or hipri messages, then they should already 6401 * be enqueued at the stream head. On the other hand 6402 * if the caller wants normal (band 0) messages, they 6403 * might be deferred in a synchronous stream and they 6404 * will need to be pulled up. 6405 * 6406 * After we have dequeued a message, we might find that 6407 * it was a deferred M_SIG that was enqueued at the 6408 * stream head. It must now be posted as part of the 6409 * read by calling strsignal_nolock(). 6410 * 6411 * Also note that strrput does not enqueue an M_PCSIG, 6412 * and there cannot be more than one hipri message, 6413 * so there was no need to have the M_PCSIG case. 6414 * 6415 * At some time it might be nice to try and wrap the 6416 * functionality of kstrgetmsg() and strgetmsg() into 6417 * a common routine so to reduce the amount of replicated 6418 * code (since they are extremely similar). 6419 */ 6420 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6421 /* Asking for normal, band0 data */ 6422 bp = strget(stp, q, uiop, first, &error); 6423 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6424 if (bp != NULL) { 6425 if (bp->b_datap->db_type == M_SIG) { 6426 strsignal_nolock(stp, *bp->b_rptr, 6427 (int32_t)bp->b_band); 6428 continue; 6429 } else { 6430 break; 6431 } 6432 } 6433 if (error != 0) { 6434 goto getmout; 6435 } 6436 6437 /* 6438 * We can't depend on the value of STRPRI here because 6439 * the stream head may be in transit. Therefore, we 6440 * must look at the type of the first message to 6441 * determine if a high priority messages is waiting 6442 */ 6443 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6444 q_first->b_datap->db_type >= QPCTL && 6445 (bp = getq_noenab(q)) != NULL) { 6446 /* Asked for HIPRI and got one */ 6447 ASSERT(bp->b_datap->db_type >= QPCTL); 6448 break; 6449 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6450 ((q_first->b_band >= *prip) || 6451 q_first->b_datap->db_type >= QPCTL) && 6452 (bp = getq_noenab(q)) != NULL) { 6453 /* 6454 * Asked for at least band "prip" and got either at 6455 * least that band or a hipri message. 6456 */ 6457 ASSERT(bp->b_band >= *prip || 6458 bp->b_datap->db_type >= QPCTL); 6459 if (bp->b_datap->db_type == M_SIG) { 6460 strsignal_nolock(stp, *bp->b_rptr, 6461 (int32_t)bp->b_band); 6462 continue; 6463 } else { 6464 break; 6465 } 6466 } 6467 6468 /* No data. Time to sleep? */ 6469 qbackenable(q, 0); 6470 6471 /* 6472 * If STRHUP or STREOF, return 0 length control and data. 6473 * If resid is 0, then a read(fd,buf,0) was done. Do not 6474 * sleep to satisfy this request because by default we have 6475 * zero bytes to return. 6476 */ 6477 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6478 mdata->maxlen == 0)) { 6479 mctl->len = mdata->len = 0; 6480 *flagsp = 0; 6481 mutex_exit(&stp->sd_lock); 6482 return (0); 6483 } 6484 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6485 "strgetmsg calls strwaitq:%p, %p", 6486 vp, uiop); 6487 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6488 &done)) != 0) || done) { 6489 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6490 "strgetmsg error or done:%p, %p", 6491 vp, uiop); 6492 mutex_exit(&stp->sd_lock); 6493 return (error); 6494 } 6495 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6496 "strgetmsg awakes:%p, %p", vp, uiop); 6497 if ((error = i_straccess(stp, JCREAD)) != 0) { 6498 mutex_exit(&stp->sd_lock); 6499 return (error); 6500 } 6501 first = 0; 6502 } 6503 ASSERT(bp != NULL); 6504 /* 6505 * Extract any mark information. If the message is not completely 6506 * consumed this information will be put in the mblk 6507 * that is putback. 6508 * If MSGMARKNEXT is set and the message is completely consumed 6509 * the STRATMARK flag will be set below. Likewise, if 6510 * MSGNOTMARKNEXT is set and the message is 6511 * completely consumed STRNOTATMARK will be set. 6512 */ 6513 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6514 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6515 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6516 if (mark != 0 && bp == stp->sd_mark) { 6517 mark |= _LASTMARK; 6518 stp->sd_mark = NULL; 6519 } 6520 /* 6521 * keep track of the original message type and priority 6522 */ 6523 pri = bp->b_band; 6524 type = bp->b_datap->db_type; 6525 if (type == M_PASSFP) { 6526 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6527 stp->sd_mark = bp; 6528 bp->b_flag |= mark & ~_LASTMARK; 6529 putback(stp, q, bp, pri); 6530 qbackenable(q, pri); 6531 mutex_exit(&stp->sd_lock); 6532 return (EBADMSG); 6533 } 6534 ASSERT(type != M_SIG); 6535 6536 /* 6537 * Set this flag so strrput will not generate signals. Need to 6538 * make sure this flag is cleared before leaving this routine 6539 * else signals will stop being sent. 6540 */ 6541 stp->sd_flag |= STRGETINPROG; 6542 mutex_exit(&stp->sd_lock); 6543 6544 if (STREAM_NEEDSERVICE(stp)) 6545 stream_runservice(stp); 6546 6547 /* 6548 * Set HIPRI flag if message is priority. 6549 */ 6550 if (type >= QPCTL) 6551 flg = MSG_HIPRI; 6552 else 6553 flg = MSG_BAND; 6554 6555 /* 6556 * First process PROTO or PCPROTO blocks, if any. 6557 */ 6558 if (mctl->maxlen >= 0 && type != M_DATA) { 6559 size_t n, bcnt; 6560 char *ubuf; 6561 6562 bcnt = mctl->maxlen; 6563 ubuf = mctl->buf; 6564 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6565 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6566 copyout(bp->b_rptr, ubuf, n)) { 6567 error = EFAULT; 6568 mutex_enter(&stp->sd_lock); 6569 /* 6570 * clear stream head pri flag based on 6571 * first message type 6572 */ 6573 if (type >= QPCTL) { 6574 ASSERT(type == M_PCPROTO); 6575 stp->sd_flag &= ~STRPRI; 6576 } 6577 more = 0; 6578 freemsg(bp); 6579 goto getmout; 6580 } 6581 ubuf += n; 6582 bp->b_rptr += n; 6583 if (bp->b_rptr >= bp->b_wptr) { 6584 nbp = bp; 6585 bp = bp->b_cont; 6586 freeb(nbp); 6587 } 6588 ASSERT(n <= bcnt); 6589 bcnt -= n; 6590 if (bcnt == 0) 6591 break; 6592 } 6593 mctl->len = mctl->maxlen - bcnt; 6594 } else 6595 mctl->len = -1; 6596 6597 if (bp && bp->b_datap->db_type != M_DATA) { 6598 /* 6599 * More PROTO blocks in msg. 6600 */ 6601 more |= MORECTL; 6602 savemp = bp; 6603 while (bp && bp->b_datap->db_type != M_DATA) { 6604 savemptail = bp; 6605 bp = bp->b_cont; 6606 } 6607 savemptail->b_cont = NULL; 6608 } 6609 6610 /* 6611 * Now process DATA blocks, if any. 6612 */ 6613 if (mdata->maxlen >= 0 && bp) { 6614 /* 6615 * struiocopyout will consume a potential zero-length 6616 * M_DATA even if uio_resid is zero. 6617 */ 6618 size_t oldresid = uiop->uio_resid; 6619 6620 bp = struiocopyout(bp, uiop, &error); 6621 if (error != 0) { 6622 mutex_enter(&stp->sd_lock); 6623 /* 6624 * clear stream head hi pri flag based on 6625 * first message 6626 */ 6627 if (type >= QPCTL) { 6628 ASSERT(type == M_PCPROTO); 6629 stp->sd_flag &= ~STRPRI; 6630 } 6631 more = 0; 6632 freemsg(savemp); 6633 goto getmout; 6634 } 6635 /* 6636 * (pr == 1) indicates a partial read. 6637 */ 6638 if (oldresid > uiop->uio_resid) 6639 pr = 1; 6640 mdata->len = mdata->maxlen - uiop->uio_resid; 6641 } else 6642 mdata->len = -1; 6643 6644 if (bp) { /* more data blocks in msg */ 6645 more |= MOREDATA; 6646 if (savemp) 6647 savemptail->b_cont = bp; 6648 else 6649 savemp = bp; 6650 } 6651 6652 mutex_enter(&stp->sd_lock); 6653 if (savemp) { 6654 if (pr && (savemp->b_datap->db_type == M_DATA) && 6655 msgnodata(savemp)) { 6656 /* 6657 * Avoid queuing a zero-length tail part of 6658 * a message. pr=1 indicates that we read some of 6659 * the message. 6660 */ 6661 freemsg(savemp); 6662 more &= ~MOREDATA; 6663 /* 6664 * clear stream head hi pri flag based on 6665 * first message 6666 */ 6667 if (type >= QPCTL) { 6668 ASSERT(type == M_PCPROTO); 6669 stp->sd_flag &= ~STRPRI; 6670 } 6671 } else { 6672 savemp->b_band = pri; 6673 /* 6674 * If the first message was HIPRI and the one we're 6675 * putting back isn't, then clear STRPRI, otherwise 6676 * set STRPRI again. Note that we must set STRPRI 6677 * again since the flush logic in strrput_nondata() 6678 * may have cleared it while we had sd_lock dropped. 6679 */ 6680 if (type >= QPCTL) { 6681 ASSERT(type == M_PCPROTO); 6682 if (queclass(savemp) < QPCTL) 6683 stp->sd_flag &= ~STRPRI; 6684 else 6685 stp->sd_flag |= STRPRI; 6686 } else if (queclass(savemp) >= QPCTL) { 6687 /* 6688 * The first message was not a HIPRI message, 6689 * but the one we are about to putback is. 6690 * For simplicitly, we do not allow for HIPRI 6691 * messages to be embedded in the message 6692 * body, so just force it to same type as 6693 * first message. 6694 */ 6695 ASSERT(type == M_DATA || type == M_PROTO); 6696 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6697 savemp->b_datap->db_type = type; 6698 } 6699 if (mark != 0) { 6700 savemp->b_flag |= mark & ~_LASTMARK; 6701 if ((mark & _LASTMARK) && 6702 (stp->sd_mark == NULL)) { 6703 /* 6704 * If another marked message arrived 6705 * while sd_lock was not held sd_mark 6706 * would be non-NULL. 6707 */ 6708 stp->sd_mark = savemp; 6709 } 6710 } 6711 putback(stp, q, savemp, pri); 6712 } 6713 } else { 6714 /* 6715 * The complete message was consumed. 6716 * 6717 * If another M_PCPROTO arrived while sd_lock was not held 6718 * it would have been discarded since STRPRI was still set. 6719 * 6720 * Move the MSG*MARKNEXT information 6721 * to the stream head just in case 6722 * the read queue becomes empty. 6723 * clear stream head hi pri flag based on 6724 * first message 6725 * 6726 * If the stream head was at the mark 6727 * (STRATMARK) before we dropped sd_lock above 6728 * and some data was consumed then we have 6729 * moved past the mark thus STRATMARK is 6730 * cleared. However, if a message arrived in 6731 * strrput during the copyout above causing 6732 * STRATMARK to be set we can not clear that 6733 * flag. 6734 */ 6735 if (type >= QPCTL) { 6736 ASSERT(type == M_PCPROTO); 6737 stp->sd_flag &= ~STRPRI; 6738 } 6739 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6740 if (mark & MSGMARKNEXT) { 6741 stp->sd_flag &= ~STRNOTATMARK; 6742 stp->sd_flag |= STRATMARK; 6743 } else if (mark & MSGNOTMARKNEXT) { 6744 stp->sd_flag &= ~STRATMARK; 6745 stp->sd_flag |= STRNOTATMARK; 6746 } else { 6747 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6748 } 6749 } else if (pr && (old_sd_flag & STRATMARK)) { 6750 stp->sd_flag &= ~STRATMARK; 6751 } 6752 } 6753 6754 *flagsp = flg; 6755 *prip = pri; 6756 6757 /* 6758 * Getmsg cleanup processing - if the state of the queue has changed 6759 * some signals may need to be sent and/or poll awakened. 6760 */ 6761 getmout: 6762 qbackenable(q, pri); 6763 6764 /* 6765 * We dropped the stream head lock above. Send all M_SIG messages 6766 * before processing stream head for SIGPOLL messages. 6767 */ 6768 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6769 while ((bp = q->q_first) != NULL && 6770 (bp->b_datap->db_type == M_SIG)) { 6771 /* 6772 * sd_lock is held so the content of the read queue can not 6773 * change. 6774 */ 6775 bp = getq(q); 6776 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 6777 6778 strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); 6779 mutex_exit(&stp->sd_lock); 6780 freemsg(bp); 6781 if (STREAM_NEEDSERVICE(stp)) 6782 stream_runservice(stp); 6783 mutex_enter(&stp->sd_lock); 6784 } 6785 6786 /* 6787 * stream head cannot change while we make the determination 6788 * whether or not to send a signal. Drop the flag to allow strrput 6789 * to send firstmsgsigs again. 6790 */ 6791 stp->sd_flag &= ~STRGETINPROG; 6792 6793 /* 6794 * If the type of message at the front of the queue changed 6795 * due to the receive the appropriate signals and pollwakeup events 6796 * are generated. The type of changes are: 6797 * Processed a hipri message, q_first is not hipri. 6798 * Processed a band X message, and q_first is band Y. 6799 * The generated signals and pollwakeups are identical to what 6800 * strrput() generates should the message that is now on q_first 6801 * arrive to an empty read queue. 6802 * 6803 * Note: only strrput will send a signal for a hipri message. 6804 */ 6805 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 6806 strsigset_t signals = 0; 6807 strpollset_t pollwakeups = 0; 6808 6809 if (flg & MSG_HIPRI) { 6810 /* 6811 * Removed a hipri message. Regular data at 6812 * the front of the queue. 6813 */ 6814 if (bp->b_band == 0) { 6815 signals = S_INPUT | S_RDNORM; 6816 pollwakeups = POLLIN | POLLRDNORM; 6817 } else { 6818 signals = S_INPUT | S_RDBAND; 6819 pollwakeups = POLLIN | POLLRDBAND; 6820 } 6821 } else if (pri != bp->b_band) { 6822 /* 6823 * The band is different for the new q_first. 6824 */ 6825 if (bp->b_band == 0) { 6826 signals = S_RDNORM; 6827 pollwakeups = POLLIN | POLLRDNORM; 6828 } else { 6829 signals = S_RDBAND; 6830 pollwakeups = POLLIN | POLLRDBAND; 6831 } 6832 } 6833 6834 if (pollwakeups != 0) { 6835 if (pollwakeups == (POLLIN | POLLRDNORM)) { 6836 if (!(stp->sd_rput_opt & SR_POLLIN)) 6837 goto no_pollwake; 6838 stp->sd_rput_opt &= ~SR_POLLIN; 6839 } 6840 mutex_exit(&stp->sd_lock); 6841 pollwakeup(&stp->sd_pollist, pollwakeups); 6842 mutex_enter(&stp->sd_lock); 6843 } 6844 no_pollwake: 6845 6846 if (stp->sd_sigflags & signals) 6847 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 6848 } 6849 mutex_exit(&stp->sd_lock); 6850 6851 rvp->r_val1 = more; 6852 return (error); 6853 #undef _LASTMARK 6854 } 6855 6856 /* 6857 * Get the next message from the read queue. If the message is 6858 * priority, STRPRI will have been set by strrput(). This flag 6859 * should be reset only when the entire message at the front of the 6860 * queue as been consumed. 6861 * 6862 * If uiop is NULL all data is returned in mctlp. 6863 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 6864 * not enabled. 6865 * The timeout parameter is in milliseconds; -1 for infinity. 6866 * This routine handles the consolidation private flags: 6867 * MSG_IGNERROR Ignore any stream head error except STPLEX. 6868 * MSG_DELAYERROR Defer the error check until the queue is empty. 6869 * MSG_HOLDSIG Hold signals while waiting for data. 6870 * MSG_IPEEK Only peek at messages. 6871 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 6872 * that doesn't fit. 6873 * MSG_NOMARK If the message is marked leave it on the queue. 6874 * 6875 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6876 */ 6877 int 6878 kstrgetmsg( 6879 struct vnode *vp, 6880 mblk_t **mctlp, 6881 struct uio *uiop, 6882 unsigned char *prip, 6883 int *flagsp, 6884 clock_t timout, 6885 rval_t *rvp) 6886 { 6887 struct stdata *stp; 6888 mblk_t *bp, *nbp; 6889 mblk_t *savemp = NULL; 6890 mblk_t *savemptail = NULL; 6891 int flags; 6892 uint_t old_sd_flag; 6893 int flg; 6894 int more = 0; 6895 int error = 0; 6896 char first = 1; 6897 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6898 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6899 unsigned char pri = 0; 6900 queue_t *q; 6901 int pr = 0; /* Partial read successful */ 6902 unsigned char type; 6903 6904 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 6905 "kstrgetmsg:%p", vp); 6906 6907 ASSERT(vp->v_stream); 6908 stp = vp->v_stream; 6909 rvp->r_val1 = 0; 6910 6911 mutex_enter(&stp->sd_lock); 6912 6913 if ((error = i_straccess(stp, JCREAD)) != 0) { 6914 mutex_exit(&stp->sd_lock); 6915 return (error); 6916 } 6917 6918 flags = *flagsp; 6919 if (stp->sd_flag & (STRDERR|STPLEX)) { 6920 if ((stp->sd_flag & STPLEX) || 6921 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 6922 error = strgeterr(stp, STRDERR|STPLEX, 6923 (flags & MSG_IPEEK)); 6924 if (error != 0) { 6925 mutex_exit(&stp->sd_lock); 6926 return (error); 6927 } 6928 } 6929 } 6930 mutex_exit(&stp->sd_lock); 6931 6932 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 6933 case MSG_HIPRI: 6934 if (*prip != 0) 6935 return (EINVAL); 6936 break; 6937 6938 case MSG_ANY: 6939 case MSG_BAND: 6940 break; 6941 6942 default: 6943 return (EINVAL); 6944 } 6945 6946 retry: 6947 q = _RD(stp->sd_wrq); 6948 mutex_enter(&stp->sd_lock); 6949 old_sd_flag = stp->sd_flag; 6950 mark = 0; 6951 for (;;) { 6952 int done = 0; 6953 int waitflag; 6954 int fmode; 6955 mblk_t *q_first = q->q_first; 6956 6957 /* 6958 * This section of the code operates just like the code 6959 * in strgetmsg(). There is a comment there about what 6960 * is going on here. 6961 */ 6962 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 6963 /* Asking for normal, band0 data */ 6964 bp = strget(stp, q, uiop, first, &error); 6965 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6966 if (bp != NULL) { 6967 if (bp->b_datap->db_type == M_SIG) { 6968 strsignal_nolock(stp, *bp->b_rptr, 6969 (int32_t)bp->b_band); 6970 continue; 6971 } else { 6972 break; 6973 } 6974 } 6975 if (error != 0) { 6976 goto getmout; 6977 } 6978 /* 6979 * We can't depend on the value of STRPRI here because 6980 * the stream head may be in transit. Therefore, we 6981 * must look at the type of the first message to 6982 * determine if a high priority messages is waiting 6983 */ 6984 } else if ((flags & MSG_HIPRI) && q_first != NULL && 6985 q_first->b_datap->db_type >= QPCTL && 6986 (bp = getq_noenab(q)) != NULL) { 6987 ASSERT(bp->b_datap->db_type >= QPCTL); 6988 break; 6989 } else if ((flags & MSG_BAND) && q_first != NULL && 6990 ((q_first->b_band >= *prip) || 6991 q_first->b_datap->db_type >= QPCTL) && 6992 (bp = getq_noenab(q)) != NULL) { 6993 /* 6994 * Asked for at least band "prip" and got either at 6995 * least that band or a hipri message. 6996 */ 6997 ASSERT(bp->b_band >= *prip || 6998 bp->b_datap->db_type >= QPCTL); 6999 if (bp->b_datap->db_type == M_SIG) { 7000 strsignal_nolock(stp, *bp->b_rptr, 7001 (int32_t)bp->b_band); 7002 continue; 7003 } else { 7004 break; 7005 } 7006 } 7007 7008 /* No data. Time to sleep? */ 7009 qbackenable(q, 0); 7010 7011 /* 7012 * Delayed error notification? 7013 */ 7014 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7015 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7016 error = strgeterr(stp, STRDERR|STPLEX, 7017 (flags & MSG_IPEEK)); 7018 if (error != 0) { 7019 mutex_exit(&stp->sd_lock); 7020 return (error); 7021 } 7022 } 7023 7024 /* 7025 * If STRHUP or STREOF, return 0 length control and data. 7026 * If a read(fd,buf,0) has been done, do not sleep, just 7027 * return. 7028 * 7029 * If mctlp == NULL and uiop == NULL, then the code will 7030 * do the strwaitq. This is an understood way of saying 7031 * sleep "polling" until a message is received. 7032 */ 7033 if ((stp->sd_flag & (STRHUP|STREOF)) || 7034 (uiop != NULL && uiop->uio_resid == 0)) { 7035 if (mctlp != NULL) 7036 *mctlp = NULL; 7037 *flagsp = 0; 7038 mutex_exit(&stp->sd_lock); 7039 return (0); 7040 } 7041 7042 waitflag = GETWAIT; 7043 if (flags & 7044 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7045 if (flags & MSG_HOLDSIG) 7046 waitflag |= STR_NOSIG; 7047 if (flags & MSG_IGNERROR) 7048 waitflag |= STR_NOERROR; 7049 if (flags & MSG_IPEEK) 7050 waitflag |= STR_PEEK; 7051 if (flags & MSG_DELAYERROR) 7052 waitflag |= STR_DELAYERR; 7053 } 7054 if (uiop != NULL) 7055 fmode = uiop->uio_fmode; 7056 else 7057 fmode = 0; 7058 7059 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7060 "kstrgetmsg calls strwaitq:%p, %p", 7061 vp, uiop); 7062 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7063 fmode, timout, &done)) != 0) || done) { 7064 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7065 "kstrgetmsg error or done:%p, %p", 7066 vp, uiop); 7067 mutex_exit(&stp->sd_lock); 7068 return (error); 7069 } 7070 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7071 "kstrgetmsg awakes:%p, %p", vp, uiop); 7072 if ((error = i_straccess(stp, JCREAD)) != 0) { 7073 mutex_exit(&stp->sd_lock); 7074 return (error); 7075 } 7076 first = 0; 7077 } 7078 ASSERT(bp != NULL); 7079 /* 7080 * Extract any mark information. If the message is not completely 7081 * consumed this information will be put in the mblk 7082 * that is putback. 7083 * If MSGMARKNEXT is set and the message is completely consumed 7084 * the STRATMARK flag will be set below. Likewise, if 7085 * MSGNOTMARKNEXT is set and the message is 7086 * completely consumed STRNOTATMARK will be set. 7087 */ 7088 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7089 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7090 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7091 pri = bp->b_band; 7092 if (mark != 0) { 7093 /* 7094 * If the caller doesn't want the mark return. 7095 * Used to implement MSG_WAITALL in sockets. 7096 */ 7097 if (flags & MSG_NOMARK) { 7098 putback(stp, q, bp, pri); 7099 qbackenable(q, pri); 7100 mutex_exit(&stp->sd_lock); 7101 return (EWOULDBLOCK); 7102 } 7103 if (bp == stp->sd_mark) { 7104 mark |= _LASTMARK; 7105 stp->sd_mark = NULL; 7106 } 7107 } 7108 7109 /* 7110 * keep track of the first message type 7111 */ 7112 type = bp->b_datap->db_type; 7113 7114 if (bp->b_datap->db_type == M_PASSFP) { 7115 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7116 stp->sd_mark = bp; 7117 bp->b_flag |= mark & ~_LASTMARK; 7118 putback(stp, q, bp, pri); 7119 qbackenable(q, pri); 7120 mutex_exit(&stp->sd_lock); 7121 return (EBADMSG); 7122 } 7123 ASSERT(type != M_SIG); 7124 7125 if (flags & MSG_IPEEK) { 7126 /* 7127 * Clear any struioflag - we do the uiomove over again 7128 * when peeking since it simplifies the code. 7129 * 7130 * Dup the message and put the original back on the queue. 7131 * If dupmsg() fails, try again with copymsg() to see if 7132 * there is indeed a shortage of memory. dupmsg() may fail 7133 * if db_ref in any of the messages reaches its limit. 7134 */ 7135 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7136 /* 7137 * Restore the state of the stream head since we 7138 * need to drop sd_lock (strwaitbuf is sleeping). 7139 */ 7140 size_t size = msgdsize(bp); 7141 7142 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7143 stp->sd_mark = bp; 7144 bp->b_flag |= mark & ~_LASTMARK; 7145 putback(stp, q, bp, pri); 7146 mutex_exit(&stp->sd_lock); 7147 error = strwaitbuf(size, BPRI_HI); 7148 if (error) { 7149 /* 7150 * There is no net change to the queue thus 7151 * no need to qbackenable. 7152 */ 7153 return (error); 7154 } 7155 goto retry; 7156 } 7157 7158 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7159 stp->sd_mark = bp; 7160 bp->b_flag |= mark & ~_LASTMARK; 7161 putback(stp, q, bp, pri); 7162 bp = nbp; 7163 } 7164 7165 /* 7166 * Set this flag so strrput will not generate signals. Need to 7167 * make sure this flag is cleared before leaving this routine 7168 * else signals will stop being sent. 7169 */ 7170 stp->sd_flag |= STRGETINPROG; 7171 mutex_exit(&stp->sd_lock); 7172 7173 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA) && 7174 (!(DB_FLAGS(bp) & DBLK_COOKED))) { 7175 7176 bp = (stp->sd_rputdatafunc)( 7177 stp->sd_vnode, bp, NULL, 7178 NULL, NULL, NULL); 7179 7180 if (bp == NULL) 7181 goto retry; 7182 7183 DB_FLAGS(bp) |= DBLK_COOKED; 7184 } 7185 7186 if (STREAM_NEEDSERVICE(stp)) 7187 stream_runservice(stp); 7188 7189 /* 7190 * Set HIPRI flag if message is priority. 7191 */ 7192 if (type >= QPCTL) 7193 flg = MSG_HIPRI; 7194 else 7195 flg = MSG_BAND; 7196 7197 /* 7198 * First process PROTO or PCPROTO blocks, if any. 7199 */ 7200 if (mctlp != NULL && type != M_DATA) { 7201 mblk_t *nbp; 7202 7203 *mctlp = bp; 7204 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7205 bp = bp->b_cont; 7206 nbp = bp->b_cont; 7207 bp->b_cont = NULL; 7208 bp = nbp; 7209 } 7210 7211 if (bp && bp->b_datap->db_type != M_DATA) { 7212 /* 7213 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7214 */ 7215 more |= MORECTL; 7216 savemp = bp; 7217 while (bp && bp->b_datap->db_type != M_DATA) { 7218 savemptail = bp; 7219 bp = bp->b_cont; 7220 } 7221 savemptail->b_cont = NULL; 7222 } 7223 7224 /* 7225 * Now process DATA blocks, if any. 7226 */ 7227 if (uiop == NULL) { 7228 /* Append data to tail of mctlp */ 7229 if (mctlp != NULL) { 7230 mblk_t **mpp = mctlp; 7231 7232 while (*mpp != NULL) 7233 mpp = &((*mpp)->b_cont); 7234 *mpp = bp; 7235 bp = NULL; 7236 } 7237 } else if (uiop->uio_resid >= 0 && bp) { 7238 size_t oldresid = uiop->uio_resid; 7239 7240 /* 7241 * If a streams message is likely to consist 7242 * of many small mblks, it is pulled up into 7243 * one continuous chunk of memory. 7244 * see longer comment at top of page 7245 * by mblk_pull_len declaration. 7246 */ 7247 7248 if (MBLKL(bp) < mblk_pull_len) { 7249 (void) pullupmsg(bp, -1); 7250 } 7251 7252 bp = struiocopyout(bp, uiop, &error); 7253 if (error != 0) { 7254 if (mctlp != NULL) { 7255 freemsg(*mctlp); 7256 *mctlp = NULL; 7257 } else 7258 freemsg(savemp); 7259 mutex_enter(&stp->sd_lock); 7260 /* 7261 * clear stream head hi pri flag based on 7262 * first message 7263 */ 7264 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7265 ASSERT(type == M_PCPROTO); 7266 stp->sd_flag &= ~STRPRI; 7267 } 7268 more = 0; 7269 goto getmout; 7270 } 7271 /* 7272 * (pr == 1) indicates a partial read. 7273 */ 7274 if (oldresid > uiop->uio_resid) 7275 pr = 1; 7276 } 7277 7278 if (bp) { /* more data blocks in msg */ 7279 more |= MOREDATA; 7280 if (savemp) 7281 savemptail->b_cont = bp; 7282 else 7283 savemp = bp; 7284 } 7285 7286 mutex_enter(&stp->sd_lock); 7287 if (savemp) { 7288 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7289 /* 7290 * When MSG_DISCARDTAIL is set or 7291 * when peeking discard any tail. When peeking this 7292 * is the tail of the dup that was copied out - the 7293 * message has already been putback on the queue. 7294 * Return MOREDATA to the caller even though the data 7295 * is discarded. This is used by sockets (to 7296 * set MSG_TRUNC). 7297 */ 7298 freemsg(savemp); 7299 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7300 ASSERT(type == M_PCPROTO); 7301 stp->sd_flag &= ~STRPRI; 7302 } 7303 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7304 msgnodata(savemp)) { 7305 /* 7306 * Avoid queuing a zero-length tail part of 7307 * a message. pr=1 indicates that we read some of 7308 * the message. 7309 */ 7310 freemsg(savemp); 7311 more &= ~MOREDATA; 7312 if (type >= QPCTL) { 7313 ASSERT(type == M_PCPROTO); 7314 stp->sd_flag &= ~STRPRI; 7315 } 7316 } else { 7317 savemp->b_band = pri; 7318 /* 7319 * If the first message was HIPRI and the one we're 7320 * putting back isn't, then clear STRPRI, otherwise 7321 * set STRPRI again. Note that we must set STRPRI 7322 * again since the flush logic in strrput_nondata() 7323 * may have cleared it while we had sd_lock dropped. 7324 */ 7325 if (type >= QPCTL) { 7326 ASSERT(type == M_PCPROTO); 7327 if (queclass(savemp) < QPCTL) 7328 stp->sd_flag &= ~STRPRI; 7329 else 7330 stp->sd_flag |= STRPRI; 7331 } else if (queclass(savemp) >= QPCTL) { 7332 /* 7333 * The first message was not a HIPRI message, 7334 * but the one we are about to putback is. 7335 * For simplicitly, we do not allow for HIPRI 7336 * messages to be embedded in the message 7337 * body, so just force it to same type as 7338 * first message. 7339 */ 7340 ASSERT(type == M_DATA || type == M_PROTO); 7341 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7342 savemp->b_datap->db_type = type; 7343 } 7344 if (mark != 0) { 7345 if ((mark & _LASTMARK) && 7346 (stp->sd_mark == NULL)) { 7347 /* 7348 * If another marked message arrived 7349 * while sd_lock was not held sd_mark 7350 * would be non-NULL. 7351 */ 7352 stp->sd_mark = savemp; 7353 } 7354 savemp->b_flag |= mark & ~_LASTMARK; 7355 } 7356 putback(stp, q, savemp, pri); 7357 } 7358 } else if (!(flags & MSG_IPEEK)) { 7359 /* 7360 * The complete message was consumed. 7361 * 7362 * If another M_PCPROTO arrived while sd_lock was not held 7363 * it would have been discarded since STRPRI was still set. 7364 * 7365 * Move the MSG*MARKNEXT information 7366 * to the stream head just in case 7367 * the read queue becomes empty. 7368 * clear stream head hi pri flag based on 7369 * first message 7370 * 7371 * If the stream head was at the mark 7372 * (STRATMARK) before we dropped sd_lock above 7373 * and some data was consumed then we have 7374 * moved past the mark thus STRATMARK is 7375 * cleared. However, if a message arrived in 7376 * strrput during the copyout above causing 7377 * STRATMARK to be set we can not clear that 7378 * flag. 7379 * XXX A "perimeter" would help by single-threading strrput, 7380 * strread, strgetmsg and kstrgetmsg. 7381 */ 7382 if (type >= QPCTL) { 7383 ASSERT(type == M_PCPROTO); 7384 stp->sd_flag &= ~STRPRI; 7385 } 7386 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7387 if (mark & MSGMARKNEXT) { 7388 stp->sd_flag &= ~STRNOTATMARK; 7389 stp->sd_flag |= STRATMARK; 7390 } else if (mark & MSGNOTMARKNEXT) { 7391 stp->sd_flag &= ~STRATMARK; 7392 stp->sd_flag |= STRNOTATMARK; 7393 } else { 7394 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7395 } 7396 } else if (pr && (old_sd_flag & STRATMARK)) { 7397 stp->sd_flag &= ~STRATMARK; 7398 } 7399 } 7400 7401 *flagsp = flg; 7402 *prip = pri; 7403 7404 /* 7405 * Getmsg cleanup processing - if the state of the queue has changed 7406 * some signals may need to be sent and/or poll awakened. 7407 */ 7408 getmout: 7409 qbackenable(q, pri); 7410 7411 /* 7412 * We dropped the stream head lock above. Send all M_SIG messages 7413 * before processing stream head for SIGPOLL messages. 7414 */ 7415 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7416 while ((bp = q->q_first) != NULL && 7417 (bp->b_datap->db_type == M_SIG)) { 7418 /* 7419 * sd_lock is held so the content of the read queue can not 7420 * change. 7421 */ 7422 bp = getq(q); 7423 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7424 7425 strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); 7426 mutex_exit(&stp->sd_lock); 7427 freemsg(bp); 7428 if (STREAM_NEEDSERVICE(stp)) 7429 stream_runservice(stp); 7430 mutex_enter(&stp->sd_lock); 7431 } 7432 7433 /* 7434 * stream head cannot change while we make the determination 7435 * whether or not to send a signal. Drop the flag to allow strrput 7436 * to send firstmsgsigs again. 7437 */ 7438 stp->sd_flag &= ~STRGETINPROG; 7439 7440 /* 7441 * If the type of message at the front of the queue changed 7442 * due to the receive the appropriate signals and pollwakeup events 7443 * are generated. The type of changes are: 7444 * Processed a hipri message, q_first is not hipri. 7445 * Processed a band X message, and q_first is band Y. 7446 * The generated signals and pollwakeups are identical to what 7447 * strrput() generates should the message that is now on q_first 7448 * arrive to an empty read queue. 7449 * 7450 * Note: only strrput will send a signal for a hipri message. 7451 */ 7452 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7453 strsigset_t signals = 0; 7454 strpollset_t pollwakeups = 0; 7455 7456 if (flg & MSG_HIPRI) { 7457 /* 7458 * Removed a hipri message. Regular data at 7459 * the front of the queue. 7460 */ 7461 if (bp->b_band == 0) { 7462 signals = S_INPUT | S_RDNORM; 7463 pollwakeups = POLLIN | POLLRDNORM; 7464 } else { 7465 signals = S_INPUT | S_RDBAND; 7466 pollwakeups = POLLIN | POLLRDBAND; 7467 } 7468 } else if (pri != bp->b_band) { 7469 /* 7470 * The band is different for the new q_first. 7471 */ 7472 if (bp->b_band == 0) { 7473 signals = S_RDNORM; 7474 pollwakeups = POLLIN | POLLRDNORM; 7475 } else { 7476 signals = S_RDBAND; 7477 pollwakeups = POLLIN | POLLRDBAND; 7478 } 7479 } 7480 7481 if (pollwakeups != 0) { 7482 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7483 if (!(stp->sd_rput_opt & SR_POLLIN)) 7484 goto no_pollwake; 7485 stp->sd_rput_opt &= ~SR_POLLIN; 7486 } 7487 mutex_exit(&stp->sd_lock); 7488 pollwakeup(&stp->sd_pollist, pollwakeups); 7489 mutex_enter(&stp->sd_lock); 7490 } 7491 no_pollwake: 7492 7493 if (stp->sd_sigflags & signals) 7494 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7495 } 7496 mutex_exit(&stp->sd_lock); 7497 7498 rvp->r_val1 = more; 7499 return (error); 7500 #undef _LASTMARK 7501 } 7502 7503 /* 7504 * Put a message downstream. 7505 * 7506 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7507 */ 7508 int 7509 strputmsg( 7510 struct vnode *vp, 7511 struct strbuf *mctl, 7512 struct strbuf *mdata, 7513 unsigned char pri, 7514 int flag, 7515 int fmode) 7516 { 7517 struct stdata *stp; 7518 queue_t *wqp; 7519 mblk_t *mp; 7520 ssize_t msgsize; 7521 ssize_t rmin, rmax; 7522 int error; 7523 struct uio uios; 7524 struct uio *uiop = &uios; 7525 struct iovec iovs; 7526 int xpg4 = 0; 7527 7528 ASSERT(vp->v_stream); 7529 stp = vp->v_stream; 7530 wqp = stp->sd_wrq; 7531 7532 /* 7533 * If it is an XPG4 application, we need to send 7534 * SIGPIPE below 7535 */ 7536 7537 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7538 flag &= ~MSG_XPG4; 7539 7540 #ifdef C2_AUDIT 7541 if (audit_active) 7542 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7543 #endif 7544 7545 mutex_enter(&stp->sd_lock); 7546 7547 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7548 mutex_exit(&stp->sd_lock); 7549 return (error); 7550 } 7551 7552 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7553 error = strwriteable(stp, B_FALSE, xpg4); 7554 if (error != 0) { 7555 mutex_exit(&stp->sd_lock); 7556 return (error); 7557 } 7558 } 7559 7560 mutex_exit(&stp->sd_lock); 7561 7562 /* 7563 * Check for legal flag value. 7564 */ 7565 switch (flag) { 7566 case MSG_HIPRI: 7567 if ((mctl->len < 0) || (pri != 0)) 7568 return (EINVAL); 7569 break; 7570 case MSG_BAND: 7571 break; 7572 7573 default: 7574 return (EINVAL); 7575 } 7576 7577 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7578 "strputmsg in:stp %p", stp); 7579 7580 /* get these values from those cached in the stream head */ 7581 rmin = stp->sd_qn_minpsz; 7582 rmax = stp->sd_qn_maxpsz; 7583 7584 /* 7585 * Make sure ctl and data sizes together fall within the 7586 * limits of the max and min receive packet sizes and do 7587 * not exceed system limit. 7588 */ 7589 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7590 if (rmax == 0) { 7591 return (ERANGE); 7592 } 7593 /* 7594 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7595 * Needed to prevent partial failures in the strmakedata loop. 7596 */ 7597 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7598 rmax = stp->sd_maxblk; 7599 7600 if ((msgsize = mdata->len) < 0) { 7601 msgsize = 0; 7602 rmin = 0; /* no range check for NULL data part */ 7603 } 7604 if ((msgsize < rmin) || 7605 ((msgsize > rmax) && (rmax != INFPSZ)) || 7606 (mctl->len > strctlsz)) { 7607 return (ERANGE); 7608 } 7609 7610 /* 7611 * Setup uio and iov for data part 7612 */ 7613 iovs.iov_base = mdata->buf; 7614 iovs.iov_len = msgsize; 7615 uios.uio_iov = &iovs; 7616 uios.uio_iovcnt = 1; 7617 uios.uio_loffset = 0; 7618 uios.uio_segflg = UIO_USERSPACE; 7619 uios.uio_fmode = fmode; 7620 uios.uio_extflg = UIO_COPY_DEFAULT; 7621 uios.uio_resid = msgsize; 7622 uios.uio_offset = 0; 7623 7624 /* Ignore flow control in strput for HIPRI */ 7625 if (flag & MSG_HIPRI) 7626 flag |= MSG_IGNFLOW; 7627 7628 for (;;) { 7629 int done = 0; 7630 7631 /* 7632 * strput will always free the ctl mblk - even when strput 7633 * fails. 7634 */ 7635 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7636 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7637 "strputmsg out:stp %p out %d error %d", 7638 stp, 1, error); 7639 return (error); 7640 } 7641 /* 7642 * Verify that the whole message can be transferred by 7643 * strput. 7644 */ 7645 ASSERT(stp->sd_maxblk == INFPSZ || 7646 stp->sd_maxblk >= mdata->len); 7647 7648 msgsize = mdata->len; 7649 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7650 mdata->len = msgsize; 7651 7652 if (error == 0) 7653 break; 7654 7655 if (error != EWOULDBLOCK) 7656 goto out; 7657 7658 mutex_enter(&stp->sd_lock); 7659 /* 7660 * Check for a missed wakeup. 7661 * Needed since strput did not hold sd_lock across 7662 * the canputnext. 7663 */ 7664 if (bcanputnext(wqp, pri)) { 7665 /* Try again */ 7666 mutex_exit(&stp->sd_lock); 7667 continue; 7668 } 7669 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7670 "strputmsg wait:stp %p waits pri %d", stp, pri); 7671 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7672 &done)) != 0) || done) { 7673 mutex_exit(&stp->sd_lock); 7674 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7675 "strputmsg out:q %p out %d error %d", 7676 stp, 0, error); 7677 return (error); 7678 } 7679 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7680 "strputmsg wake:stp %p wakes", stp); 7681 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7682 mutex_exit(&stp->sd_lock); 7683 return (error); 7684 } 7685 mutex_exit(&stp->sd_lock); 7686 } 7687 out: 7688 /* 7689 * For historic reasons, applications expect EAGAIN 7690 * when data mblk could not be allocated. so change 7691 * ENOMEM back to EAGAIN 7692 */ 7693 if (error == ENOMEM) 7694 error = EAGAIN; 7695 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7696 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7697 return (error); 7698 } 7699 7700 /* 7701 * Put a message downstream. 7702 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7703 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7704 * and the fmode parameter. 7705 * 7706 * This routine handles the consolidation private flags: 7707 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7708 * MSG_HOLDSIG Hold signals while waiting for data. 7709 * MSG_IGNFLOW Don't check streams flow control. 7710 * 7711 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7712 */ 7713 int 7714 kstrputmsg( 7715 struct vnode *vp, 7716 mblk_t *mctl, 7717 struct uio *uiop, 7718 ssize_t msgsize, 7719 unsigned char pri, 7720 int flag, 7721 int fmode) 7722 { 7723 struct stdata *stp; 7724 queue_t *wqp; 7725 ssize_t rmin, rmax; 7726 int error; 7727 7728 ASSERT(vp->v_stream); 7729 stp = vp->v_stream; 7730 wqp = stp->sd_wrq; 7731 #ifdef C2_AUDIT 7732 if (audit_active) 7733 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 7734 #endif 7735 if (mctl == NULL) 7736 return (EINVAL); 7737 7738 mutex_enter(&stp->sd_lock); 7739 7740 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7741 mutex_exit(&stp->sd_lock); 7742 freemsg(mctl); 7743 return (error); 7744 } 7745 7746 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 7747 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7748 error = strwriteable(stp, B_FALSE, B_TRUE); 7749 if (error != 0) { 7750 mutex_exit(&stp->sd_lock); 7751 freemsg(mctl); 7752 return (error); 7753 } 7754 } 7755 } 7756 7757 mutex_exit(&stp->sd_lock); 7758 7759 /* 7760 * Check for legal flag value. 7761 */ 7762 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 7763 case MSG_HIPRI: 7764 if (pri != 0) { 7765 freemsg(mctl); 7766 return (EINVAL); 7767 } 7768 break; 7769 case MSG_BAND: 7770 break; 7771 default: 7772 freemsg(mctl); 7773 return (EINVAL); 7774 } 7775 7776 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 7777 "kstrputmsg in:stp %p", stp); 7778 7779 /* get these values from those cached in the stream head */ 7780 rmin = stp->sd_qn_minpsz; 7781 rmax = stp->sd_qn_maxpsz; 7782 7783 /* 7784 * Make sure ctl and data sizes together fall within the 7785 * limits of the max and min receive packet sizes and do 7786 * not exceed system limit. 7787 */ 7788 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7789 if (rmax == 0) { 7790 freemsg(mctl); 7791 return (ERANGE); 7792 } 7793 /* 7794 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7795 * Needed to prevent partial failures in the strmakedata loop. 7796 */ 7797 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7798 rmax = stp->sd_maxblk; 7799 7800 if (uiop == NULL) { 7801 msgsize = -1; 7802 rmin = -1; /* no range check for NULL data part */ 7803 } else { 7804 /* Use uio flags as well as the fmode parameter flags */ 7805 fmode |= uiop->uio_fmode; 7806 7807 if ((msgsize < rmin) || 7808 ((msgsize > rmax) && (rmax != INFPSZ))) { 7809 freemsg(mctl); 7810 return (ERANGE); 7811 } 7812 } 7813 7814 /* Ignore flow control in strput for HIPRI */ 7815 if (flag & MSG_HIPRI) 7816 flag |= MSG_IGNFLOW; 7817 7818 for (;;) { 7819 int done = 0; 7820 int waitflag; 7821 mblk_t *mp; 7822 7823 /* 7824 * strput will always free the ctl mblk - even when strput 7825 * fails. If MSG_IGNFLOW is set then any error returned 7826 * will cause us to break the loop, so we don't need a copy 7827 * of the message. If MSG_IGNFLOW is not set, then we can 7828 * get hit by flow control and be forced to try again. In 7829 * this case we need to have a copy of the message. We 7830 * do this using copymsg since the message may get modified 7831 * by something below us. 7832 * 7833 * We've observed that many TPI providers do not check db_ref 7834 * on the control messages but blindly reuse them for the 7835 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 7836 * friendly to such providers than using dupmsg. Also, note 7837 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 7838 * Only data messages are subject to flow control, hence 7839 * subject to this copymsg. 7840 */ 7841 if (flag & MSG_IGNFLOW) { 7842 mp = mctl; 7843 mctl = NULL; 7844 } else { 7845 do { 7846 /* 7847 * If a message has a free pointer, the message 7848 * must be dupmsg to maintain this pointer. 7849 * Code using this facility must be sure 7850 * that modules below will not change the 7851 * contents of the dblk without checking db_ref 7852 * first. If db_ref is > 1, then the module 7853 * needs to do a copymsg first. Otherwise, 7854 * the contents of the dblk may become 7855 * inconsistent because the freesmg/freeb below 7856 * may end up calling atomic_add_32_nv. 7857 * The atomic_add_32_nv in freeb (accessing 7858 * all of db_ref, db_type, db_flags, and 7859 * db_struioflag) does not prevent other threads 7860 * from concurrently trying to modify e.g. 7861 * db_type. 7862 */ 7863 if (mctl->b_datap->db_frtnp != NULL) 7864 mp = dupmsg(mctl); 7865 else 7866 mp = copymsg(mctl); 7867 7868 if (mp != NULL) 7869 break; 7870 7871 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 7872 if (error) { 7873 freemsg(mctl); 7874 return (error); 7875 } 7876 } while (mp == NULL); 7877 } 7878 /* 7879 * Verify that all of msgsize can be transferred by 7880 * strput. 7881 */ 7882 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 7883 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7884 if (error == 0) 7885 break; 7886 7887 if (error != EWOULDBLOCK) 7888 goto out; 7889 7890 /* 7891 * IF MSG_IGNFLOW is set we should have broken out of loop 7892 * above. 7893 */ 7894 ASSERT(!(flag & MSG_IGNFLOW)); 7895 mutex_enter(&stp->sd_lock); 7896 /* 7897 * Check for a missed wakeup. 7898 * Needed since strput did not hold sd_lock across 7899 * the canputnext. 7900 */ 7901 if (bcanputnext(wqp, pri)) { 7902 /* Try again */ 7903 mutex_exit(&stp->sd_lock); 7904 continue; 7905 } 7906 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 7907 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 7908 7909 waitflag = WRITEWAIT; 7910 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 7911 if (flag & MSG_HOLDSIG) 7912 waitflag |= STR_NOSIG; 7913 if (flag & MSG_IGNERROR) 7914 waitflag |= STR_NOERROR; 7915 } 7916 if (((error = strwaitq(stp, waitflag, 7917 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 7918 mutex_exit(&stp->sd_lock); 7919 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 7920 "kstrputmsg out:stp %p out %d error %d", 7921 stp, 0, error); 7922 freemsg(mctl); 7923 return (error); 7924 } 7925 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 7926 "kstrputmsg wake:stp %p wakes", stp); 7927 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7928 mutex_exit(&stp->sd_lock); 7929 freemsg(mctl); 7930 return (error); 7931 } 7932 mutex_exit(&stp->sd_lock); 7933 } 7934 out: 7935 freemsg(mctl); 7936 /* 7937 * For historic reasons, applications expect EAGAIN 7938 * when data mblk could not be allocated. so change 7939 * ENOMEM back to EAGAIN 7940 */ 7941 if (error == ENOMEM) 7942 error = EAGAIN; 7943 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 7944 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 7945 return (error); 7946 } 7947 7948 /* 7949 * Determines whether the necessary conditions are set on a stream 7950 * for it to be readable, writeable, or have exceptions. 7951 * 7952 * strpoll handles the consolidation private events: 7953 * POLLNOERR Do not return POLLERR even if there are stream 7954 * head errors. 7955 * Used by sockfs. 7956 * POLLRDDATA Do not return POLLIN unless at least one message on 7957 * the queue contains one or more M_DATA mblks. Thus 7958 * when this flag is set a queue with only 7959 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 7960 * Used by sockfs to ignore T_EXDATA_IND messages. 7961 * 7962 * Note: POLLRDDATA assumes that synch streams only return messages with 7963 * an M_DATA attached (i.e. not messages consisting of only 7964 * an M_PROTO/M_PCPROTO part). 7965 */ 7966 int 7967 strpoll( 7968 struct stdata *stp, 7969 short events_arg, 7970 int anyyet, 7971 short *reventsp, 7972 struct pollhead **phpp) 7973 { 7974 int events = (ushort_t)events_arg; 7975 int retevents = 0; 7976 mblk_t *mp; 7977 qband_t *qbp; 7978 long sd_flags = stp->sd_flag; 7979 int headlocked = 0; 7980 7981 /* 7982 * For performance, a single 'if' tests for most possible edge 7983 * conditions in one shot 7984 */ 7985 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 7986 if (sd_flags & STPLEX) { 7987 *reventsp = POLLNVAL; 7988 return (EINVAL); 7989 } 7990 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 7991 (sd_flags & STRDERR)) || 7992 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 7993 (sd_flags & STWRERR))) { 7994 if (!(events & POLLNOERR)) { 7995 *reventsp = POLLERR; 7996 return (0); 7997 } 7998 } 7999 } 8000 if (sd_flags & STRHUP) { 8001 retevents |= POLLHUP; 8002 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8003 queue_t *tq; 8004 queue_t *qp = stp->sd_wrq; 8005 8006 claimstr(qp); 8007 /* Find next module forward that has a service procedure */ 8008 tq = qp->q_next->q_nfsrv; 8009 ASSERT(tq != NULL); 8010 8011 polllock(&stp->sd_pollist, QLOCK(tq)); 8012 if (events & POLLWRNORM) { 8013 queue_t *sqp; 8014 8015 if (tq->q_flag & QFULL) 8016 /* ensure backq svc procedure runs */ 8017 tq->q_flag |= QWANTW; 8018 else if ((sqp = stp->sd_struiowrq) != NULL) { 8019 /* Check sync stream barrier write q */ 8020 mutex_exit(QLOCK(tq)); 8021 polllock(&stp->sd_pollist, QLOCK(sqp)); 8022 if (sqp->q_flag & QFULL) 8023 /* ensure pollwakeup() is done */ 8024 sqp->q_flag |= QWANTWSYNC; 8025 else 8026 retevents |= POLLOUT; 8027 /* More write events to process ??? */ 8028 if (! (events & POLLWRBAND)) { 8029 mutex_exit(QLOCK(sqp)); 8030 releasestr(qp); 8031 goto chkrd; 8032 } 8033 mutex_exit(QLOCK(sqp)); 8034 polllock(&stp->sd_pollist, QLOCK(tq)); 8035 } else 8036 retevents |= POLLOUT; 8037 } 8038 if (events & POLLWRBAND) { 8039 qbp = tq->q_bandp; 8040 if (qbp) { 8041 while (qbp) { 8042 if (qbp->qb_flag & QB_FULL) 8043 qbp->qb_flag |= QB_WANTW; 8044 else 8045 retevents |= POLLWRBAND; 8046 qbp = qbp->qb_next; 8047 } 8048 } else { 8049 retevents |= POLLWRBAND; 8050 } 8051 } 8052 mutex_exit(QLOCK(tq)); 8053 releasestr(qp); 8054 } 8055 chkrd: 8056 if (sd_flags & STRPRI) { 8057 retevents |= (events & POLLPRI); 8058 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8059 queue_t *qp = _RD(stp->sd_wrq); 8060 int normevents = (events & (POLLIN | POLLRDNORM)); 8061 8062 /* 8063 * Note: Need to do polllock() here since ps_lock may be 8064 * held. See bug 4191544. 8065 */ 8066 polllock(&stp->sd_pollist, &stp->sd_lock); 8067 headlocked = 1; 8068 mp = qp->q_first; 8069 while (mp) { 8070 /* 8071 * For POLLRDDATA we scan b_cont and b_next until we 8072 * find an M_DATA. 8073 */ 8074 if ((events & POLLRDDATA) && 8075 mp->b_datap->db_type != M_DATA) { 8076 mblk_t *nmp = mp->b_cont; 8077 8078 while (nmp != NULL && 8079 nmp->b_datap->db_type != M_DATA) 8080 nmp = nmp->b_cont; 8081 if (nmp == NULL) { 8082 mp = mp->b_next; 8083 continue; 8084 } 8085 } 8086 if (mp->b_band == 0) 8087 retevents |= normevents; 8088 else 8089 retevents |= (events & (POLLIN | POLLRDBAND)); 8090 break; 8091 } 8092 if (! (retevents & normevents) && 8093 (stp->sd_wakeq & RSLEEP)) { 8094 /* 8095 * Sync stream barrier read queue has data. 8096 */ 8097 retevents |= normevents; 8098 } 8099 /* Treat eof as normal data */ 8100 if (sd_flags & STREOF) 8101 retevents |= normevents; 8102 } 8103 8104 *reventsp = (short)retevents; 8105 if (retevents) { 8106 if (headlocked) 8107 mutex_exit(&stp->sd_lock); 8108 return (0); 8109 } 8110 8111 /* 8112 * If poll() has not found any events yet, set up event cell 8113 * to wake up the poll if a requested event occurs on this 8114 * stream. Check for collisions with outstanding poll requests. 8115 */ 8116 if (!anyyet) { 8117 *phpp = &stp->sd_pollist; 8118 if (headlocked == 0) { 8119 polllock(&stp->sd_pollist, &stp->sd_lock); 8120 headlocked = 1; 8121 } 8122 stp->sd_rput_opt |= SR_POLLIN; 8123 } 8124 if (headlocked) 8125 mutex_exit(&stp->sd_lock); 8126 return (0); 8127 } 8128 8129 /* 8130 * The purpose of putback() is to assure sleeping polls/reads 8131 * are awakened when there are no new messages arriving at the, 8132 * stream head, and a message is placed back on the read queue. 8133 * 8134 * sd_lock must be held when messages are placed back on stream 8135 * head. (getq() holds sd_lock when it removes messages from 8136 * the queue) 8137 */ 8138 8139 static void 8140 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8141 { 8142 mblk_t *qfirst = q->q_first; 8143 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8144 8145 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8146 (qfirst != NULL) && 8147 (qfirst->b_datap->db_type == M_DATA) && 8148 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0)) { 8149 /* 8150 * We use the same logic as defined in strrput() 8151 * but in reverse as we are putting back onto the 8152 * queue and want to retain byte ordering. 8153 * Consolidate an M_DATA message onto an M_DATA, 8154 * M_PROTO, or M_PCPROTO by merging it with q_first. 8155 * The consolidation does not take place if the message 8156 * we are returning to the queue is marked with either 8157 * of the marks or the delim flag or if q_first 8158 * is marked with MSGMARK. The MSGMARK check is needed to 8159 * handle the odd semantics of MSGMARK where essentially 8160 * the whole message is to be treated as marked. 8161 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8162 * to the front of the b_cont chain. 8163 */ 8164 unsigned char db_type = bp->b_datap->db_type; 8165 8166 if ((db_type == M_DATA || db_type == M_PROTO || 8167 db_type == M_PCPROTO) && 8168 !(bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT))) { 8169 rmvq_noenab(q, qfirst); 8170 /* 8171 * The first message in the b_cont list 8172 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8173 * We need to handle the case where we 8174 * are appending: 8175 * 8176 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8177 * 2) a MSGMARKNEXT to a plain message. 8178 * 3) a MSGNOTMARKNEXT to a plain message 8179 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8180 * message. 8181 * 8182 * Thus we never append a MSGMARKNEXT or 8183 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8184 */ 8185 if (qfirst->b_flag & MSGMARKNEXT) { 8186 bp->b_flag |= MSGMARKNEXT; 8187 bp->b_flag &= ~MSGNOTMARKNEXT; 8188 qfirst->b_flag &= ~MSGMARKNEXT; 8189 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8190 bp->b_flag |= MSGNOTMARKNEXT; 8191 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8192 } 8193 8194 linkb(bp, qfirst); 8195 } 8196 } 8197 (void) putbq(q, bp); 8198 8199 /* 8200 * A message may have come in when the sd_lock was dropped in the 8201 * calling routine. If this is the case and STR*ATMARK info was 8202 * received, need to move that from the stream head to the q_last 8203 * so that SIOCATMARK can return the proper value. 8204 */ 8205 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8206 unsigned short *flagp = &q->q_last->b_flag; 8207 uint_t b_flag = (uint_t)*flagp; 8208 8209 if (stp->sd_flag & STRATMARK) { 8210 b_flag &= ~MSGNOTMARKNEXT; 8211 b_flag |= MSGMARKNEXT; 8212 stp->sd_flag &= ~STRATMARK; 8213 } else { 8214 b_flag &= ~MSGMARKNEXT; 8215 b_flag |= MSGNOTMARKNEXT; 8216 stp->sd_flag &= ~STRNOTATMARK; 8217 } 8218 *flagp = (unsigned short) b_flag; 8219 } 8220 8221 #ifdef DEBUG 8222 /* 8223 * Make sure that the flags are not messed up. 8224 */ 8225 { 8226 mblk_t *mp; 8227 mp = q->q_last; 8228 while (mp != NULL) { 8229 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8230 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8231 mp = mp->b_cont; 8232 } 8233 } 8234 #endif 8235 if (q->q_first == bp) { 8236 short pollevents; 8237 8238 if (stp->sd_flag & RSLEEP) { 8239 stp->sd_flag &= ~RSLEEP; 8240 cv_broadcast(&q->q_wait); 8241 } 8242 if (stp->sd_flag & STRPRI) { 8243 pollevents = POLLPRI; 8244 } else { 8245 if (band == 0) { 8246 if (!(stp->sd_rput_opt & SR_POLLIN)) 8247 return; 8248 stp->sd_rput_opt &= ~SR_POLLIN; 8249 pollevents = POLLIN | POLLRDNORM; 8250 } else { 8251 pollevents = POLLIN | POLLRDBAND; 8252 } 8253 } 8254 mutex_exit(&stp->sd_lock); 8255 pollwakeup(&stp->sd_pollist, pollevents); 8256 mutex_enter(&stp->sd_lock); 8257 } 8258 } 8259 8260 /* 8261 * Return the held vnode attached to the stream head of a 8262 * given queue 8263 * It is the responsibility of the calling routine to ensure 8264 * that the queue does not go away (e.g. pop). 8265 */ 8266 vnode_t * 8267 strq2vp(queue_t *qp) 8268 { 8269 vnode_t *vp; 8270 vp = STREAM(qp)->sd_vnode; 8271 ASSERT(vp != NULL); 8272 VN_HOLD(vp); 8273 return (vp); 8274 } 8275 8276 /* 8277 * return the stream head write queue for the given vp 8278 * It is the responsibility of the calling routine to ensure 8279 * that the stream or vnode do not close. 8280 */ 8281 queue_t * 8282 strvp2wq(vnode_t *vp) 8283 { 8284 ASSERT(vp->v_stream != NULL); 8285 return (vp->v_stream->sd_wrq); 8286 } 8287 8288 /* 8289 * pollwakeup stream head 8290 * It is the responsibility of the calling routine to ensure 8291 * that the stream or vnode do not close. 8292 */ 8293 void 8294 strpollwakeup(vnode_t *vp, short event) 8295 { 8296 ASSERT(vp->v_stream); 8297 pollwakeup(&vp->v_stream->sd_pollist, event); 8298 } 8299 8300 /* 8301 * Mate the stream heads of two vnodes together. If the two vnodes are the 8302 * same, we just make the write-side point at the read-side -- otherwise, 8303 * we do a full mate. Only works on vnodes associated with streams that are 8304 * still being built and thus have only a stream head. 8305 */ 8306 void 8307 strmate(vnode_t *vp1, vnode_t *vp2) 8308 { 8309 queue_t *wrq1 = strvp2wq(vp1); 8310 queue_t *wrq2 = strvp2wq(vp2); 8311 8312 /* 8313 * Verify that there are no modules on the stream yet. We also 8314 * rely on the stream head always having a service procedure to 8315 * avoid tweaking q_nfsrv. 8316 */ 8317 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8318 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8319 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8320 8321 /* 8322 * If the queues are the same, just twist; otherwise do a full mate. 8323 */ 8324 if (wrq1 == wrq2) { 8325 wrq1->q_next = _RD(wrq1); 8326 } else { 8327 wrq1->q_next = _RD(wrq2); 8328 wrq2->q_next = _RD(wrq1); 8329 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8330 STREAM(wrq1)->sd_flag |= STRMATE; 8331 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8332 STREAM(wrq2)->sd_flag |= STRMATE; 8333 } 8334 } 8335 8336 /* 8337 * XXX will go away when console is correctly fixed. 8338 * Clean up the console PIDS, from previous I_SETSIG, 8339 * called only for cnopen which never calls strclean(). 8340 */ 8341 void 8342 str_cn_clean(struct vnode *vp) 8343 { 8344 strsig_t *ssp, *pssp, *tssp; 8345 struct stdata *stp; 8346 struct pid *pidp; 8347 int update = 0; 8348 8349 ASSERT(vp->v_stream); 8350 stp = vp->v_stream; 8351 pssp = NULL; 8352 mutex_enter(&stp->sd_lock); 8353 ssp = stp->sd_siglist; 8354 while (ssp) { 8355 mutex_enter(&pidlock); 8356 pidp = ssp->ss_pidp; 8357 /* 8358 * Get rid of PID if the proc is gone. 8359 */ 8360 if (pidp->pid_prinactive) { 8361 tssp = ssp->ss_next; 8362 if (pssp) 8363 pssp->ss_next = tssp; 8364 else 8365 stp->sd_siglist = tssp; 8366 ASSERT(pidp->pid_ref <= 1); 8367 PID_RELE(ssp->ss_pidp); 8368 mutex_exit(&pidlock); 8369 kmem_free(ssp, sizeof (strsig_t)); 8370 update = 1; 8371 ssp = tssp; 8372 continue; 8373 } else 8374 mutex_exit(&pidlock); 8375 pssp = ssp; 8376 ssp = ssp->ss_next; 8377 } 8378 if (update) { 8379 stp->sd_sigflags = 0; 8380 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8381 stp->sd_sigflags |= ssp->ss_events; 8382 } 8383 mutex_exit(&stp->sd_lock); 8384 } 8385 8386 /* 8387 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8388 */ 8389 static boolean_t 8390 msghasdata(mblk_t *bp) 8391 { 8392 for (; bp; bp = bp->b_cont) 8393 if (bp->b_datap->db_type == M_DATA) { 8394 ASSERT(bp->b_wptr >= bp->b_rptr); 8395 if (bp->b_wptr > bp->b_rptr) 8396 return (B_TRUE); 8397 } 8398 return (B_FALSE); 8399 } 8400